
IBM Informix

IBM Informix Database Design and Implementation Guide 

Version  11.50   

SC23-9426-00

  

 

���





IBM Informix

IBM Informix Database Design and Implementation Guide 

Version  11.50   

SC23-9426-00

  

 

 

���



Note: 

Before using this information  and the product it supports, read the information  in “Notices”  on page B-1.

This  document  contains  proprietary  information  of IBM.  It is provided  under  a license  agreement  and  is protected  

by copyright  law. The  information  contained  in this  publication  does  not  include  any  product  warranties,  and  any  

statements  provided  in this  manual  should  not  be interpreted  as  such.  

When  you  send  information  to IBM,  you  grant  IBM  a nonexclusive  right  to use  or distribute  the  information  in any  

way  it believes  appropriate  without  incurring  any  obligation  to you.  

© Copyright  International  Business  Machines  Corporation  1996,  2008.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

In This  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

About  This  Publication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

Types of Users   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

Software  Dependencies   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

Assumptions  About  Your Locale  . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

Demonstration  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x  

Documentation  Conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

Typographical  Conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi  

Feature,  Product,  and  Platform  Markup   . . . . . . . . . . . . . . . . . . . . . . . . . xi 

Example  Code  Conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi  

Additional  Documentation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 

Compliance  with  Industry  Standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . xii  

How  to Provide  Documentation  Feedback   . . . . . . . . . . . . . . . . . . . . . . . . . xii  

Part 1. Basics of Database Design and Implementation 

Chapter 1. Planning a Database . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

Choosing  a Data  Model  for Your Database  . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

Using  ANSI-Compliant  Databases   . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  

Differences  Between  ANSI-Compliant  and  Non-ANSI-Compliant  Databases  . . . . . . . . . . . . . 1-2  

Determining  if an Existing  Database  Is ANSI  Compliant   . . . . . . . . . . . . . . . . . . . 1-5  

Using  a Customized  Language  Environment  for  Your Database  (GLS)   . . . . . . . . . . . . . . . 1-5 

Chapter 2. Building a Relational Data Model  . . . . . . . . . . . . . . . . . . . 2-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 

Building  a Data  Model   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 

Overview  of the  Entity-Relationship  Data  Model  . . . . . . . . . . . . . . . . . . . . . . . 2-2  

Identifying  and  Defining  Principal  Data  Objects   . . . . . . . . . . . . . . . . . . . . . . . 2-2  

Discovering  Entities   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  

Defining  the  Relationships   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  

Identifying  Attributes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 

Diagramming  Data  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 

Reading  E-R  Diagrams   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 

Telephone  Directory  Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  

Translating  E-R  Data  Objects  into  Relational  Constructs   . . . . . . . . . . . . . . . . . . . . 2-13 

Defining  Tables, Rows,  and  Columns   . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  

Determining  Keys  for Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  

Resolving  Relationships  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 

Resolving  m:n  Relationships   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  

Resolving  Other  Special  Relationships   . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  

Normalizing  a Data  Model   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  

First  Normal  Form   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  

Second  Normal  Form   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 

Third  Normal  Form   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22  

Summary  of Normalization  Rules   . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 

Chapter 3. Choosing Data Types  . . . . . . . . . . . . . . . . . . . . . . . . 3-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 

Defining  the  Domains   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 

Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  

Choosing  a Data  Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  

Numeric  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  

 

© Copyright  IBM Corp. 1996, 2008 iii



Chronological  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 

BOOLEAN  Data  Type (IDS)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 

Character  Data  Types (GLS)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  

Null  Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  

Default  Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  

Check  Constraints   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17  

Referential  Constraints   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 

Chapter 4. Implementing a Relational Data Model  . . . . . . . . . . . . . . . . . 4-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 

Creating  the  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  

Using  CREATE DATABASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 

Using  CREATE TABLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  

Using  CREATE INDEX   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 

Using  Synonyms  for Table Names   . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 

Using  Synonym  Chains   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  

Using  Command  Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 

Populating  the  Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 

Moving  Data  from  Other  Informix  Databases   . . . . . . . . . . . . . . . . . . . . . . . 4-9 

Loading  Source  Data  into  a Table  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  

Performing  Bulk-Load  Operations   . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  

Part 2. Managing Databases 

Chapter 5. Table Fragmentation Strategies  . . . . . . . . . . . . . . . . . . . . 5-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 

What  Is Fragmentation?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 

Why  Use  Fragmentation?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 

Whose  Responsibility  Is Fragmentation?   . . . . . . . . . . . . . . . . . . . . . . . . 5-2 

Enhanced  Fragmentation  (XPS)   . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  

Fragmentation  and  Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 

Distribution  Schemes  for  Table Fragmentation   . . . . . . . . . . . . . . . . . . . . . . . 5-3 

Expression-Based  Distribution  Scheme   . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 

Round-Robin  Distribution  Scheme   . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  

Range  Distribution  Scheme  (XPS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 

System-Defined  Hash  Distribution  Scheme  (XPS)   . . . . . . . . . . . . . . . . . . . . . 5-6  

Hybrid  Distribution  Scheme  (XPS)   . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 

Creating  a Fragmented  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 

Creating  a New  Fragmented  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 

Creating  a Fragmented  Table from  Nonfragmented  Tables  . . . . . . . . . . . . . . . . . . 5-9 

Rowids  in  a Fragmented  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 

Fragmenting  Smart  Large  Objects  (IDS)   . . . . . . . . . . . . . . . . . . . . . . . . 5-10 

Modifying  Fragmentation  Strategies   . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  

Reinitializing  a Fragmentation  Strategy   . . . . . . . . . . . . . . . . . . . . . . . . 5-11  

Modifying  Fragmentation  Strategies  for  Dynamic  Server  . . . . . . . . . . . . . . . . . . . 5-12 

Modifying  Fragmentation  Strategies  for  XPS  . . . . . . . . . . . . . . . . . . . . . . . 5-13  

Granting  and  Revoking  Privileges  on  Fragments   . . . . . . . . . . . . . . . . . . . . . . 5-15  

Chapter 6. Granting and Limiting Access to Your Database . . . . . . . . . . . . . 6-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 

Using  SQL  to Restrict  Access  to  Data   . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 

Controlling  Access  to Databases   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2  

Granting  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3  

Database-Level  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 

Ownership  Rights   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 

Table-Level  Privileges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5  

Column-Level  Privileges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7  

Type-Level  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 

Routine-Level  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9  

Language-Level  Privileges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 

 

iv IBM Informix  Database  Design  and Implementation  Guide



Automating  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11  

Determining  Current  Role  at  Runtime   . . . . . . . . . . . . . . . . . . . . . . . . . 6-13 

Using  SPL  Routines  to  Control  Access  to  Data   . . . . . . . . . . . . . . . . . . . . . . . 6-14 

Restricting  Data  Reads   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 

Restricting  Changes  to Data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 

Monitoring  Changes  to Data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 

Restricting  Object  Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 

Using  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 

Creating  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 

Restrictions  on  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 

Modifying  with  a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 

Privileges  and  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 

Privileges  When  Creating  a View   . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 

Privileges  When  Using  a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23  

Chapter 7. Using Distributed Queries  . . . . . . . . . . . . . . . . . . . . . . 7-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 

Overview  of Distributed  Queries   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 

Distributed  Queries  across  Databases  of One  Dynamic  Server  Instance   . . . . . . . . . . . . . . 7-2  

Distributed  Queries  across  Databases  of Two or More  Dynamic  Server  Instances   . . . . . . . . . . . 7-2  

Coordinator  and  Participant  in a Distributed  Query  . . . . . . . . . . . . . . . . . . . . . 7-2  

Configuring  the  Database  Server  to  Use  Distributed  Queries  . . . . . . . . . . . . . . . . . . . 7-3 

The  Syntax  of a Distributed  Query   . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3  

Accessing  a Remote  Server  and  Database   . . . . . . . . . . . . . . . . . . . . . . . . 7-3 

Valid Statements  for Accessing  Remote  Objects   . . . . . . . . . . . . . . . . . . . . . . 7-4 

Accessing  Remote  Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4  

Other  Remote  Operations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5  

Monitoring  Distributed  Queries   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 

Server  Environment  and  Distributed  Queries   . . . . . . . . . . . . . . . . . . . . . . . . 7-6  

PDQPRIORITY  Environment  Variable   . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 

DEADLOCK_TIMEOUT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6  

Logging-Type  Restrictions  on  Distributed  Queries   . . . . . . . . . . . . . . . . . . . . . . 7-7  

Transaction  Processing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 

Isolation  Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 

DEADLOCK_TIMEOUT  and  SET  LOCK  MODE  . . . . . . . . . . . . . . . . . . . . . . 7-7 

Two-phase  Commit  and  Recovery   . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7  

Cross  Server  Compatibility  Issues  (XPS)   . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 

BYTE  and  TEXT  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 

Other  Restrictions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 

Part 3. Object-Relational Databases 

Chapter 8. Creating and Using Extended Data Types in Dynamic Server  . . . . . . . 8-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 

Informix  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 

Fundamental  or Atomic  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 

Predefined  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 

Extended  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3  

Smart  Large  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5  

BLOB  Data  Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5  

CLOB  Data  type   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5  

Using  Smart  Large  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6  

Copying  Smart  Large  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 

Complex  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7  

Collection  Data  Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 

Named  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12  

Unnamed  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server . . . . . . . 9-1 

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 

 

Contents  v



What  Is Inheritance?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 

Type Inheritance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 

Defining  a Type Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2  

Overloading  Routines  for Types in a Type Hierarchy   . . . . . . . . . . . . . . . . . . . . 9-3 

Inheritance  and  Type Substitutability   . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 

Dropping  Named  Row  Types from  a Type Hierarchy   . . . . . . . . . . . . . . . . . . . . 9-5 

Table Inheritance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 

The  Relationship  Between  Type and  Table Hierarchies   . . . . . . . . . . . . . . . . . . . . 9-6  

Defining  a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 

Inheritance  of Table Behavior  in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . 9-7 

Modifying  Table Behavior  in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . 9-8  

SERIAL  Types in a Table Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10  

Adding  a New  Table to a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . 9-10 

Dropping  a Table in  a Table Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 

Altering  the  Structure  of a Table in a Table Hierarchy  . . . . . . . . . . . . . . . . . . . . 9-12  

Querying  Tables in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . . . 9-12  

Creating  a View  on  a Table in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . 9-12  

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server  . . . . . . . 10-1 

In This  Chapter   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 

What  Is a Cast?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1  

Creating  User-Defined  Casts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2  

Invoking  Casts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2  

Restrictions  on  User-Defined  Casts   . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3  

Casting  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 

Casting  Between  Named  and  Unnamed  Row  Types  . . . . . . . . . . . . . . . . . . . . 10-4  

Casting  Between  Unnamed  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . 10-4 

Casting  Between  Named  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . 10-5  

Using  Explicit  Casts  on Fields   . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5  

Casting  Individual  Fields  of a Row  Type  . . . . . . . . . . . . . . . . . . . . . . . . 10-6 

Casting  Collection  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 

Restrictions  on  Collection-Type  Conversions  . . . . . . . . . . . . . . . . . . . . . . . 10-7 

Collections  with  Different  Element  Types  . . . . . . . . . . . . . . . . . . . . . . . . 10-7  

Converting  Relational  Data  to  a MULTISET  Collection   . . . . . . . . . . . . . . . . . . . 10-8  

Casting  Distinct  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8  

Using  Explicit  Casts  with  Distinct  Types  . . . . . . . . . . . . . . . . . . . . . . . . 10-8  

Casting  Between  a Distinct  Type and  Its Source  Type . . . . . . . . . . . . . . . . . . . . 10-9 

Adding  and  Dropping  Casts  on  a Distinct  Type  . . . . . . . . . . . . . . . . . . . . . 10-10 

Casting  to Smart  Large  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 

Creating  Cast  Functions  for User-Defined  Casts   . . . . . . . . . . . . . . . . . . . . . . 10-11 

An  Example  of Casting  Between  Named  Row  Types  . . . . . . . . . . . . . . . . . . . . 10-11  

An  Example  of Casting  Between  Distinct  Data  Types  . . . . . . . . . . . . . . . . . . . 10-12 

Multilevel  Casting   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13  

Part 4. Dimensional Databases 

Chapter 11. Building a Dimensional Data Model  . . . . . . . . . . . . . . . . . 11-1  

In This  Chapter   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 

Overview  of Data  Warehousing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2  

Why  Build  a Dimensional  Database?   . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 

What  Is Dimensional  Data?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3 

Concepts  of Dimensional  Data  Modeling   . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 

The  Fact  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 

Dimensions  of the  Data  Model   . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 

Building  a Dimensional  Data  Model   . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 

Choosing  a Business  Process   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9  

Summary  of a Business  Process   . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9  

Determining  the  Granularity  of the  Fact  Table  . . . . . . . . . . . . . . . . . . . . . . 11-10  

Identifying  the  Dimensions  and  Hierarchies   . . . . . . . . . . . . . . . . . . . . . . 11-11 

Choosing  the  Measures  for  the  Fact  Table  . . . . . . . . . . . . . . . . . . . . . . . 11-13 

 

vi IBM Informix  Database  Design  and Implementation  Guide



Resisting  Normalization   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14 

Choosing  the  Attributes  for the  Dimension  Tables  . . . . . . . . . . . . . . . . . . . . 11-14 

Handling  Common  Dimensional  Data-Modeling  Problems  . . . . . . . . . . . . . . . . . . . 11-15  

Minimizing  the  Number  of Attributes  in a Dimension  Table  . . . . . . . . . . . . . . . . . 11-15 

Handling  Dimensions  That  Occasionally  Change   . . . . . . . . . . . . . . . . . . . . . 11-16  

Using  the  Snowflake  Schema   . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17 

Chapter 12. Implementing a Dimensional Database (XPS)  . . . . . . . . . . . . . 12-1 

In This  Chapter   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 

Implementing  the  sales_demo  Dimensional  Database  . . . . . . . . . . . . . . . . . . . . . 12-1  

Using  CREATE DATABASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1  

Using  CREATE TABLE for  the  Dimension  and  Fact  Tables  . . . . . . . . . . . . . . . . . . 12-2 

Mapping  Data  from  Data  Sources  to the  Database   . . . . . . . . . . . . . . . . . . . . . 12-3 

Loading  Data  into  the  Dimensional  Database   . . . . . . . . . . . . . . . . . . . . . . 12-5  

Creating  the  sales_demo  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6 

Testing  the  Dimensional  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6 

Logging  and  Nonlogging  Tables in Extended  Parallel  Server   . . . . . . . . . . . . . . . . . . 12-7 

Choosing  Table Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8  

Switching  Between  Table Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10  

Indexes  for  Data-Warehousing  Environments   . . . . . . . . . . . . . . . . . . . . . . . 12-10  

Using  GK  Indexes  in a Data-Warehousing  Environment   . . . . . . . . . . . . . . . . . . . 12-11 

Defining  a GK  Index  on  a Selection   . . . . . . . . . . . . . . . . . . . . . . . . . 12-11  

Defining  a GK  Index  on  an Expression   . . . . . . . . . . . . . . . . . . . . . . . . 12-11  

Defining  a GK  Index  on  Joined  Tables  . . . . . . . . . . . . . . . . . . . . . . . . 12-12  

Part 5. Appendixes  

Appendix. Accessibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 

Accessibility  features  for IBM  Informix  Dynamic  Server   . . . . . . . . . . . . . . . . . . . . A-1 

Accessibility  Features   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1  

Keyboard  Navigation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1  

Related  Accessibility  Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 

IBM  and  Accessibility   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 

Trademarks   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3  

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-1

 

Contents  vii



viii IBM Informix  Database  Design  and Implementation  Guide



Introduction  

In This  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

About  This  Publication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

Types of Users   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

Software  Dependencies   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

Assumptions  About  Your Locale  . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

Demonstration  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x  

Documentation  Conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

Typographical  Conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi  

Feature,  Product,  and  Platform  Markup   . . . . . . . . . . . . . . . . . . . . . . . . . xi 

Example  Code  Conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi  

Additional  Documentation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 

Compliance  with  Industry  Standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . xii  

How  to Provide  Documentation  Feedback   . . . . . . . . . . . . . . . . . . . . . . . . . xii

In This Introduction 

This  introduction  provides  an  overview  of  the  information  in  this  publication  and  

describes  the  conventions  it  uses.  

About This Publication 

This  publication  provides  information  to  help  you  design,  implement,  and  manage  

your  Informix® databases.  It includes  data  models  that  illustrate  different  

approaches  to  database  design  and  shows  you  how  to use  structured  query  

language  (SQL)  to  implement  and  manage  your  databases.  

This  publication  is one  of  several  publications  that  discuss  the  Informix  

implementation  of  SQL.  The  IBM  Informix  Guide  to SQL:  Tutorial  shows  how  to  use  

basic  and  advanced  SQL  and  Stored  Procedure  Language  (SPL)  routines  to  access  

and  manipulate  the  data  in  your  databases.  The  IBM  Informix  Guide  to  SQL:  Syntax  

contains  all  the  syntax  descriptions  for  SQL  and  SPL.  The  IBM  Informix  Guide  to  

SQL:  Reference  provides  reference  information  for  aspects  of SQL  other  than  the  

language  statements.  

Types  of Users 

This  publication  is written  for  the  following  users:  

v   Database  administrators  

v   Database  server  administrators  

v   Database-application  programmers

This  publication  assumes  that  you  have  the  following  background:  

v   A working  knowledge  of your  computer,  your  operating  system,  and  the  utilities  

that  your  operating  system  provides  

v   Some  experience  working  with  relational  databases  or  exposure  to database  

concepts  

v   Some  experience  with  computer  programming

If  you  have  limited  experience  with  relational  databases,  SQL,  or  your  operating  

system,  refer  to  the  IBM  Informix  Dynamic  Server  Getting  Started  Guide  for  your  

database  server  for  a list  of  supplementary  titles.  

 

© Copyright  IBM Corp. 1996, 2008 ix



Software Dependencies 

This  publication  is written  with  the  assumption  that  you  are  using  one  of the  

following  database  servers:  

v   IBM® Informix  Dynamic  Server  Version  11.50  

v   IBM  Informix  Extended  Parallel  Server,  Version  8.51

Assumptions About Your  Locale 

IBM  Informix  products  can  support  many  languages,  cultures,  and  code  sets.  All  

the  information  related  to character  set,  collation,  and  representation  of  numeric  

data,  currency,  date,  and  time  is brought  together  in a single  environment,  called  a 

Global  Language  Support  (GLS)  locale.  

The  examples  in this  publication  are  written  with  the  assumption  that  you  are  

using  the  default  locale,  en_us.8859-1. This  locale  supports  U.S.  English  format  

conventions  for  date,  time,  and  currency.  In  addition,  this  locale  supports  the  ISO  

8859-1  code  set,  which  includes  the  ASCII  code  set  plus  many  8-bit  characters  such  

as  é, è, and  ñ. 

If you  plan  to  use  nondefault  characters  in  your  data  or  your  SQL  identifiers,  or  if 

you  want  to  conform  to  the  nondefault  collation  rules of  character  data,  you  need  

to  specify  the  appropriate  nondefault  locale.  

For  instructions  on  how  to  specify  a nondefault  locale,  additional  syntax,  and  other  

considerations  related  to  GLS  locales,  see  the  IBM  Informix  GLS  User’s  Guide. 

Demonstration Database 

The  DB–Access  utility,  provided  with  the  database  server  products,  includes  one  or  

more  of  the  following  demonstration  databases:  

v   For  all  databases,  the  stores_demo  database  illustrates  a relational  schema  with  

information  about  a fictitious  wholesale  sporting-goods  distributor.  Many  

examples  in  IBM  Informix  publications  are  based  on  the  stores_demo  database.  

v   For  Extended  Parallel  Server,  the  sales_demo  database  illustrates  a dimensional  

schema  for  data-warehousing  applications.  For  conceptual  information  about  

dimensional  data  modeling,  see  Part  4 of this  IBM  Informix  Database  Design  and  

Implementation  Guide.
v    For  Dynamic  Server,  the  superstores_demo  database  illustrates  an  

object-relational  schema.  The  superstores_demo  database  contains  examples  of  

extended  data  types,  type  and  table  inheritance,  and  user-defined  routines.  

For  information  about  how  to  create  and  populate  the  demonstration  databases,  

see  the  IBM  Informix  DB–Access  User’s  Guide. For  descriptions  of  the  databases  and  

their  contents,  see  the  IBM  Informix  Guide  to  SQL:  Reference.  

The  scripts  that  you  use  to install  the  demonstration  databases  reside  in  the  

$INFORMIXDIR/bin  directory  on  UNIX® platforms  and  in  the  

%INFORMIXDIR%\bin  directory  in  Windows  environments.  

Documentation Conventions 

This  section  describes  the  following  conventions,  which  are  used  in the  product  

documentation  for  IBM  Informix  Dynamic  Server:  

v   Typographical  conventions  

v   Feature,  product,  and  platform  conventions  

 

x IBM Informix  Database  Design  and Implementation  Guide



v   Example  code  conventions

Typographical  Conventions 

This  publication  uses  the  following  conventions  to introduce  new  terms,  illustrate  

screen  displays,  describe  command  syntax,  and  so  forth.  

 Convention  Meaning  

KEYWORD  Keywords  of SQL,  SPL,  and  some  other  programming  languages  appear  

in uppercase  letters  in a serif  font.  

italics  Within  text,  new  terms  and  emphasized  words  appear  in italics.  Within  

syntax  and  code  examples,  variable  values  that  you  are  to specify  

appear  in italics.  

boldface  Names  of program  entities  (such  as classes,  events,  and  tables),  

environment  variables,  file  names,  path  names,  and  interface  elements  

(such  as icons,  menu  items,  and  buttons)  appear  in boldface.  

monospace  Information  that  the  product  displays  and  information  that  you  enter  

appear  in a monospace  typeface.  

KEYSTROKE  Keys  that  you  are  to press  appear  in uppercase  letters  in a sans  serif  

font.  

> This  symbol  indicates  a menu  item.  For example,  “Choose  Tools  > 

Options” means  choose  the Options  item  from  the Tools  menu.
  

Feature, Product, and Platform Markup 

Feature,  product,  and  platform  markup  identifies  paragraphs  that  contain  

feature-specific,  product-specific,  or  platform-specific  information.  Some  examples  

of  this  markup  follow:  

 

Dynamic  Server  

Identifies  information  that  is specific  to  IBM  Informix  Dynamic  Server  

 

End  of  Dynamic  Server  

 

Windows  Only  

Identifies  information  that  is specific  to  the  Windows  operating  system  

 

End  of  Windows  Only  

 This  markup  can  apply  to  one  or  more  paragraphs  within  a section.  When  an  

entire  section  applies  to  a particular  product  or  platform,  this  is  noted  as part  of  

the  heading  text,  for  example:  

   Table  Sorting  (Windows)

Example Code Conventions 

Examples  of  SQL  code  occur  throughout  this  publication.  Except  as noted,  the  code  

is  not  specific  to  any  single  IBM  Informix  application  development  tool.  

If  only  SQL  statements  are  listed  in the  example,  they  are  not  delimited  by  

semicolons.  For  instance,  you  might  see  the  code  in  the  following  example:  

 

Introduction xi



CONNECT TO stores_demo 

... 

  

DELETE FROM customer 

   WHERE customer_num = 121 

... 

  

COMMIT WORK 

DISCONNECT CURRENT 

To use  this  SQL  code  for  a specific  product,  you  must  apply  the  syntax  rules for  

that  product.  For  example,  if you  are  using  an  SQL  API,  you  must  use  EXEC  SQL  

at  the  start  of  each  statement  and  a semicolon  (or  other  appropriate  delimiter)  at  

the  end  of  the  statement.  If  you  are  using  DB–Access,  you  must  delimit  multiple  

statements  with  semicolons.  

Tip:   Ellipsis  points  in  a code  example  indicate  that  more  code  would  be  added  in  

a full  application,  but  it is not  necessary  to  show  it  to  describe  the  concept  

being  discussed.  

For  detailed  directions  on  using  SQL  statements  for  a particular  application  

development  tool  or  SQL  API,  see  the  documentation  for  your  product.  

Additional Documentation 

You can  view, search,  and  print  all  of the  product  documentation  from  the  IBM  

Informix  Dynamic  Server  information  center  on  the  Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.  

For  additional  documentation  about  IBM  Informix  Dynamic  Server  and  related  

products,  including  release  notes,  machine  notes,  and  documentation  notes,  go  to  

the  online  product  library  page  at http://www.ibm.com/software/data/informix/
pubs/library/.  Alternatively,  you  can  access  or  install  the  product  documentation  

from  the  Quick  Start  CD  that  is shipped  with  the  product.  

Compliance with Industry Standards 

The  American  National  Standards  Institute  (ANSI)  and  the  International  

Organization  of  Standardization  (ISO)  have  jointly  established  a set  of industry  

standards  for  the  Structured  Query  Language  (SQL).  IBM  Informix  SQL-based  

products  are  fully  compliant  with  SQL-92  Entry  Level  (published  as  ANSI  

X3.135-1992),  which  is identical  to ISO  9075:1992.  In  addition,  many  features  of  

IBM  Informix  database  servers  comply  with  the  SQL-92  Intermediate  and  Full  

Level  and  X/Open  SQL  Common  Applications  Environment  (CAE)  standards.  

How to Provide Documentation Feedback 

You are  encouraged  to  send  your  comments  about  IBM  Informix  user  

documentation  by  using  one  of the  following  methods:  

v   Send  e-mail  to  docinf@us.ibm.com.  

v   Go  to  the  Information  Center  at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp  and  open  the  topic  that  you  want  to  comment  on.  Click  

Feedback  at  the  bottom  of  the  page,  fill  out  the  form,  and  submit  your  feedback.  

Feedback  from  both  methods  is monitored  by  those  who  maintain  the  user  

documentation  of  Dynamic  Server.  The  feedback  methods  are  reserved  for  

reporting  errors  and  omissions  in  our  documentation.  For  immediate  help  with  a 

 

xii IBM Informix  Database  Design  and Implementation  Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp


technical  problem,  contact  IBM  Technical  Support.  For  instructions,  see  the  IBM  

Informix  Technical  Support  Web site  at http://www.ibm.com/planetwide/.  

We appreciate  your  suggestions.  

 

Introduction xiii

http://www.ibm.com/planetwide/


xiv IBM Informix  Database  Design  and Implementation  Guide



Part  1.  Basics  of Database  Design  and  Implementation  

 

© Copyright  IBM Corp. 1996, 2008 



IBM Informix  Database  Design  and Implementation  Guide



Chapter  1.  Planning  a Database  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

Choosing  a Data  Model  for Your Database  . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

Using  ANSI-Compliant  Databases   . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  

Differences  Between  ANSI-Compliant  and  Non-ANSI-Compliant  Databases  . . . . . . . . . . . . . 1-2  

Transactions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  

Transaction  Logging   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 

Owner  Naming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 

Privileges  on  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 

Default  Isolation  Level   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 

Character  Data  Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 

DECIMAL  Data  Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  

Escape  Characters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  

Cursor  Behavior   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  

The  SQLCODE  Field  of the  SQL  Communications  Area   . . . . . . . . . . . . . . . . . . 1-5 

Synonym  Behavior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 

Determining  if an Existing  Database  Is ANSI  Compliant   . . . . . . . . . . . . . . . . . . . 1-5  

Using  a Customized  Language  Environment  for  Your Database  (GLS)   . . . . . . . . . . . . . . . 1-5

In This Chapter 

This  chapter  describes  several  issues  that  a database  administrator  (DBA)  must  

understand  to  effectively  plan  for  a database.  It discusses  choosing  a data  model  

for  your  database,  using  ANSI-compliant  databases,  and  using  a customized  

language  environment  for  your  database.  

Choosing a Data Model for Your  Database 

Before  you  create  a database  with  an  IBM  Informix  product,  you  must  decide  what  

type  of  data  model  you  want  to  use  to design  your  database.  This  manual  

describes  the  following  database  models:  

v   Relational  data  model  

This  data  model  typifies  database  design  for  online  transaction  processing  

(OLTP).  The  purpose  of  OLTP is to  process  a large  number  of small  transactions  

without  losing  any  of them.  An  OLTP database  is designed  to handle  the  

day-to-day  needs  of a business,  and  database  performance  is tuned  for  those  

needs.  Part  1,  “Basics  of  Database  Design  and  Implementation”  of  this  manual,  

describes  how  to  build  and  implement  a relational  data  model  for  OLTP.  Part  2,  

“Managing  Databases,”  discusses  how  to  manage  your  databases.  

v   Object-relational  data  model  

Dynamic  Server  supports  object-relational  databases  that  employ  basic  relational  

design  principles,  but  include  features  such  as  extended  data  types,  user-defined  

routines,  user-defined  casts,  and  user-defined  aggregates  to extend  the  

functionality  of  relational  databases.  Part  3,  “Object-Relational  Databases”  of  this  

manual,  discusses  how  to use  the  extensible  features  of Dynamic  Server  to  

extend  the  kinds  of  data  you  can  store  in  your  database  and  to  provide  greater  

flexibility  in  how  you  organize  and  access  your  data.  

v   Dimensional  data  model  

This  data  model  is typically  used  to  build  data  marts,  which  are  a type  of data  

warehouse.  In  a data-warehousing  environment,  databases  are  optimized  for  

data  retrieval  and  analysis.  This  type  of informational  processing  is known  as  

 

© Copyright  IBM Corp. 1996, 2008 1-1



online  analytical  processing  (OLAP)  or  decision-support  processing.  Part  4, 

“Dimensional  Databases”  of this  manual,  describes  how  to  build  and  implement  

a dimensional  data  model  for  OLAP.

In  addition  to  the  data  model  you  choose  to  design  the  database,  you  must  make  

the  following  decisions  that  determine  which  features  are  available  to  applications  

that  use  the  database:  

v   Which  database  server  should  you  use?  

–   Dynamic  Server  

–   Extended  Parallel  Server
v    Does  the  database  need  to be  ANSI  compliant?  

v   Will  the  database  use  characters  from  a language  other  than  English  in  its  tables?

The  remainder  of  this  chapter  describes  the  implications  of  these  decisions  and  

summarizes  how  the  decisions  that  you  make  affect  your  database.  

Using ANSI-Compliant Databases 

You create  an  ANSI-compliant  database  when  you  use  the  MODE  ANSI  keywords  

in  the  CREATE  DATABASE  statement.  However,  creating  an  ANSI-compliant  

database  does  not  ensure  that  this  database  remains  ANSI-compliant.  If  you  take  a 

non-ANSI  action  (such  as  CREATE  INDEX)  on  an  ANSI  database,  you  will  receive  

a warning,  but  the  application  program  does  not  forbid  the  action.  

You might  want  to  create  an  ANSI-compliant  database  for  the  following  reasons:  

v   Privileges  and  access  to objects  

ANSI  rules govern  privileges  and  access  to  objects  such  as  tables  and  synonyms.  

v   Name  isolation  

The  ANSI  table-naming  scheme  allows  different  users  to  create  tables  in a 

database  without  name  conflicts.  

v   Transaction  isolation  

v   Data  recovery  

ANSI-compliant  databases  enforce  unbuffered  logging  and  implicit  transactions  

for  Dynamic  Server.

You can  use  the  same  SQL  statements  with  both  ANSI-compliant  databases  and  

non-ANSI-compliant  databases.  

Differences Between ANSI-Compliant and Non-ANSI-Compliant 

Databases 

Databases  that  you  designate  as  ANSI  compliant  and  databases  that  are  not  ANSI  

compliant  behave  differently  in  the  following  areas:  

v   Transactions  

v   Transaction  logging  

v   Owner  naming  

v   Privileges  on  objects  

v   Default  isolation  level  

v   Character  data  types  

v   Decimal  data  type  

v   Escape  characters  

 

1-2 IBM Informix  Database  Design  and Implementation  Guide



v   Cursor  behavior  

v   SQLCODE  of  the  SQLCA  

v   Synonym  behavior

Transactions 

A transaction  is a collection  of  SQL  statements  that  are  treated  as  a single  unit  of  

work.  All  the  SQL  statements  that  you  issue  in  an  ANSI-compliant  database  are  

automatically  contained  in  transactions.  With  a database  that  is not  ANSI  

compliant,  transaction  processing  is  an  option.  

In  a database  that  is not  ANSI  compliant,  a transaction  is enclosed  by  a BEGIN  

WORK  statement  and  a COMMIT  WORK  or  a ROLLBACK  WORK  statement.  

However,  in  an  ANSI-compliant  database,  the  BEGIN  WORK  statement  is  

unnecessary,  because  all  statements  are  automatically  contained  in  a transaction.  

You need  to  indicate  only  the  end  of a transaction  with  a COMMIT  WORK  or  

ROLLBACK  WORK  statement.  

For  more  information  on  transactions,  see  Chapter  4, “Implementing  a Relational  

Data  Model,”  on  page  4-1  and  the  IBM  Informix  Guide  to  SQL:  Tutorial.  

Transaction Logging 

ANSI-compliant  databases  run with  unbuffered  transaction  logging.  In  an  

ANSI-compliant  database,  you  cannot  change  the  logging  mode  to  buffered  

logging,  and  you  cannot  turn  logging  off.  

Databases  of  Dynamic  Server  that  are  not  ANSI  compliant  can  run with  either  

buffered  logging  or  unbuffered  logging.  Unbuffered  logging  provides  more  

comprehensive  data  recovery,  but  buffered  logging  provides  better  performance.  

Databases  of  Extended  Parallel  Server  that  are  not  ANSI  compliant  run with  

unbuffered  logging  only.  Unbuffered  logging  provides  more  comprehensive  data  

recovery.  

For  more  information,  see  the  description  of the  CREATE  DATABASE  statement  in 

the  IBM  Informix  Guide  to  SQL:  Syntax. 

Owner Naming 

In  an  ANSI-compliant  database,  owner  naming  is  enforced.  When  you  supply  an  

object  name  in  an  SQL  statement,  ANSI  standards  require  that  the  name  include  

the  prefix  owner, unless  you  are  the  owner  of the  object.  The  combination  of  owner  

and  name  must  be  unique  in  the  database.  If you  are  the  owner  of the  object,  the  

database  server  supplies  your  user  name  as  the  default.  

Databases  that  are  not  ANSI  compliant  do  not  enforce  owner  naming.  For  more  

information,  see  the  Owner  Name  segment  in  the  IBM  Informix  Guide  to SQL:  

Syntax. 

Privileges on Objects 

ANSI-compliant  databases  and  non-ANSI-compliant  databases  differ  as  to  which  

users  are  granted  table-level  privileges  by  default  when  a table  in  a database  is 

created.  ANSI  standards  specify  that  the  database  server  grants  only  the  table  

owner  (as  well  as  the  DBA  if they  are  not  the  same  user)  any  table-level  privileges.  

In  a database  that  is not  ANSI  compliant,  however,  privileges  are  granted  to  

PUBLIC.  In  addition,  the  database  server  provides  two  table-level  privileges,  Alter  

and  Index,  that  are  not  included  in the  ANSI  standards.  

 

Chapter 1. Planning  a Database  1-3



To run a user-defined  routine,  you  must  have  the  Execute  privilege  for  that  

routine.  When  you  create  an  owner-privileged  procedure  for  an  ANSI-compliant  

database,  only  the  owner  of the  user-defined  routine  has  the  Execute  privilege.  

When  you  create  an  owner-privileged  routine  in  a database  that  is not  ANSI  

compliant,  the  database  server  grants  the  Execute  privilege  to  PUBLIC  by  default.  

Setting  the  NODEFDAC  environment  variable  to ’yes’  causes  a database  that  is not  

ANSI  compliant  to  emulate  the  behavior  of  an  ANSI-compliant  database  in not  

granting  privileges  to  PUBLIC  automatically  when  a user  creates  a table  or  an  

owner-privileged  routine.  For  more  information  about  privileges,  see  Chapter  6, 

“Granting  and  Limiting  Access  to Your Database,”  on  page  6-1  and  the  description  

of  the  GRANT  statement  in  the  IBM  Informix  Guide  to  SQL:  Syntax. 

Default Isolation Level 

The  database  isolation  level  specifies  the  degree  to which  your  program  is isolated  

from  the  concurrent  actions  of  other  programs.  The  default  isolation  level  for  all 

ANSI-compliant  databases  is  Repeatable  Read.  The  default  isolation  level  for  

non-ANSI-compliant  databases  that  support  transaction  logging  is Committed  

Read.  The  default  isolation  level  for  non-ANSI-compliant  databases  that  do  not  use  

transaction  logging  is  Uncommitted  Read.  For  information  on  isolation  levels,  see  

the  IBM  Informix  Guide  to SQL:  Tutorial  and  the  description  of  the  SET  

TRANSACTION  and  SET  ISOLATION  statements  in  the  IBM  Informix  Guide  to 

SQL:  Syntax. 

Character Data Types 

If a database  is not  ANSI  compliant,  you  get  no  error  if a character  field  (CHAR,  

CHARACTER,  LVARCHAR,  NCHAR,  NVARCHAR,  VARCHAR,  CHARACTER  

VARYING)  receives  a string  that  is longer  than  the  specified  length  of  the  field.  

The  database  server  truncates  the  extra  characters  without  resulting  in an  error  

message.  Thus  the  semantic  integrity  of  data  for  a CHAR(n)  column  or  variable  is 

not  enforced  when  the  value  inserted  or  updated  exceeds  n bytes.  

In  an  ANSI-compliant  database,  you  get  an  error  if any  character  field  (CHAR,  

CHARACTER,  LVARCHAR,  NCHAR,  NVARCHAR,  VARCHAR,  CHARACTER  

VARYING)  receives  a string  that  is longer  than  the  specified  width  of  the  field.  

DECIMAL Data Type 

If a database  is not  ANSI  compliant,  a DECIMAL  data  type  that  you  declare  with  a 

precision  but  no  scale  can  store  floating  point  values  of the  specified  precision.  If 

you  specify  neither  precision  nor  scale,  the  default  precision  is 16.  

In  an  ANSI-compliant  database,  all  DECIMAL  values  are  fixed-point  and  must  be  

declared  with  an  explicit  precision.  If you  specify  no  scale  for  the  DECIMAL  data  

type,  the  scale  = 0,  and  only  integer  values  can  be  stored.  

Escape Characters 

In  an  ANSI-compliant  database,  escape  characters  can  only  escape  the  special  

significance  of  the  percent  (%)  and  underscore  (_)  characters.  You can  also  use  an  

escape  character  to  escape  itself.  For  more  information  about  escape  characters,  see  

the  Condition  segment  in  the  IBM  Informix  Guide  to SQL:  Syntax. 

Cursor Behavior 

If a database  is not  ANSI  compliant,  you  need  to  use  the  FOR  UPDATE  keywords  

when  you  declare  an  update  cursor  for  a SELECT  statement.  The  SELECT  

statement  must  also  meet  the  following  conditions:  

v   It selects  from  a single  table.  

 

1-4 IBM Informix  Database  Design  and Implementation  Guide



v   It does  not  include  any  aggregate  functions.  

v   It does  not  include  the  DISTINCT,  GROUP  BY,  INTO  TEMP,  ORDER  BY,  

UNION,  or  UNIQUE  clauses  and  keywords.

In  ANSI-compliant  databases,  the  FOR  UPDATE  keywords  are  implicit  when  you  

declare  a cursor,  and  all  cursors  that  meet  the  restrictions  that  the  preceding  list  

describes  are  potentially  update  cursors.  You can  specify  that  a cursor  is read-only  

with  the  FOR  READ  ONLY  keywords  on  the  DECLARE  statement.  

For  more  information,  see  the  description  of the  DECLARE  statement  in  the  IBM  

Informix  Guide  to  SQL:  Syntax. 

The SQLCODE Field of the SQL Communications Area 

If  no  rows  satisfy  the  search  criteria  of a DELETE,  an  INSERT  INTO  tablename  

SELECT,  a SELECT...INTO  TEMP,  or  an  UPDATE  statement,  the  database  server  

sets  SQLCODE  to  100  if the  database  is ANSI  compliant  and  0 if the  database  is 

not  ANSI  compliant.  

For  more  information,  see  the  descriptions  of  SQLCODE  in  the  IBM  Informix  Guide  

to  SQL:  Tutorial.  

Synonym Behavior 

Synonyms  are  always  private  in an  ANSI-compliant  database.  If you  attempt  to  

create  a public  synonym  or  use  the  PRIVATE  keyword  to designate  a private  

synonym  in  an  ANSI-compliant  database,  you  receive  an  error.  

For  more  information,  see  the  description  of the  CREATE  SYNONYM  statement  in 

the  IBM  Informix  Guide  to  SQL:  Syntax. 

Determining if an Existing Database Is ANSI Compliant 

The  following  list  describes  two  methods  to  determine  whether  a database  is ANSI  

compliant:  

v   From  the  sysmaster  database  you  can  execute  the  following  statement:  

SELECT  name,is_ansi  FROM  sysmaster:sysdatabases  

The  query  returns  the  value  1 for  ANSI-compliant  databases  and  0 for  

non-ANSI-compliant  databases  for  each  database  on  your  database  server.  

v   If you  are  using  an  SQL  API  such  as  IBM  Informix  ESQL/C,  you  can  test  the  

SQL  Communications  Area  (SQLCA).  Specifically,  the  third  element  in  the  

SQLCAWARN  structure  contains  a W immediately  after  you  open  an  

ANSI-compliant  database  with  the  DATABASE  or  CONNECT  statement.  For  

information  on  SQLCA,  see  the  IBM  Informix  Guide  to  SQL:  Tutorial  or  your  SQL  

API  manual.

Using a Customized Language Environment® for Your  Database (GLS) 

Global  Language  Support  (GLS)  permits  you  to  use  different  locales.  A  GLS  locale  

is  an  environment  that  has  defined  conventions  for  a particular  language  or 

culture.  

By  default,  IBM  Informix  products  use  the  U.S.-English  ASCII  code  set  and  

perform  in  the  U.S.-English  environment  with  ASCII  collation  order.  Set  your  

environment  to  accommodate  a nondefault  locale  if you  plan  to  use  any  of the  

following  functionalities:  

v   Non-ASCII  characters  in the  data  

 

Chapter 1. Planning  a Database  1-5



v   Non-ASCII  characters  in  user-specified  object  names  

v   Conformity  with  the  sorting  and  collation  order  of a non-default  code  set  

v   Culture-specific  collation  and  sorting  orders,  such  as  those  used  in  dictionaries  

or  phone  books

Dynamic  Server  supports  the  UTF-8  Unicode  locale.  Unlike  other  locales,  UTF-8  

enables  a single  database  to  store  character  strings  from  two  or  more  natural  

languages  that  use  dissimilar  codesets,  such  as  the  English,  Russian,  and  Japanese  

languages.  

For  descriptions  of  GLS  environment  variables  and  for  detailed  information  on  

how  to  implement  non-default  locales,  see  the  IBM  Informix  GLS  User’s  Guide. 

 

1-6 IBM Informix  Database  Design  and Implementation  Guide



Chapter  2.  Building  a Relational  Data  Model  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 

Building  a Data  Model   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 

Overview  of the  Entity-Relationship  Data  Model  . . . . . . . . . . . . . . . . . . . . . . . 2-2  

Identifying  and  Defining  Principal  Data  Objects   . . . . . . . . . . . . . . . . . . . . . . . 2-2  

Discovering  Entities   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  

Choosing  Possible  Entities   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 

The  List  of Entities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  

Telephone  Directory  Example   . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  

Diagramming  Entities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 

Defining  the  Relationships   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  

Connectivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 

Existence  Dependency   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  

Cardinality   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  

Discovering  the  Relationships   . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 

Diagramming  Relationships   . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 

Identifying  Attributes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 

Selecting  Attributes  for  Entities   . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  

Listing  Attributes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 

About  Entity  Occurrences   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  

Diagramming  Data  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 

Reading  E-R  Diagrams   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 

Telephone  Directory  Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  

Translating  E-R  Data  Objects  into  Relational  Constructs   . . . . . . . . . . . . . . . . . . . . 2-13 

Defining  Tables, Rows,  and  Columns   . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  

Placing  Constraints  on  Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 

Domain  Characteristics   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  

Determining  Keys  for Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  

Primary  Keys   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 

Foreign  Keys  (Join  Columns)   . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 

Adding  Keys  to the  Telephone  Directory  Diagram  . . . . . . . . . . . . . . . . . . . . 2-17 

Resolving  Relationships  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 

Resolving  m:n  Relationships   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  

Resolving  Other  Special  Relationships   . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  

Normalizing  a Data  Model   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  

First  Normal  Form   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  

Second  Normal  Form   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 

Third  Normal  Form   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22  

Summary  of Normalization  Rules   . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

In This Chapter 

The  first  step  in  creating  a relational  database  is to  construct  a data  model:  a 

precise,  complete  definition  of the  data  you  want  to store.  This  chapter  provides  an 

overview  of  one  way  to  model  the  data.  For  information  about  defining  

column-specific  properties  of  a data  model,  see  Chapter  3,  “Choosing  Data  Types,”  

on  page  3-1  To learn  how  to implement  the  data  model  that  this  chapter  describes,  

see  Chapter  4,  “Implementing  a Relational  Data  Model,”  on  page  4-1  

To understand  the  material  in  this  chapter,  a basic  understanding  of  SQL  and  

relational  database  theory  are  necessary.  

 

© Copyright  IBM Corp. 1996, 2008 2-1



Building a Data Model 

You already  have  some  idea  about  the  type  of data  in your  database  and  how  that  

data  needs  to  be  organized.  This  information  is the  beginning  of  a data  model.  

Building  a data  model  with  formal  notation  has  the  following  advantages:  

v   You think  through  the  data  model  completely.  

A  mental  model  often  contains  unexamined  assumptions;  when  you  formalize  

the  design,  you  discover  these  assumptions.  

v   The  design  is easier  to  communicate  to  other  people.  

A  formal  statement  makes  the  model  explicit,  so that  others  can  return  

comments  and  suggestions  in  the  same  form.

Overview of the Entity-Relationship Data Model 

More  than  one  formal  method  for  data  modeling  exists.  Most  methods  force  you  to  

be  thorough  and  precise.  If  you  know  a method,  by  all  means  use  it.  

This  chapter  presents  a summary  of the  entity-relationship  (E-R)  data  model.  The  

E-R  data-modeling  method  follows  these  steps:  

1.   Identify  and  define  the  principal  data  objects  (entities,  relationships,  and  

attributes).  

2.   Diagram  the  data  objects  using  the  E-R  approach.  

3.   Translate  the  E-R  data  objects  into  relational  constructs.  

4.   Resolve  the  logical  data  model.  

5.   Normalize  the  logical  data  model.

Steps  1 through  5 are  discussed  in  this  chapter.  Chapter  4 discusses  the  final  step  

of  converting  your  logical  data  model  to  a physical  schema.  

The  end  product  of  data  modeling  is a fully-defined  database  design  encoded  in  a 

diagram  similar  to  Figure  2-21  on  page  2-21,  which  shows  the  final  set  of  tables  for  

a personal  telephone  directory.  The  personal  telephone  directory  is an  example  

developed  in  this  chapter.  It is used  rather  than  the  demonstration  database  

because  it is  small  enough  to be  developed  completely  in  one  chapter  but  large  

enough  to  show  the  entire  method.  

Identifying and Defining Principal Data Objects 

To create  a data  model,  you  first  identify  and  define  the  principal  data  objects:  

entities,  relationships,  and  attributes.  

Discovering Entities 

An  entity  is  a principal  data  object  that  is of significant  interest  to  the  user. It is  

usually  a person,  place,  thing,  or  event  to  be  recorded  in  the  database.  If the  data  

model  were  a language,  entities  would  be  nouns.  The  demonstration  database  

provided  with  your  software  contains  the  following  entities:  customer,  orders, items, 

stock, catalog, cust_calls, call_type, manufact,  and  state. 

Choosing Possible Entities 

You can  probably  list  several  entities  for  your  database  immediately.  Make  a 

preliminary  list  of  all  the  entities  you  can  identify.  Interview  the  potential  users  of  

the  database  for  their  opinions  about  what  must  be  recorded  in  the  database.  

Determine  basic  characteristics  for  each  entity,  such  as  “at  least  one  address  must  

 

2-2 IBM Informix  Database  Design  and Implementation  Guide



be  associated  with  a name.”  All  the  decisions  you  make  about  the  entities  become  

your  business  rules. The  telephone  directory  example  on  page  2-4  provides  some  of  

the  business  rules for  the  example  in  this  chapter.  

Later, when  you  normalize  your  data  model,  some  of the  entities  can  expand  or  

become  other  data  objects.  For  more  information,  see  “Normalizing  a Data  Model”  

on  page  2-20.  

The List of Entities 

When  the  list  of  entities  seems  complete,  check  the  list  to  make  sure  that  each  

entity  has  the  following  qualities:  

v   It is  significant.  

List  only  entities  that  are  important  to  your  database  users  and  that  are  worth  

the  trouble  and  expense  of  computer  tabulation.  

v   It is  generic.  

List  only  types  of  things,  not  individual  instances.  For  instance,  symphony  might  

be  an  entity,  but  Beethoven’s  Fifth  would  be  an  entity  instance  or  entity  

occurrence.  

v   It is  fundamental.  

List  only  entities  that  exist  independently  and  do  not  need  something  else  to  

explain  them.  Anything  you  might  call  a trait,  a feature,  or  a description  is not  

an  entity.  For  example,  a part  number  is a feature  of the  fundamental  entity  called  

part. Also,  do  not  list  things  that  you  can  derive  from  other  entities;  for  example,  

avoid  any  sum,  average,  or  other  quantity  that  you  can  calculate  in  a SELECT  

expression.  

v   It is  unitary.  

Be  sure  that  each  entity  you  name  represents  a single  class.  It  cannot  be  

separated  into  subcategories,  each  with  its  own  features.  In  the  telephone  

directory  example  in  Figure  2-1  on  page  2-4,  the  telephone  number,  an  

apparently  simple  entity,  actually  consists  of  three  categories,  each  with  different  

features.

These  choices  are  neither  simple  nor  automatic.  To discover  the  best  choice  of  

entities,  you  must  think  carefully  about  the  nature  of the  data  you  want  to store.  

Of  course,  that  is  exactly  the  point  of a formal  data  model.  The  following  section  

describes  the  telephone  directory  example  in  detail.  

Telephone Directory Example 

Suppose  that  you  create  a database  for  a personal  telephone  directory.  The  

database  model  must  record  the  names,  addresses,  and  telephone  numbers  of  

people  and  organizations  that  the  user  needs.  

First  define  the  entities.  Look  carefully  at a page  from  a telephone  directory  to 

identify  the  entities  that  it contains.  Figure  2-1  on  page  2-4  shows  a sample  page  

from  a telephone  directory.  

 

 

Chapter  2. Building  a Relational  Data Model 2-3



The  physical  form  of  the  existing  data  can  be  misleading.  Do  not  let  the  layout  of  

pages  and  entries  in  the  telephone  directory  mislead  you  into  trying  to  specify  an  

entity  that  represents  one  entry  in the  book:  an  alphabetized  record  with  fields  for  

name,  number,  and  address.  You want  to  model  the  data,  not  the  medium.  

Generic  and  Significant  Entities:    At  first  glance,  the  entities  that  are  recorded  in  

a telephone  directory  include  the  following  items:  

v   Names  (of  persons  and  organizations)  

v   Addresses  

v   Telephone  numbers

Do  these  entities  meet  the  earlier  criteria?  They  are  clearly  significant  to  the  model  

and  are  generic.  

Fundamental  Entities:    A  good  test  is to  ask  if an  entity  can  vary  in  number  

independently  of  any  other  entity.  A telephone  directory  sometimes  lists  people  

who  have  no  number  or  current  address  (people  who  move  or  change  jobs)  and  

also  can  list  both  addresses  and  numbers  that  more  than  one  person  uses.  All  three  

of  these  entities  can  vary  in number  independently;  this  fact  strongly  suggests  that  

they  are  fundamental,  not  dependent.  

Unitary  Entities:    Names  can  be  split  into  personal  names  and  corporate  names.  

You decide  that  all  names  should  have  the  same  features  in  this  model;  that  is,  you  

do  not  plan  to  record  different  information  about  a company  than  you  would  

record  about  a person.  Likewise,  you  decide  that  only  one  kind  of  address  exists;  

you  do  not  need  to  treat  home  addresses  differently  from  business  addresses.  

  

Figure  2-1.  Partial  Page  from  a Telephone  Directory

 

2-4 IBM Informix  Database  Design  and Implementation  Guide



However,  you  also  realize  that  more  than  one  kind  of telephone  number  exists.  

Voice numbers  are  answered  by  a person,  fax  numbers  connect  to  a fax  machine,  

and  modem  numbers  connect  to  a computer.  You decide  that  you  want  to  record  

different  information  about  each  kind  of  number,  so  these  three  types  are  different  

entities.  

For  the  personal  telephone  directory  example,  you  decide  that  you  want  to  keep  

track  of  the  following  entities:  

v   Name  

v   Address  (mailing)  

v   Telephone  number  (voice)  

v   Telephone  number  (fax)  

v   Telephone  number  (modem)

Diagramming Entities 

Later  in  this  chapter  you  can  learn  how  to  use  the  E-R  diagrams.  For  now, create  a 

separate,  rectangular  box  for  each  entity  in  the  telephone  directory  example,  as  

Figure  2-2  shows.  “Diagramming  Data  Objects”  on  page  2-11  shows  how  to  put  the  

entities  together  with  relationships.  

   

Defining the Relationships 

After  you  choose  your  database  entities,  you  need  to consider  the  relationships  

between  them.  Relationships  are  not  always  obvious,  but  all  the  ones  worth  

recording  must  be  found.  The  only  way  to  ensure  that  all  the  relationships  are  

found  is  to  list  all  possible  relationships  exhaustively.  Consider  every  pair  of  

entities  A  and  B  and  ask,  “What  is the  relationship  between  an  A and  a B?”  

A relationship  is an  association  between  two  entities.  Usually,  a verb  or  preposition  

that  connects  two  entities  implies  a relationship.  A  relationship  between  entities  is  

described  in  terms  of connectivity, existence  dependency, and  cardinality. 

Connectivity 

Connectivity  refers  to  the  number  of entity  instances.  An  entity  instance  is a 

particular  occurrence  of  an  entity.  Figure  2-3  shows  that  the  three  types  of 

connectivity  are  one-to-one  (written  1:1),  one-to-many  (written  1:n),  and  

many-to-many  (written  m:n).  

 

  

Figure  2-2.  Entities  in the Personal  Telephone  Directory  Example

  

Figure  2-3.  Connectivity  in Relationships

 

Chapter  2. Building  a Relational  Data Model 2-5



For  instance,  in  the  telephone  directory  example,  an  address  can  be  associated  with  

more  than  one  name.  The  connectivity  for  the  relationship  between  the  address  

and  name  entities  is one-to-many  (1:n).  

Existence Dependency 

Existence  dependency  describes  whether  an  entity  in  a relationship  is optional  or  

mandatory.  Analyze  your  business  rules to  identify  whether  an  entity  must  exist  in  

a relationship.  For  example,  your  business  rules might  dictate  that  an  address  must  

be  associated  with  a name.  Such  an  association  indicates  a mandatory  existence  

dependency  for  the  relationship  between  the  name  and  address  entities.  An  

example  of  an  optional  existence  dependency  could  be  a business  rule that  says  a 

person  might  or  might  not  have  children.  

Cardinality 

Cardinality  places  a constraint  on  the  number  of  times  an  entity  can  appear  in a 

relationship.  The  cardinality  of a 1:1  relationship  is  always  one.  But  the  cardinality  

of  a 1:n  relationship  is open;  n could  be  any  number.  If you  need  to  place  an  upper  

limit  on  n, you  specify  a cardinality  for  the  relationship.  For  instance,  in  a store  

sale  example,  you  could  limit  the  number  of  sale  items  that  a customer  can  

purchase  at  one  time.  You usually  use  your  application  program  or stored  

procedure  language  (SPL)  to  place  cardinality  constraints.  

Discovering the Relationships 

A  convenient  way  to  discover  the  relationships  is  to  prepare  a matrix  that  names  

all  the  entities  on  the  rows  and  again  on  the  columns.  The  matrix  in  Figure  2-4  

reflects  the  entities  for  the  personal  telephone  directory.  

 

You can  ignore  the  shaded  portion  of the  matrix.  You must  consider  the  diagonal  

cells;  that  is, you  must  ask  the  question,  “What  is the  relationship  between  an  A 

and  another  A?”  In  this  model,  the  answer  is always  none.  No  relationship  exists  

between  a name  and  a name  or  an  address  and  another  address,  at least  none  that  

you  need  to  record  in  this  model.  When  a relationship  exists  between  an  A and  

another  A,  you  have  found  a recursive  relationship.  (See  “Resolving  Other  Special  

Relationships”  on  page  2-19.)  

For  all  cells  for  which  the  answer  is clearly  none,  write  none  in  the  matrix.  

Figure  2-5  shows  the  current  matrix.  

 

  

Figure  2-4.  A Matrix  That  Reflects  the  Entities  for a Personal  Telephone  Directory

 

2-6 IBM Informix  Database  Design  and Implementation  Guide



Although  no  entities  relate  to themselves  in  this  model,  this  situation  is not  always  

true in  other  models.  A  typical  example  is an  employee  who  is the  manager  of  

another  employee.  Another  example  occurs  in  manufacturing,  when  a part  entity  is 

a component  of another  part.  

In  the  remaining  cells,  write  the  connectivity  relationship  that  exists  between  the  

entity  on  the  row  and  the  entity  on  the  column.  The  following  kinds  of  

relationships  are  possible:  

v   One-to-one  (1:1),  in which  not  more  than  one  entity  A exists  for  one  entity  B and  

not  more  than  one  B for  one  A.  

v   One-to-many  (1:n),  in  which  more  than  one  entity  A never  exists,  but  several  

entities  B  can  be  related  to  A  (or  vice  versa).  

v   Many-to-many  (m:n),  in  which  several  entities  A  can  be  related  to  one  B and  

several  entities  B can  be  related  to  one  A.

One-to-many  relationships  are  the  most  common.  The  telephone  directory  model  

shows  one-to-many  and  many-to-many  relationships.  

As  Figure  2-5  on  page  2-7  shows,  the  first  unfilled  cell  represents  the  relationship  

between  names  and  addresses.  What  connectivity  lies  between  these  entities?  You 

might  ask  yourself,  “How  many  names  can  be  associated  with  an  address?”  You 

decide  that  a name  can  have  zero  or  one  address  but  no  more  than  one.  You write  

0-1  opposite  name  and  below  address, as  Figure  2-6  shows.  

 

  

Figure  2-5.  A Matrix  with  Initial  Relationships  Included

  

Figure  2-6.  Relationship  Between  Name  and  Address

 

Chapter  2. Building  a Relational  Data Model 2-7



Ask  yourself  how  many  addresses  can  be  associated  with  a name.  You decide  that  

an  address  can  be  associated  with  more  than  one  name.  For  example,  you  can  

know  several  people  at  one  company  or  more  than  two  people  who  live  at the  

same  address.  

Can  an  address  be  associated  with  zero  names?  That  is,  should  it be  possible  for  an  

address  to  exist  when  no  names  use  it?  You decide  that  yes,  it can.  Below  address  

and  opposite  name, you  write  0-n, as  Figure  2-7  shows.  

 

If you  decide  that  an  address  cannot  exist  unless  it is associated  with  at least  one  

name,  you  write  1-n  instead  of 0-n. 

When  the  cardinality  of  a relationship  is limited  on  either  side  to  1,  it is a 1:n  

relationship.  In  this  case,  the  relationship  between  names  and  addresses  is a 1:n  

relationship.  

Now  consider  the  next  cell  in Figure  2-5  on  page  2-7:  the  relationship  between  a 

name  and  a voice  number.  How  many  voice  numbers  can  a name  be  associated  

with,  one  or  more  than  one?  When  you  look  at your  telephone  directory,  you  see  

that  you  have  often  noted  more  than  one  telephone  number  for  a person.  A busy  

salesperson  might  have  a home  number,  an  office  number,  a paging  number,  and  a 

car  phone  number.  But  you  might  also  have  names  without  associated  numbers.  

You write  0-n  opposite  name  and  below  number  (voice), as  Figure  2-8  shows.  

 

What  is the  other  side  of this  relationship?  How  many  names  can  be  associated  

with  a voice  number?  You decide  that  only  one  name  can  be  associated  with  a 

voice  number.  Can  a number  be  associated  with  zero  names?  You decide  you  do  

not  need  to  record  a number  unless  someone  uses  it. You write  1 under  number  

(voice)  and  opposite  name, as  Figure  2-9  shows.  

 

  

Figure  2-7.  Relationship  Between  Address  and  Name

  

Figure  2-8.  Relationship  Between  Name  and  Number

 

2-8 IBM Informix  Database  Design  and Implementation  Guide



To fill  out  the  rest  of  the  matrix  in  the  same  fashion,  take  the  following  factors  into  

account:  

v   A name  can  be  associated  with  more  than  one  fax  number;  for  example,  a 

company  can  have  several  fax  machines.  Conversely,  a fax  number  can  be 

associated  with  more  than  one  name;  for  example,  several  people  can  use  the  

same  fax  number.  

v   A modem  number  must  be  associated  with  exactly  one  name.  (This  is an 

arbitrary  decree  to  complicate  the  example;  accept  it as  a requirement  of  the  

design.)  However,  a name  can  have  more  than  one  associated  modem  number;  

for  example,  a company  computer  can  have  several  dial-up  lines.  

v   Although  some  relationship  exists  between  a voice  number  and  an  address,  a 

modem  number  and  an  address,  and  a fax  number  and  an  address  in  the  real  

world,  none  needs  to  be  recorded  in  this  model.  An  indirect  relationship  already  

exists  through  name.

Figure  2-10  shows  a completed  matrix.  

 

Other  decisions  that  the  matrix  reveals  are  that  no  relationships  exist  between  a fax  

number  and  a modem  number,  between  a voice  number  and  a fax  number,  or  

between  a voice  number  and  a modem  number.  

You might  disagree  with  some  of  these  decisions  (for  example,  that  a relationship  

between  voice  numbers  and  modem  numbers  is not  supported).  For  the  sake  of  

this  example,  these  are  our  business  rules. 

  

Figure  2-9.  Relationship  Between  Number  and  Name

  

Figure  2-10.  A Completed  Matrix  for  a Telephone  Directory

 

Chapter  2. Building  a Relational  Data Model 2-9



Diagramming Relationships 

For  now, save  the  matrix  that  you  created  in  this  section.  You will  learn  how  to 

create  an  E-R  diagram  in  “Diagramming  Data  Objects”  on  page  2-11.  

Identifying Attributes 

Entities  contain  attributes, which  are  characteristics  or  modifiers,  qualities,  amounts,  

or  features.  An  attribute  is a fact  or  nondecomposable  piece  of information  about  

an  entity.  Later, when  you  represent  an  entity  as  a table,  its  attributes  are  added  to 

the  model  as  new  columns.  

You must  identify  the  entities  before  you  can  identify  the  database  attributes.  After  

you  determine  the  entities,  ask  yourself,  “What  characteristics  do  I need  to know  

about  each  entity?”  For  example,  in  an  address  entity,  you  probably  need  

information  about  street, city, and  zip  code. Each  of these  characteristics  of  the  

address  entity  becomes  an  attribute.  

Selecting Attributes for Entities 

To select  attributes,  choose  ones  that  have  the  following  qualities:  

v   They  are  significant.  

Include  only  attributes  that  are  useful  to the  database  users.  

v   They  are  direct,  not  derived.  

An  attribute  that  can  be  derived  from  existing  attributes  (for  instance,  through  

an  expression  in  a SELECT  statement)  should  not  be  part  of the  model.  Derived  

data  complicates  the  maintenance  of a database.  

At  a later  stage  of the  design,  you  can  consider  adding  derived  attributes  to  

improve  performance,  but  at  this  stage  exclude  them.  For  information  about  how  

to  improve  the  performance  of your  database  server,  see  your  IBM  Informix  

Performance  Guide. 

v   They  are  nondecomposable.  

An  attribute  can  contain  only  single  values,  never  lists  or  repeating  groups.  

Composite  values  must  be  separated  into  individual  attributes.  

v   They  contain  data  of the  same  type.  

For  example,  you  would  want  to  enter  only  date  values  in  a birthday  attribute,  

not  names  or  telephone  numbers.

The  rules for  how  to  define  attributes  are  the  same  as  those  for  how  to  define  

columns.  For  information  about  how  to define  columns,  see  “Placing  Constraints  

on  Columns”  on  page  2-14.  

The  following  attributes  are  added  to the  telephone  directory  example  to  produce  

the  diagram  that  Figure  2-15  on  page  2-13  shows:  

v   Street,  city,  state,  and  zip  code  are  added  to  the  address  entity.  

v   Birthdate,  e-mail  address,  anniversary  date,  and  children’s  first  names  are  added  

to  the  name  entity.  

v   Type  is  added  to  the  voice  entity  to  distinguish  car  phones,  home  phones,  and  

office  phones.  A voice  number  can  be  associated  with  only  one  voice  type.  

v   The  hours  that  a fax  machine  is attended  are  added  to  the  fax  entity.  

v   Whether  a modem  supports  9,600-,  14,400-,  or  28,800-baud  rates  is added  to  the  

modem  entity.

 

2-10 IBM Informix  Database  Design  and Implementation  Guide



Listing Attributes 

For  now, list  the  attributes  for  the  telephone  directory  example  with  the  entities  

with  which  you  think  they  belong.  Your list  should  look  like  Figure  2-11.  

   

About Entity Occurrences 

An  additional  data  object  is the  entity  occurrence.  Each  row  in  a table  represents  a 

specific,  single  occurrence  of  the  entity.  For  example,  if customer  is an  entity,  a 

customer  table  represents  the  idea  of  customer;  in  it,  each  row  represents  one  

specific  customer,  such  as  Sue  Smith.  Keep  in  mind  that  entities  become  tables,  

attributes  become  columns,  and  entity  occurrences  become  rows.  

Diagramming Data Objects 

Now  you  know  and  understand  the  entities  and  relationships  in  your  database,  

which  is  the  most  important  part  of the  relational-database  design  process.  After  

you  determine  the  entities  and  relationships,  a method  that  displays  your  thought  

process  during  database  design  might  be  helpful.  

Most  data-modeling  methods  provide  some  way  to  graphically  display  the  entities  

and  relationships.  IBM  Informix  documentation  uses  the  E-R  diagram  approach  

that  C.  R.  Bachman  originally  developed.  E-R  diagrams  serve  the  following  

purposes.  They:  

v   Model  the  informational  needs  of an  organization  

v   Identify  entities  and  their  relationships  

v   Provide  a starting  point  for  data  definition  (data-flow  diagrams)  

v   Provide  an  excellent  source  of documentation  for  application  developers  as  well  

as  database  and  system  administrators  

v   Create  a logical  design  of the  database  that  can  be  translated  into  a physical  

schema

Several  different  styles  of E-R  diagrams  exist.  If you  already  have  a style  that  you  

prefer,  use  it.  Figure  2-12  shows  a sample  E-R  diagram.  

 

  

Figure  2-11. Attributes  for  the  Telephone  Directory  Example

 

Chapter  2. Building  a Relational  Data Model  2-11



In  an  E-R  diagram,  a box  represents  an  entity.  A  line  represents  the  relationships  

that  connect  the  entities.  In  addition,  Figure  2-13  shows  how  you  use  graphical  

items  to  display  the  following  features  of  relationships:  

v   A circle  across  a relationship  link  indicates  optionality  in the  relationship  (zero  

instances  can  occur).  

v   A small  bar  across  a relationship  link  indicates  that  exactly  one  instance  of the  

entity  is  associated  with  another  entity  (consider  the  bar  to  be  a 1).  

v   The  crow’s-feet  represent  many  in  the  relationship.  

   

Reading E-R Diagrams 

You read  the  diagrams  first  from  left  to  right  and  then  from  right  to left.  In  the  

case  of  the  name-address  relationship  in  Figure  2-14,  you  read  the  relationships  as 

follows:  names  can  be  associated  with  zero  or  exactly  one  address;  addresses  can  

be  associated  with  zero,  one,  or  many  names.  

   

Telephone  Directory Example 

Figure  2-15  shows  the  telephone  directory  example  and  includes  the  entities,  

relationships,  and  attributes.  This  diagram  includes  the  relationships  that  you  

establish  with  the  matrix.  After  you  study  the  diagram  symbols,  compare  the  E-R  

diagram  in  Figure  2-15  with  the  matrix  in  Figure  2-10  on  page  2-9.  Verify  for  

yourself  that  the  relationships  are  the  same  in  both  figures.  

A  matrix  such  as  Figure  2-10  on  page  2-9  is  a useful  tool  when  you  first  design  

your  model,  because  when  you  fill  it out,  you  are  forced  to think  of  every  possible  

  

Figure  2-12.  Symbols  of an Entity-Relationship  Diagram

  

Figure  2-13.  The  Parts  of a Relationship  in an Entity-Relationship  Diagram

  

Figure  2-14.  Reading  an Entity-Relationship  Diagram

 

2-12 IBM Informix  Database  Design  and Implementation  Guide



relationship.  However,  the  same  relationships  appear  in  a diagram  such  as 

Figure  2-15,  and  this  type  of  diagram  might  be  easier  to  read  when  you  review  an  

existing  model.  

   

After the Diagram Is Complete 

The  rest  of  this  chapter  describes  how  to perform  the  following  tasks:  

v   Translate  the  entities,  relationships,  and  attributes  into  relational  constructs.  

v   Resolve  the  E-R  data  model.  

v   Normalize  the  E-R  data  model.

Chapter  4 shows  you  how  to  create  a database  from  the  E-R  data  model.  

Translating E-R Data Objects into Relational Constructs 

All  the  data  objects  you  have  learned  about  so  far  (entities,  relationships,  attributes,  

and  entity  occurrences)  translate  into  SQL  tables,  joins  between  tables,  columns,  

and  rows.  The  tables,  columns,  and  rows  of your  database  must  fit  the  rules found  

in  “Defining  Tables,  Rows,  and  Columns”  on  page  2-14.  

