
IBM Informix

DataBlade Module Development Overview

Version 4.20

G229-6367-01

���

IBM Informix

DataBlade Module Development Overview

Version 4.20

G229-6367-01

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page D-1.

This edition replaces G229-6367-00.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . v

In This Introduction . v

About This Publication . v

Types of Users . v

Software Dependencies . v

Documentation Conventions . v

Typographical Conventions . vi

Feature, Product, and Platform Markup . vi

Example Code Conventions . vi

Additional Documentation . vii

Compliance with Industry Standards . vii

How to Provide Documentation Feedback . vii

Chapter 1. DataBlade Module Concepts . 1-1

What Are DataBlade Modules? . 1-1

Why Extend Your Informix Database Server? . 1-2

Why Create a DataBlade Module? . 1-3

Why Use the DataBlade Developers Kit? . 1-4

DataBlade Modules and the Database Server . 1-4

DataBlade Module Programming Languages . 1-6

Internal Architecture of the Database Server . 1-7

The Client Software Development Kit . 1-8

Client Objects and Programs . 1-8

DataBlade Module Components . 1-9

Aggregates . 1-9

Data Types . 1-10

Routines . 1-15

Casts . 1-16

Interfaces . 1-17

Errors . 1-17

Unit Tests . 1-17

Functional Tests . 1-18

Imported SQL Files . 1-18

Imported Client Files . 1-18

Chapter 2. Building a DataBlade Module . 2-1

DataBlade Developers Kit Tools . 2-1

BladeSmith . 2-1

BladePack . 2-2

BladeManager . 2-3

DBDK Visual C++ Add-In and IfxQuery . 2-3

How to Create a DataBlade Module . 2-4

DataBlade Module Development Resources . 2-6

The DataBlade Developers Kit InfoShelf . 2-6

The Tutorial . 2-6

Example DataBlade Modules . 2-7

The IBM Informix Developer Zone . 2-7

Appendix A. DataBlade Module Documentation A-1

Publication Overview . A-1

Appendix B. IBM Informix DataBlade Modules B-1

Appendix C. Accessibility . C-1

© Copyright IBM Corp. 1996, 2008 iii

Accessibility features for IBM Informix Dynamic Server . C-1

Accessibility Features . C-1

Keyboard Navigation . C-1

Related Accessibility Information . C-1

IBM and Accessibility . C-1

Notices . D-1

Trademarks . D-3

Index . X-1

iv DataBlade Module Development Overview

Introduction

In This Introduction . v

About This Publication . v

Types of Users . v

Software Dependencies . v

Documentation Conventions . v

Typographical Conventions . vi

Feature, Product, and Platform Markup . vi

Example Code Conventions . vi

Additional Documentation . vii

Compliance with Industry Standards . vii

How to Provide Documentation Feedback . vii

In This Introduction

This introduction provides an overview of the information in this publication and

describes the conventions it uses.

About This Publication

This publication is an overview of the IBM® Informix® DataBlade® module

development process. A DataBlade module extends the functionality of Informix

Dynamic Server to handle data with user-defined routines or to handle

nontraditional kinds of data, such as full text, images, video, spatial data, and time

series.

This section discusses the intended audience, and the associated software products

you must have to develop and use a DataBlade module.

Types of Users

This guide is an overview for anyone interested in learning about DataBlade

modules, including managers, developers who plan to create DataBlade modules,

and developers who plan to create applications that use DataBlade modules.

However, you should be familiar with SQL and basic programming concepts.

In contrast, the IBM Informix DataBlade Developers Kit User’s Guide provides

technical information specifically for developers who are ready to develop

DataBlade modules.

Software Dependencies

See the IBM Informix Read Me First sheet for the DataBlade Developers Kit (DBDK)

for complete system requirements for DBDK.

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Example code conventions

© Copyright IBM Corp. 1996, 2008 v

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

vi DataBlade Module Development Overview

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement. If you are using DB–Access, you must delimit multiple

statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/
pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

Feedback at the bottom of the page, fill out the form, and submit your feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction vii

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

viii DataBlade Module Development Overview

Chapter 1. DataBlade Module Concepts

What Are DataBlade Modules? . 1-1

Why Extend Your Informix Database Server? . 1-2

Better Performance . 1-2

Simpler Applications . 1-3

Transaction Control . 1-3

Scalability . 1-3

Why Create a DataBlade Module? . 1-3

Control . 1-3

Code Reuse . 1-4

Why Use the DataBlade Developers Kit? . 1-4

DataBlade Modules and the Database Server . 1-4

DataBlade Module Programming Languages . 1-6

C Language . 1-6

C++ Language . 1-6

Java Language . 1-6

Informix Stored Procedure Language . 1-7

Internal Architecture of the Database Server . 1-7

DataBlade Modules and Virtual Processors . 1-7

DataBlade Module Memory Allocation . 1-8

Java Virtual Machine . 1-8

The Client Software Development Kit . 1-8

Client Objects and Programs . 1-8

DataBlade Module Components . 1-9

Aggregates . 1-9

Data Types . 1-10

Built-in Data Types . 1-10

Qualified Built-in Data Types . 1-10

Distinct Data Types . 1-11

Collection Data Types . 1-11

Row Data Types . 1-12

Opaque Data Types . 1-13

Routines . 1-15

Built-in Functions and Operator Functions . 1-16

User-Defined Routines . 1-16

Casts . 1-16

Interfaces . 1-17

Errors . 1-17

Unit Tests . 1-17

Functional Tests . 1-18

Imported SQL Files . 1-18

Imported Client Files . 1-18

What Are DataBlade Modules?

A DataBlade module is a software package that extends the functionality of Informix

Dynamic Server. The package includes SQL statements and supporting code

written in an external language or Informix SPL. DataBlade modules can also

contain client components.

A DataBlade module adds user-defined database objects that extend the SQL syntax

and commands you can use with your Informix database server. A database object

is an SQL entity, such as a data type, routine, or database table. Your Informix

© Copyright IBM Corp. 1996, 2008 1-1

database server handles DataBlade module objects as built-in objects. When it

handles a user-defined database object, it executes the associated source code

provided with the DataBlade module.

Extensions to your database server belong to two main categories:

v Types of data. This category includes extended data types that are not built into

the database server. Extended data types can contain multiple elements (row,

collection, and opaque data types) and data types that support inheritance

(distinct and row data types). The internal structure of opaque data types is not

accessible through built-in SQL commands, but it can be accessed through

user-defined routines and opaque data type support routines.

v Routines. This category includes user-defined routines, aggregates, data type

support routines, cast support routines, and routines that support user-defined

access methods.

If you are unfamiliar with DataBlade module technology and the DataBlade

Developers Kit, you might have the following questions:

v Why should I extend my database server?

v Why should I use a DataBlade module to extend my database server?

v Why should I use the DataBlade Developers Kit to create a DataBlade module?

Each of these questions is addressed in the following subsections.

Why Extend Your Informix Database Server?

The primary advantages of using the extensibility of Informix Dynamic Server over

using traditional relational databases and applications are:

v better performance.

v simpler applications.

v transaction control.

v scalability.

Better Performance

Your Informix database server improves the performance of your applications in

the following ways:

v User-defined routines are optimized.

When you put your custom routines in the database server, the query optimizer

can calculate when to run them during queries.

v Indexes increase query speed.

Indexes, created with secondary access methods, can efficiently find and

compare values. Secondary access methods build and manipulate index structures

on data. With your Informix database server, you can create indexes on data that

cannot be sorted in a standard relational database. You can implement your data

as extended data types and create functional indexes to speed sorting. A

functional index sorts information about the data, instead of the data itself.

For example, if your data is images, you can index features of the images. Then,

when you run a query to match an image, the index runs much faster than

comparing the binary files of each image.

v Network traffic is reduced.

When you use user-defined routines and other extensibility features, you

perform more processing on the data within the database server. Therefore, you

send less data to the client application.

1-2 DataBlade Module Development Overview

Simpler Applications

Using DataBlade modules simplifies applications in the following ways:

v DataBlade modules handle code for manipulating and storing data so the

application does not have to.

v DataBlade module routines and data types can be accessed using SQL.

SQL is a standard language and does not require complex application code or

programming languages.

v DataBlade modules are easy to upgrade.

When you change a DataBlade module, you do not need to re-link existing

applications; all changes are handled within the database server.

v All data is stored and processed in the same database server.

For example, with a geospatial DataBlade module, geographic coordinates are

analyzed and processed by the database server instead of in a complex

application. In addition, the geospatial data is easily integrated with other types

of data in a relational database.

v DataBlade modules are easy to combine.

You can combine DataBlade modules that handle different kinds of data in the

same database. You can then create one application to integrate all the data.

For example, if a broadcast news company wanted to integrate video, images,

audio, and text data for its programs, it could store all the data in one database

and use a DataBlade module for each type of data. Then the company could use

an application that employs the IBM Informix Web DataBlade Module to access

information and display it in a Web browser.

Transaction Control

DataBlade modules become part of the database. Therefore, all operations carried

out by DataBlade module routines are supported by database services, such as

backup, rollback, and recovery. You can safely store your data, which you formerly

stored in files, in the database by using smart large objects.

Scalability

DataBlade extensions to Dynamic Server scale to a large number of users just as

well as the database server itself.

Why Create a DataBlade Module?

You can extend your Informix database server without creating a DataBlade

module by executing the SQL statements to create each object individually.

However, the advantages of packaging extended database objects in a DataBlade

module include:

v control

v code reuse

Control

DataBlade modules contain all related extended objects, enabling you to easily

install, upgrade, and remove a whole module at once. If you need to fix a problem

or add a feature to a program, you only have to do it in one place—the DataBlade

module. Because a DataBlade module is a package ready to be distributed

commercially or internally, these changes can be easily extended to any application

that uses the DataBlade module. In addition, DataBlade modules make it easy for

you to maintain version information about the software.

Chapter 1. DataBlade Module Concepts 1-3

Code Reuse

DataBlade modules can use the functionality of other DataBlade modules through

interfaces. Interfaces are references to other DataBlade modules. When you include

an interface in a DataBlade module, you create a dependency so that your

DataBlade module can be used only if the DataBlade module that provides the

interface is installed in the database server.

Some DataBlade modules are specifically designed as foundation DataBlade

modules. Foundation DataBlade modules are not usually intended to be used

alone. For example, the IBM Informix Large Object Locator DataBlade Module

handles the location of the large objects that other DataBlade modules use to store

their data.

Why Use the DataBlade Developers Kit?

Although you can create a DataBlade module manually, you can reduce

development time considerably if you use the DataBlade Developers Kit.

Three graphical user interfaces are provided for DataBlade module development:

v BladeSmith. To create your DataBlade module.

v BladePack. To package your DataBlade module.

v BladeManager. To make your DataBlade module available in a database.

In addition, the DataBlade Developers Kit provides the following tools for

debugging your DataBlade module on Windows:

v DBDK Visual C++ Add-In. To debug your DataBlade module within Microsoft®

Visual C++.

v IfxQuery. To execute SQL debugging tests from within Microsoft Visual C++.

