
IBM Informix

IBM Informix JDBC Driver Programmer’s Guide

Version 3.50

SC23-9421-02

���

IBM Informix

IBM Informix JDBC Driver Programmer’s Guide

Version 3.50

SC23-9421-02

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page F-1.

This edition replaces SC23-9421-01

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . vii

In This Introduction . vii

IBM Informix Java Documentation . vii

About This Publication . viii

Supplementary JDBC Documentation . viii

Material Not Covered . ix

Types of Users . x

Software Dependencies . x

JDBC 3.00 Specification Compliance . x

Assumptions About Your Locale . x

What’s New in IBM Informix JDBC Driver, Version 3.50 . xi

Documentation Conventions . xii

Typographical Conventions . xii

Feature, Product, and Platform Markup . xii

Example Code Conventions . xiii

Additional Documentation . xiii

Compliance with Industry Standards . xiv

Syntax Diagrams . xiv

How to Read a Command-Line Syntax Diagram . xv

Keywords and Punctuation . xvi

Identifiers and Names . xvi

How to Provide Documentation Feedback . xvii

Chapter 1. Getting Started . 1-1

In This Chapter . 1-1

What Is JDBC? . 1-1

What Is a JDBC Driver? . 1-2

Overview of IBM Informix JDBC Driver . 1-2

Classes Implemented in IBM Informix JDBC Driver . 1-2

Files in IBM Informix JDBC Driver . 1-5

Client- and Server-Side JDBC Drivers . 1-6

Obtaining the JDBC Driver . 1-6

Installing the JDBC Driver . 1-6

Installing JDBC Driver in Graphical or Console mode . 1-7

Installing Informix JDBC Driver in Silent Mode . 1-7

Logging Installation Events . 1-8

Logging Examples . 1-8

Using the Driver in an Application . 1-8

Using the Driver in an Applet . 1-9

Uninstalling the JDBC Driver . 1-10

Uninstalling in Graphical or Console Mode . 1-10

Uninstalling in Silent Mode . 1-11

Chapter 2. Connecting to the Database . 2-1

In This Chapter . 2-1

Loading IBM Informix JDBC Driver . 2-2

Using a DataSource Object . 2-3

Using the DriverManager.getConnection() Method . 2-5

Format of Database URLs . 2-6

Database Versus Database Server Connections . 2-9

Specifying Properties . 2-10

Using Informix Environment Variables with the IBM Informix JDBC Driver 2-11

Dynamically Reading the Informix sqlhosts File . 2-16

Connection Property Syntax . 2-16

Administration Requirements . 2-17

© Copyright IBM Corp. 1996, 2008 iii

Utilities to Update the LDAP Server with sqlhosts Data 2-18

Using High-Availability Data Replication . 2-18

Secondary Server Connection Properties . 2-19

Connecting to Group Entries in an HDR Pair . 2-19

Checking for Read-Only Status . 2-20

Retrying Connections . 2-21

Using an HTTP Proxy Server . 2-22

Configuring Your Environment to Use a Proxy Server 2-22

Using the Proxy with an LDAP Server . 2-24

Specifying sqlhosts File Lookup . 2-26

Using Other Multitier Solutions . 2-26

Encryption Options . 2-26

Using the Sun JCE Security Package . 2-26

Using the IBM FIPS-compliant Security Package . 2-27

Using Password Encryption . 2-27

Using Network Encryption . 2-28

Using Single Sign-on Access Control with the Informix JDBC Driver 2-30

PAM Authentication Method . 2-30

Using PAM in JDBC . 2-32

Closing the Connection . 2-33

Chapter 3. Performing Database Operations 3-1

In This Chapter . 3-2

Querying the Database . 3-2

Example of Sending a Query to an Informix Database . 3-2

Using Result Sets . 3-3

Deallocating Resources . 3-4

Executing Across Threads . 3-4

Using Scroll Cursors . 3-4

Using Hold Cursors . 3-5

Updating the Database . 3-6

Performing Batch Updates . 3-6

Performing Bulk Inserts . 3-6

Parameters, Escape Syntax, and Unsupported Methods . 3-7

Using CallableStatement OUT Parameters . 3-7

Named Parameters in a CallableStatement . 3-13

JDBC Support for DESCRIBE INPUT . 3-17

Using Escape Syntax . 3-18

Unsupported Methods and Methods that Behave Differently 3-19

Handling Transactions . 3-21

Handling Errors . 3-22

Handling Errors With the SQLException Class . 3-22

Retrieving the Syntax Error Offset . 3-23

Handling Errors with the com.informix.jdbc.Message Class 3-23

Accessing Database Metadata . 3-24

Other Informix Extensions to the JDBC API . 3-25

Using the Auto Free Feature . 3-25

Obtaining Driver Version Information . 3-26

Storing and Retrieving XML Documents . 3-26

Setting Up Your Environment to Use XML Methods . 3-27

Inserting Data . 3-28

Retrieving Data . 3-29

Inserting Data Examples . 3-30

Retrieving Data Examples . 3-31

Chapter 4. Working With Informix Types . 4-1

In This Chapter . 4-2

Distinct Data Types . 4-2

Inserting Data Examples . 4-2

Retrieving Data Example . 4-3

iv IBM Informix JDBC Driver Programmer’s Guide

Unsupported Methods . 4-4

BYTE and TEXT Data Types . 4-4

Caching Large Objects . 4-5

Example: Inserting or Updating Data . 4-5

Example: Selecting Data . 4-6

SERIAL and SERIAL8 Data Types . 4-7

BIGINT and BIGSERIAL Data Types . 4-8

INTERVAL Data Type . 4-9

The Interval Class . 4-9

The IntervalYM Class . 4-10

The IntervalDF Class . 4-12

Interval Example . 4-14

Collections and Arrays . 4-14

Collection Examples . 4-14

Array Example . 4-16

Named and Unnamed Rows . 4-17

Interval and Collection Support . 4-18

Unsupported Methods . 4-18

Using the SQLData Interface . 4-18

Using the Struct Interface . 4-21

Using the ClassGenerator Utility . 4-25

Caching Type Information . 4-27

Smart Large Object Data Types . 4-27

Smart Large Objects in the Database Server . 4-28

Smart Large Objects in a Client Application . 4-29

Performing Operations on Smart Large Objects . 4-34

Working with Storage Characteristics . 4-39

Working with Status Characteristics . 4-48

Working with Locks . 4-48

Caching Large Objects . 4-50

Smart Large Object Examples . 4-50

Chapter 5. Working with Opaque Types . 5-1

In This Chapter . 5-2

Using the IfmxUDTSQLInput Interface . 5-3

Reading Data . 5-3

Positioning in the Data Stream . 5-3

Setting or Obtaining Data Attributes . 5-3

Using the IfmxUDTSQLOutput Interface . 5-4

Mapping Opaque Data Types . 5-4

Caching Type Information . 5-4

Unsupported Methods . 5-5

Creating Opaque Types and UDRs . 5-5

Overview of Creating Opaque Types and UDRs . 5-5

Preparing to Create Opaque Types and UDRs . 5-6

Steps to Creating Opaque Types . 5-7

Steps to Creating UDRs . 5-9

Requirements for the Java Class . 5-10

SQL Names . 5-11

Specifying Characteristics for an Opaque Type . 5-11

Creating the JAR and Class Files . 5-14

Sending the Class Definition to the Database Server . 5-14

Creating an Opaque Type from Existing Code . 5-15

Removing Opaque Types and JAR Files . 5-17

Creating UDRs . 5-17

Removing UDRs and JAR Files . 5-19

Obtaining Information About Opaque Types and UDRs 5-19

Executing in a Transaction . 5-20

Examples . 5-21

Class Definition . 5-21

Inserting Data . 5-22

Contents v

Retrieving Data . 5-23

Using Smart Large Objects Within an Opaque Type . 5-23

Creating an Opaque Type from an Existing Java Class with UDTManager 5-25

Creating an Opaque Type Without an Existing Java Class 5-32

Creating UDRs with UDRManager . 5-35

Chapter 6. Internationalization and Date Formats 6-1

In This Chapter . 6-1

Support for JDK and Internationalization . 6-1

Support for IBM Informix GLS Variables . 6-2

Support for DATE End-User Formats . 6-3

GL_DATE Variable . 6-3

DBDATE Variable . 6-5

DBCENTURY Variable . 6-7

Precedence Rules for End-User Formats . 6-8

Support for Code-Set Conversion . 6-8

Unicode to Database Code Set . 6-9

Unicode to Client Code Set . 6-10

Connecting to a Database with Non-ASCII Characters 6-10

Code-Set Conversion for TEXT and CLOB Data Types 6-11

Code-Set Conversion for BLOB and BYTE Data Types 6-13

User-Defined Locales . 6-13

Connecting with the NEWLOCALE and NEWCODESET Environment Variables 6-13

Connecting with the NEWNLSMAP Environment Variable 6-14

Support for Localized Error Messages . 6-14

Chapter 7. Tuning and Troubleshooting . 7-1

In This Chapter . 7-1

Debugging Your JDBC API Program . 7-1

Managing Performance . 7-1

The FET_BUF_SIZE and BIG_FET_BUF_SIZE Environment Variables 7-2

Managing Memory for Large Objects . 7-2

Reducing Network Traffic . 7-3

Using Bulk Inserts . 7-4

Using a Connection Pool . 7-4

Appendix A. Sample Code Files . A-1

Appendix B. DataSource Extensions . B-1

Appendix C. Mapping Data Types . C-1

Appendix D. Accessibility . D-1

Accessibility features for IBM Informix Dynamic Server . D-1

Accessibility Features . D-1

Keyboard Navigation . D-1

Related Accessibility Information . D-1

IBM and Accessibility . D-1

Dotted Decimal Syntax Diagrams . D-1

Error Messages . E-1

Notices . F-1

Trademarks . F-3

Index . X-1

vi IBM Informix JDBC Driver Programmer’s Guide

Introduction

In This Introduction . vii

IBM Informix Java Documentation . vii

About This Publication . viii

Supplementary JDBC Documentation . viii

Material Not Covered . ix

Types of Users . x

Software Dependencies . x

JDBC 3.00 Specification Compliance . x

Assumptions About Your Locale . x

What’s New in IBM Informix JDBC Driver, Version 3.50 . xi

Documentation Conventions . xii

Typographical Conventions . xii

Feature, Product, and Platform Markup . xii

Example Code Conventions . xiii

Additional Documentation . xiii

Compliance with Industry Standards . xiv

Syntax Diagrams . xiv

How to Read a Command-Line Syntax Diagram . xv

Keywords and Punctuation . xvi

Identifiers and Names . xvi

How to Provide Documentation Feedback . xvii

In This Introduction

This introduction provides:

v An overview of IBM® Informix® Java™ documentation

v A description of the conventions used in this publication

v A list of new features

IBM Informix Java Documentation

The following table presents common Java programming tasks and tells where to

find their documentation.

 To Do This Consult This Document

Set up your environment to run a Java application

Install the JDK J/Foundation Developer’s Guide

Sun Microsystems Web site also has documentation.

Install a Java-enabled server J/Foundation Developer’s Guide

Configure your environment J/Foundation Developer’s Guide

Install a JDBC client IBM Informix JDBC Driver Programmer’s Guide

(this publication)

Make sure a client on a different

computer can communicate with

the database server (connectivity)

IBM Informix Dynamic Server Administrator’s Guide

Perform basic database operations

From a client, using JDBC API IBM Informix JDBC Driver Programmer’s Guide

(this publication)

© Copyright IBM Corp. 1996, 2008 vii

To Do This Consult This Document

From a client, using embedded

SQL

IBM Informix Embedded SQLJ User’s Guide

In the database server, using JDBC

and SQL

J/Foundation Developer’s Guide

Create opaque and distinct types

Understand concepts IBM Informix User-Defined Routines and Data Types

Developer’s Guide

Create using the client JDBC

driver

IBM Informix JDBC Driver Programmer’s Guide

(this publication) For differences between server and

client JDBC drivers, see the JDBC Driver chapter in

J/Foundation Developer’s Guide.

Create in the database server

(using the built-in server JDBC

driver)

IBM Informix DataBlade Developers Kit User’s Guide

J/Foundation Developer’s Guide

Work with smart large objects IBM Informix JDBC Driver Programmer’s Guide

(this publication)

Store and retrieve XML

documents

IBM Informix JDBC Driver Programmer’s Guide

(this publication)

Use IBM Informix GLS for

internationalization

IBM Informix JDBC Driver Programmer’s Guide

(this publication)

J/Foundation Developer’s Guide for differences between

server and client JDBC driver

Debug a Java application IBM Informix JDBC Driver Programmer’s Guide

(this publication)

About This Publication

This guide describes how to install, load, and use IBM Informix JDBC Driver to

connect to an Informix database from within a Java application or applet. You can

also use IBM Informix JDBC Driver for writing user-defined routines that are

executed in the server.

Supplementary JDBC Documentation

The following sections describe the online files that supplement the information in

this publication. Please examine these files before you begin using your database

server:

v Release notes: jdbcrel.htm The release notes describe any special actions

required to configure and use IBM Informix JDBC Driver on your computer.

Additionally, this file contains information about documentation corrections, and

any known problems and their workarounds

v Javadoc™ pages

After installation, these files are located in the following directories:

UNIX Only

v $JDBCLOCATION/doc/release, where $JDBCLOCATION refers to the directory

where you installed IBM Informix JDBC Driver.

viii IBM Informix JDBC Driver Programmer’s Guide

Windows Only

v %JDBCLOCATION%\doc\release, where %JDBCLOCATION% refers to the

directory where you installed IBM Informix JDBC Driver.

End of Windows Only

Please examine these files because they contain vital information about application

and performance issues.

The javadoc pages describe the Informix extension classes, interfaces, and methods

in detail.

UNIX Only

Javadoc pages are located in $JDBCLOCATION/doc/javadoc, where

$JDBCLOCATION refers to the directory where you installed IBM Informix JDBC

Driver.

End of UNIX Only

Windows Only

Javadoc pages are located in %JDBCLOCATION%\doc\javadoc, where

%JDBCLOCATION% refers to the directory where you installed IBM Informix

JDBC Driver.

End of Windows Only

 For more information about the JDBC API, visit the Sun Microsystems site.

Material Not Covered

This publication does not duplicate information about new features documented

elsewhere in the IBM Informix documentation set, but does document JDBC

driver-specific information and references the publications that describe other

features in detail.

In addition, this publication will not discuss SQL features implemented in the IDS

and XPS servers and implicitly supported by JDBC.

This guide does not describe all the interfaces, classes, and methods of the JDBC

API and does not provide detailed descriptions of how to use the JDBC API to

write Java applications that connect to Informix databases. The examples in the

guide provide enough information to show how to use IBM Informix JDBC Driver

but do not provide an extensive description of the JDBC API.

For more information about the JDBC API, visit the Sun Microsystems Web site at

http://java.sun.com/.

This publication describes the Informix extensions to JDBC in a task-oriented

format; it does not include every method and parameter in the interface. For the

Introduction ix

http://java.sun.com/

complete reference, including all methods and parameters, see the online javadoc,

which appears in the doc/javadoc directory where you installed IBM Informix

JDBC Driver.

This publication does not describe interfaces and limitations that are unique to the

server-side version of the IBM Informix JDBC Driver; that information is covered

in the J/Foundation Developer’s Guide. For more information, see “Client- and

Server-Side JDBC Drivers” on page 1-6.

Types of Users

This guide is for Java programmers who use the JDBC API to connect to Informix

databases using IBM Informix JDBC Driver. To use this guide, you should know

how to program in Java and, in particular, understand the classes and methods of

the JDBC API.

Software Dependencies

To use IBM Informix JDBC Driver to connect to an Informix database, you must

use one of the following Informix database servers:

v IBM Informix Dynamic Server (IDS), Version 7.x

v IBM Informix Dynamic Server, Workgroup and Developer Editions, Version 7.x

v IBM Informix Dynamic Server with Advanced Decision Support and Extended

Parallel Options, Version 8.x

v IBM Informix Extended Parallel Server, Version 8.3 or later

v Informix Dynamic Server, Version 9.2x or later, Version 10.x or Version 11.10,

11.50

v IBM Informix OnLine Dynamic Server, Version 5.x

v IBM Informix SE, Versions 5.x and 7.2x

You must also use Java Runtime Environment (JRE) Version 1.4 or later.