Before  you  normalize  your  data  objects,  check  that  they  fit  these  rules. To 

normalize  your  data  objects,  analyze  the  dependencies  between  the  entities,  

relationships,  and  attributes.  Normalization  is discussed  in  “Normalizing  a Data  

Model”  on  page  2-20.  

After  you  normalize  the  data  model,  you  can  use  SQL  statements  to  create  a 

database  that  is based  on  your  data  model.  Chapter  4 describes  how  to create  a 

database  and  provides  the  database  schema  for  the  telephone  directory  example.  

Each  entity  that  you  choose  is represented  as  a table  in  the  model.  The  table  stands  

for  the  entity  as  an  abstract  concept,  and  each  row  represents  a specific,  individual  

occurrence  of  the  entity.  In addition,  each  attribute  of an  entity  is represented  by a 

column  in  the  table.  

  

Figure  2-15.  Preliminary  Entity-Relationship  Diagram  of the  Telephone  Directory  Example

 

Chapter 2. Building  a Relational  Data Model 2-13



The  following  ideas  are  fundamental  to most  relational  data-model  methods,  

including  the  E-R  data  model.  Follow  these  rules while  you  design  your  data  

model  to save  time  and  effort  when  you  normalize  your  model.  

Defining Tables,  Rows, and Columns 

You are  already  familiar  with  the  idea  of a table  that  is composed  of  rows  and  

columns.  But  you  must  respect  the  following  rules when  you  define  the  tables  of  a 

formal  data  model:  

v   Rows  must  stand  alone.  

Each  row  of  a table  is independent  and  does  not  depend  on  any  other  row  of 

the  same  table.  As  a consequence,  the  order  of  the  rows  in  a table  is not  

significant  in  the  model.  The  model  should  still  be  correct  even  if all  the  rows  of  

a table  are  shuffled  into  random  order.  

After  the  database  is implemented,  you  can  tell  the  database  server  to store  rows  

in  a certain  order  for  the  sake  of  efficiency,  but  that  order  does  not  affect  the  

model.  

v   Rows  must  be  unique.  

In  every  row, some  column  must  contain  a unique  value.  If  no  single  column  

has  this  property,  the  values  of  some  group  of columns  taken  as  a whole  must  

be  different  in  every  row. 

v   Columns  must  stand  alone.  

The  order  of  columns  within  a table  has  no  meaning  in  the  model.  The  model  

should  still  be  correct  even  if the  columns  are  rearranged.  

After  the  database  is implemented,  programs  and  stored  queries  that  use  an  

asterisk  to  mean  all  columns  are  dependent  on  the  final  order  of  columns,  but  

that  order  does  not  affect  the  model.  

v   Column  values  must  be  unitary.  

A  column  can  contain  only  single  values,  never  lists  or  repeating  groups.  

Composite  values  must  be  separated  into  individual  columns.  For  example,  if 

you  decide  to  treat  a person’s  first  and  last  names  as  separate  values,  as  the  

examples  in  this  chapter  show, the  names  must  be  in  separate  columns,  not  in  a 

single  name  column.  

v   Each  column  must  have  a unique  name.  

Two columns  within  the  same  table  cannot  share  the  same  name.  However,  you  

can  have  columns  that  contain  similar  information.  For  example,  the  name  table  

in  the  telephone  directory  example  contains  columns  for  children’s  names.  You 

can  name  each  column,  child1, child2, and  so  on.  

v   Each  column  must  contain  data  of a single  type.  

A  column  must  contain  information  of  the  same  data  type.  For  example,  a 

column  that  is identified  as  an  integer  must  contain  only  numeric  information,  

not  characters  from  a name.

If  your  previous  experience  is only  with  data  organized  as  arrays  or sequential  

files,  these  rules might  seem  unnatural.  However,  relational  database  theory  shows  

that  you  can  represent  all  types  of data  with  only  tables,  rows,  and  columns  that  

follow  these  rules.  With  a little  practice,  these  rules become  automatic.  

Placing Constraints on Columns 

When  you  define  your  table  and  columns  with  the  CREATE  TABLE  statement,  you  

constrain  each  column.  These  constraints  specify  whether  you  want  the  column  to 

 

2-14 IBM Informix  Database  Design  and Implementation  Guide



contain  characters  or  numbers,  the  form  that  you  want  dates  to  use,  and  other  

constraints.  A  domain  describes  the  constraints  when  it identifies  the  set  of valid  

values  that  attributes  can  assume.  

Domain Characteristics 

You define  the  domain  characteristics  of  columns  when  you  create  a table.  A  

column  can  contain  the  following  domain  characteristics:  

v   Data  type  (INTEGER,  CHAR,  DATE,  and  so  on)  

v   Format  (for  example,  yy/mm/dd)  

v   Range  (for  example,  1,000  to  5,400)  

v   Meaning  (for  example,  serial  number)  

v   Allowable  values  (for  example,  only  grades  S or  U)  

v   Uniqueness  

v   Null  support  

v   Default  value  

v   Referential  constraints

For  information  about  how  to  define  domains,  see  Chapter  3. For  information  

about  how  to  create  your  tables  and  database,  see  Chapter  4.  

Determining Keys for Tables  

The  columns  of  a table  are  either  key  columns  or  descriptor  columns.  A  key  column  

is  one  that  uniquely  identifies  a particular  row  in  the  table.  For  example,  a social  

security  number  is unique  for  each  employee.  A  descriptor  column  specifies  the  

nonunique  characteristics  of  a particular  row  in  the  table.  For  example,  two  

employees  can  have  the  same  first  name,  Sue.  The  first  name  Sue  is a nonunique  

characteristic  of  an  employee.  The  main  types  of keys  in  a table  are  primary  keys  

and  foreign  keys.  

You designate  primary  and  foreign  keys  when  you  create  your  tables.  Primary  and  

foreign  keys  are  used  to relate  tables  physically.  Your next  task  is to specify  a 

primary  key  for  each  table.  That  is,  you  must  identify  some  quantifiable  

characteristic  of  the  table  that  distinguishes  each  row  from  every  other  row. 

Primary Keys 

The  primary  key  of  a table  is the  column  whose  values  are  different  in  every  row. 

Because  they  are  different,  they  make  each  row  unique.  If  no  one  such  column  

exists,  the  primary  key  is a composite  of two  or  more  columns  whose  values,  taken  

together,  are  different  in  every  row. 

Every  table  in  the  model  must  have  a primary  key.  This  rule follows  automatically  

from  the  rule that  all  rows  must  be  unique.  If necessary,  the  primary  key  is 

composed  of all  the  columns  taken  together.  It  is recommended  that  you  do  not  

use  long  character  strings  as primary  keys.  

For  efficiency,  the  primary  key  should  be  one  of  the  following  types:  

v   Numeric  (INT  or  SMALLINT)  

v   Serial  (BIGSERIAL,  SERIAL,  or  SERIAL8)  

v   A short  character  string  (as  used  for  codes).

 

Chapter 2. Building  a Relational  Data Model 2-15



Null  values  are  never  allowed  in  a primary-key  column.  Null  values  are  not  

comparable;  that  is, they  cannot  be  said  to  be  alike  or  different.  Hence,  they  cannot  

make  a row  unique  from  other  rows.  If a column  permits  null  values,  it cannot  be  

part  of  a primary  key.  

Some  entities  have  ready-made  primary  keys  such  as catalog  codes  or  identity  

numbers,  which  are  defined  outside  the  model.  Sometimes  more  than  one  column  

or  group  of  columns  can  be  used  as  the  primary  key.  All  columns  or  groups  that  

qualify  to  be  primary  keys  are  called  candidate  keys. All  candidate  keys  are  worth  

noting  because  their  property  of uniqueness  makes  them  predictable  in  a SELECT  

operation.  

Composite  Keys:    Some  entities  lack  features  that  are  reliably  unique.  Different  

people  can  have  identical  names;  different  books  can  have  identical  titles.  You can  

usually  find  a composite  of attributes  that  work  as  a primary  key.  For  example,  

people  rarely  have  identical  names  and  identical  addresses,  and  different  books  

rarely  have  identical  titles,  authors,  and  publication  dates.  

System-Assigned  Keys:    A  system-assigned  primary  key  is usually  preferable  to  a 

composite  key.  A  system-assigned  key  is a number  or  code  that  is attached  to each  

instance  of  an  entity  when  the  entity  is first  entered  into  the  database.  The  easiest  

system-assigned  keys  to implement  are  serial  numbers  because  the  database  server  

can  generate  them  automatically.  Informix  database  servers  offer  the  SERIAL,  

SERIAL8,  and  BIGSERIAL  data  types  for  serial  numbers.  However,  the  people  who  

use  the  database  might  not  like  a plain  numeric  code.  Other  codes  can  be  based  on  

actual  data;  for  example,  an  employee  identification  code  could  be  based  on  a 

person’s  initials  combined  with  the  digits  of  the  date  that  they  were  hired.  In  the  

telephone  directory  example,  a system-assigned  primary  key  is used  for  the  name  

table.  

Foreign Keys (Join Columns) 

A  foreign  key  is  a column  or  group  of columns  in  one  table  that  contains  values  that  

match  the  primary  key  in  another  table.  Foreign  keys  are  used  to  join  tables.  

Figure  2-16  shows  the  primary  and  foreign  keys  of  the  customer  and  orders  tables  

from  the  demonstration  database.  

 

Tip:   For  ease  in  maintaining  and  using  your  tables,  it is  important  to  choose  

names  for  the  primary  and  foreign  keys  so  that  the  relationship  is readily  

apparent.  In  Figure  2-16,  both  the  primary  and  foreign  key  columns  have  the  

same  name,  customer_num. Alternatively,  you  might  name  the  columns  in  

Figure  2-16  customer_custnum  and  orders_custnum, so that  each  column  has  

a distinct  name.  

Foreign  keys  are  noted  wherever  they  appear  in  the  model  because  their  presence  

can  restrict  your  ability  to  delete  rows  from  tables.  Before  you  can  delete  a row  

safely,  either  you  must  delete  all  rows  that  refer  to it through  foreign  keys,  or  you  

must  define  the  relationship  with  special  syntax  that  allows  you  to  delete  rows  

customer orders
customer_num

Primary key Foreign key

order_num customer_num

  

Figure  2-16.  Primary  and  Foreign  Keys  in the  Customer-Order  Relationships

 

2-16 IBM Informix  Database  Design  and Implementation  Guide



from  primary-key  and  foreign-key  columns  with  a single  delete  command.  The  

database  server  disallows  deletes  that  violate  referential  integrity.  

To preserve  referential  integrity,  delete  all  foreign-key  rows  before  you  delete  the  

primary  key  to  which  they  refer. If you  impose  referential  constraints  on  your  

database,  the  database  server  does  not  permit  you  to  delete  primary  keys  with  

matching  foreign  keys.  It also  does  not  permit  you  to  add  a foreign-key  value  that  

does  not  reference  an  existing  primary-key  value.  For  more  information  about  

referential  integrity,  see  the  IBM  Informix  Guide  to SQL:  Tutorial. 

Adding Keys to the Telephone Directory Diagram 

Figure  2-17  shows  the  initial  choices  of  primary  and  foreign  keys.  This  diagram  

reflects  some  important  decisions.  

For  the  name  table,  the  primary  key  rec_num  is chosen.  The  data  type  for  rec_num  

is  SERIAL.  The  values  for  rec_num  are  system  generated.  If you  look  at the  other  

columns  (or  attributes)  in  the  name  table,  you  see  that  the  data  types  that  are  

associated  with  the  columns  are  mostly  character-based.  None  of these  columns  

alone  is  a good  candidate  for  a primary  key.  If you  combine  elements  of the  table  

into  a composite  key,  you  create  a cumbersome  key.  The  SERIAL  data  type  gives  

you  a key  that  you  can  also  use  to  join  other  tables  to the  name  table.  

The  voice, fax, modem, and  address  tables  are  each  joined  to  name  through  the  

rec_num  key.  

For  the  voice, fax, and  modem  tables  the  telephone  numbers  are  used  as primary  

keys.  The  address  table  contains  a special  column  (id_num)  that  serves  no  other  

purpose  than  to  act  as  a primary  key.  This  is done  because  if id_num  did  not  exist  

then  all  of  the  other  columns  would  have  to be  used  together  as a composite  key  

in  order  to  guarantee  that  no  duplicate  primary  keys  existed.  Using  all  of the  

columns  as a primary  key  would  be  very  inefficient  and  confusing.  

   

  

Figure  2-17.  Telephone  Directory  Diagram  with  Primary  and  Foreign  Keys  Added

 

Chapter 2. Building  a Relational  Data Model 2-17



Resolving Relationships 

The  aim  of  a good  data  model  is to  create  a structure  that  provides  the  database  

server  with  quick  access.  To further  refine  the  telephone  directory  data  model,  you  

can  resolve  the  relationships  and  normalize  the  data  model.  This  section  addresses  

how  and  why  to  resolve  your  database  relationships.  Normalizing  your  data  model  

is discussed  in “Normalizing  a Data  Model”  on  page  2-20.  

Resolving m:n Relationships 

Many-to-many  (m:n)  relationships  add  complexity  and  confusion  to your  model  

and  to  the  application  development  process.  The  key  to  resolve  m:n  relationships  is 

to  separate  the  two  entities  and  create  two  one-to-many  (1:n)  relationships  between  

them  with  a third  intersect  entity.  The  intersect  entity  usually  contains  attributes  

from  both  connecting  entities.  

To resolve  a m:n  relationship,  analyze  your  business  rules again.  Have  you  

accurately  diagrammed  the  relationship?  The  telephone  directory  example  has  a 

m:n  relationship  between  the  name  and  fax  entities,  as  Figure  2-17  on  page  2-17  

shows.  The  business  rules say,  “One  person  can  have  zero,  one,  or  many  fax  

numbers;  a fax  number  can  be  for  several  people.” Based  on  what  we  selected  earlier  

as  our  primary  key  for  the  voice  entity,  an  m:n  relationship  exists.  

A  problem  exists  in  the  fax  entity  because  the  telephone  number,  which  is 

designated  as the  primary  key,  can  appear  more  than  one  time  in  the  fax  entity;  

this  violates  the  qualification  of  a primary  key.  Remember,  the  primary  key  must  

be  unique.  

To resolve  this  m:n  relationship,  you  can  add  an  intersect  entity  between  the  name  

and  fax  entities,  as  Figure  2-18  shows.  The  new  intersect  entity,  faxname, contains  

two  attributes,  fax_num  and  rec_num. The  primary  key  for  the  entity  is a 

composite  of  both  attributes.  Individually,  each  attribute  is a foreign  key  that  

references  the  table  from  which  it came.  The  relationship  between  the  name  and  

faxname  tables  is  1:n  because  one  name  can  be  associated  with  many  fax  numbers;  

in  the  other  direction,  each  faxname  combination  can  be  associated  with  one  

rec_num. The  relationship  between  the  fax  and  faxname  tables  is  1:n  because  each  

number  can  be  associated  with  many  faxname  combinations.  

 

 

2-18 IBM Informix  Database  Design  and Implementation  Guide



Resolving Other Special Relationships 

You might  encounter  other  special  relationships  that  can  hamper  a smooth-running  

database.  The  following  list  shows  these  relationships:  

v   Complex  relationships  

v   Recursive  relationships  

v   Redundant  relationships

A  complex  relationship  is an  association  among  three  or  more  entities.  All  the  

entities  must  be  present  for  the  relationship  to  exist.  To reduce  this  complexity,  

reclassify  all  complex  relationships  as  an  entity,  related  through  binary  

relationships  to  each  of  the  original  entities.  

A recursive  relationship  is an  association  between  occurrences  of  the  same  entity  

type.  These  types  of relationships  do  not  occur  often.  Examples  of  recursive  

relationships  are  bills-of-materials  (parts  are  composed  of subparts)  and  

organizational  structures  (employee  manages  other  employees).  You might  choose  

not  to  resolve  recursive  relationships.  For  an  extended  example  of  a recursive  

relationship,  see  the  IBM  Informix  Guide  to  SQL:  Tutorial.  

A redundant  relationship  exists  when  two  or  more  relationships  represent  the  same  

concept.  Redundant  relationships  add  complexity  to the  data  model  and  lead  a 

developer  to  place  attributes  in the  model  incorrectly.  Redundant  relationships  

might  appear  as  duplicated  entries  in  your  E-R  diagram.  For  example,  you  might  

have  two  entities  that  contain  the  same  attributes.  To resolve  a redundant  

relationship,  review  your  data  model.  Do  you  have  more  than  one  entity  that  

contains  the  same  attributes?  You might  need  to  add  an  entity  to the  model  to  

resolve  the  redundancy.  Your IBM  Informix  Performance  Guide  discusses  additional  

topics  that  are  related  to  redundancy  in  a data  model.  

  

Figure  2-18.  Resolving  a Many-to-Many  (m:n)  Relationship

 

Chapter 2. Building  a Relational  Data Model 2-19



Normalizing a Data Model 

The  telephone  directory  example  in  this  chapter  appears  to  be  a good  model.  You 

could  implement  it at  this  point  into  a database,  but  this  example  might  present  

problems  later  with  application  development  and  data-manipulation  operations.  

Normalization  is  a formal  approach  that  applies  a set  of  rules to  associate  attributes  

with  entities.  

When  you  normalize  your  data  model,  you  can  achieve  the  following  goals.  You 

can:  

v   Produce  greater  flexibility  in your  design.  

v   Ensure  that  attributes  are  placed  in  the  proper  tables.  

v   Reduce  data  redundancy.  

v   Increase  programmer  effectiveness.  

v   Lower  application  maintenance  costs.  

v   Maximize  stability  of the  data  structure.

Normalization  consists  of  several  steps  to reduce  the  entities  to  more  desirable  

physical  properties.  These  steps  are  called  normalization  rules, also  referred  to  as 

normal  forms. Several  normal  forms  exist;  this  chapter  discusses  the  first  three  

normal  forms.  Each  normal  form  constrains  the  data  more  than  the  last  form.  

Because  of  this,  you  must  achieve  first  normal  form  before  you  can  achieve  second  

normal  form,  and  you  must  achieve  second  normal  form  before  you  can  achieve  

third  normal  form.  

First Normal Form 

An  entity  is  in  the  first  normal  form  if it  contains  no  repeating  groups.  In  relational  

terms,  a table  is in  the  first  normal  form  if it contains  no  repeating  columns.  

Repeating  columns  make  your  data  less  flexible,  waste  disk  space,  and  make  it 

more  difficult  to  search  for  data.  In  the  telephone  directory  example  in  Figure  2-19,  

it appears  that  the  name  table  contains  repeating  columns,  child1, child2, and  child3. 

 

You can  see  some  problems  in  the  current  table.  The  table  always  reserves  space  on  

the  disk  for  three  child  records,  whether  the  person  has  children  or  not.  The  

maximum  number  of  children  that  you  can  record  is three,  but  some  of your  

acquaintances  might  have  four  or  more  children.  To look  for  a particular  child,  you  

have  to  search  all  three  columns  in  every  row. 

To eliminate  the  repeating  columns  and  bring  the  table  to the  first  normal  form,  

separate  the  table  into  two  tables  as  Figure  2-20  shows.  Put  the  repeating  columns  

into  one  of  the  tables.  The  association  between  the  two  tables  is established  with  a 

primary-key  and  foreign-key  combination.  Because  a child  cannot  exist  without  an  

association  in  the  name  table,  you  can  reference  the  name  table  with  a foreign  key,  

rec_num. 

 

  

Figure  2-19.  Name  Entity  Before  Normalization

 

2-20 IBM Informix  Database  Design  and Implementation  Guide



Now  check  Figure  2-17  on  page  2-17  for  groups  that  are  not  in  the  first  normal  

form.  The  name-modem  relationship  is not  in the  first  normal  form  because  the  

columns  b9600, b14400, and  b28800  are  considered  repeating  columns.  Add  a new  

attribute  called  b_type  to  the  modem  table  to contain  occurrences  of  b9600, 

b14400, and  b28800. Figure  2-21  shows  the  data  model  normalized  through  the  first  

normal  form.  

   

Second Normal Form 

An  entity  is  in  the  second  normal  form  if all  of  its  attributes  depend  on  the  whole  

(primary)  key.  In  relational  terms,  every  column  in  a table  must  be  functionally  

dependent  on  the  whole  primary  key  of  that  table.  Functional  dependency  indicates  

that  a link  exists  between  the  values  in  two  different  columns.  

If  the  value  of  an  attribute  depends  on  a column,  the  value  of  the  attribute  must  

change  if the  value  in  the  column  changes.  The  attribute  is  a function  of  the  

column.  The  following  explanations  make  this  more  specific:  

v   If the  table  has  a one-column  primary  key,  the  attribute  must  depend  on  that  

key.  

v   If the  table  has  a composite  primary  key,  the  attribute  must  depend  on  the  

values  in  all  its  columns  taken  as  a whole,  not  on  one  or  some  of them.  

v   If the  attribute  also  depends  on  other  columns,  they  must  be  columns  of  a 

candidate  key;  that  is, columns  that  are  unique  in every  row.

  

Figure  2-20.  First  Normal  Form  Reached  for  Name  Entity

  

Figure  2-21.  The  Data  Model  of a Personal  Telephone  Directory

 

Chapter 2. Building  a Relational  Data Model 2-21



If you  do  not  convert  your  model  to  the  second  normal  form,  you  risk  data  

redundancy  and  difficulty  in  changing  data.  To convert  first-normal-form  tables  to  

second-normal-form  tables,  remove  columns  that  are  not  dependent  on  the  primary  

key.  

Third Normal Form 

An  entity  is  in  the  third  normal  form  if it is in  the  second  normal  form  and  all  of  

its  attributes  are  not  transitively  dependent  on  the  primary  key.  Transitive  

dependence  means  that  descriptor  key  attributes  depend  not  only  on  the  whole  

primary  key,  but  also  on  other  descriptor  key  attributes  that,  in  turn,  depend  on  

the  primary  key.  In  SQL  terms,  the  third  normal  form  means  that  no  column  

within  a table  is  dependent  on  a descriptor  column  that,  in  turn,  depends  on  the  

primary  key.  

To convert  to  third  normal  form,  remove  attributes  that  depend  on  other  descriptor  

key  attributes.  

Summary of Normalization Rules 

The  following  normal  forms  are  discussed  in  this  section:  

v   First  normal  form:  A  table  is  in the  first  normal  form  if it contains  no  repeating  

columns.  

v   Second  normal  form:  A  table  is in  the  second  normal  form  if it is  in  the  first  

normal  form  and  contains  only  columns  that  are  dependent  on  the  whole  

(primary)  key.  

v   Third  normal  form:  A  table  is  in the  third  normal  form  if it is in  the  second  

normal  form  and  contains  only  columns  that  are  nontransitively  dependent  on  

the  primary  key.

When  you  follow  these  rules, the  tables  of  the  model  are  in  the  third  normal  form,  

according  to  E.  F. Codd,  the  inventor  of relational  databases.  When  tables  are  not  

in  the  third  normal  form,  either  redundant  data  exists  in  the  model,  or  problems  

exist  when  you  attempt  to update  the  tables.  

If you  cannot  find  a place  for  an  attribute  that  observes  these  rules,  you  have  

probably  made  one  of the  following  errors:  

v   The  attribute  is  not  well  defined.  

v   The  attribute  is  derived,  not  direct.  

v   The  attribute  is  really  an  entity  or  a relationship.  

v   Some  entity  or  relationship  is missing  from  the  model.

 

2-22 IBM Informix  Database  Design  and Implementation  Guide



Chapter  3.  Choosing  Data  Types  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 

Defining  the  Domains   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 

Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  

Choosing  a Data  Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  

Numeric  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  

Counters  and  Codes:  BIGINT, INT8,  INTEGER,  and  SMALLINT   . . . . . . . . . . . . . . . 3-4  

Automatic  Sequences:  BIGSERIAL,  SERIAL,  and  SERIAL8   . . . . . . . . . . . . . . . . . 3-5 

Approximate  Numbers:  FLOAT and  SMALLFLOAT   . . . . . . . . . . . . . . . . . . . 3-6 

Adjustable-Precision  Floating  Point:  DECIMAL(p)   . . . . . . . . . . . . . . . . . . . . 3-7 

Fixed-Precision  Numbers:  DECIMAL  and  MONEY   . . . . . . . . . . . . . . . . . . . . 3-8  

Chronological  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 

Calendar  Dates:  DATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 

Exact  Points  in Time:  DATETIME   . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  

Choosing  a DATETIME  Format  (GLS)   . . . . . . . . . . . . . . . . . . . . . . . . 3-11  

BOOLEAN  Data  Type (IDS)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 

Character  Data  Types (GLS)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  

Character  Data:  CHAR(n)  and  NCHAR(n)   . . . . . . . . . . . . . . . . . . . . . . 3-12  

Variable-Length  Strings:  CHARACTER  VARYING(m,r),  VARCHAR(m,r),  NVARCHAR(m,r),  and  

LVARCHAR   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 

Variable-Length  Execution  Time   . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 

Large  Character  Objects:  TEXT   . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 

Binary  Objects:  BYTE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 

Using  TEXT  and  BYTE  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  

Changing  the  Data  Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 

Null  Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 

Default  Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  

Check  Constraints   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17  

Referential  Constraints   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17

In This Chapter 

After  you  prepare  your  data  model,  you  must  implement  it as  a database  and  

tables.  To implement  your  data  model,  you  first  define  a domain,  or  set  of  data  

values,  for  every  column.  This  chapter  discusses  the  decisions  that  you  must  make  

to  define  the  column  data  types  and  constraints.  

The  second  step  uses  the  CREATE  DATABASE  and  CREATE  TABLE  statements  to  

implement  the  model  and  populate  the  tables  with  data,  as Chapter  4 discusses.  

Defining the Domains 

To complete  the  data  model  that  Chapter  2 describes,  you  must  define  a domain  

for  each  column.  The  domain  of  a column  describes  the  constraints  and  identifies  

the  set  of  valid  values  that  attributes  (columns)  can  assume.  

The  purpose  of a domain  is to  guard  the  semantic  integrity  of the  data  in  the  model;  

that  is,  to  ensure  that  it  reflects  reality  in  a sensible  way.  The  integrity  of  the  data  

model  is at  risk  if you  can  substitute  a name  for  a telephone  number  or  if you  can  

enter  a fraction  where  only  integers  are  valid  values.  

To define  a domain,  specify  the  constraints  that  a data  value  must  satisfy  before  it 

can  be  part  of  the  domain.  To specify  a column  domain,  use  the  following  

constraints:  

 

© Copyright  IBM Corp. 1996, 2008 3-1



v   Data  types  

v   Default  values  

v   Check  constraints  

v   Referential  constraints

Data Types  

The  first  constraint  on  any  column  is the  one  that  is implicit  in  the  data  type  for  

the  column.  When  you  choose  a data  type,  you  constrain  the  column  so  that  it  

contains  only  values  that  can  be  represented  by  that  data  type.  

Each  data  type  represents  certain  kinds  of information  and  not  others.  The  correct  

data  type  for  a column  is the  one  that  represents  all  the  data  values  that  are  proper  

for  that  column  but  as  few  as  possible  of  the  values  that  are  not  proper  for  it. 

This  chapter  describes  built-in  data  types.  

 

Dynamic  Server  

For  information  about  the  extended  data  types  that  Dynamic  Server  supports,  see  

Chapter  8, “Creating  and  Using  Extended  Data  Types in  Dynamic  Server,”  on  page  

8-1.  

 

End  of  Dynamic  Server  

Choosing a Data Type  

Every  column  in  a table  must  have  a data  type.  The  choice  of data  type  is 

important  for  the  following  reasons:  

v   It establishes  the  set  of valid  data  items  that  the  column  can  store.  

v   It determines  the  kinds  of operations  that  you  can  perform  on  the  data.  

For  example,  you  cannot  apply  aggregate  functions,  such  as  SUM,  to  columns  

that  are  defined  on  a character  data  type.  

v   It determines  how  much  space  each  data  item  occupies  on  disk.  

The  space  required  to  accommodate  data  items  is  not  as important  for  small  

tables  as  it is for  tables  with  hundreds  of  thousands  of rows.  When  a table  

reaches  that  many  rows,  the  difference  between  a 4-byte  and  an  8-byte  data  type  

can  be  crucial.

Figure  3-1  on  page  3-3  shows  a decision  tree  that  summarizes  the  choices  among  

built-in  data  types.  The  choices  are  explained  in  the  following  sections.  

  

 

3-2 IBM Informix  Database  Design  and Implementation  Guide



Data items purely numeric? yes

no

Numbers all integral?
yes

no
yes

no

All numbers between
-(2  -1) and 2  -1?31 31

All numbers between
-(2  -1) and 2  -1?15 15

yes

no

SMALLINT

INTEGER

DECIMAL(p,0)

Number of fractional digits
is fixed

yes

no

At most 8 significant digits?
yes

no

At most 16 significant digits?
yes

no

DECIMAL(p,s)

SMALLFLOAT

FLOAT

DECIMAL(p)

yes

no
INT8

All numbers between
-(2  -1) and 2  -1?63 63

Figure  3-1.  Choosing  a Data  Type (Part  1 of 2)

 

Chapter  3. Choosing  Data Types 3-3



Numeric Types  

Some  numeric  data  types  are  best  suited  for  counters  and  codes,  some  for  

engineering  quantities,  and  some  for  money.  

Counters and Codes: BIGINT, INT8, INTEGER, and SMALLINT 

The  INTEGER  and  SMALLINT  data  types  hold  small  whole  numbers.  They  are  

suited  for  columns  that  contain  counts,  sequence  numbers,  numeric  identity  codes,  

or  any  range  of  whole  numbers  when  you  know  in  advance  the  maximum  and  

minimum  values  to  be  stored.  

Both  data  types  are  stored  as signed  binary  integers.  INTEGER  values  have  32  bits  

and  can  represent  whole  numbers  from  –231–1  through  231–1.  

Data is chronological?
yes

no Span of time or specific
point in time?

span

point

Precise only to nearest
day?

yes

no

Data is ASCII characters?
yes

no
No or little variance in
item lengths?

yes

no
Lengths under 32,767
bytes?

yes

no

Lengths exceed 255
bytes

no

INTERVAL

DATETIME
DATE

TEXT

BYTE

CHAR(n)

Data contains non-
English characters?

yes

no No or little variance in
item lengths?

yes

no

NVARCHAR(m,r)

NCHAR(n)

VARCHAR(m,r) or
CHARACTER VARYING(m,r)

Read or write to any portion
of the data?

yes

BLOBno

Read or write to any
portion of data

yes

CLOB
no

Data is boolean? yes

no BOOLEAN

yes

LVARCHAR

  

Figure  3-1.  Choosing  a Data  Type (Part  2 of 2)

 

3-4 IBM Informix  Database  Design  and Implementation  Guide



SMALLINT  values  have  only  16  bits.  They  can  represent  whole  numbers  from  

–32,767  through  32,767.  

The  INT  and  SMALLINT  data  types  have  the  following  advantages:  

v   They  take  up  little  space  (2  bytes  per  value  for  SMALLINT  and  4 bytes  per  

value  for  INTEGER).  

v   You can  perform  arithmetic  expressions  such  as SUM  and  MAX  and  sort  

comparisons  on  them.

The  disadvantage  to using  INTEGER  and  SMALLINT  is the  limited  range  of  

values  that  they  can  store.  The  database  server  does  not  store  a value  that  exceeds  

the  capacity  of  an  integer.  Of  course,  such  excess  is not  a problem  when  you  know  

the  maximum  and  minimum  values  to  be  stored.  

If  you  need  to  store  a broader  range  of values  that  will  fill  up  an  INTEGER,  you  

can  use  BIGINT  or  INT8.  These  data  types  have  the  following  advantages:  

v   They  hold  a broad  range  of  values.  (Integers  ranging  from  – (263 –1)  through  263 

–1.)  

v   You can  perform  arithmetic  expressions  such  as SUM  and  MAX  and  sort  

comparisons  on  them.  BIGINT  has  storage  and  computational  efficiency  

advantages  over  INT8.  

The  disadvantage  of  using  BIGINT  or INT8  is that  they  uses  more  disk  space  than  

an  INTEGER.  The  actual  size  depends  on  the  word  length  of the  platform.  An  

INT8  or  SERIAL8  value  requires  10  bytes  of  storage  on  Dynamic  Server  systems  

and  8 bytes  of  storage  on  Extended  Parallel  Server  systems.  BIGINT  and  

BIGSERIAL  values  require  8 bytes  of  storage  on  all  systems.  

Automatic Sequences: BIGSERIAL, SERIAL, and SERIAL8 

The  SERIAL  data  type  has  the  positive  non-zero  range  of  an  INTEGER  with  a 

special  feature.  Similarly,  the  BIGSERIAL  and  SERIAL8  data  types  have  the  

positive  non-zero  range  of  an  INT8  with  a special  feature.  Whenever  a new  row  is 

inserted  into  a table,  the  database  server  automatically  generates  a new  value  for  

BIGSERIAL,  SERIAL,  or  SERIAL8  columns.  

 A table  cannot  have  more  than  one  BIGSERIAL,  SERIAL,  or  SERIAL8  column.  

Because  the  database  server  generates  the  values,  the  serial  values  in  new  rows  are  

always  different,  even  when  multiple  users  are  adding  rows  at the  same  time.  This  

service  is useful  because  it is  quite  difficult  for  an  ordinary  program  to  coin  unique  

numeric  codes  under  those  conditions.  (Dynamic  Server,  however,  also  supports  

sequence  objects,  which  can  also  support  this  functionality  through  the  CURRVAL  

and  NEXTVAL  operators.  For  more  information  about  sequence  objects,  see  the  

description  of  CREATE  SEQUENCE  in  IBM  Informix  Guide  to SQL:  Syntax.) 

The  SERIAL  data  type  can  yield  up  to  231–1  positive  integers.  Consequently,  the  

database  server  uses  all  the  positive  serial  numbers  by  the  time  it  inserts  231–1  

rows  in  a table.  For  most  users  the  exhaustion  of the  positive  serial  numbers  is not  

a concern,  however,  because  a single  application  would  need  to  insert  a row  every  

second  for  68  years,  or  68  applications  would  need  to  insert  a row  every  second  for  

a year, to  use  all  the  positive  serial  numbers.  However,  if all  the  positive  serial  

numbers  were  used,  the  database  server  would  wrap  around  and  start  to generate  

integer  values  that  begin  with  a 1.  

 

Chapter  3. Choosing  Data Types 3-5



The  BIGSERIAL  and  SERIAL8  data  types  can  yield  up  to  263 –1  positive  integers.  

With  a reasonable  starting  value,  it is virtually  impossible  to cause  a value  of these  

types  to  wrap  around  during  insertions.  

For  these  data  types,  the  sequence  of  generated  numbers  always  increases.  When  

rows  are  deleted  from  the  table,  their  serial  numbers  are  not  reused.  Rows  that  are  

sorted  on  columns  of these  types  are  returned  in  the  order  in  which  they  were  

created.  

You can  specify  the  initial  value  in  a BIGSERIAL,  SERIAL,  or  SERIAL8  column  in  

the  CREATE  TABLE  statement.  This  makes  it possible  to  generate  different  

subsequences  of  system-assigned  keys  in  different  tables.  The  stores_demo  

database  uses  this  technique.  In  stores_demo, the  customer  numbers  begin  at 101,  

and  the  order  numbers  start  at  1001.  As  long  as  this  small  business  does  not  

register  more  than  899  customers,  all  customer  numbers  have  three  digits  and  

order  numbers  have  four. 

A  BIGSERIAL,  SERIAL,  or  SERIAL8  column  is not  automatically  a unique  column.  

If you  want  to  be  perfectly  sure  that  no  duplicate  serial  numbers  occur,  you  must  

apply  a unique  constraint  (see  “Using  CREATE  TABLE”  on  page  4-3).  If you  define  

the  table  using  the  interactive  schema  editor  in  DB–Access,  it automatically  applies  

a unique  constraint  to  any  BIGSERIAL,  SERIAL,  or  SERIAL8  column.  

The  BIGSERIAL,  SERIAL,  and  SERIAL8  data  types  have  the  following  advantages:  

v   They  provide  a convenient  way  to generate  system-assigned  keys.  

v   They  produce  unique  numeric  codes  even  when  multiple  users  are  updating  the  

table.  

v   Different  tables  can  use  different  ranges  of  numbers.

The  BIGSERIAL,  SERIAL,  and  SERIAL8  data  types  have  the  following  

disadvantages:  

v   Only  one  BIGSERIAL,  SERIAL,  or  SERIAL8  column  is permitted  in  a table.  

v   They  can  produce  only  arbitrary  numbers.

Altering  the  Next  BIGSERIAL,  SERIAL,  or  SERIAL8  Number:    The  database  

server  sets  the  starting  value  for  a BIGSERIAL,  SERIAL,  or  SERIAL8  column  when  

it creates  the  column  (see  “Using  CREATE  TABLE”  on  page  4-3).  You can  use  the  

ALTER  TABLE  statement  later  to  reset  the  next  value,  the  value  that  is used  for  the  

next  inserted  row. 

You can  set  the  next  value  to  any  value  higher  than  the  current  maximum.  Doing  

this  will  create  gaps  in  the  sequence.  

If you  try  to  set  the  next  value  to  a value  smaller  than  the  highest  value  currently  

in  the  column  you  will  not  get  an  error  but  the  value  will  not  be  set.  Allowing  the  

next  value  to  be  set  lower  than  some  values  in  the  column  would  cause  duplicate  

values  in  some  situations  and  is therefore  not  allowed.  

Approximate Numbers: FLOAT and SMALLFLOAT 

In  scientific,  engineering,  and  statistical  applications,  numbers  are  often  known  to  

only  a few  digits  of  accuracy,  and  the  magnitude  of a number  is as  important  as its  

exact  digits.  

Floating-point  data  types  are  designed  for  these  kinds  of applications.  They  can  

represent  any  numerical  quantity,  fractional  or  whole,  over  a wide  range  of  

 

3-6 IBM Informix  Database  Design  and Implementation  Guide



magnitudes  from  the  cosmic  to  the  microscopic.  They  can  easily  represent  both  the  

average  distance  from  the  earth  to  the  sun  (1.5  x 1011 meters)  or  Planck’s  constant  

(6.626  x  10-34 joule-seconds).  For  example,  

CREATE  TABLE  t1 (f FLOAT);  

INSERT  INTO  t1 VALUES  (0.00000000000000000000000000000000000001);  

INSERT  INTO  t1 VALUES  (1.5e11);  

INSERT  INTO  t1 VALUES  (6.626196e-34);  

Two sizes  of  floating-point  data  types  exist.  The  FLOAT  type  is a double-precision,  

binary  floating-point  number  as  implemented  in  the  C language  on  your  computer.  

A FLOAT  data  type  value  usually  takes  up  8 bytes.  The  SMALLFLOAT  (also  

known  as  REAL)  data  type  is a single-precision,  binary  floating-point  number  that  

usually  takes  up  4 bytes.  The  main  difference  between  the  two  data  types  is their  

precision.  

Floating-point  numbers  have  the  following  advantages:  

v   They  store  very  large  and  very  small  numbers,  including  fractional  ones.  

v   They  represent  numbers  compactly  in  4 or  8 bytes.  

v   Arithmetic  functions  such  as  AVG,  MIN,  and  sort  comparisons  are  efficient  on  

these  data  types.

The  main  disadvantage  of floating-point  numbers  is that  digits  outside  their  range  

of  precision  are  treated  as  zeros.  

Adjustable-Precision Floating Point: DECIMAL(p) 

In  a database  that  is not  ANSI-compliant,  the  DECIMAL(p) data  type  is  a 

floating-point  data  type  similar  to  FLOAT  and  SMALLFLOAT.  The  important  

difference  is  that  you  specify  how  many  significant  digits  it  retains.  The  precision  

you  write  as  p can  range  from  1 to  32,  from  fewer  than  SMALLFLOAT  up  to  twice  

the  precision  of  FLOAT. The  magnitude  of  a DECIMAL(p) number  can  range  from  

10-130 to 10124. The  storage  space  that  DECIMAL(p) numbers  use  depends  on  their  

precision;  they  occupy  1 + p/2  bytes  (rounded  up  to  a whole  number,  if necessary).  

In  an  ANSI-compliant  database,  however,  DECIMAL(p) is a fixed-point  data  type  

with  a scale  of  zero,  so  DECIMAL(p) always  stores  integer  values  of precision  p, if 

the  data  value  has  p or  more  significant  digits.  Any  fractional  part  is truncated.  

Do  not  confuse  the  DECIMAL(p) data  type  with  the  DECIMAL(p,s) data  type,  

which  is  discussed  in  the  next  section.  The  DECIMAL(p) data  type  has  only  the  

precision  specified.  

The  DECIMAL(p) data  type  has  the  following  advantages  over  FLOAT: 

v   Precision  can  be  set  to  suit  the  application,  from  approximate  to  precise.  

v   Numbers  with  as  many  as  32  digits  can  be  represented  exactly.  

v   Storage  is  used  in  proportion  to the  precision  of  the  number.  

v   Every  Informix  database  server  supports  the  same  precision  and  range  of  

magnitudes,  regardless  of  the  host  operating  system.

The  DECIMAL(p) data  type  has  the  following  disadvantages:  

v   Performance  of  arithmetic  operations  and  sorts  on  DECIMAL(p) values  is 

somewhat  slower  than  on  FLOAT  values.  

 

Chapter  3. Choosing  Data Types 3-7



v   Many  programming  languages  do  not  support  the  DECIMAL(p) data  format  in  

the  same  way  that  they  support  FLOAT  and  INTEGER.  When  a program  

extracts  a DECIMAL(p) value  from  the  database,  it might  have  to convert  the  

value  to  another  format  for  processing.  

v   The  format  and  value  of  a DECIMAL(p) data  type  depends  on  whether  the  

database  is  ANSI-compliant.

Fixed-Precision Numbers: DECIMAL and MONEY 

Most  commercial  applications  need  to  store  numbers  that  have  fixed  numbers  of 

digits  on  the  right  and  left  of  the  decimal  point.  For  example,  amounts  in  U.S.  

currencies  are  written  with  two  digits  to  the  right  of  the  decimal  point.  Normally,  

you  also  know  the  number  of  digits  needed  on  the  left,  depending  on  the  kinds  of 

transactions  that  are  recorded:  perhaps  5 digits  for  a personal  budget,  7 digits  for  a 

small  business,  and  12  or  13  digits  for  a national  budget.  

These  numbers  are  fixed-point  numbers  because  the  decimal  point  is fixed  at  a 

specific  place,  regardless  of the  value  of the  number.  The  DECIMAL(p,s) data  type  

is designed  to  hold  decimal  numbers.  When  you  specify  a column  of  this  type,  you  

write  its  precision  (p)  as  the  total  number  of  digits  that  it can  store,  from  1 to  32.  

You write  its  scale  (s)  as  the  number  of  those  digits  that  fall  to the  right  of  the  

decimal  point.  (Figure  3-2  shows  the  relation  between  precision  and  scale.)  Scale  

can  be  zero,  meaning  it stores  only  whole  numbers.  When  only  whole  numbers  are  

stored,  DECIMAL(p,s) provides  a way  of  storing  integers  of up  to  32  digits.  

 

Like  the  DECIMAL(p) data  type,  DECIMAL(p,s) takes  up  space  in  proportion  to  its  

precision.  One  value  occupies  (p +3)/2  bytes  (if  scale  is even)  or (p + 4)/2  bytes  (if  

scale  is odd),  rounded  up  to a whole  number  of  bytes.  

The  MONEY  type  is  identical  to  DECIMAL(p,s) but  with  one  extra  feature.  

Whenever  the  database  server  converts  a MONEY  value  to characters  for  display,  it 

automatically  includes  a currency  symbol.  

The  advantages  of  DECIMAL(p,s) over  INTEGER  and  FLOAT  are  that  much  

greater  precision  is  available  (up  to 32  digits  as  compared  to  10  digits  for  

INTEGER  and  16  digits  for  FLOAT),  and  both  the  precision  and  the  amount  of 

storage  required  can  be  adjusted  to  suit  the  application.  

The  disadvantages  of DECIMAL(p,s) are  that  arithmetic  operations  are  less  efficient  

and  that  many  programming  languages  do  not  support  numbers  in  this  form.  

Therefore,  when  a program  extracts  a number,  it usually  must  convert  the  number  

to  another  numeric  form  for  processing.  

  

Figure  3-2.  The  Relation  Between  Precision  and  Scale  in a Fixed-Point  Number

 

3-8 IBM Informix  Database  Design  and Implementation  Guide



Choosing  a Currency  Format:   

 

Global  Language  Support  

 Each  nation  has  its  own  way  to  display  money  values.  When  an  Informix  database  

server  displays  a MONEY  value,  it  refers  to  a currency  format  that  the  user  

specifies.  The  default  locale  specifies  a U.S.  English  currency  format  of  the  

following  form:  

$7,822.45  

For  non-English  locales,  you  can  use  the  MONETARY  category  of the  locale  file  to 

change  the  current  format.  For  more  information  on  how  to  use  locales,  see  the  

IBM  Informix  GLS  User’s  Guide. 

 

End  of  Global  Language  Support  

 To customize  this  currency  format,  choose  your  locale  appropriately  or  set  the  

DBMONEY  environment  variable.  For  more  information,  see  the  IBM  Informix  

Guide  to  SQL:  Reference. 

Chronological Data Types  

The  chronological  data  types  record  time.  The  DATE  data  type  stores  a calendar  

date.  DATETIME  records  a point  in  time  to any  degree  of  precision  from  a year  to 

a fraction  of  a second.  The  INTERVAL  data  type  stores  a span  of  time,  that  is,  a 

duration.  

Calendar Dates: DATE 

The  DATE  data  type  stores  a calendar  date.  A  DATE  value  is actually  a signed  

integer  whose  contents  are  interpreted  as  a count  of full  days  since  midnight  on  

December  31,  1899.  

The  DATE  format  has  ample  precision  to  carry  dates  into  the  far  future  (58,000  

centuries).  Negative  DATE  values  are  interpreted  as  counts  of days  prior  to  the  

epoch  date;  that  is,  a DATE  value  of -1  represents  December  30,  1899.  

Because  DATE  values  are  integers,  the  values  can  be  used  in  arithmetic  

expressions.  For  example,  you  can  take  the  average  of a DATE  column,  or  you  can  

add  7 or  365  to  a DATE column.  In  addition,  a rich  set  of functions  exists  

specifically  for  manipulating  DATE  values.  For  more  information,  see  the  IBM  

Informix  Guide  to  SQL:  Syntax. 

The  DATE  data  type  is compact,  at 4 bytes  per  item.  Arithmetic  functions  and  

comparisons  execute  quickly  on  a DATE  column.  

Choosing  a Date  Format  (GLS):    You can  punctuate  and  order  the  components  of 

a date  in  many  ways.  When  an  application  displays  a DATE  value,  it  refers  to  a 

date  format  that  the  user  specifies.  The  default  locale  specifies  a U.S.  English  date  

format  of  the  form:  

10/25/2001  

To customize  this  date  format,  choose  your  locale  appropriately  or  set  the  

DBDATE  environment  variable.  For  more  information,  see  the  IBM  Informix  Guide  

to  SQL:  Reference.  

 

Chapter  3. Choosing  Data Types 3-9



For  non-default  locales,  you  can  use  the  GL_DATE  environment  variable  to specify  

the  date  format.  For  more  information  on  how  to  use  locales,  refer  to the  IBM  

Informix  GLS  User’s  Guide. 

Exact Points in Time: DATETIME 

The  DATETIME  data  type  stores  any  moment  in  time  in  the  era  that  began  1 A.D.  

In  fact,  DATETIME  is really  a family  of 28 data  types,  each  with  a different  

precision.  When  you  define  a DATETIME  column,  you  specify  its  precision.  The  

column  can  contain  any  sequence  from  the  list:  year, month, day, hour, minute, 

second, and  fraction. Thus,  you  can  define  a DATETIME  column  that  stores  only  a 

year, only  a month  and  day,  or  a date  and  time  that  is exact  to  the  hour  or  even  to  

the  millisecond.  Table  3-1  on  page  3-10  shows  that  the  size  of a DATETIME  value  

ranges  from  2 to  11 bytes  depending  on  its  precision.  

The  advantage  of  DATETIME  is that  it can  store  specific  date  and  time  values.  A 

DATETIME  column  typically  requires  more  storage  space  than  a DATE  column,  

depending  on  the  DATETIME  qualifiers.  Datetime  also  has  an  inflexible  display  

format.  For  information  about  how  to  circumvent  the  display  format,  see  “Forcing  

the  Format  of  a DATETIME  or  INTERVAL  Value”  on  page  3-11.  

 Table 3-1.  Precisions  for the DATETIME  Data  Type 

Precision  Size*  Precision  Size*  

year  to year  3 day  to hour  3 

year  to month  4 day  to minute  4 

year  to day  5 day  to second  5 

year  to hour  6 day  to fraction(f) 5 + f/2  

year  to minute  7 hour  to hour  2 

year  to second  8 hour  to minute  3 

year  to fraction  (f) 8 + f/2  hour  to second  4 

month  to  month  2 hour  to fraction(f) 4 + f/2  

month  to  day  3 minute  to minute  2 

month  to  hour  4 minute  to second  3 

month  to  minute  5 minute  to fraction(f) 3 + f/2  

month  to  second  6 second  to second  2 

month  to  fraction(f) 6 + f/2  second  to fraction(f) 2 + f/2  

day  to day  2 fraction  to fraction(f) 1 + f/2  

* When  f is odd,  round  the  size  to the  next  full  byte
  

Durations  using  INTERVAL:    The  INTERVAL  data  type  stores  a duration,  that  is,  

a length  of  time.  The  difference  between  two  DATETIME  values  is an  INTERVAL,  

which  represents  the  span  of time  that  separates  them.  The  following  examples  

might  help  to  clarify  the  differences:  

v   An  employee  began  working  on  January  21,  1997  (either  a DATE  or  a 

DATETIME).  

v   She  has  worked  for  254  days  (an  INTERVAL  value,  the  difference  between  the  

TODAY  function  and  the  starting  DATE  or  DATETIME  value).  

v   She  begins  work  each  day  at 0900  hours  (a  DATETIME  value).  

v   She  works  8 hours  (an  INTERVAL  value)  with  45  minutes  for  lunch  (another  

INTERVAL  value).  

 

3-10 IBM Informix  Database  Design  and Implementation  Guide



v   Her  quitting  time  is 1745  hours  (the  sum  of  the  DATETIME  when  she  begins  

work  and  the  two  INTERVALs).

Like  DATETIME,  INTERVAL  is a family  of data  types  with  different  precisions.  An  

INTERVAL  value  can  represent  a count  of years  and  months,  or  it can  represent  a 

count  of  days,  hours,  minutes,  seconds,  or  fractions  of  seconds;  18  precisions  are  

possible.  The  size  of  an  INTERVAL  value  ranges  from  2 to  12  bytes,  depending  on  

the  formulas  that  Table 3-2  shows.  

 Table 3-2.  Precisions  for the  INTERVAL  Data  Type 

Precision  Size*  Precision  Size*  

year(p) to year  1 + p/2  hour(p) to minute  2 + p/2  

year(p) to month  2 + p/2  hour(p) to second  3 + p/2  

month(p) to month  1 + p/2  hour(p) to fraction(f) 4 + (p + f)/2 

day(p) to day  1 + p/2  minute(p) to minute  1 + p/2  

day(p) to hour  2 + p/2  minute(p) to second  2 + p/2  

day(p) to minute  3 + p/2  minute(p) to fraction(f) 3 + (p + f)/2 

day(p) to second  4 + p/2  second(p) to second  1 + p/2  

day(p) to fraction(f) 5 + (p + f)/2  second(p) to fraction(f) 2 + (p + f)/2 

hour(p) to hour  1 + p/2  fraction  to fraction(f) 1 + f/2  

* Round  a fractional  size  to the  next  full  byte.
  

INTERVAL  values  can  be  negative  as  well  as  positive.  You can  add  or  subtract  

them,  and  you  can  scale  them  by  multiplying  or  dividing  by  a number.  This  is  not  

true of either  DATE  or  DATETIME.  You can  reasonably  ask,  “What  is one-half  the  

number  of  days  until  April  23?”  but  not,  “What  is one-half  of  April  23?”  

Forcing  the  Format  of  a DATETIME  or  INTERVAL  Value:    The  database  server  

always  displays  the  components  of an  INTERVAL  or  DATETIME  value  in  the  order  

year-month-day  hour:minute:second.fraction. It does  not  refer  to  the  date  format  that  is  

defined  to  the  operating  system,  as it does  when  it formats  a DATE  value.  

You can  write  a SELECT  statement  that  displays  the  date  part  of a DATETIME  

value  in  the  system-defined  format.  The  trick  is to  isolate  the  component  fields  

with  the  EXTEND  function  and  pass  them  through  the  MDY()  function,  which  

converts  them  to  a DATE.  The  following  code  shows  a partial  example:  

SELECT  ...  MDY  ( 

   EXTEND  (DATE_RECEIVED,  MONTH  TO MONTH),  

   EXTEND  (DATE_RECEIVED,  DAY TO DAY),  

   EXTEND  (DATE_RECEIVED,  YEAR  TO YEAR)  ) 

   FROM  RECEIPTS  ...  

Choosing a DATETIME Format (GLS) 

When  an  application  displays  a DATETIME  value,  it refers  to  a DATETIME  format  

that  the  user  specifies.  The  default  locale  specifies  a U.S.  English  DATETIME  

format  of  the  following  form:  

2001-10-25 18:02:13 

For  non-default  locales,  you  can  use  the  GL_DATETIME  environment  variable  to  

specify  the  DATETIME  format.  For  more  information  on  how  to  use  locales,  see  the  

IBM  Informix  GLS  User’s  Guide. 

 

Chapter  3. Choosing  Data Types 3-11



To customize  this  DATETIME  format,  choose  your  locale  appropriately  or  set  the  

GL_DATETIME  or  DBTIME  environment  variable.  For  more  information  about  

these  environment  variables,  see  the  IBM  Informix  GLS  User’s  Guide. 

BOOLEAN Data Type  (IDS) 

The  BOOLEAN  data  type  is a 1-byte  data  type.  The  legal  values  for  Boolean  are  

true (’t’),  false  (’f’),  or  NULL.  The  values  are  not  case  sensitive.  

You can  compare  a BOOLEAN  column  against  another  BOOLEAN  column  or  

against  Boolean  values.  For  example,  you  might  use  these  SELECT  statements:  

SELECT * FROM sometable WHERE bool_col = ’t’; 

SELECT * FROM sometable WHERE bool_col IS NULL; 

Character Data Types  (GLS) 

Informix  database  servers  support  several  character  data  types,  including  CHAR,  

NCHAR,  and  NVARCHAR,  the  special-use  character  data  type.  

Character Data: CHAR(n) and NCHAR(n) 

The  CHAR(n)  data  type  contains  a sequence  of n bytes.  These  characters  can  be  a 

mixture  of  English  and  non-English  characters  and  can  be  either  single  byte  or  

multibyte  (Asian).  The  length  n ranges  from  1 to  32,767.  

Whenever  the  database  server  retrieves  or  stores  a CHAR(n)  value,  it transfers  

exactly  n bytes.  If  an  inserted  value  is shorter  than  n, the  database  server  extends  

the  value  with  single-byte  ASCII  space  characters  to  make  up  n bytes.  If  an  

inserted  value  exceeds  n bytes,  the  database  server  truncates  the  extra  characters  

without  returning  an  error  message.  Thus  the  semantic  integrity  of  data  for  a 

CHAR(n)  column  or  variable  is not  enforced  when  the  value  that  is inserted  or 

updated  exceeds  n  bytes.  

Data  in  CHAR  columns  is sorted  in  code-set  order.  For  example,  in  the  ASCII  code  

set,  the  character  a has  a code-set  value  of 97,  b has  98,  and  so forth.  The  database  

server  sorts  CHAR(n)  data  in  this  order.  

The  NCHAR(n) data  type  also  contains  a sequence  of  n bytes.  These  characters  can  

be  a mixture  of  English  and  non-English  characters  and  can  be  either  single  byte  or  

multibyte  (Asian).  The  length  of  n has  the  same  limits  as  the  CHAR(n)  data  type.  

Whenever  an  NCHAR(n) value  is  retrieved  or  stored,  exactly  n bytes  are  

transferred.  The  number  of characters  transferred  can  be  fewer  than  the  number  of 

bytes  if the  data  contains  multibyte  characters.  If  an  inserted  value  is shorter  than  

n, the  database  server  extends  the  value  with  space  characters  to  make  up  n bytes.  

The  database  server  sorts  data  in  NCHAR(n) columns  according  to  the  order  that  

the  locale  specifies.  For  example,  the  French  locale  specifies  that  the  character  ê is  

sorted  after  the  value  e but  before  the  value  f. In  other  words,  the  sort  order  that  

the  French  locale  dictates  is e, ê, f, and  so  on.  For  more  information  on  how  to  use  

locales,  refer  to  the  IBM  Informix  GLS  User’s  Guide. 

Tip:   The  only  difference  between  CHAR(n)  and  NCHAR(n)  data  is how  you  sort  

and  compare  the  data.  You can  store  non-English  characters  in  a CHAR(n)  

column.  However,  because  the  database  server  uses  code-set  order  to  perform  

any  sorting  or  comparison  on  CHAR(n)  columns,  you  might  not  obtain  the  

results  in  the  order  that  you  expect.

 

3-12 IBM Informix  Database  Design  and Implementation  Guide



A CHAR(n)  or  NCHAR(n) value  can  include  tabs  and  spaces  but  normally  contains  

no  other  nonprinting  characters.  When  you  insert  rows  with  INSERT  or  UPDATE,  

or  when  you  load  rows  with  a utility  program,  no  means  exist  for  entering  

nonprintable  characters.  However,  when  a program  that  uses  embedded  SQL  

creates  rows,  the  program  can  insert  any  character  except  the  null  (binary  zero)  

character.  It is not  a good  idea  to store  nonprintable  characters  in  a character  

column  because  standard  programs  and  utilities  do  not  expect  them.  

The  advantage  of the  CHAR(n)  or  NCHAR(n) data  type  is its  availability  on  all  

database  servers.  The  only  disadvantage  of  CHAR(n)  or  NCHAR(n) is its  fixed  

length.  When  the  length  of data  values  varies  widely  from  row  to  row, space  is 

wasted.  

Variable-Length Strings: CHARACTER VARYING(m,r), 

VARCHAR(m,r), NVARCHAR(m,r), and LVARCHAR 

Often  the  items  in  a character  column  are  different  lengths;  that  is,  many  are  an  

average  length  and  only  a few  are  the  maximum  length.  For  each  of  the  following  

data  types,  m  represents  the  maximum  number  of bytes  and  r represents  the  

minimum  number  of bytes.  The  following  data  types  are  designed  to  save  disk  

space  when  you  store  such  data:  

v   CHARACTER  VARYING  (m,r). The  CHARACTER  VARYING  (m,r)  data  type  

contains  a sequence  of,  at most,  m bytes  or at the  least,  r bytes.  This  data  type  is 

the  ANSI-compliant  format  for  character  data  of  varying  length.  CHARACTER  

VARYING  (m,r),  supports  code-set  order  for  comparisons  of  its  character  data.  

v   VARCHAR  (m,r). VARCHAR  (m,r) is an  Informix-specific  data  type  for  storing  

character  data  of varying  length.  In  functionality,  it is the  same  as CHARACTER  

VARYING(m,r). 

v   NVARCHAR  (m,r). NVARCHAR  (m,r) is also  an  Informix-specific  data  type  for  

storing  character  data  of  varying  length.  It compares  character  data  in the  order  

that  the  locale  specifies.

 

Dynamic  Server  

v   LVARCHAR.  LVARCHAR  is an  Informix-specific  data  type  for  storing  character  

data  of  varying  length  from  1 to  32,739  bytes.  LVARCHAR  supports  code-set  

order  for  comparisons  of  data.

 

End  of  Dynamic  Server  

Tip:   The  difference  in the  way  data  is compared  distinguishes  NVARCHAR(m,r) 

data  from  CHARACTER  VARYING(m,r) or  VARCHAR(m,r)  data.  For  more  

information  about  how  the  locale  determines  code-set  and  sort  order,  see  

“Character  Data:  CHAR(n)  and  NCHAR(n)”  on  page  3-12.  

When  you  define  columns  of  these  data  types,  you  specify  m as  the  maximum  

number  of  bytes.  If an  inserted  value  consists  of  fewer  than  m bytes,  the  database  

server  does  not  extend  the  value  with  single-byte  spaces  (as  with  CHAR(n)  and  

NCHAR(n)  values).  Instead,  it stores  only  the  actual  contents  on  disk  with  a 1-byte  

length  field.  The  limit  on  m  is 254  bytes  for  indexed  columns  and  255  bytes  for  

non-indexed  columns.  

The  second  parameter,  r, is  an  optional  reserve  length  that  sets  a lower  limit  on  the  

number  of  bytes  than  a value  being  stored  on  disk  requires.  Even  if a value  

 

Chapter  3. Choosing  Data Types 3-13



requires  fewer  than  r bytes,  r bytes  are  nevertheless  allocated  to  hold  it.  The  

purpose  is to  save  time  when  rows  are  updated.  (See  “Variable-Length  Execution  

Time”  on  page  3-14.)  

The  advantages  of  the  CHARACTER  VARYING(m,r) or  VARCHAR(m,r) data  type  

over  the  CHAR(n)  data  type  are  as follows:  

v   It conserves  disk  space  when  the  number  of  bytes  that  data  items  require  varies  

widely  or  when  only  a few  items  require  more  bytes  than  average.  

v   Queries  on  the  more  compact  tables  can  be  faster.

These  advantages  also  apply  to  the  NVARCHAR(m,r) data  type  in  comparison  to  

the  NCHAR(n) data  type.  

The  following  list  describes  the  disadvantages  of  using  varying-length  data  types:  

v   They  do  not  allow  lengths  that  exceed  255  bytes.  

v   Table updates  can  be  slower  in some  circumstances.  

v   They  are  not  available  with  all  Informix  database  servers.

Variable-Length Execution Time 

When  you  use  any  of  the  CHARACTER  VARYING(m,r), VARCHAR(m,r), or  

NVARCHAR(m,r) data  types,  the  rows  of  a table  have  a varying  number  of bytes  

instead  of  a fixed  number  of  bytes.  The  speed  of database  operations  is affected  

when  the  rows  of  a table  have  varying  numbers  of bytes.  

Because  more  rows  fit  in a disk  page,  the  database  server  can  search  the  table  with  

fewer  disk  operations  than  if the  rows  were  of a fixed  number  of bytes.  As  a result,  

queries  can  execute  more  quickly.  Insert  and  delete  operations  can  be  a little  

quicker  for  the  same  reason.  

When  you  update  a row, the  amount  of  work  the  database  server  must  perform  

depends  on  the  number  of bytes  in  the  new  row  as  compared  with  the  number  of  

bytes  in  the  old  row. If  the  new  row  uses  the  same  number  of bytes  or  fewer,  the  

execution  time  is  not  significantly  different  than  it is with  fixed-length  rows.  

However,  if the  new  row  requires  a greater  number  of  bytes  than  the  old  one,  the  

database  server  might  have  to  perform  several  times  as many  disk  operations.  

Thus,  updates  of  a table  that  use  CHARACTER  VARYING(m,r), VARCHAR(m,r),  or  

NVARCHAR(m,r)  data  can  sometimes  be  slower  than  updates  of  a fixed-length  

field.  

To mitigate  this  effect,  specify  r as  a number  of  bytes  that  encompasses  a high  

proportion  of  the  data  items.  Then  most  rows  use  the  reserve  number  of  bytes,  and  

padding  wastes  only  a little  space.  Updates  are  slow  only  when  a value  that  uses  

the  reserve  number  of bytes  is replaced  with  a value  that  uses  more  than  the  

reserve  number  of  bytes.  

Large Character Objects: TEXT 

The  TEXT  data  type  stores  a block  of text.  It  is designed  to store  self-contained  

documents:  business  forms,  program  source  or  data  files,  or  memos.  Although  you  

can  store  any  data  in  a TEXT  item,  Informix  tools  expect  a TEXT  item  to be  

printable,  so  restrict  this  data  type  to  printable  ASCII  text.  

 

Extended  Parallel  Server  

Extended  Parallel  Server  supports  the  TEXT  data  type  in  columns  but  does  not  

allow  you  to  store  a TEXT  column  in  a blobspace  or  use  a TEXT  value  in  an  SPL  

 

3-14 IBM Informix  Database  Design  and Implementation  Guide



routine.  

 

End  of  Extended  Parallel  Server  

 TEXT  values  are  not  stored  with  the  rows  of which  they  are  a part.  They  are  

allocated  in  whole  disk  pages,  usually  in areas  separate  from  rows.  For  more  

information,  see  your  IBM  Informix  Administrator’s  Guide. 

The  advantage  of the  TEXT  data  type  over  CHAR(n)  and  VARCHAR(m,r)  is that  

the  size  of a TEXT  data  item  has  no  limit  except  the  capacity  of  disk  storage  to  

hold  it.  The  disadvantages  of  the  TEXT  data  type  are  as  follows:  

v   It is  allocated  in  whole  disk  pages,  so  a short  item  wastes  space.  

v   Restrictions  apply  on  how  you  can  use  a TEXT  column  in  an  SQL  statement.  

(For  more  information  on  this  restriction,  see  “Using  TEXT  and  BYTE  Data  

Types”  on  page  3-15.)  

v   It is  not  available  with  all  Informix  database  servers.

Binary Objects: BYTE 

The  BYTE  data  type  is designed  to  hold  any  data  a program  can  generate:  graphic  

images,  program  object  files,  and  documents  saved  by  any  word  processor  or  

spreadsheet.  The  database  server  permits  any  kind  of  data  of any  length  in  a BYTE  

column.  

 

Extended  Parallel  Server  

Extended  Parallel  Server  supports  the  BYTE  data  type  in  columns,  but  does  not  

allow  you  to  store  a BYTE  column  in  a blobspace  or  use  a BYTE  value  in  an  SPL  

routine.  

 

End  of  Extended  Parallel  Server  

 As  with  TEXT,  BYTE  data  items  usually  are  stored  in  whole  disk  pages  in  disk  

areas  separate  from  normal  row  data.  

The  advantage  of the  BYTE  data  type,  as  opposed  to TEXT  or  CHAR(n),  is that  it 

accepts  any  data.  Its  disadvantages  are  the  same  as those  of the  TEXT  data  type.  

Using TEXT and BYTE Data Types 

The  database  server  stores  and  retrieves  TEXT  and  BYTE  columns.  To fetch  and  

store  TEXT  or  BYTE  values,  you  normally  use  programs  written  in  a language  that  

supports  embedded  SQL,  such  as  IBM  Informix  ESQL/C.  In  such  a program,  you  

can  fetch,  insert,  or  update  a TEXT  or  BYTE  value  in  a manner  similar  to  the  way  

you  read  or  write  a sequential  file.  

In  no  SQL  statement,  interactive  or  programmed,  can  a TEXT  or  BYTE  column  be  

used  in  the  following  ways:  

v   In arithmetic  or  Boolean  expressions  

v   In a GROUP  BY  or  ORDER  BY  clause  

v   In a UNIQUE  test  

v   For  indexing,  either  by  itself  or  as  part  of  a composite  index

In  a SELECT  statement  that  you  enter  interactively  or  in a form  or  report,  you  can  

perform  the  following  operations  on  a TEXT  or  BYTE  value:  

v   Select  the  column  name,  optionally  with  a subscript  to extract  part  of  it. 

 

Chapter  3. Choosing  Data Types 3-15



v   Use  LENGTH(column_name) to  return  the  length  of  the  column.  

v   Test the  column  with  the  IS  [NOT]  NULL  predicate.

In  an  interactive  INSERT  statement,  you  can  use  the  VALUES  clause  to insert  a 

TEXT  or  BYTE  value,  but  the  only  value  that  you  can  give  that  column  is  null.  

However,  you  can  use  the  SELECT  form  of  the  INSERT  statement  to  copy  a TEXT  

or  BYTE  value  from  another  table.  

In  an  interactive  UPDATE  statement,  you  can  update  a TEXT  or  BYTE  column  to  

null  or  to  a subquery  that  returns  a TEXT  or  BYTE  column.  

Changing the Data Type 

After  the  table  is built,  you  can  use  the  ALTER  TABLE  statement  to change  the  

data  type  that  is  assigned  to  a column.  Although  such  alterations  are  sometimes  

necessary,  you  should  avoid  them  for  the  following  reasons:  

v   To change  a data  type,  the  database  server  must  copy  and  rebuild  the  table.  For  

large  tables,  copying  and  rebuilding  can  take  a lot  of  time  and  disk  space.  

v   Some  data  type  changes  can  cause  a loss  of information.  For  example,  when  you  

change  a column  from  a longer  to  a shorter  character  type,  long  values  are  

truncated;  when  you  change  to  a less-precise  numeric  type,  low-order  digits  are  

truncated.  

v   Existing  programs,  forms,  reports,  and  stored  queries  might  also  have  to  be  

changed.

Null Values  

In  most  cases,  columns  in  a table  can  contain  null  values.  A null  value  means  that  

the  value  for  the  column  can  be  unknown  or  not  applicable.  For  example,  in  the  

telephone  directory  example  in Chapter  2,  the  anniv  column  of  the  name  table  can  

contain  null  values;  if you  do  not  know  the  person’s  anniversary,  you  do  not  

specify  it.  Do  not  confuse  null  value  with  zero  or  a blank  value.  For  example,  the  

following  statement  inserts  a row  into  the  manufact  table  of the  stores_demo  

database  and  specifies  that  the  value  for  the  lead_time  column  is null:  

INSERT INTO manufact VALUES (’DRM’, ’Drumm’, NULL) 

 

Dynamic  Server  

Collection  columns  cannot  contain  null  elements.  Chapter  8 describes  collection  

data  types.  