The DataBlade Developers Kit reduces development time because it:

v uses wizards to guide you through complex SQL object creation options.

v generates the following types of files:

– Complete SQL definitions for your database objects

– Complete code, or code entry points for C, C++, and Java™ source code

– Unit tests for debugging user-defined routines, opaque data type support

routines, and cast support functions

– Functional tests for validating user-defined routines, opaque data type

support routines, and cast support functions
v automates creating an interactive installation program for UNIX® and Windows

operating systems

The source code generated by the DataBlade Developers Kit follows good coding

practices for your Informix database server and ensures consistency among your

user-defined routines.

DataBlade Modules and the Database Server

This section discusses the overall architecture of the Informix database server, how

DataBlade modules affect database server processes, and the application

programming interfaces you can use in your DataBlade modules and client

applications.

1-4 DataBlade Module Development Overview

Figure 1-1 on page 1-5 illustrates the following components of Informix database

server architecture when it includes DataBlade modules:

v DataBlade modules, which extend the capabilities of the database server

v DataBlade module application programming interfaces, which allow DataBlade

modules access to data stored in a database

v The database server, which includes virtual processors that your Informix

database server uses to process tasks, the shared memory that these virtual

processors use, and the Java virtual machine to process routines written in Java

v The Client Software Developement Kit, which includes client-side APIs that

enable you to write client applications that access data stored in a database

v DataBlade module ActiveX and Java value objects, which enable you to provide

client-side interfaces to extended data types and their support routines

v Client visualization tools, which enable you to view and manipulate data

retrieved from DataBlade modules with third-party applications

v Client applications, which allow the user access to DataBlade module functions

and data stored in a database

The close integration of DataBlade modules with the database server means that

the database server treats new, extended data types in exactly the same way that it

treats its own built-in data types.

Important: You must use the IBM Informix Dynamic Server with J/Foundation

upgrade to Informix Dynamic Server to enable services that use Java.

For more information about J/Foundation, see the publication

J/Foundation Developer’s Guide.

Figure 1-1. IBM Informix Dynamic Server with DataBlade Modules

Chapter 1. DataBlade Module Concepts 1-5

DataBlade Module Programming Languages

The DataBlade Developers Kit supports the following languages for programming

DataBlade modules:

v C, using the DataBlade API

v C++, using the DataBlade API

v Java, using IBM Informix JDBC Driver

v Stored Procedure Language (SPL)

For more information on programming language options and restrictions, see the

IBM Informix DataBlade Developers Kit User’s Guide.

C Language

The DataBlade Developers Kit enables you to create database objects in C. You can

create user-defined routines, cast support functions, aggregates, and opaque data

type support routines in C.

The code generated for C by the DataBlade Developers Kit uses DataBlade API

routines to communicate with the database server. The DataBlade API is the

primary API for the database server. The DataBlade API provides routines to

manage database connections, send SQL command strings, process query results,

manage database server events and errors, create database server routines, manage

database server memory, and so on. The DataBlade API provides a subset of IBM

Informix ESQL/C and IBM Informix GLS routines that you can use in your

DataBlade module code. For more information about the DataBlade API, see the

IBM Informix DataBlade API Programmer’s Guide.

C++ Language

The DataBlade Developers Kit currently allows you to write opaque data type

support routines in C++. You can also create ActiveX value objects to represent

opaque data types on a client computer. If you want to include other database

objects in your DataBlade module, the DataBlade Developers Kit allows you to

code them in C or Java.

The C++ support routines use DataBlade API routines to process opaque data

types in the database server. For more information about the DataBlade API, see

the IBM Informix DataBlade API Programmer’s Guide.

Important: It is recommended that developers create DataBlade modules in C++

only for client projects and for server projects that use Dynamic Server

on Windows only. Check the IBM Informix Developer Zone at

http://www.ibm.com/software/data/developer/informix for the latest

recommendations on C++ programming options.

Java Language

The DataBlade Developers Kit enables you to create database objects in Java. You

can create user-defined routines, cast support functions, aggregates, and opaque

data type support routines in Java. You can also create Java value objects to

represent opaque data types on a client computer. You cannot create Java routines

that take row or collection data types.

The code generated for Java by the DataBlade Developers Kit uses IBM Informix

JDBC Driver methods to communicate with the database server. IBM Informix

JDBC Driver supports the JDBC 2.0 API. You can use the JDBC 2.0 API to create

database applications in Java.

1-6 DataBlade Module Development Overview

For more information on IBM Informix JDBC Driver, see the IBM Informix JDBC

Driver Programmer’s Guide.

For a complete discussion of creating user-defined routines in Java, see the

publication J/Foundation Developer’s Guide.

Important: You must use the IBM Informix Dynamic Server with J/Foundation

upgrade to Informix Dynamic Server to enable services that use Java.

For more information about J/Foundation, see the publication

J/Foundation Developer’s Guide.

Informix Stored Procedure Language

You can use Informix Stored Procedure Language (SPL) statements to write

routines, and you can store these SPL routines in the database. SPL is an extension

to SQL that provides flow control, such as looping and branching. SPL routines can

execute routines written in C or other external languages, and external routines can

execute SPL routines.

You can use SPL routines to perform any task that you can perform in SQL and to

expand what you can accomplish with SQL alone. SPL routines are parsed and

optimized when they are created. The DataBlade Developers Kit enables you to

include SPL statements to create routines. For more information on SPL, see the

IBM Informix Guide to SQL: Tutorial.

Internal Architecture of the Database Server

If you want to add user-defined routines to your Informix database server, you

must understand the internal architecture of the database server and how

DataBlade module routines can affect the database system. The following aspects

of the internal architecture of your Informix database server are affected the most

by DataBlade modules:

v Virtual processors

v Memory management

v Java virtual machine

DataBlade Modules and Virtual Processors

The internal architecture of your Informix database server contains virtual

processors. Virtual processors are operating system tasks that execute requests.

Virtual processors are separated into virtual processor classes. Each of the virtual

processor classes provided in the database server handles a different type of task,

such as executing queries and routines, fetching data from disk, and administering

network connections. You can create user-defined virtual processors to handle tasks

you define.

One of the critical virtual processors is the CPU VP, which acts as a router and

handles basic administrative tasks, processes certain user requests, and delegates

other requests to the appropriate processor. Tasks thus participate in a highly

distributed environment that is optimized for performance and scalability.

By default, all user-defined routines execute in the CPU VP; however, if your

DataBlade module routine makes use of certain system services, you must assign it

to a user-defined virtual processor. A user-defined VP is created by the system

administrator and executes only those routines assigned to it. For more information

about the system services that require a user-defined VP, see the IBM Informix

Chapter 1. DataBlade Module Concepts 1-7

Dynamic Server Administrator’s Guide and the IBM Informix Developer Zone at

http://www.ibm.com/software/data/developer/informix.

DataBlade Module Memory Allocation

Another important aspect of the internal architecture of your Informix database

server is that virtual processors communicate with one another through shared

memory. Therefore, when you write code for user-defined routines, you cannot use

standard memory allocation functions. To manage memory for DataBlade modules,

you must use the memory management functions provided by the DataBlade API

or the JDBC 2.0 API.

See the IBM Informix DataBlade API Programmer’s Guide or the J/Foundation

Developer’s Guide publication for complete information.

Java Virtual Machine

Dynamic Server executes UDRs written in Java in its specialized virtual processors,

called a Java virtual processor (JVP). A JVP embeds a Java virtual machine (JVM) in

its code.

The JVPs are responsible for executing all UDRs written in Java. Although the JVPs

are mainly used for Java-related computation, they have the same capabilities as a

user-defined VP, and they can process all types of SQL queries. This embedded VM

architecture avoids the cost of shipping Java-related queries back and forth between

CPU VPs and JVPs.

For more information on how the database server handles Java code, see the

J/Foundation Developer’s Guide publication.

The Client Software Development Kit

The Client Software Development Kit (SDK) is a set of APIs you can use to

develop applications for your Informix database server; they handle

communication between the database server and the client application. Client APIs

allow you to write applications in the following languages:

v C

v C++

v Java

v ESQL/C

The Client SDK provides several connectivity products for ODBC-compliant

applications and a global language support API.

For a list of current APIs, see IBM Informix Client Products Installation Guide.

Client Objects and Programs

You can use the following types of client objects and programs with your

DataBlade module applications:

v ActiveX value objects. An ActiveX value object encapsulates data retrieved from

an Informix database server about an opaque type and its support routines for

use by a client application. The DataBlade Developers Kit generates code for

ActiveX value objects. You can use ActiveX value objects in a Microsoft Visual

Basic program.

1-8 DataBlade Module Development Overview

v Java value objects. A Java value object encapsulates data retrieved from an

Informix database server about an opaque type and its support routines for use

by a client application. The DataBlade Developers Kit generates code for Java

value objects.

v Client visualization tools. A visualization tool enables you to view and

manipulate data retrieved by DataBlade modules with third-party applications.

DataBlade Module Components

You can include the following objects in the DataBlade module project you create

with the DataBlade Developers Kit:

v Aggregates. To perform user-defined computations on data.

v Data Types. To characterize data to the database server (either built-in data

types or new data types).

v Routines. To operate on or return data.

v Casts. To convert data from one type to another.

v Interfaces. To create dependencies between DataBlade modules.

v Errors. To create messages raised by user-defined routines that appear as

standard database server messages.

v Unit Tests. To test your database objects during the coding and debugging cycle.

v Functional Tests. To validate your completed DataBlade module routines.

v Imported SQL Files. To include custom SQL statements to create tables,

user-defined access methods, and other database objects in your DataBlade

module.

v Imported Client Files. To include client components, such as query tools and

ActiveX value objects, in your DataBlade module package.

The DataBlade Developers Kit generates the SQL for each of the objects that you

define or include. The objects are described in the following sections.

Important: Not all database objects and options described in this section are

available with all versions of Dynamic Server. For more information,

see the IBM Informix DataBlade Developers Kit User’s Guide.

Aggregates

An aggregate is a set of functions that returns information about a set of query

results. For example, the built-in SUM aggregate adds the values returned from a

query and returns the result. An aggregate is invoked in SQL as a single function,

but it is implemented as one or more support functions.

You can define two types of aggregates:

v Built-in aggregates whose support functions are overloaded to work with

extended data types

v New, user-defined aggregates that implement user-defined routines.

The built-in aggregates are AVG, COUNT, MAX, MIN, SUM, RANGE, STDEV, and

VARIANCE. The COUNT aggregate is defined for all data types. For more

information on these aggregates, see the IBM Informix Guide to SQL: Syntax.

For more information on defining aggregates, see the IBM Informix DataBlade

Developers Kit User’s Guide.

Chapter 1. DataBlade Module Concepts 1-9

Data Types

The database server uses data types to determine how to store and retrieve different

kinds of data.

The following table lists the categories of data types available to you when you

create a DataBlade module. You must define some of these data types; others you

can use just as they are.

Data Type

You

Define? Code Needed? Description

Built-in No No A native Informix data type that

comes with the database server

Qualified built-in Yes No A built-in data type that takes one

or more parameters, such as storage

size, range of values, or precision

Built-in opaque No No (except for

LVARCHAR)

A built-in data type that cannot be

accessed in distributed queries by a

different Dynamic Server instance.