JDBC 3.00 Specification Compliance

The IBM Informix JDBC Driver, Version 3.50 strives to be compliant with the Sun

Microsystems JDBC 3.0 specification.

Nearly all the features that are required for the Sun Microsystems JDBC 3.0

specification have the specified behavior. For the Sun Microsystems JDBC 3.0

driver optional features, if the feature is supported by IBM Informix Dynamic

Server (IDS) Version 11.50, then it is supported by Informix JDBC Driver, Version

3.50.

Standard methods supplied by the JDBC 3.0 specification which are not supported

by the IBM Informix JDBC driver include only the methods that return multiple

result sets.

For more information about Sun Microsystems JDBC 3.0 specifications, see

http://java.sun.com/.

Assumptions About Your Locale

Informix products can support many languages, cultures, and code sets. All

culture-specific information is brought together in a single environment, called a

GLS (Global Language Support) locale.

x IBM Informix JDBC Driver Programmer’s Guide

+
+
+

http://java.sun.com/

The examples in this publication are written with the assumption that you are

using the default locale, en_us.8859-1. This locale supports U.S. English format

conventions for date, time, and currency. In addition, this locale supports the ISO

8859-1 code set, which includes the ASCII code set plus many 8-bit characters such

as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if

you want to conform to the nondefault collation rules of character data, you need

to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other

considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

What’s New in IBM Informix JDBC Driver, Version 3.50

For a comprehensive list of new features for this release, see the IBM Informix

Dynamic Server Getting Started Guide. The following changes and enhancements are

relevant to this publication.

 Table 1. What's New in the IBM Informix JDBC Driver Programmer’s Guide for Version

3.50.JC3

Overview Reference

Savepoint support added

This release implements the standard JDBC

savepoint methods through two new classes,

IfxSavepoint and IfmxSavepoint, and by

methods of the IfxConnection class.

In addition, a new setSavepointUnique()

method can set a named savepoint whose

identifier is unique. While the savepoint is

active, its name cannot be reused in the same

connection.

“Handling Transactions” on page 3-21

 Table 2. What's New in the IBM Informix JDBC Driver Programmer’s Guide for Version

3.50.JC1

Overview Reference

Support for using the service name in the

connection URL

You can now specify the service name of the

Informix database server instead of the port

number when configuring connections in the

sqlhosts file or in a connection URL.

“Format of Database URLs” on page 2-6

“Connection Property Syntax” on page 2-16

Support for BIGINT and BIGSERIAL data

types

These data types are similar to INT8 and

SERIAL8, but have performance advantages.

“BIGINT and BIGSERIAL Data Types” on

page 4-8

Single sign-on support added

You can use single sign-on (SSO) access

control with JDBC when using the

DriverManager.getConnection() method.

“Using Single Sign-on Access Control with

the Informix JDBC Driver” on page 2-30

Introduction xi

+

+
+
+
+

+
+
+
+
+

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Syntax diagrams

v Command-line conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Technical changes to the text are indicated by special characters depending on the

format of the documentation:

HTML documentation

New or changed information is surrounded by blue >> and << characters.

PDF documentation

A plus sign (+) is shown to the left of the current changes. A vertical bar

(│) is shown to the left of changes made in earlier shipments.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

xii IBM Informix JDBC Driver Programmer’s Guide

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement. If you are using DB–Access, you must delimit multiple

statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/

Introduction xiii

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/

pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

Syntax Diagrams

This guide uses syntax diagrams built with the following components to describe

the syntax for statements and all commands other than system-level commands.

 Table 3. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next

line.

>----------------------- Statement continues from

previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---

 ’------LOCAL------’

Optional item.

---+-----ALL-------+---

 +--DISTINCT-----+

 ’---UNIQUE------’

Required item with choice.

One and only one item must

be present.

---+------------------+---

 +--FOR UPDATE-----+

 ’--FOR READ ONLY--’

Optional items with choice

are shown below the main

line, one of which you might

specify.

 .---NEXT---------.

----+----------------+---

 +---PRIOR--------+

 ’---PREVIOUS-----’

The values below the main

line are optional, one of

which you might specify. If

you do not specify an item,

the value above the line will

be used as the default.

xiv IBM Informix JDBC Driver Programmer’s Guide

http://www.ibm.com/software/data/informix/pubs/library/

Table 3. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

 .-------,-----------.

 V |

---+-----------------+---

 +---index_name---+

 ’---table_name---’

Optional items. Several items

are allowed; a comma must

precede each repetition.

>>-| Table Reference |->< Reference to a syntax

segment.

Table Reference

|--+-----view--------+--|

 +------table------+

 ’----synonym------’

Syntax segment.

How to Read a Command-Line Syntax Diagram

The following command-line syntax diagram uses some of the elements listed in

the table in Syntax Diagrams.

Creating a No-Conversion Job

�� onpladm create job job

-p

project
 -n -d device -D database �

� -t table �

�

�

(1)

Setting

the

Run

Mode

-S

server

-T

target

��

Notes:

1 See page Z-1

The second line in this diagram has a segment named “Setting the Run Mode,”

which according to the diagram footnote, is on page Z-1. If this was an actual

cross-reference, you would find this segment in on the first page of Appendix Z.

Instead, this segment is shown in the following segment diagram. Notice that the

diagram uses segment start and end components.

Setting the Run Mode:

Introduction xv

-f

d

p

a

 l

c

u

n

N

To see how to construct a command correctly, start at the top left of the main

diagram. Follow the diagram to the right, including the elements that you want.

The elements in this diagram are case sensitive because they illustrate utility

syntax. Other types of syntax, such as SQL, are not case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Type onpladm create job and then the name of the job.

2. Optionally, type -p and then the name of the project.

3. Type the following required elements:

v -n

v -d and the name of the device

v -D and the name of the database

v -t and the name of the table
4. Optionally, you can choose one or more of the following elements and repeat

them an arbitrary number of times:

v -S and the server name

v -T and the target server name

v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally

type l or u.
5. Follow the diagram to the terminator.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except

system-level commands. When a keyword appears in a syntax diagram, it is

shown in uppercase letters. When you use a keyword in a command, you can

write it in uppercase or lowercase letters, but you must spell the keyword exactly

as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as

shown in the syntax diagrams.

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax diagrams

and examples. You can replace a variable with an arbitrary name, identifier, or

literal, depending on the context. Variables are also used to represent complex

syntax elements that are expanded in additional syntax diagrams. When a variable

appears in a syntax diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a

simple SELECT statement.

�� SELECT column_name FROM table_name ��

xvi IBM Informix JDBC Driver Programmer’s Guide

When you write a SELECT statement of this form, you replace the variables

column_name and table_name with the name of a specific column and table.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

the feedback link at the bottom of the page, fill out the form, and submit your

feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xvii

mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

xviii IBM Informix JDBC Driver Programmer’s Guide

Chapter 1. Getting Started

In This Chapter . 1-1

What Is JDBC? . 1-1

What Is a JDBC Driver? . 1-2

Overview of IBM Informix JDBC Driver . 1-2

Classes Implemented in IBM Informix JDBC Driver . 1-2

Informix Classes That Implement Java Interfaces . 1-2

Informix Classes that Extend the Java Specification . 1-3

Informix Classes That Provide Support Beyond the Java Specification 1-4

Using UDTManager and UDRManager Classes with JDK Version 1.4, and later 1-4

Files in IBM Informix JDBC Driver . 1-5

Client- and Server-Side JDBC Drivers . 1-6

Obtaining the JDBC Driver . 1-6

Installing the JDBC Driver . 1-6

Installing JDBC Driver in Graphical or Console mode . 1-7

Installing Informix JDBC Driver in Silent Mode . 1-7

Logging Installation Events . 1-8

Logging Examples . 1-8

Using the Driver in an Application . 1-8

Using the Driver in an Applet . 1-9

Uninstalling the JDBC Driver . 1-10

Uninstalling in Graphical or Console Mode . 1-10

Uninstalling in Silent Mode . 1-11

In This Chapter

This chapter provides an overview of IBM Informix JDBC Driver and the JDBC

API. It includes the following sections:

v What Is JDBC?

v What Is a JDBC Driver?

v Overview of IBM Informix JDBC Driver

v Installing the JDBC Driver

v Using the Driver in an Application

v Using the Driver in an Applet

v Uninstalling the JDBC Driver

What Is JDBC?

Java database connectivity (JDBC) is the JavaSoft™ specification of a standard

application programming interface (API) that allows Java programs to access

database management systems. The JDBC API consists of a set of interfaces and

classes written in the Java programming language.

Using these standard interfaces and classes, programmers can write applications

that connect to databases, send queries written in structured query language (SQL),

and process the results.

Since JDBC is a standard specification, one Java program that uses the JDBC API

can connect to any database management system (DBMS), as long as a driver

exists for that particular DBMS.

© Copyright IBM Corp. 1996, 2008 1-1

For more information about the JDBC API, visit the Sun Microsystems Web site at

http://java.sun.com/.

What Is a JDBC Driver?

The JDBC API defines the Java interfaces and classes that programmers use to

connect to databases and send queries. A JDBC driver implements these interfaces

and classes for a particular DBMS vendor.

A Java program that uses the JDBC API loads the specified driver for a particular

DBMS before it actually connects to a database. The JDBC DriverManager class

then sends all JDBC API calls to the loaded driver.

There are four types of JDBC drivers:

v JDBC-ODBC bridge plus ODBC driver, also called Type 1 driver

Translates JDBC API calls into Microsoft® ODBC calls that are then passed to the

ODBC driver

The ODBC binary code must be loaded on every client computer that uses this

type of driver.

ODBC is an acronym for Open Database Connectivity.

v Native-API, partly Java driver, also called Type 2 driver

Converts JDBC API calls into DBMS-specific client API calls

Like the bridge driver, this type of driver requires that some binary code be

loaded on each client computer.

v JDBC-Net, pure-Java driver, also called Type 3 driver

Sends JDBC API calls to a middle-tier server that translates the calls into the

DBMS-specific network protocol

The translated calls are then sent to a particular DBMS.

v Native-protocol, pure-Java driver, also called Type 4 driver

Converts JDBC API calls directly into the DBMS-specific network protocol

without a middle tier

This allows the client applications to connect directly to the database server.

Overview of IBM Informix JDBC Driver

IBM Informix JDBC Driver is a native-protocol, pure-Java driver (Type 4). This

means that when you use IBM Informix JDBC Driver in a Java program that uses

the JDBC API to connect to an Informix database, your session connects directly to

the database or database server, without a middle tier.

Classes Implemented in IBM Informix JDBC Driver

To support DataSource objects, connection pooling, and distributed transactions,

IBM Informix JDBC Driver provides classes that implement interfaces and classes

described in the JDBC 3.0 API from Sun Microsystems.

Informix Classes That Implement Java Interfaces

The following table lists the Java interfaces and classes and the Informix classes

that implement them.

JDBC Interface or Class Informix Class

java.io.Serializable com.informix.jdbcx.IfxCoreDataSource

java.sql.Connection com.informix.jdbc.IfmxConnection

1-2 IBM Informix JDBC Driver Programmer’s Guide

http://java.sun.com/

javax.sql.ConnectionEventListener

com.informix.jdbcx.IfxConnectionEvent-

Listener

javax.sql.ConnectionPoolDataSource

com.informix.jdbcx.IfxConnectionPoolData-

Source

javax.sql.DataSource com.informix.jdbcx.IfxDataSource

javax.sql.PooledConnection com.informix.jdbcx.IfxPooledConnection

javax.sql.XADataSource com.informix.jdbcx.IfxXADataSource

java.sql.ParameterMetaData com.informix.jdbc.IfxParameterMetaData

 IBM Informix JDBC Driver, Version 3.0, and later implements the updateXXX()

methods defined in the ResultSet interface by the JDBC 3.0 specification. These

methods, such as updateClob, are further defined in the J2SDK 1.4.x API, and later

and require that the ResultSet object can be updated. The updateXXX methods

allow rows to be updated using Java variables and objects and extend to include

additional JDBC types.

These methods update JDBC types implemented with locators, not the data

designated by the locators.

Informix Classes that Extend the Java Specification

To support the Informix implementation of SQL statements and data types, IBM

Informix JDBC Driver provides classes that extend the JDBC 3.0 API. The following

table lists the Java classes and the Informix classes that application programs can

use to extend them.

JDBC Interface or Class Informix Class

Adds Methods or

Constants for...

java.sql.Connection com.informix.jdbc.IfmxConnection Opaque, distinct, and complex

types

java.sql.Statement com.informix.jdbc.IfmxStatement Single result sets, autofree mode,

statement types, and SERIAL

data type processing

java.lang.Object com.informix.lang.IfxTypes Representing data types

java.lang.Object com.informix.jdbc.IfxStatementTypes Representing SQL statements

java.sql.CallableStatement com.informix.jdbc.IfmxCallableStatement Parameter processing with

Informix types

java.sql.PreparedStatement com.informix.jdbc.IfmxPreparedStatement Parameter processing with

Informix types

java.sql.ResultSet com.informix.jdbc.IfmxResultSet Informix interval data types

java.sql.ResultSetMetaData com.informix.jdbc.IfmxResultSetMetaData Columns with Informix data

types

java.sql.SQLInput com.informix.jdbc.IfmxComplexSQLInput Opaque, distinct, and complex

types

java.sql.SQLOutput com.informix.jdbc.IfmxComplexSQLOutput Opaque, distinct, and complex

types

java.lang.Object com.informix.jdbc.Interval Interval qualifiers and some

common methods for the next

two classes (base class for the

next two)

Chapter 1. Getting Started 1-3

JDBC Interface or Class Informix Class

Adds Methods or

Constants for...

java.lang.Object com.informix.jdbc.IntervalYM Interval year-to-month

java.lang.Object com.informix.jdbc.IntervalDF Interval day-to-fraction

java.lang.Object com.informix.jdbc.IfxSmartBlob Access methods for smart large

objects

java.sql.Blob com.informix.jdbc.IfxBblob Binary large objects

java.sql.Clob com.informix.jdbc.IfxCblob Character large objects

java.lang.Object com.informix.jdbc.IfxLocator Large object locator pointer

java.lang.Object com.informix.jdbc.IfxLoStat Statistical information about

smart large objects

java.lang.Object com.informix.jdbc.IfxLobDescriptor Internal characteristics of smart

large objects

java.lang.Object com.informix.jdbc.IfxUDTInfo General information about

opaque and distinct types,

detailed information about

complex types

java.sql.SQLInput com.informix.jdbc.IfmxUDTSQLInput Opaque, distinct, and complex

types

java.sql.SQLOutput com.informix.jdbc.IfmxUDTSQLOutput Opaque, distinct, and complex

types

Informix Classes That Provide Support Beyond the Java

Specification

A number of Informix classes provide support for functionality not present in the

Java specification. These classes are listed in the following table.

 JDBC Interface or Class Informix Class Provides Support for...

java.lang.Object UDTManager Deploying opaque data types in the

database server

java.lang.Object UDTMetaData Deploying opaque data types in the

database server

java.lang.Object UDRManager Deploying user-defined routines in the

database server

java.lang.Object UDRMetaData Deploying user-defined routines in the

database server

Using UDTManager and UDRManager Classes with JDK Version

1.4, and later

In previous releases, the UDTManager and UDRManager helper classes included

in ifxtools.jar were not accessible from a packaged class. As of IBM Informix JDBC

Driver 2.21.JC3, all these classes are in the udtudrmgr package. For backwards

compatibility, unpackaged versions of these classes are also included.