 

End  of  Dynamic  Server  

Default Values 

A  default  value  is the  value  that  is inserted  into  a column  when  an  explicit  value  is 

not  specified  in  an  INSERT  statement.  A  default  value  can  be  a literal  character  

string  that  you  define  or  one  of  the  following  SQL  constant  expressions:  

v   USER  

v   CURRENT  

v   TODAY  

v   DBSERVERNAME

Not  all  columns  need  default  values,  but  as you  work  with  your  data  model,  you  

might  discover  instances  where  the  use  of  a default  value  saves  data-entry  time  or  

 

3-16 IBM Informix  Database  Design  and Implementation  Guide



prevents  data-entry  error. For  example,  the  telephone  directory  model  has  a state  

column.  While  you  look  at  the  data  for  this  column,  you  discover  that  more  than  

50  percent  of  the  addresses  list  California  as  the  state.  To save  time,  specify  the  

string  CA  as the  default  value  for  the  state  column.  

Check Constraints 

Check  constraints  specify  a condition  or  requirement  on  a data  value  before  data  

can  be  assigned  to  a column  during  an  INSERT  or  UPDATE  statement.  If a row  

evaluates  to  false  for  any  of  the  check  constraints  that  are  defined  on  a table  during  

an  insert  or  update,  the  database  server  returns  an  error. However,  the  database  

server  does  not  report  an  error  or  reject  the  record  when  the  check  constraint  

evaluates  to  NULL.  For  this  reason,  you  might  want  to  use  both  a check  constraint  

and  a NOT  NULL  constraint  when  you  create  a table.  

To define  a constraint,  use  the  CREATE  TABLE  or  ALTER  TABLE  statements.  For  

example,  the  following  requirement  constrains  the  values  of  an  integer  domain  to  a 

certain  range:  

Customer_Number >= 50000 AND Customer_Number <= 99999 

To express  constraints  on  character-based  domains,  use  the  MATCHES  predicate  

and  the  regular-expression  syntax  that  it supports.  For  example,  the  following  

constraint  restricts  a telephone  domain  to  the  form  of  a U.S.  local  telephone  

number:  

vce_num MATCHES ’[2-9][2-9][0-9]-[0-9][0-9][0-9][0-9]’ 

For  additional  information  about  check  constraints,  see  the  CREATE  TABLE  and  

ALTER  TABLE  statements  in the  IBM  Informix  Guide  to  SQL:  Syntax. 

Referential Constraints 

You can  identify  the  primary  and  foreign  keys  in  each  table  to  place  referential  

constraints  on  columns.  Chapter  2,  “Building  a Relational  Data  Model,”  on  page  

2-1  discusses  how  you  identify  these  keys.  

When  you  are  trying  to pick  columns  for  primary  and  foreign  keys,  almost  all  data  

type  combinations  must  match.  For  example,  if you  define  a primary  key  as  a 

CHAR  data  type,  you  must  also  define  the  foreign  key  as  a CHAR  data  type.  

However,  when  you  specify  a SERIAL  data  type  on  a primary  key  in  one  table,  

you  specify  an  INTEGER  on  the  foreign  key  of  the  relationship.  Similarly,  when  

you  specify  a SERIAL8  data  type  on  a primary  key  in  one  table,  you  specify  an  

INT8  on  the  foreign  key  of  the  relationship.  The  only  data  type  combinations  that  

you  can  mix  in  a relationship  are  as follows:  

v   SERIAL  and  INTEGER  

v   SERIAL8  and  INT8  

For  information  about  how  to  create  a table  with  referential  constraints,  see  the  

CREATE  TABLE  and  ALTER  TABLE  statements  in  the  IBM  Informix  Guide  to SQL:  

Syntax. 

 

Chapter  3. Choosing  Data Types 3-17



3-18 IBM Informix  Database  Design  and Implementation  Guide



Chapter  4.  Implementing  a Relational  Data  Model  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 

Creating  the  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  

Using  CREATE DATABASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  

Avoiding  Name  Conflicts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 

Selecting  a Dbspace   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  

Choosing  the  Type of Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  

Using  CREATE TABLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  

Creating  a Fragmented  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  

Dropping  or Modifying  a Table  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  

Using  CREATE INDEX   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 

Composite  Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 

Bidirectional  Traversal  of Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 

Using  Synonyms  for  Table Names   . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 

Using  Synonym  Chains   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  

Using  Command  Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 

Capturing  the  Schema   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 

Executing  the  File   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 

An Example   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  

Populating  the  Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 

Moving  Data  from  Other  Informix  Databases   . . . . . . . . . . . . . . . . . . . . . . . 4-9 

Loading  Source  Data  into  a Table  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  

Performing  Bulk-Load  Operations   . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

In This Chapter 

This  chapter  shows  how  to use  SQL  syntax  to implement  the  data  model  that  

Chapter  2 describes.  In  other  words,  it shows  you  how  to create  a database  and  

tables  and  populate  the  tables  with  data.  This  chapter  also  discusses  database  

logging  options,  table  synonyms,  and  command  scripts.  

Creating the Database 

Now  you  are  ready  to  create  the  data  model  as  tables  in  a database.  You do  this  

with  the  CREATE  DATABASE,  CREATE  TABLE,  and  CREATE  INDEX  statements.  

The  syntax  for  these  statements  is described  in the  IBM  Informix  Guide  to SQL:  

Syntax. This  section  discusses  how  to use  the  CREATE  DATABASE  and  CREATE  

TABLE  statements  to  implement  a data  model.  

Remember  that  the  telephone  directory  data  model  is used  for  illustrative  purposes  

only.  For  the  sake  of the  example,  it  is translated  into  SQL  statements.  

You might  have  to  create  the  same  database  model  more  than  once.  You can  store  

the  statements  that  create  the  model  and  later  re-execute  those  statements.  For  

more  information,  see  “Using  Command  Scripts”  on  page  4-8.  

When  the  tables  exist,  you  must  populate  them  with  rows  of data.  You can  do  this  

manually,  with  a utility  program,  or  with  custom  programming.  

 

© Copyright  IBM Corp. 1996, 2008 4-1



Using CREATE  DATABASE  

A  database  is a container  that  holds  all  parts  of  a data  model.  These  parts  include  

not  only  the  tables  but  also  views,  indexes,  synonyms,  and  other  objects  that  are  

associated  with  the  database.  You must  create  a database  before  you  can  create  

anything  else.  

When  the  database  server  creates  a database,  it stores  the  locale  of  the  database  

that  is derived  from  the  DB_LOCALE  environment  variable  in  its  system  catalog.  

This  locale  determines  how  the  database  server  interprets  character  data  that  is 

stored  within  the  database.  By  default,  the  database  locale  is the  U.S.  English  locale  

that  uses  the  ISO8859-1  code  set.  For  information  on  how  to use  alternative  locales,  

see  the  IBM  Informix  GLS  User’s  Guide. 

When  the  database  server  creates  a database,  it sets  up  records  that  show  the  

existence  of  the  database  and  its  mode  of logging.  These  records  are  not  visible  to 

operating-system  commands  because  the  database  server  manages  disk  space  

directly.  

Avoiding Name Conflicts 

Normally,  only  one  copy  of  the  database  server  is  running  on  a computer,  and  the  

database  server  manages  the  databases  that  belong  to  all  users  of that  computer.  

The  database  server  keeps  only  one  list  of database  names.  The  name  of  your  

database  must  be  different  from  that  of  any  other  database  that  the  database  server  

manages.  (It  is  possible  to  run more  than  one  copy  of the  database  server.  You can  

create  more  than  one  copy  of the  database  server,  for  example,  to  create  a safe  

environment  for  testing  apart  from  the  operational  data.  In  this  case,  be  sure  that  

you  are  using  the  correct  database  server  when  you  create  the  database  and  again  

when  you  access  it  later.)  

Selecting a Dbspace 

The  database  server  lets  you  create  the  database  in a particular  dbspace. A dbspace  

is a named  area  of  disk  storage.  Ask  your  database  server  administrator  whether  

you  should  use  a particular  dbspace.  You can  put  a database  in  a separate  dbspace  

to  isolate  it from  other  databases  or  to  locate  it on  a particular  disk  device.  For  

information  about  dbspaces  and  their  relationship  to  disk  devices,  see  your  IBM  

Informix  Administrator’s  Guide. For  information  about  how  to  fragment  the  tables  of 

your  database  across  multiple  dbspaces,  or  with  multiple  fragments  in  the  same  

dbspace,  see  Chapter  11, “Building  a Dimensional  Data  Model,”  on  page  11-1.  

Some  dbspaces  are  mirrored  (duplicated  on  two  disk  devices  for  high  reliability).  

You might  put  your  database  in a mirrored  dbspace  if its  contents  are  of 

exceptional  importance.  

Choosing the Type of Logging 

To specify  a logging  or  nonlogging  database,  use  the  CREATE  DATABASE  

statement.  The  database  server  offers  the  following  choices  for  transaction  logging:  

v   No  logging  at  all.  This  is not  a recommended  choice.  If you  lose  the  database  

because  of  a hardware  failure,  you  lose  all  data  alterations  since  the  last  backup.  

CREATE  DATABASE  db_with_no_log  

When  you  do  not  choose  logging,  BEGIN  WORK  and  other  SQL  statements  that  

are  related  to  transaction  processing  are  not  permitted  in  the  database.  This  

situation  affects  the  logic  of  programs  that  use  the  database.  

Extended  Parallel  Server  does  not  support  nonlogging  databases.  The  database  

server  does,  however,  support  nonlogging  tables.  For  more  information,  see  

“Configuring  the  Database  Server  to  Use  Distributed  Queries”  on  page  7-3.  

 

4-2 IBM Informix  Database  Design  and Implementation  Guide



v   Regular  (unbuffered)  logging.  This  choice  is best  for  most  databases.  In  the  

event  of  a failure,  you  lose  only  uncommitted  transactions.  

CREATE  DATABASE  a_logged_db  WITH  LOG 

v   Buffered  logging.  If  you  lose  the  database,  you  lose  few  or  possibly  none  of  the  

most  recent  alterations.  In return  for  this  small  risk,  performance  during  

alterations  improves  slightly.  

CREATE  DATABASE  buf_log_db  WITH  BUFFERED  LOG 

Buffered  logging  is best  for  databases  that  are  updated  frequently  (so  that  speed  

of  updating  is  important),  but  you  can  re-create  the  updates  from  other  data  in 

the  event  of  a failure.  Use  the  SET  LOG  statement  to  alternate  between  buffered  

and  regular  logging.  

v   ANSI-compliant  logging.  This  logging  is the  same  as  regular  logging,  but  the  

ANSI  rules for  transaction  processing  are  also  enforced.  For  more  information,  

refer  to  “Using  ANSI-Compliant  Databases”  on  page  1-2.  

CREATE  DATABASE  std_rules_db  WITH  LOG  MODE  ANSI  

The  design  of  ANSI  SQL  prohibits  the  use  of buffered  logging.  When  you  create  

an  ANSI-compliant  database,  you  cannot  turn  off  transaction  logging.

For  Dynamic  Server  databases  that  are  not  ANSI-compliant,  the  database  server  

administrator  (DBA)  can  turn  transaction  logging  on  and  off  or  change  from  

buffered  to  unbuffered  logging.  For  example,  you  might  turn  logging  off  before  

inserting  a large  number  of new  rows.  

You can  use  IBM  Informix  Server  Administrator  (ISA)  or  the  ondblog  and  ontape  

utilities  to  change  the  logging  status  or  buffering  mode.  For  information  about  

these  tools,  refer  to  the  IBM  Informix  Dynamic  Server  Administrator’s  Guide. You can  

also  use  the  SET  LOG  statement  to  change  between  buffered  and  unbuffered  

logging.  For  information  about  SET  LOG,  see  your  IBM  Informix  Guide  to SQL:  

Syntax. 

Using CREATE  TABLE  

Use  the  CREATE  TABLE  statement  to  create  each  table  that  you  design  in  the  data  

model.  This  statement  has  a complicated  form,  but  it is basically  a list  of  the  

columns  of  the  table.  For  each  column,  you  supply  the  following  information:  

v   The  name  of the  column  

v   The  data  type  (from  the  domain  list  you  made)

The  statement  might  also  contain  one  or  more  of the  following  constraints:  

v   A primary-key  constraint  

v   A foreign-key  constraint  

v   A NOT  NULL  constraint  

v   A unique  constraint  

v   A default  constraint  

v   A check  constraint

In  short,  the  CREATE  TABLE  statement  is an  image,  in words,  of the  table  as  you  

drew  it in  the  data-model  diagram  in  Figure  2-21  on  page  2-21.  The  following  

example  shows  the  statements  for  the  telephone  directory  data  model:  

CREATE  TABLE  name 

   ( 

   rec_num   SERIAL  PRIMARY  KEY, 

   lname     CHAR(20),

 

Chapter  4. Implementing  a Relational  Data Model 4-3



fname    CHAR(20),  

   bdate    DATE, 

   anniv    DATE, 

   email    VARCHAR(25)  

   ); 

  

CREATE  TABLE  child  

   ( 

   child    CHAR(20),  

   rec_num   INT, 

   FOREIGN  KEY (rec_num)  REFERENCES  NAME (rec_num)  

   ); 

  

CREATE  TABLE  address  

   ( 

   id_num     SERIAL  PRIMARY  KEY, 

   rec_num    INT, 

   street     VARCHAR  (50,20),  

   city      VARCHAR  (40,10),  

   state     CHAR(5)  DEFAULT  'CA',  

   zipcode    CHAR(10),  

   FOREIGN  KEY (rec_num)  REFERENCES  name (rec_num)  

   ); 

  

CREATE  TABLE  voice  

   ( 

   vce_num     CHAR(13)  PRIMARY  KEY, 

   vce_type    CHAR(10),  

   rec_num     INT, 

   FOREIGN  KEY (rec_num)  REFERENCES  name (rec_num)  

   ); 

  

CREATE  TABLE  fax 

   ( 

   fax_num     CHAR(13),  

   oper_from   DATETIME  HOUR TO MINUTE,  

   oper_till   DATETIME  HOUR TO MINUTE,  

   PRIMARY  KEY (fax_num)  

   ); 

  

CREATE  TABLE  faxname  

   ( 

   fax_num     CHAR(13),  

   rec_num     INT, 

   PRIMARY  KEY (fax_num,  rec_num),  

   FOREIGN  KEY (fax_num)  REFERENCES  fax (fax_num),  

   FOREIGN  KEY (rec_num)  REFERENCES  name (rec_num)  

   ); 

  

CREATE  TABLE  modem  

   ( 

   mdm_num     CHAR(13)  PRIMARY  KEY, 

   rec_num     INT, 

   b_type      CHAR(5),  

   FOREIGN  KEY (rec_num)  REFERENCES  name (rec_num)  

   ); 

In  each  of  the  preceding  examples,  the  table  data  gets  stored  in  the  same  dbspace  

that  you  specify  for  the  database  because  the  CREATE  TABLE  statement  does  not  

specify  a storage  option.  You can  specify  a dbspace  for  the  table  that  is different  

from  the  storage  location  of the  database  or  fragment  the  table  into  multiple  

dbspaces.  For  information  about  the  different  storage  options  Informix  database  

 

4-4 IBM Informix  Database  Design  and Implementation  Guide



servers  support,  see  the  CREATE  TABLE  statement  in  the  IBM  Informix  Guide  to 

SQL:  Syntax. The  following  section  shows  one  way  to fragment  a table  into  

multiple  dbspaces.  

Creating a Fragmented Table 

To control  where  data  is stored  at the  table  level,  you  can  use  a FRAGMENT  BY  

clause  when  you  create  the  table.  The  following  statement  creates  a fragmented  

table  that  stores  data  according  to a round-robin  distribution  scheme.  In  this  

example,  the  rows  of  data  are  distributed  more  or  less  evenly  across  the  fragments  

dbspace1, dbspace2, and  dbspace3. 

CREATE  TABLE  name 

   ( 

   rec_num   SERIAL  PRIMARY  KEY, 

   lname     CHAR(20),  

   fname     CHAR(20),  

   bdate     DATE,  

   anniv     DATE,  

   email     VARCHAR(25)  

   ) FRAGMENT  BY ROUND  ROBIN  IN dbspace1,  dbspace2,  dbspace3;  

For  more  information  about  the  different  distribution  schemes  that  you  can  use  to  

create  fragmented  tables,  see  Chapter  5.  

Dropping or Modifying a Table 

Use  the  DROP  TABLE  statement  to remove  a table  with  its  associated  indexes  and  

data.  To change  the  definition  of  a table,  for  example,  by  adding  a check  constraint,  

use  the  ALTER  TABLE  statement.  Use  the  TRUNCATE  statement  to  remove  all 

rows  from  a table  and  all  corresponding  index  data  while  preserving  the  definition  

of  the  table.  For  information  about  these  statements,  refer  to  IBM  Informix  Guide  to 

SQL:  Syntax. 

Using CREATE  INDEX 

Use  the  CREATE  INDEX  statement  to create  an  index  on  one  or  more  columns  in a 

table  and,  optionally,  to  cluster  the  physical  table  in  the  order  of the  index.  This  

section  describes  some  of the  options  available  when  you  create  indexes.  For  more  

information  about  the  CREATE  INDEX  statement,  see  the  IBM  Informix  Guide  to  

SQL:  Syntax. 

Suppose  you  create  table  customer: 

CREATE  TABLE  customer  

( 

   cust_num    SERIAL(101)  UNIQUE  

   fname       CHAR(15),  

   lname       CHAR(15),  

   company     CHAR(20),  

   address1    CHAR(20),  

   address2    CHAR(20),  

   city       CHAR(15),  

   state       CHAR(2),  

   zipcode     CHAR(5),  

   phone       CHAR(18)  

); 

The  following  statement  shows  how  to  create  an  index  on  the  lname  column  of the  

customer  table:  

CREATE  INDEX  lname_index  ON customer  (lname);  

 

Chapter  4. Implementing  a Relational  Data Model 4-5



Composite Indexes 

You can  create  an  index  that  includes  multiple  columns.  For  example,  you  might  

create  the  following  index:  

CREATE  INDEX  c_temp2  ON customer  (cust_num,  zipcode);  

Bidirectional Traversal of Indexes 

The  ASC  and  DESC  keywords  specify  the  order  in  which  the  database  server  

maintains  the  index.  When  you  create  an  index  on  a column  and  omit  the  

keywords  or  specify  the  ASC  keyword,  the  database  server  stores  the  key  values  in 

ascending  order.  If  you  specify  the  DESC  keyword,  the  database  server  stores  the  

key  values  in  descending  order.  

Ascending  order  means  that  the  key  values  are  stored  in  order  from  the  smallest  

key  to  the  largest  key.  For  example,  if you  create  an  ascending  index  on  the  lname  

column  of the  customer  table,  last  names  are  stored  in the  index  in  the  following  

order:  Albertson,  Beatty,  Currie. 

Descending  order  means  that  the  key  values  are  stored  in  order  from  the  largest  

key  to  the  smallest  key.  For  example,  if you  create  a descending  index  on  the  

lname  column  of  the  customer  table,  last  names  are  stored  in  the  index  in  the  

following  order:  Currie,  Beatty,  Albertson. 

The  bidirectional  traversal  capability  of the  database  server  lets  you  create  just  one  

index  on  a column  and  use  that  index  for  queries  that  specify  sorting  of  results  in  

either  ascending  or  descending  order  of the  sort  column.  

Using Synonyms for Table  Names 

A  synonym  is a name  that  you  can  use  in  place  of  another  SQL  identifier.  You use  

the  CREATE  SYNONYM  statement  to  declare  an  alternative  name  for  a table,  a 

view, or  (for  Dynamic  Server)  a sequence  object.  

Typically,  you  use  a synonym  to refer  to  tables  that  are  not  in  the  current  database.  

For  example,  you  might  execute  the  following  statements  to  create  synonyms  for  

the  customer  and  orders  table  names:  

CREATE  SYNONYM  mcust  FOR masterdb@central:customer;  

CREATE  SYNONYM  bords  FOR sales@boston:orders;  

After  you  create  the  synonym,  you  can  use  it in  many  contexts  where  the  original  

table  name  is valid,  as  the  following  example  shows:  

SELECT  bords.order_num,  mcust.fname,  mcust.lname  

   FROM  mcust,  bords  

   WHERE  mcust.customer_num  = bords.Customer_num  

   INTO  TEMP  mycopy;  

The  CREATE  SYNONYM  statement  stores  the  synonym  name  in  the  system  

catalog  table  syssyntable  in  the  current  database.  The  synonym  is available  to any  

query  made  in  that  database.  (If  the  USETABLENAME  environment  variable  is set,  

however,  some  DDL  statements  of SQL  do  not  support  synonyms  in  place  of table  

names.)  

A  short  synonym  makes  it  easier  to write  queries,  but  synonyms  can  play  another  

role.  They  allow  you  to move  a table  to  a different  database,  or  even  to  a different  

computer,  and  keep  your  queries  the  same.  

 

4-6 IBM Informix  Database  Design  and Implementation  Guide



Suppose  you  have  several  queries  that  refer  to  the  tables  customer  and  orders. The  

queries  are  embedded  in  programs,  forms,  and  reports.  The  tables  are  part  of the  

demonstration  database,  which  is kept  on  database  server  avignon.  

Now  you  decide  to  make  the  same  programs,  forms,  and  reports  available  to users  

of  a different  computer  on  the  network  (database  server  nantes). Those  users  have  

a database  that  contains  a table  named  orders  that  contains  the  orders  at their  

location,  but  they  need  access  to  the  table  customer  at avignon.  

To those  users,  the  customer  table  is external.  Does  this  mean  you  must  prepare  

special  versions  of the  programs  and  reports,  versions  in  which  the  customer  table  

is  qualified  with  a database  server  name?  A better  solution  is to create  a synonym  

in  the  users’  database,  as  the  following  example  shows:  

DATABASE  stores_demo@nantes;  

CREATE  SYNONYM  customer  FOR  stores_demo@avignon:customer;  

When  the  stored  queries  are  executed  in  your  database,  the  name  customer  refers  

to  the  actual  table.  When  they  are  executed  in  the  other  database,  the  name  is 

resolved  through  the  synonym  into  a reference  to  the  table  that  exists  on  the  

database  server  avignon.  (In  a database  that  is not  ANSI-compliant,  a synonym  

must  be  unique  among  the  names  of  synonyms,  tables,  views,  and  sequence  objects  

in  the  database.  In  an  ANSI-compliant  database,  the  owner.synonym  combination  

must  be  unique  within  the  namespace  of  objects  that  have  been  registered  in the  

database  with  a tabid  value.)  

Using Synonym Chains 

To continue  the  preceding  example,  suppose  that  a new  computer  is added  to  your  

network.  Its  name  is db_crunch. The  customer  table  and  other  tables  are  moved  to  

it to  reduce  the  load  on  avignon.  You can  reproduce  the  table  on  the  new  database  

server  easily  enough,  but  how  can  you  redirect  all  access  to  it?  One  way  is  to 

install  a synonym  to  replace  the  old  table,  as the  following  example  shows:  

DATABASE  stores_demo@avignon  EXCLUSIVE;  

RENAME  TABLE  customer  TO old_cust;  

CREATE  SYNONYM  customer  FOR stores_demo@db_crunch:customer;  

CLOSE DATABASE;  

When  you  execute  a query  within  stores_demo@avignon, a reference  to table  

customer  finds  the  synonym  and  is redirected  to  the  version  on  the  new  computer.  

Such  redirection  also  happens  for  queries  that  are  executed  from  database  server  

nantes  in  the  previous  example.  The  synonym  in  the  database  

stores_demo@nantes  still  redirects  references  to  customer  to  database  

stores_demo@avignon; the  new  synonym  there  sends  the  query  to  database  

stores_demo@db_crunch. 

Chains  of  synonyms  can  be  useful  when,  as  in  this  example,  you  want  to redirect  

all  access  to  a table  in  one  operation.  However,  you  should  update  the  databases  of  

all  users  as  soon  as  possible  so  their  synonyms  point  directly  to  the  table.  If you  do  

not,  you  incur  extra  overhead  when  the  database  server  handles  the  extra  

synonyms,  and  the  table  cannot  be  found  if any  computer  in  the  chain  is down.  

You can  run an  application  against  a local  database  and  later  run the  same  

application  against  a database  on  another  computer.  The  program  runs equally  

well  in  either  case  (although  it can  run more  slowly  on  the  network  database).  As  

long  as  the  data  model  is the  same,  a program  cannot  tell  the  difference  between  

one  database  and  another.  

 

Chapter  4. Implementing  a Relational  Data Model 4-7



Using Command Scripts 

You can  enter  SQL  statements  interactively  to  create  the  database  and  tables.  In  

some  cases,  you  might  have  to create  the  database  and  tables  two  or  more  times.  

For  example,  you  might  have  to create  the  database  again  to  make  a production  

version  after  a test  version  is satisfactory,  or  you  might  have  to implement  the  

same  data  model  on  several  computers.  To save  time  and  reduce  the  chance  of 

errors,  you  can  put  all  the  statements  to  create  a database  in a file  and  later  

re-execute  those  statements.  

Capturing the Schema 

The  dbschema  utility  is a program  that  examines  the  contents  of  a database  and  

generates  all  the  SQL  statements  you  require  to re-create  it.  You can  build  the  first  

version  of  your  database,  making  changes  until  it is exactly  as you  want  it.  Then  

you  can  use  dbschema  to  generate  the  SQL  statements  necessary  to duplicate  it. 

For  information  about  the  dbschema  utility,  see  the  IBM  Informix  Migration  Guide. 

Executing the File 

Programs  that  you  use  to enter  SQL  statements  interactively,  such  as DB–Access,  

can  be  run from  a file  of commands.  You can  start  DB–Access  to read  and  execute  

a file  of  commands  that  you  or  dbschema  prepared.  For  more  information,  see  the  

IBM  Informix  DB–Access  User’s  Guide. 

An Example 

Most  IBM  Informix  database  server  products  come  with  a demonstration  database  

(the  database  that  most  of  the  examples  in  this  book  use).  The  demonstration  

database  is  delivered  as  an  operating-system  command  script  that  calls  IBM  

Informix  products  to build  the  database.  You can  copy  this  command  script  and  

use  it as  the  basis  to  automate  your  own  data  model.  

Populating the Database 

For  your  initial  tests,  the  easiest  way  to populate  the  database  is to type  INSERT  

statements  in  DB–Access.  For  example,  to insert  a row  into  the  manufact  table  of  

the  demonstration  database,  enter  the  following  command  in  DB–Access:  

INSERT  INTO  manufact  VALUES  ('MKL',  'Martin',  15);  

If you  are  preparing  an  application  program,  such  as  an  application  in  C,  you  can  

use  the  application  to  enter  rows  into  a database  table.  

The  following  table  lists  IBM  Informix  tools  that  you  can  use  for  entering  

information  into  your  database.  The  acronyms  in  the  Reference  column  are  

explained  after  the  table.  

 Tool  Purpose  Reference  

dbaccessdemo  

dbaccessdemo_ud  

Prepare  and  populate  sample  databases.  DB-A  

SQLR  

DB–Access  Edit  a database  by entering  explicit  commands.  DB-A  

SQLS  

onunload  & onload  Copy  an entire  database  or selected  database  

tables  to or from  files  on tape  or disk.  

MG  

AR  

dbload  Load  data  from  one  or more  text  files  into  one  or 

more  existing  tables.  

MG  

High-Performance  

Loader  

Copy  an entire  database,  selected  tables,  or 

selected  columns  of selected  tables.  

HPL  

 

4-8 IBM Informix  Database  Design  and Implementation  Guide



Tool  Purpose  Reference  

LOAD  & UNLOAD  Load  data  from  (or  into)  a text  file.  SQLS  

dbexport  , dbimport  Copy  an entire  database  using  text  files.  MG  

Enterprise  Replication  Update  selected  databases  each  time  a specified  

table  is updated.  

ER  

onxfer  Copy  data  to an Extended  Parallel  Server  from  

IBM  Informix  Dynamic  Server.  

MG  

C application  Use  SQL  commands  embedded  in a C program  to 

update  databases.  

ESQLC  

DAPI  

DBDK  

Java™ application  Use  SQL  commands  embedded  in a Java  program  

to update  databases.  

Java  

DBDK  

Gateway  applications  Access  data  from  non-Informix  databases.  GM  

GU
  

Mnemonic  Explanation  of  References  Column  

SQLR  IBM  Informix  Guide  to  SQL:  Reference  

SQLS  IBM  Informix  Guide  to  SQL:  Syntax  

MG  IBM  Informix  Migration  Guide  

AR  IBM  Informix  Administrator’s  Reference  

GM  IBM  Informix  Enterprise  Gateway  Manager  User  Manual  

GU  IBM  Informix  Enterprise  Gateway  User  Manual  

DBDK  IBM  Informix  DataBlade  Developers  Kit  User’s  Guide  

ESQL/C  IBM  Informix  ESQL/C  Programmer’s  Manual  

Java  J/Foundation  Developer’s  Guide  

HPL  IBM  Informix  High-Performance  Loader  User’s  Guide  

DB-A  IBM  Informix  DB–Access  User’s  Guide  

ER  IBM  Informix  Dynamic  Server  Enterprise  Replication  Guide  

DAPI  IBM  Informix  DataBlade  API  Programmer’s  Guide

Moving Data from Other Informix Databases 

Often,  the  initial  rows  of  a table  can  be  derived  from  data  that  is stored  in  tables  in  

another  Informix  database  or  in  operating-system  files.  The  following  utilities  let  

you  move  large  quantities  of data:  

v   onunload/onload  utilities  

v   dbexport/dbimport  utilities  

v   dbload  utility  

v   SQL  LOAD  statement  

v   High  Performance  Loader  (HPL)

You  can  also  select  the  data  you  want  from  the  other  database  on  another  database  

server  as  part  of  an  INSERT  statement  in  your  database.  As  the  following  example  

shows,  you  could  select  information  from  the  items  table  in  the  demonstration  

database  to  insert  into  a new  table:  

 

Chapter  4. Implementing  a Relational  Data Model 4-9



INSERT  INTO  newtable  

   SELECT  item_num,  order_num,  quantity,  stock_num,  

      manu_code,  total_price  

   FROM  stores_demo@otherserver:items;  

Loading Source Data into a Table  

When  the  data  source  is not  an  Informix  database,  you  must  find  a way  to  convert  

it into  a flat  ASCII  file;  that  is,  a file  of  printable  data  in  which  each  line  represents  

the  contents  of  one  table  row. 

After  you  have  the  data  in  an  ASCII  file,  you  can  use  the  dbload  utility  to  load  it 

into  a table.  For  more  information  on  dbload, see  the  IBM  Informix  Migration  Guide. 

The  LOAD  statement  in  DB–Access  can  also  load  rows  from  a flat  ASCII  file.  For  

information  about  the  LOAD  and  UNLOAD  statements,  see  the  IBM  Informix  Guide  

to  SQL:  Syntax. 

 

Extended  Parallel  Server  

After  you  have  the  data  in  a file,  you  can  use  external  tables  to  load  it into  a table.  

For  more  information  on  external  tables,  see  your  IBM  Informix  Administrator’s  

Guide. 

 

End  of  Extended  Parallel  Server  

Performing Bulk-Load Operations 

Inserting  hundreds  or  thousands  of  rows  goes  much  faster  if you  turn  off  

transaction  logging.  Logging  these  insertions  makes  no  sense  because,  in the  event  

of  a failure,  you  can  easily  re-create  the  lost  work.  The  following  list  contains  the  

steps  of  a large  bulk-load  operation:  

v   If  any  chance  exists  that  other  users  are  using  the  database,  exclude  them  with  

the  DATABASE  EXCLUSIVE  statement.  

v   Ask  the  administrator  to turn  off  logging  for  the  database.  

The  existing  logs  can  be  used  to recover  the  database  in its  present  state,  and  

you  can  run the  bulk  insertion  again  to  recover  those  rows  if they  are  lost.  

 

Extended  Parallel  Server  

 You cannot  turn  off  logging  for  databases  that  use  Extended  Parallel  Server.  

However,  you  can  create  nonlogging  tables  (raw  permanent  or  static  permanent)  

in  the  database.

 

End  of  Extended  Parallel  Server  

v   Perform  the  statements  or  run the  utilities  that  load  the  tables  with  data.  

v   Back  up  the  newly  loaded  database.  

Either  ask  the  administrator  to  perform  a full  or  incremental  backup  or  use  the  

onunload  utility  to  make  a binary  copy  of your  database  only.  

v   Restore  transaction  logging  and  release  the  exclusive  lock  on  the  database.

 

4-10 IBM Informix  Database  Design  and Implementation  Guide



Part  2.  Managing  Databases  

 

© Copyright  IBM Corp. 1996, 2008 



IBM Informix  Database  Design  and Implementation  Guide



Chapter  5.  Table  Fragmentation  Strategies  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 

What  Is Fragmentation?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 

Why  Use  Fragmentation?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 

Whose  Responsibility  Is Fragmentation?   . . . . . . . . . . . . . . . . . . . . . . . . 5-2 

Enhanced  Fragmentation  (XPS)   . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  

Fragmentation  and  Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 

Distribution  Schemes  for  Table Fragmentation   . . . . . . . . . . . . . . . . . . . . . . . 5-3 

Expression-Based  Distribution  Scheme   . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 

Range  Rule   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 

Arbitrary  Rule   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  

Using  the  MOD  Function  (IDS)   . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 

Inserting  and  Updating  Rows   . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  

Round-Robin  Distribution  Scheme   . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  

Range  Distribution  Scheme  (XPS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 

System-Defined  Hash  Distribution  Scheme  (XPS)   . . . . . . . . . . . . . . . . . . . . . 5-6  

Hybrid  Distribution  Scheme  (XPS)   . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 

Creating  a Fragmented  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 

Creating  a New  Fragmented  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 

Creating  a Fragmented  Table from  Nonfragmented  Tables  . . . . . . . . . . . . . . . . . . 5-9 

Using  More  Than  One  Nonfragmented  Table  . . . . . . . . . . . . . . . . . . . . . . 5-9 

Using  a Single  Nonfragmented  Table  . . . . . . . . . . . . . . . . . . . . . . . . 5-10 

Rowids  in a Fragmented  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 

Fragmenting  Smart  Large  Objects  (IDS)   . . . . . . . . . . . . . . . . . . . . . . . . 5-10 

Modifying  Fragmentation  Strategies   . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  

Reinitializing  a Fragmentation  Strategy   . . . . . . . . . . . . . . . . . . . . . . . . 5-11 

Modifying  Fragmentation  Strategies  for Dynamic  Server  . . . . . . . . . . . . . . . . . . . 5-12 

Using  the  ADD  Clause   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 

Using  the  DROP  Clause   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  

Using  the  MODIFY  Clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  

Modifying  Fragmentation  Strategies  for XPS  . . . . . . . . . . . . . . . . . . . . . . . 5-13 

Using  the  INIT  Clause   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 

Using  ATTACH  and  DETACH  Clauses   . . . . . . . . . . . . . . . . . . . . . . . 5-14  

Granting  and  Revoking  Privileges  on  Fragments   . . . . . . . . . . . . . . . . . . . . . . 5-15

In This Chapter 

This  chapter  describes  the  fragmentation  strategies  that  your  database  server  

supports  and  provides  examples  of the  different  fragmentation  strategies.  It 

discusses  fragmentation,  distribution  schemes  for  table  fragmentation,  creating  and  

modifying  fragmented  tables,  and  providing  privileges  for  fragmented  tables.  

For  information  about  how  to  formulate  a fragmentation  strategy  to  reduce  data  

contention  and  improve  query  performance,  see  your  IBM  Informix  Performance  

Guide. 

What Is Fragmentation? 

Fragmentation  is a database  server  feature  that  allows  you  to  control  where  data  is  

stored  at  the  table  level.  Fragmentation  enables  you  to  define  groups  of  rows  or  

index  keys  within  a table  according  to some  algorithm  or  scheme. You can  store  

each  group  or  fragment  (also  referred  to  as a partition)  in a separate  dbspace  

associated  with  a specific  physical  disk.  You use  SQL  statements  to  create  the  

fragments  and  assign  them  to  dbspaces.  

 

© Copyright  IBM Corp. 1996, 2008 5-1



The  scheme  that  you  use  to  group  rows  or  index  keys  into  fragments  is called  the  

distribution  scheme. The  distribution  scheme  and  the  set  of dbspaces  in  which  you  

locate  the  fragments  together  make  up  the  fragmentation  strategy. The  decisions  that  

you  must  make  to  formulate  a fragmentation  strategy  are  discussed  in  your  IBM  

Informix  Performance  Guide. 

After  you  decide  whether  to  fragment  table  rows,  index  keys,  or  both,  and  you  

decide  how  the  rows  or  keys  should  be  distributed  over  fragments,  you  decide  on  

a scheme  to  implement  this  distribution.  For  a description  of  the  distribution  

schemes  that  Informix  database  servers  support,  see  “Distribution  Schemes  for  

Table  Fragmentation”  on  page  5-3.  

When  you  create  fragmented  tables  and  indexes,  the  database  server  stores  the  

location  of  each  table  and  index  fragment  with  other  related  information  in  the  

system  catalog  table  named  sysfragments.  You can  use  this  table  to access  

information  about  your  fragmented  tables  and  indexes.  If you  use  a user-defined  

routine  as  part  of  the  fragmentation  expression,  that  information  is recorded  in 

sysfragexprudrdep. For  a description  of the  information  that  these  system  catalog  

tables  contain,  see  the  IBM  Informix  Guide  to  SQL:  Reference. 

From  the  perspective  of an  end  user  or  client  application,  a fragmented  table  is 

identical  to  a nonfragmented  table.  Client  applications  do  not  require  any  

modifications  to  allow  them  to  access  the  data  in fragmented  tables.  

For  some  distribution  schemes,  the  database  server  has  information  on  which  

fragments  contain  which  data,  so  it can  route  client  requests  for  data  to the  

appropriate  fragment  without  accessing  irrelevant  fragments.  (The  database  server  

cannot  route  client  requests  for  data  to  the  appropriate  fragment  for  round-robin  

and  some  expression-based  distribution  schemes.)  For  more  information,  see  

“Distribution  Schemes  for  Table Fragmentation”  on  page  5-3.)  

Why Use Fragmentation? 

Consider  fragmenting  your  tables  if improving  at  least  one  of  the  following  is  your  

goal:  

v   Single-user  response  time  

v   Concurrency  

v   Availability  

v   Backup-and-restore  characteristics  

v   Loading  of  data

Each  of  the  preceding  goals  has  its  own  implications  for  the  fragmentation  strategy  

that  you  ultimately  implement.  Your primary  fragmentation  goal  determines,  or  at  

least  influences,  how  you  implement  your  fragmentation  strategy.  When  you  

decide  whether  to  use  fragmentation  to meet  any  of  the  preceding  goals,  keep  in 

mind  that  fragmentation  requires  some  additional  administration  and  monitoring  

activity.  

For  more  information  about  the  preceding  goals  and  how  to  plan  a fragmentation  

strategy,  see  your  IBM  Informix  Performance  Guide. 

Whose Responsibility Is Fragmentation? 

Some  overlap  exists  between  the  responsibilities  of the  database  server  

administrator  and  those  of  the  database  administrator  (DBA)  with  respect  to  

fragmentation.  The  DBA  creates  the  database  schema,  which  can  include  table  

 

5-2 IBM Informix  Database  Design  and Implementation  Guide



fragmentation.  The  database  server  administrator,  on  the  other  hand,  is  responsible  

for  allocating  the  disk  space  in  which  the  fragmented  tables  will  reside.  Because  

neither  of  these  responsibilities  can  be  performed  in isolation  from  the  other,  to  

implement  fragmentation  requires  a cooperative  effort  between  the  DBA  and  the  

database  server  administrator.  This  manual  describes  only  those  tasks  that  the  DBA  

performs  to  implement  a fragmentation  strategy.  For  information  about  the  tasks  

the  database  server  administrator  performs  to implement  a fragmentation  strategy,  

see  your  IBM  Informix  Administrator’s  Guide  and  IBM  Informix  Performance  Guide. 

Enhanced Fragmentation (XPS) 

Extended  Parallel  Server  can  fragment  tables  and  indexes  across  disks  that  belong  

to  different  coservers.  Each  table  fragment  can  reside  in  a separate  dbspace  that  is 

associated  with  physical  disks  that  belong  to different  coservers.  A  dbslice  provides  

the  mechanism  to  manage  many  dbspaces  across  multiple  coservers.  Once  you  

create  the  dbslices  and  dbspaces,  you  can  create  tables  and  indexes  that  are  

fragmented  across  multiple  coservers.  

For  information  on  the  advantages  of  fragmenting  tables  across  coservers,  see  your  

IBM  Informix  Performance  Guide. For  information  about  how  to  create  dbslices  and  

dbspaces,  see  your  IBM  Informix  Administrator’s  Guide. 

Fragmentation and Logging 

 

Dynamic  Server  

With  Dynamic  Server,  fragmented  tables  can  belong  to  either  a logging  database  or  

a nonlogging  database.  As  with  nonfragmented  tables,  if a fragmented  table  is part  

of  a nonlogging  database,  a potential  for  data  inconsistencies  arises  if a failure  

occurs.  

 

End  of  Dynamic  Server  

 

Extended  Parallel  Server  

With  Extended  Parallel  Server,  fragmented  tables  always  belong  to  a logging  

database.  However,  Extended  Parallel  Server  does  support  several  logging  and  

nonlogging  table  types.  For  more  information,  see  “Configuring  the  Database  

Server  to  Use  Distributed  Queries”  on  page  7-3.  

 

End  of  Extended  Parallel  Server  

Distribution Schemes for Table  Fragmentation 

A distribution  scheme  is a method  that  the  database  server  uses  to  distribute  rows  or  

index  entries  to  fragments.  Informix  database  servers  support  the  following  

distribution  schemes:  

v   Expression-based.  This  distribution  scheme  puts  rows  that  contain  specified  

values  in  the  same  fragment.  You specify  a fragmentation  expression  that  defines  

criteria  for  assigning  a set  of  rows  to  each  fragment,  either  as  a range  rule or  

some  arbitrary  rule. You can  specify  a remainder  fragment  that  holds  all  rows  that  

do  not  match  the  criteria  for  any  other  fragment,  although  a remainder  fragment  

reduces  the  efficiency  of the  expression-based  distribution  scheme.  

v   Round-robin.  This  distribution  scheme  places  rows  one  after  another  in  

fragments,  rotating  through  the  series  of fragments  to distribute  the  rows  evenly.  

The  database  server  defines  the  rule internally.  

 

Chapter  5. Table  Fragmentation  Strategies  5-3



For  INSERT  statements,  the  database  server  uses  a hash  function  on  a random  

number  to  determine  the  fragment  in  which  to place  the  row. For  INSERT  

cursors,  the  database  server  places  the  first  row  in  a random  fragment,  the  

second  in  the  next  sequential  fragment,  and  so  on.  If one  of  the  fragments  is full,  

it  is  skipped.

 

Extended  Parallel  Server  

v   Range  distribution.  This  distribution  scheme  ensures  that  rows  are  fragmented  

evenly  across  dbspaces.  In  range  distribution,  the  database  server  determines  the  

distribution  of  rows  among  fragments  based  on  minimum  and  maximum  integer  

values  that  the  user  specifies.  Use  a range  distribution  scheme  when  the  data  

distribution  is  both  dense  and  uniform.  

v   System-defined  hash.  This  distribution  scheme  uses  an  internal,  system-defined  

rule that  distributes  rows  with  the  objective  of keeping  the  same  number  of rows  

in  each  fragment.  

v   Hybrid.  This  distribution  scheme  combines  two  distribution  schemes.  The  

primary  distribution  scheme  chooses  the  dbslice.  The  secondary  distribution  

scheme  puts  rows  in  specific  dbspaces  within  the  dbslice.  The  dbspaces  usually  

reside  on  different  coservers.

 

End  of  Extended  Parallel  Server  

For  complete  descriptions  of the  SQL  syntax  you  use  to specify  a distribution  

scheme,  see  the  CREATE  TABLE  and  CREATE  INDEX  statements  in  the  IBM  

Informix  Guide  to  SQL:  Syntax. For  a discussion  about  the  performance  aspects  of 

fragmentation,  refer  to  your  IBM  Informix  Performance  Guide. 

Expression-Based Distribution Scheme 

To specify  an  expression-based  distribution  scheme,  use  the  FRAGMENT  BY  

EXPRESSION  clause  of the  CREATE  TABLE  or  CREATE  INDEX  statement.  The  

following  example  includes  a FRAGMENT  BY  EXPRESSION  clause  to  create  a 

fragmented  table  with  an  expression-based  distribution  scheme:  

CREATE  TABLE  accounts  (id_num  INT,  name  char(15))  

FRAGMENT  BY  EXPRESSION  

id_num  <=  100  IN dbspace_1,  

id_num  <100  AND  id_num  <= 200  IN dbspace_2,  

id_num  > 200  IN dbspace_3  

When  you  use  the  FRAGMENT  BY  EXPRESSION  clause  of the  CREATE  TABLE  

statement  to  create  a fragmented  table,  you  must  supply  one  condition  for  each  

fragment  of the  table  that  you  are  creating.  

You can  define  range  rules  or  arbitrary  rules  that  indicate  to the  database  server  how  

rows  are  to  be  distributed  to  fragments.  The  following  sections  describe  the  

different  types  of expression-based  distribution  schemes.  

Range Rule 

A  range  rule uses  SQL  relational  and  logical  operators  to  define  the  boundaries  of  

each  fragment  in a table.  A range  rule can  contain  the  following  restricted  set  of 

operators:  

v   The  relational  operators  >, <,  >=,  <=  

v   The  logical  operators  AND  and  OR  

v   Algebraic  expressions  including  built-in  functions

 

5-4 IBM Informix  Database  Design  and Implementation  Guide



A range  rule can  be  based  on  a simple  algebraic  expression  as  shown  in  the  

following  example.  In  this  example,  the  expression  is a simple  reference  to  a 

column.  

FRAGMENT  BY EXPRESSION  

id_num  > 0  AND  id_num  <= 20  IN dbsp1,  

id_num  > 20 AND  id_num  <= 40 IN dbsp2,  

id_num  > 40 IN dbsp3  

The  expression  in  a range  rule can  be  a conjunction  or  disjunction  of more  

algebraic  expressions.  The  next  example  shows  two  algebraic  expressions  used  to  

define  two  sets  of  ranges.  The  first  set  of  ranges  is based  on  the  algebraic  

expression:  ″YEAR(Died)  - YEAR(Born)″; the  second  set  of  ranges  is based  on  

″MONTH(Born).″ 

FRAGMENT  BY  EXPRESSION 

YEAR(Died) - YEAR(Born) < 21 AND MONTH(Born) >= 1  AND MONTH(Born) < 4 IN dbsp1, 

YEAR(Died) - YEAR(Born) < 40 AND MONTH(Born) >= 4  AND MONTH(Born) <  7 IN dbsp2, 

Arbitrary Rule 

An  arbitrary  rule uses  SQL  relational  and  logical  operators.  Unlike  range  rules, 

arbitrary  rules allow  you  to  use  any  relational  operator  and  any  logical  operator  to  

define  the  rule. In  addition,  you  can  reference  any  number  of table  columns  in  the  

rule. Arbitrary  rules typically  include  the  use  of the  OR  logical  operator  to  group  

data,  as  the  following  example  shows:  

FRAGMENT  BY EXPRESSION  

zip_num  = 95228  OR zip_num  = 95443  IN dbsp2,  

zip_num  = 91120  OR zip_num  = 92310  IN dbsp4,  

REMAINDER  IN dbsp5  

Using the MOD Function (IDS) 

You can  use  the  MOD  function  in  a FRAGMENT  BY  EXPRESSION  clause  to  map  

each  row  in  a table  to  a set  of  integers  (hash  values).  The  database  server  uses  

these  values  to  determine  in which  fragment  it will  store  a given  row. The  

following  example  shows  how  you  might  use  the  MOD  function  in  an  

expression-based  distribution  scheme:  

FRAGMENT  BY EXPRESSION  

MOD(id_num,  3) = 0 IN dbsp1,  

MOD(id_num,  3) = 1 IN dbsp2,  

MOD(id_num,  3) = 2 IN dbsp3  

Inserting and Updating Rows 

When  you  insert  or  update  a row, the  database  server  evaluates  fragment  

expressions,  in  the  order  specified,  to  see  if the  row  belongs  in any  of  the  

fragments.  If  so,  the  database  server  inserts  or  updates  the  row  in  one  of the  

fragments.  If  the  row  does  not  belong  in  any  of  the  fragments,  the  row  is put  into  

the  fragment  that  the  remainder  clause  specified.  If  the  distribution  scheme  does  

not  include  a remainder  clause,  and  the  row  does  not  match  the  criteria  for  any  of  

the  existing  fragment  expressions,  the  database  server  returns  an  error.  

Round-Robin Distribution Scheme 

To specify  a round-robin  distribution  scheme,  use  the  FRAGMENT  BY  ROUND  

ROBIN  clause  of  the  CREATE  TABLE  statement.  The  following  statement  

illustrates  a fragmented  table  with  a round-robin  distribution  scheme:  

CREATE  TABLE  account_2  

   ...  

   ...  

FRAGMENT  BY ROUND  ROBIN  IN dbspace1,  dbspace2,  dbspace3  

 

Chapter  5. Table  Fragmentation  Strategies  5-5



When  the  database  server  receives  a request  to  insert  a number  of rows  into  a table  

that  uses  round-robin  distribution,  it distributes  the  rows  in  such  a way  that  the  

number  of  rows  in  each  of  the  fragments  remains  approximately  the  same.  

Round-robin  distributions  are  also  called  even  distributions  because  information  is 

distributed  evenly  among  the  fragments.  The  rule for  distributing  rows  to tables  

that  use  round-robin  distribution  is internal  to  the  database  server.  

Important:   You can  use  the  round-robin  distribution  scheme  only  for  table  

fragmentation.  You cannot  fragment  an  index  with  this  distribution  

scheme.  

Range Distribution Scheme (XPS) 

When  data  distribution  is dense  and  uniform  and  the  fragmentation  column  

contains  no  duplicates,  you  can  use  a range  distribution  scheme  to  distribute  rows  

evenly  across  dbspaces.  Range  distribution  uses  MIN  and  MAX  values  that  the  

user  specifies  to  determine  the  distribution  of rows  among  the  fragments.  

The  following  statement  includes  a FRAGMENT  BY  RANGE  clause  to  specify  a 

range  distribution  scheme:  

CREATE  TABLE  cust_account  (cust_id  INT)  

   ...  

   ...  

FRAGMENT  BY  RANGE  (cust_id  MIN 1000  MAX  5000)  

   IN dbsp_1,  dbsp_2,  dbsp_3,  dbsp_4)  

The  MIN  and  MAX  values  specify  the  total  range  of  expected  values  in  the  

column.  You must  specify  a MAX  value  in  the  FRAGMENT  BY  RANGE  clause.  If 

you  omit  the  MIN  value,  the  default  MIN  value  is 0. In  the  preceding  example,  the  

database  server  uses  cust_id  values  to distribute  table  rows  across  four  dbspaces.  

The  database  server  fragments  the  rows  as  follows.  

Storage  Space  For  Rows  with  Column  Values  

dbsp_1  1000  <=  cust_id  < 2000  

dbsp_2  2000  <=  cust_id  < 3000  

dbsp_3  3000  <=  cust_id  < 4000  

dbsp_4  4000  <=  cust_id  < 5000

 You can  use  range  fragmentation  on  a single  column  or, in a hybrid  distribution  

scheme,  you  can  specify  a range  scheme  on  different  columns  for  each  

FRAGMENT  BY  RANGE  clause.  For  information  about  how  to use  range  

fragmentation  in  a hybrid  distribution  scheme,  see  “Hybrid  Distribution  Scheme  

(XPS)”  on  page  5-7.  

System-Defined Hash Distribution Scheme (XPS) 

The  database  server  uses  a system-defined  hash  algorithm  to distribute  data  evenly  

by  hashing  a specified  key.  In  addition  to even  data  distribution,  system-defined  

hash  fragmentation  permits  the  automatic  elimination  of  fragments  for  queries  that  

use  the  hashed  key.  You can  use  hash  fragmentation  for  several  tables  to provide  

fragment  elimination  when  the  tables  are  joined  in  queries  and  to  perform  more  

processing  on  the  local  coserver.  

A  system-defined  hash  distribution  scheme  is the  preferred  method  for  distributing  

data  evenly  across  fragments,  except  in  the  following  cases:  

v   Range  queries  are  used.  

 

5-6 IBM Informix  Database  Design  and Implementation  Guide



A  range  distribution  scheme  might  lead  to  better  fragment  elimination  and  

therefore  better  query  performance.  

v   The  specified  column  contains  a very  uneven  number  of  duplicate  values  or  a 

very  small  number  of  different  values.  

Either  condition  can  result  in data  skew, in  which  some  fragments  become  larger  

than  others.  Data  skew  can  lead  to  uneven  performance  because  the  amount  of  

data  that  the  database  server  needs  to  process  is larger  in  some  fragments  than  

in  other  fragments.

To  specify  a system-defined  hash  distribution  scheme,  use  the  FRAGMENT  BY  

HASH  clause  in  the  CREATE  TABLE  statement  as  follows:  

CREATE  TABLE  new_tab  (id INT, name CHAR(30))  

   FRAGMENT  BY HASH (id) IN dbspace1,  dbspace2,  dbspace3;  

In  a system-defined  hash  distribution  scheme,  specify  at least  two  dbspaces  where  

you  want  the  fragments  to  be  placed  or  specify  a dbslice.  

You can  also  specify  a composite  key  for  a system-defined  hash  distribution  

scheme.  

Hybrid Distribution Scheme (XPS) 

A hybrid  distribution  scheme  combines  a base  strategy  and  second-level  strategy  on  

the  same  table.  The  base  strategy  can  be  expression-based  or  range  fragmentation.  

You can  use  a hybrid  distribution  scheme  to  apply  different  fragmentation  

strategies  on  one  or  two  columns.  

When  you  define  a hybrid  distribution  scheme  you  can  specify  a single  dbslice,  a 

single  dbspace,  or  multiple  dbspaces  as  the  storage  domain  of  the  fragmentation  

expression.  

The  following  statement  defines  a hybrid  scheme  based  on  two  columns  of  the  

table:  

CREATE  TABLE  hybrid_tab  (col_1  INT, col_2  DATE,  col_3 CHAR(4))  

   FRAGMENT  BY HYBRID  (col_1)  EXPRESSION  

      col_1 >= 0 AND col_1  < 20 IN dbspace_1,  

      col_1 >= 20 AND col_1 < 40 IN dbspace_2,  

      col_1 >= 40 IN dbspace_3;  

Creating a Fragmented Table  

This  section  explains  how  to use  SQL  statements  to create  and  manage  fragmented  

tables.  You can  fragment  a table  at the  same  time  that  you  create  it,  or  you  can  

fragment  existing  nonfragmented  tables.  An  overview  of both  alternatives  is given  

in  the  following  sections.  For  the  complete  syntax  of  the  SQL  statements  that  you  

use  to  create  fragmented  tables,  see  the  IBM  Informix  Guide  to SQL:  Syntax. 

Before  you  create  a fragmented  table,  you  must  decide  on  an  appropriate  

fragmentation  strategy.  For  information  about  how  to  formulate  a fragmentation  

strategy,  see  your  IBM  Informix  Performance  Guide. 

Creating a New Fragmented Table  

To create  a fragmented  table,  use  the  FRAGMENT  BY  clause  of  the  CREATE  

TABLE  statement.  Suppose  that  you  want  to  create  a fragmented  table  similar  to  

the  orders  table  of  the  stores_demo  database.  You decide  on  a round-robin  

distribution  scheme  with  three  fragments  and  consult  with  your  database  server  

 

Chapter  5. Table  Fragmentation  Strategies  5-7



administrator  to  set  up  three  dbspaces,  one  for  each  of the  fragments:  dbspace1,  

dbspace2,  and  dbspace3.  The  following  SQL  statement  creates  the  fragmented  

table:  

CREATE  TABLE  my_orders  ( 

   order_num       SERIAL(1001),  

   order_date      DATE, 

   customer_num    INT, 

   ship_instruct   CHAR(40),  

   backlog         CHAR(1),  

   po_num        CHAR(10),  

   ship_date     DATE, 

   ship_weight   DECIMAL(8,2),  

   ship_charge   MONEY(6),  

   paid_date     DATE, 

   PRIMARY  KEY (order_num),  

   FOREIGN  KEY (customer_num)  REFERENCES  customer(customer_num))  

   FRAGMENT  BY ROUND  ROBIN IN dbspace1,  dbspace2,  dbspace3  

 

Dynamic  Server  

If the  my_orders  table  resides  in  a Dynamic  Server  database,  you  might  decide  

instead  to  create  the  table  with  expression-based  fragmentation.  Suppose  that  your  

my_orders  table  has  30,000  rows,  and  you  want  to distribute  rows  evenly  across  

three  fragments  stored  in  dbspace1,  dbspace2,  and  dbspace3.  The  following  

statement  shows  how  you  might  use  the  order_num  column  to  define  an  

expression-based  fragmentation  strategy:  

CREATE  TABLE  my_orders  (order_num  SERIAL,  ...) 

   FRAGMENT  BY EXPRESSION  

      order_num  < 10000 IN dbspace1,  

      order_num  >= 10000  and order_num  < 20000  IN dbspace2,  

      order_num  >= 20000  IN dbspace3  

 

End  of  Dynamic  Server  

 

Extended  Parallel  Server  

If the  my_orders  table  resides  in  an  Extended  Parallel  Server  database,  you  might  

create  the  table  with  a system-defined  hash  distribution  scheme  to  get  even  

distribution  across  fragments.  Suppose  that  the  my_orders  table  has  120,000  rows,  

and  you  want  to  distribute  rows  evenly  across  six  fragments  stored  in  different  

dbspaces.  You decide  to  use  the  SERIAL  column  order_num  to define  the  

fragments.  

The  following  example  shows  how  to use  the  order_num  column  to  define  a 

system-defined  hash  fragmentation  strategy:  

CREATE  TABLE  my_orders  (order_num  SERIAL,  ...) 

   FRAGMENT  BY HASH (order_num)  IN dbspace1,  dbspace2,  

      dbspace3,  dbspace4,  dbspace5,  dbspace6;  

You might  notice  a difference  between  SERIAL  column  values  in  a fragmented  

table  and  unfragmented  tables.  Extended  Parallel  Server  assigns  SERIAL  values  

sequentially  within  fragments,  but  fragments  might  contain  values  from  

noncontiguous  ranges.  You cannot  specify  what  these  ranges  are.  Extended  Parallel  

Server  controls  these  ranges  and  guarantees  only  that  they  do  not  overlap.  

 

5-8 IBM Informix  Database  Design  and Implementation  Guide



Tip:   You can  store  table  fragments  in  dbspaces  or  dbslices  on  Extended  Parallel  

Server.  

 

End  of  Extended  Parallel  Server  

Creating a Fragmented Table  from Nonfragmented Tables  

You might  need  to  convert  nonfragmented  tables  into  fragmented  tables  in  the  

following  circumstances:  

v   You have  an  application-implemented  version  of  table  fragmentation.  

You will  probably  want  to  convert  several  small  tables  into  one  large  fragmented  

table.  The  following  section  tells  you  how  to  proceed  when  this  is the  case.  

Follow  the  instructions  in  the  section  “Using  More  Than  One  Nonfragmented  

Table”  on  page  5-9.  

v   You have  an  existing  large  table  that  you  want  to  fragment.  

Follow  the  instructions  in  the  section  “Using  a Single  Nonfragmented  Table”  on  

page  5-10.

Remember  that  before  you  perform  the  conversion,  you  must  set  up  an  

appropriate  number  of  dbspaces  to contain  the  newly  created  fragmented  tables.  

Using More Than One Nonfragmented Table 

You can  combine  two  or  more  nonfragmented  tables  into  a single  fragmented  table.  

The  nonfragmented  tables  must  have  identical  table  structures  and  must  be  stored  

in  separate  dbspaces.  To combine  nonfragmented  tables,  use  the  ATTACH clause  of 

the  ALTER  FRAGMENT  statement.  

For  example,  suppose  that  you  have  three  nonfragmented  tables,  account1,  

account2,  and  account3,  and  that  you  store  the  tables  in  dbspaces  dbspace1,  

dbspace2,  and  dbspace3,  respectively.  All  three  tables  have  identical  structures,  and  

you  want  to  combine  the  three  tables  into  one  table  that  is  fragmented  by  the  

expression  on  the  common  column  acc_num.  

You want  rows  with  acc_num  less  than  or  equal  to  1120  to  be  stored  in dbspace1.  

Rows  with  acc_num  greater  than  1120  but  less  than  or  equal  to 2000  are  to be  

stored  in  dbspace2.  Finally,  rows  with  acc_num  greater  than  2000  are  to  be  stored  

in  dbspace3.  

To fragment  the  tables  with  this  fragmentation  strategy,  execute  the  following  SQL  

statement:  

ALTER FRAGMENT  ON TABLE tab1 ATTACH  

   tab1 AS acc_num  <= 1120,  

   tab2 AS acc_num  >  1120 and acc_num  <= 2000, 

   tab3 AS acc_num  > 2000; 

The  result  is a single  table,  tab1.  The  other  tables,  tab2  and  tab3,  were  consumed  

and  no  longer  exist.  

For  information  about  how  to  use  the  ATTACH and  DETACH  clauses  of  the  

ALTER  FRAGMENT  statement  to improve  performance,  see  your  IBM  Informix  

Performance  Guide. 

 

Chapter  5. Table  Fragmentation  Strategies  5-9



Using a Single Nonfragmented Table 

To create  a fragmented  table  from  a nonfragmented  table,  use  the  INIT  clause  of 

the  ALTER  FRAGMENT  statement.  For  example,  suppose  you  want  to  convert  the  

table  orders  to  a table  fragmented  by  round-robin.  The  following  SQL  statement  

performs  the  conversion:  

ALTER  FRAGMENT  ON TABLE  orders  INIT 

   FRAGMENT  BY ROUND  ROBIN IN dbspace1,  dbspace2,  dbspace3;  

Any  existing  indexes  on  the  nonfragmented  table  become  fragmented  with  the  

same  fragmentation  strategy  as  the  table.  

Rowids in a Fragmented Table  

The  term  rowid  refers  to  an  integer  that  defines  the  physical  location  of  a row. The  

rowid  of  a row  in  a nonfragmented  table  is a unique  and  constant  value.  Rows  in  

fragmented  tables,  in  contrast,  are  not  assigned  a rowid.  

Important:   Use  primary  keys  as a method  of access  in  your  applications  rather  

than  rowids.  Because  primary  keys  are  defined  in  the  ANSI  

specification  of  SQL,  using  primary  keys  to  access  data  makes  your  

applications  more  portable.  

 

Extended  Parallel  Server  

The  database  server  does  not  support  rowids  for  fragmented  tables.  

 

End  of  Extended  Parallel  Server  

 

Dynamic  Server  

To accommodate  applications  that  must  reference  a rowid  for  a fragmented  table,  

Dynamic  Server  allows  you  to explicitly  create  a rowid  column  for  a fragmented  

table.  However,  Dynamic  Server  does  not  support  the  WITH  ROWIDS  clause  for  

typed  tables.  

To create  the  rowid  column,  use  the  following  SQL  syntax:  

v   The  WITH  ROWIDS  clause  of the  CREATE  TABLE  statement  

v   The  ADD  ROWIDS  clause  of the  ALTER  TABLE  statement  

v   The  INIT  clause  of  the  ALTER  FRAGMENT  statement

When  you  create  the  rowid  column,  the  database  server  takes  the  following  

actions:  

v   Adds  the  4-byte  unique  value  to  each  row  in  the  table  

v   Creates  an  internal  index  that  it uses  to  access  the  data  in  the  table  by  rowid  

v   Inserts  a row  in  the  sysfragments  system  catalog  table  for  the  internal  index

 

End  of  Dynamic  Server  

Fragmenting Smart Large Objects (IDS) 

You can  specify  multiple  sbspaces  in  the  PUT  clause  of  the  CREATE  TABLE  

statement  to  achieve  round-robin  fragmentation  of  smart  large  objects  on  a column.  

If you  specify  multiple  sbspaces  for  a CLOB  or  BLOB  column,  the  database  server  

distributes  the  smart  large  objects  for  the  column  to the  specified  sbspaces  in  

 

5-10 IBM Informix  Database  Design  and Implementation  Guide



round-robin  fashion.  Given  the  following  CREATE  TABLE  statement,  the  database  

server  can  distribute  large  objects  from  the  cat_photo  column  to  sbcat1, sbcat2, 

and  sbcat3  in  round-robin  fashion.  

CREATE  TABLE  catalog  ( 

   catalog_num   SERIAL,  

   stock_num     SMALLINT,  

   manu_code     CHAR(3),  

   cat_descr     LVARCHAR,  

   cat_photo     BLOB)  

PUT  cat_photo  in (sbcat1,  sbcat2,  sbcat3;  

Modifying Fragmentation Strategies 

You can  make  two  general  types  of modifications  to a fragmented  table.  The  first  

type  consists  of  the  modifications  that  you  can  make  to  a nonfragmented  table.  

Such  modifications  include  adding  a column,  dropping  a column,  changing  a 

column  data  type,  and  so on.  For  these  modifications,  use  the  ALTER  TABLE  

statements  that  you  would  normally  use  on  a nonfragmented  table.  The  second  

type  of  modification  consists  of changes  to  a fragmentation  strategy.  This  section  

explains  how  to  use  SQL  statements  to modify  fragmentation  strategies.  

At  times,  you  might  need  to  alter  a fragmentation  strategy  after  you  implement  

fragmentation.  Most  frequently,  you  will  need  to modify  your  fragmentation  

strategy  when  you  use  fragmentation  with  intraquery  or  interquery  parallelization.  

Modifying  your  fragmentation  strategy  in  these  circumstances  is one  of several  

ways  you  can  improve  the  performance  of your  database  server  system.  

Reinitializing a Fragmentation Strategy 

You can  use  the  ALTER  FRAGMENT  statement  with  an  INIT  clause  to  define  and  

initialize  a new  fragmentation  strategy  on  a nonfragmented  table  or  convert  an  

existing  fragmentation  strategy  on  a fragmented  table.  You can  also  use  the  INIT  

clause  to  change  the  order  of  evaluation  of  fragment  expressions.  

The  following  example  shows  how  you  might  use  the  INIT  clause  to reinitialize  a 

fragmentation  strategy  completely.  

Suppose  that  you  initially  create  the  following  fragmented  table:  

CREATE  TABLE  account  (acc_num  INTEGER,  ...) 

   FRAGMENT  BY EXPRESSION  

      acc_num  <= 1120 in dbspace1,  

      acc_num  > 1120 and acc_num  < 2000 in dbspace2,  

      REMAINDER  IN dbspace3;  

Suppose  that  after  several  months  of  operation  with  this  distribution  scheme,  you  

find  that  the  number  of  rows  in  the  fragment  contained  in dbspace2  is twice  the  

number  of  rows  that  the  other  two  fragments  contain.  This  imbalance  causes  the  

disk  that  contains  dbspace2  to  become  an  I/O  bottleneck.  

To remedy  this  situation,  you  decide  to  modify  the  distribution  so that  the  number  

of  rows  in  each  fragment  is  approximately  even.  You want  to  modify  the  

distribution  scheme  so  that  it contains  four  fragments  instead  of  three  fragments.  A  

new  dbspace,  dbspace2a,  is to  contain  the  new  fragment  that  stores  the  first  half  of  

the  rows  that  previously  were  contained  in  dbspace2.  The  fragment  in  dbspace2  

contains  the  second  half  of  the  rows  that  it  previously  stored.  

 

Chapter  5. Table  Fragmentation  Strategies  5-11



To implement  the  new  distribution  scheme,  first  create  the  dbspace  dbspace2a  and  

then  execute  the  following  statement:  

ALTER  FRAGMENT  ON TABLE  account  INIT 

   FRAGMENT  BY EXPRESSION  

      acc_num  <= 1120 in dbspace1,  

      acc_num  >  1120 and acc_num  <= 1500 in dbspace2a,  

      acc_num  >  1500 and acc_num  < 2000 in dbspace2,  

      REMAINDER  IN dbspace3;  

As  soon  as  you  execute  this  statement,  the  database  server  discards  the  old  

fragmentation  strategy,  and  the  rows  that  the  table  contains  are  redistributed  

according  to  the  new  fragmentation  strategy.  

You can  also  use  the  INIT  clause  of ALTER  FRAGMENT  to  perform  the  following  

actions:  

v   Convert  a single  nonfragmented  table  into  a fragmented  table  

v   Convert  a fragmented  table  into  a nonfragmented  table  

v   Convert  a table  fragmented  by  any  strategy  to any  other  fragmentation  strategy

For  more  information,  see  the  ALTER  FRAGMENT  statement  in  the  IBM  Informix  

Guide  to SQL:  Syntax. 

Modifying Fragmentation Strategies for Dynamic Server 

Dynamic  Server  allows  you  to use  the  ADD,  DROP,  and  MODIFY  clauses  to 

change  the  fragmentation  strategy  on  a table  or  index.  For  syntax  information  

about  these  options,  see  the  ALTER  FRAGMENT  statement  in the  IBM  Informix  

Guide  to SQL:  Syntax. 

Using the ADD Clause 

When  you  define  a fragmentation  strategy,  you  might  need  to  add  one  or  more  

fragments.  You can  use  the  ADD  clause  of  the  ALTER  FRAGMENT  statement  to  

add  a new  fragment  to  a table.  Suppose  that  you  want  to add  a fragment  to  a table  

that  you  create  with  the  following  statement:  

CREATE  TABLE  sales  (acc_num  INT, ...) 

   FRAGMENT  BY ROUND  ROBIN IN dbspace1,  dbspace2,  dbspace3;  

To add  a new  fragment  dbspace4  to the  table  sales, execute  the  following  

statement:  

ALTER  FRAGMENT  ON TABLE  sales  ADD  dbspace4;  

If the  fragmentation  strategy  is expression  based,  the  ADD  clause  of ALTER  

FRAGMENT  contains  options  to  add  a dbspace  before  or  after  an  existing  dbspace.  

Using the DROP Clause 

When  you  define  a fragmentation  strategy,  you  might  need  to  drop  one  or  more  

fragments.  With  Dynamic  Server,  you  can  use  the  DROP  clause  of the  ALTER  

FRAGMENT  ON  TABLE  statement  to  drop  a fragment  from  a table.  Suppose  you  

want  to  drop  a fragment  from  a table  that  you  create  with  the  following  statement:  

CREATE  TABLE  sales  (col_a  INT),  ...) 