User-defined opaque Yes Yes (the basic

code needed to

implement an

opaque type is

generated by

BladeSmith)

A data type whose internal

members cannot be accessed

directly using SQL statements

Distinct Yes No A user-defined name for an existing

built-in or extended type

Collection Yes No A group of elements of the same

data type

Row Yes No A structured data type whose

internal members can be directly

accessed through SQL statements

An extended data type is a data type that is not built into Dynamic Server. Extended

data types include opaque data types, distinct data types, collection data types,

and row data types. Extended data types are described in the IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

Collection and row data types are extended data types built from a combination of

other data types; their components are accessed through SQL statements.

Built-in Data Types

Built-in data types include character, numeric, time, large object, and Boolean data

types. You can use built-in data types as building blocks in opaque, distinct, row,

and collection data types.

Built-in data types are automatically included in your DataBlade module project

file as imported objects.

For a complete list and descriptions of built-in data types, see the IBM Informix

Guide to SQL: Reference publication.

Qualified Built-in Data Types

A qualified data type is a built-in data type that has an added qualification that

specifies information about the storage size, range of values, or precision of the

1-10 DataBlade Module Development Overview

type. For example, the DECIMAL(p,s) data type can take qualifiers for precision

(the total number of digits) and scale (the total number of digits to the right of the

decimal point).

You must define a qualified data type by specifying its qualifications.

Example: The DECIMAL(6,3) data type has six digits, with three digits to the

right of the decimal point; for example, 123.456.

More Information: For a complete list of qualified data types and their

parameters, see the IBM Informix Guide to SQL: Reference publication.

Distinct Data Types

A distinct data type is an existing data type to which you assign a unique name.

The distinct data type inherits all routines from the source data type, but it cannot

be directly compared to the source data type without an explicit cast.

Why Use a Distinct Data Type? Use a distinct data type if you want to create

routines that do not work on the source data type. You can use a distinct data type

to control how the data type is cast, or converted, to other data types.

You can use distinct data types to create inheritance hierarchies, which allow you

to write very selective routines. A distinct data type can be passed to all routines

defined for the source; however, the source data type cannot be passed to routines

defined for the distinct data type.

Example: You can create two distinct data types based on the MONEY type: lira

and us_dollar. To determine the dollar value of a specified lira value, you can

create an explicit cast between lira and us_dollar by writing a function that

multiplies the value of lira by the exchange rate. Using the cast allows you to

perform arithmetic operations involving both distinct data types and to return a

meaningful result.

More Information: For a description of distinct data types, see the IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

Collection Data Types

A collection data type is a group of values of a single data type in a column. Each

value is referred to as an element. A collection data type is defined using a type

constructor and an element data type. Type constructors determine whether the

database server checks for duplicate elements or orders the elements. The

following table describes the collection type constructors.

 Type Constructor Duplicates Allowed? Ordered?

SET No No

MULTISET Yes No

LIST Yes Yes

For a SET, the database server prevents insertion of duplicate elements. For a

MULTISET, the database server takes no special actions. For a LIST, the database

server orders the elements.

Elements can be almost any data type, including other extended data types and

built-in data types such as smart large objects. You can access any element in a

collection individually through SQL statements.

Chapter 1. DataBlade Module Concepts 1-11

The number of elements in a collection is not mandated. You can change the

number of elements in a collection without reinserting it into a table, and different

rows can have different numbers of elements in their collections.

What Does a Collection Look Like? The following diagram illustrates a collection

data type using a SET constructor and the LVARCHAR data type in a column

called Dependents.

Instead of putting information on dependents in a separate table, all the

information is contained in one row, using a collection data type. You can add or

remove elements without altering the table’s columns.

Why Use a Collection Data Type? You can use collection data types to reconfigure

a table with awkwardly long rows by grouping data into a single column. Use a

collection if you have data of the same data type that can be naturally grouped

into a single column. You can group data even further by creating a collection of

row types or other collections.

Collections are also useful as returned values: for example, a group of values from

many rows in a column or fields in a row type. For example, if you want to obtain

a list of every city in which your employees live from the sample collection data

type in Figure 1-2, you could create a collection on the Location column to return a

set of values.

The following function types can return collections:

v A user-defined function that returns a collection

v An iterator function that returns a single value at a time but is called repeatedly

to assemble a collection

More Information: For a description of collection data types, see the IBM Informix

Guide to SQL: Tutorial.

Row Data Types

A row data type can be thought of as a row of columns, of varying data types,

stored in a single database table column. Row data types follow essentially the

same rules as database tables. The columns within a row data type are called fields.

They can be almost any data type, including other extended data types and

built-in data types, such as smart large objects. You can access fields individually

using SQL statements.

To create a row data type, you specify:

v a unique name for the whole row type

Figure 1-2. Sample Collection Data Type

1-12 DataBlade Module Development Overview

v a unique name for each field

v a data type for each field.

What Does a Row Data Type Look Like? The following diagram illustrates a row

type named address_t in a column named Address.

Instead of having additional columns in the Address table, the row data type

groups data that is most often accessed together in one column. The table Address

consists of the columns Name(LVARCHAR(30)), Address(address_t), and

Dependents(SET(LVARCHAR)). The row data type address_t consists of the

named fields Street(LVARCHAR(20)), City(LVARCHAR(20)), State(CHAR(2)), and

Zip_code(INTEGER).

Why Use a Row Data Type? Like collection data types, row data types allow you

to reconfigure your database table. Use a row type if you have data of differing

data types that group naturally into a single column. You can further group your

data if you include a collection or another row data type as a field within your

row data type.

Row data types can be useful for handling smart large objects. For example, if a

row data type has a field that is an opaque data type containing an image in a

smart large object, the other fields of the row data type could contain additional

information about the image.

For best performance, use row data types if most user queries access all or most of

the row data type’s fields.

You can use row data types to create inheritance hierarchies, allowing you to write

very selective routines. A child row data type inherits its parent’s fields and can be

passed to all routines defined for the parent; however, the parent data type cannot

be passed to routines defined for the child data type.

More Information: For a discussion on row data types, see the IBM Informix

Guide to SQL: Tutorial.

Opaque Data Types

An opaque data type is a user-defined data structure. To successfully interpret

opaque data types, the database server requires that the DataBlade module provide

opaque data type support routines. You must provide support routines for your

opaque data type.

BladeSmith generates boilerplate code for opaque data type support routines. You

can write additional code in C or Java to implement the functionality your opaque

Figure 1-3. Sample Row Data Type

Chapter 1. DataBlade Module Concepts 1-13

data type requires. If you provide ActiveX value objects as a client-side interface to

your opaque data types, you can write the underlying support routines for the

opaque data type in C++. See “Opaque Data Type Support Routines” on page 1-15

for more information.

Opaque data types typically contain more than one member, so they are similar to

row data types, except that the database server can only operate on the individual

components with support routines you define in the DataBlade module.

What Does an Opaque Data Type Look Like? The following diagram illustrates

an opaque data type called circle, based on a structure called circle_t, in a column

called circle_col.

The table circle_tab consists of the columns circle_id(SERIAL),

color(VARCHAR(15)), and circle_col(circle). The opaque data type circle is defined

as a C structure, circle_t, which contains a radius member and another structure,

point_t. The point_t structure contains x and y members. To the database server,

however, the whole circle_t structure is indivisible, unless you provide accessor

functions.

Why Use an Opaque Data Type? Use an opaque type to extend SQL to address

fundamentally new data types and allow operations on them. Such data types are

typically indivisible or made up of components to which you want to control

access.

For example, geographic data and many sorts of rich media data (images, audio,

text, and so on) are have been represented by the use of opaque types. Opaque

data types often contain smart large objects. Smart large objects are logically stored

in a column in a database table but physically stored in a file. For example, an

opaque data type for images could have a smart large object member containing

the image and other members containing metadata about the image.

Opaque types require more work to create than other data types because you must

write all the routines that support them.

Figure 1-4. Sample Opaque Type

1-14 DataBlade Module Development Overview

Opaque Data Type Support Routines: BladeSmith enables you to generate

support routine code for opaque data types. You might have to add code to

implement the functionality your opaque data type requires.

The following table describes the support routines you can create and indicates the

categories of opaque types for which they are recommended.

 Function Recommended for Description

Text input and

output

All opaque types Convert between external and internal

representations.

Send and receive All opaque types Convert between internal representation on the

database server and client computers. Not available

for Java.

Text import and

export

All opaque types Process opaque types for bulk loading and

unloading as textual data to and from a file.

Import binary and

export binary

All opaque types Process opaque types for bulk loading and

unloading as binary data to and from a file. Not

available for Java.

Assign() and

Destroy()

Large objects and

multi-

representational

types

Stores or deletes data on disk just before a commit:

for example, to ensure proper reference counting

on smart large objects. Not available for ActiveX.

LOhandles() Large objects and

multi-

representational

types

Returns the large object handle or list of

large-object handles in opaque types that contain

smart large objects. Not available for ActiveX.

Compare() Opaque data types

sorted by a B-tree

or R-tree index

Sorts opaque type data within SQL statements and

supports the B-tree and R-tree access method.

Statistics support All opaque types Compile information about the values in an

opaque data type column that the optimizer can

use to create a query plan. Not available for Java or

ActiveX.

More Information: For a description of creating opaque types and their support

routines, see the IBM Informix DataBlade Developers Kit User’s Guide or IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

Routines

A routine is a stored collection of programming statements that allows you to

manipulate data.

A routine can be a function, which returns values, or a procedure, which does not.

You can write routines in the Informix Stored Procedure Language (SPL), or in an

external language, such as C or Java.

Important: Not all routine options are available for SPL and Java. For more

information, see the IBM Informix DataBlade Developers Kit User’s Guide.

Routine overloading, or polymorphism, refers to writing a routine that performs the

same task and has the same name as an existing routine—but one that takes a

different data type as an argument. When you create opaque, collection, or row

types, you can overload existing routines for your new data type. When the

overloaded routine is called, your Informix database server determines which

Chapter 1. DataBlade Module Concepts 1-15

variant of the routine to use by examining the argument. BladeSmith creates a

template for the overloaded routine; however, you must complete the code to

enable the routine to complete the assigned task.

You can overload built-in and operator functions for all data types except built-in

data types. You can create user-defined routines for all categories of data types.

You can create support routines for all extended data types. You must create

support routines for opaque data types (see “Opaque Data Type Support Routines”

on page 1-15).

Built-in Functions and Operator Functions

Built-in functions perform arithmetic and other basic operations when included in

SQL statements. Operator functions are built-in functions that are bound to operator

symbols: for example, the plus() function is bound to the + operator. Some of the

arithmetic functions take a single argument, such as the root() function, which

calculates the square root of its argument; others take two arguments, such as the

pow() function, which raises one argument to the power of the second.

When you overload a built-in or operator function, you must specify what the

function does and what it returns. For example, if you overload the plus() function

on a row type, you can choose to:

v add the respective field values and return a row type with the same number of

fields as the input row types

v return a row type that contains all the fields of the first input row type followed

by all the fields of the second input row type.

There are also built-in functions that do not take arguments and that you cannot

overload, such as the today() function, which returns the current date and time.