To access a packaged class, use the following import statements in your program:

v import udtudrmgr.UDTManager;

v import udtudrmgr.UDRManager;

1-4 IBM Informix JDBC Driver Programmer’s Guide

Files in IBM Informix JDBC Driver

IBM Informix JDBC Driver is available in the program file, setup.jar. For

instructions on how to install the driver, refer to “Installing the JDBC Driver” on

page 1-6.

After installation, the product consists of the following files, some of which are

Java archive (JAR) files:

v lib/ifxjdbc.jar

Optimized implementations of the JDBC API interfaces, classes, and methods

The file is compiled with the -O option of the javac command.

v lib/ifxtools.jar

Utilities: ClassGenerator, lightweight directory access protocol (LDAP) loader,

and others

The file is compiled with the -O option of the javac command.

v lib/ifxlang.jar

Localized versions of all message text supported by the driver

The file is compiled with the -O option of the javac command.

v lib/ifxjdbcx.jar

Includes the implementation of DataSource-, connection pooling-, and

XA-related class files

The file is compiled with the -O option of the javac command.

v lib/ifxsqlj.jar

Includes the classes for runtime support of SQLJ programs

The file is compiled with the -O option of the javac command.

v demo/basic/*

demo/rmi/*

demo/stores7/*

demo/clob-blob/*

demo/complex-types/*

demo/pickaseat/*

demo/xml/*

demo/proxy/*

demo/connection-pool/*

demo/udt-distinct/ *

demo/hdr/*

demo/tools/udtudrmgr/*

Sample programs that use the JDBC API

For descriptions of these sample files, see Appendix A, “Sample Code Files,” on

page A-1.

v proxy/IfxJDBCProxy.class

Http tunneling proxy class file

v proxy/SessionMgr.class

Session manager class file supporting the http tunneling proxy

v proxy/TimeoutMgr.class

Timeout manager class file supporting the http tunneling proxy

v doc/release/*

Online release and documentation notes

v doc/javadoc/*

Chapter 1. Getting Started 1-5

The javadoc pages for Informix extension classes and interfaces

The lib, demo, proxy, and doc directories are subdirectories of the directory where

you installed IBM Informix JDBC Driver.

Client- and Server-Side JDBC Drivers

The IBM Informix JDBC Driver exists in two versions: a client-side driver and a

server-side driver. The client-side driver is intended for client Java applications

accessing an Informix database server. The client-side driver includes ifxjdbc.jar

and ifxjdbcx.jar plus several support .jar files, as described in the section, “Files in

IBM Informix JDBC Driver” on page 1-5.

The server-side driver is installed as part of the database server and includes

jdbc.jar. Because jdbc.jar is derived from ifxjdbc.jar, the two drivers share many

features.

This guide is primarily concerned with the client-side driver; however information

for shared features applies to both the server-side and client-side versions.

Note: The server-side and client-side versions should not be mixed or

interchanged.

The J/Foundation Developer’s Guide describes the interfaces and subprotocols that the

IBM Informix JDBC Driver provides specifically for server-side JDBC applications,

as well as restrictions that apply to server-side JDBC applications.

Obtaining the JDBC Driver

You can obtain the IBM Informix JDBC Driver from the IBM Informix JDBC Driver

product CD, from the JDBC directory of the IBM Informix product bundle CD, or

you can download the driver from http://www.ibm.com/software/data/
informix/tools/jdbc.

The CD or Web site download contain the following files:

v setup.jar

v doc/jdbcrel.htm

v doc/install.txt

The setup.jar file is the IBM Informix JDBC Driver installation program.

The documentation directory, <dir>/doc, contains the release notes file in HTML

format. Refer to this document for any new information that is not available in this

publication.

Installing the JDBC Driver

Prerequisites:

If you downloaded the IBM Informix JDBC Driver as .zip file from the Web site,

unzip the file to a directory.

If you are installing the driver from a CD, load the CD into the CD-ROM drive.

1-6 IBM Informix JDBC Driver Programmer’s Guide

http://www.ibm.com/software/data/informix/tools/jdbc
http://www.ibm.com/software/data/informix/tools/jdbc

Installing JDBC Driver in Graphical or Console mode

1. From a command prompt, start the installation program by using one of the

following commands:

v To start in graphical mode:

java -cp <dir>/setup.jar run

v To start in console mode:

java -cp <dir>/setup.jar run -console

Where <dir> is the location of the setup.jar file.

If you want to log information during the installation, also specify the -log

parameter. See “Logging Installation Events” on page 1-8 for information

about the arguments that you can use with this parameter.
2. Read the license agreement and accept the terms. Respond to the prompts as

the installation guides you.

3. When prompted, accept the default directory or specify a different directory.

On a Windows® platform, the default directory is:

C:\Program Files\IBM\Informix_JDBC_Driver

To prevent errors in installation and uninstallation, do not use an exclamation

point character (!) in the installation path.

4. When prompted, verify the location of the installation path.

The installer installs the JDBC driver and notifies you that an uninstaller is

being added to the installation directory.

Note: If the installation stalls when connected to an NFS-mounted file system,

you should first try resolving NFS issues. In some cases, unmounting

and remounting the share can resolve the issue. Otherwise, forcefully

terminate the installation, clean up any orphaned processes, and restart

the installation.

5. Specify Finish when you see this message:

InstallShield Wizard has successfully installed IBM Informix JDBC Driver.

Installing Informix JDBC Driver in Silent Mode

From a command prompt, run the following command:

java -cp <dir> /setup.jar run -silent -P product.installLocation=<destination-dir>

Where:

<dir> is the location of setup.jar file.

<destination-dir> is the directory where you want to install the JDBC Driver.

The installation is complete when the command has finished executing.

If you want to log information during the installation, also specify the -log

parameter. See “Logging Installation Events” on page 1-8 for information about the

arguments that you can use with this parameter.

Chapter 1. Getting Started 1-7

Logging Installation Events

You can enable logging by specifying the -log option when you run the command

to install the driver. The -log option takes arguments for file type, event type, and

file location. For example, to install the IBM Informix JDBC Driver in graphical

mode and retain a log of the events, run the following command:

java -cp setup.jar run -log #![filename] @ [event type];[event type]

Where:

echoes the display to standard output.

![filename] is the name for the log file. You can omit the [filename] argument to

save the log information to the default file name.

@<event type> is the event type that you want to log.

Following are the arguments and their associated event types:

Argument Event Type

err Errors

wrn Warning

msg1 Primary events

msg2 Secondary events

dbg Debug events

ALL All events

NONE Disables logging and clears the log file

Logging Examples

The following command installs IBM Informix JDBC Driver in the graphical mode

and logs all events to /tmp/jdbcinstall.log:

java -cp setup.jar run -log !/tmp/jdbcinstall.log @ ALL

The following command installs IBM Informix JDBC Driver in silent mode and

logs error events to /tmp/jdbcinstall.log:

java -cp setup.jar run -silent -P product.installLocation=< > -log

!"/tmp/jdbcinstall.log" @err

Using the Driver in an Application

To use IBM Informix JDBC Driver in an application, you must set your

CLASSPATH environment variable to point to the driver files. The CLASSPATH

environment variable tells the Java virtual machine (JVM) and other applications

where to find the Java class libraries used in a Java program.

UNIX Only

There are two ways to set your CLASSPATH environment variable:

v Add the full path name of ifxjdbc.jar to CLASSPATH:

setenv CLASSPATH /jdbcdriv/lib/ifxjdbc.jar:$CLASSPATH

To add localized message support, specify ifxlang.jar as well:

1-8 IBM Informix JDBC Driver Programmer’s Guide

setenv CLASSPATH

/jdbcdriv/lib/ifxjdbc.jar:/jdbcdriv/lib/ifxlang.jar:

 $CLASSPATH

v Unpack ifxjdbc.jar and add its directory to CLASSPATH:

cd /jdbcdriv/lib

jar xvf ifxjdbc.jar

setenv CLASSPATH /jdbcdriv/lib:$CLASSPATH

To add localized message support, specify ifxlang.jar as well:

cd /jdbcdriv/lib

jar xvf ifxjdbc.jar

jar xvf ifxlang.jar

setenv CLASSPATH /jdbcdriv/lib:$CLASSPATH

End of UNIX Only

Windows Only

There are two ways to set your CLASSPATH environment variable:

v Add the full path name of ifxjdbc.jar to CLASSPATH:

set CLASSPATH=c:\jdbcdriv\lib\ifxjdbc.jar;%CLASSPATH%

To add localized message support, specify ifxlang.jar as well:

set CLASSPATH=c:\jdbcdriv\lib\ifxjdbc.jar;c:\

 jdbcdriv\lib\ifxlang.jar;%CLASSPATH%

v Unpack ifxjdbc.jar and add its directory to CLASSPATH:

cd c:\jdbcdriv\lib

jar xvf ifxjdbc.jar

set CLASSPATH=c:\jdbcdriv\lib;%CLASSPATH%

To add localized message support, specify ifxlang.jar as well:

cd c:\jdbcdriv\lib

jar xvf ifxjdbc.jar

jar xvf ifxlang.jar

set CLASSPATH=c:\jdbcdriv\lib;%CLASSPATH%

End of Windows Only

Note: If you are using javax.sql classes (for example, Datasource), specify

ifxjdbcx.jar in addition to ifxjdbc.jar.

For more information on the jar utility, refer to the Java documentation at

http://java.sun.com.

Using the Driver in an Applet

You can use IBM Informix JDBC Driver in an applet to connect to an Informix

database from a Web browser. The following steps show how to specify IBM

Informix JDBC Driver in the applet and how to ensure that the driver is correctly

downloaded from the Web server.

 To use IBM Informix JDBC Driver in an applet:

1. Install ifxjdbc.jar in the same directory as your applet class file.

2. Specify ifxjdbc.jar in the ARCHIVE attribute of the APPLET tag in your HTML

file, as shown in the following example:

Chapter 1. Getting Started 1-9

http://java.sun.com/j2se/1.3/docs/guide/jar/

<APPLET ARCHIVE=ifxjdbc.jar CODE=my_applet.class

CODEBASE=http://www.myhost.com WIDTH=460 HEIGHT=160>

</APPLET>

Important: Some browsers do not support the ARCHIVE attribute of the APPLET

tag. If this is true of your browser, unpack and install the ifxjdbc.jar

file in the root directory of your Web server. If your browser also does

not support the JDBC API, you must install the class files included in

the java.sql package in the root directory of the Web server as well.

See your Web server documentation for information on installing files

in the root directory.

 Because unsigned applets cannot access some system resources for security

reasons, the following features of IBM Informix JDBC Driver do not work for

unsigned applets:

v sqlhosts file and LDAP server access. The host name and port number

properties or service name of the Informix database server in the database URL

are optional if you are referencing an sqlhosts file directly or through an LDAP

server.

For unsigned applets, however, the host name and the port number or service

name of the Informix database server are always required, unless your applet is

using the HTTP proxy server. For more information on the HTTP proxy server,

see “Using an HTTP Proxy Server” on page 2-22.

v LOBCACHE=0. Setting the LOBCACHE environment variable to 0 in the

database URL specifies that a smart large object is always stored in a file. This

setting is not supported for unsigned applets.

Tip: You can enable these features for unsigned applets using Microsoft Internet

Explorer, which provides an option to configure the applet permissions.

To access a database on a different host or behind a firewall from an applet, you

can use the Informix HTTP proxy servlet in a middle tier. For more information,

see “Using an HTTP Proxy Server” on page 2-22.

Uninstalling the JDBC Driver

When you install IBM Informix JDBC Driver, the installation program creates an

uninstall package in the directory in which you installed the JDBC Driver.

Uninstalling IBM Informix JDBC Driver completely removes the driver and all of

its components from your computer.

The following section describes how to uninstall IBM Informix JDBC Driver on all

platforms.

Tip: If the <destination-dir> in which you installed the IBM Informix JDBC Driver

includes spaces in its path name, enclose the entire path name in quotation

marks when executing the uninstall command.

Uninstalling in Graphical or Console Mode

Run one of the following commands to start the uninstall program, where

<destination-dir> is the directory in which you installed the IBM Informix JDBC

Driver:

To start in graphical mode:

java -cp <destination-dir>/_uninst/uninstall.jar run

1-10 IBM Informix JDBC Driver Programmer’s Guide

To start in console mode:

java -cp <destination-dir>/_uninst/uninstall.jar run -console

Follow the prompts to uninstall the JDBC driver.

Uninstalling in Silent Mode

 Run the following command to start the uninstall program in silent mode, where

<destination-dir> is the directory in which you installed the IBM Informix JDBC

Driver:

java -cp <destination-dir>/_uninst/uninstall.jar run -silent

The Uninstall program does not send you any messages but uninstalls the driver

in silent mode.

Chapter 1. Getting Started 1-11

1-12 IBM Informix JDBC Driver Programmer’s Guide

Chapter 2. Connecting to the Database

In This Chapter . 2-1

Loading IBM Informix JDBC Driver . 2-2

Using a DataSource Object . 2-3

Using the DriverManager.getConnection() Method . 2-5

Format of Database URLs . 2-6

IP Address in Connection URLs . 2-8

Database Versus Database Server Connections . 2-9

Specifying Properties . 2-10

Using Informix Environment Variables with the IBM Informix JDBC Driver 2-11

Dynamically Reading the Informix sqlhosts File . 2-16

Connection Property Syntax . 2-16

Administration Requirements . 2-17

Utilities to Update the LDAP Server with sqlhosts Data 2-18

SqlhUpload . 2-18

SqlhDelete . 2-18

Using High-Availability Data Replication . 2-18

Secondary Server Connection Properties . 2-19

Connecting to Group Entries in an HDR Pair . 2-19

Checking for Read-Only Status . 2-20

Retrying Connections . 2-21

Using an HTTP Proxy Server . 2-22

Configuring Your Environment to Use a Proxy Server 2-22

Specifying a Timeout . 2-23

Using the Proxy with an LDAP Server . 2-24

Specifying Where LDAP Lookup Occurs . 2-25

Specifying sqlhosts File Lookup . 2-26

Using Other Multitier Solutions . 2-26

Encryption Options . 2-26

Using the Sun JCE Security Package . 2-26

Using the IBM FIPS-compliant Security Package . 2-27

Using Password Encryption . 2-27

Configuring the Database Server . 2-28

Using Network Encryption . 2-28

Network Encryption Syntax . 2-28

Using Option Tags . 2-29

Using Option Parameters . 2-29

Configuring the Encryption CSM in the Server . 2-30

Using Single Sign-on Access Control with the Informix JDBC Driver 2-30

PAM Authentication Method . 2-30

Using PAM in JDBC . 2-32

Closing the Connection . 2-33

In This Chapter

This chapter explains the information you need to use IBM Informix JDBC Driver

to connect to an Informix database. The chapter includes the following sections:

v Loading IBM Informix JDBC Driver

v Using a DataSource Object

v Using the DriverManager.getConnection() Method

v Using Informix Environment Variables with the IBM Informix JDBC Driver

v Dynamically Reading the Informix sqlhosts File

v Using High-Availability Data Replication

© Copyright IBM Corp. 1996, 2008 2-1

v Using an HTTP Proxy Server

v Using Other Multitier Solutions

v Encryption Options

v Using Single Sign-on Access Control with the Informix JDBC Driver

v PAM Authentication Method

v Closing the Connection

You must first establish a connection to an Informix database server or database

before you can start sending queries and receiving results in your Java program.

You establish a connection by completing two actions:

1. Load IBM Informix JDBC Driver.

2. Create a connection to either a database server or a specific database in one of

the following ways:

v Use a DataSource object.

v Use the DriverManager.getConnection method.

Using a DataSource object is preferable to using the

DriverManager.getConnection method because a DataSource object is portable

and allows the details about the underlying data source to be transparent to the

application. The target data source implementation can be modified, or the

application can be redirected to a different server without affecting the application

code.

A DataSource object can also provide support for connection pooling and

distributed transactions. In addition, Enterprise Java Beans and J2EE require a

DataSource object.