   FRAGMENT  BY ROUND  ROBIN IN dbspace1,  dbspace2,  dbspace3;  

The  following  ALTER  FRAGMENT  statement  uses  a DROP  clause  to  drop  the  third  

fragment  dbspace3  from  the  sales  table:  

ALTER  FRAGMENT  ON TABLE  sales  DROP  dbspace3;  

 

5-12 IBM Informix  Database  Design  and Implementation  Guide



When  you  issue  this  statement,  all  the  rows  in  dbspace3  are  moved  to  the  

remaining  dbspaces,  dbspace1  and  dbspace2.  

Using the MODIFY Clause 

Use  the  ALTER  FRAGMENT  statement  with  the  MODIFY  clause  to  modify  one  or  

more  of  the  expressions  in  an  existing  fragmentation  strategy.  

Suppose  that  you  initially  create  the  following  fragmented  table:  

CREATE  TABLE  account  (acc_num  INT, ...) 

   FRAGMENT  BY EXPRESSION  

      acc_num  <= 1120 IN dbspace1,  

      acc_num  > 1120 AND acc_num  < 2000 IN dbspace2,  

      REMAINDER  IN dbspace3;  

When  you  execute  the  following  ALTER  FRAGMENT  statement,  you  ensure  that  

no  account  numbers  with  a value  less  than  or  equal  to  zero  are  stored  in  the  

fragment  that  dbspace1  contains:  

ALTER FRAGMENT  ON TABLE account  

   MODIFY  dbspace1  TO acc_num  > 0 AND acc_num  <=1120;  

You cannot  use  the  MODIFY  clause  to alter  the  number  of fragments  that  your  

distribution  scheme  contains.  Use  the  INIT  or  ADD  clause  of  ALTER  FRAGMENT  

instead.  

Modifying Fragmentation Strategies for XPS 

Extended  Parallel  Server  supports  the  following  options  for  the  ALTER  

FRAGMENT  ON  TABLE  statement:  

v   ATTACH clause  

v   DETACH  clause  

v   INIT  clause  

Tables  that  use  HASH  fragmentation  support  only  the  INIT  option.  

Extended  Parallel  Server  does  not  support  the  DROP  or  MODIFY  options,  the  

ALTER  FRAGMENT  ON  INDEX  statement  or  explicit  rowids  columns.  To handle  

drop  or  modify  operations,  you  can  use  the  supported  options  in  place  of DROP  

and  MODIFY.  

Using the INIT Clause 

If  changes  to  a fragmentation  strategy  require  data  movement,  you  can  specify  the  

INIT  clause  with  an  ALTER  FRAGMENT  ON  TABLE  statement.  When  you  use  the  

INIT  clause,  the  database  server  creates  a copy  of the  table  with  the  new  

fragmentation  scheme  and  inserts  rows  from  the  original  table  into  the  new  table.  

Suppose  you  create  the  following  prod_info  table  that  distributes  fragments  by  

hash  on  the  id  column  because  your  queries  typically  use  an  equality  search  on  the  

id  column:  

CREATE  TABLE  prod_info  

   (id       INT,  

   color     INT,  

   details   CHAR(100))  

FRAGMENT  BY HASH(id)  IN dbsl;  

Suppose  at  some  point  you  recognize  a need  to  perform  other  important  queries  

that  specify  color  column  values  but  not  id  values.  To handle  this  type  of  scenario,  

you  might  modify  the  data  layout  of  the  prod_info  table  to  allow  for  better  

 

Chapter 5. Table  Fragmentation  Strategies  5-13



fragment  elimination.  The  following  ALTER  FRAGMENT  statement  shows  how  

you  might  use  an  INIT  clause  to change  from  a hash  to  a hybrid  distribution  

scheme:  

ALTER  FRAGMENT  ON TABLE  prod_info  INIT  

   FRAGMENT  BY HYBRID(id)  

    EXPRESSION  color  = 1 IN dbsl, color = 2 IN dbsl2,  ... 

    REMAINDER  IN dbsl8;  

Using ATTACH and DETACH Clauses 

If you  need  to  move  data,  you  can  use  an  ALTER  FRAGMENT  statement  with  the  

INIT  clause.  Otherwise,  you  can  use  ALTER  FRAGMENT  with  the  following  

options  to  modify  the  expression  of an  existing  fragment:  

v   Use  the  DETACH  clause  to  remove  the  fragment  whose  expression  you  want  to  

modify.  

v   Use  the  ATTACH  clause  to  reattach  the  fragment  with  the  new  expression.

Suppose  that  you  initially  create  the  following  fragmented  table:  

CREATE  TABLE  account  (acc_num  INT, ...) 

   FRAGMENT  BY EXPRESSION  

      acc_num  <= 1120 IN dbspace1,  

      acc_num  > 1120 AND acc_num  < 2000 IN dbspace2,  

      REMAINDER  IN dbspace3;  

The  following  statements  modify  the  fragment  that  dbspace1  contains  to ensure  

that  no  account  numbers  with  a value  less  than  or  equal  to  zero  are  stored  in  the  

fragment:  

ALTER  FRAGMENT  ON TABLE  account  DETACH  dbspace1  det_tab;  

CREATE  TABLE  new_tab  (acc_num  INT, ...) 

   FRAGMENT  BY EXPRESSION  

      acc_num  > 0 AND acc_num  <=1120  IN dbspace1;  

ALTER  FRAGMENT  ON TABLE  account  ATTACH  account,  new_tab;  

INSERT  INTO account  SELECT  * FROM det_tab;  

DROP TABLE  det_tab;  

Important:   You cannot  use  the  ALTER  TABLE  statement  with  an  ATTACH clause  

or  DETACH  clause  when  the  table  has  hash  fragmentation.  However,  

you  can  use  the  ALTER  TABLE  statement  with  an  INIT  clause  on  tables  

with  hash  fragmentation.  

Using  the  ATTACH  Clause  to  Add  a Fragment:    You can  use  the  ATTACH clause  

of  the  ALTER  FRAGMENT  ON  TABLE  statement  to add  a fragment  from  a table.  

Suppose  that  you  want  to  add  a fragment  to  a table  that  you  create  with  the  

following  statement:  

CREATE  TABLE  sales  (acc_num  INT, ...) 

   FRAGMENT  BY ROUND  ROBIN IN dbspace1,  dbspace2,  dbspace3  

To add  a new  fragment  dbspace4  to the  sales  table,  you  first  create  a new  table  

with  a structure  identical  to sales  that  specifies  the  new  fragment.  You then  use  an  

ATTACH clause  with  the  ALTER  FRAGMENT  statement  to  add  the  new  fragment  

to  the  table.  The  following  statements  add  a new  fragment  to  the  sales  table:  

CREATE  TABLE  new_tab  (acc_num  INT, ...) IN dbspace4;  

ALTER  FRAGMENT  ON TABLE  sales  ATTACH  sales,  new_tab;  

After  you  execute  the  ATTACH clause,  the  database  server  fragments  the  sales  

table  into  four  dbspaces:  the  three  dbspaces  of sales  and  the  dbspace  of  new_tab. 

The  new_tab  table  is  consumed.  

 

5-14 IBM Informix  Database  Design  and Implementation  Guide



Using  the  DETACH  Clause  to  Drop  a Fragment:    You can  use  the  DETACH  

clause  of  the  ALTER  FRAGMENT  ON  TABLE  statement  to  drop  a fragment  from  a 

table.  Suppose  that  you  want  to  drop  a fragment  from  a table  that  you  create  with  

the  following  statement:  

CREATE  TABLE  sales (acc_num  INT)...)  

   FRAGMENT  BY EXPRESSION  

      acc_num  <= 1120 IN dbspace1,  

      acc_num  > 1120 AND acc_num  <= 2000 IN dbspace2,  

      acc_num  > 2000 AND acc_num  < 3000 IN dbspace3,  

      REMAINDER  IN dbspace4;  

To drop  the  third  fragment  dbspace3  from  the  sales  table  without  losing  any  data,  

execute  the  following  statements:  

ALTER FRAGMENT  ON TABLE sales DETACH  dbspace3  det_tab;  

INSERT  INTO sales  SELECT  * FROM det_tab;  

DROP TABLE  det_tab;  

The  ALTER  FRAGMENT  statement  detaches  dbspace3  from  the  distribution  

scheme  of  the  sales  table  and  places  the  rows  in a new  table  det_tab. The  INSERT  

statement  reinserts  rows  previously  in dbspace3  into  the  new  sales  table,  which  

now  has  three  fragments:  dbspace1, dbspace2, and  dbspace4. The  DROP  TABLE  

statement  drops  the  det_tab  table  because  it  is no  longer  needed.  

Granting and Revoking Privileges on Fragments 

You need  a strategy  to control  data  distribution  if you  want  to  grant  useful  

fragment  privileges.  One  effective  strategy  is to fragment  data  records  by  

expression.  The  round-robin  data-record  distribution  strategy,  on  the  other  hand,  is 

not  a useful  strategy  because  each  new  data  record  is added  to  the  next  fragment.  

A round-robin  distribution  nullifies  any  clean  method  of  tracking  data  distribution  

and  therefore  eliminates  any  real  use  of fragment  authority.  Because  of this  

difference  between  expression-based  distribution  and  round-robin  distribution,  the  

GRANT  FRAGMENT  and  REVOKE  FRAGMENT  statements  apply  only  to  tables  

that  have  expression-based  fragmentation.  

When  you  create  a fragmented  table,  no  default  fragment  authority  exists.  Use  the  

GRANT  FRAGMENT  statement  to  grant  insert,  update,  or  delete  authority  on  one  

or  more  of  the  fragments.  If you  want  to  grant  all  three  privileges  at once,  use  the  

ALL  keyword  of  the  GRANT  FRAGMENT  statement.  However,  you  cannot  grant  

fragment  privileges  by  merely  naming  the  table  that  contains  the  fragments.  You 

must  name  the  specific  fragments.  

When  you  want  to  revoke  insert,  update,  or  delete  privileges,  use  the  REVOKE  

FRAGMENT  statement.  This  statement  revokes  privileges  from  one  or  more  users  

on  one  or  more  fragments  of a fragmented  table.  If  you  want  to  revoke  all  

privileges  that  currently  exist  for  a table,  you  can  use  the  ALL  keyword.  If you  do  

not  specify  any  fragments  in  the  command,  the  permissions  being  revoked  apply  

to  all  fragments  in the  table  that  currently  have  permissions.  

For  more  information,  see  the  GRANT  FRAGMENT,  REVOKE  FRAGMENT,  and  

SET  statements  in  the  IBM  Informix  Guide  to  SQL:  Syntax. 

 

Chapter 5. Table  Fragmentation  Strategies  5-15



5-16 IBM Informix  Database  Design  and Implementation  Guide



Chapter  6.  Granting  and  Limiting  Access  to  Your  Database  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 

Using  SQL  to Restrict  Access  to Data   . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 

Controlling  Access  to Databases   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2  

Granting  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3  

Database-Level  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 

Connect  Privilege   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3  

Resource  Privilege   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 

Database-Administrator  Privilege  . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 

Ownership  Rights   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 

Table-Level  Privileges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5  

Access  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 

Index,  Alter,  and  References  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . 6-6 

Under  Privileges  for  Typed Tables (IDS)   . . . . . . . . . . . . . . . . . . . . . . . 6-6 

Privileges  on  Table Fragments   . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 

Column-Level  Privileges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7  

Type-Level  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 

Usage  Privileges  for User-Defined  Types  . . . . . . . . . . . . . . . . . . . . . . . 6-9  

Under  Privileges  for  Named  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . 6-9 

Routine-Level  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9  

Language-Level  Privileges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 

SPL  Routines   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10  

External  Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 

Automating  Privileges   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11  

Automating  with  a Command  Script   . . . . . . . . . . . . . . . . . . . . . . . . 6-11 

Using  Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 

Determining  Current  Role  at  Runtime   . . . . . . . . . . . . . . . . . . . . . . . . . 6-13 

Using  SPL  Routines  to  Control  Access  to  Data   . . . . . . . . . . . . . . . . . . . . . . . 6-14 

Restricting  Data  Reads   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 

Restricting  Changes  to Data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 

Monitoring  Changes  to Data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 

Restricting  Object  Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 

Using  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 

Creating  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 

Typed Views  (IDS)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 

Duplicate  Rows  from  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 

Restrictions  on  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 

When  the  Basis  Changes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19  

Modifying  with  a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 

Deleting  with  a View   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 

Updating  a View   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20  

Inserting  into  a View   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21  

Using  the  WITH  CHECK  OPTION  Keywords   . . . . . . . . . . . . . . . . . . . . . 6-21 

Re-Execution  of a Prepared  Statement  When  the  View Definition  Changes  . . . . . . . . . . . . 6-22 

Privileges  and  Views   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 

Privileges  When  Creating  a View   . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 

Privileges  When  Using  a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23

In This Chapter 

This  chapter  describes  how  you  can  control  access  to your  database.  In some  

databases,  all  data  is accessible  to every  user. In  others,  some  users  are  denied  

access  to  some  or  all  the  data.  

 

© Copyright  IBM Corp. 1996, 2008 6-1



Using SQL to Restrict Access to Data 

You can  restrict  access  to  data  at  the  following  levels:  

v   You can  use  the  GRANT  and  REVOKE  statements  to  give  or  deny  access  to  the  

database  or  to  specific  tables,  and  you  can  control  the  kinds  of  uses  that  people  

can  make  of  the  database.  

v   You can  use  the  CREATE  PROCEDURE  or  CREATE  FUNCTION  statement  to  

write  and  compile  a user-defined  routine,  which  controls  and  monitors  the  users  

who  can  read,  modify,  or  create  database  tables.  

v   You can  use  the  CREATE  VIEW  statement  to prepare  a restricted  or  modified  

view  of the  data.  The  restriction  can  be  vertical,  which  excludes  certain  columns,  

or  horizontal,  which  excludes  certain  rows,  or  both.  

v   You can  combine  GRANT  and  CREATE  VIEW  statements  to  achieve  precise  

control  over  the  parts  of  a table  that  a user  can  modify  and  with  what  data.  

v   With  Dynamic  Server,  you  can  use  the  SET  ENCRYPTION  PASSWORD  

statement  and  built-in  encryption  and  decryption  functions  of  SQL  to  implement  

column-level  encryption  of  sensitive  data.  Unauthorized  users  who  succeed  in  

viewing  an  encrypted  character,  BLOB,  or  CLOB  column  value  cannot  recover  

the  plain  text  of your  data  without  the  DES  or  triple-DES  encryption  key,  which  

is not  stored  in  the  database.

Controlling Access to Databases 

The  normal  database-privilege  mechanisms  are  based  on  the  GRANT  and  REVOKE  

statements,  which  “Granting  Privileges”  on  page  6-3  discusses.  You can  sometimes  

use  the  facilities  of  the  operating  system,  however,  as  an  additional  way  to  control  

access  to  a database.  

No  matter  what  access  controls  the  operating  system  gives  you,  when  the  contents  

of  an  entire  database  are  highly  sensitive,  you  might  not  want  to leave  it  on  a 

public  disk  that  is  fixed  to  the  computer.  You can  circumvent  normal  software  

controls  when  the  data  must  be  secure.  

When  you  or  another  authorized  person  is not  using  the  database,  it does  not  have  

to  be  available  online.  You can  make  it inaccessible  in  one  of  the  following  ways,  

which  have  varying  degrees  of inconvenience:  

v   Detach  the  physical  medium  from  the  computer  and  take  it away.  If  the  disk  

itself  is  not  removable,  the  disk  drive  might  be  removable.  

v   Copy  the  database  directory  to tape  and  take  possession  of  the  tape.  

v   Use  an  encryption  utility  to  copy  the  database  files.  Keep  only  the  encrypted  

version.

Important:   In the  latter  two  cases,  after  making  the  copies,  you  must  remember  to  

erase  the  original  database  files  with  a program  that  overwrites  an 

erased  file  with  NULL  data.  

Instead  of  removing  the  entire  database  directory,  you  can  copy  and  then  erase  the  

files  that  represent  individual  tables.  Do  not  overlook  the  fact  that  index  files  

contain  copies  of  the  data  from  the  indexed  column  or  columns.  Remove  and  erase  

the  index  files  as  well  as  the  table  files.  

 

6-2 IBM Informix  Database  Design  and Implementation  Guide



Granting Privileges 

The  authorization  to use  a database  is called  an  access  privilege. For  example,  the  

authorization  to  use  a database  is called  the  Connect  privilege;  authorization  to  

insert  a row  into  a table  is called  the  Insert  privilege.  Use  the  GRANT  statement  to  

grant  privileges  on  a database,  table,  view, or  procedure,  or  to grant  a role  to  a 

user  or  another  role.  Use  the  REVOKE  statement  to  revoke  privileges  on  a database  

or  database  object,  or  to  revoke  a role  from  a user  or  from  another  role.  

A role  is  a classification  of  access  privileges  that  the  DBA  assigns,  such  as  payroll. 

After  a role  is created  with  the  CREATE  ROLE  statement,  the  DBA  can  use  the  

GRANT  statement  to assign  access  privileges  to the  role,  and  to  assign  the  role  to 

individual  users  (or  to other  roles),  so  that  users  with  similar  work  tasks  can  hold  

the  set  of  access  privileges  that  their  work  tasks  require.  By  assigning  privileges  to  

roles  and  roles  to  users,  you  can  simplify  the  management  of  privileges.  See  also  

“External  Routines”  on  page  6-10  and  “Using  Roles”  on  page  6-11  for  additional  

information  about  the  role  of roles  in  managing  access  privileges.  

The  following  groups  of  privileges  control  the  actions  a user  can  perform  on  data  

and  on  database  objects:  

v   Database-level  privileges  

v   Ownership  privileges  

v   Table-level  privileges  

v   Column-level  privileges

 

Dynamic  Server  

v   Type-level  privileges  

v   Routine-level  privileges  

v   Language-level  privileges

 

End  of  Dynamic  Server  

v   Automating  privileges

For  the  syntax  of  the  GRANT  and  REVOKE  statements,  see  the  IBM  Informix  Guide  

to  SQL:  Syntax. 

Database-Level Privileges 

The  three  levels  of  database  privileges  provide  an  overall  means  of  controlling  who  

accesses  a database.  Only  individual  users,  not  roles,  can  hold  database-level  

privileges  

Connect Privilege 

The  least  of the  privilege  levels  is Connect,  which  gives  a user  the  basic  ability  to 

query  and  modify  tables.  Users  with  the  Connect  privilege  can  perform  the  

following  functions:  

v   Execute  the  SELECT,  INSERT,  UPDATE,  and  DELETE  statements,  provided  that  

they  have  the  necessary  table-level  privileges.  

v   Execute  an  SPL  routine,  provided  that  they  have  the  necessary  table-level  

privileges.  

v   Create  views,  provided  that  they  are  permitted  to query  the  tables  on  which  the  

views  are  based.  

v   Create  temporary  tables  and  create  indexes  on  the  temporary  tables.

 

Chapter  6. Granting  and Limiting  Access to Your  Database  6-3



Before  users  can  access  a database,  they  must  have  the  Connect  privilege.  

Ordinarily,  in  a database  that  does  not  contain  highly  sensitive  or  private  data,  you  

give  the  GRANT  CONNECT  TO  PUBLIC  privilege  shortly  after  you  create  the  

database.  

If you  do  not  grant  the  Connect  privilege  to PUBLIC,  the  only  users  who  can  

access  the  database  through  the  database  server  are  those  to  whom  you  specifically  

grant  the  Connect  privilege.  If  limited  users  should  have  access,  this  privilege  lets  

you  provide  it  to  them  and  deny  it to  all  others.  

Users  and  the  Public:    Privileges  are  granted  to  single  users  by  name  or  to all 

users  under  the  name  of  PUBLIC.  Any  privileges  granted  to  PUBLIC  serve  as  

default  privileges.  

Prior  to  executing  a statement,  the  database  server  determines  whether  a user  has  

the  necessary  privileges.  The  information  is in  the  system  catalog.  For  more  

information,  see  “Privileges  in  the  System  Catalog  Tables”  on  page  6-5.  

The  database  server  looks  first  for  privileges  that  are  granted  specifically  to  the  

requesting  user. If  it  finds  such  a grant,  it uses  that  information.  It  then  checks  to  

see  if less  restrictive  privileges  were  granted  to  PUBLIC.  If they  were,  the  database  

server  uses  the  less  restrictive  privileges.  If  no  grant  has  been  made  to  that  user,  

the  database  server  looks  for  privileges  granted  to  PUBLIC.  If it finds  a relevant  

privilege,  it uses  that  one.  

Thus,  to  set  a minimum  level  of privilege  for  all  users,  grant  privileges  to  PUBLIC.  

You can  override  that,  in  specific  cases,  by  granting  higher  individual  privileges  to  

users.  

Resource Privilege 

The  Resource  privilege  carries  the  same  authorization  as  the  Connect  privilege.  In  

addition,  users  with  the  Resource  privilege  can  create  new, permanent  tables,  

indexes,  and  SPL  routines,  thus  permanently  allocating  disk  space.  

Database-Administrator Privilege 

The  highest  level  of  database  privilege  is database  administrator,  or  DBA.  When  

you  create  a database,  you  are  automatically  the  DBA.  Holders  of  the  DBA  

privilege  can  perform  the  following  functions:  

v   Execute  the  DROP  DATABASE,  START DATABASE,  and  ROLLFORWARD  

DATABASE  statements.  

v   Drop  or  alter  any  object  regardless  of who  owns  it.  

v   Create  tables,  views,  and  indexes  to  be  owned  by  other  users.  

v   Grant  database  privileges,  including  the  DBA  privilege,  to  another  user.

Only  the  user  informix  can  modify  system  catalog  tables  directly.  If you  are  user  

informix, IBM  strongly  recommends  that  you  not  modify  the  contents  or  schema  

of  any  system  catalog  table,  because  such  actions  can  destroy  the  integrity  of  the  

database.  

Ownership Rights 

The  database,  and  every  table,  view, index,  procedure,  and  synonym  in it, has  an  

owner.  The  owner  of  an  object  is usually  the  person  who  created  it, although  a 

user  with  the  DBA  privilege  can  create  objects  to  be  owned  by  others.  

 

6-4 IBM Informix  Database  Design  and Implementation  Guide



The  owner  of  a database  object  has  all  rights  to  that  object  and  can  alter  or  drop  it 

without  additional  privileges.  

For  Generalized  Key  (GK)  indexes  of  Extended  Parallel  Server,  ownership  rights  

are  handled  somewhat  differently  than  they  are  for  other  objects.  Any  table  that  

appears  in  the  FROM  clause  of a GK  index  cannot  be  dropped  until  that  GK  index  

is  dropped,  even  when  someone  other  than  the  creator  of  the  table  creates  the  GK  

index.  For  more  information,  refer  to  “Using  GK  Indexes  in  a Data-Warehousing  

Environment”  on  page  12-11.  

Table-Level  Privileges 

You can  apply  seven  privileges,  table  by  table,  to allow  nonowners  the  privileges  

of  owners.  Four  of  them,  the  Select,  Insert,  Delete,  and  Update  privileges,  control  

DML  access  to  data  in  the  table.  The  Index  privilege  controls  index  creation.  The  

Alter  privilege  gives  authorization  to  change  the  table  definition.  The  References  

privilege  gives  authorization  to specify  referential  constraints  on  a table.  

In  an  ANSI-compliant  database,  only  the  table  owner  has  any  privileges.  In  other  

databases,  the  database  server,  as  part  of creating  a table,  automatically  grants  to 

PUBLIC  all  table  privileges  except  Alter  and  References,  unless  the  NODEFDAC  

environment  variable  has  been  set  to  ’yes’  to  withhold  all  table  privileges  from  

PUBLIC.  When  you  allow  the  database  server  to automatically  grant  all  table  

privileges  to  PUBLIC,  a newly  created  table  is accessible  to  any  user  with  the  

Connect  privilege.  If  this  is not  what  you  want  (if  users  exist  with  the  Connect  

privilege  who  should  not  be  able  to  access  this  table),  you  must  revoke  all  

privileges  on  the  table  from  PUBLIC  after  you  create  the  table.  

Access Privileges 

Four  privileges  govern  how  users  can  access  a table.  As  the  owner  of  the  table,  you  

can  grant  or  withhold  the  following  privileges  independently:  

v   Select  allows  selection,  including  selecting  into  temporary  tables.  

v   Insert  allows  a user  to  add  new  rows.  

v   Update  allows  a user  to  modify  existing  rows.  

v   Delete  allows  a user  to  delete  rows.

The  Select  privilege  is necessary  for  a user  to retrieve  the  contents  of a table.  

However,  the  Select  privilege  is not  a precondition  for  the  other  privileges.  A user  

can  have  Insert  or  Update  privileges  without  having  the  Select  privilege.  

For  example,  your  application  might  have  a usage  table.  Every  time  a certain  

program  is  started,  it  inserts  a row  into  the  usage  table  to document  that  it  was  

used.  Before  the  program  terminates,  it  updates  that  row  to  show  how  long  it  ran  

and  perhaps  to  record  counts  of work  its  user  performs.  

If  you  want  any  user  of  the  program  to  be  able  to insert  and  update  rows  in  this  

usage  table,  grant  Insert  and  Update  privileges  on  it to PUBLIC.  However,  you  

might  grant  the  Select  privilege  to only  a few  users.  

Privileges  in  the  System  Catalog  Tables:    Privileges  are  recorded  in  the  system  

catalog  tables.  Any  user  with  the  Connect  privilege  can  query  the  system  catalog  

tables  to  determine  what  privileges  are  granted  and  to  whom.  

 

Chapter  6. Granting  and Limiting  Access to Your  Database  6-5



Database  privileges  are  recorded  in  the  sysusers  system  catalog  table,  in  which  the  

primary  key  is  user  ID,  and  the  only  other  column  contains  a single  character  C,  R,  

or  D  for  the  privilege  level.  A grant  to  the  keyword  of PUBLIC  is reflected  as  a 

user  name  of  PUBLIC  (lowercase).  

Table-level  privileges  are  recorded  in  systabauth, which  uses  a composite  primary  

key  of  the  table  number,  grantor,  and  grantee.  In  the  tabauth  column,  the  

privileges  are  encoded  in  the  list  as  follows.  

Code  Meaning  

s unconditional  select  

u update  

- ungranted  privileges  

i insert  

d delete  

x index  

a alter  

r references

A  hyphen  means  an  ungranted  privilege,  so  that  a grant  of  all  privileges  is shown  

as  su-idxar, and  -u------  shows  a grant  of  only  Update.  The  code  letters  are  

normally  lowercase,  but  they  are  uppercase  when  the  keywords  WITH  GRANT  

OPTION  are  used  in  the  GRANT  statement.  

When  an  asterisk  (*)  appears  in  the  third  position,  some  column-level  privilege  

exists  for  that  table  and  grantee.  The  specific  privilege  is recorded  in  syscolauth. 

Its  primary  key  is  a composite  of the  table  number,  the  grantor,  the  grantee,  and  

the  column  number.  The  only  attribute  is a three-letter  list  that  shows  the  type  of  

privilege:  s, u,  or  r.  

Index, Alter, and References Privileges 

The  Index  privilege  permits  its  holder  to  create  and  alter  indexes  on  the  table.  The  

Index  privilege,  similar  to the  Select,  Insert,  Update,  and  Delete  privileges,  is 

granted  automatically  to  PUBLIC  when  you  create  a table.  

You can  grant  the  Index  privilege  to  anyone,  but  to  exercise  the  privilege,  the  user  

must  also  hold  the  Resource  database  privilege.  So,  although  the  Index  privilege  is 

granted  automatically  (except  in  ANSI-compliant  databases),  users  who  have  only  

the  Connect  privilege  to  the  database  cannot  exercise  their  Index  privilege.  Such  a 

limitation  is  reasonable  because  an  index  can  fill  a large  amount  of  disk  space.  

The  Alter  privilege  permits  its  holder  to  use  the  ALTER  TABLE  statement  on  the  

table,  including  the  power  to  add  and  drop  columns,  reset  the  starting  point  for  

SERIAL  columns,  and  so  on.  You should  grant  the  Alter  privilege  only  to users  

who  understand  the  data  model  well  and  whom  you  trust to exercise  their  power  

carefully.  

The  References  privilege  allows  you  to  impose  referential  constraints  on  a table.  As  

with  the  Alter  privilege,  you  should  grant  the  References  privilege  only  to users  

who  understand  the  data  model  well.  

Under Privileges for Typed Tables (IDS) 

You can  grant  or  revoke  the  Under  privilege  to  control  whether  users  can  use  a 

typed  table  as  a supertable  in  an  inheritance  hierarchy.  The  Under  privilege  is 

granted  to  PUBLIC  automatically  when  a table  is created  (except  in  

ANSI-compliant  databases).  In  an  ANSI-compliant  database,  the  Under  privilege  

on  a table  is granted  to  the  owner  of  the  table.  To restrict  which  users  can  define  a 

 

6-6 IBM Informix  Database  Design  and Implementation  Guide



table  as  a supertable  in  an  inheritance  hierarchy,  you  must  first  revoke  the  Under  

privilege  for  PUBLIC  and  then  specify  the  users  to whom  you  want  to grant  the  

Under  privilege.  For  example,  to specify  that  only  a limited  group  of users  can  use  

the  employee  table  as  a supertable  in  an  inheritance  hierarchy,  you  might  execute  

the  following  statements:  

REVOKE  UNDER  ON employee  

   FROM  PUBLIC;  

  

GRANT  UNDER  ON employee  

   TO johns,  cmiles,  paulz  

For  information  about  how  to  use  the  UNDER  clause  to  create  tables  in  an  

inheritance  hierarchy,  see  “Table  Inheritance”  on  page  9-5.  

Privileges on Table Fragments 

Use  the  GRANT  FRAGMENT  statement  to  grant  insert,  update,  and  delete  

privileges  on  individual  fragments  of a fragmented  table.  The  GRANT  

FRAGMENT  statement  is  valid  only  for  tables  that  are  fragmented  with  

expression-based  distribution  schemes.  

Suppose  you  create  a customer  table  that  is fragmented  by  expression  into  three  

fragments,  which  reside  in  the  dbspaces  dbsp1, dbsp2, and  dbsp3. The  following  

statement  shows  how  to  grant  insert  privileges  on  the  first  two  fragments  only  

(dbsp1  and  dbsp2) to  users  jones, reed, and  mathews. 

GRANT  FRAGMENT  INSERT  ON customer  (dbsp1,  dbsp2)  

   TO jones,  reed,  mathews  

To grant  privileges  on  all  fragments  of a table,  use  the  GRANT  statement  or  the  

GRANT  FRAGMENT  statement.  

For  information  on  the  GRANT  FRAGMENT  and  REVOKE  FRAGMENT  

statements,  see  the  IBM  Informix  Guide  to  SQL:  Syntax. 

Column-Level Privileges 

You can  qualify  the  Select,  Update,  and  References  privileges  with  the  names  of 

specific  columns.  Naming  specific  columns  allows  you  to  grant  specific  access  to  a 

table.  You can  permit  a user  to see  only  certain  columns,  to  update  only  certain  

columns,  or  to  impose  referential  constraints  on  certain  columns.  

You can  use  the  GRANT  and  REVOKE  statements  to grant  or  restrict  access  to  

table  data.  This  feature  solves  the  problem  that  only  certain  users  should  know  the  

salary,  performance  review,  or  other  sensitive  attributes  of  an  employee.  Suppose  a 

table  of  employee  data  is defined  as the  following  example  shows:  

CREATE  TABLE  hr_data  

   ( 

   emp_key  INTEGER,  

   emp_name  CHAR(40),  

   hire_date  DATE,  

   dept_num  SMALLINT,  

   user-id  CHAR(18),  

   salary  DECIMAL(8,2)  

   performance_level  CHAR(1),  

   performance_notes  TEXT  

   ) 

Because  this  table  contains  sensitive  data,  you  execute  the  following  statement  

immediately  after  you  create  it:  

 

Chapter  6. Granting  and Limiting  Access to Your  Database  6-7



REVOKE  ALL  ON hr_data  FROM  PUBLIC  

For  selected  persons  in  the  Human  Resources  department,  and  for  all  managers,  

execute  the  following  statement:  

GRANT  SELECT  ON hr_data  TO harold_r  

In  this  way,  you  permit  certain  users  to  view  all  columns.  (The  final  section  of this  

chapter  discusses  a way  to  limit  the  view  of  managers  to  their  employees  only.)  

For  the  first-line  managers  who  carry  out  performance  reviews,  you  could  execute  

a statement  such  as  the  following  one:  

GRANT  UPDATE  (performance_level,  performance_notes)  

   ON hr_data  TO wallace_s,  margot_t  

This  statement  permits  the  managers  to  enter  their  evaluations  of  their  employees.  

You would  execute  a statement  such  as  the  following  one  only  for  the  manager  of 

the  Human  Resources  department  or  whomever  is trusted  to alter  salary  levels:  

GRANT  UPDATE  (salary)  ON hr_data  to willard_b  

For  the  clerks  in  the  Human  Resources  department,  you  could  execute  a statement  

such  as  the  following  one:  

GRANT  UPDATE  (emp_key,  emp_name,  hire_date,  dept_num)  

   ON hr_data  TO marvin_t  

This  statement  gives  certain  users  the  ability  to  maintain  the  nonsensitive  columns  

but  denies  them  authorization  to change  performance  ratings  or  salaries.  The  

person  in  the  MIS  department  who  assigns  computer  user  IDs  is the  beneficiary  of  

a statement  such  as  the  following  one:  

GRANT  UPDATE  (user_id)  ON  hr_data  TO  eudora_b  

On  behalf  of  all  users  who  are  allowed  to  connect  to  the  database,  but  who  are  not  

authorized  to  see  salaries  or  performance  reviews,  execute  statements  such  as  the  

following  one  to  permit  them  to  see  the  nonsensitive  data:  

GRANT  SELECT  (emp_key,  emp_name,  hire_date,  dept_num,  user-id)  

   ON hr_data  TO george_b,  john_s  

These  users  can  perform  queries  such  as  the  following  one:  

SELECT  COUNT(*)  FROM  hr_data  WHERE  dept_num  IN (32,33,34)  

However,  any  attempt  to execute  a query  such  as  the  following  one  produces  an  

error  message  and  no  data:  

SELECT  performance_level  FROM  hr_data  

   WHERE  emp_name  LIKE  ’*Smythe’  

Type-Level  Privileges 

Dynamic  Server  supports  user-defined  data  types  (UDTs).  When  a user-defined  

data  type  is  created,  only  the  DBA  or  owner  of the  data  type  can  grant  or  revoke  

type-level  privileges  that  control  who  can  use  the  UDT. Dynamic  Server  supports  

the  following  type-level  privileges:  

v   Usage  privilege,  which  is authorization  to  use  a user-defined  data  type  

v   Under  privilege,  which  is the  authorization  to  define  a named  ROW  type  as  a 

supertype  within  an  inheritance  hierarchy

 

6-8 IBM Informix  Database  Design  and Implementation  Guide



Usage Privileges for User-Defined Types 

To control  who  can  use  an  opaque  type,  distinct  type,  or  named  row  type,  specify  

the  Usage  privilege  on  the  data  type.  The  Usage  privilege  allows  the  DBA  or  

owner  of  the  type  to restrict  a user’s  ability  to assign  a data  type  to  a column,  

program  variable  (or  table  or  view  for  a named  row  type),  or  assign  a cast  to the  

data  type.  The  Usage  privilege  is granted  to  PUBLIC  automatically  when  a data  

type  is  created  (except  in  ANSI-compliant  databases).  In an  ANSI-compliant  

database,  the  Usage  privilege  on  a data  type  is granted  to  the  owner  of  the  data  

type.  

To limit  who  can  use  an  opaque,  distinct,  or  named  row  type,  you  must  first  

revoke  the  Usage  privilege  for  PUBLIC  and  then  specify  the  names  of  the  users  to  

whom  you  want  to grant  the  Usage  privilege.  For  example,  to  limit  the  use  of a 

data  type  named  circle  to  a group  of  users,  you  might  execute  the  following  

statements:  

REVOKE  USAGE  ON circle  

   FROM  PUBLIC;  

  

GRANT  USAGE  ON circle  

   TO dawns,  stevep,  terryk,  camber;  

Under Privileges for Named Row Types 

For  named  row  types,  you  can  grant  or revoke  the  Under  privilege,  which  controls  

whether  users  can  assign  a named  row  type  as  the  supertype  of  another  named  

row  type  in  an  inheritance  hierarchy.  The  Under  privilege  is granted  to PUBLIC  

automatically  when  a named  row  type  is created  (except  in  ANSI-compliant  

databases).  In  an  ANSI-compliant  database,  the  Under  privilege  on  a named  row  

type  is  granted  to  the  owner  of  the  type.  

To restrict  certain  users’  ability  to define  a named  row  type  as  a supertype  in an  

inheritance  hierarchy,  you  must  first  revoke  the  Under  privilege  for  PUBLIC  and  

then  specify  the  names  of the  users  to whom  you  want  to grant  the  Under  

privilege.  For  example,  to  specify  that  only  a limited  group  of  users  can  use  the  

named  row  type  person_t  as  a supertype  in an  inheritance  hierarchy,  you  might  

execute  the  following  statements:  

REVOKE  UNDER  ON person_t  

   FROM  PUBLIC;  

  

GRANT  UNDER  ON person_t  

   TO howie,  jhana,  alison  

For  information  about  how  to  use  the  UNDER  clause  to  create  named  row  types  in  

an  inheritance  hierarchy,  see  “Type  Inheritance”  on  page  9-1.  

Routine-Level Privileges 

You can  apply  the  Execute  privilege  on  a user-defined  routine  (UDR)  to  authorize  

nonowners  to  execute  the  UDR.  If  you  create  a UDR  in  a database  that  is not  ANSI  

compliant,  the  default  routine-level  privilege  is PUBLIC;  you  do  not  need  to grant  

the  Execute  privilege  to specific  users  unless  you  have  first  revoked  it.  If you  

create  a routine  in  an  ANSI-compliant  database,  no  other  users  have  the  Execute  

privilege  by  default;  you  must  grant  specific  users  the  Execute  privilege.  The  

following  example  grants  the  Execute  privilege  to  the  user  orion  so  that  orion  can  

use  the  UDR  that  is named  read_address: 

GRANT  EXECUTE  ON read_address  TO orion;  

 

Chapter  6. Granting  and Limiting  Access to Your  Database  6-9



The  sysprocauth  system  catalog  table  records  routine-level  privileges.  The  

sysprocauth  system  catalog  table  uses  a primary  key  of the  routine  number,  

grantor,  and  grantee.  In  the  procauth  column,  the  execute  privilege  is indicated  by  

a lowercase  e. If  the  execute  privilege  was  granted  with  the  WITH  GRANT  option,  

the  privilege  is represented  by  an  uppercase  E. 

For  more  information  on  routine-level  privileges,  see  the  IBM  Informix  Guide  to  

SQL:  Tutorial. 

Language-Level Privileges 

Dynamic  Server  supports  UDRs  written  in the  built-in  Stored  Procedure  Language  

(SPL)  and  also  UDRs  (referred  to  as  external  routines)  that  are  written  the  C  and  

Java  languages.  To create  any  UDR,  a user  must  have  RESOURCE  privileges  in  the  

database.  In  addition,  to create  a UDR  in  the  SPL  language,  a user  must  also  hold  

the  Usage  privilege  on  the  SPL  language.  

SPL Routines 

By  default,  language  usage  privilege  on  SPL  is are  granted  to  user  informix  and  to  

users  who  hold  the  DBA  privilege.  Only  user  informix, however,  can  grant  

language  usage  privileges  to  other  users.  Users  with  the  DBA  privilege  hold  

language  usage  privileges,  but  cannot  grant  these  privileges  to other  users.  Usage  

privilege  to  create  SPL  routines  is granted  to PUBLIC  by  default.  

The  following  statement  shows  how  user  informix  might  revoke  from  PUBLIC  but  

grant  to  users  mays, jones, and  freeman  permission  to  create  UDRs  in  SPL:  

REVOKE  USAGE  ON LANGUAGE  SPL  FROM  PUBLIC  

GRANT  USAGE  ON LANGUAGE  SPL  TO mays,  jones,  freeman  

Suppose  the  default  Usage  privileges  on  an  SPL  routine  have  been  revoked  from  

PUBLIC.  The  following  statement  shows  how  a user  with  the  DBA  privilege  might  

grant  Usage  privilege  to  register  SPL  routines  to  users  franklin,  reeves, and  

wilson: 

GRANT  USAGE  ON LANGUAGE  SPL  TO franklin,  reeves,  wilson  

External Routines 

This  release  of  Dynamic  Server  does  not  support  language-level  privileges  on  

external  routines  that  are  written  in  the  C  or  Java  language.  When  the  

IFX_EXTEND_ROLE  configuration  parameter  to ON,  however,  equivalent  

functionality  is  provided  through  the  built-in  EXTEND  role,  which  is required  for  

any  user  to  register,  drop,  or  replace  a UDR  or  a DataBlade® module  that  is written  

in  the  C or  Java  language.  

Only  the  database  server  administrator  (DBSA),  by  default  user  informix, can  

grant  the  EXTEND  role.  In  contrast  with  user-defined  role  names,  built-in  roles  

such  as  EXTEND  and  DBSECADM  are  automatically  active,  and  the  privileges  

conferred  by  the  role  cannot  be  modified.  When  the  EXTEND  role  is  enabled,  only  

users  who  have  been  granted  the  EXTEND  role  can  create  or  drop  a DataBlade  

module  or  an  external  UDR.  

The  DBSA  also  has  the  option  of disabling  this  restriction  by  setting  the  

IFX_EXTEND_ROLE  configuration  parameter  to OFF, or  to  leave  it  unset.  In this  

case,  any  user  who  holds  the  RESOURCE  privilege  on  the  database  can  create  a 

UDR  written  in  the  C  or  Java  language.  

 

6-10 IBM Informix  Database  Design  and Implementation  Guide



Automating Privileges 

This  design  might  seem  to  force  you  to  execute  a tedious  number  of  GRANT  

statements  when  you  first  set  up  the  database.  Furthermore,  privileges  require  

constant  maintenance,  as  people  change  jobs.  For  example,  if a clerk  in Human  

Resources  is terminated,  you  want  to  revoke  the  Update  privilege  as  soon  as  

possible,  otherwise  the  unhappy  employee  might  execute  a statement  such  as the  

following  one:  

UPDATE  hr_data  

   SET (emp_name,  hire_date,  dept_num)  = (NULL,  NULL,  0) 

Less  dramatic,  but  equally  necessary,  privilege  changes  are  required  daily,  or  even  

hourly,  in any  model  that  contains  sensitive  data.  If  you  anticipate  this  need,  you  

can  prepare  some  automated  tools  to help  maintain  privileges.  

Your first  step  should  be  to  specify  privilege  classes  that  are  based  on  the  jobs  of  

the  users,  not  on  the  structure  of  the  tables.  For  example,  a first-line  manager  

needs  the  following  privileges:  

v   The  Select  and  limited  Update  privileges  on  the  hypothetical  hr_data  table  

v   The  Connect  privilege  to  this  and  other  databases  

v   Some  degree  of  privilege  on  several  tables  in  those  databases

When  a manager  is promoted  to  a staff  position  or  sent  to  a field  office,  you  must  

revoke  all  those  privileges  and  grant  a new  set  of privileges.  

Define  the  privilege  classes  you  support,  and  for  each  class  specify  the  databases,  

tables,  and  columns  to  which  you  must  give  access.  Then  devise  two  automated  

routines  for  each  class,  one  to grant  the  class  to  a user  and  one  to  revoke  it. 

Automating with a Command Script 

Your operating  system  probably  supports  automatic  execution  of command  scripts.  

In  most  operating  environments,  interactive  SQL  tools  such  as  DB–Access  accept  

commands  and  SQL  statements  to  execute  from  the  command  line.  You can  

combine  these  two  features  to automate  privilege  maintenance.  

The  details  depend  on  your  operating  system  and  the  version  of  the  interactive  

SQL  tool  that  you  are  using.  You must  create  a command  script  that  performs  the  

following  functions:  

v   Takes a user  ID  whose  privileges  are  to be  changed  as its  parameter  

v   Prepares  a file  of GRANT  or  REVOKE  statements  customized  to  contain  that  

user  ID  

v   Invokes  the  interactive  SQL  tool  (such  as  DB–Access)  with  parameters  that  tell  it  

to  select  the  database  and  execute  the  prepared  file  of  GRANT  or  REVOKE  

statements

In this  way,  you  can  reduce  the  change  of the  privilege  class  of  a user  to one  or  

two  commands.  

Using Roles 

Another  way  to  avoid  the  difficulty  of  changing  user  privileges  on  a case-by-case  

basis  is  to  use  roles.  The  concept  of a role  in the  database  environment  is similar  to  

the  group  concept  in  an  operating  system.  A  role  is a database  feature  that  lets  the  

DBA  standardize  and  change  the  privileges  of many  users  by  treating  them  as 

members  of a class.  

 

Chapter  6. Granting  and Limiting  Access to Your  Database 6-11



For  example,  you  can  create  a role  called  news_mes  that  grants  connect,  insert,  and  

delete  privileges  for  the  databases  that  handle  company  news  and  messages.  When  

a new  employee  arrives,  you  need  only  add  that  person  to  the  role  news_mes. The  

new  employee  acquires  the  privileges  of  the  role  news_mes. This  process  also  works  

in  reverse.  To change  the  privileges  of all  the  members  of  news_mes,  change  the  

privileges  of  the  role.  

Creating  a Role:    To start  the  role  creation  process,  determine  the  name  of  the  role  

and  the  connections  and  privileges  that  you  want  to grant  to users  who  hold  that  

role.  Although  the  connections  and  privileges  are  strictly  in  your  domain,  you  need  

to  consider  some  factors  when  you  declare  the  name  of  a new  role.  Do  not  use  any  

of  the  following  SQL  keywords  as role  names:  

 alter  delete  insert  references  

connect  execute  none  resource  

DBA  extend  null  select  

default  index  public  update
  

A  role  name  must  be  different  from  existing  role  names  in  the  database.  A role  

name  must  also  be  different  from  user  names  that  are  known  to the  operating  

system,  including  network  users  known  to  the  server  computer.  To make  sure  your  

role  name  is unique,  check  the  names  of the  users  in  the  shared  memory  structure  

who  are  currently  using  the  database  as  well  as  the  following  system  catalog  

tables:  

v   sysusers  

v   systabauth  

v   syscolauth  

v   sysfragauth  

v   sysprocauth  

v   sysfragauth  

v   sysroleauth  

v   sysxtdtypeauth

When  the  situation  is reversed  and  you  are  adding  a user  to  the  database,  check  

that  the  user  name  is not  the  same  as  any  of  the  existing  role  names.  

After  you  approve  the  role  name,  use  the  CREATE  ROLE  statement  to  create  a new  

role.  After  the  role  is created,  all  privileges  for  role  administration  are,  by  default,  

given  to  the  DBA.  

Important:   The  scope  of a role  is the  current  database  only,  so when  you  execute  a 

SET  ROLE  statement,  the  role  is set  in  the  current  database  only.  

Manipulating  User  Privileges  and  Granting  Roles  to  Other  Roles:    As  DBA,  you  

can  use  the  GRANT  statement  to grant  role  privileges  to  users.  You can  also  give  a 

user  the  option  to  grant  privileges  to  other  users.  Use  the  WITH  GRANT  OPTION  

clause  of  the  GRANT  statement  to do  this.  You can  also  use  the  WITH  GRANT  

OPTION  clause  when  granting  privileges  to  roles  as  in  this  example:  

GRANT  rol1  TO usr1  WITH  GRANT  OPTION;  

 

6-12 IBM Informix  Database  Design  and Implementation  Guide



When  you  grant  role  privileges,  you  can  substitute  a role  name  for  the  user  name  

in  the  GRANT  statement.  You can  grant  a role  to  another  role.  For  example,  say  

that  role  A is  granted  to  role  B.  When  a user  enables  role  B, the  user  gets  privileges  

from  both  role  A  and  role  B. 

However,  a cycle  of  role  granting  cannot  be  transitive.  If  role  A  is granted  role  B,  

and  role  B is  granted  role  C,  then  granting  C  to A  returns  an  error. 

If  you  need  to  change  privileges,  use  the  REVOKE  statement  to delete  the  existing  

privileges  and  then  use  the  GRANT  statement  to add  the  new  privileges.  

Enabling  Default  Roles  and  Non-default  Roles:    After  the  DBA  grants  privileges  

and  adds  users  to  a role,  there  are  two  possible  ways  to  enable  roles.  

v   The  DBSA  can  specify  a default  role  for  PUBLIC  or  for  individual  users  by  using  

the  GRANT  DEFAULT  ROLE  statement.  This  role  is automatically  activated  as  

the  initial  role  setting  when  the  user  connects  to the  database.  

v   Any  role  that  a user  holds  can  also  be  activated  when  the  user  specifies  that  role  

in  the  SET  ROLE  statement.

When  a role  is  enabled,  all  privileges  that  have  been  granted  to  the  role  become  

available,  as  well  as  all  privileges  explicitly  granted  to  you  or to  PUBLIC.  

Assigning  privileges  to a role,  and  then  granting  that  role  as  the  default  role  to  

specified  users  is  convenient  for  sessions  in  which  those  users  run an  application  

that  requires  a specific  set  of  access  privileges.  Use  default  roles  when  it is 

impractical  to  recompile  an  application  to include  GRANT  and  SET  ROLE  

statements  that  specifically  assign  to  users  the  necessary  access  privileges.  

Confirming  Membership  In  Roles  and  Dropping  Roles:    You can  find  yourself  in  

a situation  where  you  are  uncertain  which  user  is included  in  a role.  Perhaps  you  

did  not  create  the  role,  or  the  person  who  created  the  role  is not  available.  Issue  

queries  against  the  sysroleauth  and  sysusers  system  catalog  tables  to  find  who  is 

authorized  for  which  table  and  how  many  roles  exist.  

After  you  determine  which  users  hold  which  roles,  you  might  discover  that  some  

roles  are  no  longer  useful.  To remove  a role,  use  the  DROP  ROLE  statement.  Before  

you  remove  a role,  the  following  conditions  must  be  met:  

v   Only  roles  that  are  listed  in  the  sysusers  system  catalog  table  as  a role  can  be 

destroyed,  but  you  cannot  drop  a built-in  role  (such  as NONE  or  EXTEND).  

v   You must  have  DBA  privileges,  or  you  must  be  given  the  grantable  option  in the  

role  to  drop  a role.

Determining Current Role at Runtime 

If  you  experience  unexpected  errors  with  a role  that  was  granted  appropriate  

access  privileges,  make  sure  that  the  role  was  enabled  during  runtime.  To obtain  

this  information  while  you  are  connected  to the  database,  you  can  use  the  onstat  -g  

sql  or  onstat  -g  ses  command.  To see  only  your  own  current  role,  use  the  

CURRENT_ROLE  operator  of SQL.  To see  your  default  role,  use  the  

DEFAULT_ROLE  operator  of  SQL.  

 

Chapter 6. Granting  and Limiting  Access to Your  Database  6-13



Using SPL Routines to Control Access to Data 

You can  use  an  SPL  routine  to  control  access  to  individual  tables  and  columns  in  

the  database.  Use  a routine  to  accomplish  various  degrees  of  access  control.  A  

powerful  feature  of  SPL  is the  ability  to designate  an  SPL  routine  as  a 

DBA-privileged  routine.  When  you  write  a DBA-privileged  routine,  you  can  allow  

users  who  have  few  or  no  table  privileges  to  have  DBA  privileges  when  they  

execute  the  routine.  In  the  routine,  users  can  carry  out  specific  tasks  with  their  

temporary  DBA  privilege.  The  DBA-privileged  routine  lets  you  accomplish  the  

following  tasks:  

v   You can  restrict  how  much  information  individual  users  can  read  from  a table.  

v   You can  restrict  all  the  changes  that  are  made  to  the  database  and  ensure  that  

entire  tables  are  not  emptied  or  changed  accidentally.  

v   You can  monitor  an  entire  class  of  changes  made  to  a table,  such  as  deletions  or  

insertions.  

v   You can  restrict  all  object  creation  (data  definition)  to  occur  within  an  SPL  

routine  so  that  you  have  complete  control  over  how  tables,  indexes,  and  views  

are  built.

For  information  about  routines  in SPL,  see  the  IBM  Informix  Guide  to  SQL:  Tutorial. 

Restricting Data Reads 

The  routine  in  the  following  example  hides  the  SQL  syntax  from  users,  but  it 

requires  that  users  have  the  Select  privilege  on  the  customer  table.  If  you  want  to  

restrict  what  users  can  select,  write  your  routine  to  work  in  the  following  

environment:  

v   You are  the  DBA  of  the  database.  

v   The  users  have  the  Connect  privilege  to  the  database.  They  do  not  have  the  

Select  privilege  on  the  table.  

v   You use  the  DBA  keyword  to  create  the  SPL  routine  (or  set  of SPL  routines).  

v   Your SPL  routine  (or  set  of  SPL  routines)  reads  from  the  table  for  users.

If  you  want  users  to  read  only  the  name,  address,  and  telephone  number  of  a 

customer,  you  can  modify  the  procedure  as the  following  example  shows:  

CREATE  DBA  PROCEDURE  read_customer(cnum  INT)  

RETURNING  CHAR(15),  CHAR(15),  CHAR(18);  

  

DEFINE  p_lname,p_fname  CHAR(15);  

DEFINE  p_phone  CHAR(18);  

  

SELECT  fname,  lname,  phone  

   INTO  p_fname,  p_lname,  p_phone  

   FROM  customer  

   WHERE  customer_num  = cnum;  

  

RETURN  p_fname,  p_lname,  p_phone;  

  

END  PROCEDURE;  

Restricting Changes to Data 

When  you  use  SPL  routines,  you  can  restrict  changes  made  to a table.  Channel  all  

changes  through  an  SPL  routine.  The  SPL  routine  makes  the  changes,  rather  than  

users  making  the  changes  directly.  If you  want  to limit  users  to deleting  one  row  at 

a time  to  ensure  that  they  do  not  accidentally  remove  all  the  rows  in  the  table,  set  

up  the  database  with  the  following  privileges:  

 

6-14 IBM Informix  Database  Design  and Implementation  Guide



v   You are  the  DBA  of the  database.  

v   All  the  users  have  the  Connect  privilege  to  the  database.  They  might  have  the  

Resource  privilege.  They  do  not  have  the  Delete  privilege  (for  this  example)  on  

the  table  being  protected.  

v   You use  the  DBA  keyword  to create  the  SPL  routine.  

v   Your SPL  routine  performs  the  deletion.

Write  an  SPL  procedure  similar  to the  following  one,  which  uses  a WHERE  clause  

with  the  customer_num  that  the  user  provides,  to delete  rows  from  the  customer  

table:  

CREATE  DBA  PROCEDURE  delete_customer(cnum  INT)  

  

DELETE  FROM  customer  

   WHERE  customer_num  = cnum;  

  

END  PROCEDURE;  

Monitoring Changes to Data 

When  you  use  SPL  routines,  you  can  create  a record  of changes  made  to  a 

database.  You can  record  changes  that  a particular  user  makes,  or  you  can  make  a 

record  each  time  a change  is made.  

You can  monitor  all  the  changes  a single  user  makes  to  the  database.  Channel  all  

changes  through  SPL  routines  that  keep  track  of changes  that  each  user  makes.  If 

you  want  to  record  each  time  the  user  acctclrk  modifies  the  database,  set  up  the  

database  with  the  following  privileges:  

v   You are  the  DBA  of the  database.  

v   All  other  users  have  the  Connect  privilege  to the  database.  They  might  have  the  

Resource  privilege.  They  do  not  have  the  Delete  privilege  (for  this  example)  on  

the  table  being  protected.  

v   You use  the  DBA  keyword  to create  an  SPL  routine.  

v   Your SPL  routine  performs  the  deletion  and  records  that  a certain  user  makes  a 

change.

Write an  SPL  routine  similar  to the  following  example  (for  a UNIX  platform),  

which  uses  a customer  number  the  user  provides  to  update  a table.  If the  user  

happens  to  be  acctclrk, a record  of the  deletion  is put  in  the  file  updates. 

CREATE  DBA  PROCEDURE  delete_customer(cnum  INT)  

  

DEFINE  username  CHAR(8);  

  

DELETE  FROM  customer  

   WHERE  customer_num  = cnum;  

  

IF username  = ’acctclrk’  THEN  

   SYSTEM  ’echo  Delete  from  customer  by acctclrk  >> 

/mis/records/updates’  ; 

END  IF 

END  PROCEDURE;  

To monitor  all  the  deletions  made  through  the  procedure,  remove  the  IF  statement  

and  make  the  SYSTEM  statement  more  general.  The  following  procedure  changes  

the  previous  routine  to  record  all  deletions:  

CREATE  DBA PROCEDURE  delete_customer(cnum  INT) 

  

DEFINE  username  CHAR(8);

 

Chapter 6. Granting  and Limiting  Access to Your  Database  6-15



LET username  = USER ; 

DELETE  FROM tbname  WHERE customer_num  = cnum;  

  

SYSTEM  

 ’echo  Deletion  made from customer  table,  by ’||username  

||’>>/hr/records/deletes’;  

  

END PROCEDURE;  

Restricting Object Creation 

To put  restraints  on  what  objects  are  built  and  how  they  are  built,  use  SPL  routines  

within  the  following  setting:  

v   You are  the  DBA  of  the  database.  

v   All  the  other  users  have  the  Connect  privilege  to  the  database.  They  do  not  have  

the  Resource  privilege.  

v   You use  the  DBA  keyword  to  create  an  SPL  routine  (or  set  of SPL  routines).  

v   Your SPL  routine  (or  set  of  SPL  routines)  creates  tables,  indexes,  and  views  in 

the  way  you  define  them.  You might  use  such  a routine  to set  up  a training  

database  environment.

Your SPL  routine  might  include  the  creation  of one  or  more  tables  and  associated  

indexes,  as  the  following  example  shows:  

CREATE  DBA PROCEDURE  all_objects()  

  

CREATE  TABLE  learn1  (intone  SERIAL,  inttwo  INT NOT NULL,  

   charcol  CHAR(10)  ); 

CREATE  INDEX  learn_ix  ON learn1  (inttwo);  

CREATE  TABLE  toys (name  CHAR(15)  NOT NULL UNIQUE,  

   description  CHAR(30),  on_hand  INT); 

END PROCEDURE;  

To use  the  all_objects  procedure  to  control  additions  of columns  to tables,  revoke  

the  Resource  privilege  on  the  database  from  all  users.  When  users  try  to create  a 

table,  index,  or  view  with  an  SQL  statement  outside  your  procedure,  they  cannot  

do  so.  When  users  execute  the  procedure,  they  have  a temporary  DBA  privilege  so  

the  CREATE  TABLE  statement,  for  example,  succeeds,  and  you  are  guaranteed  that  

every  column  that  is  added  has  a constraint  placed  on  it.  In addition,  objects  that  

users  create  are  owned  by  those  users.  For  the  all_objects  procedure,  whoever  

executes  the  procedure  owns  the  two  tables  and  the  index.  

Using Views  

A  view  is a synthetic  table.  You can  query  it as  if it were  a table,  and  in some  cases,  

you  can  update  it  as  if it were  a table.  However,  it is not  a table.  It is a synthesis  of  

the  data  that  exists  in  real  tables  and  other  views.  

The  basis  of  a view  is a SELECT  statement.  When  you  create  a view, you  define  a 

SELECT  statement  that  generates  the  contents  of the  view  at  the  time  you  access  

the  view. A user  also  queries  a view  with  a SELECT  statement.  In  some  cases,  the  

database  server  merges  the  select  statement  of the  user  with  the  one  defined  for  

the  view  and  then  actually  performs  the  combined  statements.  For  information  

about  the  performance  of views,  see  your  IBM  Informix  Performance  Guide. 

Because  you  write  a SELECT  statement  that  determines  the  contents  of the  view, 

you  can  use  views  for  any  of  the  following  purposes:  

v   To restrict  users  to  particular  columns  of  tables  

 

6-16 IBM Informix  Database  Design  and Implementation  Guide



You name  only  permitted  columns  in the  select  list  in  the  view. 

v   To restrict  users  to  particular  rows  of  tables  

You specify  a WHERE  clause  that  returns  only  permitted  rows.  

v   To constrain  inserted  and  updated  values  to  certain  ranges  

You can  use  the  WITH  CHECK  OPTION  (discussed  on  page  6-21)  to  enforce  

constraints.  

v   To provide  access  to derived  data  without  having  to  store  redundant  data  in  the  

database  

You write  the  expressions  that  derive  the  data  into  the  select  list  in  the  view. 

Each  time  you  query  the  view, the  data  is derived  anew. The  derived  data  is 

always  up  to  date,  yet  no  redundancies  are  introduced  into  the  data  model.  

v   To hide  the  details  of  a complicated  SELECT  statement  

You hide  complexities  of a multitable  join  in the  view  so  that  neither  users  nor  

application  programmers  need  to repeat  them.

Creating Views  

The  following  example  creates  a view  based  on  a table  in the  stores_demo  

database:  

CREATE  VIEW name_only  AS 

SELECT  customer_num,  fname,  lname  FROM customer  

The  view  exposes  only  three  columns  of  the  table.  Because  it contains  no  WHERE  

clause,  the  view  does  not  restrict  the  rows  that  can  appear.  

The  following  example  is based  on  the  join  of  two  tables:  

CREATE  VIEW full_addr  AS 

SELECT  address1,  address2,  city,  state.sname,  

   zipcode,  customer_num  

   FROM customer,  state  

   WHERE  customer.state  = state.code  

The  table  of state  names  reduces  the  redundancy  of the  database;  it lets  you  store  

the  full  state  names  only  once,  which  can  be  useful  for  long  state  names  such  as  

Minnesota.  This  full_addr  view  lets  users  retrieve  the  address  as  if the  full  state  

name  were  stored  in  every  row. The  following  two  queries  are  equivalent:  

SELECT  * FROM full_addr  WHERE customer_num  = 105 

  

SELECT  address1,  address2,  city,  state.sname,  

   zipcode,  customer_num  

   FROM customer,  state  

   WHERE  customer.state  = state.code  AND customer_num  = 105 

However,  be  careful  when  you  define  views  that  are  based  on  joins.  Such  views  are  

not  modifiable; that  is, you  cannot  use  them  with  UPDATE,  DELETE,  or  INSERT  

statements.  For  a discussion  about  how  to modify  with  views,  see  “Modifying  with  

a View”  on  page  6-20.  

The  following  example  restricts  the  rows  that  can  be  seen  in  the  view:  

CREATE  VIEW  no_cal_cust  AS 

   SELECT  * FROM  customer  WHERE  NOT  state  = ’CA’  

This  view  exposes  all  columns  of  the  customer  table,  but  only  certain  rows.  The  

following  example  is  a view  that  restricts  users  to  rows  that  are  relevant  to  them:  

 

Chapter 6. Granting  and Limiting  Access to Your  Database  6-17



CREATE  VIEW  my_calls  AS 

   SELECT  * FROM  cust_calls  WHERE  user_id  = USER  

All  the  columns  of  the  cust_calls  table  are  available  but  only  in  those  rows  that  

contain  the  user  IDs  of the  users  who  can  execute  the  query.  

Typed Views (IDS) 

You can  create  a typed  view  when  you  want  to  distinguish  between  two  views  that  

display  data  of  the  same  data  type.  For  example,  suppose  you  want  to  create  two  

views  on  the  following  table:  

CREATE  TABLE  emp  

(  name     VARCHAR(30),  

   age      INTEGER,  

   salary   INTEGER);  

The  following  statements  create  two  typed  views,  name_age  and  name_salary, on  

the  emp  table:  

CREATE  ROW  TYPE  name_age_t  

(  name    VARCHAR(20),  

   age     INTEGER);  

  

CREATE  VIEW  name_age  OF TYPE  name_age_t  AS  

   SELECT  name,  age  FROM  emp;  

  

CREATE  ROW  TYPE  name_salary_t  

(  name     VARCHAR(20),  

   salary   INTEGER);  

  

CREATE  VIEW  name_salary  OF  TYPE  name_salary_t  AS 

   SELECT  name,  salary  FROM  emp 

When  you  create  a typed  view, the  data  that  the  view  displays  is of a named  row  

type.  For  example,  the  name_age  and  name_salary  views  contain  VARCHAR  and  

INTEGER  data.  Because  the  views  are  typed,  a query  against  the  name_age  view  

returns  a column  view  of  type  name_age  whereas  a query  against  the  name_salary  

view  returns  a column  view  of  type  name_salary. Consequently,  the  database  

server  is  able  to  distinguish  between  rows  that  the  name_age  and  name_salary  

views  return.  

In  some  cases,  a typed  view  has  an  advantage  over  an  untyped  view.  For  example,  

suppose  you  overload  the  function  myfunc()  as  follows:  

CREATE  FUNCTION  myfunc(aa  name_age_t)  ......;  

CREATE  FUNCTION  myfunc(aa  name_salary_t)  .....;  

Because  the  name_age  and  name_salary  views  are  typed  views,  the  following  

statements  resolve  to  the  appropriate  myfunc()  function:  

SELECT  myfunc(name_age)  FROM  name_age;  

SELECT  myfunc(name_salary)  FROM  name_salary;  

You can  also  write  the  preceding  SELECT  statements  using  an  alias  for  the  table  

name:  

SELECT  myfunc(p)  FROM  name_age  p; 

SELECT  myfunc(p)  FROM  name_salary  p; 

If two  views  that  contain  the  same  data  types  are  not  created  as  typed  views,  the  

database  server  cannot  distinguish  between  the  rows  that  the  two  views  display.  

For  more  information  about  function  overloading,  see  IBM  Informix  User-Defined  

Routines  and  Data  Types Developer’s  Guide. 

 

6-18 IBM Informix  Database  Design  and Implementation  Guide



Duplicate Rows from Views 

A view  might  produce  duplicate  rows,  even  when  the  underlying  table  has  only  

unique  rows.  If the  view  SELECT  statement  can  return  duplicate  rows,  the  view  

itself  can  appear  to  contain  duplicate  rows.  

You can  prevent  this  problem  in  two  ways.  One  way  is to  specify  DISTINCT  in the  

projection  list  in  the  view. However,  when  you  specify  DISTINCT,  it is impossible  

to  modify  with  the  view. The  alternative  is  to always  select  a column  or  group  of 

columns  that  is constrained  to  be  unique.  (You can  be  sure  that  only  unique  rows  

are  returned  if you  select  the  columns  of  a primary  key  or  of  a candidate  key.  

Chapter  2 discusses  primary  and  candidate  keys.)  

Restrictions on Views  

Because  a view  is  not  really  a table,  it  cannot  be  indexed,  and  it  cannot  be  the  

object  of  such  statements  as ALTER  TABLE  and  RENAME  TABLE.  You cannot  

rename  the  columns  of  a view  with  RENAME  COLUMN.  To change  anything  

about  the  definition  of  a view, you  must  drop  the  view  and  re-create  it.  

Because  it must  be  merged  with  the  user’s  query,  the  SELECT  statement  on  which  

a view  is based  cannot  contain  the  following  clauses  or  keywords:  

INTO  TEMP  The  user’s  query  might  contain  INTO  TEMP;  if the  view  also  

contains  it, the  data  would  not  know  where  to  go.  

ORDER  BY  The  user’s  query  might  contain  ORDER  BY.  If the  view  also  

contains  it, the  choice  of  columns  or  sort  directions  could  be  in 

conflict.

 A SELECT  statement  on  which  you  base  a view  can  contain  the  UNION  keyword.  

In  such  cases,  the  database  server  stores  the  view  in  an  implicit  temporary  table  

where  the  unions  are  evaluated  as  necessary.  The  user’s  query  uses  this  temporary  

table  as  a base  table.  

When the Basis Changes 

The  tables  and  views  on  which  you  base  a view  can  change  in  several  ways.  The  

view  automatically  reflects  most  of  the  changes.  

When  you  drop  a table  or  view, any  views  in  the  same  database  that  depend  on  it 

are  automatically  dropped.  

The  only  way  to  alter  the  definition  of a view  is to  drop  and  re-create  it. Therefore,  

if you  change  the  definition  of a view  on  which  other  views  depend,  you  must  

also  re-create  the  other  views  (because  they  all  are  dropped).  

When  you  rename  a table,  any  views  in  the  same  database  that  depend  on  it are  

modified  to  use  the  new  name.  When  you  rename  a column,  views  in the  same  

database  that  depend  on  that  table  are  updated  to  select  the  proper  column.  

However,  the  names  of  columns  in  the  views  themselves  are  not  changed.  For  an  

example,  recall  the  following  view  on  the  customer  table:  

CREATE  VIEW  name_only  AS 

   SELECT  customer_num,  fname,  lname  FROM  customer  

Now  suppose  that  you  change  the  customer  table  in  the  following  way:  

RENAME  COLUMN  customer.lname  TO surname  

 

Chapter 6. Granting  and Limiting  Access to Your  Database  6-19



To select  last  names  of customers  directly,  you  must  now  select  the  new  column  

name.  However,  the  name  of the  column  as  seen  through  the  view  is  unchanged.  

The  following  two  queries  are  equivalent:  

SELECT  fname,  surname  FROM  customer  

  

SELECT  fname,  lname  FROM  name_only  

When  you  drop  a column  to alter  a table,  views  are  not  modified.  If views  are  

used,  error  -217  (Column  not  found  in  any  table  in  the  query) occurs.  The  reason  

views  are  not  modified  is that  you  can  change  the  order  of  columns  in  a table  by  

dropping  a column  and  then  adding  a new  column  of the  same  name.  If you  do  

this,  views  based  on  that  table  continue  to  work.  They  retain  their  original  

sequence  of columns.  

The  database  server  permits  you  to base  a view  on  tables  and  views  in  external  

databases.  Changes  to  tables  and  views  in  other  databases  are  not  reflected  in 

views.  Such  changes  might  not  be  apparent  until  someone  queries  the  view  and  

gets  an  error  because  an  external  table  changed.  

Modifying with a View  

You can  modify  views  as  if they  were  tables.  Some  views  can  be  modified  and  

others  not,  depending  on  their  SELECT  statements.  The  restrictions  are  different,  

depending  on  whether  you  use  DELETE,  UPDATE,  or  INSERT  statements.  