For more information, see the IBM Informix User-Defined Routines and Data Types

Developer’s Guide.

User-Defined Routines

Typically, user-defined routines perform operations specific to the data or application

for which they are created and are not based on routines provided with your

Informix database server. End users call user-defined routines within SQL

statements or through the DataBlade API. BladeSmith has a wizard to help you

define the parameters for user-defined routines.

Casts

A cast is a rule that converts one data type into another. Casts work in only one

direction: from the source data type to the target data type. You can, however,

define two casts for the same two data types to support conversion in both

directions.

For some data types, you can choose whether the database server or the user

controls casting.

Create an implicit cast if you want the database server to automatically convert the

source data type.

Create an explicit cast if you want the user to specify the cast within an SQL

statement.

1-16 DataBlade Module Development Overview

If you are creating a cast between two data types that have different internal

structures, you must write a cast support function. A straight cast, between two data

types that have the same internal structure, does not require a cast support

function; however, you can supply one to perform a conversion operation. You

typically define straight casts to allow implicit casting from a distinct data type to

its source data type (but not from a source data type to the distinct data type

based on it).

You can use a built-in type as a source or target data type in a cast, but not as

both. Built-in types have system-defined casts between each other that the database

server invokes automatically.

A distinct type inherits all the casts of the source type. The database server

automatically creates an explicit cast between the distinct type and the source type.

For more information about casting, see the IBM Informix User-Defined Routines and

Data Types Developer’s Guide.

Interfaces

An interface is a way to reference another DataBlade module within your

DataBlade module. Using an interface creates a dependency on the DataBlade

module that provides the interface. You cannot register a DataBlade module that

uses an interface unless the DataBlade module that provides the interface is

already installed in the database server.

You can import an interface from another DataBlade module to facilitate

development of your module. Similarly, you can build a DataBlade module that

provides an interface for other DataBlade modules to use.

For more information, see the IBM Informix DataBlade Developers Kit User’s Guide.

Errors

You can define error or trace messages for your DataBlade module. An error or

trace consists of a unique five-character code, a locale (for translation), and a

message. If you are developing a DataBlade module as a commercial product,

qualify its name with a three-character DataBlade module prefix such as ″USR″ to

create unique error codes and other DataBlade module objects.

To localize your error messages, define multiple messages using the same error

code, a different locale, and the message text for that locale. Which message the

user sees is controlled by the value of the locale environment variables.

For more information, see the IBM Informix DataBlade Developers Kit User’s Guide.

Unit Tests

BladeSmith generates unit tests for your opaque data type support routines,

user-defined routines, and cast support functions. BladeSmith adds data to test

boundary conditions for your data types. Use unit tests while you debug your

DataBlade module using Microsoft Visual C++ on Windows. Run unit tests with

the DBDK Visual C++ Add-In and IfxQuery (see “DBDK Visual C++ Add-In and

IfxQuery” on page 2-3).

For more information, see the IBM Informix DataBlade Developers Kit User’s Guide.

Chapter 1. DataBlade Module Concepts 1-17

Functional Tests

BladeSmith generates functional tests for your opaque data type support routines,

user-defined routines, and cast support functions. You must supply input data, the

expected output data (if applicable), or an error code (if the input data is not valid)

in BladeSmith. Run functional tests on UNIX after you finish coding your

DataBlade module.

For more information, see the IBM Informix DataBlade Developers Kit User’s Guide.

Imported SQL Files

You can include custom SQL statements in your DataBlade module to perform

tasks such as creating and dropping user-defined access methods, support tables,

or SPL routines. You can include custom SQL statements by typing them in the

SQL File wizard or by referencing a file.

You can specify dependencies between objects in your DataBlade module and your

custom SQL. These dependencies determine the sequence in which the SQL

statements are executed when you register the DataBlade module.

For more information, see the IBM Informix DataBlade Developers Kit User’s Guide.

Imported Client Files

After your customers install a DataBlade module on a database server, they may

download any client files included in your DataBlade module to client computers.

The types of client files you can package with your DataBlade module include:

v graphical user interfaces

v documentation and help files

v shared object files, dynamic link libraries, or header files containing DataBlade

module routines executed in the client address space.

Your customers use BladeManager to download the client files to their client

computers.

For more information, see the IBM Informix DataBlade Developers Kit User’s Guide.

1-18 DataBlade Module Development Overview

Chapter 2. Building a DataBlade Module

DataBlade Developers Kit Tools . 2-1

BladeSmith . 2-1

BladePack . 2-2

BladeManager . 2-3

DBDK Visual C++ Add-In and IfxQuery . 2-3

How to Create a DataBlade Module . 2-4

DataBlade Module Development Resources . 2-6

The DataBlade Developers Kit InfoShelf . 2-6

The Tutorial . 2-6

Example DataBlade Modules . 2-7

The IBM Informix Developer Zone . 2-7

DataBlade Developers Kit Tools

The following graphical user interfaces are provided for creating, packaging, and

registering DataBlade modules, as well as tools for debugging DataBlade modules

on Windows:

v BladeSmith

v BladePack

v BladeManager

v DBDK Visual C++ Add-In and IfxQuery.

BladeSmith

You use BladeSmith to begin creating your DataBlade module, such as defining its

contents and generating files and source code. BladeSmith guides you through

object definition with wizard pages. BladeSmith automates many of the tasks of

object creation, such as writing the SQL statements necessary to define objects in

the database.

Using BladeSmith, you create a project for your DataBlade module and then add

or define the following types of objects for your module:

v User-defined objects. Includes aggregates, casts, errors, interfaces, routines, and

data types.

v Files. Can be custom SQL statements or files necessary for a client.

v Imported objects. Includes built-in data types and interfaces from other

DataBlade modules.

Each of these objects is summarized in Chapter 1, “DataBlade Module Concepts,”

on page 1-1

After you specify the user-defined objects, imported objects, and files you want to

include in your DataBlade module, use BladeSmith to generate the files you need

for compiling a shared object file or dynamic link library, managing a DataBlade

module in your Informix database server, testing object functionality, and creating

installation packaging files. These categories of files are described in the following

table.

© Copyright IBM Corp. 1996, 2008 2-1

Type of Generated File Description

Source code You use these files to create a shared library file. They can

include source code files, header files, Visual C++ workspace

and project files, and makefiles.

SQL script These files contain the SQL statements that support the

DataBlade modules in the database system tables. They include

prepare scripts that describe the DataBlade module and object

scripts that describe the DataBlade objects.

Test You use unit test files to test your database objects while you

code and debug your DataBlade module on Windows.

You use functional test files to test the positive and negative

operation of user-defined routines, opaque data type support

routines, and casts when your DataBlade module is complete.

Packaging You use these files with BladePack to generate installation files

and executables.

The generated source code files contain routine definitions. BladeSmith generates

complete code for some routines, such as basic opaque data type support routines.

BladeSmith generates code templates for other types of routines, such as

user-defined routines. You must add code to these routines to implement the

functionality you require. The areas of the generated source code that need

modification are marked with TO DO: comments.

When your code is complete, you compile it into a file that the database server can

interpret.

For instructions, see the IBM Informix DataBlade Developers Kit User’s Guide or the

tutorial in the on-line DataBlade Developers Kit InfoShelf.

BladePack

You use BladePack to create an installable DataBlade module package. BladePack

uses the packaging project file created by BladeSmith as the basis for the

installation package. The packaging file references the SQL scripts, shared object

file, and other files required by the DataBlade module. The installation scripts

ensure that all DataBlade modules created with the DataBlade Developers Kit can

be installed in a similar way.

You can create installation packages for a UNIX installation or a Windows

installation for InstallShield 3.1 or InstallShield 5.1. The options you have for your

installation package vary with each type of installation. For information on your

options, see the IBM Informix DataBlade Developers Kit User’s Guide.

You can perform the following tasks with BladePack:

v Add files to your DataBlade module

For example, you can include documentation, on-line help, and example files.

v Include several BladePack projects in an installation package

For example, you can include DataBlade modules that facilitate similar financial

calculations into a single installation package.

v Divide files into separate components, subcomponents, and shared components

You can designate the components and subcomponents to include in typical and

compact installations. You can also allow users to customize their installations

by choosing the components and subcomponents they want to install. Shared

2-2 DataBlade Module Development Overview

components can belong to more than one component, and they are always

installed with components to which they belong.

v Include custom installation routines

You can add custom DLL routines, dialog boxes, and programs for Windows

InstallShield 3.1 installations and custom programs for UNIX installations. You

can also include README files for any type of installation.

v Generate disk images or a directory tree for interactive installations

On UNIX platforms, an interactive installation includes install and uninstall

shell scripts. On Windows, an interactive InstallShield installation includes the

Setup program and, for InstallShield 3.1, the Uninstall program.

See the IBM Informix DataBlade Developers Kit User’s Guide for more information.

BladeManager

You use BladeManager to register or unregister your DataBlade module in a

database and to install or uninstall DataBlade module client files.

After you install a DataBlade module on a database server, you must register it in

every database that uses the module. Registration involves executing the DataBlade

SQL scripts to create DataBlade objects in the database and making the DataBlade

shared object or dynamic link library available to the database server.

BladeManager checks for dependencies between DataBlade modules. If you have

imported an interface from another DataBlade module, BladeManager registers

your DataBlade module only after it confirms that the interface is registered in the

database.

If you are upgrading your DataBlade module, BladeManager automatically

un-registers the previous version.

You can also unregister any module by using BladeManager. BladeManager does

not allow you to unregister a DataBlade module if there is another DataBlade

module that depends on it or if any of its objects are in use by the database.

See the IBM Informix DataBlade Module Installation and Registration Guide for more

information.

DBDK Visual C++ Add-In and IfxQuery

The DataBlade Developers Kit provides the following tools for debugging C and

C++ code on Windows:

v DBDK Visual C++ Add-In

v IfxQuery.

The DBDK Visual C++ Add-In is a toolbar you add to Microsoft Visual C++,

Version 6.0, to aid in debugging. You must have Dynamic Server on the same

computer as the DataBlade Developers Kit to use the debugging features of the

add-in.

The IfxQuery tool is launched by the add-in from within Visual C++. IfxQuery

runs the SQL unit test file in the active window in Visual C++.

Chapter 2. Building a DataBlade Module 2-3

The add-in and IfxQuery automate many of the steps necessary for debugging a

DataBlade module. After you compile your DataBlade module in Visual C++ and

set breakpoints in your source code, you can click Debug DataBlade Module.

The Debug DataBlade Module command performs the following steps:

 1. Checks if the DataBlade module is compiled (and compiles it, if necessary)

 2. If necessary, creates a new directory for the DataBlade module under the

INFORMIXDIR\extend directory

 3. Installs the DataBlade module shared library file and SQL scripts in the

INFORMIXDIR\extend\project.0 directory

 4. Shuts down the database server

 5. Starts the Visual C++ debugger and the database server attached to the Visual

C++ debugger

 6. Launches IfxQuery, if the active window contains an SQL file

 7. If necessary, creates the database specified by the add-in

 8. Connects to the database specified by the add-in

 9. Registers the DataBlade module

10. Executes the SQL statements from the unit test file

11. Writes the results to an HTML file

12. Launches the default HTML browser for your computer

13. Displays the SQL results in the HTML browser

The first time you run the Debug DataBlade Module command for a DataBlade

module project, the Properties dialog box appears, in which you specify the

database server and database you want to use for debugging. You can also access

the Properties dialog box with the Run Properties dialog box button of the add-in.