The following additional connection options are available:

v Setting environment variables

v Dynamically reading the Informix sqlhosts file

v Using an HTTP proxy server

v Using password encryption

v Using network encryption

Loading IBM Informix JDBC Driver

To load IBM Informix JDBC Driver, use the Class.forName() method, passing it the

value com.informix.jdbc.IfxDriver:

try

 {

 Class.forName("com.informix.jdbc.IfxDriver");

 }

catch (Exception e)

 {

 System.out.println("ERROR: failed to load Informix JDBC driver.");

 e.printStackTrace();

 return;

 }

The Class.forName() method loads the Informix implementation of the Driver

class, IfxDriver. IfxDriver then creates an instance of the driver and registers it

with the DriverManager class.

2-2 IBM Informix JDBC Driver Programmer’s Guide

Once you have loaded IBM Informix JDBC Driver, you are ready to connect to an

Informix database or database server.

Windows Only

If you are writing an applet to be viewed with Microsoft Internet Explorer, you

might need to explicitly register IBM Informix JDBC Driver to avoid platform

incompatibilities.

To explicitly register the driver, use the DriverManager.registerDriver() method:

DriverManager.registerDriver(com.informix.jdbc.IfxDriver)

 Class.forName("com.informix.jdbc.IfxDriver").newInstance());

This method might register IBM Informix JDBC Driver twice, which does not cause

a problem.

End of Windows Only

Using a DataSource Object

For information about how and why to use a DataSource object, see the

documentation provided by Sun Microsystems, available on the Web at

http://java.sun.com.

IBM Informix JDBC Driver extends the standard DataSource interface to allow

connection properties (both the standard properties and Informix environment

variables) to be defined in a DataSource object instead of through the URL.

The following table describes how Informix connection properties correspond to

DataSource properties.

 Informix Connection

Property

DataSource

Property

Data

Type Required? Description

IFXHOST None; see Appendix B

for how to set

IFXHOST.

String Yes for client-side

JDBC, unless

SQLH_TYPE is

defined; no for

server-side JDBC

The IP address or the host name

of the computer running the

Informix database server

PORTNO portNumber int Yes for client-side

JDBC, unless

SQLH_TYPE is

defined; no for

server-side JDBC

The port number of the

Informix database server

The port number is listed in the

/etc/services file.

DATABASE databaseName String No, except for

connections from

Web applications

(such as a

browser) running

in the database

server

The name of the Informix

database to which you want to

connect

If you do not specify the name

of a database, a connection is

made to the Informix database

server.

INFORMIXSERVER serverName String Yes for client-side

JDBC; ignored for

server-side JDBC

The name of the Informix

database server to which you

want to connect

Chapter 2. Connecting to the Database 2-3

http://java.sun.com/products/jdk/1.2

Informix Connection

Property

DataSource

Property

Data

Type Required? Description

USER user String Yes The user name controls (or

determines) the session

privileges when connected to

the Informix database or

database server

Normally, you must specify both

user name and password;

however, if the user running the

JDBC application is trusted by

the DBMS, you may omit both.

PASSWORD password String Yes The password of the user

Normally, you must specify both

the user name and the

password; however, if the user

running the JDBC application is

trusted by the DBMS, you may

omit both.

None description String Yes A description of the DataSource

object

None dataSourceName String No The name of an underlying

ConnectionPoolDataSource or

XADataSource object for

connection pooling or

distributed transactions

The networkProtocol and roleName properties are not supported by IBM Informix

JDBC Driver.

If an LDAP (Lightweight Directory Access Protocol) server or sqlhosts file

provides the IP address, host name, or port number or service name of the

Informix database server through the SQLH_TYPE property, you do not have to

specify them using the standard DataSource properties. For more information, see

“Dynamically Reading the Informix sqlhosts File” on page 2-16.

For a list of supported environment variables (properties), see “Using Informix

Environment Variables with the IBM Informix JDBC Driver” on page 2-11. For a

list of Informix DataSource extensions, which allow you to define environment

variable values and connection pool tuning parameters, see Appendix B,

“DataSource Extensions,” on page B-1. The driver does not consult the user’s

environment to determine environment variable values.

For information about the ConnectionPoolDataSource object, see “Using a

Connection Pool” on page 7-4.

You can use a DataSource object with High-Availability Data Replication. For more

information, see “Using High-Availability Data Replication” on page 2-18.

The following code from the pickaseat example program defines and uses a

DataSource object:

IfxConnectionPoolDataSource cpds = null;

try

{

 Context initCtx = new InitialContext();

 cpds = new IfxConnectionPoolDataSource();

2-4 IBM Informix JDBC Driver Programmer’s Guide

cpds.setDescription("Pick-A-Seat Connection pool");

 cpds.setIfxIFXHOST("158.58.60.88");

 cpds.setPortNumber(179);

 cpds.setUser("demo");

 cpds.setPassword("demo");

 cpds.setServerName("ipickdemo_tcp");

 cpds.setDatabaseName("ipickaseat");

 cpds.setIfxGL_DATE("%B %d, %Y");

 initCtx.bind("jdbc/pooling/PickASeat", cpds);

}

catch (Exception e)

{

 System.out.println("Problem with registering the CPDS");

 System.out.println("Error: " + e.toString());

}

The following are examples of the IFX_LOCK_MODE_WAIT connection property

using a DataSource object:

v Example 1
IfxDataSource ds = new IfxDataSource ();

ds. setIfxIFX_LOCK_MODE_WAIT (65); // wait for 65 seconds

...

int waitMode = ds.getIfxIFX_LOCK_MODE_WAIT ();

v Example 2
An example Using DataSource:

IfxDataSource ds = new IfxDataSource ();

ds.setIfxIFX_ISOLATION_LEVEL ("0U"); // set isolation to dirty read with

 retain

 // update locks.

....

String isoLevel = ds.getIfxIFX_ISOLATION_LEVEL ();

Using the DriverManager.getConnection() Method

To create a connection to an Informix database or database server, you can use the

DriverManager.getConnection() method. This method creates a Connection object,

which is used to create SQL statements, send them to an Informix database, and

process the results.

The DriverManager class keeps track of the available drivers and handles

connection requests between appropriate drivers and databases or database

servers. The url parameter of the getConnection() method is a database URL that

specifies the subprotocol (the database connectivity mechanism), the database or

database server identifier, and a list of properties.

A second parameter to the getConnection() method, property, is the property list.

See “Specifying Properties” on page 2-10 for an example of how to specify a

property list.

The following example shows a database URL that connects to a database called

testDB from a client application:

jdbc:informix-sqli://123.45.67.89:1533/testDB:

 INFORMIXSERVER=myserver;user=rdtest;password=test

The details of the database URL syntax are described in the next section.

The following partial example from the CreateDB.java program shows how to

connect to database testDB using DriverManager.getConnection(). In the full

Chapter 2. Connecting to the Database 2-5

example, the url variable, described in the preceding example, is passed in as a

parameter when the program is run at the command line.

try

 {

 conn = DriverManager.getConnection(url);

 }

catch (SQLException e)

 {

 System.out.println("ERROR: failed to connect!");

 System.out.println("ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

Important: The only Informix connection type supported by IBM Informix JDBC

Driver is tcp. Shared memory and other connection types are not

supported. For more information about connection types, see the IBM

Informix Administrator’s Guide for your database server.

Important: Not all methods of the Connection interface are supported by IBM

Informix JDBC Driver. For a list of unsupported methods, see

“Unsupported Methods and Methods that Behave Differently” on page

3-19.

Client applications do not need to explicitly close a connection; the database server

closes the connection automatically. However, if your application is running in the

database server using server-side JDBC, you should explicitly close the connection.

Format of Database URLs

For connections from a client, use the following format to specify database URLs:

jdbc:informix-sqli://[{ip-address|host-name}:{port-number|service-name}][/dbname]:

 INFORMIXSERVER=servername[{;user=user;password=password]

|CSM=(SSO=database_server@realm,ENC=true)}

 [;name=value[;name=value]...]

For connections on the database server, use the following format:

jdbc:informix-direct://[/dbname:;[user=user;password=password]]

[;name=value[;name=value]...]

In the preceding syntax:

v Braces ({ }) together with vertical lines (|) denote more than one choice of

variable.

v Italics denote a variable value.

v Brackets ([]) denote an optional value.

v Words or symbols not enclosed in brackets are required

(INFORMIXSERVER=, for example).

Blank spaces are not allowed in the database URL.

For example, on the client you might use:

jdbc:informix-sqli://123.45.67.89:1533/testDB:

 INFORMIXSERVER=myserver;user=rdtest;password=test

On the server, you might use:

jdbc:informix-direct://testDB;user=rdtest;password=test

2-6 IBM Informix JDBC Driver Programmer’s Guide

Important: Connections using server-side JDBC have different syntax. For details,

see the J/Foundation Developer’s Guide or the release notes for your

version of the database server.

The following table describes the variable parts of the database URL and the

equivalent Informix connection properties.

 Informix Connection

Property

Database URL

Variable Required? Description

IFXHOST ip-address
host-name

Yes for client-side

JDBC, unless

SQLH_TYPE is

defined or

IFXHOST is used;

no for server-side

JDBC

The IP address or the host name of the

computer running the Informix database

server

PORTNO port-number Yes for client-side

JDBC you must

specify either

aport-number or a

service-name, unless

SQLH_TYPE is

defined or

PORTNO is used;

no for server-side

JDBC

The port number of the Informix database

server

The port number is listed in the /etc/services

file.

None service-name Yes for client-side

JDBC you must

specify either

port-number or

sevice-name, unless

SQLH_TYPE is

defined or

PORTNO is used;

no for server-side

JDBC

The service-name of the Informix database

server is listed in the /etc/services file.

DATABASE dbname No, except for

connections from

Web applications

(such as a browser)

running in the

database server

The name of the Informix database to which

you want to connect

If you do not specify the name of a database, a

connection is made to the Informix database

server.

INFORMIXSERVER server-name Yes The name of the Informix database server to

which you want to connect

USER user Yes. You must

specify the user and

password or the

CSM setting for

SSO.

The name of the user who wants to connect to

the Informix database or database server

You must specify both the user and the

password or neither. If you specify neither, the

driver calls System.getProperty() to obtain the

name of the user currently running the

application, and the client is assumed to be

trusted.

Chapter 2. Connecting to the Database 2-7

Informix Connection

Property

Database URL

Variable Required? Description

PASSWORD password Yes. You must

specify the user and

password or the

CSM setting for

SSO.

The password of the user

You must specify both the user and the

password or neither. If you specify neither, the

driver calls System.getProperty() to obtain the

name of the user currently running the

application, and the client is assumed to be

trusted.

None database_server@realm Yes. You must

specify the user and

password or the

CSM setting for

SSO.

The service principle for (SSO) access control.

For information see “Using Single Sign-on

Access Control with the Informix JDBC

Driver” on page 2-30.

None name=value No A name-value pair that specifies a value for

the Informix environment variable contained

in the name variable, recognized by either IBM

Informix JDBC Driver or Informix database

servers

The name variable is case insensitive.

See “Specifying Properties” on page 2-10 and

“Using Informix Environment Variables with

the IBM Informix JDBC Driver” on page 2-11

for more information.

If an LDAP server or sqlhosts file provides the IP address, host name, or port

number through the SQLH_TYPE property, you do not have to specify them in the

database URL. For more information, see “Dynamically Reading the Informix

sqlhosts File” on page 2-16.

IP Address in Connection URLs

The IBM Informix JDBC Driver, Version 3.0, and later supporting the JDK 1.4, is

IPv6 aware. That is, the code that parses the connection URL can handle the longer

(128-bit mode) IPv6 addresses (as well as IPv4 format). This IP address can be a

IPv6 literal, for example:

3ffe:ffff:ffff:ffff:0:0:0:12

To connect to the IPv6 port with an IDS 10.0, or later server, use the system

property, for example:

java -Djava.net.preferIPv6Addresses=true ...

With the IBM Informix JDBC Driver, Version 3.0, or later handling of URLs without

IPv6 literals is unchanged, and legacy behavior is unchanged.

The colon (that is, :) is a key delimiter in a connection URL, especially in IPv6

literal addresses.

You must create a well-formed URL for the driver to recognize an IPv6 literal

address. Note, in the example below:

v The jdbc:informix-sqli:// is required.

v The colons surrounding the 8088, (that is, :8088:) are required.

v The 3ffe:ffff:ffff:ffff:0::12 will not be validated by the driver.

v The 8088 must be a valid number < 32k.
jdbc:informix-sqli://3ffe:ffff:ffff:ffff:0::12:8088:informixserver=X...

2-8 IBM Informix JDBC Driver Programmer’s Guide

Database Versus Database Server Connections

Using the DriveManager.getConnection() method, you can create a connection to

either an Informix database or an Informix database server.

To create a connection to an Informix database, specify the name of the database in

the dbname variable of the database URL. If you omit the name of a database, a

connection is made to the database server specified by the INFORMIXSERVER

environment variable of the database URL or the connection property list.

If you connect directly to an Informix database server, you can execute an SQL

statement that connects to a database in your Java program.

All connections to both databases and database servers must include the name of

an Informix database server via the INFORMIXSERVER environment variable.

Important: If you are connecting to an IBM Informix OnLine, IBM Informix SE 5.x,

or IBM Informix SE 7.x database server you must specify

USEV5SERVER=1.

The example given in “Using the DriverManager.getConnection() Method” on page

2-5 shows how to create a connection directly to the Informix database called

testDB with the database URL.

The following example from the DBConnection.java program shows how to first

create a connection to the Informix database server called myserver and then

connect to the database testDB using the Statement.executeUpdate() method.

The following database URL is passed in as a parameter to the program when the

program is run at the command line; note that the URL does not include the name

of a database:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;

 user=rdtest;password=test

The code is:

String cmd = null;

int rc;

Connection conn = null;

try

{

 Class.forName("com.informix.jdbc.IfxDriver");

}

catch (Exception e)

{

 System.out.println("ERROR: failed to load Informix JDBC driver.");

}

try

{

 conn = DriverManager.getConnection(newUrl);

}

catch (SQLException e)

{

 System.out.println("ERROR: failed to connect!");

 e.printStackTrace();

 return;

}

try

{

 Statement stmt = conn.createStatement();

Chapter 2. Connecting to the Database 2-9

cmd = "database testDB;";

 rc = stmt.executeUpdate(cmd);

 stmt.close();

}

catch (SQLException e)

{

 System.out.println("ERROR: execution failed - statement:

 " + cmd);

 System.out.println("ERROR: " + e.getMessage()); }

Specifying Properties

When you use the DriverManager.getConnection() method to create a connection,

IBM Informix JDBC Driver reads Informix environment variables only from the

name-value pairs in the connection database URL or from a connection property

list. The driver does not consult the user’s environment for any environment

variables.

To specify Informix environment variables in the name-value pairs of the

connection database URL, refer to “Format of Database URLs” on page 2-6.

To specify Informix environment variables via a property list, use the

java.util.Properties class to build the list of properties. The list of properties might

include Informix environment variables, such as INFORMIXSERVER, as well as

user and password.

After you have built the property list, pass it to the

DriverManager.getConnection() method as a second parameter. You still need to

include a database URL as the first parameter, although in this case you do not

need to include the list of properties in the URL.

The following code from the optofc.java example shows how to use the

java.util.Properties class to set connection properties. It first uses the

Properties.put() method to set the environment variable OPTOFC to 1 in the

connection property list; then it connects to the database.

The DriverManager.getConnection() method in this example takes two

parameters: the database URL and the property list. The example creates a

connection similar to the example given in “Using the

DriverManager.getConnection() Method” on page 2-5.

The following database URL is passed in as a parameter to the example program

when the program is run at the command line:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

 user=rdtest;password=test

The code is:

try

{

 Class.forName("com.informix.jdbc.IfxDriver");

 }

catch (Exception e)

 {

 System.out.println("ERROR: failed to load Informix JDBC driver.");

 }

try

 {

 Properties pr = new Properties();

 pr.put("OPTOFC","1");

2-10 IBM Informix JDBC Driver Programmer’s Guide

conn = DriverManager.getConnection(newUrl, pr);

 }

catch (SQLException e)

 {

 System.out.println("ERROR: failed to connect!");

 }

Using Informix Environment Variables with the IBM Informix JDBC

Driver

The following table lists most of the Informix environment variables supported by

the client JDBC driver. For server-side JDBC, you should use property settings in

the database URL rather than setting environment variables, because the

environment variables would apply to all programs running in the database server.