You can  modify  a view  if the  SELECT  statement  that  defined  it did  not  contain  any  

of  the  following  items:  

v   A join  of  two  or  more  tables  

v   An  aggregate  function  or  the  GROUP  BY  clause  

v   The  DISTINCT  keyword  or  its  synonym,  UNIQUE  

v   The  UNION  keyword  

v   Calculated  or  literal  values

When  a view  avoids  all  these  restricted  features,  each  row  of  the  view  corresponds  

to  exactly  one  row  of  one  table.  By  using  INSTEAD  OF  triggers,  you  can  

circumvent  these  restrictions  on  the  view  if the  trigger  action  modifies  the  base  

table.  

Deleting with a View 

You can  use  a DELETE  statement  on  a modifiable  view  as  if it were  a table.  The  

database  server  deletes  the  proper  row  of  the  underlying  table.  

Updating a View 

You can  use  an  UPDATE  statement  on  a modifiable  view. However,  the  database  

server  does  not  support  updating  any  derived  column.  A derived  column  is a 

column  produced  by  an  expression  in  the  select  list  of  the  CREATE  VIEW  

statement  (for  example,  order_date  +  30).  

The  following  example  shows  a modifiable  view  that  contains  a derived  column  

and  an  UPDATE  statement  that  can  be  accepted  against  it: 

CREATE     VIEW   response(user_id,  received,  resolved,  duration)  AS 

   SELECT  user_id,  call_dtime,  res_dtime,   res_dtime  - call_dtime  

      FROM cust_calls

 

6-20 IBM Informix  Database  Design  and Implementation  Guide



WHERE user_id  = USER; 

  

UPDATE  response  SET resolved  = TODAY 

   WHERE  resolved  IS NULL;  

You cannot  update  the  duration  column  of  the  view  because  it represents  an  

expression  (the  database  server  cannot,  even  in  principle,  decide  how  to  distribute  

an  update  value  between  the  two  columns  that  the  expression  names).  But  as  long  

as  no  derived  columns  are  named  in  the  SET  clause,  you  can  perform  the  update  

as  if the  view  were  a table.  

A view  can  return  duplicate  rows  even  though  the  rows  of the  underlying  table  are  

unique.  You cannot  distinguish  one  duplicate  row  from  another.  If you  update  one  

of  a set  of  duplicate  rows  (for  example,  if you  use  a cursor  to  update  WHERE  

CURRENT),  you  cannot  be  sure  which  row  in  the  underlying  table  receives  the  

update.  

Inserting into a View 

You can  insert  rows  into  a view  only  if the  view  is modifiable  and  contains  no  

derived  columns.  The  reason  for  the  second  restriction  is that  an  inserted  row  must  

provide  values  for  all  columns,  but  the  database  server  cannot  tell  how  to 

distribute  an  inserted  value  through  an  expression.  An  attempt  to insert  into  the  

response  view, as the  previous  example  shows,  would  fail.  

When  a modifiable  view  contains  no  derived  columns,  you  can  insert  into  it as  if it 

were  a table.  The  database  server,  however,  uses  NULL  as  the  value  for  any  

column  that  is  not  exposed  by  the  view. If  such  a column  does  not  allow  NULL  

values,  an  error  occurs,  and  the  insert  fails.  

Another  mechanism  for  inserting  rows  (or  performing  UPDATE  or  DELETE  

operations)  on  Dynamic  Server  views,  including  complex  views,  is to  create  

INSTEAD  OF  triggers,  as  described  in  the  IBM  Informix  Guide  to  SQL:  Syntax. 

Using the WITH CHECK OPTION Keywords 

You can  insert  into  a view  a row  that  does  not  satisfy  the  conditions  of the  view;  

that  is,  a row  that  is not  visible  through  the  view. You can  also  update  a row  of  a 

view  so  that  it  no  longer  satisfies  the  conditions  of  the  view. 

To avoid  updating  a row  of  a view  so  that  it no  longer  satisfies  the  conditions  of 

the  view,  add  the  WITH  CHECK  OPTION  keywords  when  you  create  the  view. 

This  clause  asks  the  database  server  to  test  every  inserted  or  updated  row  to  

ensure  that  it meets  the  conditions  set  by  the  WHERE  clause  of  the  view. The  

database  server  rejects  the  operation  with  an  error  if the  conditions  are  not  met.  

Important:   You cannot  include  the  WITH  CHECK  OPTION  keywords  when  a 

UNION  operator  is included  in  the  view  definition.  

In  the  previous  example,  the  view  named  response  is defined  as  the  following  

example  shows:  

CREATE    VIEW   response  (user_id,  received,   resolved,   duration)  AS 

   SELECT  user_id,call_dtime,res_dtime,res_dtime   - call_dtime  

      FROM cust_calls  

      WHERE user_id  = USER 

You can  update  the  user_id  column  of  the  view, as  the  following  example  shows:  

UPDATE  response  SET  user_id  = ’lenora’  

   WHERE  received  BETWEEN  TODAY  AND  TODAY  - 7 

 

Chapter 6. Granting  and Limiting  Access to Your  Database  6-21



The  view  requires  rows  in  which  user_id  equals  USER.  If user  tony  performs  this  

update,  the  updated  rows  vanish  from  the  view. You can  create  the  view, however,  

as  the  following  example  shows:  

CREATE    VIEW    response   (user_id,  received,  resolved,duration)  AS 

   SELECT  user_id,  call_dtime,  res_dtime,  res_dtime  - call_dtime  

      FROM cust_calls  

      WHERE  user_id  = USER 

WITH CHECK  OPTION  

The  preceding  UPDATE  operation  by  user  tony  is rejected  as  an  error. 

You can  use  the  WITH  CHECK  OPTION  feature  to  enforce  any  kind  of  data  

constraint  that  can  be  stated  as  a Boolean  expression.  In  the  following  example,  

you  can  create  a view  of  a table  for  which  you  express  all  the  logical  constraints  on  

data  as conditions  of  the  WHERE  clause.  Then  you  can  require  all  modifications  to  

the  table  to  be  made  through  the  view. 

CREATE  VIEW order_insert  AS 

   SELECT  * FROM orders  O 

      WHERE  order_date  = TODAY -- no back-dated  entries  

         AND EXISTS  -- ensure  valid foreign  key 

            (SELECT  * FROM customer  C 

               WHERE O.customer_num  = C.customer_num)  

         AND ship_weight  < 1000 -- reasonableness  checks  

         AND ship_charge  < 1000 

WITH CHECK  OPTION  

Because  of  EXISTS  and  other  tests,  which  are  expected  to  be  successful  when  the  

database  server  retrieves  existing  rows,  this  view  displays  data  from  orders  

inefficiently.  However,  if insertions  to  orders  are  made  only  through  this  view  (and  

you  do  not  already  use  integrity  constraints  to  constrain  data),  users  cannot  insert  

a back-dated  order, an  invalid  customer  number,  or  an  excessive  shipping  weight  

and  shipping  charge.  

Re-Execution of a Prepared Statement When the View Definition 

Changes 

The  database  server  uses  the  definition  of  the  view  that  exists  when  you  prepare  a 

SELECT  statement  with  that  view. If  the  definition  of a view  changes  after  you  

prepare  a SELECT  statement  on  that  view, the  execution  of the  prepared  statement  

gives  incorrect  results  because  it does  not  reflect  the  new  view  definition.  No  SQL  

error  is  generated.  

Privileges and Views  

When  you  create  a view, the  database  server  tests  your  privileges  on  the  underlying  

tables  and  views.  When  you  use  a view, only  your  privileges  with  regard  to the  

view  are  tested.  

Privileges When Creating a View  

The  database  server  tests  to  make  sure  that  you  have  all  the  privileges  that  you  

need  to  execute  the  SELECT  statement  in  the  view  definition.  If you  do  not,  the  

database  server  does  not  create  the  view. 

This  test  ensures  that  users  cannot  create  a view  on  the  table  and  query  the  view  

to  gain  unauthorized  access  to  a table.  

 

6-22 IBM Informix  Database  Design  and Implementation  Guide



After  you  create  the  view, the  database  server  grants  you,  the  creator  and  owner  of  

the  view,  at  least  the  Select  privilege  on  it. No  automatic  grant  is made  to PUBLIC,  

as  is  the  case  with  a newly  created  table.  

The  database  server  tests  the  view  definition  to  see  if the  view  is modifiable.  If it 

is,  the  database  server  grants  you  the  Insert,  Delete,  and  Update  privileges  on  the  

view, provided  that  you  also  have  those  privileges  on  the  underlying  table  or view. 

In  other  words,  if the  new  view  is modifiable,  the  database  server  copies  your  

Insert,  Delete,  and  Update  privileges  from  the  underlying  table  or  view  and  grants  

them  on  the  new  view. If you  have  only  the  Insert  privilege  on  the  underlying  

table,  you  receive  only  the  Insert  privilege  on  the  view. 

This  test  ensures  that  users  cannot  use  a view  to gain  access  to  any  privileges  that  

they  did  not  already  have.  

Because  you  cannot  alter  or  index  a view, the  Alter  and  Index  privileges  are  never  

granted  on  a view. 

This  section  does  not  apply  to  views  on  remote  tables.  Permissions  on  remote  

tables  are  not  propagated  automatically  to views  on  those  tables.  To provide  

PUBLIC  with  Select  access  to  a view  that  includes  one  or  more  columns  in  a 

remote  table,  for  example,  you  must  explicitly  execute  REVOKE  ALL  FROM  

PUBLIC  for  the  view, and  then  explicitly  grant  Select  privilege  on  that  view  to 

PUBLIC.  

Privileges When Using a View  

When  you  attempt  to use  a view, the  database  server  tests  only  the  privileges  that  

you  are  granted  on  the  view. It  does  not  test  your  right  to access  the  underlying  

tables.  

If  you  create  the  view, your  privileges  are  the  ones  noted  in  the  preceding  section.  

If  you  are  not  the  creator,  you  have  the  privileges  that  the  creator  (or  someone  who  

had  the  WITH  GRANT  OPTION  privilege)  granted  you.  

Therefore,  you  can  create  a table  and  revoke  access  of PUBLIC  to it; then  you  can  

grant  limited  access  privileges  to  the  table  through  views.  Suppose  you  want  to  

grant  access  privileges  on  the  following  table:  

CREATE  TABLE  hr_data  

   ( 

   emp_key  INTEGER,  

   emp_name  CHAR(40),  

   hire_date  DATE,  

   dept_num  SMALLINT,  

   user-id  CHAR(18),  

   salary  DECIMAL(8,2),  

   performance_level  CHAR(1),  

   performance_notes  TEXT  

   ) 

The  section  “Column-Level  Privileges”  on  page  6-7  shows  how  to grant  access  

privileges  directly  on  the  hr_data  table.  The  examples  that  follow  take  a different  

approach.  Assume  that  when  the  table  was  created,  this  statement  was  executed:  

REVOKE  ALL  ON hr_data  FROM  PUBLIC  

(Such  a statement  is not  necessary  in  an  ANSI-compliant  database.)  Now  you  

create  a series  of  views  for  different  classes  of users.  For  users  who  should  have  

read-only  access  to  the  nonsensitive  columns,  you  create  the  following  view:  

 

Chapter 6. Granting  and Limiting  Access to Your  Database  6-23



CREATE  VIEW hr_public  AS 

   SELECT  emp_key,  emp_name,  hire_date,  dept_num,  user_id  

      FROM hr_data  

Users  who  are  given  the  Select  privilege  for  this  view  can  see  nonsensitive  data  

and  update  nothing.  For  Human  Resources  personnel  who  must  enter  new  rows,  

you  create  a different  view,  as the  following  example  shows:  

CREATE  VIEW hr_enter  AS 

   SELECT  emp_key,  emp_name,  hire_date,  dept_num  

      FROM hr_data  

You grant  these  users  both  Select  and  Insert  privileges  on  this  view. Because  you,  

the  creator  of  both  the  table  and  the  view, have  the  Insert  privilege  on  the  table  

and  the  view, you  can  grant  the  Insert  privilege  on  the  view  to others  who  have  no  

privileges  on  the  table.  

On  behalf  of  the  person  in  the  MIS  department  who  enters  or  updates  new  user  

IDs,  you  create  still  another  view, as  the  following  example  shows:  

CREATE  VIEW  hr_MIS  AS  

   SELECT  emp_key,  emp_name,  user_id  

      FROM  hr_data  

This  view  differs  from  the  previous  view  in  that  it  does  not  expose  the  department  

number  and  date  of  hire.  

Finally,  the  managers  need  access  to  all  columns  and  they  need  the  ability  to  

update  the  performance-review  data  for  their  own  employees  only.  You can  meet  

these  requirements  by  creating  a table,  hr_data, that  contains  a department  number  

and  computer  user  IDs  for  each  employee.  Let  it be  a rule that  the  managers  are  

members  of the  departments  that  they  manage.  Then  the  following  view  restricts  

managers  to  rows  that  reflect  only  their  employees:  

CREATE  VIEW  hr_mgr_data  AS  

   SELECT  * FROM  hr_data  

      WHERE  dept_num  = 

         (SELECT  dept_num  FROM  hr_data  

            WHERE  user_id  = USER)  

      AND  NOT  user_id  = USER  

The  final  condition  is required  so  that  the  managers  do  not  have  update  access  to  

their  own  row  of  the  table.  Therefore,  you  can  safely  grant  the  Update  privilege  to 

managers  for  this  view, but  only  on  selected  columns,  as  the  following  statement  

shows:  

GRANT  SELECT,  UPDATE  (performance_level,  performance_notes)  

   ON hr_mgr_data  TO peter_m  

 

6-24 IBM Informix  Database  Design  and Implementation  Guide



Chapter  7.  Using  Distributed  Queries  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 

Overview  of Distributed  Queries   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 

Distributed  Queries  across  Databases  of One  Dynamic  Server  Instance   . . . . . . . . . . . . . . 7-2  

Distributed  Queries  across  Databases  of Two or More  Dynamic  Server  Instances   . . . . . . . . . . . 7-2  

Coordinator  and  Participant  in a Distributed  Query  . . . . . . . . . . . . . . . . . . . . . 7-2  

Configuring  the  Database  Server  to  Use  Distributed  Queries  . . . . . . . . . . . . . . . . . . . 7-3 

The  Syntax  of a Distributed  Query   . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3  

Accessing  a Remote  Server  and  Database   . . . . . . . . . . . . . . . . . . . . . . . . 7-3 

Database  Name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 

Database  Object  Name   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 

Specifying  a Coserver  ID (XPS)   . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 

Valid Statements  for Accessing  Remote  Objects   . . . . . . . . . . . . . . . . . . . . . . 7-4 

Accessing  Remote  Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4  

Table Permissions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 

Qualifying  Table References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5  

Other  Remote  Operations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5  

Opening  a Remote  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 

Creating  a Remote  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 

Creating  a Synonym  for a Remote  Table  . . . . . . . . . . . . . . . . . . . . . . . 7-6  

Monitoring  Distributed  Queries   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 

Server  Environment  and  Distributed  Queries   . . . . . . . . . . . . . . . . . . . . . . . . 7-6  

PDQPRIORITY  Environment  Variable   . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 

DEADLOCK_TIMEOUT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6  

Logging-Type  Restrictions  on  Distributed  Queries   . . . . . . . . . . . . . . . . . . . . . . 7-7  

Transaction  Processing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 

Isolation  Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 

DEADLOCK_TIMEOUT  and  SET  LOCK  MODE  . . . . . . . . . . . . . . . . . . . . . . 7-7 

Two-phase  Commit  and  Recovery   . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7  

Cross  Server  Compatibility  Issues  (XPS)   . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 

BYTE  and  TEXT  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 

Other  Restrictions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

In This Chapter 

This  chapter  provides  an  overview  of  distributed  queries.  Distributed  queries  allow  

shared  access  to  data  across  multiple  databases  within  a network  of  IBM  Informix  

database  servers.  Different  database  servers  can  manage  multiple  databases,  which  

can  be  referenced  in  a single  distributed  query.  

Overview of Distributed Queries 

The  IBM  Informix  database  servers  allows  you  to  query  more  than  one  database  of  

the  same  database  server  or  across  multiple  database  servers.  This  type  of  query  is 

called  a distributed  query. The  database  servers  can  reside  on  a single  host  

computer,  on  different  computers  of  the  same  network,  or  on  a gateway.  (In  

general,  most  features  and  restrictions  that  this  chapter  describes  for  distributed  

queries  also  apply  to function  calls  and  to distributed  INSERT,  DELETE,  or  

UPDATE  operations  that  reference  objects  or  data  in  more  than  one  database.)  

Note:   IBM  Informix  Extended  Parallel  Server,  Version  8.40  supports  participant  

functionality  only.  Distributed  queries  cannot  originate  from  this  version.  

IBM  Informix  Extended  Parallel  Server,  Version  8.50  and  higher  versions  

support  both  participant  and  coordinator  functionality.  Restrictions  apply.

 

© Copyright  IBM Corp. 1996, 2008 7-1



Distributed Queries across Databases of One Dynamic Server 

Instance 

Distributed  operations  across  databases  of the  same  IBM  Informix  Dynamic  Server  

instance  are  subject  to  the  following  restrictions  on  returned  data  types:  

v   The  query,  DML  operation,  or  function  call  can  return  any  built-in  data  type,  

including  BLOB,  BOOLEAN,  CLOB,  and  LVARCHAR  built-in  opaque  types.  

v   The  query,  DML  operation,  or  function  call  cannot  return  DISTINCT  or  OPAQUE  

data  types  unless  these  are  explicitly  cast  to a built  in  data  type,  and  all  the  

DISTINCT  and  OPAQUE  data  types  and  all  the  explicit  casts  are  defined  in each  

participating  database  that  stores  or  receives  the  data  types.

Distributed Queries across Databases of Two  or More 

Dynamic Server Instances 

Distributed  operations  across  databases  of two  or  more  Dynamic  Server  instances  

are  subject  to  the  following  restrictions  on  returned  data  types:  

v   A query,  DML  operation,  or  function  call  can  return  any  non-opaque  built-in  

data  type,  and  the  BOOLEAN  data  type,  and  the  LVARCHAR  data  type.  

v   A query,  DML  operation,  or  function  call  can  return  DISTINCT  data  types  that  

are  explicitly  cast  to  a built-in  data  type,  and  whose  base  types  are  either  

non-opaque  built-in  data  types,  BOOLEAN,  or  LVARCHAR  data  types.  

Additionally,  the  base  type  can  also  be  a DISTINCT  data  type  whose  base  type  

is a non-opaque  built-in  type,  BOOLEAN,  LVARCHAR,  or  another  DISTINCT  

data  type  that  is  based  on  one  of these  types.

You  must  define  these  explicit  casts,  functions,  and  DISTINCT  data  types  in  each  

participating  database  of  the  distributed  operation.  If  any  participating  database  

servers  are  earlier  versions  that  cannot  support  these  data  types  in  cross-server  

operations,  those  servers  return  only  data  types  that  they  support.  A distributed  

operation  fails  if that  operation  specifies  an  unsupported  data  type.  Like  

distributed  operations  across  databases  of  the  same  Dynamic  Server  instance,  

cross-server  distributed  operations  require  that  all  databases  be  of  compatible  

transaction  logging  types,  as  described  in  “Logging-Type  Restrictions  on  

Distributed  Queries”  on  page  7-7.  

Coordinator and Participant in a Distributed Query 

To support  distributed  operations  across  multiple  database  servers,  IBM  Informix  

servers  maintain  hierarchical  relationships  consisting  of a coordinator  and  one  or  

more  participants.  Coordinator  and  participant  are  defined  as  follows:  

v   The  coordinator  directs  the  resolution  of  the  query.  It  also  decides  whether  the  

query  should  be  committed  or  aborted.  

v   The  participant  directs  the  execution  of  the  distributed  query  on  one  branch.  The  

branch  is  the  part  of  the  distributed  query  involving  only  that  participant  

database  server.

The  following  examples  refer  to a multi-server  environment  where  db  is the  local  

database,  db2  is  an  external  database  residing  on  the  same  server,  and  master_db  is  

an  external  database  on  the  remote  server  new_york.  

The  following  examples  shows  a query  that  could  be  used  to  access  data  on  

another  server  using  database  db  as  the  coordinator.  

database  db;  select  col1,  col2  from  db2:tab1,  master_db@newyork:tab2;  

 

7-2 IBM Informix  Database  Design  and Implementation  Guide



A session  will  have  only  one  local  database,  but  can  open  multiple  external  

databases.  Distributed  queries  must  always  originate  on  a coordinator.  

Configuring the Database Server to Use Distributed Queries 

To use  multiple  IBM  Informix  servers  for  distributed  queries,  you  must  make  sure  

that  all  of  the  database  servers  involved  are  configured  to  enable  server-to-server  

communications  over  the  network.  The  following  configuration  files  may  need  to  

be  edited  to  allow  distributed  queries:  

v   The  sqlhosts  file  

v   The  onconfig  file  

v   /etc/hosts.equiv  or  .rhosts  

v   /etc/services  

v   /etc/hosts

The  sqlhosts  file  contains  connectivity  information  for  each  database  server.  To set  

up  several  database  servers  to  use  distributed  queries,  use  one  of the  following  

ways  to  store  the  sqlhosts  information  for  all  the  databases:  

v   In one  sqlhosts  file,  pointed  to  by  INFORMIXSQLHOSTS  

v   In separate  sqlhosts  files  in  each  database  server  directory

Note:   IBM  Informix  Extended  Parallel  Server  Version  8.40  supports  participant  

functionality  only;  distributed  queries  cannot  originate  from  this  version.  

IBM  Informix  Extended  Parallel  Server  Version  8.50  and  higher  versions  

support  both  participant  and  coordinator  functionality.  Restrictions  apply.  

For  more  information  on  configuring  the  sqlhosts  file,  see  your  Administrator’s  

Guide. 

The Syntax of a Distributed Query 

This  section  describes  how  to specify  a remote  server,  database,  and  database  

object  within  a distributed  query.  

Note:   When  designing  distributed  queries,  be  aware  that  some  SQL  syntax  will  not  

work  across  all  server  versions.  Syntax  that  is valid  on  Dynamic  Server  but  

not  on  Extended  Parallel  Server  is not  supported  on  Extended  Parallel  

Server  and  vice-versa.  

Due  to  these  potential  syntax  incompatibilities,  an  SQL  statement  may  pass  the  

checking  stage  on  the  coordinator,  but  return  an  error  once  that  statement  is passed  

to  the  participant.  

Accessing a Remote Server and Database 

The  core  element  of  any  statement  within  a distributed  query  is the  database  

segment.  Using  the  syntax  of  both  of these  segments,  you  can  specify  a remote  

database  server,  database,  or  database  object.  

Database Name 

The  Database  Name  segment  is used  to  specify  the  name  of  a database.  The  

following  examples  show  different  ways  of  specifying  a remote  database:  

empinfo@personnel  ’//personnel/empinfo’  

 

Chapter  7. Using Distributed  Queries 7-3



Database Object Name 

The  Database  Object  Name  segment  is used  to  specify  the  name  of  a database  

object,  including  constraints,  indexes,  triggers,  any  synonyms.  The  following  

examples  show  how  to  access  remote  objects:  

empinfo@personnel:markg.emp_names  empinfo@personnel:emp_names  

Specifying a Coserver ID (XPS) 

If you  are  running  a distributed  query  where  Extended  Parallel  Server  is both  the  

coordinator  and  participant,  you  can  specify  a coserver  as  part  of  the  database  and  

database  object  segments.  The  following  examples  show  how  to specify  the  

coserver  id:  

orders@stores.2  empinfo@personnel.3:emp_names  

Note:   In  any  given  session,  the  first  reference  to  a remote  server  determines  how  

subsequent  references  for  objects  on  that  server  must  be  specified.  Once  a 

coserver-id  is  used  to  qualify  an  object  on  a server,  subsequent  references  to  

the  same  server,  even  for  any  other  object,  must  also  specify  the  same  

coserver-id.  Coserver-ids  used  for  different  remote  servers  are  independent.  

Valid Statements for Accessing Remote Objects 

The  following  statements  support  remote  objects  as  part  of the  Database  and  

Database  Object  segments  and  can  be  used  within  a distributed  query:  

v   INSERT  

v   SELECT  

v   UPDATE  

v   DELETE  

v   CREATE  VIEW  

v   CREATE  SYNONYM  

v   CREATE  DATABASE  

v   DATABASE  

v   LOAD  

v   UNLOAD  

v   LOCK  

v   UNLOCK  

v   INFO

For  Extended  Parallel  Server  (XPS)  Version  8.51,  you  cannot  refer  to  remote  objects  

in  statements  that  change  or  add  data.  For  instance,  INSERT,  UPDATE,  and  

DELETE  statements  operating  on  a remote  object  are  not  supported.  For  more  

aspects  of  distributed  queries  not  supported  by  Extended  Parallel  Server,  see  

“Cross  Server  Compatibility  Issues  (XPS)”  on  page  7-8.  

Accessing Remote Tables  

A  remote  table  is  a table  on  a database  server  other  than  the  current  server.  The  

general  syntax  for  accessing  a table  on  another  server  is:  

database@server:[owner.]table  

Here,  a table  can  be  a table  name,  view  name  or  synonym.  You have  the  option  of  

specifying  the  table  owner.  For  the  complete  syntax  options,  see  the  documentation  

of  the  Database  and  Database  Object  segments  in  the  IBM  Informix  Guide  to  SQL:  

Syntax. 

 

7-4 IBM Informix  Database  Design  and Implementation  Guide



The  following  example  shows  a query  that  accesses  a remote  table:  

DATABASE  locdb;  SELECT  l.name,  r.assignment  FROM  rdb@rsys:rtab  r, 

loctab  l WHERE  l.empid  = r.empid;  

This  query  accesses  the  name  and  empid  columns  from  a the  local  table  loctab,  and  

the  assignment  and  empid  columns  from  the  remote  table  rtab.  The  data  is joined  

using  empid  as  the  join  column.  

The  following  example  shows  a query  that  accesses  data  on  a remote  table  and  

inserts  it  into  a local  table:  

DATABASE  locdb;  INSERT  INTO  loctab  SELECT  * FROM  rdb@rsys:rtab;  

This  query  selects  all  data  from  the  remote  table  rtab,  and  inserts  it into  the  local  

table  loctab.  

The  following  example  creates  a view  in  the  local  database  using  the  empid  and  

priority  columns  from  the  remote  database  rdb.  

DATABASE  locdb;  CREATE  VIEW  myview  (empid,  empprty)  

AS SELECT  empid,  priority  FROM  rdb@rsys:rtab;  

Table Permissions 

Permissions  for  accessing  table  in  other  databases  and  remote  tables  are  controlled  

at  the  table  location.  When  accessing  a remote  server,  the  connection  is made  using  

the  login  name  and  password  of  the  user  executing  the  query.  To access  remote  

data,  the  user  must  have  the  appropriate  permissions  on  the  remote  table.  

When  processing  distributed  queries,  the  database  server  ignores  the  active  role  on  

the  current  local  database  when  accessing  a remote  object.  On  the  remote  server,  

the  default  role  applied  to each  remote  database  is used.  If a default  role  is not  

defined,  the  user’s  privilege  define  the  access  permissions  for  the  objects  in  each  

remote  database.  

Qualifying Table References 

References  to  tables  may  be  qualified  with  the  current  database  and  server  name.  If 

no  qualification  is  specified,  the  current  database  and  server  context  is implied.  For  

example,  if the  current  database  is locdb  and  the  current  server  is currsys,  the  

following  references  to  loctab  are  equivalent:  

locdb@currsys:loctab  

locdb:loctab  

loctab  

Other Remote Operations 

In  addition  to  querying  and  updating  data,  there  are  other  remote  operations  that  

you  can  perform  using  the  distributed  query  framework.  

Opening a Remote Database 

By  specifying  a remote  object  in  the  DATABASE  statement,  you  can  open  a remote  

database  as in  the  following  examples:  

DATABASE  dbname@servername;  

DATABASE  "//servernam/database";  

Creating a Remote Database 

You can  create  a remote  database  by  qualifying  the  database  name  with  a server  

name  when  using  the  CREATE  DATABASE  statement.  

CREATE  DATABASE  remfoo@rsys;  

 

Chapter  7. Using Distributed  Queries 7-5



Creating a Synonym for a Remote Table 

You can  create  a synonym  for  a remote  table  in  another  database  or  a remote  table  

using  a qualified  name  in  the  CREATE  SYNONYM  statement.  For  example,  the  

following  statement  creates  a synonym  for  rdb@srsys:rtab:  

CREATE  SYNONYM  myrtab  FOR  rdb@rsys:rtab;  

It  is possible  for  a synonym  to exist  in  both  the  local  and  remote  server.  In  the  

example  above,  it  is possible  that  rtab  is itself  a synonym  for  rdb2@rsys2:rtab2.  The  

chain  of synonyms  is followed  when  retrieving  catalog  information  until  the  

physical  database  and  server  where  the  table  resides  is found.  If a synonym  

ultimately  points  back  to itself,  an  error  is returned.  

Monitoring Distributed Queries 

Use  the  onstat  -x  utility  to  display  transaction  information  originating  on  the  

coordinator  of  a distributed  query.  

The  following  flag  codes  in  position  5 are  used  for  distributed  queries:  

C  Distributed  query  coordinator  

S  Distributed  query  participant  

B Both  distributed  query  coordinator  and  participant  

R  Transaction  with  remote  object  references  (XPS)

For  more  information  on  using  onstat  -x  see  your  Administrator’s  Reference.  

Server Environment and Distributed Queries 

This  section  lists  the  configuration  parameters  and  environment  variables  that  

affect  the  behavior  of  distributed  queries.  

PDQPRIORITY Environment Variable 

The  effective  value  of PDQPRIORITY  for  a session  is sent  to  the  remote  site  when  

a connection  is established.  Subsequent  changes  to  this  parameter  in the  

coordinator  are  not  reflected  on  the  remote  site.  However,  the  exact  behavior  of  

this  environment  variable  depends  on  the  role  of  the  database  server  in  the  

distributed  query  (coordinator  or  participant).  

PDQPRIORITY  has  different  syntax  and  semantics  for  different  server  versions.  For  

information  on  setting  PDQPRIORITY,  see  the  Performance  Guide  for  your  server.  

DEADLOCK_TIMEOUT 

This  configuration  parameter  is used  to  specify  the  amount  of  time  a transaction  

will  wait  for  a lock.  If a distributed  transaction  is forced  to wait  longer  than  the  

number  of  seconds  specified,  the  thread  that  owns  the  transaction  assumes  that  a 

multi-server  deadlock  exists.  The  following  error  message  is returned:  

-143  ISAM  error:  deadlock  detected.  

For  more  information  on  using  this  configuration  parameter,  see  your  

Administrator’s  Guide  

 

7-6 IBM Informix  Database  Design  and Implementation  Guide



Logging-Type  Restrictions on Distributed Queries 

To execute  distributed  queries  in an  Informix  database  server  environment,  all 

participating  databases  must  be  of  compatible  transaction-logging  types:  

v   Distributed  queries  are  supported  on  an  ANSI-compliant  database  only  if all of 

the  participating  databases  are  also  ANSI-compliant.  

v   Distributed  queries  on  a database  that  does  not  support  transaction  logging  are  

supported  only  if  all  of  the  participating  databases  also  do  not  use  transaction  

logging.  

v   Distributed  queries  on  a database  that  is not  ANSI-compliant  but  that  uses  

explicit  transaction  logging  are  supported  if all  of  the  other  databases  also  use  

explicit  transaction  logging.

In  the  last  case,  whether  a participating  database  uses  buffered  or  unbuffered  

logging  does  not  affect  its  ability  to  support  distributed  operations.  In  the  X/Open  

distributed  transaction  processing  (DTP)  environment,  all  databases  must  use  

unbuffered  logging.  See  the  IBM  Informix  Administrator’s  Guide  for  more  

information  about  database  logging  types  and  X/Open  DTP.  

Transaction Processing 

This  section  describes  some  of the  considerations  involved  when  using  distributed  

queries  in  a transaction  processing  environment.  

Isolation Levels 

The  isolation  level  of a transaction  is sent  to the  remote  server  at  the  start  of  the  

transaction  at  the  remote  site.  If an  isolation  level  changes  during  a transaction,  the  

new  value  is sent  to  the  remote  site.  

DEADLOCK_TIMEOUT and SET LOCK MODE 

When  using  distributed  queries,  you  can  use  the  SET  LOCK  MODE  statement  in 

conjunction  with  the  DEADLOCK_TIMEOUT  configuration  parameter  to help  

prevent  server  deadlock.  

When  you  request  the  WAIT  option  of SET  LOCK  MODE,  the  database  server  

protects  against  the  possibility  of a deadlock.  However,  if the  database  server  

discovers  that  a deadlock  could  occur,  it terminates  the  operation  and  returns  an  

error.  

The  DEADLOCK_TIMEOUT  configuration  parameter  specifies  the  maximum  

number  of  seconds  that  a database  server  thread  can  wait  to  acquire  a lock.  This  

value  is  the  default  value  used  by  the  SET  LOCK  MODE  WAIT  statement.  This  

value  applies  only  if you  acquire  locks  on  the  current  and  remote  database  server  

within  the  same  transaction.  

For  more  information  on  the  SET  LOCK  MODE  statement,  see  the  IBM  Informix  

Guide  to  SQL:  Syntax. For  more  information  on  the  DEADLOCK_TIMEOUT  

configuration  parameter,  see  “DEADLOCK_TIMEOUT”  on  page  7-6  and  the  

chapter  on  multi-phase  commit  protocols  in  the  IBM  Informix  Administrator’s  Guide. 

Two-phase  Commit and Recovery 

The  two-phase  commit  protocol  is used  to  ensure  to  ensure  that  distributed  queries  

are  uniformly  committed  or  rolled  back  across  multiple  database  servers.  A 

 

Chapter  7. Using Distributed  Queries 7-7



database  server  automatically  uses  the  two-phase  commit  protocol  for  any  

transaction  that  modifies  data  on  multiple  database  servers.  

Because  Extended  Parallel  Server  does  not  support  remote  updates,  multi-site  

updates  within  a single  transaction  are  not  possible.  Therefore,  the  two-phase  

commit  protocol  does  not  apply  to  queries  originating  on  Extended  Parallel  Server.  

In  this  case,  distributed  transactions  are  treated  the  same  as local  transactions  and  

are  rolled-back  or  committed  depending  upon  the  point  the  failure  occurs.  Any  

statement  that  would  require  the  use  of the  two-phase  commit  protocol  is aborted  

and  an  error  message  returned.  

For  more  information,  see  the  chapter  on  multi-phase  commit  protocols  in  the  IBM  

Informix  Dynamic  Server  Administrator’s  Guide. 

Cross Server Compatibility Issues (XPS) 

This  section  lists  elements  of distributed  queries  not  supported  by  Extended  

Parallel  Server.  

BYTE and TEXT Data Types  

The  BYTE  or  TEXT  data  types  are  not  supported  when  accessing  remote  table  data.  

Only  Extended  Parallel  Server’s  built-in  data  types  are  supported.  Dynamic  Server  

built-in  data  types  which  are  based  on  user-defined  types  are  not  supported.  

Other Restrictions 

Extended  Parallel  Server  has  the  following  restrictions  when  using  distributed  

queries:  

v   Remote  stored  procedures  are  not  supported.  

v   Triggers  cannot  reference  remote  objects  in  the  trigger  definition  

v   IBM  Informix  gateway  products  are  not  supported.

 

7-8 IBM Informix  Database  Design  and Implementation  Guide



Part  3.  Object-Relational  Databases  

 

© Copyright  IBM Corp. 1996, 2008 



IBM Informix  Database  Design  and Implementation  Guide



Chapter  8.  Creating  and  Using  Extended  Data  Types  in  

Dynamic  Server  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 

Informix  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 

Fundamental  or Atomic  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 

Predefined  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 

BOOLEAN  and  LVARCHAR  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . 8-3 

IDSSECURITYLABEL  Data  Type  . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3  

BLOB  and  CLOB  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3  

Other  Predefined  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 

Extended  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3  

Complex  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 

User-Defined  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 

Distinct  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 

Opaque  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 

DataBlade  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5  

Smart  Large  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5  

BLOB  Data  Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5  

CLOB  Data  type   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5  

Using  Smart  Large  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6  

Copying  Smart  Large  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 

Complex  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7  

Collection  Data  Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 

Null  Values in Collections   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9  

Using  SET  Collection  Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 

Using  MULTISET  Collection  Types  . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 

Using  LIST  Collection  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 

Nesting  Collection  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 

Adding  a Collection  Type to an Existing  Table  . . . . . . . . . . . . . . . . . . . . . 8-11  

Restrictions  on  Collections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 

Named  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12  

When  to Use  a Named  Row  Type  . . . . . . . . . . . . . . . . . . . . . . . . . 8-12 

Choosing  a Name  for  a Named  Row  Type  . . . . . . . . . . . . . . . . . . . . . . 8-13 

Restrictions  on  Named  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 

Using  a Named  Row  Type to Create  a Typed Table  . . . . . . . . . . . . . . . . . . . 8-14 

Changing  the  Type of a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 

Using  a Named  Row  Type to Create  a Column   . . . . . . . . . . . . . . . . . . . . . 8-15 

Using  a Named  Row  Type Within  Another  Row  Type  . . . . . . . . . . . . . . . . . . 8-16  

Dropping  Named  Row  Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 

Unnamed  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17

In This Chapter 

This  chapter  describes  extended  data  types  that  you  can  use  to  build  an  

object-relational  database.  The  term  object-relational  is not  associated  with  a 

particular  method  or  model  of  database  design,  but  instead  refers  to  any  database  

that  uses  Dynamic  Server  features  to extend  the  functionality  of  the  database.  

An  object-relational  database  is not  antithetical  to a relational  database  but  rather  is 

an  extension  of  functionality  already  present  in  a relational  database.  Typically,  you  

use  some  combination  of  features  from  Dynamic  Server  to  extend  the  kinds  of data  

that  your  database  can  store  and  manipulate.  These  features  include  extended  data  

types,  smart  large  objects,  type  and  table  inheritance,  user-defined  casts,  and  

user-defined  routines  (UDRs).  The  chapters  in  this  section  of the  manual  describe  

 

© Copyright  IBM Corp. 1996, 2008 8-1



many  of  these  features.  For  information  about  UDRs,  see  IBM  Informix  User-Defined  

Routines  and  Data  Types Developer’s  Guide  and  the  IBM  Informix  Guide  to SQL:  

Tutorial.  

For  an  example  of  an  object-relational  database,  you  can  create  the  

superstores_demo  database,  which  contains  examples  of some  of the  features  

available  with  Dynamic  Server.  For  information  about  how  to  create  the  

superstores_demo  database,  refer  to the  IBM  Informix  DB–Access  User’s  Guide. 

Informix Data Types  

Figure  3-1  in Chapter  3, “Choosing  Data  Types,”  on  page  3-1  provides  a chart  for  

selecting  appropriate  data  types  for  the  columns  of  a table  depending  on  the  type  

of  data  that  will  be  stored.  Figure  8-1  on  page  8-2  shows  a hierarchy  of  data  types  

that  reflects  how  the  database  server  manages  the  data  types.  

   

Fundamental or Atomic Data Types  

All  Informix  database  servers  support  the  fundamental, or  atomic, data  types.  These  

types  are  fundamental  because  they  are  the  smallest  units  that  you  can  specify  in a 

SELECT  statement.  Only  Dynamic  Server  supports  extended  and  predefined  data  

types.  The  predefined  data  types  are  in a separate  category  because  they  share  

certain  characteristics  with  extended  data  types  but  are  provided  by  the  database  

server.  

For  a discussion  of  the  fundamental  data  types,  refer  to  Chapter  3,  “Choosing  Data  

Types,”  on  page  3-1.  

  

Figure  8-1.  Informix  Data  Types

 

8-2 IBM Informix  Database  Design  and Implementation  Guide



Predefined Data Types  

The  database  server  provides  the  predefined  data  types,  just  as  it provides  the  

fundamental  data  types.  However,  the  predefined  data  types  have  certain  

characteristics  in  common  with  the  extended  data  types.  

BOOLEAN and LVARCHAR Data Types 

BOOLEAN  and  LVARCHAR  data  types  behave  like  built-in  data  types  except  that  

the  system  catalog  tables  define  them  as  extended  data  types.  

For  more  information,  refer  to  Chapter  3,  “Choosing  Data  Types,”  on  page  3-1  and  

to  the  system  catalog  tables  in  the  IBM  Informix  Guide  to  SQL:  Reference. 

IDSSECURITYLABEL Data Type 

The  IDSSECURITYLABEL  data  type  stores  a security  label  in  a table  that  is 

protected  by  a security  policy.  Only  a user  who  holds  the  DBSECADM  role  can  

create,  alter, or  drop  a column  of  this  data  type.  This  is a built-in  DISTINCT  OF  

VARCHAR(128)  data  type,  but  it is not  classified  as a character  data  type  because  

its  use  is  restricted  to  label-based  access  control.  

For  more  information,  refer  to  the  system  catalog  tables  in  the  IBM  Informix  Guide  

to  SQL:  Reference  and  to IBM  Informix  Security  Guide. 

BLOB and CLOB Data Types 

The  BLOB  and  CLOB  data  types  are  not  fundamental  data  types  because  you  can  

randomly  access  data  from  within  the  BLOB  or  CLOB.  You can  create  a table  with  

BLOB  and  CLOB  columns,  but  you  cannot  insert  data  directly  into  the  column.  You 

must  use  functions  to  insert  and  manipulate  the  data.  

For  more  information,  see  “Smart  Large  Objects”  on  page  8-5.  

Other Predefined Data Types 

With  the  exception  of  BLOB,  BOOLEAN,  CLOB,  and  LVARCHAR,  the  predefined  

data  types  usually  do  not  appear  as data  types  for  the  columns  of a table.  Instead,  

the  predefined  data  types  are  used  with  the  functions  associated  with  complex  and  

user-defined  data  types  and  user-defined  routines.  The  following  table  lists  the  

remaining  predefined  data  types.  

 clientbinval  indexkeyarray  sendrecv  

ifx_lo_spec  lolist  stat  

ifx_lo_stat  pointer  stream  

impexp  rtnparamtypes  

impexpbin  selfuncargs  

  

For  more  information  about  these  predefined  data  types,  refer  to IBM  Informix  

User-Defined  Routines  and  Data  Types Developer’s  Guide. 

Extended Data Types  

Extended  data  types  let  you  create  data  types  to  characterize  data  that  cannot  be  

easily  represented  with  the  built-in  data  types.  However,  you  cannot  use  extended  

data  types  in  distributed  transactions.  Figure  8-2  shows  the  extended  data  types.  

 

 

Chapter 8. Creating and Using  Extended  Data Types in Dynamic  Server 8-3



Complex Data Types 

Complex  data  types  describe  either  a collection  of  data  objects,  all  of  one  type  

(LIST,  SET, and  MULTISET),  or  groups  of objects  of  different  types  (named  and  

unnamed  rows.)  

User-Defined Data Types 

A  user-defined  data  type  is a data  type  that  is not  provided  by  the  database  server.  

You must  provide  all  of the  information  that  the  database  server  needs  to manage  

opaque  data  types  or  distinct  data  types.  

Distinct Data Types 

A  distinct  data  type  is an  encapsulated  data  type  that  you  create  with  the  CREATE  

DISTINCT  TYPE  statement.  A distinct  data  type  has  the  same  representation  as,  

but  is  distinct  from,  the  data  type  on  which  it is based.  You can  create  a distinct  

data  type  from  built-in  types,  opaque  types,  named  row  types,  or  other  distinct  

types.  You cannot  create  a distinct  data  type  from  any  of  the  following  data  types:  

v   BIGSERIAL,  SERIAL,  and  SERIAL8  

v   Collection  types  

v   Unnamed  row  types

When  you  create  a distinct  data  type,  you  implicitly  define  the  structure  of  the  

data  type  because  a distinct  data  type  inherits  the  structure  of its  source  data  type.  

You can  also  define  functions,  operators,  and  aggregates  that  operate  on  the  

distinct  data  type.  

DATA TYPES

Complex data types

User-defined data types

Distinct Opaque

MULTISET Unnamed Row Named Row

Collection types

LIST SET

Row types

Built-in data types Extended data types

DataBlade data types

  

Figure  8-2.  Extended  Data  Types

 

8-4 IBM Informix  Database  Design  and Implementation  Guide



For  information  about  distinct  data  types,  see  “Casting  Distinct  Data  Types”  on  

page  10-8,  the  IBM  Informix  Guide  to  SQL:  Syntax, and  the  IBM  Informix  Guide  to 

SQL:  Reference.  

Opaque Data Types 

An  opaque  data  type  is an  encapsulated  data  type  that  you  create  with  the  

CREATE  OPAQUE  TYPE  statement.  When  you  create  an  opaque  data  type,  you  

must  explicitly  define  the  structure  of  the  data  type  as  well  as  the  functions,  

operators,  and  aggregates  that  operate  on  the  opaque  data  type.  You can  use  an  

opaque  data  type  to  define  columns  and  program  variables  in  the  same  way  that  

you  use  built-in  types.  

For  information  about  creating  opaque  data  types,  see  IBM  Informix  User-Defined  

Routines  and  Data  Types Developer’s  Guide  and  the  IBM  Informix  Guide  to SQL:  

Syntax. 

DataBlade Data Types 

The  diagram  in  Figure  8-2  on  page  8-4  includes  DataBlade  data  types  although  

they  are  not  actually  data  types.  A  DataBlade  is a suite  of user-defined  data  types  

and  user-defined  routines  that  provides  tools  for  a specialized  application.  For  

example,  different  DataBlades  provide  tools  for  managing  images,  time-series,  and  

astronomical  observations.  Such  applications  often  require  opaque  data  types  as  

well  as  other  user-defined  data  types.  For  information  about  developing  a 

DataBlade,  refer  to  the  IBM  Informix  DataBlade  API  Programmer’s  Guide  and  the  

Informix  DataBlade  Developers  Kit.  For  information  about  the  DataBlades  that  IBM  

provides,  contact  your  customer  representative.  

Smart Large Objects 

Smart  large  objects  are  objects  that  are  defined  on  a BLOB  or  CLOB  data  type.  A  

smart  large  object  allows  an  application  program  to randomly  access  column  data,  

which  means  that  you  can  read  or  write  to  any  part  of  a BLOB  or  CLOB  column  in  

any  arbitrary  order. You can  create  BLOB  or  CLOB  columns  to  store  binary  data  or  

character  data.  

BLOB Data Type  

You can  use  a BLOB  data  type  to  store  any  data  that  a program  can  generate:  

graphic  images,  satellite  images,  video  clips,  audio  clips,  or  formatted  documents  

saved  by  any  word  processor  or  spreadsheet.  The  database  server  permits  any  kind  

of  data  of  any  length  in  a BLOB  column.  

Like  CLOB  objects,  BLOB  objects  are  stored  in  whole  disk  pages  in  separate  disk  

areas  from  normal  row  data.  

The  advantage  of the  BLOB  data  type,  as opposed  to  CLOB,  is that  it accepts  any  

data.  Otherwise,  the  advantages  and  disadvantages  of the  BLOB  data  type  are  the  

same  as  for  the  CLOB  data  type.  

CLOB Data type 

You can  use  the  CLOB  data  type  to store  a block  of  text.  It is designed  to store  

ASCII  text  data,  including  formatted  text  such  as  HTML  or  PostScript®. Although  

you  can  store  any  data  in a CLOB  object,  IBM  Informix  tools  expect  a CLOB  object  

to  be  printable,  so  restrict  this  data  type  to  printable  ASCII  text.  

 

Chapter 8. Creating and Using  Extended  Data Types in Dynamic  Server 8-5



CLOB  values  are  not  stored  with  the  rows  of which  they  are  a part.  They  are  

allocated  in  whole  disk  pages,  usually  areas  away  from  rows.  (For  more  

information,  see  your  IBM  Informix  Administrator’s  Guide.) 

The  CLOB  data  type  is similar  to  the  TEXT  data  type  except  that  the  CLOB  data  

type  provides  the  following  advantages:  

v   An  application  program  can  read  from  or  write  to  any  portion  of the  CLOB  

object.  

v   Access  times  can  be  significantly  faster  because  an  application  program  can  

access  any  portion  of  a CLOB  object.  

v   Default  characteristics  are  relatively  easy  to  override.  Database  administrators  

can  override  default  characteristics  for  sbspace  at the  column  level.  Application  

programmers  can  override  some  default  characteristics  for  the  column  when  

they  create  a CLOB  object.  

v   You can  use  the  equals  operator  (=)  to test  whether  two  CLOB  values  are  equal.  

v   A CLOB  object  is  recoverable  in  the  event  of  a system  failure  and  obeys  

transaction  isolation  modes  when  the  DBA  or  application  programmer  specifies  

it.  (Recovery  of  CLOB  objects  requires  that  your  database  system  has  the  

necessary  resources  to  provide  buffers  large  enough  to  handle  CLOB  objects.)  

v   You can  use  the  CLOB  data  type  to  provide  large  storage  for  a user-defined  data  

type.  

v   DataBlade  developers  can  create  indexes  on  CLOB  data  types.

The  disadvantages  of the  CLOB  data  type  are  as  follows:  

v   It is allocated  in  whole  disk  pages,  so  a short  item  wastes  space.  

v   Restrictions  apply  on  how  you  can  use  a CLOB  column  in  an  SQL  statement.  

(See  “Using  Smart  Large  Objects”  on  page  8-6.)  

v   It is not  available  with  all  Informix  database  servers.

Using Smart Large Objects 

To store  columns  of  a BLOB  or  CLOB  data  type,  you  must  allocate  an  sbspace.  An  

sbspace  is  a logical  storage  unit  that  stores  BLOB  and  CLOB  data  in  the  most  

efficient  way  possible.  You can  write  IBM  Informix  ESQL/C  programs  that  allow  

users  to  fetch  and  store  BLOB  or  CLOB  data.  Application  programmers  who  want  

to  access  and  manipulate  smart  large  objects  directly  can  consult  the  IBM  Informix  

ESQL/C  Programmer’s  Manual. 

In  any  SQL  statement,  interactive  or  programmed,  a BLOB  or  CLOB  column  cannot  

be  used  in  the  following  ways:  

v   In  arithmetic  or  Boolean  expressions  

v   In  a GROUP  BY  or  ORDER  BY  clause  

v   In  a UNIQUE  test  

v   For  indexing,  as  part  of  an  Informix  B-tree  index  

However,  DataBlade  developers  have  the  capability  to create  indexes  on  CLOB  

columns.

In a SELECT  statement  entered  interactively,  a BLOB  or  CLOB  column  can:  

v   Specify  NULL  values  as  a default  when  you  create  a table  with  the  DEFAULT  

NULL  clause  

v   Disallow  NULL  values  using  the  NOT  NULL  constraint  when  you  create  a table  

v   Be  tested  with  the  IS  [NOT]  NULL  predicate

 

8-6 IBM Informix  Database  Design  and Implementation  Guide



From  an  Informix  ESQL/C  program,  you  can  use  the  ifx_lo_stat()  function  to  

determine  the  length  of  BLOB  or  CLOB  data.  

Copying Smart Large Objects 

Dynamic  Server  provides  functions  that  you  can  call  from  within  an  SQL  statement  

to  import  and  export  smart  large  objects.  Table 8-1  shows  the  smart-large-object  

functions.  

 Table 8-1.  SQL  Functions  for Smart  Large  Objects  

Function  Name  Purpose  

FILETOBLOB()  Copies  a file into  a BLOB  column  

FILETOCLOB()  Copies  a file into  a CLOB  column  

LOCOPY()  Copies  BLOB  or CLOB  data  into  another  BLOB  or CLOB  

column  

LOTOFILE()  Copies  BLOB  or CLOB  data  into  a file
  

For  detailed  information  and  the  syntax  of  smart-large-object  functions,  see  the  

Expression  segment  in  the  IBM  Informix  Guide  to  SQL:  Syntax. 

Important:   Casts  between  BLOB  and  CLOB  data  types  are  not  permitted.  

Complex Data Types  

A complex  data  type  is usually  a composite  of other  existing  data  types.  For  

example,  you  might  create  a complex  data  type  whose  components  include  built-in  

types,  opaque  types,  distinct  types,  or  other  complex  types.  An  important  

advantage  that  complex  data  types  have  over  user-defined  types  is that  users  can  

access  and  manipulate  the  individual  components  of a complex  data  type.  

In  contrast,  built-in  types  and  user-defined  types  are  self-contained  (encapsulated)  

data  types.  Consequently,  the  only  way  to  access  the  component  values  of  an  

opaque  data  type  is through  functions  that  you  define  on  the  opaque  type.  

Figure  8-3  shows  the  complex  data  types  that  Dynamic  Server  supports  and  the  

syntax  that  you  use  to  create  the  complex  data  types.  

 

The  complex  data  types  that  Figure  8-3  illustrates  provide  the  following  extended  

data  type  support:  

v   Collection  types.  You can  use  a collection  type  whenever  you  need  to  store  and  

manipulate  collections  of  data  within  a table  cell.  You can  assign  collection  types  

to  columns.  

v   Row  types. A row  type  typically  contains  multiple  fields.  When  you  want  to  

store  more  than  one  kind  of  data  in  a column  or  variable,  you  can  create  a row  

  

Figure  8-3.  Complex  Data  Types

 

Chapter 8. Creating and Using  Extended  Data Types in Dynamic  Server 8-7



type.  Row  types  come  in  two  kinds:  named  row  types  and  unnamed  row  types.  

You can  assign  an  unnamed  row  type  to  columns  and  variables.  You can  assign  

a named  row  type  to  columns,  variables,  tables,  or views.  When  you  assign  a 

named  row  type  to  a table,  the  table  is a typed  table. A primary  advantage  of 

typed  tables  is  that  they  can  be  used  to define  an  inheritance  hierarchy.

For  more  information  about  how  to  perform  SELECT,  INSERT,  UPDATE,  and  

DELETE  operations  on  the  complex  data  types  that  this  chapter  describes,  see  the  

IBM  Informix  Guide  to  SQL:  Tutorial.  

Collection Data Types  

Collection  data  types  enable  you  to  store  and  manipulate  collections  of  data  within  

a single  row  of  a table.  A collection  data  type  has  two  components:  a type  

constructor, which  determines  whether  the  collection  type  is a SET, MULTISET,  or  

LIST, and  an  element  type, which  specifies  the  type  of  data  that  the  collection  can  

contain.  (The  SET, MULTISET,  and  LIST  collection  types  are  described  in  detail  in  

the  following  sections.)  

The  elements  of  a collection  can  be  of  most  any  data  type.  (For  a list  of  exceptions,  

see  “Restrictions  on  Collections”  on  page  8-11.)  The  elements  of a collection  are  the  

values  that  the  collection  contains.  In  a collection  that  contains  the  values:  {'blue',  

'green',  'yellow',  and  'red'},  'blue'  represents  a single  element  in  the  

collection.  Every  element  in a collection  must  be  of the  same  type.  For  example,  a 

collection  whose  element  type  is INTEGER  can  contain  only  integer  values.  

The  element  type  of  a collection  can  represent  a single  data  type  (column)  or  

multiple  data  types  (row).  In  the  following  example,  the  col_1  column  represents  a 

SET  of  integers:  

col_1  SET(INTEGER  NOT  NULL)  

To define  a collection  data  type  that  contains  multiple  data  types,  you  can  use  a 

named  row  type  or  an  unnamed  row  type.  In  the  following  example,  the  col_2  

column  represents  a SET  of  rows  that  contain  name  and  salary  fields:  

col_2  SET(ROW(name  VARCHAR(20),  salary  INTEGER)  NOT NULL)  

Important:   When  you  define  a collection  data  type,  you  must  include  the  NOT  

NULL  constraint  as  part  of  the  type  definition.  No  other  column  

constraints  are  allowed  on  a collection  data  type.  

After  you  define  a column  as  a collection  data  type,  you  can  perform  the  following  

operations  on  the  collection:  

v   Select  and  modify  individual  elements  of a collection  (from  Informix  ESQL/C  

programs  only).  

v   Count  the  number  of  elements  that  a collection  contains.  

v   Determine  if certain  values  are  in  a collection.

For  information  on  the  syntax  that  you  use  to  create  collection  data  types,  see  the  

Data  Type  segment  in  the  IBM  Informix  Guide  to  SQL:  Syntax. For  information  

about  how  to  convert  a value  of  one  collection  type  to  another  collection  type,  see  

the  IBM  Informix  Guide  to SQL:  Tutorial. 

 

8-8 IBM Informix  Database  Design  and Implementation  Guide



Null Values in Collections 

A collection  cannot  contain  NULL  elements.  However,  when  the  collection  is a row  

type,  you  can  insert  NULL  values  for  any  or  all  fields  of  a row  type  that  a 

collection  contains.  Suppose  you  create  the  following  table  that  has  a collection  

column:  

CREATE  TABLE  tab1  (col1  INT,  

        col2  SET(ROW(a  INT,  b INT)  NOT NULL));  

The  following  statements  are  allowed  because  only  the  component  fields  of  the  

row  type  specify  NULL  values:  

INSERT  INTO tab1 VALUES  ( 25,"SET{ROW(NULL,  NULL)}");  

  

INSERT  INTO tab1 VALUES  ( 35,"SET{ROW(4,  NULL)}");  

  

INSERT  INTO tab1 VALUES  ( 45,"SET{ROW(14,  NULL),  ROW(NULL,5)}");  

  

UPDATE  tab1 SET col2 = "SET{ROW(NULL,  NULL)}"  WHERE  col1 = 45; 

However,  each  of the  following  statements  returns  an  error  message  because  the  

collection  element  specifies  a NULL  value:  

INSERT  INTO  tab1  VALUES  ( 45, "SET{NULL)}");  

  

UPDATE  tab1  SET  col2  = "SET{NULL}"  WHERE  col1  = 55; 

Using SET Collection Types 

A SET  is  an  unordered  collection  of elements  in  which  each  element  is unique.  You 

define  a column  as  a SET  collection  type  when  you  want  to  store  collections  whose  

elements  have  the  following  characteristics:  

v   The  elements  contain  no  duplicate  values.  

v   The  elements  have  no  specific  order  associated  with  them.

To  illustrate  how  you  might  use  a SET, imagine  that  your  human  resources  

department  needs  information  about  the  dependents  of  each  employee  in  the  

company.  You can  use  a collection  type  to  define  a column  in  an  employee  table  

that  stores  the  names  of an  employee’s  dependents.  The  following  statement  

creates  a table  in  which  the  dependents  column  is defined  as a SET:  

CREATE  TABLE  employee  

( 

   name         CHAR(30),  

   address      CHAR  (40),  

   salary       INTEGER,  

   dependents   SET(VARCHAR(30)  NOT NULL)  

); 

A query  against  the  dependents  column  for  any  given  row  returns  the  names  of  all  

the  dependents  of  the  employee.  In  this  case,  SET  is the  appropriate  collection  type  

because  the  collection  of  dependents  for  each  employee  should  not  contain  any  

duplicate  values.  A column  that  is defined  as  a SET  ensures  that  each  element  in a 

collection  is unique.  

To illustrate  how  to  define  a collection  type  whose  elements  are  a row  type,  

suppose  that  you  want  the  dependents  column  to  include  the  name  and  birthdate  

of  an  employee’s  dependents.  In  the  following  example,  the  dependents  column  is 

defined  as  a SET  whose  element  type  is a row  type:  

CREATE  TABLE  employee  

( 

   name        CHAR(30),

 

Chapter 8. Creating and Using  Extended  Data Types in Dynamic  Server 8-9



address      CHAR (40),  

   salary       INTEGER,  

   dependents   SET(ROW(name  VARCHAR(30),  bdate  DATE)  NOT NULL)  

); 

Each  element  of  a collection  from  the  dependents  column  contains  values  for  the  

name  and  bdate. Each  row  of  the  employee  table  contains  information  about  the  

employee  as  well  as  a collection  with  the  names  and  birthdates  of the  employee’s  

dependents.  For  example,  if an  employee  has  no  dependents,  the  collection  for  the  

dependents  column  is empty.  If an  employee  has  10  dependents,  the  collection  

should  contain  10  elements.  

Using MULTISET Collection Types 

A  MULTISET  is  a collection  of  elements  in  which  the  elements  can  have  duplicate  

values.  For  example,  a MULTISET  of integers  might  contain  the  collection  

{1,3,4,3,3},  which  has  duplicate  elements.  You can  define  a column  as a MULTISET  

collection  type  when  you  want  to  store  collections  whose  elements  have  the  

following  characteristics:  

v   The  elements  might  not  be  unique.  

v   The  elements  have  no  specific  order  associated  with  them.

To  illustrate  how  you  might  use  a MULTISET,  suppose  that  your  human  resources  

department  wants  to  keep  track  of the  bonuses  awarded  to  employees  in  the  

company.  To track  each  employee’s  bonuses  over  time,  you  can  use  a MULTISET  to  

define  a column  in  a table  that  records  all  the  bonuses  that  each  employee  receives.  

In  the  following  example,  the  bonus  column  is a MULTISET:  

CREATE  TABLE  employee  

( 

   name       CHAR(30),  

   address    CHAR  (40),  

   salary     INTEGER,  

   bonus      MULTISET(MONEY  NOT  NULL)  

); 

You can  use  the  bonus  column  in  this  statement  to  store  and  access  the  collection  

of  bonuses  for  each  employee.  A query  against  the  bonus  column  for  any  given  

row  returns  the  dollar  amount  for  each  bonus  that  the  employee  has  received.  

Because  an  employee  might  receive  multiple  bonuses  of  the  same  amount  

(resulting  in  a collection  whose  elements  are  not  all  unique),  the  bonus  column  is 

defined  as  a MULTISET,  which  allows  duplicate  values.  

Using LIST Collection Types 

A  LIST  is  an  ordered  collection  of elements  that  allows  duplicate  values.  A  LIST  

differs  from  a MULTISET  in  that  each  element  in  a LIST  has  an  ordinal  position  in 

the  collection.  The  order  of  the  elements  in  a list  corresponds  with  the  order  in 

which  values  are  inserted  into  the  LIST. You can  define  a column  as  a LIST  

collection  type  when  you  want  to  store  collections  whose  elements  have  the  

following  characteristics:  

v   The  elements  have  a specific  order  associated  with  them.  

v   The  elements  might  not  be  unique.

To  illustrate  how  you  might  use  a LIST, suppose  your  sales  department  wants  to 

keep  a monthly  record  of the  sales  total  for  each  salesperson.  You can  use  a LIST  to  

define  a column  in  a table  that  contains  the  monthly  sales  totals  for  each  

salesperson.  The  following  example  creates  a table  in  which  the  month_sales  

 

8-10 IBM Informix  Database  Design  and Implementation  Guide



column  is  a LIST. The  first  entry  (element)  in  the  LIST, with  an  ordinal  position  of 

1,  might  correspond  to the  month  of  January,  the  second  element,  with  an  ordinal  

position  of  2,  February,  and  so  forth:  

CREATE  TABLE  sales_person  

( 

   name          CHAR(30),  

   month_sales   LIST(MONEY  NOT  NULL)  

); 

You can  use  the  month_sales  column  in  this  statement  to  store  and  access  the  

monthly  sales  totals  for  each  salesperson.  More  specifically,  you  might  perform  

queries  on  the  month_sales  column  to find  out:  

v   The  total  sales  that  a salesperson  generated  during  a specified  month  

v   The  total  sales  for  every  salesperson  during  a specified  month

Nesting Collection Types 

A nested  collection  is  a collection  type  that  contains  another  collection  type.  You can  

nest  any  collection  type  within  another  collection  type.  There  is no  practical  limit  

on  how  deeply  you  can  nest  a collection  type.  However,  performing  inserts  or  

updates  on  a collection  that  has  been  nested  more  than  one  or  two  levels  can  be  

difficult.  The  following  example  shows  several  ways  in  which  you  might  create  

columns  that  are  defined  on  nested  collection  types:  

col_1  SET(MULTISET(VARCHAR(20)  NOT  NULL)  NOT  NULL);  

  

col_2  MULTISET(ROW(x  CHAR(5),  y SET(INTEGER  NOT NULL))  

NOT  NULL);  

  

col_3  LIST(MULTISET(ROW(a  CHAR(2),  b INTEGER)  NOT  NULL)  

NOT  NULL);  

For  information  about  how  to  access  a nested  collection,  see  the  IBM  Informix  Guide  

to  SQL:  Tutorial.  

Adding a Collection Type to an Existing Table 

You can  use  the  ALTER  TABLE  statement  to add  or  drop  a column  that  is a 

collection  type  (or  any  other  data  type).  For  example,  the  following  statement  adds  

the  flowers  column,  which  is defined  as  a SET, to  the  nursery  table:  

ALTER  TABLE  nursery  ADD flower  SET(VARCHAR(30)  NOT  NULL)  

You cannot  modify  an  existing  column  that  is a collection  type  or  convert  a 

non-collection  type  column  into  a collection  type.  

For  more  information  on  adding  and  dropping  collection-type  columns,  see  the  

ALTER  TABLE  statement  in  the  IBM  Informix  Guide  to SQL:  Syntax. 

Restrictions on Collections 

You cannot  use  any  of  the  following  data  types  as  the  element  type  of  a collection:  

v   TEXT  

v   BYTE  

v   SERIAL  

v   SERIAL8

You cannot  use  a CREATE  INDEX  statement  to create  an  index  on  collection,  nor  

can  you  create  a functional  index  for  a collection  column.  

 

Chapter 8. Creating and Using Extended  Data Types in Dynamic  Server 8-11



Named Row Types  

A  named  row  type  is  a group  of fields  that  are  defined  under  a single  name.  A field  

refers  to  a component  of a row  type  and  should  not  be  confused  with  a column,  

which  is  associated  with  tables  only.  The  fields  of a named  row  type  are  analogous  

to  the  fields  of  a C-language  structure  or  members  of  a class  in  object-oriented  

programming.  After  you  create  a named  row  type,  the  name  that  you  assign  to  the  

row  type  represents  a unique  type  within  the  database.  To create  a named  row  

type,  you  specify  a name  for  the  row  type  and  the  names  and  data  types  of its  

constituent  fields.  The  following  example  shows  how  you  might  create  a named  

row  type  called  person_t: 

CREATE  ROW  TYPE  person_t  

( 

   name      VARCHAR(30)  NOT  NULL,  

   address   VARCHAR(20),  

   city      VARCHAR(20),  

   state     CHAR(2),  

   zip       VARCHAR(9),  

   bdate     DATE  

); 

The  person_t  row  type  contains  six  fields:  name, address, city, state, zip, and  

bdate. When  you  create  a named  row  type,  you  can  use  it just  as  you  would  any  

other  data  type.  The  person_t  can  occur  anywhere  that  you  might  use  any  other  

data  type.  The  following  CREATE  TABLE  statement  uses  the  person_t  data  type:  

CREATE  TABLE  sport_club  

( 

   sport      CHAR(20),  

   sportnum   INT,  

   member     person_t,  

   since      DATE,  

   paidup     BOOLEAN  

) 

You can  use  most  data  types  to define  the  fields  of a row  type.  For  information  

about  data  types  that  are  not  supported  in  row  types,  see  “Restrictions  on  Named  

Row  Types”  on  page  8-13.  

For  the  syntax  you  use  to  create  a named  row  type,  see  the  CREATE  ROW  TYPE  

statement  in  the  IBM  Informix  Guide  to SQL:  Syntax. For  information  about  how  to  

cast  row  type  values,  see  Chapter  10,  “Creating  and  Using  User-Defined  Casts  in 

Dynamic  Server,”  on  page  10-1.  

When to Use a Named Row Type 

A  named  row  type  is one  way  to create  a new  data  type  in  Dynamic  Server.  When  

you  create  a named  row  type,  you  are  defining  a template  for  fields  of  data  types  

known  to  the  database  server.  Thus  the  field  definitions  of  a row  type  are  

analogous  to  the  column  definitions  of a table:  both  are  constructed  from  data  

types  known  to  the  database  server.  

You can  create  a named  row  type  when  you  want  a type  that  acts  as  a container  

for  component  values  that  users  need  to access.  For  example,  you  might  create  a 

named  row  type  to  support  address  values  because  users  need  direct  access  to  the  

individual  component  values  of  an  address  such  as  street,  city,  state,  and  zip  code.  

When  you  create  the  address  type  as a named  row  type,  users  always  have  direct  

access  to  each  of  the  fields.  

In  contrast,  if you  create  an  opaque  data  type  to handle  address  values,  a 

C-language  data  structure  stores  all  the  address  information.  Because  the  

 

8-12 IBM Informix  Database  Design  and Implementation  Guide



component  values  of an  opaque  type  are  encapsulated,  you  would  have  to  define  

functions  to  extract  the  component  values  for  street,  city,  state,  zip  code.  Thus,  an  

opaque  data  type  is a more  complicated  type  to define  and  use.  

Before  you  define  a data  type,  determine  whether  the  type  is just  a container  for  a 

group  of  values  that  users  can  access  directly.  If the  type  fits  this  description,  use  a 

named  row  type.  

Choosing a Name for a Named Row Type 

You can  give  a named  row  type  any  name  that  you  like  provided  that  the  name  

does  not  violate  the  conventions  established  for  the  SQL  identifiers.  The  

conventions  for  SQL  identifiers  are  described  in  the  Identifier  segment  in  the  IBM  

Informix  Guide  to  SQL:  Syntax. To avoid  confusing  type  and  table  names,  the  

examples  in  this  manual  designate  named  row  types  with  the  _t  characters  at  the  

end  of the  row  type  name.  

You must  have  the  Resource  privilege  to create  a named  row  type.  The  name  that  

you  assign  to  a named  row  type  should  not  be  the  same  as  any  other  data  type  

that  exists  in  the  database  because  all  data  types  share  the  same  name  space.  In  an  

ANSI-compliant  database,  the  combination  owner.type  must  be  unique  within  the  

database.  In  a database  that  is not  ANSI-compliant,  the  name  must  be  unique  

within  the  database.  

Important:   You must  grant  USAGE  privileges  on  a named  row  type  before  other  

users  can  use  it. For  information  about  granting  and  revoking  

privileges  on  named  row  types,  see  Chapter  12,  “Implementing  a 

Dimensional  Database  (XPS),”  on  page  12-1.  