How to Create a DataBlade Module

While the DataBlade Developer Kit tools run only on Windows, you can create

DataBlade modules for both Windows and UNIX operating systems for the C,

C++, and Java languages. The tools you use on each operating system and for each

programming language vary.

The following table describes, in order, the tasks needed to create a DataBlade

module and the tools you should use to complete the tasks.

 To Perform™ This Task Use This Tool on UNIX Use This Tool on Windows

Write the design and functional specifications. Your word processing

program

Your word processing program

Create your DataBlade module:

v Set up a project for your DataBlade module.

v Import objects from other DataBlade modules.

v Define new objects for your DataBlade module.

v Add validation test data for your new routines,

opaque types, and casts.

v Generate source code, SQL scripts, installation

files, and unit and functional test files.

BladeSmith

2-4 DataBlade Module Development Overview

To Perform™ This Task Use This Tool on UNIX Use This Tool on Windows

Edit the source code to add C, C++, or Java code

for routines, as needed.

Your development tool or text

editor

For C or C++ code: Microsoft

Visual C++

For Java code: your

development tool or text editor

Compile your source code. For C or C++ code: your

compiler

For Java code: JDK 1.1

compiler

For C or C++ code: Microsoft

Visual C++

For Java code: JDK 1.1.x

compiler

Install your DataBlade module. Operating system copy

command or FTP

For C or C++ code: DBDK

Visual C++ Add-In

For Java code: operating

system copy of FTP

Register your DataBlade module in your test

database.

For all code:

v BladeManager

v Dynamic Server*

For C or C++ code:

v DBDK Visual C++ Add-In

v Dynamic Server

For Java code:

v BladeManager

v Dynamic Server*

Debug your DataBlade module by running unit

tests.

For C or C++ code:

v a debugging utility

v DB-Access or a client

application

v Dynamic Server

For Java code:

v the Java log file

v DB-Access or a client

application

v Dynamic Server*

For C or C++ code:

v Microsoft Visual C++

v DBDK Visual C++ Add-In

v IfxQuery or other SQL query

tool

v Dynamic Server

For Java code:

v the Java log file

v an SQL query tool

v Dynamic Server*

Validate your DataBlade module with functional

tests.

For all code:

v DB-Access

v Dynamic Server*

For all code:

v MKS Toolkit

v DB-Access

v Dynamic Server*

Package your DataBlade module:

v Add examples, on-line help files, and any other

files you want to include to the project.

v Define any additional components for a selective

installation.

v Perform optional customizations for installation

packages.

v Build the installation package.

BladePack

Transfer files to the installation media. Your operating system Your operating system

Document your DataBlade module with a user’s

guide, release notes, examples, and online help, as

needed.

Your word processing

program

Your word processing program

* You must use the IBM Informix Dynamic Server with J/Foundation upgrade to Informix Dynamic Server to enable

services that use Java. For more information about J/Foundation, see the J/Foundation Developer’s Guide.

Chapter 2. Building a DataBlade Module 2-5

DataBlade Module Development Resources

The DataBlade Developers Kit includes various resources to help you learn about

and develop DataBlade modules, discussed in the following subsections:

v “The DataBlade Developers Kit InfoShelf,” next

v “The Tutorial” on page 2-6

v “Example DataBlade Modules” on page 2-7

v “The IBM Informix Developer Zone” on page 2-7

The DataBlade Developers Kit InfoShelf

The DataBlade Developers Kit InfoShelf is a set of HTML documents included with

the DataBlade Developers Kit software.

The DataBlade Developers Kit InfoShelf can be launched from the BladeSmith

Help menu or started independently from the Informix program group.

The InfoShelf provides the following information in HTML format:

v An online version of this publication

v A tutorial that illustrates the fundamentals of DataBlade module development

v Descriptions of example DataBlade modules shipped with the DataBlade

Developers Kit

v A reference library that contains the following publications:

– IBM Informix DataBlade Developers Kit User’s Guide

– IBM Informix DataBlade Module Installation and Registration Guide

– IBM Informix DataBlade API Programmer’s Guide

– IBM Informix User-Defined Routines and Data Types Developer’s Guide

– IBM Informix Guide to SQL: Reference

– IBM Informix Guide to SQL: Syntax

– IBM Informix Guide to SQL: Tutorial

– J/Foundation Developer’s Guide

– IBM Informix JDBC Driver Programmer’s Guide

– IBM Informix GLS User’s Guide

– IBM Informix ESQL/C Programmer’s Manual

v A master index containing the merged index entries of all the books listed above

The index entries provide links into the HTML versions of the publications

included in the InfoShelf.

The Tutorial

The DataBlade Developers Kit Tutorial is a set of HTML documents that you access

through the DataBlade Developers Kit InfoShelf.

The tutorial consists of step-by-step exercises that demonstrate how to create

DataBlade modules that extend your Informix database server.

The first exercise demonstrates a simple DataBlade module so that you can focus

on learning the mechanics of BladeSmith and the DBDK Visual C++ Add-In

without complex coding. All tutorial users should start with Exercise 1.

2-6 DataBlade Module Development Overview

Each subsequent exercise is more complex than the previous one; you can choose

to either work through the exercises sequentially or just pick the ones that interest

you.

Example DataBlade Modules

Example DataBlade modules are included with the DataBlade Developers Kit

software. Example DataBlade modules are in the %INFORMIXDIR%\dbdk\
examples directory. The InfoShelf has descriptions of the example DataBlade

modules with links to README files and source code.

The example DataBlade modules are frequently updated. The topics you might

find covered in the example DataBlade modules include:

v Client. Using extended data types with ESQL/C and C++ client programs.

v Routines. Using user-defined routines written with the DataBlade API and using

MMX technology.

v Types. Using extended data types that have support routines written with the

DataBlade API, use MMX technology, are implemented as ActiveX value objects,

and create user-defined statistics.

The IBM Informix Developer Zone

The Informix Developer Zone Web site is designed to provide you with the

technical information, tools, forums, and links to relevant information that you

need when using Informix products.

The DataBlade Developers Kit InfoShelf contains links to the IBM Informix

Developer Zone at http://www.ibm.com/software/data/developer/informix. This

page has a link to the DataBlade Developers’ Corner, which is of particular interest

to DataBlade module developers. Its goal is to answer questions asked by

DataBlade developers. The information in the DataBlade Developers’ Corner is

frequently updated, and it includes topics such as:

v Getting started. Lists software, documentation, and training resources and

describes how to install and set up the requisite software.

v DataBlade modules and your Informix database server. Includes descriptions of

the interaction between DataBlade modules and your database server and how

to debug DataBlade modules.

v DataBlade API. Includes tips and code examples, from snippets to complete

DataBlade modules, using the DataBlade API.

v Data types. Describes the data types you can use with your Informix database

server, such as extended data types and smart large objects.

Chapter 2. Building a DataBlade Module 2-7

2-8 DataBlade Module Development Overview

Appendix A. DataBlade Module Documentation

This appendix is a reference to current IBM Informix documentation pertaining to

DataBlade modules. The appendix is divided into three sections:

v “Publication Overview,” a survey of the documentation set, arranged by concept

v “Title-to-Topic Reference,” a descriptive catalog of the documents, arranged

alphabetically by title

v “Topic-to-Title Reference” on page A-3, an alphabetical list of topics concerning

DataBlade modules, with references to the document or documents that contain

detailed information about each topic

For other DataBlade module resources, see “DataBlade Module Development

Resources” on page 2-6.

Publication Overview

In the following table, the publications mentioned in the DataBlade Module

Development Overview are arranged into basic categories.

 Category Publication Title

DataBlade module

concepts

IBM Informix User-Defined Routines and Data Types Developer’s Guide

IBM Informix DataBlade Developers Kit User’s Guide

J/Foundation Developer’s Guide

DataBlade module

development tools

IBM Informix DataBlade Developers Kit User’s Guide

IBM Informix DataBlade Module Installation and Registration Guide

APIs IBM Informix DataBlade API Programmer’s Guide

IBM Informix DataBlade API Function Reference

IBM Informix JDBC Driver Programmer’s Guide

IBM Informix GLS User’s Guide
IBM Informix CLI Programmer’s Manual

IBM Informix ESQL/C Programmer’s Manual

Informix Dynamic

Server

IBM Informix Dynamic Server Getting Started Guide
IBM Informix Dynamic Server Administrator’s Guide

IBM Informix Dynamic Server Performance Guide

SQL IBM Informix Guide to SQL: Reference

IBM Informix Guide to SQL: Syntax

IBM Informix Guide to SQL: Tutorial

Title-to-Topic Reference

In the following table, the publications mentioned in the DataBlade Module

Development Overview are listed alphabetically by title, with a brief description of

each.

 Publication Title Description

J/Foundation Developer’s Guide Describes how Java is implemented in the Informix database server. Describes

a library of classes and interfaces that allow programmers to create and

execute Java user-defined routines that access Informix database servers.

© Copyright IBM Corp. 1996, 2008 A-1

Publication Title Description

IBM Informix DataBlade API

Programmer’s Guide

IBM Informix DataBlade API

Function Reference

Provide a complete reference for the DataBlade API, which is used to develop

applications that interact with your Informix database server.

IBM Informix DataBlade Developers

Kit User’s Guide

Describes how to develop and package DataBlade modules using the

DataBlade Developers Kit.

IBM Informix DataBlade Module

Installation and Registration Guide

Explains how to install DataBlade modules and use BladeManager to register,

upgrade, and unregister DataBlade modules in Informix databases.

IBM Informix User-Defined Routines

and Data Types Developer’s Guide

Explains how to extend existing data types, define new data types, and define

your own functions and procedures for an Informix database.

Describes the tasks you must perform to extend operations on data types, to

create new casts, to extend operator classes for secondary access methods, and

to write opaque data types.

Defines common considerations for SPL and external routines and describes

how to create user-defined aggregates.

IBM Informix R-Tree Index User’s

Guide

Describes the IBM Informix R-tree secondary access method and how use its

components. It describes how to create an R-tree index on appropriate data

types and how to create a new operator class that uses the R-tree access

method to index a user-defined data type.

IBM Informix Dynamic Server

Getting Started Guide

Provides an overview of the architecture of your Informix database server,

introduces the major features of the server, introduces the server kits, and

provides information to help you use the documentation that is included with

each kit.

IBM Informix GLS User’s Guide Describes IBM Informix GLS, an application programming interface available

in IBM Informix products. IBM Informix GLS provides ESQL/C and DataBlade

module developers the ability to write programs (or change existing programs)

to handle different languages, cultural conventions, and code sets.

IBM Informix CLI Programmer’s

Manual

Explains how to use the IBM Informix CLI application programming interface

to gain access to Informix databases, manipulate the data in your program,

interact with the database server, and check for errors.