For more information about properties, see “Specifying Properties” on page 2-10.

For a list of environment variables that provide internationalization features, see

Chapter 6. For a list of environment variables useful for troubleshooting, see

Chapter 7

 Supported Informix Environment

Variables Description

BIG_FET_BUF_SIZE In IBM Informix Extended Parallel Server, Version 8.4, overrides the

default size of the tuple buffer and allows it to be increased up to 2GB.

CSM To specify that Communication Support Module is to be used. IBM

Informix JDBC Driver 3.0 and later supports an encryption CSM. For

more information, see “Encryption Options” on page 2-26.

DBANSIWARN When set to 1, checks for Informix extensions to ANSI-standard syntax

DBSPACETEMP Specifies the dbspaces in which temporary tables are built

DBTEMP Specifies the full path name of the directory into which you want IBM

Informix Enterprise Gateway products to place their temporary files and

temporary tables.

The driver does not use this variable; it just passes the value to the

server.

DBUPSPACE Specifies the amount of disk space and memory that the UPDATE

STATISTICS statement can use for sorting rows when it constructs

multiple-column distributions, whether to sort with indexes, and

whether to save the plan for calculating the column distributions in the

sqexplain.out file.

DELIMIDENT When set to Y, specifies that strings set off by double quotation marks

are delimited identifiers

ENABLE_CACHE_TYPE When set to 1, caches the data type information for opaque, distinct, or

row data.

When a Struct or SQLData object inserts data into a column and

getSQLTypeName() returns the type name, the driver uses the cached

information instead of querying the database server.

ENABLE_HDRSWITCH When set to true, secondary server properties are used to connect to the

secondary server in an HDR pair, if the primary server is unavailable.

FET_BUF_SIZE Overrides the default setting for the size of the fetch buffer for all data

except large objects.

The default size is 4096 bytes. This variable is not supported in

server-side JDBC.

Chapter 2. Connecting to the Database 2-11

Supported Informix Environment

Variables Description

IFX_AUTOFREE When set to 1, specifies that the Statement.close() method does not

require a network round trip to free the database server cursor resources

if the cursor has already been closed in the database server.

The database server automatically frees the cursor resources after the

cursor is closed, either explicitly by the ResultSet.close() method or

implicitly through the OPTOFC environment variable. After the cursor

resources have been freed, the cursor can no longer be referenced. For

more information, see “Using the Auto Free Feature” on page 3-25.

IFX_BATCHUPDATE_PER_SPEC When set to 1 (the default), returns the number of rows affected by the

SQL statements executed in a batch operation by the executeBatch()

method

IFX_CODESETLOB If set to a number greater than or equal to 0, automates code-set

conversion for TEXT and CLOB data types between client and database

locales. The value of this variable determines whether code-set

conversion is done in memory in or in temporary files. If set to 0,

code-set conversion uses temporary files. If set to a value greater than 0,

code-set conversion occurs in the memory of the client computer, and

the value represents the number of bytes of memory allocated for the

conversion. For more information, see “Converting Using the

IFX_CODESETLOB Environment Variable” on page 6-11.

IFX_DIRECTIVES Determines whether the optimizer allows query optimization directives

from within a query. This variable is set on the client. The driver does

not use this variable; it just passes the value to the server.

IFX_EXTDIRECTIVES Specifies whether the query optimizer allows external query

optimization directives from the sysdirectives system catalog table to be

applied to queries in existing applications. The default is OFF. Possible

values:

ON External optimizer directives accepted

OFF External optimizer directives not accepted

1 External optimizer directives accepted

0 External optimizer directives not accepted

IFX_GET_SMFLOAT_AS_FLOAT When set to 0 (the default), maps the Informix SMALLFLOAT data type

to the JDBC REAL data type. This setting conforms to the JDBC

specification. When set to 1, maps the Informix SMALLFLOAT data type

to the JDBC FLOAT data type. This setting enables backward

compatibility with older versions of IBM Informix JDBC Driver.

IFX_ISOLATION_LEVEL Defines the degree of concurrency among processes that attempt to

access the same rows simultaneously. Gets the value of Informix-specific

variable IFX_ISOLATION_LEVEL. The default value is 2 (Committed

Read). If the value has been set explicitly, it returns the set value.

Returns: integer.

Sets the value of Informix-specific variable IFX_ISOLATION_LEVEL.

Possible values:

v 1 - Dirty Read (equivalent to TRANSACTION_READ_UNCOMMITTED),

v 2 - Committed Read (equivalent to TRANSACTION_READ_COMMITTED),

v 3 - Cursor Stability (equivalent to TRANSACTION_READ_COMMITTED),

v 4 - Repeatable Read (equivalent to TRANSACTION_REPEATABLE_READ)

Specifying U after the mode means retain update locks. (See Important

note following table.) For example, a value could be: 2U (equivalent to

SET ISOLATION TO COMMITTED READ RETAIN UPDATE LOCKS.

2-12 IBM Informix JDBC Driver Programmer’s Guide

Supported Informix Environment

Variables Description

IFX_FLAT_UCSQ Overrides the global setting and directs the optimizer to use subquery

flattening for all sessions. Default value is 1.

IFX_LOCK_MODE_WAIT Application can use this property to override the default server process

for accessing a locked row or table. Gets the value of Informix-specific

variable IFX_LOCK_MODE_WAIT. The default value is 0 (do not wait

for the lock). If the value has been set explicitly, it returns the set value.

Returns: integer.

Sets the value of Informix-specific variable IFX_LOCK_MODE_WAIT.

Possible values:

v -1 WAIT until the lock is released.

v 0 DO NOT WAIT, end the operation, and return with error.

v nn WAIT for nn seconds for the lock to be released.

IFX_PAD_VARCHAR Controls how data associated with a VARCHAR data type is transmitted

to and from a Dynamic Server 9.4 or later server. Can be set either on

the connection URL when using the Connection class or as a property

when using the DataSource class. Valid values are 0 (the default) and 1.

v When set to 0, only the portion of the VARCHAR that contains data is

transmitted (trailing spaces are stripped).

v When set to 1, the entire VARCHAR data structure is transmitted to

and from the server.

IFX_SET_FLOAT_AS_SMFLOAT When set to 0 (the default), maps the JDBC FLOAT data type to the

Informix FLOAT data type. This setting conforms to the JDBC

specification. When set to 1, maps the JDBC FLOAT data type to the

Informix SMALLFLOAT data type. This setting enables backward

compatibility with older versions of IBM Informix JDBC Driver.

IFX_TRIMTRAILINGSPACES Removes trailing spaces. Default value is 1.

IFX_USEPUT When set to 1, enables bulk inserts. For more information, see

“Performing Bulk Inserts” on page 3-6.

IFX_XASPEC When set to y, XA transactions with the same global transaction ID are

tightly coupled and share the lock space. This only applies to XA

connections and cannot be specified in a database URL. It can be

specified by DataSource setter (See Appendix B, “DataSource

Extensions,” on page B-1.) or by setting a System (JVM) property with

the same name. The DataSource property will override the System

property. Values for the properties other than y, Y, n, or N are ignored.

IfxDataSource.getIfxIFX_XASPEC returns the final IFX_SPEC value,

which is either y or n. For example if the value of DataSource

IFX_XASPEC equals n and the value of the System IFX_XASPEC equals

Y or y, n will be returned.

IFX_XASTDCOMPLIANCE_XAEND Specifies the behavior of XA_END when XA_RB* is returned.

0 XID is not forgotten. Transaction is in Rollback Only state. This

is XA_SPEC+ compliant and is the default behavior with IDS

10.0, or later.

1 XID is forgotten. Transaction is Nonexistent. This is default

behavior with IDS 9.40.

 For more information, see IBM Informix Guide to SQL: Reference

DISABLE_B162428_XA_FIX (IDS 10.0)

ENABLE_B162428_XA_FIX (IDS 9.40)

IFXHOST Sets the host name or host IP address

Chapter 2. Connecting to the Database 2-13

Supported Informix Environment

Variables Description

IFXHOST_SECONDARY Sets the secondary host name or host IP address for HDR connection

redirection

INFORMIXCONRETRY Specifies the maximum number of additional connection attempts that

can be made to each database server by the client during the time limit

specified by the value of INFORMIXCONTIME

INFORMIXCONTIME Sets the timeout period for an attempt to connect to the database server.

If a connection attempt does not succeed in this time, the attempt is

aborted and a connection error is reported. The default value is 0

seconds. This variable adds timeouts for blocking socket methods and

for socket connections.

INFORMIXOPCACHE Specifies the size of the memory cache for the staging-area blobspace of

the client application

INFORMIXSERVER Specifies the default database server to which an explicit or implicit

connection is made by a client application

INFORMIXSERVER_SECONDARY Specifies the secondary database server in an HDR pair to which an

explicit or implicit connection is made by a client application if the

primary database server is unavailable

INFORMIXSTACKSIZE Specifies the stack size, in kilobytes, that the database server uses for a

particular client session

JDBCTEMP Specifies where temporary files for handling smart large objects are

created. You must supply an absolute path name.

LOBCACHE Determines the buffer size for large object data that is fetched from the

database server Possible values are:

v A number greater than 0. The maximum number of bytes is allocated

in memory to hold the data. If the data size exceeds the LOBCACHE

value, the data is stored in a temporary file; if a security violation

occurs during creation of this file, the data is stored in memory.

v Zero (0). The data is always stored in a file. If a security violation

occurs, the driver makes no attempt to store the data in memory.

v A negative number. The data is always stored in memory. If the

required amount of memory is not available, an error occurs.

If the LOBCACHE value is not specified, the default is 4096 bytes.

NEWNLSMAP Allows new mappings between NLS and JDK locales and JDK codesets

to be defined

For more information, see “User-Defined Locales” on page 6-13.

NODEFDAC When set to YES, prevents default table and routine privileges from

being granted to the PUBLIC user when a new table or routine is created

in a database that is not ANSI compliant. Default is NO.

OPT_GOAL Specifies the query performance goal for the optimizer. Set this variable

in the user environment before you start an application. The driver does

not use this variable; it just passes the value to the server.

OPTCOMPIND Specifies the join method that the query optimizer uses

OPTOFC When set to 1, the ResultSet.close() method does not require a network

round trip if all the qualifying rows have already been retrieved in the

client’s tuple buffer. The database server automatically closes the cursor

after all the rows have been retrieved. IBM Informix JDBC Driver might

not have additional rows in the client’s tuple buffer before the next

ResultSet.next() method is called. Therefore, unless IBM Informix JDBC

Driver has received all the rows from the database server, the

ResultSet.close() method might still require a network round trip when

OPTOFC is set to 1.

2-14 IBM Informix JDBC Driver Programmer’s Guide

Supported Informix Environment

Variables Description

PATH Specifies the directories that should be searched for executable programs

PDQPRIORITY Determines the degree of parallelism used by the database server

PLCONFIG Specifies the name of the configuration file used by the

high-performance loader

PLOAD_LO_PATH Specifies the path name for smart-large-object handles (which identify

the location of smart large objects such as BLOB, CLOB, and BOOLEAN

data types).

The driver does not use this variable; it just passes the value to the

server.

PORTNO_SECONDARY Specifies the port number of the secondary database server in an HDR

pair. The port number is listed in the /etc/services file.

PROXY Specifies an HTTP proxy server. For more information, see “Using an

HTTP Proxy Server” on page 2-22.

PSORT_DBTEMP Specifies one or more directories to which the database server writes the

temporary files it uses when performing a sort

PSORT_NPROCS Enables the database server to improve the performance of the

parallel-process sorting package by allocating more threads for sorting

SECURITY Uses 56-bit encryption to send the password to the server. For more

information, see “Using Password Encryption” on page 2-27.

SQLH_TYPE When set to FILE, specifies that database information (such as host-name,

port-number, user, and password) is specified in an sqlhosts file.

When set to LDAP, specifies that this information is specified in an

LDAP server.

For more information, see “Dynamically Reading the Informix sqlhosts

File” on page 2-16.

SQLIDEBUG Specifies the path name for the file to which a binary SQLI trace should

be written. A new trace file is generated for every connection and is

suffixed with timestamp. Only use the SQLI trace facility when directed

by an IBM technical support representative.

STMT_CACHE When set to 1, enables the use of the shared-statement cache in a session.

This feature can reduce memory consumption and speed query

processing among different user sessions. The driver does not use this

variable; it just passes the value to the server.

USEV5SERVER When set to 1, specifies that the Java program is connecting to an IBM

Informix OnLine 5.x or IBM Informix SE 5.x or IBM Informix SE 7.x

database server.

This environment variable is mandatory if you are connecting to an IBM

Informix OnLine 5.x or IBM Informix SE 5.x or IBM Informix SE 7.x

database server.

Important: RETAIN UPDATE LOCKS is not supported in Informix Dynamic Server,

Version 5.x. The U option will be ignored when connecting to a 5.x

server.

The following are code examples of the IFX_LOCK_MODE_WAIT and

IFX_ISOLATION_LEVEL environment variables:

v IFX_LOCK_MODE_WAIT
Connection conn = DriverManager.getConnection ("jdbc:Informix-sqli://cleo:1550:

INFORMIXSERVER=cleo_921;IFXHOST=cleo;PORTNO=1550;user=rdtest; password=my_passwd;

IFX_LOCK_MODE_WAIT=1";);

v IFX_ISOLATION_LEVEL

Chapter 2. Connecting to the Database 2-15

Connection conn = DriverManager.getConnection("jdbc:Informix-sqli://cleo:1550:

INFORMIXSERVER=cleo_921;IFXHOST=cleo;PORTNO=1550;user=rdtest; password=my_passwd;

IFX_ISOLATION_LEVEL=1U";);

Important: The isolation property can be set in the URL only when it is an explicit

connection to a database. For server-only connection, this property is

ignored at connection time.

For a detailed description of a particular environment variable, refer to IBM

Informix Guide to SQL: Reference. You can find the online version of this guide at

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

Dynamically Reading the Informix sqlhosts File

IBM Informix JDBC Driver supports the JNDI (Java naming and directory

interface). This support enables JDBC programs to access the Informix sqlhosts file.

The sqlhosts file lets a client application find and connect to an Informix database

server anywhere on the network. For more information about this file, see the IBM

Informix Administrator’s Guide for your database server.

You can access sqlhosts data from a local file or from an LDAP server. The system

administrator must load the sqlhosts data into the LDAP server using an Informix

utility.

Your CLASSPATH variable must reference the JNDI JAR (Java archive) files and

the LDAP SPI (service provider interface) JAR files. You must use LDAP Version

3.0 or later, which supports the object class extensibleObject.

You can use the sqlhosts file group option to specify the name of a database server

group for the value of INFORMIXSERVER. The group option is useful with

High-Availability Data Replication (HDR); list the primary and secondary database

servers in the HDR pair sequentially. For more information on about how to set or

use groups in sqlhosts file, see the IBM Informix Administrator’s Guide. For more

information on HDR, see “Using High-Availability Data Replication” on page 2-18.

An unsigned applet cannot access the sqlhosts file or an LDAP server. For more

information, see “Using the Driver in an Applet” on page 1-9.

Connection Property Syntax

You can let IBM Informix JDBC Driver look up the host name or port number in

an LDAP server instead of specifying them in a database URL or DataSource

object directly. You must specify the following properties in the database URL or

DataSource object for the LDAP server:

v SQLH_TYPE=LDAP

v LDAP_URL=ldap://host-name:port-number

host-name and port-number are those of the LDAP server, not the database server.

v LDAP_IFXBASE=Informix-base-DN

v LDAP_USER=user

v LDAP_PASSWD=password

If LDAP_USER and LDAP_PASSWD are not specified, IBM Informix JDBC Driver

uses an anonymous search to search the LDAP server. The LDAP administrator

must make sure that an anonymous search is allowed on the sqlhosts entry. For

more information, see your LDAP server documentation.