Restrictions on Named Row Types 

This  section  describes  the  restrictions  that  apply  when  you  use  named  row  types.  

Restrictions  on  Data  Types:   It is recommended  that  you  use  the  BLOB  or  CLOB  

data  types  instead  of  the  TEXT  or  BYTE  data  types  when  you  create  a typed  table  

that  contains  columns  for  large  objects.  For  backward  compatibility,  you  can  create  

a named  row  type  that  contains  TEXT  or  BYTE  fields  and  use  that  type  to re-create  

an  existing  (untyped)  table  as  a typed  table.  However,  although  you  can  use  a 

named  row  type  that  contains  TEXT  or  BYTE  fields  to  create  a typed  table,  you  

cannot  use  such  a row  type  as  a column.  You can  assign  a named  row  type  that  

contains  BLOB  or  CLOB  fields  to a typed  table  or  column.  

Restrictions  on  Constraints:    In  a CREATE  ROW  TYPE  statement,  you  can  specify  

only  the  NOT  NULL  constraint  for  the  fields  of a named  row  type.  You must  

define  all  other  constraints  in the  CREATE  TABLE  statement.  For  more  

information,  see  the  CREATE  TABLE  statement  in  the  IBM  Informix  Guide  to  SQL:  

Syntax. 

Restrictions  on  Indexes:    You cannot  use  a CREATE  INDEX  statement  to  create  an  

index  on  a named  row  type  column.  However,  you  can  use  a user-defined  routine  

to  create  a functional  index  for  a row  type  column.  

Restrictions  on  SERIAL  Data  Types:   A named  row  type  that  contains  a SERIAL  

or  SERIAL8  data  type  cannot  be  used  as a column  type  in a table.  The  following  

statements  return  an  error  when  the  database  server  attempts  to create  the  table:  

CREATE  ROW  TYPE  row_t  (s_col  SERIAL)  

  

CREATE  TABLE  bad_tab  (col1  row_t)  

 

Chapter  8. Creating and Using Extended  Data Types in Dynamic  Server 8-13



However,  you  can  use  a named  row  type  that  contains  a SERIAL  or  SERIAL8  data  

type  to  create  a typed  table.  

For  information  about  the  use  and  behavior  of SERIAL  and  SERIAL8  types  in table  

hierarchies,  see  “SERIAL  Types  in a Table Hierarchy”  on  page  9-10.  

Using a Named Row Type to Create a Typed Table 

You can  create  a table  that  is typed  or  untyped.  A  typed  table  is a table  that  has  a 

named  row  type  assigned  to  it.  An  untyped  table  is a table  that  does  not  have  a 

named  row  type  assigned  to  it.  The  CREATE  ROW  TYPE  statement  creates  a 

named  row  type  but  does  not  allocate  storage  for  instances  of  the  row  type.  To 

allocate  storage  for  instances  of a named  row  type,  you  must  assign  the  row  type  

to  a table.  The  following  example  shows  how  to  create  a typed  table:  

CREATE  ROW  TYPE  person_t  

( 

   name      VARCHAR(30),  

   address   VARCHAR(20),  

   city      VARCHAR(20),  

   state     CHAR(2),  

   zip       INTEGER,  

   bdate     DATE  

); 

  

CREATE  TABLE  person  OF  TYPE  person_t;  

The  first  statement  creates  the  person_t  type.  The  second  statement  creates  the  

person  table,  which  contains  instances  of  the  person_t  type.  More  specifically,  each  

row  in  a typed  table  contains  an  instance  of the  named  row  type  that  is assigned  

to  the  table.  In  the  preceding  example,  the  fields  of  the  person_t  type  define  the  

columns  of  the  person  table.  

Important:   The  order  in which  you  create  named  row  types  is important  because  a 

named  row  type  must  exist  before  you  can  use  it  to  define  a typed  

table.  

Inserting  data  into  a typed  table  is no  different  than  inserting  data  into  an  untyped  

table.  When  you  insert  data  into  a typed  table,  the  operation  creates  an  instance  of 

the  row  type  and  inserts  it into  the  table.  The  following  example  shows  how  to  

insert  a row  into  the  person  table:  

INSERT  INTO person  

VALUES  (’Brown,  James’,  ’13 First St.’,  ’San Carlos’,  ’CA’,  94070,  

’01/04/1940’)  

The  INSERT  statement  creates  an  instance  of  the  person_t  type  and  inserts  it  into  

the  table.  For  more  information  about  how  to  insert,  update,  and  delete  columns  

that  are  defined  on  named  row  types,  see  the  IBM  Informix  Guide  to  SQL:  Tutorial. 

You can  use  a single  named  row  type  to  create  multiple  typed  tables.  In  this  case,  

each  table  has  a unique  name,  but  all  tables  share  the  same  type.  

Important:   You cannot  create  a typed  table  that  is a temporary  table.  

For  information  on  the  advantages  of using  typed  tables  when  you  implement  

your  data  model,  see  “Type Inheritance”  on  page  9-1.  

 

8-14 IBM Informix  Database  Design  and Implementation  Guide



Changing the Type of a Table 

The  primary  advantage  of  typed  tables  over  untyped  tables  is that  typed  tables  can  

be  used  in  an  inheritance  hierarchy.  In  general,  inheritance  allows  a table  to acquire  

the  representation  and  behavior  of  another  table.  For  more  information,  see  “What  

Is  Inheritance?”  on  page  9-1.  

The  DROP  and  ADD  clauses  of the  ALTER  TABLE  statement  let  you  change  

between  typed  and  untyped  tables.  Neither  the  ADD  nor  DROP  operation  affects  

the  data  that  is stored  in  the  table.  

Converting  an  Untyped  Table  into  a Typed Table:    If you  want  to  convert  an  

existing  untyped  table  into  a typed  table,  you  can  use  the  ALTER  TABLE  

statement.  For  example,  consider  the  following  untyped  table:  

CREATE  TABLE  manager  

( 

   name         VARCHAR(30),  

   department   VARCHAR(20),  

   salary       INTEGER  

); 

To convert  an  untyped  table  to  a typed  table,  both  the  field  names  and  the  field  

types  of  the  named  row  type  must  match  the  column  names  and  column  types  of 

the  existing  table.  For  example,  to  make  the  manager  table  a typed  table,  you  must  

first  create  a named  row  type  that  matches  the  column  definitions  of the  table.  The  

following  statement  creates  the  manager_t  type,  which  contains  field  names  and  

field  types  that  match  the  columns  of the  manager  table:  

CREATE  ROW  TYPE  manager_t  

( 

   name         VARCHAR(30),  

   department   VARCHAR(20),  

   salary       INTEGER  

); 

After  you  create  the  named  row  type  that  you  want  to  assign  to  the  existing  

untyped  table,  use  the  ALTER  TABLE  statement  to  assign  the  type  to  the  table.  The  

following  statement  alters  the  manager  table  and  makes  it a typed  table  of  type  

manager_t: 

ALTER  TABLE  manager  ADD TYPE  manager_t  

The  new  manager  table  contains  the  same  columns  and  data  types  as  the  old  table  

but  now  provides  the  advantages  of a typed  table.  

Converting  a Typed  Table  into  an  Untyped  Table:    You also  use  the  ALTER  

TABLE  statement  to  change  a typed  table  into  an  untyped  table:  

ALTER  TABLE  manager  DROP  TYPE  

Tip:   Adding  a column  to  a typed  table  requires  three  ALTER  TABLE  statements  to  

drop  the  type,  add  the  column,  and  add  the  type  to  the  table.  

Using a Named Row Type to Create a Column 

Both  typed  and  untyped  tables  can  contain  columns  that  are  defined  on  named  

row  types.  A  column  that  is defined  on  a named  row  type  behaves  in  the  same  

way  whether  the  column  occurs  in  a typed  table  or  untyped  table.  In  the  following  

example,  the  first  statement  creates  a named  row  type  address_t; the  second  

statement  assigns  the  address_t  type  to the  address  column  in  the  employee  table:  

 

Chapter  8. Creating and Using Extended  Data Types in Dynamic  Server 8-15



CREATE  ROW  TYPE  address_t  

( 

   street   VARCHAR(20),  

   city     VARCHAR(20),  

   state    CHAR(2),  

   zip      VARCHAR(9)  

); 

  

CREATE  TABLE  employee  

( 

   name      VARCHAR(30),  

   address   address_t,  

   salary    INTEGER  

); 

In  the  preceding  CREATE  TABLE  statement,  the  address  column  has  the  street, 

city, state, and  zip  fields  of  the  address_t  type.  Consequently,  the  employee  table,  

which  has  only  three  columns,  contains  values  for  name, street, city, state, zip,  and  

salary. Use  dot  notation  to  access  the  individual  fields  of  a column  that  are  defined  

on  a row  type.  For  information  about  using  dot  notation  to  access  fields  of  a 

column,  see  the  IBM  Informix  Guide  to SQL:  Tutorial. 

When  you  insert  data  into  a column  that  is assigned  a row  type,  you  need  to  use  

the  ROW  constructor  to  specify  row  literal  values  for  the  row  type.  The  following  

example  shows  how  to  use  the  INSERT  statement  to  insert  a row  into  the  

employee  table:  

INSERT  INTO employee  

VALUES  (’John  Bryant’,  

  ROW(’10  Bay Street’,  ’Madera’,  ’CA’,  95400)::address_t,  55000);  

Strong  typing  is  not  enforced  for  an  insert  or  update  on  a named  row  type.  To 

ensure  that  the  row  values  are  of  the  named  row  type,  you  must  explicitly  cast  to 

the  named  row  type  to  generate  values  of a named  row  type,  as  the  previous  

example  shows.  The  INSERT  statement  inserts  three  values,  one  of which  is a row  

type  value  that  contains  four  values.  More  specifically,  the  operation  inserts  unitary  

values  for  the  name  and  salary  columns  but  it  creates  an  instance  of  the  address_t  

type  and  inserts  it into  the  address  column.  

For  more  information  about  how  to  insert,  update,  and  delete  columns  that  are  

defined  on  row  types,  see  the  IBM  Informix  Guide  to SQL:  Tutorial. 

Using a Named Row Type Within Another Row Type 

You can  use  a named  row  type  as the  data  type  of  a field  within  another  row  type.  

A  nested  row  type  is  a row  type  that  contains  another  row  type.  You can  nest  any  

row  type  within  any  other  row  type.  No  practical  limit  exists  on  how  deeply  you  

can  nest  row  types.  However,  to  perform  inserts  or  updates  on  deeply  nested  row  

types  requires  careful  use  of the  syntax.  

For  named  row  types,  the  order  in  which  you  create  the  row  types  is  important  

because  a named  row  type  must  exist  before  you  can  use  it to  define  a column  or  a 

field  within  another  row  type.  In  the  following  example,  the  first  statement  creates  

the  address_t  type,  which  is used  in the  second  statement  to  define  the  type  of the  

address  field  of  the  employee_t  type:  

CREATE  ROW  TYPE  address_t  

( 

   street   VARCHAR  (20),  

   city     VARCHAR(20),  

   state    CHAR(2),  

   zip      VARCHAR(9)

 

8-16 IBM Informix  Database  Design  and Implementation  Guide



); 

  

CREATE  ROW  TYPE  employee_t  

( 

   name      VARCHAR(30)  NOT  NULL,  

   address   address_t,  

   salary    INTEGER  

); 

Important:   You cannot  use  a row  type  recursively.  If type_t  is a row  type,  then  

you  cannot  use  type_t  as  the  data  type  of a field  contained  in  type_t. 

Dropping Named Row Types 

To drop  a named  row  type,  use  the  DROP  ROW  TYPE  statement.  You can  drop  a 

type  only  if it has  no  dependencies.  You cannot  drop  a named  row  type  if any  of 

the  following  conditions  are  true: 

v   The  type  is currently  assigned  to  a table.  

v   The  type  is currently  assigned  to  a column  in  a table.  

v   The  type  is currently  assigned  to  a field  within  another  row  type.

The  following  example  shows  how  to  drop  the  person_t  type:  

DROP  ROW  TYPE  person_t  restrict;  

For  information  about  how  to  drop  a named  row  type  from  a type  hierarchy,  see  

“Dropping  Named  Row  Types  from  a Type Hierarchy”  on  page  9-5.  

Unnamed Row Types  

An  unnamed  row  type  is a group  of typed  fields  that  you  create  with  the  ROW  

constructor.  An  important  distinction  between  named  and  unnamed  row  types  is 

that  you  cannot  assign  an  unnamed  row  type  to a table.  You use  an  unnamed  row  

type  to  define  the  type  of  a column  or  field  only.  In  addition,  an  unnamed  row  

type  is  identified  by  its  structure  alone,  whereas  a named  row  type  is identified  by 

its  name.  The  structure  of  a row  type  consists  of the  number  and  data  types  of  its  

fields.  

The  following  statement  assigns  two  unnamed  row  types  to  columns  of the  

student  table:  

CREATE  TABLE  student  

( 

   s_name   ROW(f_name  VARCHAR(20),  m_init  CHAR(1),  

               l_name  VARCHAR(20)  NOT NULL),  

   s_address   ROW(street  VARCHAR(20),  city VARCHAR(20),  

                  state  CHAR(2),  zip VARCHAR(9))  

   ); 

The  s_name  and  s_address  columns  of  the  student  table  each  contain  multiple  

fields.  Each  field  of  an  unnamed  row  type  can  have  a different  data  type.  Although  

the  student  table  has  only  two  columns,  the  unnamed  row  types  define  a total  of  

seven  fields:  f_name, m_init, l_name, street, city, state, and  zip. 

The  following  example  shows  how  to  use  the  INSERT  statement  to  insert  data  into  

the  student  table:  

INSERT  INTO student  

VALUES  (ROW(’Jim’,  ’K’, ’Johnson’),  ROW(’10  Grove  St.’, 

’Eldorado’,  ’CA’, 94108))  

 

Chapter  8. Creating and Using Extended  Data Types in Dynamic  Server 8-17



For  more  information  about  how  to  modify  columns  that  are  defined  on  row  types,  

see  the  IBM  Informix  Guide  to  SQL:  Tutorial.  

The  database  server  does  not  distinguish  between  two  unnamed  row  types  that  

contain  the  same  number  of fields  and  that  have  corresponding  fields  of  the  same  

type.  Field  names  are  irrelevant  in  type  checking  of  unnamed  row  types.  For  

example,  the  database  server  does  not  distinguish  between  the  following  unnamed  

row  types:  

ROW(a  INTEGER,  b CHAR(4));  

ROW(x  INTEGER,  y CHAR(4));  

For  the  syntax  of  unnamed  row  types,  see  the  IBM  Informix  Guide  to  SQL:  Syntax. 

For  information  about  how  to  cast  row  type  values,  see  Chapter  10,  “Creating  and  

Using  User-Defined  Casts  in  Dynamic  Server,”  on  page  10-1.  

The  following  data  types  cannot  be  field  types  in  an  unnamed  row  type:  

v   BIGSERIAL  

v   SERIAL  

v   SERIAL8  

v   BYTE  

v   TEXT

The  database  server  returns  an  error  when  any  of  the  preceding  types  are  specified  

in  the  field  definition  of an  unnamed  row  type.  

 

8-18 IBM Informix  Database  Design  and Implementation  Guide



Chapter  9.  Understanding  Type  and  Table  Inheritance  in  

Dynamic  Server  

In This  Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 

What  Is Inheritance?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 

Type Inheritance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 

Defining  a Type Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2  

Overloading  Routines  for  Types in a Type Hierarchy   . . . . . . . . . . . . . . . . . . . . 9-3 

Inheritance  and  Type Substitutability   . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 

Dropping  Named  Row  Types from  a Type Hierarchy   . . . . . . . . . . . . . . . . . . . . 9-5 

Table Inheritance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5  

The  Relationship  Between  Type and  Table Hierarchies   . . . . . . . . . . . . . . . . . . . . 9-6  

Defining  a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 

Inheritance  of Table Behavior  in  a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . 9-7 

Modifying  Table Behavior  in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . 9-8  

Constraints  on  Tables in a Table Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . 9-9  

Adding  Indexes  to Tables in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . 9-9 

Triggers on  Tables in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . 9-10 

SERIAL  Types in a Table Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 

Adding  a New  Table to a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . 9-10 

Dropping  a Table in a Table Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 

Altering  the  Structure  of a Table in a Table Hierarchy  . . . . . . . . . . . . . . . . . . . . 9-12  

Querying  Tables in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . . . . . 9-12  

Creating  a View  on  a Table in a Table Hierarchy   . . . . . . . . . . . . . . . . . . . . . 9-12

In This Chapter 

This  chapter  describes  type  and  table  inheritance  and  shows  how  to create  type  

and  table  hierarchies  to  modify  the  types  and  tables  within  the  respective  

hierarchies.  

What Is Inheritance? 

Inheritance  is  the  process  that  allows  a type  or  a table  to  acquire  the  properties  of 

another  type  or  table.  The  type  or  table  that  inherits  the  properties  is called  the  

subtype  or  subtable. The  type  or  table  whose  properties  are  inherited  is called  the  

supertype  or  supertable. Inheritance  allows  for  incremental  modification  so  that  a 

type  or  table  can  inherit  a general  set  of  properties  and  add  properties  that  are  

specific  to itself.  You can  use  inheritance  to  make  modifications  only  to the  extent  

that  the  modifications  do  not  alter  the  inherited  supertypes  or  supertables.  

Dynamic  Server  supports  inheritance  only  for  named  row  types  and  typed  tables.  

Dynamic  Server  supports  only  single  inheritance.  With  single  inheritance,  each  

subtype  or  subtable  has  only  one  supertype  or  supertable.  

Type  Inheritance 

Type inheritance  applies  to named  row  types  only.  You can  use  inheritance  to 

group  named  row  types  into  a type  hierarchy  in  which  each  subtype  inherits  the  

representation  (data  fields)  and  the  behavior  (UDRs,  aggregates,  and  operators)  of 

the  supertype  under  which  it is defined.  A type  hierarchy  provides  the  following  

advantages:  

v   It encourages  modular  implementation  of your  data  model.  

 

© Copyright  IBM Corp. 1996, 2008 9-1



v   It ensures  consistent  reuse  of  schema  components.  

v   It ensures  that  no  data  fields  are  accidentally  left  out.  

v   It allows  a type  to  inherit  UDRs  that  are  defined  on  another  data  type.

Defining a Type  Hierarchy 

Figure  9-1  on  page  9-2  provides  an  example  of a simple  type  hierarchy  that  

contains  three  named  row  types.  

 

The  supertype  at  the  top  of the  type  hierarchy  contains  a group  of  fields  that  all 

underlying  subtypes  inherit.  A supertype  must  exist  before  you  can  create  its  

subtype.  The  following  example  creates  the  person_t  supertype  of the  type  

hierarchy  that  Figure  9-1  on  page  9-2  shows:  

CREATE  ROW  TYPE  person_t  

( 

   name      VARCHAR(30)  NOT  NULL,  

   address   VARCHAR(20),  

   city      VARCHAR(20),  

   state     CHAR(2),  

   zip       INTEGER,  

   bdate     DATE  

); 

To create  a subtype,  specify  the  UNDER  keyword  and  the  name  of the  supertype  

whose  properties  the  subtype  inherits.  The  following  example  illustrates  how  you  

might  define  employee_t  as  a subtype  that  inherits  all  the  fields  of  person_t. The  

example  adds  salary  and  manager  fields  that  do  not  exist  in  the  person_t  type.  

CREATE  ROW  TYPE  employee_t  

( 

   salary    INTEGER,  

   manager   VARCHAR(30)  

) 

UNDER  person_t;  

Important:   You must  have  the  UNDER  privilege  on  the  supertype  before  you  can  

create  a subtype  that  inherits  the  properties  of the  supertype.  For  

information  about  UNDER  privileges,  see  Chapter  12,  “Implementing  a 

Dimensional  Database  (XPS),”  on  page  12-1.  

In  the  type  hierarchy  in  Figure  9-1  on  page  9-2,  sales_rep_t  is a subtype  of 

employee_t, which  is  the  supertype  of  sales_rep_t  in  the  same  way  that  person_t  

is the  supertype  of  employee_t. The  following  example  creates  sales_rep_t, which  

inherits  all  fields  from  person_t  and  employee_t  and  adds  four  new  fields.  Because  

the  modifications  on  a subtype  do  not  affect  its  supertype,  employee_t  does  not  

have  the  four  fields  that  are  added  for  sales_rep_t. 

  

Figure  9-1.  Example  of a Type Hierarchy

 

9-2 IBM Informix  Database  Design  and Implementation  Guide



CREATE  ROW  TYPE  sales_rep_t  

( 

rep_num       INT8,  

region_num    INTEGER,  

commission    DECIMAL,  

home_office   BOOLEAN  

) 

UNDER  employee_t;  

The  sales_rep_t  type  contains  12  fields:  name, address,  city, state, zip, bdate, 

salary, manager, rep_num, region_num, commission, and  home_office. 

Instances  of  both  the  employee_t  and  sales_rep_t  types  inherit  all  the  UDRs  that  

are  defined  for  the  person_t  type.  Any  additional  UDRs  that  are  defined  on  

employee_t  automatically  apply  to  instances  of  the  employee_t  type  and  to  

instances  of  its  subtype  sales_rep_t, but  not  to  instances  of person_t. 

The  preceding  type  hierarchy  is an  example  of single  inheritance  because  each  

subtype  inherits  from  a single  supertype.  Figure  9-2  illustrates  how  you  can  define  

multiple  subtypes  under  a single  supertype.  Although  single  inheritance  requires  

that  every  subtype  inherits  from  one  and  only  one  supertype,  no  practical  limit  

exists  on  the  depth  or  breadth  of  the  type  hierarchy  that  you  define.  

 

The  topmost  type  of  any  hierarchy  is referred  to  as  the  root  supertype. In  Figure  9-2,  

person_t  is  the  root  supertype  of  the  hierarchy.  Except  for  the  root  supertype,  any  

type  in  the  hierarchy  can  be  potentially  both  a supertype  and  subtype  at the  same  

time.  For  example,  customer_t  is a subtype  of person_t  and  a supertype  of 

us_customer_t. A subtype  at the  lower  levels  of  the  hierarchy  contains  properties  

of  the  root  supertype  but  does  not  directly  inherit  its  properties  from  the  root  

supertype.  For  example,  us_customer_t  has  only  one  supertype,  customer_t, but  

because  customer_t  is itself  a subtype  of  person_t,  the  fields  and  routines  that  

customer_t  inherits  from  person_t  are  also  inherited  by  us_customer_t. 

Overloading Routines for Types  in a Type  Hierarchy 

Routine  overloading  refers  to the  ability  to assign  one  name  to  multiple  routines  and  

specify  different  types  of  arguments  on  which  the  routines  can  operate.  In  a type  

hierarchy,  a subtype  automatically  inherits  the  routines  that  are  defined  on  its  

supertype.  However  you  can  define  a new  routine  on  a subtype  to  override  the  

inherited  routine  with  the  same  name.  For  example,  suppose  you  create  a getinfo()  

routine  on  type  person_t  that  returns  the  last  name  and  birthdate  of an  instance  of  

type  person_t. You can  register  another  getinfo()  routine  on  type  employee_t  that  

  

Figure  9-2.  Example  of a Type Hierarchy  That  Is a Tree Structure

 

Chapter  9. Understanding  Type and Table  Inheritance  in Dynamic  Server 9-3



returns  the  last  name  and  salary  from  an  instance  of employee_t. In  this  way,  you  

can  overload  a routine,  so  that  you  have  a customized  routine  for  every  type  in  the  

type  hierarchy,  as  Figure  9-3  shows.  

 

When  you  overload  a routine  so  that  routines  are  defined  with  the  same  name  but  

different  arguments  for  different  types  in  the  type  hierarchy,  the  argument  that  you  

specify  determines  which  routine  executes.  For  example,  if you  call  getinfo()  with  

an  argument  of  type  employee_t, a getinfo()  routine  defined  on  type  employee_t  

overrides  the  inherited  routine  of  the  same  name.  Similarly,  if you  define  another  

getinfo()  on  type  sales_rep_t, a call  to getinfo()  with  an  argument  of type  

sales_rep_t  overrides  the  routine  that  sales_rep_t  inherits  from  employee_t. 

For  information  about  how  to  create  and  register  user-defined  routines  (UDRs),  see  

IBM  Informix  User-Defined  Routines  and  Data  Types Developer’s  Guide. 

Inheritance and Type  Substitutability 

In  a type  hierarchy,  a subtype  automatically  inherits  all  the  routines  defined  on  its  

supertype.  Consequently,  if you  call  a routine  with  an  argument  of  a subtype  and  

no  routines  are  defined  on  the  subtype,  the  database  server  can  invoke  a routine  

that  is defined  on  a supertype.  Type substitutability  refers  to  the  ability  to use  an  

instance  of  a subtype  when  an  instance  of  a supertype  is  expected.  As  an  example,  

suppose  that  you  create  a routine  p_info()  that  accepts  an  argument  of  type  

person_t  and  returns  the  last  name  and  birthdate  of  an  instance  of  type  person_t. 

If no  other  p_info()  routines  are  registered,  and  you  invoke  p_info()  with  an  

argument  of  type  employee_t, the  routine  returns  the  name  and  birthdate  fields  

(inherited  from  person_t)  from  an  instance  of  type  employee_t. This  behavior  is 

possible  because  employee_t  inherits  the  functions  of  its  supertype,  person_t. 

In  general,  when  the  database  server  attempts  to  evaluate  a routine,  the  database  

server  searches  for  a signature  that  matches  the  routine  name  and  the  arguments  

that  you  specify  when  you  invoke  the  routine.  If  such  a routine  is found,  then  the  

database  server  uses  this  routine.  If an  exact  match  is not  found,  the  database  

server  attempts  to  find  a routine  with  the  same  name  and  whose  argument  type  is 

a supertype  of  the  argument  type  that  is specified  when  the  routine  is invoked.  

Figure  9-4  on  page  9-5  shows  how  the  database  server  searches  for  a routine  that  it 

can  use  when  a get()  routine  is  called  with  an  argument  of  the  subtype  sales_rep_t. 

Although  no  get()  routine  has  been  defined  on  the  sales_rep_t  type,  the  database  

server  searches  for  a routine  until  it finds  a get()  routine  that  has  been  defined  on  

a supertype  in  the  hierarchy.  In  this  case,  neither  sales_rep_t  nor  its  supertype  

employee_t  has  a get()  routine  defined  over  it. However,  because  a routine  is 

defined  for  person_t, this  routine  is invoked  to operate  on  an  instance  of 

sales_rep_t. 

 

  

Figure  9-3.  Example  of Routine  Overloading  in a Type Hierarchy

 

9-4 IBM Informix  Database  Design  and Implementation  Guide



The  process  in  which  the  database  server  searches  for  a routine  that  it can  use  is 

called  rroutine  resolution. For  more  information  about  routine  resolution,  see  IBM  

Informix  User-Defined  Routines  and  Data  Types Developer’s  Guide. 

Dropping Named Row Types  from a Type  Hierarchy 

To drop  a named  row  type  from  a type  hierarchy,  use  the  DROP  ROW  TYPE  

statement.  However,  you  can  drop  a type  only  if it  has  no  dependencies.  You 

cannot  drop  a named  row  type  if either  of the  following  conditions  is true: 

v   The  type  is currently  assigned  to  a table.  

v   The  type  is a supertype  of another  type.

The  following  example  shows  how  to  drop  the  sales_rep_t  type:  

DROP  ROW  TYPE  sales_rep_t  RESTRICT;  

To drop  a supertype,  you  must  first  drop  each  subtype  that  inherits  properties  

from  the  supertype.  You drop  types  in  a type  hierarchy  in the  reverse  order  in  

which  you  create  the  types.  For  example,  to  drop  the  person_t  type  that  Figure  9-4  

shows,  you  must  first  drop  its  subtypes  in  the  following  order:  

DROP  ROW  TYPE  sale_rep_t  RESTRICT;  

DROP  ROW  TYPE  employee_t  RESTRICT;  

DROP  ROW  TYPE  person_t  RESTRICT;  

Important:   To drop  a type,  you  must  be  the  database  administrator  or  the  owner  

of  the  type.  

Table  Inheritance 

Only  tables  that  are  defined  on  named  row  types  support  table  inheritance.  Table  

inheritance  is  the  property  that  allows  a table  to  inherit  the  behavior  (constraints,  

storage  options,  triggers)  from  the  supertable  above  it in  the  table  hierarchy.  A table  

hierarchy  is the  relationship  that  you  can  define  among  tables  in  which  subtables  

inherit  the  behavior  of  supertables.  A table  inheritance  provides  the  following  

advantages:  

v   It encourages  modular  implementation  of your  data  model.  

v   It ensures  consistent  reuse  of schema  components.  

v   It allows  you  to  construct  queries  whose  scope  can  be  some  or  all  of  the  tables  

in  the  table  hierarchy.

In  a table  hierarchy,  a subtable  automatically  inherits  the  following  properties  from  

its  supertable:  

v   All  constraint  definitions  (primary  key,  unique,  and  referential  constraints)  

v   Storage  option  

  

Figure  9-4.  Example  of How  the  Database  Server  Searches  for  a Routine  in a Type Hierarchy

 

Chapter  9. Understanding  Type and Table  Inheritance  in Dynamic  Server 9-5



v   All  triggers  

v   Indexes  

v   Access  method

The Relationship Between Type  and Table  Hierarchies 

Every  table  in  a table  hierarchy  must  be  assigned  to  a named  row  type  in  a 

corresponding  type  hierarchy.  Figure  9-5  shows  an  example  of  the  relationships  

that  can  exist  between  a type  hierarchy  and  table  hierarchy.  

 

However,  you  can  also  define  a type  hierarchy  in  which  the  named  row  types  do  

not  necessarily  have  a one-to-one  correspondence  with  the  tables  in a table  

hierarchy.  Figure  9-6  shows  how  you  might  create  a type  hierarchy  for  which  only  

some  of  the  named  row  types  have  been  assigned  to  tables.  

   

Defining a Table  Hierarchy 

The  type  that  you  use  to  define  a table  must  exist  before  you  can  create  the  table.  

Similarly,  you  define  a type  hierarchy  before  you  define  a corresponding  table  

hierarchy.  To establish  the  relationships  between  specific  subtables  and  supertables  

in  a table  hierarchy,  use  the  UNDER  keyword.  The  following  CREATE  TABLE  

statements  define  the  simple  table  hierarchy  that  Figure  9-5  on  page  9-6  shows.  The  

examples  in  this  section  assume  that  the  person_t, employee_t, and  sales_rep_t  

types  already  exist.  

  

Figure  9-5.  Example  of the  Relationship  Between  Type Hierarchy  and  Table Hierarchy

  

Figure  9-6.  Example  of an Inheritance  Hierarchy  in Which  Only  Some  Types Have  Been  

Assigned  to Tables

 

9-6 IBM Informix  Database  Design  and Implementation  Guide



CREATE  TABLE  person  OF TYPE person_t;  

  

CREATE  TABLE  employee  OF TYPE employee_t  UNDER  person;  

  

CREATE  TABLE  sales_rep  OF TYPE sales_rep_t  UNDER  employee;  

The  person, employee, and  sales_rep  tables  are  defined  on  the  person_t,  

employee_t, and  sales_rep_t  types,  respectively.  Thus,  for  every  type  in  the  type  

hierarchy,  a corresponding  table  exists  in  the  table  hierarchy.  In  addition,  the  

relationship  between  the  tables  of a table  hierarchy  must  match  the  relationship  

between  the  types  of  the  type  hierarchy.  For  example,  the  employee  table  inherits  

from  person  table  in  the  same  way  that  the  employee_t  type  inherits  from  the  

person_t  type,  and  the  sales_rep  table  inherits  from  the  employee  table  in  the  

same  way  that  the  sales_rep_t  type  inherits  from  the  employee_t  type.  

Subtables  automatically  inherit  all  inheritable  properties  that  are  added  to  

supertables.  Therefore,  you  can  add  or  alter  the  properties  of a supertable  at any  

time  and  the  subtables  automatically  inherit  the  changes.  For  more  information,  see  

“Modifying  Table Behavior  in  a Table Hierarchy”  on  page  9-8.  

Important:   You must  have  the  UNDER  privilege  on  the  supertable  before  you  can  

create  a subtable  that  inherits  the  properties  of the  supertable.  For  

more  information,  see  “Under  Privileges  for  Typed  Tables  (IDS)”  on  

page  6-6.  

Inheritance of Table  Behavior in a Table  Hierarchy 

When  you  create  a subtable  under  a supertable,  the  subtable  inherits  all  the  

properties  of  its  supertable,  including  the  following  ones:  

v   All  columns  of  the  supertable  

v   Constraint  definitions  

v   Storage  options  

v   Indexes  

v   Referential  integrity  

v   Triggers  

v   The  access  method

In  addition,  if table  c inherits  from  table  b and  table  b inherits  from  table  a,  then  

table  c automatically  inherits  the  behavior  unique  to  table  b as well  as  the  behavior  

that  table  b has  inherited  from  table  a.  Consequently,  the  supertable  that  actually  

defines  behavior  can  be  several  levels  distant  from  the  subtables  that  inherit  the  

behavior.  For  example,  consider  the  following  table  hierarchy:  

CREATE  TABLE  person  OF TYPE  person_t  

(PRIMARY  KEY  (name))  

FRAGMENT  BY EXPRESSION  

name  < ’n’  IN dbspace1,  

name  >= ’n’  IN dbspace2;  

  

CREATE  TABLE  employee  OF TYPE  employee_t  

(CHECK(salary  > 34000))  

UNDER  person;  

  

CREATE  TABLE  sales_rep  OF TYPE  sales_rep_t  

LOCK  MODE  ROW  

UNDER  employee;  

 

Chapter  9. Understanding  Type and Table  Inheritance  in Dynamic  Server 9-7



In  this  table  hierarchy,  the  employee  and  sales_rep  tables  inherit  the  primary  key  

name  and  fragmentation  strategy  of  the  person  table.  The  sales_rep  table  inherits  

the  check  constraint  of  the  employee  table  and  adds  a LOCK  MODE.  The  

following  table  shows  the  behavior  for  each  table  in  the  hierarchy.  

Table  Table  Behavior  

person  PRIMARY  KEY,  FRAGMENT  BY  EXPRESSION  

employee  PRIMARY  KEY,  FRAGMENT  BY  EXPRESSION,  CHECK  constraint  

sales_rep  PRIMARY  KEY,  FRAGMENT  BY  EXPRESSION,  CHECK  constraint,  

LOCK  MODE  ROW

 A  table  hierarchy  might  also  contain  subtables  in  which  behavior  defined  on  a 

subtable  can  override  behavior  (otherwise)  inherited  from  its  supertable.  Consider  

the  following  table  hierarchy,  which  is identical  to  the  previous  example  except  

that  the  employee  table  adds  a new  storage  option:  

CREATE  TABLE  person  OF  TYPE  person_t  

(PRIMARY  KEY  (name))  

FRAGMENT  BY  EXPRESSION  

name  < ’n’  IN person1,  

name  >= ’n’  IN person2;  

  

CREATE  TABLE  employee  OF TYPE  employee_t  

(CHECK(salary  > 34000))  

FRAGMENT  BY  EXPRESSION  

name  < ’n’  IN employ1,  

name  >= ’n’  IN employ2  

UNDER  person;  

  

CREATE  TABLE  sales_rep  OF TYPE  sales_rep_t  

LOCK  MODE  ROW  

UNDER  employee;  

Again,  the  employee  and  sales_rep  tables  inherit  the  primary  key  name  of  the  

person  table.  However,  the  fragmentation  strategy  of the  employee  table  overrides  

the  fragmentation  strategy  of  the  person  table.  Consequently,  both  the  employee  

and  sales_rep  tables  store  data  in  dbspaces  employ1  and  employ2,  whereas  the  

person  table  stores  data  in  dbspaces  person1  and  person2. 

Modifying Table  Behavior in a Table  Hierarchy 

Once  you  define  a table  hierarchy,  you  cannot  modify  the  structure  (columns)  of  

the  existing  tables.  However,  you  can  modify  the  behavior  of  tables  in  the  

hierarchy.  Table 9-1  on  page  9-9  shows  the  table  behavior  that  you  can  modify  in a 

table  hierarchy  and  the  syntax  that  you  use  to  make  modifications.  

 

9-8 IBM Informix  Database  Design  and Implementation  Guide



Table 9-1.  Table Behavior  That  You Can  Modify  in a Table Hierarchy  

Table  Behavior  Syntax  Considerations  

Constraint  definitions  ALTER TABLE To add  or drop  a constraint,  use  the ADD  

CONSTRAINT  or DROP  CONSTRAINT  clause.  For 

more  information,  see  “Constraints  on Tables in a 

Table Hierarchy”  on page  9-9.  

Indexes  CREATE INDEX,  ALTER INDEX  For  more  information,  see  “Adding  Indexes  to Tables 

in a Table Hierarchy”  on page  9-9 and  the CREATE 

INDEX  and  ALTER INDEX  statements  in the  IBM  

Informix  Guide  to SQL:  Syntax. 

Triggers  CREATE/DROP  TRIGGER  You cannot  drop  an inherited  trigger.  However,  you  

can  drop  a trigger  from  a supertable  or add  a trigger  

to a subtable  to  override  an inherited  trigger.  For  

information  about  how  to modify  triggers  on 

supertables  and  subtables,  see “Triggers  on Tables in a 

Table Hierarchy”  on page  9-10.  For  information  about  

how  to create  a trigger,  see  the IBM  Informix  Guide  to 

SQL:  Tutorial.
  

All  existing  subtables  automatically  inherit  new  table  behavior  when  you  modify  a 

supertable  in  the  hierarchy.  

Important:   When  you  use  the  ALTER  TABLE  statement  to  modify  a table  in  a 

table  hierarchy,  you  can  use  only  the  ADD  CONSTRAINT,  DROP  

CONSTRAINT,  MODIFY  NEXT  SIZE,  and  LOCK  MODE  clauses.  

Constraints on Tables in a Table Hierarchy 

You can  alter  or  drop  a constraint  only  in  the  table  on  which  it  is defined.  You 

cannot  drop  or  alter  a constraint  from  a subtable  when  the  constraint  is inherited.  

However,  a subtable  can  add  additional  constraints.  Any  additional  constraints  that  

you  define  on  a table  are  also  inherited  by  any  subtables  that  inherit  from  the  table  

that  defines  the  constraint.  Because  constraints  are  additive,  all  inherited  and  

current  (added)  constraints  apply.  

Adding Indexes to Tables in a Table Hierarchy 

When  you  define  an  index  on  a supertable  in  a hierarchy,  any  subtables  that  you  

define  under  that  supertable  also  inherit  the  index.  Suppose  you  have  a table  

hierarchy  that  contains  the  tables  tab_a, tab_b, and  tab_c  where  tab_a  is a 

supertable  to  tab_b, and  tab_b  is a supertable  to tab_c. If you  create  an  index  on  a 

column  of  tab_b, then  that  index  will  exist  on  that  column  in  both  tab_b  and  

tab_c. If you  create  an  index  on  a column  of tab_a, then  that  index  will  span  tab_a, 

tab_b, and  tab_c. 

Important:   An  index  that  a subtable  inherits  from  a supertable  cannot  be  dropped  

or  modified.  However,  you  can  add  indexes  to a subtable.  

Indexes,  unique  constraints,  and  primary  keys  are  all  closely  related.  When  you  

specify  a unique  constraint  or  primary  key,  the  database  server  automatically  

creates  a unique  index  on  the  column.  Consequently,  a primary  key  or  unique  

constraint  that  you  define  on  a supertable  applies  to  all  the  subtables.  For  example,  

suppose  there  are  two  tables  (a  supertable  and  subtable),  both  of  which  contain  a 

column  emp_id.  If the  supertable  specifies  that  emp_id  has  a unique  constraint,  

the  subtable  must  contain  emp_id  values  that  are  unique  across  both  the  subtable  

and  the  supertable.  

 

Chapter  9. Understanding  Type and Table  Inheritance  in Dynamic  Server 9-9



Important:   You cannot  define  more  than  one  primary  key  across  a table  hierarchy,  

even  if some  of  the  tables  in  the  hierarchy  do  not  inherit  the  primary  

key.  

Triggers on Tables in a Table Hierarchy 

You cannot  drop  an  inherited  trigger.  However,  you  can  create  a trigger  on  a 

subtable  to  override  a trigger  that  the  subtable  inherits  from  a supertable.  Unlike  

constraints,  triggers  are  not  additive;  only  the  nearest  trigger  on  a supertable  in the  

hierarchy  applies.  

If you  want  to  disable  the  trigger  that  a subtable  inherits  from  its  supertable,  you  

can  create  an  empty  trigger  on  the  subtable  to override  the  trigger  from  the  

supertable.  Because  triggers  are  not  additive,  this  empty  trigger  executes  for  the  

subtable  and  any  subtables  under  the  subtable,  which  are  not  subject  to further  

overrides.  

SERIAL Types  in a Table  Hierarchy 

A  table  hierarchy  can  contain  columns  of type  SERIAL  and  BIGSERIAL  or  

SERIAL8.  However,  only  one  SERIAL  and  one  BIGSERIAL  or  one  SERIAL8  column  

are  allowed  across  a table  hierarchy.  Suppose  you  create  the  following  type  and  

table  hierarchy:  

CREATE  ROW TYPE parent_t  (a INT);  

CREATE  ROW TYPE child1_t  (s_col  SERIAL)  UNDER  parent_t;  

CREATE  ROW TYPE child2_t  (s8_col  SERIAL8)  UNDER  child1_t;  

CREATE  ROW TYPE child3_t  (d FLOAT)  UNDER child2_t;  

  

CREATE  TABLE  parent_tab  of type parent_t;  

CREATE  TABLE  child1_tab  of type child1_t  UNDER parent_tab;  

CREATE  TABLE  child2_tab  of type child2_t  UNDER child1_tab;  

CREATE  TABLE  child3_tab  of type child3_t  UNDER child2_tab;  

The  parent_tab  table  does  not  contain  a SERIAL  type.  The  child1_tab  introduces  a 

SERIAL  counter  into  the  hierarchy.  The  child2_tab  inherits  the  SERIAL  column  

from  child1_tab  and  adds  a SERIAL8  column.  The  child3_tab  inherits  both  a 

SERIAL  and  SERIAL8  column.  

A  0 value  inserted  into  the  s_col  or  s8_col  column  for  any  table  in  the  hierarchy  

inserts  a monotonically  increasing  value,  regardless  of  which  table  takes  the  insert.  

You cannot  set  a starting  counter  value  for  a SERIAL  or  SERIAL8  type  in CREATE  

ROW  TYPE  statements.  To set  a starting  value  for  a SERIAL  or  SERIAL8  column  in  

a table  hierarchy,  you  can  use  the  ALTER  TABLE  statement.  The  following  

statement  shows  how  to  alter  a table  to modify  the  next  SERIAL  and  SERIAL8  

values  to  be  inserted  anywhere  in  the  table  hierarchy:  

ALTER  TABLE child3_tab  

MODIFY  (s_col  SERIAL(100),  s8_col  SERIAL8  (200))  

Except  for  the  previously  described  behavior,  all  the  rules that  apply  to SERIAL,  

BIGSERIAL,  and  SERIAL8  type  columns  in  untyped  tables  also  apply  to  SERIAL,  

BIGSERIAL,  and  SERIAL8  type  columns  in  table  hierarchies.  For  more  information,  

see  Chapter  3,  “Choosing  Data  Types,”  on  page  3-1  and  the  IBM  Informix  Guide  to  

SQL:  Reference. 

Adding a New Table  to a Table  Hierarchy 

After  you  define  a table  hierarchy,  you  cannot  use  the  ALTER  TABLE  statement  to  

add,  drop,  or  modify  columns  of  a table  within  the  hierarchy.  However,  you  can  

 

9-10 IBM Informix  Database  Design  and Implementation  Guide



add  new  subtypes  and  subtables  to  an  existing  hierarchy  provided  that  the  new  

subtype  and  subtable  do  not  interfere  with  existing  inheritance  relationships.  

Figure  9-7  illustrates  one  way  that  you  might  add  a type  and  corresponding  table  

to  an  existing  hierarchy.  The  dashed  lines  indicate  the  added  subtype  and  subtable.  

 

The  following  statements  show  how  you  might  add  the  type  and  table  to the  

inheritance  hierarchy  that  Figure  9-7  shows:  

CREATE  ROW TYPE us_sales_rep_t  (domestic_sales  DECIMAL(15,2))  

UNDER employee_t;  

  

CREATE  TABLE  us_sales_rep  OF TYPE us_sales_rep_t  

UNDER sales_rep;  

You can  also  add  subtypes  and  subtables  that  branch  from  an  existing  supertype  

and  its  parallel  supertable.  Figure  9-8  shows  how  you  might  add  the  customer_t  

type  and  customer  table  to  existing  hierarchies.  In  this  example,  both  the  customer  

table  and  the  employee  table  inherit  properties  from  the  person  table.  

 

The  following  statements  create  the  customer_t  type  and  customer  table  under  the  

person_t  type  and  person  table,  respectively:  

CREATE  ROW TYPE customer_t  (cust_num  INTEGER)  UNDER  person_t;  

  

CREATE  TABLE  customer  OF TYPE customer_t  UNDER  person;  

  

Figure  9-7.  Example  of How  You Might  Add  a Subtype  and  Subtable  to an Existing  

Inheritance  Hierarchy

  

Figure  9-8.  Example  of Adding  a Type and  Table Under  an  Existing  Supertype  and  Supertable

 

Chapter  9. Understanding  Type and Table  Inheritance  in Dynamic  Server 9-11



Dropping a Table  in a Table  Hierarchy 

If a table  and  its  corresponding  named  row  type  have  no  dependencies  (they  are  

not  a supertable  and  supertype),  you  can  drop  the  table  and  its  type.  You must  

drop  the  table  before  you  can  drop  the  type.  For  general  information  about  

dropping  a table,  see  the  DROP  TABLE  statement  in  the  IBM  Informix  Guide  to  

SQL:  Syntax. For  information  about  how  to  drop  a named  row  type,  see  “Dropping  

Named  Row  Types”  on  page  8-17.  

Altering the Structure of a Table  in a Table  Hierarchy 

You cannot  use  the  ALTER  TABLE  statement  to  add,  drop,  or  modify  the  columns  

of  a table  in  a table  hierarchy.  You can  use  the  ALTER  TABLE  statement  to add,  

drop,  or  modify  constraints.  

The  process  of  adding,  dropping,  or  modifying  a column  of  a table  in a table  

hierarchy  (or  otherwise  altering  the  structure  of  a table)  can  be  a time-intensive  

task.  

 To  alter  the  structure  of  a table  in  a table  hierarchy:   

1.   Download  data  from  all  subtables  and  the  supertable  that  you  want  to  modify.  

2.   Drop  the  subtables  and  subtypes.  

3.   Modify  the  unloaded  data  file.  

4.   Modify  the  supertable.  

5.   Recreate  the  subtypes  and  subtables.  

6.   Upload  the  data.

Querying Tables  in a Table  Hierarchy 

A  table  hierarchy  allows  you  to  construct  a SELECT,  UPDATE,  or  DELETE  

statement  whose  scope  is a supertable  and  its  subtables—in  a single  SQL  

command.  For  example,  a query  against  any  supertable  in  a table  hierarchy  returns  

data  for  all  columns  of the  supertable  and  the  columns  that  subtables  inherit  from  

the  supertable.  To limit  the  results  of  a query  to one  table  in  the  table  hierarchy,  

you  must  include  the  ONLY  keyword  in the  query.  For  more  information  about  

how  to  query  and  modify  data  from  tables  in  a table  hierarchy,  see  the  IBM  

Informix  Guide  to  SQL:  Tutorial.  

Creating a View  on a Table  in a Table  Hierarchy 

You can  create  a view  based  upon  any  table  in a table  hierarchy.  For  example,  the  

following  statement  creates  a view  on  the  person  table,  which  is  the  root  

supertable  of  the  table  hierarchy  that  Figure  9-5  on  page  9-6  shows:  

CREATE  VIEW  name_view  AS SELECT  name  FROM  person  

Because  the  person  table  is  a supertable,  the  view  name_view  displays  data  from  

the  name  column  of  the  person, employee, and  sales_rep  tables.  To create  a view  

that  displays  only  data  from  the  person  table,  use  the  ONLY  keyword,  as  the  

following  example  shows:  

CREATE  VIEW  name_view  AS SELECT  name  FROM  ONLY(person)  

Important:   You cannot  perform  an  insert  or  update  on  a view  that  is defined  on  a 

supertable  because  the  database  server  cannot  know  where  in the  table  

hierarchy  to  put  the  new  rows.

 

9-12 IBM Informix  Database  Design  and Implementation  Guide



For  information  about  how  to  create  a typed  view,  see  “Typed  Views  (IDS)”  on  

page  6-18.  

 

Chapter  9. Understanding  Type and Table  Inheritance  in Dynamic  Server 9-13



9-14 IBM Informix  Database  Design  and Implementation  Guide



Chapter  10.  Creating  and  Using  User-Defined  Casts  in  

Dynamic  Server  

In This  Chapter   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 

What  Is a Cast?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1  

Creating  User-Defined  Casts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2  

Invoking  Casts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2  

Restrictions  on  User-Defined  Casts   . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3  

Casting  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 

Casting  Between  Named  and  Unnamed  Row  Types  . . . . . . . . . . . . . . . . . . . . 10-4  

Casting  Between  Unnamed  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . 10-4 

Casting  Between  Named  Row  Types  . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 

Using  Explicit  Casts  on  Fields   . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 

Explicit  Casts  on  Fields  of an Unnamed  Row  Type  . . . . . . . . . . . . . . . . . . . 10-5 

Explicit  Casts  on  Fields  of a Named  Row  Type  . . . . . . . . . . . . . . . . . . . . . 10-6 

Casting  Individual  Fields  of a Row  Type  . . . . . . . . . . . . . . . . . . . . . . . . 10-6 

Casting  Collection  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 

Restrictions  on  Collection-Type  Conversions  . . . . . . . . . . . . . . . . . . . . . . . 10-7 

Collections  with  Different  Element  Types  . . . . . . . . . . . . . . . . . . . . . . . . 10-7  

Using  an Implicit  Cast  Between  Element  Types  . . . . . . . . . . . . . . . . . . . . . 10-7  

Using  an Explicit  Cast  Between  Element  Types  . . . . . . . . . . . . . . . . . . . . . 10-8  

Converting  Relational  Data  to a MULTISET  Collection   . . . . . . . . . . . . . . . . . . . 10-8  

Casting  Distinct  Data  Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 

Using  Explicit  Casts  with  Distinct  Types  . . . . . . . . . . . . . . . . . . . . . . . . 10-8  

Casting  Between  a Distinct  Type and  Its Source  Type . . . . . . . . . . . . . . . . . . . . 10-9 

Adding  and  Dropping  Casts  on  a Distinct  Type  . . . . . . . . . . . . . . . . . . . . . 10-10 

Casting  to Smart  Large  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 

Creating  Cast  Functions  for  User-Defined  Casts   . . . . . . . . . . . . . . . . . . . . . . 10-11 

An  Example  of Casting  Between  Named  Row  Types  . . . . . . . . . . . . . . . . . . . . 10-11  

An  Example  of Casting  Between  Distinct  Data  Types  . . . . . . . . . . . . . . . . . . . 10-12  

Multilevel  Casting   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13

In This Chapter 

This  chapter  describes  user-defined  casts  and  shows  how  to  use  run-time  casts  to  

perform  data  conversions  on  extended  data  types.  

What Is a Cast? 

A cast  is a mechanism  that  converts  a value  from  one  data  type  to  another  data  

type.  Casts  allow  you  to  make  comparisons  between  values  of different  data  types  

or  substitute  a value  of  one  data  type  for  a value  of another  data  type.  Dynamic  

Server  supports  casts  in  the  following  types  of  expressions:  

v   Column  expressions  

v   Constant  expressions  

v   Function  expressions  

v   SPL  variables  

v   Host  variables  (ESQL) 

v   Statement  local  variable  (SLV)  expressions

To  convert  a value  of one  data  type  to another  data  type,  a cast  must  exist  in the  

database  or  the  database  server.  Dynamic  Server  supports  the  following  types  of  

casts:  

 

© Copyright  IBM Corp. 1996, 2008 10-1



v   Built-in  cast. A built-in  cast  is a cast  that  is built  into  the  database  server.  A 

built-in  cast  performs  automatic  conversions  between  different  built-in  data  

types.  

v   User-defined  cast. A user-defined  cast  often  requires  a cast  function  to  handle  

conversions  from  one  data  type  to another.  To register  and  use  a user-defined  

cast,  you  must  use  the  CREATE  CAST  statement.

A  user-defined  cast  is explicit  if you  include  the  EXPLICIT  keyword  when  you  

create  a cast  with  the  CREATE  CAST  statement.  (The  default  option  is explicit.)  

Explicit  casts  are  never  invoked  automatically.  To invoke  an  explicit  cast,  you  must  

use  the  CAST...  AS  keywords  or the  double  colon  (::)  cast  operator.  

A  user-defined  cast  is implicit  if you  include  the  IMPLICIT  keyword  when  you  

create  a cast  with  a CREATE  CAST  statement.  The  database  server  automatically  

invokes  implicit  casts  at runtime  to  perform  data  conversions.  

All  casts  are  included  in  the  syscasts  system  catalog  table.  For  information  about  

syscasts,  see  the  IBM  Informix  Guide  to  SQL:  Reference. 

Creating User-Defined Casts 

When  the  database  server  does  not  provide  built-in  casts  to  perform  conversions  

between  two  data  types,  you  can  create  a user-defined  cast  to  handle  the  data  type  

conversion.  User-defined  casts  are  typically  used  to  provide  data  type  conversions  

for  the  following  extended  data  types:  

v   Opaque  data  types. Developers  of opaque  data  types  must  define  casts  to  

handle  conversions  between  the  internal/external  representations  of  the  opaque  

data  type.  For  information  about  how  to create  and  register  casts  for  opaque  

data  types,  see  IBM  Informix  User-Defined  Routines  and  Data  Types Developer’s  

Guide. 

v   Distinct  data  types. You cannot  directly  compare  a distinct  data  type  to its  

source  type.  However,  Dynamic  Server  automatically  registers  explicit  casts  from  

the  distinct  type  to  the  source  type  and  vice  versa.  A  distinct  type  does  not  

inherit  the  casts  that  are  defined  on  its  source  type.  In  addition,  the  user-defined  

casts  that  you  might  define  on  a distinct  type  are  not  available  to its  source  type.  

For  more  information  and  examples  that  show  how  to  create  and  use  casts  on  

distinct  types,  see  “Creating  Cast  Functions  for  User-Defined  Casts”  on  page  

10-11.  

v   Named  row  types. In  most  cases,  you  can  explicitly  cast  a named  row  type  to  

another  row-type  value  without  having  to  create  the  cast.  However,  to convert  

between  values  of  a named  row  type  and  some  other  data  type,  you  must  first  

create  the  cast  to  handle  the  conversion.

For  an  example  of  how  to create  and  use  a user-defined  cast,  see  “An  Example  of  

Casting  Between  Distinct  Data  Types”  on  page  10-12.  For  the  syntax  of the  

CREATE  CAST  statement,  see  the  IBM  Informix  Guide  to  SQL:  Syntax. 

Invoking Casts 

For  built-in  casts  and  user-defined  implicit  casts,  the  database  server  automatically  

(implicitly)  invokes  the  cast  to  handle  the  data  conversion.  For  example,  you  can  

compare  a value  of  type  INT  with  SMALLINT,  FLOAT, or  CHAR  values  without  

explicitly  casting  the  expression  because  the  database  server  provides  

system-defined  casts  to  transparently  handle  conversions  between  these  built-in  

data  types.  

 

10-2 IBM Informix  Database  Design  and Implementation  Guide



When  you  define  an  explicit  user-defined  cast  to  handle  conversions  between  two  

data  types,  you  must  explicitly  invoke  the  cast  with  either  the  CAST...AS  keywords  

or  the  double-colon  cast  operator  (::).  The  following  partial  examples  show  the  two  

ways  that  you  can  invoke  an  explicit  cast:  

...  WHERE  new_col  = CAST(old_col  AS newtype)  

  

...  WHERE  new_col  = old_col::newtype  

Restrictions on User-Defined Casts 

You cannot  create  a user-defined  cast  between  two  built-in  data  types.  You also  

cannot  create  a user-defined  cast  that  includes  any  of  the  following  data  types:  

v   Collection  data  types:  LIST, MULTISET,  or  SET  

v   Unnamed  row  types  

v   Smart-large-object  data  types:  CLOB  or  BLOB  

v   Simple-large-object  data  types:  TEXT  or  BYTE

In  general,  a cast  between  two  data  types  requires  that  each  data  type  represents  

the  same  number  of  component  values.  For  example,  a cast  between  a row  type  

and  an  opaque  data  type  is  possible  if each  field  in  the  row  type  has  a 

corresponding  field  in  the  opaque  data  type.  When  you  want  to  perform  

conversions  between  two  data  types  that  have  the  same  storage  structure,  you  can  

use  the  CREATE  CAST  statement  without  a cast  function.  Otherwise,  you  must  

create  a cast  function  that  you  then  register  with  a CREATE  CAST  statement.  For  

an  example  of  how  to use  a cast  function  to  create  a user-defined  cast,  see  

“Creating  Cast  Functions  for  User-Defined  Casts”  on  page  10-11.  

Casting Row Types  

You can  compare  or  substitute  between  values  of  any  two  row  types  (named  or 

unnamed)  only  when  both  row  types  have  the  same  number  of  fields,  and  one  of  

the  following  conditions  is also  true: 

v   All  corresponding  fields  of  the  two  row  types  have  the  same  data  type.  

Two  row  types  are  considered  structurally  equivalent  when  they  have  the  same  

number  of  fields  and  the  data  types  of  corresponding  fields  are  the  same.  

v   User-defined  casts  exist  to  perform  the  conversions  when  two  named  row  types  

are  being  compared.  

v   System-defined  or  user-defined  casts  exist  to  perform  the  necessary  conversions  

for  corresponding  field  values  that  are  not  of  the  same  data  type.  

When  the  corresponding  fields  are  not  of the  same  data  type,  you  can  use  either  

system-defined  casts  or  user-defined  casts  to handle  data  conversions  on  the  

fields.

If a built-in  cast  exists  to  handle  data  conversions  on  the  individual  fields,  you  can  

explicitly  cast  the  value  of  one  row  type  to the  other  row  type  (unless  the  row  

types  are  both  unnamed  row  types,  in  which  case  an  explicit  cast  is not  necessary).  

If  a built-in  cast  does  not  exist  to handle  field  conversions,  you  can  create  a 

user-defined  cast  to  handle  the  field  conversions.  The  cast  can  be  either  implicit  or 

explicit.  

In  general,  when  a row  type  is cast  to  another  row  type,  the  individual  field  

conversions  might  be  handled  with  explicit  or  implicit  casts.  When  the  conversion  

between  corresponding  fields  requires  an  explicit  cast,  the  value  of  the  field  that  is 

 

Chapter  10. Creating and Using User-Defined  Casts in Dynamic  Server 10-3



cast  must  match  the  value  of the  corresponding  field  exactly,  because  the  database  

server  applies  no  additional  implicit  casts  on  a value  that  has  been  explicitly  cast.  

Casting Between Named and Unnamed Row Types  

To compare  values  of a named  row  type  with  values  of an  unnamed  row  type,  you  

can  use  an  explicit  cast.  Suppose  that  you  create  the  following  named  row  type  

and  tables:  

CREATE  ROW TYPE info_t  (x CHAR(1),  y CHAR(20))  

CREATE  TABLE  customer  (cust_info  info_t)  

CREATE  TABLE  retailer  (ret_info  ROW (a CHAR(1),  b CHAR(20)))  

The  following  INSERT  statements  show  how  to  create  row-type  values  for  the  

customer  and  retailer  tables:  

INSERT  INTO customer  VALUES(ROW(’t’,’philips’)::info_t)  

INSERT  INTO retailer  VALUES(ROW(’f’,’johns’))  

To compare  or  substitute  data  from  the  customer  table  with  data  from  retailer  

table,  you  must  use  an  explicit  cast  to  convert  a value  of  one  row  type  to  the  other  

row  type.  In  the  following  query,  the  ret_info  column  (an  unnamed  row  type)  is 

explicitly  cast  to  info_t  (a named  row  type):  

SELECT  cust_info  

FROM  customer,  retailer  

WHERE  cust_info  = ret_info::info_t  

In  general,  to  perform  a conversion  between  a named  row  type  and  an  unnamed  

row  type,  you  must  explicitly  cast  one  row  type  to  the  other  row  type.  You can  

perform  an  explicit  cast  in  either  direction:  you  can  cast  the  named  row  type  to an  

unnamed  row  type  or  cast  the  unnamed  row  type  to  a named  row  type.  The  

following  statement  returns  the  same  results  as  the  previous  example.  However,  

the  named  row  type  in  this  example  is explicitly  cast  to  the  unnamed  row  type:  

SELECT  cust_info  

FROM customer,  retailer  

WHERE  cust_info::ROW(a  CHAR(1),  b CHAR(20))  = ret_info  

Casting Between Unnamed Row Types  

You can  compare  two  unnamed  row  types  that  are  structurally  equivalent  without  

an  explicit  cast.  You can  also  compare  an  unnamed  row  type  with  another  

unnamed  row  type,  if both  row  types  have  the  same  number  of  fields,  and  casts  

exist  to  convert  values  of corresponding  fields  that  are  not  of  the  same  data  type.  

In  other  words,  the  cast  from  one  unnamed  row  type  to  another  is implicit  if all  

the  casts  that  handle  field  conversions  are  system-defined  or  implicit  casts.  

Otherwise,  you  must  explicitly  cast  an  unnamed  row  type  to compare  it  with  

another  row  type.  

Suppose  you  create  the  following  prices  table:  

CREATE  TABLE  prices  

(col1   ROW(a  SMALLINT,  b FLOAT)  

 col2   ROW(x  INT,  y REAL)  ) 

The  values  of  the  two  unnamed  row  types  can  be  compared  (without  an  explicit  

cast)  when  built-in  casts  exist  to  perform  conversions  between  corresponding  

fields.  Consequently,  the  following  query  does  not  require  an  explicit  cast  to  

compare  col1  and  col2  values:  

SELECT  * FROM  prices  WHERE  col1  = col2  

 

10-4 IBM Informix  Database  Design  and Implementation  Guide



In  this  example,  the  database  server  implicitly  invokes  a built-in  cast  to  convert  

field  values  of  SMALLINT  to  INT  and  REAL  to  FLOAT. 

If  corresponding  fields  of  two  row  types  cannot  implicitly  cast  to one  another,  you  

can  explicitly  cast  between  the  types,  if a user-defined  cast  exists  to  handle  

conversions  between  the  two  types.  

Casting Between Named Row Types  

A named  row  type  is strongly  typed,  which  means  that  the  database  server  

recognizes  two  named  row  types  as  two  separate  types  even  if the  row  types  are  

structurally  equivalent.  For  this  reason  you  must  create  and  register  a user-defined  

cast  before  you  can  perform  comparisons  between  two  named  row  types.  For  an  

example  of  how  to  create  and  use  casts  to handle  conversions  between  two  named  

row  types,  see  “An  Example  of  Casting  Between  Named  Row  Types”  on  page  

10-11.  

Using Explicit Casts on Fields 

Before  you  can  explicitly  cast  between  two  row  types  (named  or  unnamed),  whose  

fields  contain  different  data  types,  a cast  (either  system-defined  or  user-defined)  

must  exist  to  handle  conversions  between  the  corresponding  field  data  types.  

When  you  explicitly  cast  between  two  row  types,  the  database  server  automatically  

invokes  any  explicit  casts  that  are  necessary  to  handle  conversions  between  field  

data  types.  In  other  words,  when  you  perform  an  explicit  cast  on  a row  type  value,  

you  do  not  have  to  explicitly  cast  individual  fields  of the  row  type,  unless  more  

than  one  level  of casting  is necessary  to  handle  the  data  type  conversion  on  the  

field.  

The  row  types  and  tables  in  the  following  example  are  used  throughout  this  

section  to  show  the  behavior  of  explicit  casts  on  named  and  unnamed  row  types:  

CREATE  DISTINCT  TYPE  d_float  AS  FLOAT;  

CREATE  ROW  TYPE  row_t  (a INT,  b d_float);  

  

CREATE  TABLE  tab1  (col1  ROW  (a INT,  b d_float));  

CREATE  TABLE  tab2  (col2  ROW  (a INT,  b FLOAT));  

CREATE  TABLE  tab3  (col3  row_t);  

Explicit Casts on Fields of an Unnamed Row Type 

When  a conversion  between  two  row  types  involves  an  explicit  cast  to convert  

between  particular  field  values,  you  can  explicitly  cast  the  row  type  value  but  do  

not  need  to  explicitly  cast  the  individual  field.  

The  following  statement  shows  how  to  insert  a value  into  the  tab1  table:  

INSERT  INTO tab1 VALUES  (ROW( 3, 5.66::FLOAT::d_float))  

To insert  a value  from  col1  of tab1  into  col2  of  tab2, you  must  explicitly  cast  the  

row  value  because  the  database  server  does  not  automatically  handle  conversions  

between  the  d_float  distinct  type  of  tab1  to the  FLOAT  type  of  table  tab2: 

INSERT  INTO tab2 SELECT  col1::ROW(a  INT, b FLOAT)  FROM tab1 

In  this  example,  the  cast  that  is used  to  convert  the  b field  is  explicit  because  the  

conversion  from  d_float  to  FLOAT  requires  an  explicit  cast  (to  convert  a distinct  

type  to  its  source  type  requires  an  explicit  cast).  

 

Chapter  10. Creating and Using User-Defined  Casts in Dynamic  Server 10-5



In  general,  to  cast  between  two  unnamed  row  types  where  one  or  more  of the  

fields  uses  an  explicit  cast,  you  must  explicitly  cast  at the  level  of  the  row  type,  not  

at  the  level  of the  field.  

Explicit Casts on Fields of a Named Row Type 

When  you  explicitly  cast  a value  as a named  row  type,  the  database  server  

automatically  invokes  any  implicit  or  explicit  casts  that  are  used  to  convert  field  

values  to  the  target  data  type.  In  the  following  statement,  the  explicit  cast  of col1  

to  type  row_t  automatically  invokes  the  explicit  cast  that  converts  a field  value  of  

type  FLOAT  to  d_float: 

INSERT  INTO  tab3  SELECT  col2::row_t  FROM  tab2  

The  following  INSERT  statement  includes  an  explicit  cast  to  the  row_t  type.  The  

explicit  cast  to  the  row  type  also  invokes  an  explicit  cast  to convert  the  b field  of 

type  row_t  from  FLOAT  to d_float. In  general,  an  explicit  cast  to  a row  type  also  

invokes  any  explicit  casts  on  the  individual  fields  (one-level  deep)  that  the  row  

type  contains  to  handle  conversions.  

INSERT  INTO tab3  VALUES  (ROW(5,  6.55::FLOAT)::row_t)  

The  following  statement  is also  valid  and  returns  the  same  results  as  the  preceding  

statement.  However,  this  statement  shows  all  the  explicit  casts  that  are  performed  

to  insert  a row_t  value  into  the  tab3  table.  

INSERT  INTO tab3  VALUES  (ROW(5,  6.55::float::d_float)::row_t)  

In  the  preceding  examples,  the  conversions  between  the  b fields  of  the  row  types  

require  two  levels  of  casting.  The  database  server  handles  any  value  that  contains  a 

decimal  point  as  a DECIMAL  type.  In  addition,  no  implicit  casts  exist  between  the  

DECIMAL  and  d_float  data  types,  so  two  levels  of casting  are  necessary:  a cast  

from  DECIMAL  to  FLOAT  and  a second  cast  from  FLOAT  to d_float. 

Casting Individual Fields of a Row Type  

If an  operation  on  a field  of a row  type  requires  an  explicit  cast,  you  can  explicitly  

cast  the  individual  field  value  without  consideration  of  the  row  type  with  which  

the  field  is  associated.  The  following  statement  uses  an  explicit  cast  on  the  field  

value  to  handle  the  conversion:  

SELECT  col1 from  tab1, tab2 WHERE  col1.b  = col2.b::FLOAT::d_float  

If an  operation  on  a field  of a row  type  requires  an  implicit  cast,  you  can  simply  

specify  the  appropriate  field  value  and  the  database  server  handles  the  conversion  

automatically.  In  the  following  statement,  which  compares  field  values  of different  

data  types,  a built-in  cast  automatically  converts  between  INT  and  FLOAT  values:  

SELECT  col1  from  tab1,  tab2  WHERE  col1.a  = col2.b  

Casting Collection Data Types  

In  some  cases,  you  can  use  an  explicit  cast  to perform  conversions  between  two  

collections  with  different  element  types.  To compare  or  substitute  between  values  

of  any  two  collection  types,  both  collections  must  be  of  type  SET, MULTISET,  or  

LIST. 

v   Two  element  types  are  equivalent  when  all  component  types  are  the  same.  For  

example,  if the  element  type  of  one  collection  is a row  type,  the  other  collection  

type  is also  a row  type  with  the  same  number  of  fields  and  the  same  field  data  

types.  

 

10-6 IBM Informix  Database  Design  and Implementation  Guide



v   Casts  exist  in  the  database  to  perform  conversions  between  any  and  all  

components  of  the  element  types  that  are  not  of  the  same  data  type.  

If  the  corresponding  element  types  are  not  of  the  same  data  type,  Dynamic  

Server  can  use  either  built-in  casts  or  user-defined  casts  to  handle  data  

conversions  on  the  element  types.

When  the  database  server  inserts,  updates,  or  compares  values  of  a collection  data  

type,  type  checking  occurs  at the  level  of  the  element  data  type.  Consequently,  in a 

cast  between  two  collection  types,  the  data  conversion  occurs  at the  level  of  the  

element  type  because  the  actual  data  stored  in a collection  is of  a particular  

element  type.  