IBM Informix ESQL/C Programmer’s

Manual

Explains how to use IBM Informix ESQL/C to create client applications with

database management capabilities. This publication is a complete guide to the

features of ESQL/C that allow you to gain access to Informix databases,

manipulate the data in your program, interact with the database server, and

check for errors.

IBM Informix Guide to SQL:

Reference

Describes the Informix system catalog tables, common environment variables

that you might need to set, and the built-in data types that your Informix

database server supports.

IBM Informix Guide to SQL: Syntax This publication contains syntax descriptions for the Structured Query

Language (SQL) and Stored Procedure Language (SPL) statements that your

Informix database server supports.

IBM Informix Guide to SQL: Tutorial Includes instructions for using basic and advanced Structured Query Language

(SQL), as well as for designing and managing your database.

IBM Informix Dynamic Server

Administrator’s Guide

Describes how to install, configure, and use the features of your Informix

database server.

IBM Informix Dynamic Server

Performance Guide

Explains how to configure and operate your database server to improve overall

system performance as well as the performance of SQL queries.

IBM Informix JDBC Driver

Programmer’s Guide

Describes the JDBC driver that implements the Java interfaces and classes that

programmers use to connect to an Informix database server.

A-2 DataBlade Module Development Overview

Topic-to-Title Reference

The following table provides an alphabetical list of DataBlade module

development topics, with references to the publications in which each topic is

documented.

 Topic Detail/Publication Title

ActiveX value objects IBM Informix DataBlade Developers Kit User’s Guide

Aggregates IBM Informix DataBlade API Programmer’s Guide

IBM Informix DataBlade Developers Kit User’s Guide

APIs DataBlade API: IBM Informix DataBlade API Programmer’s Guide

IBM Informix CLI: IBM Informix CLI Programmer’s Manual

IBM Informix ESQL/C: IBM Informix ESQL/C Programmer’s Manual

IBM Informix GLS: IBM Informix GLS User’s Guide

IBM Informix JDBC Driver: IBM Informix JDBC Driver Programmer’s Guide

BladeManager IBM Informix DataBlade Module Installation and Registration Guide

IBM Informix DataBlade Developers Kit User’s Guide

BladePack IBM Informix DataBlade Developers Kit User’s Guide

BladeSmith IBM Informix DataBlade Developers Kit User’s Guide

Casts IBM Informix User-Defined Routines and Data Types Developer’s Guide

IBM Informix Guide to SQL: Tutorial

Coding standards IBM Informix DataBlade API Programmer’s Guide

J/Foundation Developer’s Guide

IBM Informix DataBlade Developers Kit User’s Guide

Compiling source code IBM Informix DataBlade Developers Kit User’s Guide

Data types Using with user-defined routines: IBM Informix DataBlade API Programmer’s Guide

Built-in: IBM Informix Guide to SQL: Reference

Qualified built-in: IBM Informix Guide to SQL: Reference

Opaque: IBM Informix User-Defined Routines and Data Types Developer’s Guide

Distinct: IBM Informix User-Defined Routines and Data Types Developer’s Guide

Collection: IBM Informix Guide to SQL: Tutorial

Row: IBM Informix Guide to SQL: Tutorial

DBDK Visual C++ Add-In IBM Informix DataBlade Developers Kit User’s Guide

Dependencies between

DataBlade modules

IBM Informix DataBlade Module Installation and Registration Guide

Error messages IBM Informix DataBlade Developers Kit User’s Guide

IBM Informix DataBlade API Programmer’s Guide

Example DataBlade modules DBDK InfoShelf

Java value objects IBM Informix DataBlade Developers Kit User’s Guide

Importing files IBM Informix DataBlade Developers Kit User’s Guide

Inheritance IBM Informix Guide to SQL: Tutorial

Installing DataBlade modules IBM Informix DataBlade Module Installation and Registration Guide

IBM Informix DataBlade Developers Kit User’s Guide

Interfaces to DataBlade modules IBM Informix DataBlade Developers Kit User’s Guide

DBDK Tutorial

Memory management IBM Informix DataBlade API Programmer’s Guide

Operator class support functions IBM Informix User-Defined Routines and Data Types Developer’s Guide

IBM Informix R-Tree Index User’s Guide

IBM Informix Developer Zone at http://www.ibm.com/software/data/
developer/informix

Appendix A. DataBlade Module Documentation A-3

Topic Detail/Publication Title

Packaging a DataBlade module IBM Informix DataBlade Developers Kit User’s Guide

Performance issues IBM Informix Dynamic Server Performance Guide

IBM Informix User-Defined Routines and Data Types Developer’s Guide

IBM Informix DataBlade API Programmer’s Guide

Polymorphism IBM Informix User-Defined Routines and Data Types Developer’s Guide

Registering a DataBlade module IBM Informix DataBlade Module Installation and Registration Guide

Routines IBM Informix DataBlade API Programmer’s Guide

IBM Informix DataBlade API Function Reference

IBM Informix User-Defined Routines and Data Types Developer’s Guide

J/Foundation Developer’s Guide

IBM Informix DataBlade Developers Kit User’s Guide

Secondary access methods IBM Informix Dynamic Server Performance Guide

IBM Informix R-Tree Index User’s Guide

IBM Informix Developer Zone at http://www.ibm.com/software/data/
developer/informix

Server architecture IBM Informix Dynamic Server Administrator’s Guide

IBM Informix Dynamic Server Getting Started Guide

Shared memory IBM Informix DataBlade Developers Kit User’s Guide

IBM Informix Dynamic Server Administrator’s Guide

Smart large objects IBM Informix DataBlade API Programmer’s Guide

IBM Informix Database Extensions User’s Guide

IBM Informix Guide to SQL: Tutorial

IBM Informix Developer Zone at http://www.ibm.com/software/data/
developer/informix

SQL IBM Informix Guide to SQL: Reference

IBM Informix Guide to SQL: Syntax

IBM Informix Guide to SQL: Tutorial

Storage of DataBlade modules IBM Informix Dynamic Server Administrator’s Guide

Stored Procedure Language IBM Informix User-Defined Routines and Data Types Developer’s Guide

IBM Informix Guide to SQL: Syntax

Testing and debugging

DataBlade modules

IBM Informix DataBlade Developers Kit User’s Guide

Unit tests IBM Informix DataBlade Developers Kit User’s Guide

Virtual processors IBM Informix DataBlade Developers Kit User’s Guide

IBM Informix Dynamic Server Administrator’s Guide

A-4 DataBlade Module Development Overview

Appendix B. IBM Informix DataBlade Modules

This appendix introduces some of the IBM Informix DataBlade modules to serve as

examples of the type of functionality DataBlade modules can provide. For more

information on available DataBlade modules, see the IBM Informix Developer

Zone at http://www.ibm.com/software/data/developer/informix.

This appendix includes descriptions of the following DataBlade modules and the

extensions to Informix Dynamic Server that each one provides:

v IBM Informix Geodetic DataBlade Module

v IBM Informix Large Object Locator DataBlade Module

v Excalibur Text Search DataBlade Module

v IBM Informix TimeSeries DataBlade Module

v IBM Informix Video Foundation DataBlade Module

v IBM Informix Web DataBlade Module

IBM Informix Geodetic DataBlade Module

The IBM Informix Geodetic DataBlade Module manages objects defined on the

Earth’s surface with a high degree of precision. It is designed to manage

spatio-temporal data with global content, such as metadata associated with satellite

images. To do this, the IBM Informix Geodetic DataBlade Module uses a latitude

and longitude coordinate system on an ellipsoidal Earth model, or geodetic datum,

rather than a planar, x- and y-coordinate system.

With the IBM Informix Geodetic DataBlade Module, you can extend your database

server to store and manipulate objects in space, referenced by latitude and

longitude. You can also provide additional attributes representing an altitude range

and a time range.

You can create the following spatio-temporal objects with this module:

v Points

v Line segments

v Strings

v Rings

v Polygons

v Boxes

v Circles

v Ellipses

Extensions to Dynamic Server

The IBM Informix Geodetic DataBlade Module provides three kinds of data types:

v Spatio-temporal. To represent objects.

v Distinct and range. Building blocks that simplify the construction and

manipulation of spatio-temporal objects.

Spatio-temporal data types enable you to store data that represents spatial objects

with a time component in an Informix database. The time component associates

© Copyright IBM Corp. 1996, 2008 B-1

the object with a time period or moment in time. Spatio-temporal types are defined

in a type hierarchy, with a supertype—GeoObject—that has the time and altitude

attributes common to all spatio-temporal types.

Distinct types provide angular components such as latitude and longitude and

linear components such as distance.

Range data types specify the altitude and time dimensions of spatio-temporal data.

The IBM Informix Geodetic DataBlade Module provides more than 60 functions to

enable you to manipulate your spatio-temporal data. These functions can be

grouped into the following categories:

v Accessor functions. These functions allow you to access information about

objects stored in a database. For example, the Latitude function returns—or

accesses—the latitude value of an object.

Type verification functions are included in this group.

v Computational functions. These functions perform standard computations.

v Constructor and conversion functions. These functions are the basis for the data

types. Many of these functions are overloaded, with a conversion syntax in

addition to a constructor. The conversion syntax converts an object from the

GeoObject supertype back to its original representation.

v Spatial operators. The functions take spatio-temporal objects and test them for

proximity or intersection. Spatial operators return Boolean TRUE or FALSE.

v Data validation functions. These functions verify GeoRing and GeoPolygon

objects.

v System functions. These functions control session parameters and provide

information about the version of the IBM Informix Geodetic DataBlade Module.

v Tracing functions. These functions control the trace files and tracing output.

v Warning functions. These functions control warning messages and output.

v Z Value functions. These functions manipulate Z values.

The IBM Informix Geodetic DataBlade Module also provides:

v a client utility called geovalidate that you can use to verify the correctness of

your input data.

v support for the R-tree spatial access method. The R-tree access method allows

you to create an index on columns containing spatio-temporal data.

Documentation

For more information, see the IBM Informix Geodetic DataBlade Module User’s Guide.

IBM Informix Large Object Locator DataBlade Module

The IBM Informix Large Object Locator DataBlade Module enables you to create a

single consistent interface to smart large objects. It expands the concept of smart

large objects to include data stored outside the database. Smart large object data

exceeds a length of 255 bytes or contains non-ASCII characters.

With the IBM Informix Large Object Locator DataBlade Module, you create a

reference to a smart large object and store the reference as a row in the database.

The object itself can reside outside the database: for example, on a file system (or it

could be a BLOB or CLOB column in the database). The reference identifies the

type, or access protocol, of the object and points to its storage location.

B-2 DataBlade Module Development Overview

The IBM Informix Large Object Locator DataBlade Module is a foundation

DataBlade module for other DataBlade modules that handle smart large objects.

Extensions to Dynamic Server

The IBM Informix Large Object Locator DataBlade Module provides new data

types and functions to extend your database server.

The lld_locator data type is a row data type that contains the access protocol for a

smart large object and a pointer to its location. The lld_lob data type is an opaque

data type that is identical to the BLOB and CLOB data types, except that in

addition to pointing to the data, it tracks whether the underlying smart large object

contains binary or character data. It is contained in the lld_locator data type as a

field in the row.