2-16 IBM Informix JDBC Driver Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Informix-base-DN has the following basic format:

cn=common-name,o=organization,c=country

If common-name, organization, or country consists of more than one word, you can

use one entry for each word. For example:

cn=informix,cn=software

Here is an example database URL:

jdbc:informix-sqli:informixserver=value;SQLH_TYPE=LDAP;

 LDAP_URL=ldap://davinci:329;LDAP_IFXBASE=cn=informix,

 cn=software,o=kmart,c=US;LDAP_USER=abcd;LDAP_PASSWD=secret

You can also specify the sqlhosts file in the database URL or DataSource object.

The host name and port number or the service name of the Informix database

server as specified in the /etc/services file are read from the sqlhosts file. You must

specify the following properties for the file:

v SQLH_TYPE=FILE

v SQLH_FILE=sqlhosts-filename

The sqlhosts file can be local or remote, so you can refer to it in the local file

system format or URL format. Here are some examples:

v SQLH_FILE=http://host-name:port-number/sqlhosts.ius

SQLH_FILE=http://host-name:service-name/sqlhosts.ius

The host-name and port-number or service-name of the Informix database server

(from the etc/services file) elements are those of the server on which the

sqlhosts file resides.

v SQLH_FILE=file://D:/local/myown/sqlhosts.ius

v SQLH_FILE=/u/local/sqlhosts.ius

Here is an example database URL:

jdbc:informix-sqli:informixserver=value;SQLH_TYPE=FILE;

 SQLH_FILE=/u/local/sqlhosts.ius

If the database URL or DataSource object references the LDAP server or sqlhosts

file but also directly specifies the IP address, host name, and port number, then the

IP address, host name, and port number specified in the database URL or

DataSource object take precedence. For information about how to set these

connection properties using a DataSource object, see Appendix B, “DataSource

Extensions,” on page B-1.

If you are using an applet or the database is behind a firewall, an HTTP proxy

servlet, running in an extra tier, is required for communication. See “Using an

HTTP Proxy Server” on page 2-22 for more information.

Administration Requirements

If you want the LDAP server to store sqlhosts information that a JDBC program

can look up, the following requirements must be met:

v The LDAP server must be installed on a computer that is accessible to the client.

The LDAP administrator must create an IFXBASE entry in the LDAP server.

For more information about LDAP directory servers, see:

http://java.sun.com/products/jndi/

http://www.openldap.org

Chapter 2. Connecting to the Database 2-17

http://java.sun.com/products/jndi/
http://www.openldap.org

v If you want to use the Informix SqlhUpload and SqlhDelete utilities, which can

load or delete the sqlhosts entries from a flat ASCII file, the servicename field in

the sqlhosts file must specify the database server’s port number. For more

information, see “Utilities to Update the LDAP Server with sqlhosts Data,” next.

v The LDAP administrator must make sure that anonymous search is allowed on

the sqlhosts entry. For more information, see the LDAP server documentation.

Utilities to Update the LDAP Server with sqlhosts Data

The SqlhUpload and SqlhDelete utilities are packaged in ifxtools.jar, so the

CLASSPATH variable must point to ifxtools.jar (which, by default, is in the lib

directory under the installation directory for IBM Informix JDBC Driver). Make

sure that the CLASSPATH variable also points to the JNDI JAR files and LDAP

SPI JAR files.

SqlhUpload

This utility loads the sqlhosts entries from a flat ASCII file to the LDAP server in

the prescribed format. Enter the following command:

java SqlhUpload sqlhfile.txt host-name:port-number [sqlhostsRdn]

The parameters have the following meanings:

v The sqlhosts file to be uploaded is sqlhfile.txt.

v The host name and port number of the LDAP server is host-name:port-number.

v The RDN (relative distinguished name) of the sqlhosts node under the Informix

base in LDAP is sqlhostsRdn. The default name is sqlhosts.

The utility prompts for other required information, such as the Informix base DN

(distinguished name) in the LDAP server, the LDAP user, and the password.

You must convert the servicename field in the sqlhosts file to a string that

represents an integer (the port number), because the Java.Socket class cannot

accept an alphanumeric servicename value for the port number. For more

information about the servicename field, see the IBM Informix Administrator’s Guide

for your database server.

SqlhDelete

This utility deletes the sqlhosts entries from the LDAP server. Enter the following

command:

java SqlhDelete host-name:port-number [sqlhostsRdn]

The parameters of this command have the same meanings as the parameters listed

for the SqlhUpload utility. See “SqlhUpload” on page 2-18.

The utility prompts for other required information, such as the Informix base DN

in the LDAP server, the LDAP user, and the password.

Using High-Availability Data Replication

High-Availability Data Replication (HDR) provides synchronous data replication for

IBM Informix Dynamic Server (IDS) by maintaining a backup copy of the entire

database server that applications can access quickly in the event of a catastrophic

failure. If one of the database servers in the replication pair fails, clients can be

redirected to connect to the alternate database server. For more information on

HDR, see the IBM Informix Administrator’s Guide for your database server.

2-18 IBM Informix JDBC Driver Programmer’s Guide

HDR server pairs are composed of a primary and a secondary server. The primary

server is the default server. The secondary server is read-only; update operations

are not allowed.

To write application code to support HDR, follow these guidelines, which are

explained in the sections below:

v Set the secondary server connection properties and enable HDR.

v Check if the server is read-only (a secondary server) and take appropriate action.

v If a connection fails, retry the connection to the alternate server and rerun the

query.

You can use HDR with connection pooling. For more information, see “Using

High-Availability Data Replication with Connection Pooling” on page 7-7.

Demonstration programs are available in the hdr directory within the demo

directory where IBM Informix JDBC Driver is installed. For details about the files,

see Appendix A.

Secondary Server Connection Properties

Specify the secondary server and enable HDR using the following connection

properties in the connection URL:

v INFORMIXSERVER_SECONDARY = secondary_server;

v PORTNO_SECONDARY = secondary_portnumber;

v IFXHOST_SECONDARY = secondary_hostmachine;

v ENABLE_HDRSWITCH = true;

The following example shows a connection URL for an HDR server pair named

hdr1 and hdr2:

jdbc:informix-sqli://123.45.67.89:1533/testDB:

 INFORMIXSERVER=hdr1;IFXHOST=host1;PORTNO=1500;

 user=rdtest;password=test;INFORMIXSERVER_SECONDARY=hdr2;

 IFXHOST_SECONDARY=host2;PORTNO_SECONDARY=1600;

 ENABLE_HDRSWITCH=true;

When using a DataSource object, you can set and get the secondary server

connection properties with setXXX() and getXXX() methods. These methods are

listed with their corresponding connection property in the section “Getting and

Setting Informix Connection Properties” on page B-2.

You can manually redirect a connection to the secondary server in an HDR pair by

editing the INFORMIXSERVER, PORTNO, and IFXHOST properties in the

connection URL. Manual redirection requires editing the application code and then

restarting the application.

Connecting to Group Entries in an HDR Pair

If a JDBC application uses group entries from the sqlhosts file to connect to server,

and if group entries are part of an HDR pair, then the JDBC driver will connect to

the primary server. Consider an sqlhosts file that defines a group, as shown below:

g_1000 group - - i=100

 ids1000_secondary ontlitcp amazon sec_1000 g=g_1000

 ids1000_primary ontlitcp amazon prim_1000 g=g_1000

Chapter 2. Connecting to the Database 2-19

If the JDBC application uses a connection URL that uses this sqlhosts file and its

group name to make a connection, the JDBC driver will always connect to the

primary server. The following is an example of such a URL:

 "jdbc:informix-sqli:informixserver=g_1000;

user=foo;password=XXXX;SQLH_TYPE=FILE;

SQLH_FILE=/informix/sqlhosts"

An exception will be thrown if the JDBC driver cannot find a primary server in the

group.

Note: Enforcing connections to the primary server is enabled for Dynamic Server,

Version 9.40.XC6 and later only.

Checking for Read-Only Status

Update operations fail if the connection is to a secondary server, because secondary

servers are read-only. Therefore, you should write applications to check for

read-only connections before starting update operations.

Use the methods in the following table to check the server type and whether HDR

is enabled.

 Information Obtained Method Signature Notes

Whether the server is

read-only (a secondary

server)

public boolean is ReadOnly() throws

SQLException

Returns true if the active server is a

secondary server

Returns an exception if a database access

error occurs

If ENABLE_HDRSWITCH is set to false,

isReadOnly() returns the value initially

set after the last successful HDR

connection was obtained.

Whether HDR is enabled public boolean is HDREnabled() Returns true if both servers in the HDR

pair are available

Returns false if one of the servers is

unavailable

The type of the server

(primary, secondary, or

standard)

public string getHDRtype() Returns primary or standard for a

primary server, secondary for a

secondary server

The database administrator can manually

reset the type of the server.

For example, you can use one of the following strategies:

v Use the isReadOnly() method before each SQL statement that might contain an

update operation. If the value of isReadOnly() is true, perform an appropriate

action, such as sending an error message to the user or notifying the server

administrator.

v You call the isReadOnly() method after establishing a connection and then set a

flag, like READ_ONLY, and perform operations based on the flag value.

An administrator can manually switch a secondary server to a primary server to

allow update operations. However, the server must be shut down in the process,

resulting in connections and uncommitted transactions being lost.

2-20 IBM Informix JDBC Driver Programmer’s Guide

Retrying Connections

Write applications so that if a connection is lost during query operations, IBM

Informix JDBC Driver returns a new connection to the secondary database server

and the application reruns the queries.

The following code shows how to retry a connection with the secondary server

information, and then rerun an SQL statement that received an error because the

primary server connection failed:

public class HDRConnect {

 static IfmxConnection conn;

 public static void main(String[] args)

 {

 getConnection(args[0]);

 doQuery(conn);

 closeConnection();

 }

 static void getConnection(String url)

 {

 ..

 Class.forName("com.informix.jdbc.IfxDriver");

 conn = (IfmxConnection)DriverManager.getConnection(url);

 }

 static void closeConnection()

 {

 try

 {

 conn.close();

 }

 catch (SQLException e)

 {

 System.out.println("ERROR: failed to close the connection!");

 return;

 }

 }

 static void doQuery(Connection con)

 {

 int rc=0;

 String cmd=null;

 Statement stmt = null;

 try

 {

 // execute some sql statement

 }

 catch (SQLException e)

 {

 if (e.getErrorCode() == -79716) || (e.getErrorCode() == -79735)

 // system or internal error

 {

 // This is expected behavior when primary server is down

 getConnection(url);

 doQuery(conn);

 }

 else

 System.out.println("ERROR: execution failed - statement: " + cmd);

 return;

 }

 }

Chapter 2. Connecting to the Database 2-21

Using an HTTP Proxy Server

Network security imposes certain restrictions on what client applications are

allowed to do:

v Applets can only communicate back to the host from which they were

downloaded.

v Direct IP connections between a JDBC client and database are not allowed when

a firewall is between the client and the database server.

The Informix HTTP proxy handles both of these problems. The proxy is a servlet

that runs in the middle tier between a JDBC client and an Informix database

server. The proxy extracts SQL requests from the JDBC client and transmits them

to the database server. The client (the end user) is unaware of this middle tier.

The HTTP proxy feature is not part of the JDBC 2.0 specification.

Figure 2-1 illustrates how the proxy enables a connection to a database that is

behind a firewall.

Configuring Your Environment to Use a Proxy Server

The HTTP proxy requires a Web server that supports servlets, preferably a Web

server whose servlet engine uses a 2.1 or greater servlet API. The proxy is

compatible with 2.0 and earlier servlet APIs, but the PROXYTIMEOUT feature is

only enabled with a 2.1 or greater API.

 To configure your environment for a proxy server:

1. Define a servlet alias or context for the proxy servlet in your Web server

configuration.

The JDBC driver directs all client HTTP requests to:

http://your-web-server:port/pathname/IfxJDBCProxy

where IfxJDBCProxy is the proxy servlet and pathname is the path to the proxy

servlet. Consult your Web server documentation for the correct way to

configure servlets.

JDBC Driver

Java client

Database

Firewall

Web server

Proxy server

1 2

1

2

The driver sends the target IP address and port number to the proxy

The proxy uses the IP address and port to open a connection to the database.

Figure 2-1. Connecting Through a Firewall

2-22 IBM Informix JDBC Driver Programmer’s Guide

2. Copy three class files—IfxJDBCProxy.class, SessionMgr.class, and

TimeoutMgr.class—to the servlet directory you specified in the previous step.

These class files reside in the directory proxy, which is under the installation

directory for IBM Informix JDBC Driver after the product bundle is installed.

3. Add the IBM Informix JDBC Driver file, ifxjdbc.jar, to the CLASSPATH setting

on your Web server.

Some Web servers use the CLASSPATH of the environment under which the

server is started, while others get their CLASSPATH from a Web server-specific

properties file. Consult your Web server documentation for the correct place to

update the CLASSPATH setting.

4. Start your Web server and verify that the proxy is installed correctly by

entering the following URL:

http://server-host-name:port-number/servlet/

 IfxJDBCProxy

The proxy replies with the following banner:

-- Informix Proxy Servlet v220 Servlet API 2.1 --

v220 represents the Informix proxy version. Servlet API 2.1 represents the

version of your Web server’s servlet API.

If the servlet API is 2.0 or earlier, the banner says Servlet API 0.0.

5. After configuring the proxy, append the following to your applet or

application’s URL:

PROXY=server-host-name:port-number

For example:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=

 myserver;user=rdtest;password=test;

 PROXY=webserver:1462;

Depending on your Web server, the proxy servlet might be loaded when the Web

server is started or the first time it is referenced in the URL of your applet or

application connection object.

The following Web sites offer more information about proxy servlets:

v http://java.sun.com/products/servlet/

v http://java.sun.com/

v http://www.sun.com/java

v http://java.apache.org

Specifying a Timeout

You can specify a timeout value for the proxy by using the PROXYTIMEOUT

keyword. The PROXYTIMEOUT value specifies how often the client-side JDBC

driver should send a keepalive request to the proxy. A PROXYTIMEOUT value is

represented in seconds; the value can be 60 or greater.

When PROXYTIMEOUT is specified by the client, the proxy sets the client’s

session expiration equal to 2 x PROXYTIMEOUT. For example, if PROXYTIMEOUT is

set to 60 seconds, the proxy sets the client’s expiration time to 120 seconds. When

the expiration time is reached, the proxy removes the client’s session resources and

closes its database connection.

The proxy resets the timeout interval each time a communication is received from

the client. Here are some valid values for PROXYTIMEOUT:

PROXYTIMEOUT=-1 Disables the client timeout feature.

Chapter 2. Connecting to the Database 2-23

http://java.sun.com/products/servlet/
http://java.sun.com/
http://www.sun.com/java
http://java.apache.org

PROXYTIMEOUT=nnn Client sends a keepalive request to proxy every

nnn seconds. The nnn value must be 60 or greater.

PROXYTIMEOUT=60 Default value if PROXYTIMEOUT is not specified

 The proxy timeout feature is helpful in determining if a client session has

terminated without first sending the proxy a close request by closing the JDBC

connection. The proxy maintains an open database connection on behalf of the

client until the client either:

v Explicitly closes the database connection

v Exceeds its timeout interval

The onstat database utility shows an open session for any client sessions that have

unexpectedly terminated and have set PROXYTIMEOUT to -1.

Here is an example that specifies PROXYTIMEOUT:

jdbc:informix-sqli://123.45.67.89:1533:informixserver=myserver;

 user=rdtest;password=test;

 PROXY=webserver:1462?PROXYTIMEOUT=180;

See the demo/proxy directory under the directory where your driver is installed for

an example applet and application that uses the proxy.

Using the Proxy with an LDAP Server

The proxy allows your JDBC applets and applications to alternatively get their

database connection information from an LDAP server. If you plan to use this

feature, you need to install an LDAP server. For general information about using

an LDAP server with IBM Informix JDBC Driver, see the sections beginning with

“Connection Property Syntax” on page 2-16.