The  following  type  and  tables  are  used  in  the  collection  casting  examples  in this  

section:  

CREATE  DISTINCT  TYPE  my_int  AS  INT;  

  

CREATE  TABLE  set_tab1  (col1  SET(my_int  NOT  NULL));  

CREATE  TABLE  set_tab2  (col2  SET(INT  NOT  NULL));  

CREATE  TABLE  set_tab3  (col3  SET(FLOAT  NOT  NULL));  

CREATE  TABLE  list_tab  (col4  LIST(INT  NOT  NULL));  

CREATE  TABLE  m_set_tab(col5  MULTISET(INT  NOT  NULL));  

Restrictions on Collection-Type  Conversions 

Because  each  collection  data  type  (SET, MULTISET,  and  LIST)  has  different  

characteristics,  conversions  between  collections  with  different  collection  types  are  

disallowed.  For  example,  elements  stored  in  a LIST  collection  have  a specific  order  

associated  with  them.  This  order  would  be  lost  if the  elements  inserted  into  a LIST  

collection  could  be  inserted  into  a MULTISET  collection.  Consequently,  you  cannot  

insert  or  update  elements  from  one  collection  with  elements  from  a different  

collection  type  even  though  the  two  collections  might  share  the  same  element  type.  

The  following  INSERT  statement  returns  an  error  because  the  column  on  which  the  

insert  is performed  is a MULTISET  collection  and  the  value  being  inserted  is a 

LIST  collection:  

INSERT  INTO m_set_tab  SELECT  col4 FROM list_tab  -- returns  error  

Collections with Different Element Types  

How  you  handle  conversions  between  two  collections  that  have  the  same  collection  

type  but  different  element  types  depends  on  the  element  type  of each  collection  

and  the  type  of  cast  that  the  database  server  uses  to  convert  one  element  type  to  

another  when  the  element  types  are  different,  as  follows:  

v   If a built-in  cast  or  implicit  user-defined  cast  exists  to handle  the  conversion  

between  two  element  types,  you  do  not  need  to explicitly  cast  between  the  

collection  types.  

v   If an  explicit  cast  exists  to  handle  the  conversion  between  element  types,  you  

can  perform  an  explicit  cast  on  a collection.

Using an Implicit Cast Between Element Types 

When  an  implicit  cast  exists  in  the  database  to  convert  between  different  element  

types  of  two  collections,  you  do  not  need  to  use  an  explicit  cast  to  insert  or  update  

elements  from  one  collection  into  another  collection.  The  following  INSERT  

statement  retrieves  elements  from  the  set_tab2  table  and  inserts  the  elements  into  

the  set_tab3  table.  Although  the  collection  column  from  set_tab2  has  an  INT  

element  type  and  the  collection  column  from  set_tab3  has  a FLOAT  element  type,  

a built-in  cast  implicitly  handles  the  conversion  between  INT  and  FLOAT  values.  

An  explicit  cast  is  unnecessary  in  this  case.  

 

Chapter  10. Creating and Using User-Defined  Casts in Dynamic  Server 10-7



INSERT  INTO  set_tab3  SELECT  col2  FROM  set_tab2  

Using an Explicit Cast Between Element Types 

When  a conversion  between  different  element  types  of two  collections  is performed  

with  an  explicit  cast,  you  must  explicitly  cast  one  collection  to the  other  collection  

type.  In  the  following  example,  the  conversion  between  the  element  types  (INT  

and  my_int) requires  an  explicit  cast.  (A  cast  between  a distinct  type  and  its  source  

type  is  always  explicit).  

The  following  INSERT  statement  retrieves  elements  from  the  set_tab2  table  and  

inserts  the  elements  into  the  set_tab1  table.  The  collection  column  from  set_tab2  

has  an  INT  element  type,  and  the  collection  column  from  set_tab1  has  a my_int  

element  type.  Because  the  conversion  between  the  element  types  (INT  and  my_int) 

requires  an  explicit  cast,  you  must  explicitly  cast  the  collection  type.  

INSERT  INTO set_tab1  SELECT  col2::SET(my_int  NOT NULL) 

   FROM set_tab2  

To perform  an  explicit  cast  on  a collection  type,  you  must  include  the  constructor  

(SET, MULTISET,  or  LIST),  the  element  type,  and  the  NOT  NULL  keyword.  

Converting Relational Data to a MULTISET  Collection 

When  you  have  data  from  a relational  table  you  can  use  a collection  subquery  to  

cast  a row  value  to  a MULTISET  collection.  Suppose  you  create  the  following  

tables:  

CREATE  TABLE  tab_a  ( a_col  INTEGER);  

CREATE  TABLE  tab_b  (ms_col  MULTISET(ROW(a  INT) NOT NULL)  ); 

The  following  example  shows  how  you  might  use  a collection  subquery  to  convert  

rows  of  INT  values  from  the  tab_a  table  to  a MULTISET  collection.  All  rows  from  

tab_a  are  converted  to  a MULTISET  collection  and  inserted  into  the  tab_b  table.  

INSERT  INTO  tab_b  VALUES  ( 

   (MULTISET  (SELECT  a_col  FROM  tab_a)))  

Casting Distinct Data Types  

A  distinct  type  inherits  none  of the  built-in  casts  of  the  built-in  type  that  a distinct  

type  might  use  as  its  source  type.  Consequently,  the  built-in  casts  that  exist  to 

implicitly  convert  a built-in  data  type  to  other  data  types  are  not  available  to  the  

distinct  type  that  uses  the  built-in  type  as its  source  type.  However,  when  you  

create  a distinct  type  on  a built-in  type,  the  database  server  provides  two  explicit  

casts  to  handle  conversions  from  the  distinct  type  to  the  built-in  type  and  from  the  

built-in  type  to  the  distinct  type.  

Using Explicit Casts with Distinct Types  

To compare  or  substitute  between  values  of  a distinct  type  and  its  source  type,  you  

must  explicitly  cast  one  type  to  the  other.  For  example,  to insert  into  or  update  a 

column  of a distinct  type  with  values  of  the  source  type,  you  must  explicitly  cast  

the  values  to  the  distinct  type.  

Suppose  you  create  a distinct  type,  int_type,  that  is based  on  the  INTEGER  data  

type  and  a table  with  a column  of  type  int_type,  as follows:  

CREATE  DISTINCT  TYPE  int_type  AS  INTEGER;  

CREATE  TABLE  tab_z(col1  int_type);  

 

10-8 IBM Informix  Database  Design  and Implementation  Guide



To insert  a value  into  the  tab_z  table,  you  must  explicitly  cast  the  value  for  the  

col1  column  to  int_type,  as  follows:  

INSERT  INTO  tab_z  VALUES  (35::int_type)  

Suppose  you  create  a distinct  type,  num_type, that  is based  on  the  NUMERIC,  

data  type  and  a table  with  a column  of  type  num_type, as  follows:  

CREATE  DISTINCT  TYPE  num_type  AS NUMERIC;  

CREATE  TABLE  tab_x  (col1  num_type);  

The  distinct  num_type  inherits  none  of  the  system-defined  casts  that  exist  for  the  

NUMERIC  data  type.  Consequently,  the  following  insert  requires  two  levels  of  

casting.  The  first  cast  converts  the  value  35  from  INT  to NUMERIC  and  the  second  

cast  converts  from  NUMERIC  to num_type:  

INSERT  INTO  tab_x  VALUES  (35::NUMERIC::num_type)  

The  following  INSERT  statement  on  the  tab_x  table  returns  an  error  because  no  

cast  exists  to  convert  directly  from  an  INT  type  to  num_type: 

INSERT  INTO tab_x  VALUES  (70::num_type)  -- returns  error  

Casting Between a Distinct Type  and Its Source Type  

Although  data  of a distinct  type  has  the  same  representation  as its  source  type,  a 

distinct  type  cannot  be  compared  directly  to  its  source  type.  For  this  reason,  when  

you  create  a distinct  data  type,  Dynamic  Server  automatically  registers  the  

following  explicit  casts:  

v   A cast  from  the  distinct  type  to  its  source  type  

v   A cast  from  the  source  type  to the  distinct  type

Suppose  you  create  two  distinct  types:  one  to  handle  movie  titles  and  the  other  to  

handle  music  recordings.  You might  create  the  following  distinct  types  that  are  

based  on  the  VARCHAR  data  type:  

CREATE  DISTINCT  TYPE  movie_type  AS VARCHAR(30);  

CREATE  DISTINCT  TYPE  music_type  AS VARCHAR(30);  

You can  then  create  the  entertainment  table  that  includes  columns  of  type  

movie_type, music_type, and  VARCHAR.  

CREATE  TABLE  entertainment  

( 

video          movie_type,  

compact_disc   music_type,  

laser_disv     VARCHAR(30)  

); 

To compare  a distinct  type  with  its  source  type  or  vice  versa,  you  must  perform  an  

explicit  cast  from  one  data  type  to the  other. For  example,  suppose  you  want  to 

check  for  movies  that  are  available  on  both  video  and  laser  disc.  The  following  

statement  requires  an  explicit  cast  in the  WHERE  clause  to  compare  a value  of  a 

distinct  type  (music_type) with  a value  of its  source  type  (VARCHAR).  In  this  

example,  the  source  type  is explicitly  cast  to  the  distinct  type.  

SELECT  video  FROM  entertainment  

   WHERE  video  = laser_disc::movie_type  

However,  you  might  also  explicitly  cast  the  distinct  type  to the  source  type  as  the  

following  statement  shows:  

SELECT  video  FROM  entertainment  

   WHERE  video::VARCHAR(30)  = laser_disc  

 

Chapter  10. Creating and Using User-Defined  Casts in Dynamic  Server 10-9



To perform  a conversion  between  two  distinct  types  that  are  defined  on  the  same  

source  type,  you  must  make  an  intermediate  cast  back  to  the  source  type  before  

casting  to  the  target  distinct  type.  The  following  statement  compares  a value  of  

music_type  with  a value  of  movie_type: 

SELECT  video  FROM entertainment  

   WHERE video  = compact_disc::VARCHAR(30)::movie_type  

Adding and Dropping Casts on a Distinct Type  

To enforce  strong  typing  on  a distinct  type,  the  database  server  provides  explicit  

casts  to  handle  conversions  between  a distinct  type  and  its  source  type.  However,  

the  creator  of  a distinct  type  can  drop  the  existing  explicit  casts  and  create  implicit  

casts,  so  that  conversions  between  a distinct  type  and  its  source  type  do  not  

require  an  explicit  cast.  

Important:   When  you  drop  the  explicit  casts  between  a distinct  type  and  its  source  

type  that  the  database  server  provides,  and  instead  create  implicit  casts  

to  handle  conversions  between  these  data  types,  you  diminish  the  

distinctiveness  of the  distinct  type.  

The  following  DROP  CAST  statements  drop  the  two  explicit  casts  that  were  

automatically  defined  on  the  movie_type: 

DROP  CAST(movie_type  AS VARCHAR(30));  

DROP  CAST(VARCHAR(30)  AS movie_type);  

After  the  existing  casts  are  dropped,  you  can  create  two  implicit  casts  to handle  

conversions  between  movie_type  and  VARCHAR.  The  following  CREATE  CAST  

statements  create  two  implicit  casts:  

CREATE  IMPLICIT  CAST (movie_type  AS VARCHAR(30));  

CREATE  IMPLICIT  CAST (VARCHAR(30)  AS movie_type);  

You cannot  create  a cast  to  convert  between  two  data  types  if such  a cast  already  

exists  in  the  database.  

If you  create  implicit  casts  to  convert  between  the  distinct  type  and  its  source  type,  

you  can  compare  the  two  types  without  an  explicit  cast.  In  the  following  statement,  

the  comparison  between  the  video  column  and  the  laser_disc  column  requires  a 

conversion.  Because  an  implicit  cast  has  been  created,  the  conversion  between  

VARCHAR  and  movie_type  is implicit.  

SELECT  video  FROM  entertainment  

   WHERE  video  = laser_disc  

Casting to Smart Large Objects 

The  database  server  provides  casts  to allow  the  conversion  of TEXT  and  BYTE  

objects  to  BLOB  and  CLOB  data  types.  This  feature  allows  users  to  migrate  BYTE  

and  TEXT  data  from  legacy  databases  into  BLOB  and  CLOB  columns.  

The  following  example  shows  how  to use  an  explicit  cast  to  convert  a BYTE  

column  value  from  the  catalog  table  in  the  stores_demo  database  to a BLOB  

column  value  and  update  the  catalog  table  in  the  superstores_demo  database:  

UPDATE  catalog  SET  advert  = ROW ( 

(SELECT  cat_photo::BLOB  FROM  stores_demo:catalog  

   WHERE  catalog_num  = 10027),  

   advert.caption)  

      WHERE  catalog_num  = 10027  

 

10-10 IBM Informix  Database  Design  and Implementation  Guide



The  database  server  does  not  provide  casts  to  convert  BLOB  to  BYTE  values  or  

CLOB  to  TEXT  values.  

Creating Cast Functions for User-Defined Casts 

If  your  database  contains  opaque  data  types,  distinct  data  types,  or  named  row  

types,  you  might  want  to create  user-defined  casts  that  allow  you  to  convert  

between  the  different  data  types.  When  you  want  to perform  conversions  between  

two  data  types  that  have  the  same  storage  structure,  you  can  use  the  CREATE  

CAST  statement  without  a cast  function.  However,  in  some  cases  you  must  create  a 

cast  function  that  you  then  register  as  a cast.  You need  to  create  a cast  function  

under  the  following  conditions:  

v   The  conversion  is between  two  data  types  that  have  different  storage  structures  

v   The  conversion  involves  the  manipulation  of values  to  ensure  that  data  

conversions  are  meaningful

The  following  sections  show  how  to  create  and  use  user-defined  casts  that  require  

cast  functions.  

An Example of Casting Between Named Row Types  

Suppose  you  create  the  named  row  types  and  table  shown  in  the  next  example.  

Although  the  named  row  types  are  structurally  equivalent,  writer_t  and  editor_t  

are  unique  data  types.  

CREATE  ROW TYPE writer_t  (name  VARCHAR(30),  depart  CHAR(3));  

CREATE  ROW TYPE editor_t  (name  VARCHAR(30),  depart  CHAR(3));  

  

CREATE  TABLE  projects  

( 

   book_title   VARCHAR(20),  

   writer       writer_t,  

   editor       editor_t  

); 

To handle  conversions  between  two  named  row  types,  you  must  first  create  a 

user-defined  cast.  The  following  example  creates  a casting  function  and  registers  it 

as  a cast  to  handle  conversions  from  type  writer_t  to  editor_t:  

CREATE  FUNCTION  cast_rt  (w writer_t)  

   RETURNS  editor_t  

   RETURN  (ROW(w.name,  w.depart)::editor_t);  

END FUNCTION;  

  

CREATE  CAST (writer_t  as editor_t  WITH cast_rt);  

Once  you  create  and  register  the  cast,  you  can  explicitly  cast  values  of type  

writer_t  to  editor_t.  The  following  query  uses  an  explicit  cast  in  the  WHERE  

clause  to  convert  values  of  type  writer_t  to editor_t:  

SELECT  book_title  FROM  projects  

   WHERE  CAST(writer  AS editor_t)  = editor;  

If  you  prefer,  you  can  use  the  :: cast  operator  to  perform  the  same  cast,  as  the  

following  example  shows:  

SELECT  book_title  FROM  projects  

   WHERE  writer::editor_t  = editor;  

 

Chapter  10. Creating and Using  User-Defined Casts in Dynamic  Server 10-11



An Example of Casting Between Distinct Data Types  

Suppose  you  want  to define  distinct  types  to  represent  dollar, yen, and  sterling  

currencies.  Any  comparison  between  two  currencies  must  take  the  exchange  rate  

into  account.  Thus,  you  need  to  create  cast  functions  that  not  only  handle  the  cast  

from  one  data  type  to  the  other  data  type  but  also  calculate  the  exchange  rate  for  

the  values  that  you  want  to compare.  

The  following  example  shows  how  you  might  define  three  distinct  types  on  the  

same  source  type,  DOUBLE  PRECISION:  

CREATE  DISTINCT  TYPE  dollar  AS DOUBLE  PRECISION;  

CREATE  DISTINCT  TYPE  yen AS DOUBLE  PRECISION;  

CREATE  DISTINCT  TYPE  sterling  AS  DOUBLE  PRECISION;  

After  you  define  the  distinct  types,  you  can  create  a table  that  provides  the  prices  

that  manufacturers  charge  for  comparable  products.  The  following  example  creates  

the  manufact_price  table,  which  contains  a column  for  the  dollar, yen, and  

sterling  distinct  types:  

CREATE  TABLE  manufact_price  

( 

product_desc   VARCHAR(20),  

us_price       dollar,  

japan_price    yen,  

uk_price       sterling  

); 

When  you  insert  values  into  the  manufact_price  table,  you  can  cast  to  the  

appropriate  distinct  type  for  dollar, yen, and  sterling  values,  as  follows:  

INSERT  INTO  manufact_price  

   VALUES  (’baseball’,  5.00::DOUBLE  PRECISION::dollar,  

   510.00::DOUBLE  PRECISION::yen,  

   3.50::DOUBLE  PRECISION::sterling);  

Because  a distinct  type  does  not  inherit  any  of the  built-in  casts  available  to  its  

source  type,  each  of  the  preceding  INSERT  statements  requires  two  casts.  For  each  

INSERT  statement,  the  inner  cast  converts  from  DECIMAL  to  DOUBLE  

PRECISION  and  the  outer  cast  converts  from  DOUBLE  PRECISION  to  the  

appropriate  distinct  type  (dollar, yen, or  sterling).  

Before  you  can  compare  the  dollar, yen, and  sterling  data  types,  you  must  create  

cast  functions  and  register  them  as  casts.  The  following  example  creates  SPL  

functions  that  you  can  use  to  compare  dollar, yen, and  sterling  values.  Each  

function  multiplies  the  input  value  by  a value  that  reflects  the  exchange  rate.  

CREATE  FUNCTION  dollar_to_yen(d  dollar)  

   RETURN  (d::DOUBLE  PRECISION  * 106)::CHAR(20)::yen;  

END FUNCTION;  

  

CREATE  FUNCTION  sterling_to_dollar(s  sterling)  

   RETURNS  dollar  

   RETURN  (s::DOUBLE  PRECISION  * 1.59)::CHAR(20)::dollar;  

END FUNCTION;  

After  you  write  the  cast  functions,  you  must  use  the  CREATE  CAST  statement  to  

register  the  functions  as  casts.  The  following  statements  register  the  

dollar_to_yen()  and  sterling_to_dollar()  functions  as  explicit  casts:  

CREATE  CAST(dollar  AS yen WITH dollar_to_yen);  

CREATE  CAST(sterling  AS dollar  WITH sterling_to_dollar);  

 

10-12 IBM Informix  Database  Design  and Implementation  Guide



After  you  register  the  function  as  a cast,  use  it for  operations  that  require  

conversions  between  the  data  types.  For  the  syntax  that  you  use  to  create  a cast  

function  and  register  it  as  a cast,  see  the  CREATE  FUNCTION  and  CREATE  CAST  

statements  in  the  IBM  Informix  Guide  to  SQL:  Syntax. 

In  the  following  query,  the  WHERE  clause  includes  an  explicit  cast  that  invokes  the  

dollar_to_yen()  function  to compare  dollar  and  yen  values:  

SELECT  * FROM  manufact_price  

   WHERE  CAST(us_price  AS yen)  < japan_price;  

The  following  query  uses  the  cast  operator  to  perform  the  same  conversion  shown  

in  the  preceding  query:  

SELECT  * FROM  manufact_price  

   WHERE  us_price::yen  < japan_price;  

You can  also  use  an  explicit  cast  to  convert  the  values  that  a query  returns.  The  

following  query  uses  a cast  to return  yen  equivalents  of dollar  values.  The  

WHERE  clause  of  the  query  also  uses  an  explicit  cast  to  compare  dollar  and  yen  

values.  

SELECT  us_price::yen,  japan_price  FROM  manufact_price  

   WHERE  us_price::yen  < japan_price;  

Multilevel Casting 

A multilevel  cast  refers  to  an  operation  that  requires  two  or  more  levels  of  casting  in  

an  expression  to  convert  a value  of  one  data  type  to the  target  data  type.  Because  

no  casts  exist  between  yen  and  sterling  values,  a query  that  compares  the  two  data  

types  requires  multiple  casts.  The  first  (inner)  cast  converts  sterling  values  to 

dollar  values;  the  second  (outer)  cast  converts  dollar  values  to  yen  values.  

SELECT  * FROM  manufact_price  

   WHERE  japan_price  < uk_price::dollar::yen  

You might  add  another  cast  function  to  handle  yen  to  sterling  conversions  directly.  

The  following  example  creates  the  function  yen_to_sterling()  and  registers  it  as a 

cast.  To account  for  the  exchange  rate,  the  function  multiplies  yen  values  by  .01  to  

derive  equivalent  sterling  values.  

CREATE  FUNCTION  yen_to_sterling(y  yen) 

   RETURNS  sterling  

   RETURN  (y::DOUBLE  PRECISION  * .01)::CHAR(20)::sterling;  

END FUNCTION;  

  

CREATE  CAST (yen AS sterling  WITH yen_to_sterling);  

With  the  addition  of  the  yen  to  sterling  cast,  you  can  use  a single-level  cast  to  

compare  yen  and  sterling  values,  as  the  following  query  shows:  

SELECT  japan_price::sterling,  uk_price  FROM  manufact_price  

   WHERE  japan_price::sterling)  < uk_price;  

In  the  SELECT  statement,  the  explicit  cast  returns  yen  values  as  their  sterling  

equivalents.  In  the  WHERE  clause,  the  cast  allows  comparisons  between  yen  and  

sterling  values.  

 

Chapter  10. Creating and Using User-Defined Casts in Dynamic  Server 10-13



10-14 IBM Informix  Database  Design  and Implementation  Guide



Part  4.  Dimensional  Databases  

 

© Copyright  IBM Corp. 1996, 2008 



IBM Informix  Database  Design  and Implementation  Guide



Chapter  11.  Building  a Dimensional  Data  Model  

In This  Chapter   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 

Overview  of Data  Warehousing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2  

Why  Build  a Dimensional  Database?   . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 

What  Is Dimensional  Data?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3 

Concepts  of Dimensional  Data  Modeling   . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 

The  Fact  Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 

Dimensions  of the  Data  Model   . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 

Dimension  Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7 

Dimension  Attributes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7 

Dimension  Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 

Building  a Dimensional  Data  Model   . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 

Choosing  a Business  Process   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9  

Summary  of a Business  Process   . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9  

Determining  the  Granularity  of the  Fact  Table  . . . . . . . . . . . . . . . . . . . . . . 11-10  

How  Granularity  Affects  the  Size  of the  Database  . . . . . . . . . . . . . . . . . . . . 11-10 

Using  the  Business  Process  to Determine  the  Granularity   . . . . . . . . . . . . . . . . . 11-10  

Identifying  the  Dimensions  and  Hierarchies   . . . . . . . . . . . . . . . . . . . . . . 11-11 

Choosing  the  Measures  for the  Fact  Table  . . . . . . . . . . . . . . . . . . . . . . . 11-13 

Using  Keys  to Join  the  Fact  Table with  the  Dimension  Tables  . . . . . . . . . . . . . . . . 11-13  

Resisting  Normalization   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14 

Choosing  the  Attributes  for the  Dimension  Tables  . . . . . . . . . . . . . . . . . . . . 11-14 

Handling  Common  Dimensional  Data-Modeling  Problems  . . . . . . . . . . . . . . . . . . . 11-15  

Minimizing  the  Number  of Attributes  in a Dimension  Table  . . . . . . . . . . . . . . . . . 11-15 

Handling  Dimensions  That  Occasionally  Change   . . . . . . . . . . . . . . . . . . . . . 11-16  

Using  the  Snowflake  Schema   . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17

In This Chapter 

This  chapter  describes  concepts  and  techniques  of dimensional  data  modeling  and  

shows  how  to  build  a simple  dimensional  data  model.  Chapter  12,  “Implementing  

a Dimensional  Database  (XPS),”  on  page  12-1  shows  how  to use  SQL  to  implement  

this  dimensional  data  model.  

A dimensional  data  model  is harder  to  maintain  for  very  large  data  warehouses  

than  a relational  data  model.  For  this  reason,  data  warehouses  typically  are  based  

on  a relational  data  model.  However,  a dimensional  data  model  is particularly  

well-suited  for  building  data  marts  (a  subset  of  data  warehouse).  

The  general  principles  of dimensional  data  modeling  that  this  chapter  discusses  are  

applicable  for  databases  that  you  create  with  Dynamic  Server  or  Extended  Parallel  

Server.  Although  no  single  factor  determines  which  database  server  you  should  use  

to  build  a dimensional  database,  the  assumption  is that  large,  scalable  warehouses  

are  built  with  Extended  Parallel  Server,  while  smaller  warehouses,  OLTP  systems,  

and  operational  systems  are  built  with  Dynamic  Server.  

To understand  the  concepts  of  dimensional  data  modeling,  you  should  have  a basic  

understanding  of  SQL  and  relational  database  theory.  This  chapter  provides  only  a 

summary  of  data  warehousing  concepts  and  describes  a simple  dimensional  data  

model.  

 

© Copyright  IBM Corp. 1996, 2008 11-1



Overview of Data Warehousing 

In  the  broadest  sense  of  the  term,  a data  warehouse  has  been  used  to  refer  to  a 

database  that  contains  very  large  stores  of historical  data.  The  data  is stored  as  a 

series  of  snapshots,  in which  each  record  represents  data  at a specific  time.  This  

data  snapshot  allows  a user  to reconstruct  history  and  to make  accurate  

comparisons  between  different  time  periods.  A  data  warehouse  integrates  and  

transforms  the  data  that  it retrieves  before  it is loaded  into  the  warehouse.  A 

primary  advantage  of  a data  warehouse  is that  it  provides  easy  access  to  and  

analysis  of  vast  stores  of  information.  

The  term  data  warehouse  can  mean  different  things  to different  people.  This  

manual  uses  the  umbrella  terms  data  warehousing  and  data-warehousing  environment  

to  encompass  any  of  the  following  forms  that  you  might  use  to  store  your  data:  

v   Data  warehouse  

A  database  that  is  optimized  for  data  retrieval.  The  data  is not  stored  at  the  

transaction  level;  some  level  of data  is summarized.  Unlike  traditional  OLTP  

databases,  which  automate  day-to-day  operations,  a data  warehouse  provides  a 

decision-support  environment  in  which  you  can  evaluate  the  performance  of  an  

entire  enterprise  over  time.  Typically,  you  use  a relational  data  model  to  build  a 

data  warehouse.  

v   Data  mart  

A  subset  of  data  warehouse  that  is stored  in  a smaller  database  and  that  is 

oriented  toward  a specific  purpose  or  data  subject  rather  than  for  

enterprise-wide  strategic  planning.  A data  mart  can  contain  operational  data,  

summarized  data,  spatial  data,  or  metadata.  Typically,  you  use  a dimensional  

data  model  to  build  a data  mart.  

v   Operational  data  store  

A  subject-oriented  system  that  is optimized  for  looking  up  one  or  two  records  at  

a time  for  decision  making.  An  operational  data  store  is a hybrid  form  of  data  

warehouse  that  contains  timely,  current,  integrated  information.  The  data  

typically  is  of  a higher  level  granularity  than  the  transaction.  You can  use  an  

operational  data  store  for  clerical,  day-to-day  decision  making.  This  data  can  

serve  as  the  common  source  of data  for  data  warehouses.  

v   Repository  

A  repository  combines  multiple  data  sources  into  one  normalized  database.  The  

records  in  a repository  are  updated  frequently.  Data  is operational,  not  historical.  

You might  use  the  repository  for  specific  decision-support  queries,  depending  on  

the  specific  system  requirements.  A  repository  fits  the  needs  of a corporation  

that  requires  an  integrated,  enterprise-wide  data  source  for  operational  

processing.

Why Build a Dimensional Database? 

Relational  databases  typically  are  optimized  for  online  transaction  processing  

(OLTP).  OLTP  systems  are  designed  to meet  the  day-to-day  operational  needs  of  

the  business,  and  the  database  performance  is  tuned  for  those  operational  needs.  

Consequently,  the  database  can  retrieve  a small  number  of  records  quickly,  but  it  

can  be  slow  if you  need  to  retrieve  a large  number  of  records  and  summarize  data  

on  the  fly.  Some  potential  disadvantages  of OLTP  systems  are  as  follows:  

v   Data  might  not  be  consistent  across  the  business  enterprise.  

v   Access  to  data  can  be  complicated.

 

11-2 IBM Informix  Database  Design  and Implementation  Guide



In  contrast,  a dimensional  database  is designed  and  tuned  to  support  the  analysis  

of  business  trends  and  projections.  This  type  of  informational  processing  is known  

as  online  analytical  processing  (OLAP)  or  decision-support  processing.  OLAP  is 

also  the  term  that  database  designers  use  to  describe  a dimensional  approach  to  

informational  processing.  

A dimensional  database  is optimized  for  data  retrieval  and  analysis.  Any  new  data  

that  you  load  into  the  database  is usually  updated  in  batch,  often  from  multiple  

sources.  Whereas  OLTP systems  tend  to  organize  data  around  specific  processes  

(such  as  order  entry),  a dimensional  database  tends  to be  subject  oriented  and  aims  

to  answer  questions  such  as,  “What  products  are  selling  well?”  “At  what  time  of  

year  do  products  sell  best?”  “In  what  regions  are  sales  weakest?”  

The  following  table  summarizes  the  key  differences  between  OLTP  and  OLAP  

databases.  

 Relational  Database  (OLTP) Dimensional  Database  (OLAP)  

Data  is atomized  Data  is summarized  

Data  is current  Data  is historical  

Processes  one  record  at a time  Processes  many  records  at a time  

Process  oriented  Subject  oriented  

Designed  for  highly  structured  repetitive  

processing  

Designed  for highly  unstructured  analytical  

processing
  

Many  of  the  problems  that  businesses  attempt  to  solve  with  relational  technology  

are  multidimensional  in nature.  For  example,  SQL  queries  that  create  summaries  of  

product  sales  by  region,  region  sales  by  product,  and  so  on,  might  require  hours  of  

processing  on  a traditional  relational  database.  However,  a dimensional  database  

could  process  the  same  queries  in  a fraction  of the  time.  

Besides  the  characteristic  schema  design  differences  between  OLTP and  OLAP  

databases  that  this  chapter  discusses,  the  query  optimizer  typically  should  be  

tuned  differently  for  these  two  types  of  tasks.  For  example,  in  OLTP  operations,  the  

OPTCOMPIND  setting  (as  specified  by  the  environment  variable  or  by  the  

configuration  parameter  of that  name)  should  typically  be  set  to zero,  to support  

nested-loop  joins.  OLAP  operations,  in  contrast,  tend  to be  more  efficient  with  an  

OPTCOMPIND  setting  of  2 to  support  cost-based  query  plans.  See  the  IBM  

Informix  Guide  to  SQL:  Reference  and  the  IBM  Informix  Administrator’s  Reference  for  

more  information  about  the  OPTCOMPIND  environment  variable  and  the  

OPTCOMPIND  configuration  parameter  respectively.  See  the  IBM  Informix  

Performance  Guide  for  additional  information  about  OPTCOMPIND,  join  methods,  

and  the  query  optimizer.  

(Dynamic  Server  also  supports  the  SET  ENVIRONMENT  OPTCOMPIND  statement  

to  change  OPTCOMPIND  setting  dynamically  during  sessions  in  which  both  OLTP 

and  OLAP  operations  are  required.  See  the  IBM  Informix  Guide  to  SQL:  Syntax  for  

more  information  about  the  SET  ENVIRONMENT  statement  of  SQL.)  

What Is Dimensional Data? 

Traditional  relational  databases  are  organized  around  a list  of  records.  Each  record  

contains  related  information  that  is organized  into  attributes  (fields).  The  customer  

table  of  the  stores_demo  demonstration  database,  which  includes  fields  for  name,  

company,  address,  phone,  and  so  forth,  is  a typical  example.  While  this  table  has  

 

Chapter  11. Building  a Dimensional  Data Model  11-3



several  fields  of  information,  each  row  in  the  table  pertains  to  only  one  customer.  If 

you  wanted  to  create  a two-dimensional  matrix  with  customer  name  and  any  other  

field  (for  example,  phone  number),  you  would  realize  that  there  is only  a 

one-to-one  correspondence.  Table 11-1  shows  a table  with  fields  that  have  only  a 

one-to-one  correspondence.  

 Table 11-1. A Table with  a One-To-One  Correspondences  Between  Fields  

Customer  Phone  number  --->  

Ludwig  Pauli  408-789-8075  ----------------  ----------------  

Carole  Sadler  ----------------  415-822-1289  ----------------  

Philip  Currie  ----------------  ----------------  414-328-4543
  

You could  put  any  combination  of  fields  from  the  preceding  customer  table  in  this  

matrix,  but  you  would  always  end  up  with  a one-to-one  correspondence,  which  

shows  that  this  table  is not  multidimensional  and  would  not  be  well  suited  for  a 

dimensional  database.  

However,  consider  a relational  table  that  contains  more  than  a one-to-one  

correspondence  between  the  fields  of  the  table.  Suppose  you  create  a table  that  

contains  sales  data  for  products  sold  in  each  region  of the  country.  For  simplicity,  

suppose  the  company  has  three  products  that  are  sold  in  three  regions.  Table 11-2  

shows  how  you  might  store  this  data  in a relational  table.  

 Table 11-2. A Simple  Relational  Table 

Product  Region  Unit  Sales  

Football  East  2300  

Football  West 4000  

Football  Central  5600  

Tennis racket  East  5500  

Tennis racket  West 8000  

Tennis racket  Central  2300  

Baseball  East  10000  

Baseball  West 22000  

Baseball  Central  34000
  

The  table  in  Table 11-2  on  page  11-4  lends  itself  to multidimensional  representation  

because  it has  more  than  one  product  per  region  and  more  than  one  region  per  

product.  Table 11-3  shows  a two-dimensional  matrix  that  better  represents  the  

many-to-many  relationship  of product  and  region  data.  

 Table 11-3. A Simple  Two-Dimensional  Example  

Region  Central  East  West 

P
ro

d
u

ct
 Football  5600  2300  4000  

Tennis Racket  2300  5500  8000  

Baseball  34000  10000  22000
  

Although  this  data  can  be  forced  into  the  three-field  relational  table  of  Table 11-2,  

the  data  fits  more  naturally  into  the  two-dimensional  matrix  of  Table 11-3.  

 

11-4 IBM Informix  Database  Design  and Implementation  Guide



The  performance  advantages  of  the  dimensional  table  over  the  traditional  relational  

table  can  be  great.  A  dimensional  approach  simplifies  access  to the  data  that  you  

want  to  summarize  or  compare.  For  example,  if you  use  the  dimensional  table  to  

query  the  number  of products  sold  in  the  West,  the  database  server  finds  the  West 

column  and  calculates  the  total  for  all  row  values  in that  column.  To perform  the  

same  query  on  the  relational  table,  the  database  server  has  to  search  and  retrieve  

each  row  where  the  Region  column  equals  west  and  then  aggregate  the  data.  In 

queries  of  this  kind,  the  dimensional  table  can  total  all  values  of the  West column  

in  a fraction  of  the  time  it takes  the  relational  table  to find  all  the  West records.  

Concepts of Dimensional Data Modeling 

To build  a dimensional  database,  you  start  with  a dimensional  data  model.  The  

dimensional  data  model  provides  a method  for  making  databases  simple  and  

understandable.  You can  conceive  of a dimensional  database  as  a database  cube  of  

three  or  four  dimensions  where  users  can  access  a slice  of the  database  along  any  

of  its  dimensions.  To create  a dimensional  database,  you  need  a model  that  lets  

you  visualize  the  data.  

Suppose  your  business  sells  products  in  different  markets  and  evaluates  the  

performance  over  time.  It is easy  to  conceive  of  this  business  process  as a cube  of 

data,  which  contains  dimensions  for  time,  products,  and  markets.  Figure  11-1 

shows  this  dimensional  model.  The  various  intersections  along  the  lines  of  the  

cube  would  contain  the  measures  of  the  business.  The  measures  correspond  to  a 

particular  combination  of  product,  market,  and  time  data.  

 

Another  name  for  the  dimensional  model  is the  star-join  schema. The  database  

designers  use  this  name  because  the  diagram  for  this  model  looks  like  a star  with  

one  central  table  around  which  a set  of  other  tables  are  displayed.  The  central  table  

is  the  only  table  in  the  schema  with  multiple  joins  connecting  it to all  the  other  

tables.  This  central  table  is called  the  fact  table  and  the  other  tables  are  called  

dimension  tables. The  dimension  tables  all  have  only  a single  join  that  attaches  them  

to  the  fact  table,  regardless  of  the  query.  Figure  11-2  shows  a simple  dimensional  

model  of  a business  that  sells  products  in  different  markets  and  evaluates  business  

performance  over  time.  

 

  

Figure  11-1. A Dimensional  Model  of a Business  That  Has  Time,  Product,  and  Market  

Dimensions

 

Chapter  11. Building  a Dimensional  Data Model  11-5



The Fact Table  

The  fact  table  stores  the  measures  of the  business  and  points  to the  key  value  at  

the  lowest  level  of each  dimension  table.  The  measures  are  quantitative  or  factual  

data  about  the  subject.  The  measures  are  generally  numeric  and  correspond  to  the  

how  much  or  how  many  aspects  of  a question.  Examples  of  measures  are  price,  

product  sales,  product  inventory,  revenue,  and  so  forth.  A measure  can  be  based  on  

a column  in  a table  or  it can  be  calculated.  

Table  11-4  shows  a fact  table  whose  measures  are  sums  of the  units  sold,  the  

revenue,  and  the  profit  for  the  sales  of  that  product  to that  account  on  that  day.  

 Table 11-4. A Fact  Table with  Sample  Records  

Product  Code  Account  Code  Day  Code  Units  Sold  Revenue  Profit  

1 5 32104  1 82.12  27.12  

3 17 33111 2 171.12  66.00  

1 13 32567  1 82.12  27.12
  

Before  you  design  a fact  table,  you  must  determine  the  granularity  of the  fact  table.  

The  granularity  corresponds  to  how  you  define  an  individual  low-level  record  in 

that  fact  table.  The  granularity  might  be  the  individual  transaction,  a daily  

snapshot,  or  a monthly  snapshot.  The  fact  table  in Table  11-4  contains  one  row  for  

every  product  sold  to  each  account  each  day.  Thus,  the  granularity  of  the  fact  table  

is expressed  as product  by  account  by  day. 

Dimensions of the Data Model 

A  dimension  represents  a single  set  of objects  or  events  in  the  real  world.  Each  

dimension  that  you  identify  for  the  data  model  gets  implemented  as  a dimension  

table.  Dimensions  are  the  qualifiers  that  make  the  measures  of the  fact  table  

meaningful,  because  they  answer  the  what,  when,  and  where  aspects  of  a question.  

For  example,  consider  the  following  business  questions,  for  which  the  dimensions  

are  italicized:  

v   What  accounts  produced  the  highest  revenue  last  year? 

v   What  was  our  profit  by  vendor? 

  

Figure  11-2. A Typical Dimensional  Model

 

11-6 IBM Informix  Database  Design  and Implementation  Guide



v   How  many  units  were  sold  for  each  product?

In  the  preceding  set  of  questions,  revenue,  profit,  and  units  sold  are  measures  (not  

dimensions),  as  each  represents  quantitative  or  factual  data.  

Dimension Elements 

A dimension  can  define  multiple  dimension  elements  for  different  levels  of  

summation.  For  example,  all  the  elements  that  relate  to  the  structure  of  a sales  

organization  might  comprise  one  dimension.  Figure  11-3  shows  the  dimension  

elements  that  the  accounts  dimension  defines.  

 

Dimensions  are  made  up  of  hierarchies  of related  elements.  Because  of  the  

hierarchical  aspect  of dimensions,  users  are  able  to construct  queries  that  access  

data  at  a higher  level  (roll  up)  or  lower  level  (drill  down) than  the  previous  level  of  

detail.  Figure  11-3  shows  the  hierarchical  relationships  of the  dimension  elements:  

accounts  roll  up  to  territories,  and  territories  roll  up  to  regions.  Users  can  query  at 

different  levels  of  the  dimension,  depending  on  the  data  they  want  to  retrieve.  For  

example,  users  might  perform  a query  against  all  regions  and  then  drill  down  to  

the  territory  or  account  level  for  detailed  information.  

Dimension  elements  are  usually  stored  in  the  database  as  numeric  codes  or  short  

character  strings  to  facilitate  joins  to other  tables.  

Each  dimension  element  can  define  multiple  dimension  attributes,  in  the  same  way  

dimensions  can  define  multiple  dimension  elements.  

Dimension Attributes 

A dimension  attribute  is a column  in  a dimension  table.  Each  attribute  describes  a 

level  of  summary  within  a dimension  hierarchy.  The  dimension  elements  define  the  

hierarchical  relationships  within  a dimension  table;  the  attributes  describe  

dimension  elements  in  terms  that  are  familiar  to  users.  Figure  11-4  shows  the  

dimension  elements  and  corresponding  attributes  of  the  account  dimension.  

 

  

Figure  11-3. Dimension  Elements  in the  Accounts  Dimension

 

Chapter  11. Building  a Dimensional  Data Model  11-7



Because  dimension  attributes  describe  the  items  in  a dimension,  they  are  most  

useful  when  they  are  text.  

Tip:   Sometimes  during  the  design  process,  it  is unclear  whether  a numeric  data  

field  from  a production  data  source  is a measured  fact  or  an  attribute.  

Generally,  if the  numeric  data  field  is a measurement  that  changes  each  time  

we  sample  it,  it is a fact.  If it is a discretely  valued  description  of  something  

that  is more  or  less  constant,  it is a dimension  attribute.  

Dimension Tables 

A  dimension  table  is a table  that  stores  the  textual  descriptions  of the  dimensions  of 

the  business.  A  dimension  table  contains  an  element  and  an  attribute,  if 

appropriate,  for  each  level  in  the  hierarchy.  The  lowest  level  of  detail  that  is 

required  for  data  analysis  determines  the  lowest  level  in  the  hierarchy.  Levels  

higher  than  this  base  level  store  redundant  data.  This  denormalized  table  reduces  

the  number  of  joins  that  are  required  for  a query  and  makes  it easier  for  users  to  

query  at higher  levels  and  then  drill  down  to  lower  levels  of detail.  The  term  

drilling  down  means  to  add  row  headers  from  the  dimension  tables  to  your  query.  

Table  11-5  shows  an  example  of  a dimension  table  that  is based  on  the  account  

dimension.  

 Table 11-5. An Example  of a Dimension  Table 

Acct  

Code  Account  Name  Territory  Salesman  Region  

Region  

Size  

Region  

Manager  

1 Jane’s  Mfg.  101  B. Adams  Midwest  Over  50 T. Sent  

2 TBD  Sales  101  B. Adams  Midwest  Over  50 T. Sent  

3 Molly’s  Wares 101  B. Adams  Midwest  Over  50 T. Sent  

4 The  Golf  Co.  201  T. Scott  Midwest  Over  50 T. Sent
  

Building a Dimensional Data Model 

To build  a dimensional  data  model,  you  need  a methodology  that  outlines  the  

decisions  you  need  to  make  to complete  the  database  design.  This  methodology  

uses  a top-down  approach  because  it first  identifies  the  major  processes  in  your  

organization  where  data  is  collected.  An  important  task  of  the  database  designer  is 

to  start  with  the  existing  sources  of  data  that  your  organization  uses.  After  the  

processes  are  identified,  one  or  more  fact  tables  are  built  from  each  business  

process.  The  following  steps  describe  the  methodology  you  use  to  build  the  data  

model.  

  

Figure  11-4. Attributes  That  Correspond  to the  Dimension  Elements

 

11-8 IBM Informix  Database  Design  and Implementation  Guide



To  build  a dimensional  database:   

1.   Choose  the  business  processes  that  you  want  to use  to analyze  the  subject  area  

to  be  modeled.  

2.   Determine  the  granularity  of  the  fact  tables.  

3.   Identify  dimensions  and  hierarchies  for  each  fact  table.  

4.   Identify  measures  for  the  fact  tables.  

5.   Determine  the  attributes  for  each  dimension  table.  

6.   Get  users  to  verify  the  data  model.  

Although  a dimensional  database  can  be  based  on  multiple  business  processes  and  

can  contain  many  fact  tables,  the  data  model  that  this  section  describes  is  based  on  

a single  business  process  and  has  one  fact  table.  

Choosing a Business Process 

A business  process  is an  important  operation  in  your  organization  that  some  legacy  

system  supports.  You collect  data  from  this  system  to use  in  your  dimensional  

database.  The  business  process  identifies  what  end  users  are  doing  with  their  data,  

where  the  data  comes  from,  and  how  to  transform  that  data  to make  it meaningful.  

The  information  can  come  from  many  sources,  including  finance,  sales  analysis,  

market  analysis,  customer  profiles.  The  following  list  shows  different  business  

processes  you  might  use  to  determine  what  data  to include  in  your  dimensional  

database:  

v   Sales  

v   Shipments  

v   Inventory  

v   Orders  

v   Invoices

Summary of a Business Process 

Suppose  your  organization  wants  to analyze  customer  buying  trends  by  product  

line  and  region  so  that  you  can  develop  more  effective  marketing  strategies.  In  this  

scenario,  the  subject  area  for  your  data  model  is sales.  

After  many  interviews  and  thorough  analysis  of your  sales  business  process,  

suppose  your  organization  collects  the  following  information:  

v   Customer-base  information  has  changed.  

Previously,  sales  districts  were  divided  by  city.  Now  the  customer  base  

corresponds  to  two  regions:  Region  1 for  California  and  Region  2 for  all  other  

states.  

v   The  following  reports  are  most  critical  to  marketing:  

–   Monthly  revenue,  cost,  net  profit  by  product  line  per  vendor  

–   Revenue  and  units  sold  by  product,  by  region,  by  month  

–   Monthly  customer  revenue  

–   Quarterly  revenue  per  vendor
v    Most  sales  analysis  is based  on  monthly  results,  but  you  can  choose  to analyze  

sales  by  week  or  accounting  period  (at  a later  date).  

v   A data-entry  system  exists  in  a relational  database.  

To develop  a working  data  model,  you  can  assume  that  the  relational  database  

of  sales  information  has  the  following  properties:  

 

Chapter  11. Building  a Dimensional  Data Model  11-9



–   The  stores_demo  database  provides  much  of  the  revenue  data  that  the  

marketing  department  uses.  

–   The  product  code  that  analysts  use  is stored  in  the  catalog  table  as  the  catalog  

number.  

–   The  product  line  code  is stored  in  the  stock  table  as  the  stock  number.  The  

product  line  name  is stored  as description.  

–   The  product  hierarchies  are  somewhat  complicated.  Each  product  line  has  

many  products,  and  each  manufacturer  has  many  products.
v    All  the  cost  data  for  each  product  is stored  in  a flat  file  named  costs.lst  on  a 

different  purchasing  system.  

v   Customer  data  is  stored  in the  stores_demo  database.  

The  region  information  has  not  yet  been  added  to  the  database.

An  important  characteristic  of  the  dimensional  model  is that  it uses  business  labels  

familiar  to  end  users  rather  than  internal  tables  or  column  names.  After  the  

business  process  is  completed,  you  should  have  all  the  information  you  need  to 

create  the  measures,  dimensions,  and  relationships  for  the  dimensional  data  model.  

This  dimensional  data  model  is used  to  implement  the  sales_demo  database  that  

Chapter  12,  “Implementing  a Dimensional  Database  (XPS),”  on  page  12-1  describes.  

The  stores_demo  demonstration  database  is the  primary  data  source  for  the  

dimensional  data  model  that  this  chapter  develops.  For  detailed  information  about  

the  data  sources  that  are  used  to  populate  the  tables  of the  sales_demo  database,  

see  “Mapping  Data  from  Data  Sources  to  the  Database”  on  page  12-3.  

Determining the Granularity of the Fact Table  

After  you  gather  all  the  relevant  information  about  the  subject  area,  the  next  step  

in  the  design  process  is to  determine  the  granularity  of the  fact  table.  To do  this  

you  must  decide  what  an  individual  low-level  record  in  the  fact  table  should  

contain.  The  components  that  make  up  the  granularity  of  the  fact  table  correspond  

directly  with  the  dimensions  of  the  data  model.  Thus,  when  you  define  the  

granularity  of  the  fact  table,  you  identify  the  dimensions  of  the  data  model.  

How Granularity Affects the Size of the Database 

The  granularity  of  the  fact  table  also  determines  how  much  storage  space  the  

database  requires.  For  example,  consider  the  following  possible  granularities  for  a 

fact  table:  

v   Product  by  day  by  region  

v   Product  by  month  by  region

The  size  of  a database  that  has  a granularity  of  product  by  day  by  region  would  be  

much  greater  than  a database  with  a granularity  of  product  by  month  by region  

because  the  database  contains  records  for  every  transaction  made  each  day  as  

opposed  to  a monthly  summation  of the  transactions.  You must  carefully  

determine  the  granularity  of  your  fact  table  because  too  fine  a granularity  could  

result  in  an  astronomically  large  database.  Conversely,  too  coarse  a granularity  

could  mean  the  data  is not  detailed  enough  for  users  to  perform  meaningful  

queries  against  the  database.  

Using the Business Process to Determine the Granularity 

A  careful  review  of  the  information  gathered  from  the  business  process  should  

provide  what  you  need  to  determine  the  granularity  of  the  fact  table.  To 

 

11-10 IBM Informix  Database  Design  and Implementation  Guide



summarize,  your  organization  wants  to  analyze  customer-buying  trends  by  

product  line  and  region  so that  you  can  develop  more  effective  marketing  

strategies.  

Customer  by  Product:    The  granularity  of the  fact  table  always  represents  the  

lowest  level  for  each  corresponding  dimension.  When  you  review  the  information  

from  the  business  process,  the  granularity  for  customer  and  product  dimensions  of 

the  fact  table  are  apparent.  Customer  and  product  cannot  be  reasonably  reduced  

any  further:  they  already  express  the  lowest  level  of  an  individual  record  for  the  

fact  table.  (In  some  cases,  product  might  be  further  reduced  to the  level  of  product  

component  because  a product  could  be  made  up  of  multiple  components.)  

Customer  by  Product  by  District:    Because  the  customer  buying  trends  your  

organization  wants  to  analyze  include  a geographical  component,  you  still  need  to  

decide  the  lowest  level  for  region  information.  The  business  process  indicates  that  

in  the  past,  sales  districts  were  divided  by  city,  but  now  your  organization  

distinguishes  between  two  regions  for  the  customer  base:  Region  1 for  California  

and  Region  2 for  all  other  states.  Nonetheless,  at the  lowest  level,  your  

organization  still  includes  sales  district  data,  so  district  represents  the  lowest  level  

for  geographical  information  and  provides  a third  component  to  further  define  the  

granularity  of  the  fact  table.  

Customer  by  Product  by  District  by  Day:    Customer-buying  trends  always  occur  

over  time,  so  the  granularity  of  the  fact  table  must  include  a time  component.  

Suppose  your  organization  decides  to  create  reports  by  week,  accounting  period,  

month,  quarter,  or  year. At  the  lowest  level,  you  probably  want  to  choose  a base  

granularity  of  day.  This  granularity  allows  your  business  to  compare  sales  on  

Tuesdays  with  sales  on  Fridays,  compare  sales  for  the  first  day  of  each  month,  and  

so  forth.  The  granularity  of  the  fact  table  is now  complete.  

The  decision  to  choose  a granularity  of  day  means  that  each  record  in  the  time  

dimension  table  represents  a day.  In  terms  of  the  storage  requirements,  even  10  

years  of  daily  data  is only  about  3,650  records,  which  is a relatively  small  

dimension  table.  

Identifying the Dimensions and Hierarchies 

After  you  determine  the  granularity  of the  fact  table,  it is easy  to  identify  the  

primary  dimensions  for  the  data  model  because  each  component  that  defines  the  

granularity  corresponds  to  a dimension.  Figure  11-5  shows  the  relationship  

between  the  granularity  of the  fact  table  and  the  dimensions  of  the  data  model.  

 

With  the  dimensions  (customer,  product,  geography,  time)  for  the  data  model  in 

place,  the  schema  diagram  begins  to take  shape.  

Tip:   At  this  point,  you  can  add  additional  dimensions  to  the  primary  granularity  

of  the  fact  table,  where  the  new  dimensions  take  on  only  a single  value  under  

  

Figure  11-5. The  Granularity  of the Fact  Table Corresponds  to the  Dimensions  of the  Data  

Model

 

Chapter 11. Building  a Dimensional  Data Model 11-11



each  combination  of the  primary  dimensions.  If you  see  that  an  additional  

dimension  violates  the  granularity  because  it causes  additional  records  to  be  

generated,  then  you  must  revise  the  granularity  of  the  fact  table  to  

accommodate  the  additional  dimension.  For  this  data  model,  no  additional  

dimensions  need  to  be  added.  

You can  now  map  out  dimension  elements  and  hierarchies  for  each  dimension.  

Figure  11-6  shows  the  relationships  among  dimensions,  dimension  elements,  and  

the  inherent  hierarchies.  

 

In  most  cases,  the  dimension  elements  need  to  express  the  lowest  possible  

granularity  for  each  dimension,  not  because  queries  need  to  access  individual  

low-level  records,  but  because  queries  need  to  cut  through  the  database  in precise  

ways.  In  other  words,  even  though  the  questions  that  a data  warehousing  

environment  poses  are  usually  broad,  these  questions  still  depend  on  the  lowest  

level  of  product  detail.  

AttributesDimension elements

Vendor

Product

Product

Product line

Customer

Region

State

District

Year

Quarter

Month

Day

Vendor

Product name

Product line name

Customer
Name

Company

District name

State name

Order date

  

Figure  11-6. The  Relationships  Between  Dimensions,  Dimension  Elements,  and  the Inherent  

Hierarchies

 

11-12 IBM Informix  Database  Design  and Implementation  Guide



Choosing the Measures for the Fact Table  

The  measures  for  the  data  model  include  not  only  the  data  itself,  but  also  new  

values  that  you  calculate  from  the  existing  data.  When  you  examine  the  measures,  

you  might  discover  that  you  need  to  make  adjustments  either  in  the  granularity  of  

the  fact  table  or  the  number  of  dimensions.  

Another  important  decision  you  must  make  when  you  design  the  data  model  is 

whether  to  store  the  calculated  results  in  the  fact  table  or  to  derive  these  values  at 

runtime.  

The  question  to  answer  is,  “What  measures  are  used  to  analyze  the  business?”  

Remember  that  the  measures  are  the  quantitative  or  factual  data  that  tell  how  much  

or  how  many. The  information  that  you  gather  from  analysis  of  the  sales  business  

process  results  in  the  following  list  of  measures:  

v   Revenue  

v   Cost  

v   Units  sold  

v   Net  profit

Use  these  measures  to complete  the  fact  table  in  Figure  11-7.  

   

Using Keys to Join the Fact Table with the Dimension Tables 

Assume,  for  the  moment,  that  the  schema  of Figure  11-7  on  page  11-13  shows  both  

the  logical  and  physical  design  of the  database.  The  database  contains  the  

following  five  tables:  

v   Sales  fact  table  

v   Product  dimension  table  

v   Time  dimension  table  

v   Customer  dimension  table  

v   Geography  dimension  table

  

Figure  11-7. The  Sales  Fact  Table References  Each  Dimension  Table

 

Chapter  11. Building  a Dimensional  Data Model 11-13



Each  of  the  dimensional  tables  includes  a primary  key  (product,  time_code,  

customer,  district_code),  and  the  corresponding  columns  in  the  fact  table  are  

foreign  keys.  The  fact  table  also  has  a primary  (composite)  key  that  is a 

combination  of  these  four  foreign  keys.  As  a rule, each  foreign  key  of  the  fact  table  

must  have  its  counterpart  in  a dimension  table.  Furthermore,  any  table  in a 

dimensional  database  that  has  a composite  key  must  be  a fact  table,  which  means  

that  every  table  in  a dimensional  database  that  expresses  a many-to-many  

relationship  is a fact  table.  

Tip:   The  primary  key  should  be  a short  numeric  data  type  (INT, SMALLINT,  

SERIAL)  or  a short  character  string  (as  used  for  codes).  Do  not  use  long  

character  strings  as  primary  keys.  

Resisting Normalization 

If the  four  foreign  keys  of  the  fact  table  are  tightly  administered  consecutive  

integers,  you  could  reserve  as  little  as  16  bytes  for  all  four  keys  (4  bytes  each  for  

time,  product,  customer,  and  geography)  of the  fact  table.  If the  four  measures  in 

the  fact  table  were  each  4-byte  integer  columns,  you  would  need  to  reserve  only  

another  16  bytes.  Thus,  each  record  of  the  fact  table  would  be  only  32  bytes.  Even  

a billion-row  fact  table  would  require  only  about  32  gigabytes  of  primary  data  

space.  

With  its  compact  keys  and  data,  such  a storage-lean  fact  table  is  typical  for  

dimensional  databases.  The  fact  table  in  a dimensional  model  is by  nature  highly  

normalized.  You cannot  further  normalize  the  extremely  complex  many-to-many  

relationships  among  the  four  keys  in  the  fact  table  because  no  correlation  exists  

between  the  four  dimension  tables;  virtually  every  product  is sold  every  day  to  all 

customers  in  every  region.  

The  fact  table  is the  largest  table  in a dimensional  database.  Because  the  dimension  

tables  are  usually  much  smaller  than  the  fact  table,  you  can  ignore  the  dimension  

tables  when  you  calculate  the  disk  space  for  your  database.  Efforts  to  normalize  

any  of  the  tables  in  a dimensional  database  solely  to  save  disk  space  are  pointless.  

Furthermore,  normalized  dimension  tables  undermine  the  ability  of  users  to  

explore  a single  dimension  table  to  set  constraints  and  choose  useful  row  headers.  

Choosing the Attributes for the Dimension Tables  

After  you  complete  the  fact  table,  you  can  decide  the  dimension  attributes  for  each  

of  the  dimension  tables.  To illustrate  how  to  choose  the  attributes,  consider  the  

time  dimension.  The  data  model  for  the  sales  business  process  defines  a 

granularity  of  day  that  corresponds  to  the  time  dimension,  so  that  each  record  in  

the  time  dimension  table  represents  a day.  Keep  in  mind  that  each  field  of  the  

table  is  defined  by  the  particular  day  the  record  represents.  

The  analysis  of the  sales  business  process  also  indicates  that  the  marketing  

department  needs  monthly,  quarterly,  and  annual  reports,  so  the  time  dimension  

includes  the  elements:  day,  month,  quarter,  and  year.  Each  element  is assigned  an  

attribute  that  describes  the  element  and  a code  attribute  (to  avoid  column  values  

that  contain  long  character  strings).  Table 11-6  shows  the  attributes  for  the  time  

dimension  table  and  sample  values  for  each  field  of the  table.  

 

11-14 IBM Informix  Database  Design  and Implementation  Guide



Table 11-6. Attributes  for the  Time Dimension  

time  code  order  date 

month  

code  month  

quarter  

code  quarter  year  

35276  07/31/1999  7 july  3 third  q 1999  

35277  08/01/1999  8 aug  3 third  q 1999  

35278  08/02/1999  8 aug  3 third  q 1999
  

Table 11-6  on  page  11-15  shows  that  the  attribute  names  you  assign  should  be  

familiar  business  terms  that  make  it easy  for  end  users  to  form  queries  on  the  

database.  Figure  11-8  shows  the  completed  data  model  for  the  sales  business  

process  with  all  the  attributes  defined  for  each  dimension  table.  

   

Handling Common Dimensional Data-Modeling Problems 

The  dimensional  model  that  the  previous  sections  describe  illustrates  only  the  most  

basic  concepts  and  techniques  of  dimensional  data  modeling.  The  data  model  you  

build  to  address  the  business  needs  of  your  enterprise  typically  involves  additional  

problems  and  difficulties  that  you  must  resolve  to  achieve  the  best  possible  query  

performance  from  your  database.  This  section  describes  various  methods  you  can  

use  to  resolve  some  of  the  most  common  problems  that  arise  when  you  build  a 

dimensional  data  model.  

Minimizing the Number of Attributes in a Dimension Table  

Dimension  tables  that  contain  customer  or  product  information  might  easily  have  

50  to  100  attributes  and  many  millions  of  rows.  However,  dimension  tables  with  

too  many  attributes  can  lead  to excessively  wide  rows  and  poor  performance.  For  

this  reason,  you  might  want  to separate  out  certain  groups  of attributes  from  a 

dimension  table  and  put  them  in a separate  table  called  a minidimension  table.  A 

minidimension  table  consists  of  a small  group  of attributes  that  are  separated  out  

  

Figure  11-8. The  Completed  Dimensional  Data  Model  for the Sales  Business  Process

 

Chapter  11. Building  a Dimensional  Data Model 11-15



from  a larger  dimension  table.  You might  choose  to create  a minidimension  table  

for  attributes  that  have  either  of  the  following  characteristics:  

v   The  fields  are  rarely  used  as constraints  in  a query.  

v   The  fields  are  frequently  compared  together.

Figure  11-9  shows  a minidimension  table  for  demographic  information  that  is 

separated  out  from  a customer  table.  

 

In  the  demographics  table,  you  can  store  the  demographics  key  as  a foreign  key  in 

both  the  fact  table  and  the  customer  table,  which  allows  you  to join  the  

demographics  table  directly  to the  fact  table.  You can  also  use  the  demographics  

key  directly  with  the  customer  table  to  browse  demographic  attributes.  

Handling Dimensions That Occasionally Change 

In  a dimensional  database  where  updates  are  infrequent  (as  opposed  to OLTP  

systems),  most  dimensions  are  relatively  constant  over  time,  because  changes  in  

sales  districts  or  regions,  or  in  company  names  and  addresses,  occur  infrequently.  

However,  to  make  historical  comparisons,  these  changes  must  be  handled  when  

they  do  occur. Figure  11-10  shows  an  example  of  a dimension  that  has  changed.  

 

You can  use  three  ways  to  handle  changes  that  occur  in  a dimension:  

v   Change  the  value  stored  in  the  dimension  column.  

  

Figure  11-9. A Minidimension  Table for Demographics  Information

  

Figure  11-10. A Dimension  That  Changes

 

11-16 IBM Informix  Database  Design  and Implementation  Guide



In  Figure  11-10,  the  record  for  Bill  Adams  in  the  customer  dimension  table  is 

updated  to  show  the  new  address  Arlington  Heights. All  of  this  customer’s  

previous  sales  history  is now  associated  with  the  district  of Arlington  Heights  

instead  of  Des  Plaines.  

v   Create  a second  dimension  record  with  the  new  value  and  a generalized  key.  

This  approach  effectively  partitions  history.  The  customer  dimension  table  would  

now  contain  two  records  for  Bill  Adams.  The  old  record  with  a key  of  101  

remains,  and  records  in  the  fact  table  are  still  associated  with  it.  A new  record  is 

also  added  to  the  customer  dimension  table  for  Bill  Adams,  with  a new  key  that  

might  consist  of the  old  key  plus  some  version  digits  (101.01,  for  example).  All  

subsequent  records  that  are  added  to the  fact  table  for  Bill  Adams  are  associated  

with  this  new  key.  

v   Add  a new  field  in  the  customer  dimension  table  for  the  affected  attribute  and  

rename  the  old  attribute.  

This  approach  is rarely  used  unless  you  need  to  track  old  history  in  terms  of  the  

new  value  and  vice-versa.  The  customer  dimension  table  gets  a new  attribute  

named  current  address,  and  the  old  attribute  is renamed  original  address. The  

record  that  contains  information  about  Bill  Adams  includes  values  for  both  the  

original  and  current  address.

Using the Snowflake Schema 

A snowflake  schema  is a variation  on  the  star  schema,  in which  very  large  

dimension  tables  are  normalized  into  multiple  tables.  Dimensions  with  hierarchies  

can  be  decomposed  into  a snowflake  structure  when  you  want  to avoid  joins  to big  

dimension  tables  when  you  are  using  an  aggregate  of  the  fact  table.  For  example,  if 

you  have  brand  information  that  you  want  to  separate  out  from  a product  

dimension  table,  you  can  create  a brand  snowflake  that  consists  of a single  row  for  

each  brand  and  that  contains  significantly  fewer  rows  than  the  product  dimension  

table.  Figure  11-11 shows  a snowflake  structure  for  the  brand  and  product  line  

elements  and  the  brand_agg  aggregate  table.  

 

  

Figure  11-11. An Example  of a Snowflake  Schema

 

Chapter  11. Building  a Dimensional  Data Model 11-17



If you  create  an  aggregate,  brand_agg, that  consists  of the  brand  code  and  the  total  

revenue  per  brand,  you  can  use  the  snowflake  schema  to  avoid  the  join  to the  

much  larger  sales  table,  as the  following  query  on  the  brand  and  brand_agg  tables  

shows:  

SELECT  brand.brand_name,  brand_agg.total_revenue  

FROM  brand,  brand_agg  

   WHERE  brand.brand_code  = brand_agg.brand_code  

   AND  brand.brand_name  = ’Anza’  

Without  a snowflaked  dimension  table,  you  use  a SELECT  UNIQUE  or  SELECT  

DISTINCT  statement  on  the  entire  product  table  (potentially,  a very  large  

dimension  table  that  includes  all  the  brand  and  product-line  attributes)  to  eliminate  

duplicate  rows.  

While  snowflake  schemas  are  unnecessary  when  the  dimension  tables  are  relatively  

small,  a retail  or  mail-order  business  that  has  customer  or  product  dimension  

tables  that  contain  millions  of rows  can  use  snowflake  schemas  to  significantly  

improve  performance.  

If an  aggregate  table  is not  available,  any  joins  to a dimension  element  that  was  

normalized  with  a snowflake  schema  must  now  be  a three-way  join,  as  the  

following  query  shows.  A  three-way  join  reduces  some  of  the  performance  

advantages  of  a dimensional  database.  

SELECT  brand.brand_name,  SUM(sales.revenue)  

FROM  product,  brand,  sales  

   WHERE  product.brand_code  = brand.brand_code  

   AND  brand.brand_name  = ’Alltemp’  

GROUP  BY brand_name  

 

11-18 IBM Informix  Database  Design  and Implementation  Guide



Chapter  12.  Implementing  a Dimensional  Database  (XPS)  

In This  Chapter   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 

Implementing  the  sales_demo  Dimensional  Database  . . . . . . . . . . . . . . . . . . . . . 12-1  

Using  CREATE DATABASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1  

Using  CREATE TABLE for  the  Dimension  and  Fact  Tables  . . . . . . . . . . . . . . . . . . 12-2 

Mapping  Data  from  Data  Sources  to the  Database   . . . . . . . . . . . . . . . . . . . . . 12-3 

Loading  Data  into  the  Dimensional  Database   . . . . . . . . . . . . . . . . . . . . . . 12-5  

Creating  the  sales_demo  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6 

Testing  the  Dimensional  Database   . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6 

Logging  and  Nonlogging  Tables in Extended  Parallel  Server   . . . . . . . . . . . . . . . . . . 12-7 

Choosing  Table Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8  

Scratch  and  Temp Temporary  Tables  . . . . . . . . . . . . . . . . . . . . . . . . 12-8 

Raw  Permanent  Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9  

Static  Permanent  Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9  

Operational  Permanent  Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9  

Standard  Permanent  Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10  

Switching  Between  Table Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10  

Indexes  for  Data-Warehousing  Environments   . . . . . . . . . . . . . . . . . . . . . . . 12-10  

Using  GK  Indexes  in a Data-Warehousing  Environment   . . . . . . . . . . . . . . . . . . . 12-11 

Defining  a GK  Index  on  a Selection   . . . . . . . . . . . . . . . . . . . . . . . . . 12-11  

Defining  a GK  Index  on  an Expression   . . . . . . . . . . . . . . . . . . . . . . . . 12-11  

Defining  a GK  Index  on  Joined  Tables  . . . . . . . . . . . . . . . . . . . . . . . . 12-12

In This Chapter 

This  chapter  shows  how  to use  SQL  to  implement  the  dimensional  data  model  that  

Chapter  11, “Building  a Dimensional  Data  Model,”  on  page  11-1  describes.  

Remember  that  this  database  serves  only  as  an  illustrative  example  of  a 

data-warehousing  environment.  For  the  sake  of  the  example,  it is translated  into  

SQL  statements.  

This  chapter  describes  the  sales_demo  database,  which  is available  with  Extended  

Parallel  Server.  This  chapter  also  describes  the  special  table  types  and  indexes  

available  with  Extended  Parallel  Server  that  are  suited  to the  needs  of data  

warehousing  and  other  very  large  database  applications.  

Implementing the sales_demo Dimensional Database 

This  section  shows  the  SQL  statements  that  you  can  use  to create  a dimensional  

database  from  the  data  model  in Chapter  11. You can  use  interactive  SQL  to write  

the  individual  statements  that  create  the  database  or  you  can  run a script  that  

automatically  executes  all  the  statements  that  you  need  to implement  the  database.  

The  CREATE  DATABASE  and  CREATE  TABLE  statements  create  the  data  model  as 

tables  in  a database.  After  you  create  the  database,  you  can  use  LOAD  and  INSERT  

statements  to  populate  the  tables.  

Using CREATE  DATABASE  

You must  create  the  database  before  you  can  create  any  tables  or  other  objects  that  

the  database  contains.  

 

© Copyright  IBM Corp. 1996, 2008 12-1



When  an  Informix  database  server  creates  a database,  it sets  up  records  that  show  

the  existence  of  the  database  and  its  mode  of logging.  The  database  server  

manages  disk  space  directly,  so  these  records  are  not  visible  to operating-system  

commands.  

When  you  create  a database  with  Extended  Parallel  Server,  logging  is always  

turned  on.  However,  you  can  create  nonlogging  tables  within  the  database.  For  

more  information,  see  “Configuring  the  Database  Server  to  Use  Distributed  

Queries”  on  page  7-3.  

The  following  statement  shows  the  syntax  you  use  to  create  a database  that  is 

called  sales_demo: 

CREATE  DATABASE  sales_demo  

Using CREATE  TABLE  for the Dimension and Fact Tables  

This  section  includes  the  CREATE  TABLE  statements  that  you  use  to  create  the  

tables  of  the  sales_demo  dimensional  database.  