The IBM Informix Large Object Locator DataBlade Module provides basic functions

for creating, opening, closing, deleting, reading from, and writing to smart large

objects; client functions to process client files; utility functions for raising errors;

and functions for copying smart large objects.

Most of the IBM Informix Large Object Locator DataBlade Module functions are

implemented in an API library, an ESQL/C library, and an SQL interface for

maximum programming flexibility.

Documentation

For more information, see the IBM Informix Database Extensions User’s Guide.

Excalibur Text Search DataBlade Module

The Informix Excalibur Text Search DataBlade Module enables you to search your

data in ways that are faster and more sophisticated than the keyword matching

that SQL provides. Excalibur text search capabilities include phrase matching, exact

and fuzzy searches, compensation for misspelling, and synonym matching. The

Informix Excalibur Text Search DataBlade Module can search any type of text.

The Informix Excalibur Text Search DataBlade Module uses dynamic links in the

Excalibur class library, or text search engine, to perform the text search section of

the SELECT statement instead of having the database server perform a traditional

search. The text search engine is specifically designed to perform sophisticated and

fast text searches. It runs in one of the database server-controlled virtual processes.

Extensions to Dynamic Server

The Informix Excalibur Text Search DataBlade Module provides four kinds of

objects to extend your Informix database server: the etx access method, the filter

utility, the etx_contains() operator, and text search routines.

The etx access method allows you to call on the Excalibur Text Retrieval Library to

create indexes that support sophisticated searches on table columns that contain

text. The indexes that you create with the etx access method are called etx indexes.

To take advantage of the etx access method, you must store the data you want to

search—called search text—in a column of type IfxDocDesc, BLOB, CLOB, CHAR,

VARCHAR, or LVARCHAR. The first data type in this list, IfxDocDesc, is a data

type designed specifically for use with text access methods. The most popular data

types for large documents are BLOB and CLOB.

Appendix B. IBM Informix DataBlade Modules B-3

When you store your documents in a column, you do not need to Publicationly

convert them from their proprietary format into ASCII when creating an etx index;

the Informix Excalibur Text Search DataBlade Module does this for you. One of the

components of the Informix Excalibur Text Search DataBlade Module is a filtering

utility that recognizes a number of document formats and converts them into

ASCII form whenever needed.

You use the etx_contains() operator within SELECT statements to perform searches

of etx indexes.

In addition to the etx_contains() operator, the Informix Excalibur Text Search

DataBlade Module supplies several routines that you can use to perform tasks such

as creating and dropping synonym and stopword lists.

Documentation

For more information, see the Excalibur Text Search DataBlade Module User’s Guide.

IBM Informix TimeSeries DataBlade Module

The IBM Informix TimeSeries DataBlade Module enables you to store and

manipulate a series of data entries associated with a date and time. This

timestamped data is stored in a row type, which you define to include whatever

data you want, in addition to the timestamp. You also control the granularity of

time recording. The IBM Informix TimeSeries DataBlade Module supports regularly

or irregularly repeating timestamped series.

Time series data is stored and analyzed by applications in many different

industries, including manufacturing, journalism, science, and engineering. Time

series data is also used in the financial world for corporate financial reporting,

stock prices, bond yields, and derivative securities.

Extensions to Dynamic Server

The IBM Informix TimeSeries DataBlade Module allows you to create an intuitively

organized data model by grouping all the timestamped data for an entity into a

single row in a database table, using the TimeSeries data type. The TimeSeries

data type is a type constructor that creates a collection of elements that are row

types, as illustrated in Figure B-1.

B-4 DataBlade Module Development Overview

You create the row type to fit your data; the first field, or column, in the row must

be a timestamp of type DATETIME YEAR TO FRACTION 5, but the rest of the

columns can be any data type supported in row types. Since the time series data is

in a row type instead of an opaque type, you can retrieve individual columns

within an element.

The collection elements are indexed according to their timestamp, making retrieval

of chronologically contiguous elements very fast. Once the number of elements

exceeds the user-supplied threshold, the IBM Informix TimeSeries DataBlade

Module moves all the elements to a container, which exists in a user-defined

dbspace. Containers are necessary because time series data typically becomes too

large to fit in a database table. Containers also allow you to retrieve only the

information you need, instead of the whole time series, as would happen if you

used a smart large object to store your data.

For both regular and irregular time series, the Calendar and CalendarPattern data

types allow you to specify an arbitrarily complex pattern of when entries are

accepted. For regular time series, the calendar additionally creates a vector from

which to calculate an element’s position, so that an element’s timestamp does not

have to be stored, or even specified.

The IBM Informix TimeSeries DataBlade Module provides a wide variety of

routines to manage and manipulate time series data. The routines allow you to

manipulate columns in an element, an element itself, a portion of a time series, a

whole time series, or many time series. In addition, there are routines to manage

calendars, containers, and metadata. Most routines are implemented in both an

SQL interface and an API library.

The IBM Informix TimeSeries DataBlade Module also includes system tables to

record information about calendars, time series, and containers.

Documentation

For more information, see the IBM Informix TimeSeries DataBlade Module User’s

Guide.

Collection of elements of the IFMX
time series

stock_id stock_data

IFMX TimeSeries(stock_bar)
IBM TimeSeries(stock_bar)
HWP TimeSeries(stock_bar)

Database table

Columns and data types in
each element of the row
subtype stock_bar

timestamp high low final vol

DATETIME YEAR
TO FRACTION(5)

INT INT INT INT

Figure B-1. Time Series Architecture

Appendix B. IBM Informix DataBlade Modules B-5

IBM Informix Video Foundation DataBlade Module

The IBM Informix Video Foundation DataBlade Module enables you to store,

manage, and manipulate video data and metadata in the same system in which you

store more traditional data. Such a system is called a media management system.

Video data represents an image that changes continuously in time. Unlike

traditional data that is retrieved and displayed as a discrete value, video data is

incrementally accessed and is displayed as a real-time stream of frames. Video data

can be located on one or more storage servers, such as Web video streamers, VTRs

(video tape recorders), or video servers. If an IBM Informix Video Foundation

interface has been created for the storage server, that storage server can come

under database control.

Video metadata is data about the video data. This is the information that is actually

stored in database tables, along with information on how to retrieve requested

video segments from the various storage servers. The Video Foundation DataBlade

module defines two categories of metadata:

v Physical attributes. Descriptions of the media on which the video data is stored,

such as length, format, and capture rate.

v Abstract descriptions. Multimedia descriptions of the video data content, such

as text annotations, or audio or video clips that represent a larger video

program.

The Video Foundation DataBlade module is referred to as a foundation DataBlade

module because it provides a base on which new or specialized video technologies

can be quickly added or changed. Because the foundation is open, secure, and

scalable, it provides a clear path toward reusing and repurposing valuable video

assets among video formats and distribution channels.

A media management system is a collection of processes, computers, and other

machines that enable you to store and manipulate video (and, often, other media)

data along with more traditional data, such as text. The IBM Informix Video

Foundation DataBlade Module provides interfaces among the following basic

elements of such a media management system:

v A video client application, such as an editing or logging application, running on

a stand-alone computer.

v Your Informix database server and the Video Foundation DataBlade module,

running on a second computer; the database contains the video metadata. (Other

IBM Informix and third-party DataBlade modules—such as IBM Informix Image,

Text, and Web DataBlade modules, and third-party storage server and video

scene-change detection DataBlade modules—can also be running on this

computer.)

v Video data located on one or more storage servers, such as Web video streamers,

VTRs, or video servers. Generally, each storage server is hosted on a separate

computer.

Extensions to Dynamic Server

The Video Foundation DataBlade module consists of the following components:

v Temporal component. This component consists of the data types and functions

that provide a format-independent interface between your Informix database

server and video data. This interface enables the server to reference specific

points in time (media points and timecodes) and intervals (media chunks) within

video data, regardless of the data format (AVI, MPEG, and so on).

B-6 DataBlade Module Development Overview

v Storage component. This component consists of the data types and functions

that provide a device- and format-independent interface between your Informix

database server, video data, and the storage servers on which that data is

located.

v Video database schema. This schema is a set of database tables that connect the

data of the temporal and storage components; it is a repository for video

metadata.

v Client API. This API provides the opaque types of the Video Foundation

DataBlade module as value objects for application developers using the IBM

Informix C++ client interface. It also provides a subset of the DataBlade module

server functions as client-side functions for application developers using any of

the following client APIs:

– IBM Informix ESQL/C API

– IBM Informix DataBlade API

– IBM Informix Object Interface for C++

Documentation

For more information, see the IBM Informix Video Foundation DataBlade Module

User’s Guide.

IBM Informix Web DataBlade Module

The IBM Informix Web DataBlade Module enables you to create Web applications

that incorporate data retrieved dynamically from an Informix database.

Using the Web DataBlade module, you need not develop a Common Gateway

Interface (CGI) application to dynamically access database data. Instead, you create

HTML pages that include Web DataBlade module tags and functions that

dynamically execute the SQL statements you specify and format the results. These

pages are called application pages (AppPages). The types of data you retrieve can

include traditional data types, as well as HTML, image, audio, and video data.

Extensions to Dynamic Server

The Web DataBlade module consists of three main components:

v Webdriver. As a client application to your Informix database server, Webdriver

builds the SQL queries that execute the WebExplode function to retrieve

AppPages from the database. Webdriver returns the HTML resulting from calls

to the WebExplode function to the Web server.

v WebExplode function. The WebExplode function builds dynamic HTML pages

based on data stored in the database. WebExplode parses AppPages that contain

Web DataBlade module tags within HTML and dynamically builds and executes

the SQL statements and processing instructions embedded in the Web DataBlade

module tags. WebExplode formats the results of these SQL statements and

processing instructions and returns the resulting HTML page to the client

application (usually Webdriver). The SQL statements and processing instructions

are specified using SGML-compliant processing tags.

v Web DataBlade module tags and attributes. The Web DataBlade module

includes its own built-in set of SGML-compliant tags and attributes that enable

SQL statements to be executed dynamically within AppPages.

The following diagram illustrates the architecture of the Web DataBlade module.

Appendix B. IBM Informix DataBlade Modules B-7

When a URL contains a Webdriver request, the Web browser makes a request to

the Web server to invoke Webdriver. Based on configuration information from both

a file on the operating system file system (web.cnf) and Webdriver configuration

information stored in a database, Webdriver composes an SQL statement to retrieve

the requested AppPage and then executes the WebExplode function. WebExplode

retrieves the requested AppPage from the Web application table (stored in the

database), executes the SQL statements within that AppPage by expanding the

Informix Web DataBlade module tags, and formats the results. WebExplode

returns the resulting HTML to Webdriver. Webdriver returns the HTML to the Web

server, which returns the HTML to be rendered by the Web browser.

Webdriver also enables you to retrieve large objects, such as images, directly from

the database when you specify a path that identifies a large object stored in the

database.

Documentation

For more information, see the IBM Informix Web DataBlade Module Application

Developer’s Guide.

Figure B-2. Web DataBlade Module Architecture

B-8 DataBlade Module Development Overview

Appendix C. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft Windows® navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our publications are available in dotted decimal format.