Figure 2-2 on page 2-25 illustrates how the proxy works with an LDAP server. The

figure also shows lookup from an sqlhosts file; for more information, see

“Specifying sqlhosts File Lookup” on page 2-26.

2-24 IBM Informix JDBC Driver Programmer’s Guide

The proxy LDAP feature requires the JNDI class libraries and LDAP service

provider files (jndi.jar, ldap.jar, and providerutil.jar). These JAR files can be

downloaded from the following location: http://java.sun.com/products/jndi/
index.html#download.

After downloading and installing the files, add their full path names to the

CLASSPATH setting on your Web server. The files are in the lib directory under

the installation directory.

Specifying Where LDAP Lookup Occurs

When used in conjunction with other LDAP keywords, the SQLH_LOC keyword

indicates where an LDAP lookup should occur.

SQLH_LOC can have a value of either CLIENT or PROXY. If the value is CLIENT, the

driver performs the LDAP lookup on the client side. If the value is PROXY, the

proxy performs the lookup on the server side. If no value is specified, the driver

uses CLIENT as the default value.

Here is the format for an applet or application URL with LDAP keywords that

specifies a server side LDAP lookup:

jdbc:informix-sqli:informixserver=informix-server-name;

PROXY=proxy-hostname-or-ip-address:proxy-port-no?

PROXYTIMEOUT=60;SQLH_TYPE=LDAP;LDAP_URL=ldap:

//ldap-hostname-or-ip-address:ldap-port-no;LDAP_IFXBASE=dc=mydomain,dc=com;SQLH_LOC=PROXY;

This example obtains the database server host name and port from an LDAP

server:

jdbc:informix-sqli:informixserver=samsara;SQLH_TYPE=LDAP;

LDAP_URL=ldap://davinci:329;LDAP_IFXBASE=cn=informix,

o=kmart,c=US;LDAP_USER=abcd;LDAP_PASSWD=secret;SQLH_LOC=PROXY;

PROXY=webserver:1462

3

JDBC Driver

Java client

Database

Firewall

Web server

Proxy server

1

1

2

The driver sends the LDAP or sqlhosts values to the proxy

The proxy gets the IP address and port from either the LDAP server or the sqlhosts file.

sqlhosts file

LDAP
server

3 The proxy uses the IP address and port to open a connection to the database.

2

Figure 2-2. Lookup by the Proxy

Chapter 2. Connecting to the Database 2-25

http://java.sun.com/products/
http://java.sun.com/products/

For a complete example of using an LDAP server with the proxy, see the proxy

applet and application in the demo directory where your JDBC driver is installed.

Specifying sqlhosts File Lookup

The SQLH_LOC keyword also applies to sqlhosts file lookups when you are using

the proxy. If the URL includes SQLH_LOC =PROXY, the driver reads the sqlhosts

file on the server. If SQLH_LOC =PROXY is not specified, the driver reads the file

on the client.

This example obtains the information from an sqlhosts file on the server:

jdbc:informix-sqli:informixserver=samsara;SQLH_TYPE=FILE;

 SQLH_FILE=/work/9.x/etc/sqlhosts;SQLH_LOC=PROXY;

 PROXY=webserver:1462

Using Other Multitier Solutions

Other ways to use IBM Informix JDBC Driver in a multiple-tier environment are as

follows:

v Remote Method Invocation (RMI). IBM Informix JDBC Driver resides on an

application server that is a middle tier between the Java applet or application

and Informix database machines. An example of RMI is included with IBM

Informix JDBC Driver; see Appendix A, “Sample Code Files,” on page A-1, for

details.

v Other communication protocols, such as CORBA. IBM Informix JDBC Driver

resides on an application server that is a middle tier between the Java applet or

application and Informix database computers.

Encryption Options

 You can use either password (SECURITY=PASSWORD) or network encryption to

establish the security of your connection. To use either the password option or to

use network encryption, you must have a Java Cryptography Extension

(JCE)-compliant encryption services provider installed in your Java runtime

environment. The JCE-compliant encryption services provider comes bundled with

Sun JRE 1.4 or later and with IBM JRE 1.4.2 or later.

It is recommended that you do not mix security packages on the same client. The

following sections describe how to configure each package.

Note: Encryption over the network and password encryption should not be used

together. Thus, password encryption should not be enabled with the

SECURITY environment variable when using JDBC encryption CSM. JDBC

Encryption CSM does encrypt passwords before sending them over the

network.

Using the Sun JCE Security Package

Sun JCE has been integrated into the J2 SDK, Version 1.4, but is available only in

the U.S. or Canada. If your site does not comply with this or other Sun JCE

licensing restrictions, you can try using IBM Informix JDBC Driver with other

JCE-certified security package providers. However, be aware that not all packages

have not been tested and certified to work with Informix database servers

configured to use the SPWDCSM CSM option or the encryption CSM.

Alternatively you can use the IBM FIPS-compliant security package described in

the next section.

2-26 IBM Informix JDBC Driver Programmer’s Guide

If you are using JDK 1.4 to install the Sun JCE package, download the Sun JCE

distribution, extract the .jar file containing the Sun JCE provider packages, and

copy them to jre/lib/ext directory where the JDK is installed.

Edit the lib/security/java.security file from JDK installation to include the

following two lines:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.crypto.provider.SunJCE

Refer to the Sun JRE documentation for more details about configuring the

encryption services provider.

Using the IBM FIPS-compliant Security Package

The IBM 1.4.2 SR1a JRE or later includes a Federal Information Processing

Standards (FIPS) 140-2 compliant package for JCE called IBMJCEFIPS. The

IBMJCEFIPS package is implemented as a JCE provider to support FIPS-approved

cryptographic operations through JCE framework APIs. The IBMJCEFIPS package

can be used with the simple password CSM or with the encryption CSM.

You can download the IBM 1.4.2 Java SDK from http://www.ibm.com/
developerworks/java/jdk/index.html.

To use the FIPS package, add the IBMJCEFIPS provider to the list of security

providers in the JVM java.security file, which is in the jre/lib/ext directory where

the JRE is installed

You must specify the IBMJCEFIPS provider at a higher preference order than any

non-FIPS security providers in the java.security file. The order is 1-based, meaning

that 1 is the most preferred, followed by 2, and so on.

For example:

security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.2=com.ibm.crypto.fips.provider.IBMJCE

Make sure that the IBMJCEFIPS has a higher preference order than the IBMJCE

provider.

No changes to applications are needed for the IBM Informix JDBC Driver to use

the FIPS-compliant cryptographic package.

Refer to IBM JRE documentation for IBM Developer Kits and Runtime

Environments at the URL listed above for more details about configuring the

encryption services provider.

Using Password Encryption

The SECURITY environment variable specifies the security operations that are

performed when the Informix JDBC client and Informix database server exchange

data. The only setting for the SECURITY environment variable supported in IBM

Informix JDBC Driver is PASSWORD.

If PASSWORD is specified, the user-provided password is encrypted using 56-bit

encryption when it is passed from the client to the database server. There is no

default setting.

Here is an example:

Chapter 2. Connecting to the Database 2-27

http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/developerworks/java/jdk/index.html

String URL = "jdbc:informix-sqli://158.58.10.171:1664:user=myname;

password=mypassord;INFORMIXSERVER=myserver;SECURITY=PASSWORD";

PASSWORD is case insensitive. You can type it in upper or lowercase letters.

Configuring the Database Server

The SECURITY=PASSWORD setting is supported in the 7.31, 8.3 and later, and 9.x

and later versions of the Informix database server. The connection is rejected if

used with any other versions of the server.

If the SECURITY=PASSWORD setting is specified in the IBM Informix JDBC client,

the SPWDCSM csm option must be enabled on the Informix database server.

Otherwise, an error is returned during connection.

To use the SPWDCSM csm server option, which supports password encryption on

the database server, you must configure the server’s sqlhosts servername option.

After this option is set on the server, only clients using the

SECURITY=PASSWORD setting can connect to that server name.

To see if the SPWDCSM csm option is supported for your version of Informix

database server, or for general details on how to configure the CSM options, see

the IBM Informix: Administrator’s Guide for your database server.

Using Network Encryption

IBM Informix Dynamic Server, Version 9.4 and later, enables encryption of data

transmitted over a network using an encryption communication support module.

IBM Informix JDBC Driver, Version 2.21.JC5 and later, makes this feature available

to all JDBC clients by adding a communication support module (CSM) to the JDBC

driver.

IBM Informix JDBC encryption module is com.informix.jdbc.Crypto class that is

packaged in the IBM Informix JDBC .jar file. IBM Informix JDBC encryption CSM

is a pure Java implementation that uses services from the Java Cryptography

provider. For information about the Java Cryptography provider, see the Sun

Microsystems web site.

Network Encryption Syntax

To configure network encryption, set the CSM environment variable. The following

illustrates the syntax of the CSM environment variable and encryption options:

CSM Environment Variable Syntax

�� CSM=(“CLASSNAME=com.informix.jdbc.Crypto”)

,

option tags

config=parameterfile

 ��

 Element Description

option tags Specify the syntax of encryption tags. For more information, see

“Using Option Tags” on page 2-29.

config=parameterfile Specify encryption options in a file. For more information, see

“Using Option Parameters” on page 2-29.

2-28 IBM Informix JDBC Driver Programmer’s Guide

Using Option Tags

The option tags that can be passed on to the encryption CSM are the same as the

encryption option tags that are specified in the CSM configuration file used by the

server or CSDK. There are three option tags: cipher, mac, and switch.

v The cipher tag defines all ciphers that can be used by the session.

v The mac option defines the message authentication code (MAC) key files to be

used during the MAC generation and the level of MAC generation utilized.

v The switch tag defines the frequency at which ciphers or secret keys are

renegotiated. The longer the secret key and encryption cipher remain in use, the

more likely that the encryption rules might be broken by an attacker. To avoid

this, cryptologists recommend periodically changing the secret key and cipher on

long-term connections. The default for this renegotiation is once an hour. By

using the switch tag, you can set the time for this renegotiation in minutes.

For the syntax of these tags, see the IBM Informix Security Guide.

Note that encryption CSM option parameters are separated by a comma and not

by a semicolon. When using a DataSource, getIfxCSM() and setIfxCSM() methods

can be used to get and set CSM as a property. When setting CSM as a property,

make sure that you do not enclose the option string in parentheses. The following

is an example that correctly sets the CSM as a property:

connProperties.put("CSM","classname=com.informix.jdbc.Crypto,cipher[all],

mac[<builtin>]");

Using Option Parameters

You can configure encryption by creating a file with encryption parameters and

then specifying the filename. The encryption parameters are:

v ENCCSM_CIPHERS: Ciphers to be used

v ENCCSM_MAC: MAC level

v ENCCSM_MACFILES: MAC file location

v ENCCSM_SWITCH: CIPHER and KEY change frequency, separated by a

comma

For the syntax of these parameters, see the IBM Informix Security Guide.

The following is an example that specifies the CSM parameters in a configuration

file:

 String newUrl = "jdbc:informix-sqli:

//beacon:8779/test:INFORMIXSERVER=danon950_beacon_encrypt;

user=rdtest;password=test;

csm=(classname=com.informix.jdbc.Crypto,config=test.cfg)";

 try

 {

 Class.forName("com.informix.jdbc.IfxDriver");

 }catch(Exception e)

 {

 System.out.println("ERROR: failed to load

Informix JDBC driver.");

 }

 try

 {

 Connection con = DriverManager.getConnection(newUrl);

 }

 catch(SQLException e)

 {

Chapter 2. Connecting to the Database 2-29

System.out.println("ERROR: failed to connect.");

 e.printStackTrace();

 return;

 }

Configuring the Encryption CSM in the Server

To be able to connect to IBM Informix database servers on an encrypted port, the

JDBC client must use JDBC encryption CSM. Also note that when using JDBC

encryption CSM, attempts to connect to IBM Informix database servers on a

non-encrypted port will fail. An instance of IBM Informix Database server may be

configured to listen in on encrypted and non-encrypted ports at the same time. For

details regarding configuring Dynamic Server to use encryption CSM, see the IBM

Informix Administrator’s Guide.

Using Single Sign-on Access Control with the Informix JDBC Driver

You can use single sign-on (SSO) access control with JDBC by using the

DriverManager.getConnection() method and setting the Communication Support

Module (CSM) in the connection URL to the service principal. Using SSO access

control replaces the userid and password option

 Prerequisite::

 Ensure that the database server is set up for SSO authentication. For information,

refer to the “Single Sign-on Access Control” section in the IBM Informix Security

Guide.

1. Modify the connection URL so that it includes the service principal. The service

principal consists of the database server name and the SSO realm.

CSM=(SSO=database_server@realm,ENC=true)

The ENC=true setting means that Generic Security Services (GSS) encryption is

enabled. The ENC=true setting is optional because by default, its value is true.

If you do not want to enable GSS encryption, set the value to false: ENC= false.

For complete syntax of the connection URL, refer to “Format of Database

URLs” on page 2-6.

2. Create a login configuration file with the following code:

com.sun.security.jgss.initiate {

 com.sun.security.auth.module.Krb5LoginModule required

useTicketCache=true

doNotPrompt=true;

}

3. Run the application with the java.security.auth.login.config property set to the

login configuration file’s full path name, followed by the TestSso class.

Following is an example where IfmxLog.conf is the login configuration file:

java -Djava.security.auth.login.config=mydirectory/IfmxLog.conf TestSso

PAM Authentication Method

The IBM Informix JDBC Driver, Version 2.21. JC5 and later, implements support for

handling PAM (Pluggable Authentication Module)-enabled Dynamic Server 9.40

and later servers. This implementation supports a challenge-response dialog

between PAM and the end user. To facilitate this dialog, the JDBC developer must

implement the com.informix.jdbc.IfmxPAM interface. The IfxPAM() method in the

IfmxPAM interface acts as the gateway between PAM and the user.

2-30 IBM Informix JDBC Driver Programmer’s Guide

The IfxPAM() method is called when the JDBC server encounters a PAM challenge

method. The return value from the IfxPAM() method acts as the response to the

challenge message and is sent to PAM.

The signature for the IfxPAM() method is:

public IfxPAMResponse IfxPAM(IfxPAMChallenge challengeMessage)

Two classes, IfxPAMChallenge and IfxPAMResponse, usher messages between the

JDBC driver and PAM. The IfxPAMChallenge class contains the information that

has been sent from PAM to the user.

The challenge message is obtained from the IfxPAMChallenge class using the

getChallenge() method. This message is what is sent directly from PAM running

on Dynamic Server to be routed to the end user. The challenge messages are listed

in the following table.

 Table 2-1. Types of Challenge Messages

Message Description

PAM_PROMPT_ECHO_ON The message is displayed to the user and the

user’s response can be echoed back.

PAM_PROMPT_ECHO_OFF The message is displayed to the user and the

user’s response should be hidden or masked (that

is, when the user enters a password, asterisks are

displayed instead of the exact characters the user

types).

PAM_PROMPT_ERROR_MSG The message is displayed to the user as an error,

with no response required.

PAM_TEXT_INFO_MSG The message is displayed to the user as an

informational message, with no response required.

Note: The challenge message type is governed by the PAM standard and can have

vendor-specific values. See the PAM standard and vendor-specific

information for possible values and interpretations.

Note: The PAM standard defines the maximum size of a PAM message to be 512

bytes (IfxPAMChallenge.PAM_MAX_MESSAGE_SIZE).

The IfxPAMResponse class is very similar to IfxPAMChallenge, but instead of

being used by PAM to send a message to the user, the IfxPAMResponse class is

used to send a message from the user to PAM. Use the

IfxPAMResponse.setResponse() method to send the challenge-response string to

PAM. However, set the response type (which is set using the

IfxPAMResponse.setResponseType() method) to zero, the default, as the response

type is currently reserved for future use.

The challenge-response string is limited to the size of the challenge message:

IfxPAMResponse.PAM_MAX_MESSAGE_SIZE or 512 bytes. If the response string

exceeds this limit, an SQL exception is thrown.