Referential  integrity  is,  of course,  an  important  requirement  for  dimensional  

databases.  However,  the  following  schema  for  the  sales_demo  database  does  not  

define  the  primary  and  foreign  key  relationships  that  exist  between  the  fact  table  

and  its  dimension  tables.  The  schema  does  not  define  these  primary  and  foreign  

key  relationships  because  data-loading  performance  improves  dramatically  when  

the  database  server  does  not  enforce  constraint  checking.  Given  that  

data-warehousing  environments  often  require  that  tens  or  hundreds  of  gigabytes  of 

data  are  loaded  within  a specified  time,  data-load  performance  should  be  a factor  

when  you  decide  how  to implement  a database  in  a warehousing  environment.  

Assume  that  if the  sales_demo  database  is implemented  as  a live  data  mart,  some  

data  extraction  tool  (rather  than  the  database  server)  is used  to  enforce  referential  

integrity  between  the  fact  table  and  dimension  tables.  

Tip:   After  you  create  and  load  a table,  you  can  add  primary-  and  foreign-key  

constraints  to  the  table  with  the  ALTER  TABLE  statement  to  enforce  

referential  integrity.  This  method  is required  only  for  express  load  mode.  If 

the  constraints  and  indexes  are  necessary  and  costly  to  drop  before  a load,  

then  deluxe  load  mode  is  the  best  option.  

The  following  statements  create  the  time, geography, product, and  customer  

tables.  These  tables  are  the  dimensions  for  the  sales  fact  table.  A SERIAL  field  

serves  as  the  primary  key  for  the  district_code  column  of  the  geography  table.  

CREATE  TABLE  time  

( 

time_code      INT,  

order_date     DATE,  

month_code     SMALLINT,  

month_name     CHAR(10),  

quarter_code   SMALLINT,  

quarter_name   CHAR(10),  

year  INTEGER  

); 

  

CREATE  TABLE  geography  

( 

district_code   SERIAL,  

district_name   CHAR(15),  

state_code      CHAR(2),  

state_name      CHAR(18),  

region          SMALLINT

 

12-2 IBM Informix  Database  Design  and Implementation  Guide



); 

  

CREATE  TABLE  product  ( 

product_code    INTEGER,  

product_name    CHAR(31),  

vendor_code     CHAR(3),  

vendor_name     CHAR(15),  

product_line_code   SMALLINT,  

product_line_name   CHAR(15)  

); 

  

CREATE  TABLE  customer  ( 

customer_code   INTEGER,  

customer_name   CHAR(31),  

company_name    CHAR(20)  

); 

The  sales  fact  table  has  pointers  to  each  dimension  table.  For  example,  

customer_code  references  the  customer  table,  district_code  references  the  

geography  table,  and  so  forth.  The  sales  table  also  contains  the  measures  for  the  

units  sold,  revenue,  cost,  and  net  profit.  

CREATE  TABLE  sales  

( 

customer_code   INTEGER,  

district_code   SMALLINT,  

time_code       INTEGER,  

product_code    INTEGER,  

units_sold      SMALLINT,  

revenue         MONEY(8,2),  

cost            MONEY(8,2),  

net_profit      MONEY(8,2)  

); 

Tip:   The  most  useful  measures  (facts)  are  numeric  and  additive.  Because  of the  

great  size  of  databases  in  data-warehousing  environments,  virtually  every  

query  against  the  fact  table  might  require  thousands  or  millions  of records  to  

construct  an  answer  set.  The  only  useful  way  to  compress  these  records  is to  

aggregate  them.  In  the  sales  table,  each  column  for  the  measures  is defined  

on  a numeric  data  type,  so  you  can  easily  build  answer  sets  from  the  

units_sold, revenue,  cost, and  net_profit  columns.  

For  your  convenience,  the  file  called  createdw.sql  contains  all  the  preceding  

CREATE  TABLE  statements.  

Mapping Data from Data Sources to the Database 

The  stores_demo  demonstration  database  is the  primary  data  source  for  the  

sales_demo  database.  

Table 12-1  on  page  12-3  shows  the  relationship  between  data-warehousing  business  

terms  and  the  data  sources.  It also  shows  the  data  source  for  each  column  and  

table  of  the  sales_demo  database.  

 Table 12-1.  The  Relationship  Between  Data-Warehousing  Business  Terms and  Data  Sources  

Business  Term  Data  Source  Table.Column  Name  

Sales  Fact  Table:  

product  code  sales.product_code  

customer  code  sales.customer_code  

district  code  sales.district_code  

 

Chapter  12. Implementing  a Dimensional  Database (XPS) 12-3



Table 12-1.  The  Relationship  Between  Data-Warehousing  Business  Terms and  Data  

Sources  (continued)  

Business  Term  Data  Source  Table.Column  Name  

time  code  sales.time_code  

revenue  stores_demo:items.total_price  sales.revenue  

units  sold  stores_demo:items.quantity  sales.units_sold  

cost  costs.lst  (per  unit)  sales.cost  

net  profit  calculated:  revenue  minus  cost  sales.net_profit  

Product  Dimension  Table:  

product  stores_demo:catalog.catalog_num  product.product_code  

product  name  stores_demo:stock.manu_code  and  

stores_demo:stock.description  

product.product_name  

product  line  stores_demo:orders.stock_num  product.product_line_code  

product  line  

name  

stores_demo:stock.description  product.product_line_name  

vendor  stores_demo:orders.manu_code  product.vendor_code  

vendor  name  stores_demo:manufact.manu_name  product.vendor_name  

Customer  Dimension  Table:  

customer  stores_demo:orders.customer_num  customer.customer_code  

customer  name  stores_demo:customer.fname  plus  

stores_demo:customer.lname  

customer.customer_name  

company  stores_demo:customer.company  customer.company_name  

Geography  Dimension  Table:  

district  code  generated  geography.district_code  

district  stores_demo:customer.city  geography.district_name  

state  stores_demo:customer.state  geography.state_code  

state  name  stores_demo.state.sname  geography.state_name  

region  derived:  If state  = ″CA″  THEN  region  = 

1,  ELSE  region  = 2 

geography.region  

Time  Dimension  Table:  

time  code  generated  time.time_code  

order  date  stores_demo:orders.order_date  time.order_date  

month  derived  from  order  date  generated  time.month_name  

time.month.code  

quarter  derived  from  order  date  generated  time.quarter_name  

time.quarter_code  

year  derived  from  order  date  time.year
  

Several  files  with  a .unl  suffix  contain  the  data  that  is loaded  into  the  sales_demo  

database.  The  files  that  contain  the  SQL  statements  that  create  and  load  the  

database  have  a .sql  suffix.  

 

UNIX  Only  

When  your  database  server  runs on  UNIX,  you  can  access  the  *.sql  and  *.unl  files  

from  the  directory  $INFORMIXDIR/demo/dbaccess. 

 

12-4 IBM Informix  Database  Design  and Implementation  Guide



Windows  Only  

When  your  database  server  runs on  Windows,  you  can  access  the  *.sql  and  *.unl  

files  from  the  directory  %INFORMIXDIR%\demo\dbaccess. 

 

End  of  Windows  Only  

Loading Data into the Dimensional Database 

An  important  step  when  you  implement  a dimensional  database  is to  develop  and  

document  a load  strategy.  This  section  shows  the  LOAD  and  INSERT  statements  

that  you  can  use  to  populate  the  tables  of  the  sales_demo  database.  

Tip:   In a live  data-warehousing  environment,  you  typically  do  not  use  the  LOAD  

or  INSERT  statements  to load  large  amounts  of data  to  and  from  Informix  

databases.  

Informix  database  servers  provide  different  features  for  high-performance  loading  

and  unloading  of  data.  

When  you  create  a database  with  Extended  Parallel  Server,  you  can  use  external  

tables  to  perform  high-performance  loading  and  unloading.  

For  information  about  high-performance  loading,  see  your  IBM  Informix  

Administrator’s  Guide  or  IBM  Informix  High-Performance  Loader  User’s  Guide. 

The  following  statement  loads  the  time  table  with  data  first  so  that  you  can  use  it 

to  determine  the  time  code  for  each  row  that  is loaded  into  the  sales  table:  

LOAD  FROM  ’time.unl’  INSERT  INTO  time  

The  following  statement  loads  the  geography  table.  Once  you  load  the  geography  

table,  you  can  use  the  district  code  data  to  load  the  sales  table.  

INSERT  INTO geography(district_name,  state_code,  state_name)  

SELECT  DISTINCT  c.city,  s.code,  s.sname  

   FROM stores_demo:customer  c, stores_demo:state  s 

      WHERE c.state  = s.code  

The  following  statements  add  the  region  code  to the  geography  table:  

UPDATE  geography  

   SET  region  = 1 

   WHERE  state_code  = ’CA’  

  

UPDATE  geography  

   SET  region  = 2 

   WHERE  state_code  <> ’CA’  

The  following  statement  loads  the  customer  table:  

INSERT  INTO customer  (customer_code,  customer_name,  company_name)  

SELECT  c.customer_num,  trim(c.fname)  ||’ ’|| c.lname,  c.company  

FROM stores_demo:customer  c 

The  following  statement  loads  the  product  table:  

 

Chapter  12. Implementing  a Dimensional  Database (XPS) 12-5



INSERT  INTO product  (product_code,  product_name,  vendor_code,  

   vendor_name,product_line_code,  product_line_name)  

SELECT  a.catalog_num,  

   trim(m.manu_name)||’  ’||s.description,  

   m.manu_code,  m.manu_name,  

   s.stock_num,  s.description  

FROM stores_demo:catalog  a, stores_demo:manufact  m, 

   stores_demo:stock  s 

   WHERE a.stock_num  = s.stock_num  

      AND a.manu_code  = s.manu_code  

      AND s.manu_code  = m.manu_code;  

The  following  statement  loads  the  sales  fact  table  with  one  row  for  each  product,  

per  customer,  per  day,  per  district.  The  cost  from  the  cost  table  is used  to calculate  

the  total  cost  (cost  * quantity).  

INSERT  INTO sales  (customer_code,  district_code,  time_code,  

   product_code,  units_sold,  cost, revenue,  net_profit)  

SELECT  

   c.customer_num,  g.district_code,  t.time_code,  

   p.product_code,  SUM(i.quantity),  

   SUM(i.quantity  * x.cost),  SUM(i.total_price),  

   SUM(i.total_price)  - SUM(i.quantity  * x.cost)  

FROM stores_demo:customer  c, geography  g, time t, 

   product  p,stores_demo:items  i, 

   stores_demo:orders  o, cost x 

WHERE  c.customer_num  = o.customer_num  

   AND o.order_num  = i.order_num  

   AND p.product_line_code  = i.stock_num  

   AND p.vendor_code  = i.manu_code  

   AND t.order_date  = o.order_date  

   AND p.product_code  = x.product_code  

   AND c.city  = g.district_name  

GROUP  BY 1,2,3,4;  

Creating the sales_demo Database 

The  sales_demo  dimensional  database  uses  data  from  the  stores_demo  database,  

so  you  must  create  both  databases  to  implement  the  sales_demo  database.  

For  information  about  how  to  use  the  dbaccessdemo  script  to implement  the  

sales_demo  database,  see  the  IBM  Informix  DB–Access  User’s  Guide. 

Testing  the Dimensional Database 

You can  create  SQL  queries  to  retrieve  the  data  necessary  for  the  standard  reports  

listed  in the  business-process  summary  (see  the  “Summary  of  a Business  Process”  

on  page  11-9).  Use  the  following  ad  hoc  queries  to  test  that  the  dimensional  

database  was  properly  implemented.  

The  following  statement  returns  the  monthly  revenue,  cost,  and  net  profit  by  

product  line  for  each  vendor:  

SELECT  vendor_name,  product_line_name,  month_name,  

   SUM(revenue)  total_revenue,  SUM(cost)  total_cost,  

   SUM(net_profit)  total_profit  

FROM product,  time, sales  

WHERE  product.product_code  = sales.product_code  

   AND time.time_code  = sales.time_code  

GROUP  BY vendor_name,  product_line_name,  month_name  

ORDER  BY vendor_name,  product_line_name;  

 

12-6 IBM Informix  Database  Design  and Implementation  Guide



The  following  statement  returns  the  revenue  and  units  sold  by  product,  by  region,  

and  by  month:  

SELECT  product_name,  region,  month_name,  

   SUM(revenue),  SUM(units_sold)  

FROM product,  geography,  time,  sales  

WHERE product.product_code  = sales.product_code  

   AND geography.district_code  = sales.district_code  

   AND time.time_code  = sales.time_code  

GROUP BY product_name,  region,  month_name  

ORDER BY product_name,  region;  

The  following  statement  returns  the  monthly  customer  revenue:  

SELECT  customer_name,  company_name,  month_name,  

   SUM(revenue)  

FROM customer,  time, sales  

WHERE customer.customer_code  = sales.customer_code  

   AND time.time_code  = sales.time_code  

GROUP BY customer_name,  company_name,  month_name  

ORDER BY customer_name;  

The  following  statement  returns  the  quarterly  revenue  per  vendor:  

SELECT  vendor_name,  year,  quarter_name,  SUM(revenue)  

FROM product,  time,  sales 

WHERE product.product_code  = sales.product_code  

   AND time.time_code  = sales.time_code  

GROUP BY vendor_name,  year, quarter_name  

ORDER BY vendor_name,  year 

Logging and Nonlogging Tables  in Extended Parallel Server 

This  section  describes  the  different  table  types  that  can  be  particularly  useful  in  

data-warehousing  environments.  Extended  Parallel  Server  logs  tables  by  default,  

the  same  way  that  Dynamic  Server  logs  tables.  However,  data-warehousing  

environments  and  other  applications  that  involve  large  amounts  of data  (and  few  

or  no  inserts,  updates,  or  deletes)  often  require  a combination  of  logged  and  

nonlogged  tables  in  the  same  database.  In  many  cases,  temporary  tables  are  

insufficient  because  they  do  not  persist  after  the  database  session  ends.  To meet  the  

need  for  both  logging  and  nonlogging  tables,  Extended  Parallel  Server  supports  the  

following  types  of permanent  tables  and  temporary  tables:  

v   Raw  permanent  tables  (nonlogging)  

v   Static  permanent  tables  (nonlogging)  

v   Operational  permanent  tables  (logging)  

v   Standard  permanent  tables  (logging)  

v   Scratch  temporary  tables  (nonlogging)  

v   Temp temporary  tables  (logging)

If  you  issue  the  CREATE  TABLE  statement  and  you  do  not  specify  the  table  type,  

you  create  a standard  permanent  table.  To change  between  table  types,  use  the  

ALTER  TABLE  statement.  For  information  about  the  syntax,  refer  to the  IBM  

Informix  Guide  to  SQL:  Syntax. 

Important:   A  coserver  can  use  and  access  only  its  own  dbspaces  for  temporary  

space.  Although  temporary  tables  can  be  fragmented  explicitly  across  

dbspaces  like  permanent  tables,  a coserver  inserts  data  only  into  the  

fragments  that  it manages.

 

Chapter  12. Implementing  a Dimensional  Database (XPS) 12-7



Choosing Table  Types  

The  individual  tables  in  a data-warehousing  environment  often  have  different  

requirements.  To help  determine  the  appropriate  table  type  to  use  for  your  tables,  

answer  the  following  questions:  

v   Does  the  table  require  indexes?  

v   What  constraints  does  the  table  need  to define?  

v   What  is  the  refresh  and  update  cycle  on  the  table?  

v   Is  the  table  a read-only  table?  

v   Does  the  table  need  to be  logged?

Table  12-2  lists  the  properties  of the  six  types  of  tables  that  Extended  Parallel  

Server  supports  and  shows  how  you  can  use  external  tables  to  load  these  types  of  

tables.  Use  this  information  to  select  a table  type  to  match  the  specific  

requirements  of  your  tables.  

 Table 12-2.  Characteristics  of the Table Types for Extended  Parallel  Server  

Type Permanent  Logged  Indexes  

Light  

Append  

Used  

Rollback  

Available  Recoverable  

Restorable  

from  

Archive  

External  

Tables  Load  

Mode  

SCRATCH  No  No  No  Yes No No  No Express  or 

deluxe  load  

mode  

TEMP  No  Yes Yes Yes Yes No  No Express  or 

deluxe  load  

mode  

RAW Yes No  No  Yes Yes Yes Yes Express  or 

deluxe  load  

mode  

STATIC Yes No  Yes No No No  No None  

OPERATIONAL  Yes Yes Yes Yes Yes Yes No Express  or 

deluxe  load  

mode  

STANDARD  Yes Yes Yes No Yes Yes Yes Deluxe  load  

mode
  

Scratch and Temp Temporary Tables 

Scratch  tables  are  nonlogging  temporary  tables  that  do  not  support  indexes,  

constraints,  or  rollback.  

Temp tables  are  logged  temporary  tables,  although  they  also  support  bulk  

operations  such  as  light  appends.  (Express  mode  loads  use  light  appends, which  

bypass  the  buffer  cache.  Light  appends  eliminate  the  overhead  associated  with  

buffer  management  but  do  not  log  the  data.)  Temp  tables  support  indexes,  

constraints,  and  rollback.  

Tip:   SELECT...INTO  TEMP  and  SELECT...INTO  SCRATCH  statements  are  parallel  

across  coservers,  just  like  ordinary  inserts.  Extended  Parallel  Server  

automatically  supports  fragmented  temporary  tables  across  nodes  when  those  

tables  are  explicitly  created  with  SELECT...INTO  TEMP  and  SELECT...INTO  

SCRATCH.

 

12-8 IBM Informix  Database  Design  and Implementation  Guide



Extended  Parallel  Server  creates  explicit  temporary  tables  according  to  the  

following  criteria:  

v   If the  query  that  you  use  to populate  the  Temp  or  Scratch  table  produces  no  

rows,  the  database  server  creates  an  empty,  unfragmented  table.  

v   If the  rows  that  the  query  produces  do  not  exceed  8 kilobytes,  the  temporary  

table  resides  in  only  one  dbspace.  

v   If the  rows  exceed  8 kilobytes,  Extended  Parallel  Server  creates  multiple  

fragments  and  uses  a round-robin  fragmentation  scheme  to  populate  them.

Raw Permanent Tables 

Raw  tables  are  nonlogging  permanent  tables  that  use  light  appends.  Express-mode  

loads  use  light  appends, which  bypass  the  buffer  cache.  You can  load  a raw  table  

with  express  mode.  For  information  about  express-mode  loads,  see  your  IBM  

Informix  Administrator’s  Reference. 

Raw  tables  support  updates,  inserts,  and  deletes  but  do  not  log  them.  Raw  tables  

support  index  or  referential  constraints,  rollback,  recoverability,  and  restoration  

from  archives.  

Use  raw  tables  for  the  initial  data  loading  and  scrubbing.  Once  these  steps  are  

completed,  alter  the  table  to  a higher  level.  For  example,  if an  error  or  failure  

occurs  while  you  are  loading  a raw  table,  the  resulting  data  is whatever  was  on  the  

disk  at  the  time  of  the  failure.  

In  a data-warehousing  environment,  you  might  choose  to  create  a fact  table  as a 

raw  table  when  both  of the  following  conditions  are  true: 

v   The  fact  table  does  not  need  to  specify  constraints  and  indexes,  which  are  

enforced  by  some  different  mechanisms.  

v   Creating  and  loading  the  fact  table  is  not  a costly  job.  The  fact  tables  could  be  

useful  but  not  critical  for  decision  support,  and  if data  is  lost  you  can  easily  

reload  the  table.

Static Permanent Tables 

Static  tables  are  nonlogging,  read-only  permanent  tables  that  do  not  support  insert,  

update,  and  delete  operations.  When  you  anticipate  no  insert,  update,  or delete  

operations  on  the  table,  you  might  choose  to  create  the  table  as  a static  table.  With  

a static  table,  you  can  create  and  drop  nonclustered  indexes  and  referential  

constraints  because  they  do  not  affect  the  data.  

Static  tables  do  not  support  rollback,  recoverability,  or  restoration  from  archives.  

Their  advantage  is that  the  database  server  can  use  light  scans  and  avoid  locking  

when  you  execute  queries  because  static  tables  are  read-only.  

Tip:   Static  tables  are  important  when  you  want  to create  a table  that  uses  GK  

indexes  because  a static  table  is the  only  table  type  that  supports  GK  indexes.  

Operational Permanent Tables 

Operational  tables  are  logging  permanent  tables  that  use  light  appends  and  do  not  

perform  record-by-record  logging.  They  allow  fast  update  operations.  

You can  roll  back  operations  or  recover  after  a failure  with  operational  tables,  but  

you  cannot  restore  them  reliably  from  an  archive  of the  log  because  the  bulk  insert  

records  that  are  loaded  are  not  logged.  Use  operational  tables  in situations  where  

you  derive  data  from  another  source  so  restorability  is not  an  issue,  but  where  you  

do  not  require  rollback  and  recoverability.  

 

Chapter  12. Implementing  a Dimensional  Database (XPS) 12-9



You might  create  a fact  table  as  an  operational  table  because  the  data  is 

periodically  refreshed.  Operational  tables  support  express  load  mode  (in  the  

absence  of  indexes  and  constraints)  and  data  is  recoverable.  

Standard Permanent Tables 

A  standard  table  in  Extended  Parallel  Server  is the  same  as  a table  in  a logged  

database  that  you  create  with  Dynamic  Server.  All  operations  are  logged,  record  by 

record,  so  you  can  restore  standard  tables  from  an  archive.  Standard  tables  support  

recoverability  and  rollback.  

If the  update  and  refresh  cycle  for  the  table  is infrequent,  you  might  choose  to  

create  a standard  table  type,  as you  need  not  drop  constraints  or  indexes  during  a 

refresh  cycle.  Building  indexes  is time  consuming  and  costly,  but  necessary.  

Tip:   Standard  tables  do  not  use  light  appends,  so  you  cannot  use  express-load  

mode  when  you  use  external  tables  to  perform  the  load.  

Switching Between Table  Types  

Use  the  ALTER  TABLE  command  to switch  between  types  of  permanent  tables.  If 

the  table  does  not  meet  the  restrictions  of the  new  type,  the  alter  fails  and  

produces  an  explanatory  error  message.  The  following  restrictions  apply  to table  

alteration:  

v   You must  perform  a level-0  archive  before  you  alter  a table  to a STANDARD  

type,  so  that  the  table  meets  the  full  recoverability  restriction.  

v   You cannot  alter  a temp  or  scratch  temporary  table.

Indexes for Data-Warehousing Environments 

In  addition  to  conventional  (B-tree)  indexes,  Extended  Parallel  Server  provides  the  

following  indexes  that  you  can  use  to  improve  ad  hoc  query  performance  in  

data-warehousing  environments:  

v   Bitmap  indexes  

A  bitmap  index  is a specialized  variation  of a B-tree  index.  You can  use  a bitmap  

index  to  index  columns  that  can  contain  one  of only  a few  values,  such  as  

marital  status  or  gender.  For  each  highly  duplicate  value,  a bitmap  index  stores  

a compressed  bitmap  for  each  value  that  the  column  might  contain.  With  a 

bitmap  index,  storage  efficiency  increases  as  the  distance  between  rows  that  

contain  the  same  key  decreases.  

You can  use  a bitmap  index  when  both  of  the  following  conditions  are  true: 

–   The  key  values  in  the  index  contain  many  duplicates.  

–   More  than  one  column  in  the  table  has  an  index  that  the  optimizer  can  use  to  

improve  performance  on  a table  scan.
v    Generalized-key  (GK)  indexes  

GK  indexes  allow  you  to  store  the  result  of  an  expression,  selection  of  a data  set,  

or  intersect  of  data  sets  from  joined  tables  as  a key  in  a B-tree  or  bitmap  index,  

which  can  be  useful  in  specific  queries  on  one  or  more  large  tables.  

To create  a GK  index,  all  tables  involved  should  be  static  tables.

To  improve  indexing  efficiency,  Extended  Parallel  Server  also  supports  the  

following  functionality:  

v   Automatically  combine  indexes  for  use  in  the  same  table  access.  

You can  combine  multicolumn  indexes  with  single-column  indexes.  

 

12-10 IBM Informix  Database  Design  and Implementation  Guide



v   Read  a table  with  an  access  method  known  as a Skip  Scan.  

When  it scans  rows  from  a table,  the  database  server  only  reads  rows  that  the  

index  indicates,  and  reads  rows  in  the  order  that  they  appear  in  the  database.  

The  skip  scan  access  method  guarantees  that  no  page  is read  twice.  Pages  are  

read  sequentially,  not  randomly,  which  reduces  I/O  resource  requirements.  The  

skip  scan  also  reduces  CPU  requirements  because  filtering  on  the  index  columns  

is unnecessary.  

v   Use  a hash  semi-join  to  reduce  the  work  to process  certain  multitable  joins.  

A  hash  semi-join  is especially  useful  with  joins  that  typify  queries  against  a star  

schema  where  one  large  (fact)  table  is joined  with  many  small  (dimension)  

tables.  The  hash  semi-join  can  effectively  reduce  the  set  of rows  as  much  as 

possible  before  the  joins  begin.

An  analysis  of  the  types  of queries  you  anticipate  running  against  your  database  

can  help  you  decide  the  type  of  indexes  to  create.  For  information  about  indexes  

and  indexing  methods  that  you  can  use  to improve  query  performance,  see  your  

IBM  Informix  Performance  Guide. 

Using GK Indexes in a Data-Warehousing Environment 

You can  create  GK  indexes  when  you  anticipate  frequent  use  of  a particular  type  of  

query  on  a table.  The  following  examples  illustrate  how  you  can  create  and  use  

GK  indexes  for  queries  on  one  or  more  large  tables.  The  examples  are  based  on  

tables  of  the  sales_demo  database.  

Defining a GK Index on a Selection 

Suppose  a typical  query  on  the  sales  fact  table  returns  values  where  state  = "CA". 

To improve  the  performance  for  this  type  of  query,  you  can  create  a GK  index  that  

allows  you  to  store  the  result  of a select  statement  as  a key  in  an  index.  The  

following  statement  creates  the  state_idx  index,  which  can  improve  performance  

on  queries  that  restrict  a search  by  geographic  data:  

CREATE  GK INDEX  state_idx  ON geography  

   (SELECT  district_code  FROM  geography  

      WHERE  state_code  = "CA");  

The  database  server  can  use  the  state_idx  index  on  the  following  type  of  query  

that  returns  revenue  and  units  sold  by  product,  by  region,  and  by  month  where  

state  = "CA". The  database  server  uses  the  state_idx  index  to retrieve  rows  from  the  

geography  table  where  state  = "CA"  to improve  query  performance  overall.  

SELECT  product_name,  region,  month_name,  SUM(revenue),  

SUM(units_sold)  

FROM product,  geography,  time,  sales  

WHERE product.product_code  = sales.product_code  

   AND geography.district_code  = sales.district_code  

   AND state_code  = "CA" AND time.time_code  = sales.time_code  

GROUP BY product_name,  region,  month_name  

ORDER BY product_name,  region;  

Defining a GK Index on an Expression 

You can  create  a GK  index  that  allows  you  to store  the  result  of  an  expression  as a 

key  in  an  index.  The  following  statement  creates  the  cost_idx  index,  which  can  

improve  performance  for  queries  against  the  sales  table  that  include  the  cost  of  the  

products  sold:  

CREATE  GK INDEX  cost_idx  ON sales  

   (SELECT  units_sold  * cost  FROM  sales);  

 

Chapter  12. Implementing  a Dimensional  Database (XPS) 12-11



The  database  server  can  use  the  cost_idx  index  for  the  following  type  of  query  that  

returns  the  names  of  customers  who  have  spent  more  than  $10,000.00  on  products:  

SELECT  customer_name  

FROM sales,  customer  

WHERE  sales.customer_code  = customer.customer_code  

   AND units_sold  * cost > 10000.00;  

Defining a GK Index on Joined Tables  

You can  create  a GK  index  that  allows  you  to store  the  result  of an  intersect  of  data  

sets  from  joined  tables  as  a key  in  an  index.  Suppose  you  want  to create  a GK  

index  on  year  data  from  the  time  dimension  table  for  each  entry  in  the  sales  table.  

The  following  statement  creates  the  time_idx  index:  

CREATE  GK  INDEX  time_idx  ON sales  

(SELECT  year  FROM  sales,  time  

   WHERE  sales.time_code  = time.time_code);  

Important:   To create  the  preceding  GK  index,  the  time_code  column  of  the  sales  

table  must  be  a foreign  key  that  references  the  time_code  column  (a 

primary  key)  in  the  time  table.  

The  database  server  can  use  the  time_idx  index  on  the  following  type  of  query  

that  returns  the  names  of  customers  who  purchased  products  after  1996:  

SELECT  customer_name  

FROM    sales,  customer,  time  

WHERE   sales.time_code  = time.time_code  AND  year  > 1996  

    AND  sale.customer_code  = customer.customer_code;  

 

12-12 IBM Informix  Database  Design  and Implementation  Guide



Part  5.  Appendixes  

 

© Copyright  IBM Corp. 1996, 2008 



IBM Informix  Database  Design  and Implementation  Guide



Appendix.  Accessibility  

IBM  strives  to  provide  products  with  usable  access  for  everyone,  regardless  of age  

or  ability.  

Accessibility features for IBM Informix Dynamic Server 

Accessibility  features  help  a user  who  has  a physical  disability,  such  as  restricted  

mobility  or  limited  vision,  to  use  information  technology  products  successfully.  

Accessibility Features 

The  following  list  includes  the  major  accessibility  features  in  IBM  Informix  

Dynamic  Server.  These  features  support:  

v   Keyboard-only  operation.  

v   Interfaces  that  are  commonly  used  by  screen  readers.  

v   The  attachment  of alternative  input  and  output  devices.

Tip:   The  IBM  Informix  Dynamic  Server  Information  Center  and  its  related  

publications  are  accessibility-enabled  for  the  IBM  Home  Page  Reader.  You can  

operate  all  features  using  the  keyboard  instead  of the  mouse.  

Keyboard Navigation 

This  product  uses  standard  Microsoft® Windows® navigation  keys.  

Related Accessibility Information 

IBM  is  committed  to making  our  documentation  accessible  to  persons  with  

disabilities.  Our  publications  are  available  in  HTML  format  so  that  they  can  be  

accessed  with  assistive  technology  such  as  screen  reader  software.  The  syntax  

diagrams  in  our  publications  are  available  in  dotted  decimal  format.  

You can  view  the  publications  for  IBM  Informix  Dynamic  Server  in  Adobe  Portable  

Document  Format  (PDF)  using  the  Adobe  Acrobat  Reader.  

IBM and Accessibility 

See  the  IBM  Accessibility  Center  at http://www.ibm.com/able  for  more  information  

about  the  commitment  that  IBM  has  to accessibility.  

 

© Copyright  IBM Corp. 1996, 2008 A-1

http://www.ibm.com/able


A-2 IBM Informix  Database  Design and Implementation  Guide



Notices  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in 

all  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to  an  IBM  

product,  program,  or  service  is not  intended  to  state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it  is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  give  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade Asia  Corporation  Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  “AS  IS”  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A  PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of  express  or  

implied  warranties  in  certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of the  publication.  IBM  may  make  improvements  

and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of  the  materials  for  this  IBM  

product  and  use  of  those  Web sites  is at your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in any  way  it 

believes  appropriate  without  incurring  any  obligation  to you.  

Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of  information  between  independently  created  

 

© Copyright  IBM Corp. 1996, 2008 B-1



programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of  the  

information  which  has  been  exchanged,  should  contact:  

IBM  Corporation  

J46A/G4  

555  Bailey  Avenue  

San  Jose,  CA  95141-1003  

U.S.A.

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of  the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement,  or  any  equivalent  agreement  

between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in other  operating  environments  may  

vary  significantly.  Some  measurements  may  have  been  made  on  development-level  

systems  and  there  is  no  guarantee  that  these  measurements  will  be  the  same  on  

generally  available  systems.  Furthermore,  some  measurements  may  have  been  

estimated  through  extrapolation.  Actual  results  may  vary.  Users  of  this  document  

should  verify  the  applicable  data  for  their  specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of  

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of non-IBM  products  should  be  addressed  to  the  

suppliers  of  those  products.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to change  or  

withdrawal  without  notice,  and  represent  goals  and  objectives  only.  

All  IBM  prices  shown  are  IBM’s  suggested  retail  prices,  are  current  and  are  subject  

to  change  without  notice.  Dealer  prices  may  vary.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

 COPYRIGHT  LICENSE:   

 This  information  contains  sample  application  programs  in  source  language,  which  

illustrate  programming  techniques  on  various  operating  platforms.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM,  for  the  purposes  of  developing,  using,  marketing  or  distributing  application  

programs  conforming  to  the  application  programming  interface  for  the  operating  

platform  for  which  the  sample  programs  are  written.  These  examples  have  not  

been  thoroughly  tested  under  all  conditions.  IBM,  therefore,  cannot  guarantee  or  

imply  reliability,  serviceability,  or  function  of  these  programs.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM  for  the  purposes  of  developing,  using,  marketing,  or  distributing  application  

programs  conforming  to  IBM’s  application  programming  interfaces.  

 

B-2 IBM Informix  Database  Design  and Implementation  Guide



Each  copy  or  any  portion  of  these  sample  programs  or  any  derivative  work,  must  

include  a copyright  notice  as follows:  

   © (your  company  name)  (year).  Portions  of this  code  are  derived  from  IBM  

Corp.  Sample  Programs.  © Copyright  IBM  Corp.  (enter  the  year  or  years).  All  

rights  reserved.

If  you  are  viewing  this  information  softcopy,  the  photographs  and  color  

illustrations  may  not  appear.  

Trademarks 

IBM,  the  IBM  logo,  and  ibm.com  are  trademarks  or  registered  trademarks  of 

International  Business  Machines  Corporation  in  the  United  States,  other  countries,  

or  both.  These  and  other  IBM  trademarked  terms  are  marked  on  their  first  

occurrence  in  this  information  with  the  appropriate  symbol  (® or  

™), indicating  US  

registered  or  common  law  trademarks  owned  by  IBM  at the  time  this  information  

was  published.  Such  trademarks  may  also  be  registered  or  common  law  

trademarks  in  other  countries.  A  current  list  of  IBM  trademarks  is available  on  the  

Web at  http://www.ibm.com/legal/copytrade.shtml.  

Adobe,  Acrobat,  Portable  Document  Format  (PDF),  and  PostScript  are  either  

registered  trademarks  or  trademarks  of  Adobe  Systems  Incorporated  in  the  United  

States,  other  countries,  or  both.  

Intel,  Intel  logo,  Intel  Inside,  Intel  Inside  logo,  Intel  Centrino,  Intel  Centrino  logo,  

Celeron,  Intel  Xeon,  Intel  SpeedStep,  Itanium,  and  Pentium  are  trademarks  or  

registered  trademarks  of  Intel  Corporation  or its  subsidiaries  in  the  United  States  

and  other  countries.  

Linux  is  a registered  trademark  of  Linus  Torvalds  in  the  United  States,  other  

countries,  or  both.  

Microsoft,  Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of  

Microsoft  Corporation  in  the  United  States,  other  countries,  or  both.  

Java  and  all  Java-based  trademarks  and  logos  are  trademarks  of  Sun  Microsystems,  

Inc.  in  the  United  States,  other  countries,  or  both.  

UNIX  is  a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  

countries.  

Other  company,  product,  or  service  names  may  be  trademarks  or  service  marks  of 

others.  

 

Notices  B-3

http://www.ibm.com/legal/copytrade.shtml


B-4 IBM Informix  Database  Design  and Implementation  Guide



Index  

Special  characters
::, cast operator  10-2 

A
Access privileges  6-5 

accessibility  A-1 

keyboard A-1 

shortcut  keys A-1 

Aggregate functions,  restrictions  in modifiable  view  6-20 

ALTER  FRAGMENT  statement
ADD  clause 5-12 

ATTACH clause  5-14 

DETACH  clause 5-15 

DROP  clause  5-12 

INIT clause  5-11,  5-12 

MODIFY  clause  5-13 

Alter privilege  6-6 

ALTER  TABLE  statement
changing  column data type 3-16 

changing  table type 12-10 

converting  to typed table  8-15 

converting  to untyped  table 8-15 

privilege  for 6-6 

ANSI-compliant  database
buffered  logging  4-3 

character  field length  1-4 

cursor behavior  1-4 

decimal  data type 1-4 

description  1-2 

escape characters  1-4 

identifying  1-5 

isolation  level 1-4 

owner naming  1-3 

privileges  1-3 

reason for creating 1-2 

SQLCODE  1-5 

table privileges  6-5 

transaction  logging  1-3 

transactions  1-3 

Archive,  and fragmentation  5-2 

Attribute
identifying  2-10 

important  qualities  2-10 

nondecomposable  2-10 

Availability,  improving with fragmentation  5-2 

B
BIGINT  data type 3-5 

BIGSERIAL  data type
description  3-5 

initializing  3-6 

restrictions 8-4, 8-18 

table hierarchy  9-10 

Bitmap index, description  12-10 

BLOB data type
description 8-5 

restrictions in named  row  type 8-13 

SQL restrictions  8-6 

BOOLEAN  data type 3-12 

Buffered logging  4-3 

Building  a relational data model 2-12 

BYTE data type
description 3-15 

restrictions 8-11, 8-18 

using 3-15 

C
Cardinality

constraint  2-6 

in relationship 2-9 

Casts
built-in 10-2 

CAST AS keywords 10-2 

collection  data type 10-6 

collection  elements  10-8 

description  10-1 

distinct  data type 10-2, 10-8 

dropping 10-10 

explicit,  definition  10-2 

implicit,  definition  10-2 

invoking  10-2, 10-3 

named row type 10-2, 10-6 

operator  10-2 

row type 10-3 

unnamed  row type fields 10-5 

user-defined 10-2, 10-11  

Chaining  synonyms  4-7 

CHAR data type 3-12 

Character  field length
ANSI  vs. non-ANSI  1-4 

CHARACTER  VARYING data type 3-13 

CLOB data type
description 8-5 

restrictions in named row  type 8-13 

SQL restrictions 8-6 

Codd, E. F. 2-22 

Code sets
default  1-5 

Collection  data type
casting  10-6 

casting  restrictions 10-7 

different element  types 10-7 

element  typ 8-8 

explicit  cast 10-8 

implicit  cast 10-7 

nested 8-11 

restrictions 8-11 

type checking  10-7 

type constructor  8-8 

Column-level  encryption  6-2 

Column-level  privileges  6-7 

Columns
defining 2-14 

named row type 8-15 

of fragmented  table, modifying  5-11  

unnamed  row type 8-17 

Command  script, creating a database 4-8 

Complex  data types 8-7 

 

© Copyright  IBM Corp. 1996, 2008 X-1



Composite  key 2-16 

Concurrency
improving  with fragmentation  5-2 

SERIAL  and SERIAL8  values 3-5 

Connect  privilege  6-3 

Connectivity  in relationship 2-5, 2-7 

Constraints
cardinality  2-6 

defining  domains 3-1 

named  row  type restrictions 8-13 

CREATE DATABASE  statement
dimensional  data model  12-1 

in command  script  4-8 

relational data model  4-2 

CREATE FUNCTION  statement,
cast  registration examples  10-12 

CREATE INDEX  statement  4-5 

CREATE TABLE  statement
description  4-3 

in command  script  4-8 

with FRAGMENT  BY EXPRESSION  clause  5-4 

CREATE VIEW statement
restrictions 6-19 

using 6-17 

WITH  CHECK OPTION  keywords 6-21 

CURRENT_ROLE  operator  6-13 

Cursor  behavior
ANSI  vs. non-ANSI  1-4 

D
Data

loading with dbload  utility 4-10 

loading  with external  tables 4-10 

Data mart, description  11-2  

Data models
attribute  2-10 

building  2-12 

defining  relationships  2-5 

description  2-2 

dimensional  11-5,  11-8 

entity  relationship  2-2 

many-to-many  relationship  2-7 

one-to-many  relationship 2-7 

one-to-one  relationship  2-7 

relational 2-1 

telephone  directory  example  2-3 

Data types
BIGINT  3-5 

BIGSERIAL  3-5 

BLOB  8-5 

BYTE 3-15 

changing  with ALTER  TABLE  statement  3-16 

CHAR  3-12 

CHARACTER  VARYING 3-13 

choosing  3-2 

chronological  3-9 

CLOB  8-5 

collection  type 8-7 

complex  types 8-7 

DATE  3-9 

DATETIME  3-10 

DECIMAL  3-7, 3-8 

distinct  8-4 

fixed-point  3-8 

floating-point  3-6 

INT8 3-5 

Data types (continued)
INTEGER  3-4 

INTERVAL  3-10 

MONEY  3-8 

NCHAR  3-12 

NVARCHAR  3-13 

opaque types 8-5 

REAL 3-6 

referential constraints  3-17 

row types 8-7 

SERIAL  3-5 

SERIAL,  table hierarchies 9-10 

SERIAL8  3-5 

SMALLFLOAT  3-6 

smart large objects 8-5 

TEXT 3-14 

VARCHAR  3-13 

Data warehouse, description  11-2 

Database  administrator  (DBA)  6-4 

Database  Server Administrator  (DBSA)  6-10 

Database-level  privileges
Connect privilege  6-3 

database-administrator  privilege  6-4 

description  6-3 

Resource privilege  6-4 

Databases
demonstration

sales_demo 11-10,  12-2 

superstores_demo 8-2 

naming  4-2 

populating  new tables in 4-8 

views on external  database 6-20 

DATE  data type
description  3-9 

display  format 3-9 

DATETIME  data type
description  3-10 

display  format 3-11 

DB-Access
creating database with 4-8 

UNLOAD  statement  4-10 

DBDATE  environment variable  3-9 

dbexport  utility  4-9 

dbimport  utility 4-9 

dbload utility,  loading data 4-10 

DBMONEY  environment variable 3-9 

dbschema  utility 4-8 

dbslice, role in fragmentation  5-3 

dbspace
role in fragmentation  5-1 

selecting  4-2 

DBTIME  environment variable 3-12 

DECIMAL  data type
fixed-point 3-8 

floating-point  3-7 

Default  value,  of a column 3-16 

DEFAULT_ROLE  operator  6-13 

Delete privilege  6-5, 6-23 

DELETE  statements
applied  to view 6-20 

privilege  6-3 

privilege  for 6-5 

Derived  data, produced by view 6-17 

Descriptor  column 2-15 

Dimension  table
choosing  attributes  11-14 

description  11-8  

 

X-2 IBM Informix  Database  Design  and Implementation  Guide



Dimensional  data model
building  11-8  

dimension  elements  11-7  

dimension  tables  11-8  

dimensions  11-6  

fact table 11-6  

implementing  12-1 

measures,  definition  11-6 

minidimension  tables 11-15  

Dimensional  database,  sales_demo  12-2 

disability  A-1 

Distinct  data types
casting  10-2, 10-8 

description  8-4 

DISTINCT  keyword, restrictions  in modifiable  view 6-20 

Distribution  scheme
changing  the number  of fragments  5-11  

definition  5-2 

expression-based  5-3 

using 5-4 

with arbitrary  rule 5-5 

with range rule 5-4 

hybrid  5-4 

using 5-7 

range 5-4 

using 5-6 

round-robin 5-3 

using 5-5 

system-defined  hash 5-4 

using 5-6 

Domain
characteristics  2-15 

column  3-1 

defined  2-14 

DROP CAST statement,  using 10-10 

E
Element  type 8-8 

Encrypted  data 6-2 

Entity
attributes 2-10 

criteria  for choosing  2-4 

definition  2-2 

occurrence 2-11 

represented by a table  2-15 

telephone  directory example  2-5 

Entity-relationship  diagram
discussed  2-11  

reading 2-12 

Environment variables
NODEFDAC  6-5 

USETABLENAME  4-6 

Environment, Non-U.S.  English  1-5 

Even distribution  5-6 

Existence  dependency  2-6 

EXISTS  keyword, use in condition  subquery  6-22 

Expression-based  distribution  scheme
arbitrary  rule 5-5 

description  5-3 

using 5-4 

with range rule 5-4 

Expression,  cast allowed  in 10-1 

EXTERNAL  role  6-10 

External  tables, loading  data with 4-10, 5-2 

F
Fact table

description  11-6 

determining  granularity  11-10 

granularity  11-6 

Field, in row types 8-12 

First normal  form 2-20 

Fixed point 3-8 

FLOAT  data type 3-6 

Floating  point 3-6 

Foreign key 2-16 

Fragment
altering 5-13, 5-14 

changing  the number  of 5-11  

description  5-1 

FRAGMENT  BY EXPRESSION  clause 5-4 

Fragmentation
across coservers  5-3 

backup-and-restore operations  and 5-2 

dbslice role in 5-3 

description  5-1 

expressions, how evaluated  5-5 

goals 5-2 

logging  and 5-3 

of smart large objects 5-10 

reinitializing 5-11 

types of distribution  schemes  5-3 

Fragmented  table
creating 5-7 

creating from one non-fragmented  table 5-10 

modifying  5-11 

Functional  dependency  2-21 

G
Generalized-key  index

data  warehouse 12-11 

defining
on a selection 12-11 

on an expression 12-11 

on joined tables 12-12 

ownership  rights  6-5 

GL_DATETIME environment variable  3-12 

GRANT  statement
database-level  privileges  6-3 

table-level  privileges  6-4 

Granularity,  fact table 11-6  

GROUP BY keywords, restrictions in modifiable  view 6-20 

H
Hybrid distribution  scheme

description  5-4, 5-7 

using 5-7 

I
IFX_EXTEND_ROLE  configuration  parameter  6-10 

Index
bidirectional traversal 4-6 

bitmap,  description  12-10 

CREATE  INDEX  statement  4-5 

data-warehousing environments 12-10 

generalized-key  12-10, 12-11 

named row type restrictions 8-13 

 

Index X-3



Index  privilege  6-6 

informix  user name 6-4, 6-10 

Inheritance  9-1 

privileges  in hierarchy  6-6 

single  9-1 

table hierarchy  9-5 

type 9-1 

type substitutability  9-4 

INIT clause
ALTER  FRAGMENT  5-12 

in a fragmentation  scheme  5-11  

Insert privilege  6-5, 6-23 

INSERT statements
privileges  6-3, 6-5 

with a view 6-21 

INSTEAD  OF trigger  6-21 

INT8 data type 3-5 

INTEGER  data type 3-4 

INTERVAL  data type
description  3-10 

display  format 3-11 

INTO TEMP keywords,  restrictions in view 6-19 

Isolation  level,  ANSI vs. non-ANSI  1-4 

J
Join, restrictions in modifiable  view 6-20 

K
Key

composite  2-16 

foreign 2-16 

primary  2-15 

Key column 2-15 

L
Language  privileges  6-10 

Light appends,  description  12-8 

LIST collection  type 8-10 

literal values
restrictions in modifiable  view 6-20 

Loading  data
dbload  utility  4-10 

external  tables 4-10 

Locales  1-5 

Logging  table
characteristics  12-8 

creation  12-1, 12-7 

Logging,  types 4-3 

M
Mandatory  entity  in relationship  2-6 

Many-to-many  relationship 2-6, 2-7, 2-18 

Minidimension  table, description  11-15  

MODE  ANSI keywords, logging  4-3 

MODIFY  clause  of ALTER  FRAGMENT  5-13 

Modifying  fragmented  tables 5-11 

MONEY  data type
description  3-8 

display  format 3-9 

MULTISET  collection  type 8-10 

N
Named row type

casting  10-2 

column  definition  8-15 

creating a typed table 8-14 

description  8-12 

dropping 8-17 

example  8-12 

naming  conventions  8-13 

restrictions 8-13 

when  to use 8-12 

NCHAR  data type 3-12 

Nesting
collection  types 8-11  

row types 8-16 

NODEFDAC  environment variable 6-5 

Nondecomposable  attributes  2-10 

Nonlogging  tables
characteristics  12-8 

creation 12-1, 12-7 

Normal form 2-20 

Normalization
benefits 2-20 

first normal form 2-20 

of data model 2-20 

rules 2-20, 2-22 

second normal form 2-21 

third normal form 2-22 

NOT NULL keywords,  use in CREATE  TABLE  statement  4-3 

Null values
defined  3-16 

restrictions in primary  key 2-15 

NVARCHAR  data type 3-13 

O
ON-Archive 4-3 

ondblog utility 4-3 

One-to-many  relationship 2-6, 2-7 

One-to-one  relationship 2-6, 2-7 

Online  analytical  processing (OLAP) 11-3 

Online  transaction  processing (OLTP)  11-2  

onload utility 4-8 

onstat utility  6-13 

ontape utility 4-3 

onunload  utility 4-8 

onxfer utility  4-9 

Opaque  data types
casting  10-2 

description  8-5 

Operational  data store 11-2  

Operational  table 12-9 

Optional  entity  in relationship 2-6 

ORDER  BY keywords, restrictions in view 6-19 

Owner naming
ANSI  vs. non-ANSI  1-3 

Ownership  6-4 

P
Performance,  buffered logging  4-3 

Populating  tables 4-8 

Predefined data types 8-3 

Primary  key
composite  2-16 

definition  2-15 

 

X-4 IBM Informix  Database  Design  and Implementation  Guide



Primary  key (continued)
system assigned  2-16 

Privilege
ANSI vs. non_ANSI  1-3 

automating  6-10, 6-11  

column-level  6-7 

Connect  6-3 

database-administrator  6-4 

database-level  6-3 

Delete  6-5, 6-23 

encoded  in system  catalog  6-5 

Execute  6-9 

granting  6-3 

Index 6-6 

Insert  6-5, 6-23 

language  6-10 

needed  to create  a view 6-22 

on a view 6-23 

Resource  6-4 

routine-level 6-9 

Select  6-5, 6-7, 6-23 

table-level  6-5 

typed  tables 6-6 

Update  6-5, 6-23 

users and the public  6-4 

views  and 6-22 

PUBLIC  keyword, privilege  granted  to all users 6-4 

R
Range distribution  scheme

description  5-4 

using 5-6 

Raw permanent  table
description  12-9 

Recursive  relationship  2-7, 2-19 

Redundant  relationship 2-19 

References privilege  6-6 

Referential constraint
data  type considerations  3-17 

Referential integrity,  defining  primary  and foreign  keys 2-16 

Relational  model
description  2-1 

resolving relationships 2-18 

rules for defining  tables,  rows,  and columns  2-14 

Relationship
attribute  2-10 

cardinality  2-9 

cardinality  constraint  2-6 

complex  2-19 

connectivity  2-5, 2-7 

defining  in data model  2-5 

entity  2-3 

existence  dependency  2-6 

mandatory  2-6 

many-to-many  2-6, 2-7 

many-to-many,  resolving  2-18 

one-to-many  2-6, 2-7 

one-to-one  2-6, 2-7 

optional  2-6 

recursive 2-19 

redundant 2-19 

using matrix  to discover  2-6 

Repository,  description  11-2  

Resource privilege  6-4 

REVOKE  statement,  granting  privileges  6-3 

Role
CREATE  ROLE statement  6-12 

definition  6-11  

GRANT  DEFAULT  ROLE statement  6-13 

granting  privileges  6-12 

rules for naming 6-12 

SET ROLE  statement  6-13 

sysroleauth system  catalog table 6-13 

sysusers  system  catalog table 6-13 

Round-robin distribution  scheme
description  5-3 

using 5-5 

Routine overloading  9-3 

Routine resolution 9-5 

Routine-level  privileges  6-9 

ROW data types
casting 10-3, 10-6 

categories  8-7 

nested 8-16 

ROWID 5-10 

Rows
defining 2-14 

in relational model 2-14 

S
sales_demo  database

creating 12-2, 12-6 

data model 11-10  

data sources  for 12-3 

loading  12-5 

sbspaces  8-6 

Scratch table 12-8 

Second normal form 2-21 

Security
constraining  inserted  values 6-17, 6-21 

database-level  privileges  6-2 

making  database inaccessible  6-2 

restricting access 6-16, 6-17, 6-22 

table-level  privileges  6-7 

using operating-system  facilities 6-2 

with user-defined routines 6-2 

Select privilege
column  level 6-7 

definition  6-5 

with a view 6-23 

SELECT statements
in modifiable  view 6-20 

on a view 6-22 

privilege  for 6-3, 6-5 

Semantic  integrity  3-1 

SERIAL data type
as primary  key 2-15 

description  3-5 

initializing  3-6 

referential constraints  3-17 

reset starting point 6-6 

restrictions 8-4, 8-11, 8-13, 8-18 

table hierarchy 9-10 

SERIAL8  data type
description  3-5 

initializing  3-6 

referential constraints  3-17 

restrictions 8-4, 8-11, 8-13, 8-18 

table hierarchy 9-10 

SET collection  type 8-9 

SET ENCRYPTION  PASSWORD  statement  6-2 

 

Index X-5



shortcut  keys
keyboard A-1 

Single  inheritance  9-1 

SMALLFLOAT data type 3-6 

SMALLINT  data type 3-4 

Smart large  objects
description  8-5 

fragmenting  5-10 

functions  for copying  8-7 

importing  and exporting  8-7 

sbspace  storage  for 8-6 

SQL interactive  uses 8-6 

SQL restrictions  8-6 

SQLCODE,  ANSI vs. non-ANSI  1-5 

Standard permanent  table
altering  to 12-10 

description  12-10  

Star-join  schema
description 11-5  

Static  table 12-9 

Substitutability  9-4 

Subtable  9-1 

Subtype  9-1 

superstores_demo database  8-2 

Supertable  9-1 

Supertype  9-1 

Synonym
chains 4-7 

in ANSI-compliant  database  1-5 

Synonyms  for table names 4-6 

sysfragexprudrdep system  catalog  table 5-2 

sysfragments  system catalog  table 5-2 

syssyntable  system catalog  table  4-6 

System  catalog  tables
privileges  6-5 

syscolauth  6-5 

sysfragexprudrdep 5-2 

sysfragments  5-2 

systabauth  6-5 

sysusers  6-5 

System-defined  hash distribution  scheme
description  5-4 

using 5-6 

T
Table

composite  key, defined  2-16 

converting  to untyped  table 8-15 

converting  untyped  to typed  8-15 

creating  a table 4-3 

descriptor  column  2-15 

dropping 4-5 

foreign key, defined  2-16 

index, creating  4-5 

key column  2-15 

loading  data into 4-10 

names,  synonyms  4-6 

ownership  6-4 

primary  key in 2-15 

privileges  6-5 

relational model 2-14 

represents  an entity  2-15 

Table  hierarchy
adding  new tables 9-10 

defining  9-6 

description  9-5 

Table  hierarchy (continued)
inherited  properties 9-6 

modifying  table behavior  9-8 

SERIAL  types 9-10 

triggers  9-10 

Table  inheritance,  definition  9-5 

Table-level  privileges
access privileges  6-5 

Alter privilege  6-6 

definition  and use 6-5 

Index privilege  6-6 

References privilege  6-6 

Temp  table 12-8 

TEXT data type
description 3-14 

restrictions 8-11, 8-18 

using 3-15 

Third normal form 2-22 

Transaction logging
ANSI  vs. non-ANSI  1-3 

buffered 4-3 

establishing  with CREATE  DATABASE  statement  4-2 

turning  off for faster loading 4-10 

Transactions
ANSI vs. non-ANSI  1-3 

definition  1-3 

Transitive dependency  2-22 

Type constructor 8-8 

Type hierarchy
creating 9-2 

description  9-1 

dropping row types from 9-5 

overloading  routines 9-2 

Type inheritance,  description  9-1 

Type substitutability  9-4 

Typed table
creating from an untyped  table 8-15 

definition  8-14 

U
UNION  keyword

in a view definition  6-19 

restrictions in modifiable  view 6-20 

UNIQUE  keyword
constraint  in CREATE  TABLE  statement  4-3 

restrictions in modifiable  view 6-20 

Unnamed  row type
description  8-17 

example  8-17 

restrictions 8-18 

Untyped  table
converting  to a typed table 8-15 

definition  8-14 

Update  privilege
definition  6-5 

with a view 6-23 

UPDATE  statements
applied to view 6-20 

privilege  for 6-3, 6-5 

USER keyword 6-22 

User-defined casts
between  data types 10-8 

User-defined data types
casting 10-2 

description  8-4 

 

X-6 IBM Informix  Database  Design  and Implementation  Guide



User-defined routines
granting  privileges  on 6-9 

security  purposes  6-2 

USETABLENAME  environment  variable  4-6 

Utility program
dbload  4-10, 12-1, 12-7 

V
VARCHAR  data type 3-13 

View
creating 6-17 

deleting  rows  6-20 

description  6-16 

dropped when basis is dropped 6-19 

effect  of changing  basis 6-19 

effects  when changing  the definition  of 6-22 

inserting  rows in 6-21 

modifying  6-20 

null inserted  in unexposed  columns  6-21 

privileges  6-22 

restrictions on modifying  6-20 

typed  6-18 

updating  duplicate  rows 6-21 

using WITH  CHECK  OPTION  keywords 6-21 

virtual  column  6-20 

views
remote tables 6-23 

W
WHERE  keyword, enforcing data constraints  6-22 

WITH  CHECK OPTION  keywords, CREATE  VIEW 

statement  6-21 

 

Index X-7



X-8 IBM Informix  Database  Design  and Implementation  Guide





����

  

Printed  in USA 

 

  

SC23-9426-00  

              



Sp
in
e 
in
fo
rm
at
io
n:

 IB
M

 
In

fo
rm

ix
  

Ve
rs

io
n 

11
.5

0 
IB

M
 
In

fo
rm

ix
 
Da

ta
ba

se
 
De

si
gn

 
an

d 
Im

pl
em

en
ta

tio
n 

Gu
id

e 
�
�

�


	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Part 1. Basics of Database Design and Implementation
	Chapter 1. Planning a Database
	In This Chapter
	Choosing a Data Model for Your Database
	Using ANSI-Compliant Databases
	Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases
	Transactions
	Transaction Logging
	Owner Naming
	Privileges on Objects
	Default Isolation Level
	Character Data Types
	DECIMAL Data Type
	Escape Characters
	Cursor Behavior
	The SQLCODE Field of the SQL Communications Area
	Synonym Behavior

	Determining if an Existing Database Is ANSI Compliant

	Using a Customized Language Environment® for Your Database (GLS)

	Chapter 2. Building a Relational Data Model
	In This Chapter
	Building a Data Model
	Overview of the Entity-Relationship Data Model
	Identifying and Defining Principal Data Objects
	Discovering Entities
	Choosing Possible Entities
	The List of Entities
	Telephone Directory Example
	Diagramming Entities

	Defining the Relationships
	Connectivity
	Existence Dependency
	Cardinality
	Discovering the Relationships
	Diagramming Relationships

	Identifying Attributes
	Selecting Attributes for Entities
	Listing Attributes
	About Entity Occurrences


	Diagramming Data Objects
	Reading E-R Diagrams
	Telephone Directory Example

	Translating E-R Data Objects into Relational Constructs
	Defining Tables, Rows, and Columns
	Placing Constraints on Columns
	Domain Characteristics

	Determining Keys for Tables
	Primary Keys
	Foreign Keys (Join Columns)
	Adding Keys to the Telephone Directory Diagram


	Resolving Relationships
	Resolving m:n Relationships
	Resolving Other Special Relationships

	Normalizing a Data Model
	First Normal Form
	Second Normal Form
	Third Normal Form
	Summary of Normalization Rules


	Chapter 3. Choosing Data Types
	In This Chapter
	Defining the Domains
	Data Types
	Choosing a Data Type
	Numeric Types
	Counters and Codes: BIGINT, INT8, INTEGER, and SMALLINT
	Automatic Sequences: BIGSERIAL, SERIAL, and SERIAL8
	Approximate Numbers: FLOAT and SMALLFLOAT
	Adjustable-Precision Floating Point: DECIMAL(p)
	Fixed-Precision Numbers: DECIMAL and MONEY

	Chronological Data Types
	Calendar Dates: DATE
	Exact Points in Time: DATETIME
	Choosing a DATETIME Format (GLS)

	BOOLEAN Data Type (IDS)
	Character Data Types (GLS)
	Character Data: CHAR(n) and NCHAR(n)
	Variable-Length Strings: CHARACTER VARYING(m,r), VARCHAR(m,r), NVARCHAR(m,r), and LVARCHAR
	Variable-Length Execution Time
	Large Character Objects: TEXT
	Binary Objects: BYTE
	Using TEXT and BYTE Data Types
	Changing the Data Type

	Null Values

	Default Values
	Check Constraints
	Referential Constraints

	Chapter 4. Implementing a Relational Data Model
	In This Chapter
	Creating the Database
	Using CREATE DATABASE
	Avoiding Name Conflicts
	Selecting a Dbspace
	Choosing the Type of Logging

	Using CREATE TABLE
	Creating a Fragmented Table
	Dropping or Modifying a Table

	Using CREATE INDEX
	Composite Indexes
	Bidirectional Traversal of Indexes

	Using Synonyms for Table Names
	Using Synonym Chains
	Using Command Scripts
	Capturing the Schema
	Executing the File
	An Example


	Populating the Database
	Moving Data from Other Informix Databases
	Loading Source Data into a Table
	Performing Bulk-Load Operations


	Part 2. Managing Databases
	Chapter 5. Table Fragmentation Strategies
	In This Chapter
	What Is Fragmentation?
	Why Use Fragmentation?
	Whose Responsibility Is Fragmentation?
	Enhanced Fragmentation (XPS)
	Fragmentation and Logging

	Distribution Schemes for Table Fragmentation
	Expression-Based Distribution Scheme
	Range Rule
	Arbitrary Rule
	Using the MOD Function (IDS)
	Inserting and Updating Rows

	Round-Robin Distribution Scheme
	Range Distribution Scheme (XPS)
	System-Defined Hash Distribution Scheme (XPS)
	Hybrid Distribution Scheme (XPS)

	Creating a Fragmented Table
	Creating a New Fragmented Table
	Creating a Fragmented Table from Nonfragmented Tables
	Using More Than One Nonfragmented Table
	Using a Single Nonfragmented Table

	Rowids in a Fragmented Table
	Fragmenting Smart Large Objects (IDS)

	Modifying Fragmentation Strategies
	Reinitializing a Fragmentation Strategy
	Modifying Fragmentation Strategies for Dynamic Server
	Using the ADD Clause
	Using the DROP Clause
	Using the MODIFY Clause

	Modifying Fragmentation Strategies for XPS
	Using the INIT Clause
	Using ATTACH and DETACH Clauses


	Granting and Revoking Privileges on Fragments

	Chapter 6. Granting and Limiting Access to Your Database
	In This Chapter
	Using SQL to Restrict Access to Data
	Controlling Access to Databases
	Granting Privileges
	Database-Level Privileges
	Connect Privilege
	Resource Privilege
	Database-Administrator Privilege

	Ownership Rights
	Table-Level Privileges
	Access Privileges
	Index, Alter, and References Privileges
	Under Privileges for Typed Tables (IDS)
	Privileges on Table Fragments

	Column-Level Privileges
	Type-Level Privileges
	Usage Privileges for User-Defined Types
	Under Privileges for Named Row Types

	Routine-Level Privileges
	Language-Level Privileges
	SPL Routines
	External Routines

	Automating Privileges
	Automating with a Command Script
	Using Roles

	Determining Current Role at Runtime

	Using SPL Routines to Control Access to Data
	Restricting Data Reads
	Restricting Changes to Data
	Monitoring Changes to Data
	Restricting Object Creation

	Using Views
	Creating Views
	Typed Views (IDS)
	Duplicate Rows from Views

	Restrictions on Views
	When the Basis Changes

	Modifying with a View
	Deleting with a View
	Updating a View
	Inserting into a View
	Using the WITH CHECK OPTION Keywords
	Re-Execution of a Prepared Statement When the View Definition Changes


	Privileges and Views
	Privileges When Creating a View
	Privileges When Using a View


	Chapter 7. Using Distributed Queries
	In This Chapter
	Overview of Distributed Queries
	Distributed Queries across Databases of One Dynamic Server Instance
	Distributed Queries across Databases of Two or More Dynamic Server Instances
	Coordinator and Participant in a Distributed Query

	Configuring the Database Server to Use Distributed Queries
	The Syntax of a Distributed Query
	Accessing a Remote Server and Database
	Database Name
	Database Object Name
	Specifying a Coserver ID (XPS)

	Valid Statements for Accessing Remote Objects
	Accessing Remote Tables
	Table Permissions
	Qualifying Table References

	Other Remote Operations
	Opening a Remote Database
	Creating a Remote Database
	Creating a Synonym for a Remote Table


	Monitoring Distributed Queries
	Server Environment and Distributed Queries
	PDQPRIORITY Environment Variable
	DEADLOCK_TIMEOUT

	Logging-Type Restrictions on Distributed Queries
	Transaction Processing
	Isolation Levels
	DEADLOCK_TIMEOUT and SET LOCK MODE
	Two-phase Commit and Recovery

	Cross Server Compatibility Issues (XPS)
	BYTE and TEXT Data Types
	Other Restrictions


	Part 3. Object-Relational Databases
	Chapter 8. Creating and Using Extended Data Types in Dynamic Server
	In This Chapter
	Informix Data Types
	Fundamental or Atomic Data Types
	Predefined Data Types
	BOOLEAN and LVARCHAR Data Types
	IDSSECURITYLABEL Data Type
	BLOB and CLOB Data Types
	Other Predefined Data Types

	Extended Data Types
	Complex Data Types
	User-Defined Data Types
	Distinct Data Types
	Opaque Data Types
	DataBlade Data Types


	Smart Large Objects
	BLOB Data Type
	CLOB Data type
	Using Smart Large Objects
	Copying Smart Large Objects

	Complex Data Types
	Collection Data Types
	Null Values in Collections
	Using SET Collection Types
	Using MULTISET Collection Types
	Using LIST Collection Types
	Nesting Collection Types
	Adding a Collection Type to an Existing Table
	Restrictions on Collections

	Named Row Types
	When to Use a Named Row Type
	Choosing a Name for a Named Row Type
	Restrictions on Named Row Types
	Using a Named Row Type to Create a Typed Table
	Changing the Type of a Table
	Using a Named Row Type to Create a Column
	Using a Named Row Type Within Another Row Type
	Dropping Named Row Types

	Unnamed Row Types


	Chapter 9. Understanding Type and Table Inheritance in Dynamic Server
	In This Chapter
	What Is Inheritance?
	Type Inheritance
	Defining a Type Hierarchy
	Overloading Routines for Types in a Type Hierarchy
	Inheritance and Type Substitutability
	Dropping Named Row Types from a Type Hierarchy

	Table Inheritance
	The Relationship Between Type and Table Hierarchies
	Defining a Table Hierarchy
	Inheritance of Table Behavior in a Table Hierarchy
	Modifying Table Behavior in a Table Hierarchy
	Constraints on Tables in a Table Hierarchy
	Adding Indexes to Tables in a Table Hierarchy
	Triggers on Tables in a Table Hierarchy

	SERIAL Types in a Table Hierarchy
	Adding a New Table to a Table Hierarchy
	Dropping a Table in a Table Hierarchy
	Altering the Structure of a Table in a Table Hierarchy
	Querying Tables in a Table Hierarchy
	Creating a View on a Table in a Table Hierarchy


	Chapter 10. Creating and Using User-Defined Casts in Dynamic Server
	In This Chapter
	What Is a Cast?
	Creating User-Defined Casts
	Invoking Casts
	Restrictions on User-Defined Casts

	Casting Row Types
	Casting Between Named and Unnamed Row Types
	Casting Between Unnamed Row Types
	Casting Between Named Row Types
	Using Explicit Casts on Fields
	Explicit Casts on Fields of an Unnamed Row Type
	Explicit Casts on Fields of a Named Row Type

	Casting Individual Fields of a Row Type

	Casting Collection Data Types
	Restrictions on Collection-Type Conversions
	Collections with Different Element Types
	Using an Implicit Cast Between Element Types
	Using an Explicit Cast Between Element Types

	Converting Relational Data to a MULTISET Collection

	Casting Distinct Data Types
	Using Explicit Casts with Distinct Types
	Casting Between a Distinct Type and Its Source Type
	Adding and Dropping Casts on a Distinct Type

	Casting to Smart Large Objects
	Creating Cast Functions for User-Defined Casts
	An Example of Casting Between Named Row Types
	An Example of Casting Between Distinct Data Types
	Multilevel Casting


	Part 4. Dimensional Databases
	Chapter 11. Building a Dimensional Data Model
	In This Chapter
	Overview of Data Warehousing
	Why Build a Dimensional Database?
	What Is Dimensional Data?

	Concepts of Dimensional Data Modeling
	The Fact Table
	Dimensions of the Data Model
	Dimension Elements
	Dimension Attributes
	Dimension Tables


	Building a Dimensional Data Model
	Choosing a Business Process
	Summary of a Business Process
	Determining the Granularity of the Fact Table
	How Granularity Affects the Size of the Database
	Using the Business Process to Determine the Granularity

	Identifying the Dimensions and Hierarchies
	Choosing the Measures for the Fact Table
	Using Keys to Join the Fact Table with the Dimension Tables

	Resisting Normalization
	Choosing the Attributes for the Dimension Tables

	Handling Common Dimensional Data-Modeling Problems
	Minimizing the Number of Attributes in a Dimension Table
	Handling Dimensions That Occasionally Change
	Using the Snowflake Schema


	Chapter 12. Implementing a Dimensional Database (XPS)
	In This Chapter
	Implementing the sales_demo Dimensional Database
	Using CREATE DATABASE
	Using CREATE TABLE for the Dimension and Fact Tables
	Mapping Data from Data Sources to the Database
	Loading Data into the Dimensional Database
	Creating the sales_demo Database
	Testing the Dimensional Database

	Logging and Nonlogging Tables in Extended Parallel Server
	Choosing Table Types
	Scratch and Temp Temporary Tables
	Raw Permanent Tables
	Static Permanent Tables
	Operational Permanent Tables
	Standard Permanent Tables

	Switching Between Table Types

	Indexes for Data-Warehousing Environments
	Using GK Indexes in a Data-Warehousing Environment
	Defining a GK Index on a Selection
	Defining a GK Index on an Expression
	Defining a GK Index on Joined Tables


	Part 5. Appendixes
	Appendix. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility


	Notices
	Trademarks

	Index