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1996, 2008 C-1

http://www.ibm.com/able

C-2 DataBlade Module Development Overview

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 D-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

D-2 DataBlade Module Development Overview

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices D-3

http://www.ibm.com/legal/copytrade.shtml

D-4 DataBlade Module Development Overview

Index

A
accessibility C-1

keyboard C-1

shortcut keys C-1

ActiveX value objects 1-6, 1-8

Aggregates
defined 1-9

where documented A-3

API.
See Application programming interface.

Application programming interface
DataBlade API 1-6

JDBC 1-6

supplied in Client SDK 1-8

where documented A-3

Application, client B-6

Applications, simplifying with DataBlade modules 1-3

B
BladeManager

defined 2-3

registering DataBlade modules with 2-5

BladePack
DataBlade module packaging tasks 2-5

defined 2-2

packaging options 2-2

BladeSmith
aggregates, creating with 1-9

casts, creating with 1-16

client files, importing with 1-18

collection data types
creating with 1-11

data type categories in 1-10

DataBlade module creation tasks 2-4

defined 2-1

distinct data types
creating with 1-11

errors, creating with 1-17

functional tests, generating with 1-18

generated files from 2-1

interfaces
creating with 1-17

opaque data type support routines
creating with 1-15

opaque data types, creating with 1-13

overloading routines with 1-15

qualified data types, specifying with 1-11

routines
creating with 1-15

row data types, creating with 1-12

SQL files, importing with 1-18

unit tests, generating with 1-17

Built-in data types 1-10

Built-in routines 1-16

C
C code in DataBlade modules 1-6

C++ code in DataBlade modules 1-6

Casts
defined 1-16

where documented A-3

Client API, example of B-7

Client application B-6

Client files, adding with BladeSmith 1-18

Client objects
using with DataBlade modules 1-8

Client Software Development Kit 1-8

Client utility B-2

Client visualization tools 1-9

Codes for errors 1-17

Coding standards, documentation of A-3

Collection data types
defined 1-11

elements of 1-11

example of B-4

illustration of 1-12

LIST type constructor for 1-11

MULTISET type constructor for 1-11

return values, using as 1-12

SET type constructor for 1-11

where documented A-3

Combining DataBlade modules 1-3

Compiling source code
tools for 2-5

where documented A-3

Constructors.
See Type constructors.

Converting data types 1-16

Creating DataBlade modules 2-4

D
Data types

built-in 1-10

categories of 1-10

collection 1-11

converting 1-16

defined 1-10

distinct 1-11

documentation of A-3

opaque 1-13

qualified built-in 1-10

row 1-12

Database schema, example of B-7

DataBlade API 1-6

DataBlade Developers Kit
example DataBlade modules 2-7

InfoShelf 2-6

overview 1-4

tools in 2-1

tutorial 2-6

DataBlade modules
advantages 1-3

aggregates in 1-9

C code for 1-6

C++ code for 1-6

casts in 1-16

client files with 1-18

client objects in 1-8

© Copyright IBM Corp. 1996, 2008 X-1

DataBlade modules (continued)
combining 1-3

compiling source code for 2-5

components 1-9

components of 1-18

creation task list for 2-4

data types in 1-10, 1-13

debugging 2-5

defined 1-1

dependencies between A-3

development resources for 2-6, 2-7

documenting 2-5

editing source code for 2-5

errors in 1-17

examples of A-3

extending IBM Informix Dynamic Server with 1-2

foundation, using as 1-4

functional tests for 1-18

IBM Informix B-1, B-8

imported files in 1-18

installation files for 2-2

installing 2-5, A-3

interfaces in 1-4, 1-17

Java code for 1-6

location of examples of 2-7

memory allocation for 1-8

programming languages for 1-6

registering in a database 2-3

routines in 1-15

server architecture, role within 1-4

simplifying applications with 1-3

source code for 2-2

SQL scripts for 2-2

storage for A-4

Stored Procedure Languages, in 1-7

test files 2-2

testing 2-5, A-4

transaction control for 1-3

tutorial for 2-6

unit tests for 1-17

virtual processors, using with 1-7

DBDK Visual C++ Add-In
debugging a DataBlade module with 2-5

defined 2-3

documentation of A-3

registering DataBlade modules with 2-5

Debug DataBlade Module command 2-4

Debugging DataBlade modules
on UNIX 2-5

on Windows 2-3, 2-5

Development resources for creating DataBlade modules 2-6,

2-7

disability C-1

Distinct data types 1-11

Documentation
IBM Informix Developer Zone 2-7

InfoShelf 2-6

list of A-1, A-3

Tutorial 2-6

Documenting a DataBlade module 2-5

E
Editing source code 2-5

Elements, of collections 1-11

Errors
defined 1-17

Errors (continued)
where documented A-3

Example DataBlade modules 2-7

Excalibur Text Search DataBlade module B-3

Explicit casts 1-16

F
Fields

row data types 1-12

Files generated by BladeSmith 2-1

Files imported into DataBlade modules 1-18

Foundation DataBlade modules
defined 1-4

example of B-3

Functional indexes 1-2

Functional tests for DataBlade modules 1-18

Functions.
See Routines.

G
Generated files from BladeSmith 2-1

Geodetic DataBlade module B-1

I
IBM Informix Developer Zone 2-7

IBM Informix Dynamic Server
advantages of extending 1-2

architecture of 1-5, A-4

components 1-4

extended by DataBlade modules 1-2

improving performance 1-2

memory allocation for DataBlade modules in 1-8

transaction control for DataBlade modules in 1-3

using Client SDK with 1-8

virtual processors in 1-7

IBM Informix Geodetic DataBlade module B-1

IBM Informix TimeSeries DataBlade module B-4

IBM Informix Video Foundation DataBlade module B-6

IBM Informix Web DataBlade module B-7

IfxQuery 2-3

Illustrations
collection data type 1-12

IBM Informix Dynamic Server architecture 1-5

IBM Informix TimeSeries DataBlade module

architecture B-5

opaque data type 1-14

row data type 1-13

Implicit cast 1-16

Imported files
defined 1-18

where documented A-3

Indexes, functional 1-2

InfoShelf 2-6

Inheritance
in row data types 1-13

where documented A-3

Installation files for DataBlade modules 2-2

Installation packaging options 2-2

Installing a DataBlade module
tools for 2-5

where documented A-3

Interfaces
defined 1-4

X-2 DataBlade Module Development Overview

Interfaces (continued)
importing 1-17

where documented A-3

J
Java code in DataBlade modules 1-6

Java value objects
about 1-6, 1-9

where documented A-3

JDBC API 1-6

L
Large Object Locator DataBlade module B-2

Large objects.
See Smart large objects.

LIST type constructor 1-11

Locales for errors 1-17

M
Memory allocation

for DataBlade modules 1-8

where documented A-3

MULTISET type constructor 1-11

O
Opaque data types

ActiveX value objects, implemented as 1-6

defined 1-13

example of B-1, B-3, B-7

illustrated 1-14

Java value objects, implementing as 1-6

rich media data, using for 1-14

smart large objects in 1-14

support functions for 1-15

where documented A-3

Operator class support functions A-3

Operator functions 1-16

Overloading routines
defined 1-15

where documented A-4

P
Packaging DataBlade modules

options for 2-2

using BladePack for 2-5

where documented A-4

Performance
improving with DataBlade modules 1-2

where documented A-4

Polymorphism 1-15

Procedures.
See Routines.

Programming languages for DataBlade modules 1-6

Q
Qualified built-in data types 1-10

R
R-tree access method B-2

Registering DataBlade modules
defined 2-3

where documented A-4

with BladeManager 2-5

with the DBDK Visual C++ Add-In 2-5

Routines
adding code to 2-2

built-in 1-16

categories of 1-16

defined 1-15

opaque type support 1-15

operator 1-16

overloading 1-15

returning collections with 1-12

user-defined 1-16

where documented A-4

Row data types
defined 1-12

example of B-3, B-4

fields in 1-12

illustration of 1-13

inheritance for 1-13

smart large objects in 1-13

S
Secondary access methods

defined 1-2

example of B-3

where documented A-4

SET type constructor 1-11

Shared memory
defined 1-8

where documented A-4

shortcut keys
keyboard C-1

Smart large objects
accessing B-2

in opaque data types 1-14

in row data types 1-13

where documented A-4

Source code
compiling 2-5

editing 2-5

files for DataBlade modules 2-2

SPL.
See Stored Procedure Language.

SQL
documentation of A-4

files included in DataBlade modules 1-18

scripts for DataBlade modules 2-2

Storage for DataBlade modules A-4

Stored Procedure Languages
using in DataBlade modules 1-7

where documented A-4

Straight casts 1-17

Support functions
for casts 1-17

for opaque data types 1-15

System, media management B-6

T
Test files for DataBlade modules 2-2

Index X-3

Testing a DataBlade module
tools for 2-5

where documented A-4

Text Search DataBlade module B-3

TimeSeries DataBlade module B-4

Tutorial 2-6

Type constructors
LIST 1-11

MULTISET 1-11

SET 1-11

TimeSeries B-4

U
Unit tests

defined 1-17

executing with IfxQuery 2-3

using during debugging 2-5

where documented A-4

Unregistering a DataBlade module 2-3

Upgrading a DataBlade module 2-3

User-defined routines 1-16

User-defined virtual processors 1-7

V
Video foundation DataBlade module B-6

Virtual processors
defined 1-7

where documented A-4

W
Web DataBlade module B-7

X-4 DataBlade Module Development Overview

����

Printed in USA

G229-6367-01

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Chapter 1. DataBlade Module Concepts
	What Are DataBlade Modules?
	Why Extend Your Informix Database Server?
	Better Performance
	Simpler Applications
	Transaction Control
	Scalability

	Why Create a DataBlade Module?
	Control
	Code Reuse

	Why Use the DataBlade Developers Kit?

	DataBlade Modules and the Database Server
	DataBlade Module Programming Languages
	C Language
	C++ Language
	Java Language
	Informix Stored Procedure Language

	Internal Architecture of the Database Server
	DataBlade Modules and Virtual Processors
	DataBlade Module Memory Allocation
	Java Virtual Machine

	The Client Software Development Kit
	Client Objects and Programs

	DataBlade Module Components
	Aggregates
	Data Types
	Built-in Data Types
	Qualified Built-in Data Types
	Distinct Data Types
	Collection Data Types
	Row Data Types
	Opaque Data Types

	Routines
	Built-in Functions and Operator Functions
	User-Defined Routines

	Casts
	Interfaces
	Errors
	Unit Tests
	Functional Tests
	Imported SQL Files
	Imported Client Files

	Chapter 2. Building a DataBlade Module
	DataBlade Developers Kit Tools
	BladeSmith
	BladePack
	BladeManager
	DBDK Visual C++ Add-In and IfxQuery

	How to Create a DataBlade Module
	DataBlade Module Development Resources
	The DataBlade Developers Kit InfoShelf
	The Tutorial
	Example DataBlade Modules
	The IBM Informix Developer Zone

	Appendix A. DataBlade Module Documentation
	Publication Overview

	Appendix B. IBM Informix DataBlade Modules
	Appendix C. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Notices
	Trademarks

	Index