Additionally, when the challenge message is of type PAM_INFO_TEXT or

PAM_PROMPT_ERR_MSG (see PAM standards for meaning and integer values),

PAM expects no user response. Thus, a null IfxPAMResponse object or one that

has not been set with specific values can be returned to JDBC. The

Chapter 2. Connecting to the Database 2-31

IfxPAMResponse class provides the following method to allow the JDBC

developer to abort the connection attempt during a PAM session:

public void setTerminateConnection(boolean flag)

The value of the flag can be TRUE or FALSE. If the value of the parameter passed

to setTerminateConnection is TRUE, then the connection to the PAM-enabled

Dynamic Server immediately terminates upon returning from IfxPAM(). If the

value is set to FALSE, then the connection attempt to the PAM-enabled server

continues as usual.

Using PAM in JDBC

JDBC developers using PAM to communicate with a PAM-enabled Dynamic Server

must implement the com.informix.jdbc.IfmxPAM interface. To do so, put the

following on the class declaration line in a Java class file:

implements IfmxPAM

That Java class must then implement the IfmxPAM interface conforming to Java

standards and the details provided above. The next step is to inform the JDBC

driver what Java class has implemented the IfmxPAM interface. There are two

ways to do this:

v Add the key-value pair IFX_PAM_CLASS=your.class.name to the connection

URL, where the value your.class.name is the path to the class that has

implemented the IfmxPAM interface.

This method is typically used when connecting to a Dynamic Server using the

DriverManager.getConnection (URL) approach.

v Add the property IFX_PAM_CLASS with the value your.class.name to your

properties list before attempting the connection to the PAM-enabled server.

This method is used when connecting to a Dynamic Server using the

DataSource.getConnection() approach.

JDBC developers have a wide latitude in implementing the IfmxPAM interface.

The following actions happen during authentication using PAM:

1. The JDBC driver, when detecting communication with a PAM-enabled server,

contacts the IfxPAM() method and passes it a IfxPAMChallenge object

containing the PAM challenge question.

2. A dialog box you create appears with a text question containing the challenge

message that was sent by PAM.

3. When the user furnishes the response, it is packaged into an IfxPAMResponse

object, and it is returned to the JDBC driver by exiting the IfxPAM() method

returning the IfxPAMResponse object.

4. When PAM receives the response from the challenge question, it can authorize

the user, deny access to the user, or issue another challenge question, in which

case the above process is repeated.

This process continues until either the user is authorized or the user is denied

access. The Java developer or user can terminate the PAM authorization sequence

by calling the IfxPAMResponse.setTerminateConnection() method with a value of

TRUE.

2-32 IBM Informix JDBC Driver Programmer’s Guide

Closing the Connection

The following table contrasts the different effects of calling the Connection.close()

and scrubConnection() methods in environments that use connection pooling and

those that do not.

For more information on deallocating resources, see “Deallocating Resources” on

page 3-4. For more information on the scrubConnection() method, see “Cleaning

Pooled Connections” on page 7-8.

 Connection Pooling

Status

Effect of Calling Connection.close()

Method Effect of Calling scrubConnection() Method

Non-connection pool

setup

Closes database connection, all

associated statement objects, and

their result sets Connection is no

longer valid.

Returns connection to original state, keeps opened

statements, but closes result sets Connection is still

valid.

Releases resources associated with result sets only.

Connection pool

with Informix

Implementation

Closes connection to the database

and reopens it to close any

statements associated with the

connection object and reset the

connection to its original state

Connection object is then returned to

the connection pool and is available

when requested by a new

application connection.

Returns a connection to original state and keeps all open

statements, but closes all result sets

Calling this method in this situation not recommended

Connection pool

with application

server

implementation

Defined by your connection pooling

implementation

Returns connection to original state and retains opened

statements, but closes result sets

This functionality can be useful if you are using the

JDBC 3.0 feature of statement pooling with connections.

When your application calls the Connection.close()

method, your application server’s connection-pool

manager can call scrubConnection() for the pooled

connection object before returning the object to the

connection pool.

Important: When calling the scrubConnection() method, your applications should

be using server-only connections.

Chapter 2. Connecting to the Database 2-33

2-34 IBM Informix JDBC Driver Programmer’s Guide

Chapter 3. Performing Database Operations

In This Chapter . 3-2

Querying the Database . 3-2

Example of Sending a Query to an Informix Database . 3-2

Using Result Sets . 3-3

Scrollable Result Set for Multiple Rows . 3-3

Deallocating Resources . 3-4

Executing Across Threads . 3-4

Using Scroll Cursors . 3-4

Scroll Sensitivity . 3-4

Client-Side Scrolling . 3-5

Result Set Updatability . 3-5

Using Hold Cursors . 3-5

Updating the Database . 3-6

Performing Batch Updates . 3-6

SQL Statements and Batch Updates . 3-6

Return Value from Statement.executeBatch() Method 3-6

Performing Bulk Inserts . 3-6

Parameters, Escape Syntax, and Unsupported Methods . 3-7

Using CallableStatement OUT Parameters . 3-7

Server and Driver Restrictions and Limitations . 3-8

Named Parameters in a CallableStatement . 3-13

Requirements and Restrictions for Named Parameters in a CallableStatement 3-13

Retrieving Parameter Names for Stored Procedures 3-13

Named Parameters and Unique Stored Procedures . 3-14

Named Parameters and Overloaded Stored Procedures 3-16

JDBC Support for DESCRIBE INPUT . 3-17

Using Escape Syntax . 3-18

Unsupported Methods and Methods that Behave Differently 3-19

Handling Transactions . 3-21

Handling Errors . 3-22

Handling Errors With the SQLException Class . 3-22

Retrieving the Syntax Error Offset . 3-23

Catching RSAM Error Messages . 3-23

Handling Errors with the com.informix.jdbc.Message Class 3-23

Accessing Database Metadata . 3-24

Other Informix Extensions to the JDBC API . 3-25

Using the Auto Free Feature . 3-25

Obtaining Driver Version Information . 3-26

Storing and Retrieving XML Documents . 3-26

Setting Up Your Environment to Use XML Methods . 3-27

Setting Your CLASSPATH . 3-27

Specifying a Parser Factory . 3-27

Inserting Data . 3-28

Retrieving Data . 3-29

Inserting Data Examples . 3-30

XMLtoString() Examples . 3-30

XMLtoInputStream() Example . 3-30

Retrieving Data Examples . 3-31

StringtoDOM() Example . 3-31

InputStreamtoDOM() Example . 3-31

© Copyright IBM Corp. 1996, 2008 3-1

getInputSource() Examples . 3-31

In This Chapter

This chapter explains what you need to use IBM Informix JDBC Driver to perform

operations against an Informix database. This chapter includes the following

sections:

v Querying the Database

v Updating the Database

v Parameters, Escape Syntax, and Unsupported Methods

Querying the Database

IBM Informix JDBC Driver complies with the JDBC API specification for sending

queries to a database and retrieving the results. The driver supports most of the

methods of the Statement, PreparedStatement, CallableStatement, ResultSet, and

ResultSetMetaData interfaces.

The following sections discuss querying the database and describe Informix

differences from and extensions to the JDBC 3.0 specification from Sun

Microsystems:

v Example of Sending a Query to an Informix Database

v Using Result Sets

v Deallocating Resources

v Executing Across Threads

v Using Scroll Cursors

v Using Hold Cursors

Example of Sending a Query to an Informix Database

The following example from the SimpleSelect.java program shows how to use the

PreparedStatement interface to execute a SELECT statement that has one input

parameter:

try

 {

 PreparedStatement pstmt = conn.prepareStatement("Select *

 from x "

 + "where a = ?;");

 pstmt.setInt(1, 11);

 ResultSet r = pstmt.executeQuery();

 while(r.next())

 {

 short i = r.getShort(1);

 System.out.println("Select: column a = " + i);

 }

 r.close();

 pstmt.close();

 }

catch (SQLException e)

 {

 System.out.println("ERROR: Fetch statement failed: " +

 e.getMessage());

 }

The program first uses the Connection.prepareStatement() method to prepare the

SELECT statement with its single input parameter. It then assigns a value to the

3-2 IBM Informix JDBC Driver Programmer’s Guide

parameter using the PreparedStatement.setInt() method and executes the query

with the PreparedStatement.executeQuery() method.

The program returns resulting rows in a ResultSet object, through which the

program iterates with the ResultSet.next() method. The program retrieves

individual column values with the ResultSet.getShort() method, since the data

type of the selected column is SMALLINT.

Finally, both the ResultSet and PreparedStatement objects are explicitly closed

with the appropriate close() method.

For more information on which getXXX() methods retrieve individual column

values, refer to “Data Type Mapping for ResultSet.getXXX() Methods” on page

C-12.

Using Result Sets

The IBM Informix JDBC Driver implementation of the Statement.execute() method

returns a single ResultSet object. Because the server does not support multiple

ResultSet objects, this implementation differs from the JDBC API specification,

which states that the Statement.execute() method can return multiple ResultSet

objects.

Note: Returning multiple Result Sets is not supported by the IBM Informix JDBC

driver.

Scrollable Result Set for Multiple Rows

The Scrollable ResultSet fetches one row at a time from the server. A performance

enhancement for Scrollable ResultSet allows multiple rows to be fetched at one

time. In the following example, where the rows m through n are desired, the

following fetches the rows into a ResultSet. As long as only rows between m and n

inclusive are accessed, no further fetches occur. In this example, the rows 50

through 100 are desired and the ResultSet is SCROLL_INSENSITIVE:

 rs.setFetchSize(51);

 rs.absolute(49); // one row will be fetched

 rs.next() // rs will contain 51 rows

IBM Informix Dynamic Server only fetches in the forward direction and only

fetches one row, except when a DIR_NEXT fetch is used to fetch rows. For a

DIR_NEXT operation, the server sends rows until the fetch buffer is filled or until

the last row is sent. Only resultSet.next() can generate a DIR_NEXT operation.

This performance enhancement does not change the behavior of FORWARD_ONLY

ResultSets. The calculation of the size of the fetch buffer is unchanged.

For SCROLL_INSENTIVE ResultSets, the size of the fetch buffer is determined by

the fetch size and row size. Statement.setFetchSize() and ResultSet.setFetchSize()

can be used to set the fetch size. If fetch size is zero, the default fetch buffer size is

used. The fetch buffer size is limited to 32K.

Certain ResultSet methods require information on the number of rows generated

by the query. The methods might result in fetching a row to obtain the information

and then re-fetching the current row. The methods are isBeforeFirst(), isLast(), and

absolute(-row).

Additionally, setMaxRows() can change the fetch buffer size for

SCROLL_INSENSITIVE ResultsSets. Because additional server support will be

Chapter 3. Performing Database Operations 3-3

required to ensure efficient use of setMaxRows(), it is recommended that

ResultSet.setMaxRows() not be used as this time.

Deallocating Resources

Close a Statement, PreparedStatement, and CallableStatement object by calling

the appropriate close() method in your Java program when you have finished

processing the results of an SQL statement. This closure immediately deallocates

the resources that have been allocated to execute your SQL statement. Although

the ResultSet.close() method closes the ResultSet object, it does not deallocate the

resources allocated to the Statement, PreparedStatement, or CallableStatement

objects.

It is good practice to call ResultSet.close() and Statement.close() methods when

you have finished processing the results of an SQL statement, to indicate to IBM

Informix JDBC Driver that you are done with the statement or result set. When

you do so, your program releases all its resources on the database server. It is,

however, not required to call ResultSet.close() and Statement.close() specifically, as

long as you make a call to Connection.close(), which will take care of releasing

these resources.

Executing Across Threads

The same Statement or ResultSet instance cannot be accessed concurrently across

threads. You can, however, share a Connection object between multiple threads.

For example, if one thread executes the Statement.executeQuery() method on a

Statement object, and another thread executes the Statement.executeUpdate()

method on the same Statement object, the results of both methods are unexpected

and depend on which method was executed last.

Similarly, if one thread executes the method ResultSet.next() and another thread

executes the same method on the same ResultSet object, the results of both

methods are unexpected and depend on which method was executed last.

Using Scroll Cursors

The scroll cursors feature of IBM Informix JDBC Driver follows the Sun

Microsystems JDBC 3.0 specification, with these exceptions:

v Scroll sensitivity

v Client-side scrolling

v Result set updatability

Scroll Sensitivity

The Informix database server implementation of scroll cursors places the rows

fetched in a temporary table. If another process changes a row in the original table

(assuming the row is not locked) and the row is fetched again, the changes are not

visible to the client.

This behavior is similar to the SCROLL_INSENSITIVE description in the JDBC 3.0

specification. IBM Informix JDBC Driver does not support SCROLL_SENSITIVE

cursors. To see updated rows, your client application must close and reopen the

cursor.

3-4 IBM Informix JDBC Driver Programmer’s Guide

Client-Side Scrolling

The JDBC specification implies that the scrolling can happen on the client-side

result set. IBM Informix JDBC Driver supports the scrolling of the result set only to

the extent that the database server supports scrolling.

Result Set Updatability

The JDBC 3.0 API from Sun Microsystems does not provide exact specifications for

SQL queries that yield updatable result sets. Generally, queries that meet the

following criteria can produce updatable result sets:

v The query references only a single table in the database.

v The query does not contain any JOIN operations.

v The query selects the primary key of the table it references.

v Every value expression in the select list must consist of a column specification,

and no column specification can appear more than once.

v The WHERE clause of the table expression cannot include a subquery.

IBM Informix JDBC Driver relaxes the primary key requirement, because the driver

performs the following operations:

1. The driver looks for a column called ROWID.

2. The driver looks for a SERIAL or SERIAL8 column in the table.

3. The driver looks for the table’s primary key in the system catalogs.

If none of these is provided, the driver returns an error.

When you delete a row in a result set, the ResultSet.absolute() method is affected,

because the positions of the rows change after the delete.

When the query contains a SERIAL column and the data is duplicated in more

than one row, execution of updateRow() or deleteRow() affects all the rows

containing that data.

The ScrollCursor.java example file shows how to retrieve a result set with a scroll

cursor. For examples of how to use an updatable scrollable cursor, see the

UpdateCursor1.java, UpdateCursor2.java, and UpdateCursor3.java files.

Using Hold Cursors

When transaction logging is used, IBM Informix Dynamic Server generally closes

all cursors and releases all locks when a transaction ends. In a multiuser

environment, this behavior is not always desirable.

IBM Informix JDBC Driver had already implemented holdable cursor support by

means of Informix extensions. Informix database servers (5.x, 7.x, SE, 8.x, 9.x, and

10.x, or later) support adding keywords WITH HOLD in the declaration of the

cursor. Such a cursor is referred to as a hold cursor and is not closed at the end of

a transaction.

IBM Informix JDBC Driver, in compliance with the JDBC 3.0 specifications, adds

methods to JDBC interfaces to support holdable cursors.

For more information about hold cursors, see the IBM Informix Guide to SQL:

Syntax.

Chapter 3. Performing Database Operations 3-5

Updating the Database

You can issue batch update statements or perform bulk inserts to update the

database.

Performing Batch Updates

The batch update feature is similar to multiple Informix SQL PREPARE statements.

You can issue batch update statements as in the following example:

PREPARE stmt FROM "insert into tab values (1);

 insert into tab values (2);

 update table tab set col = 3 where col = 2";

The batch update feature in IBM Informix JDBC Driver follows the Sun

Microsystems JDBC 3.0 specification, with these exceptions:

v SQL statements

v Return value from Statement.executeBatch()

The following sections give details.

SQL Statements and Batch Updates

The following commands cannot be put into multistatement PREPARE statements:

v SELECT (except SELECT INTO TEMP) statement

v DATABASE statements

v CONNECTION statements

For more details, refer to IBM Informix Guide to SQL: Syntax.

Return Value from Statement.executeBatch() Method

The return value differs from the Sun Microsystems JDBC 3.0 specification in the

following ways:

v If the IFX_BATCHUPDATE_PER_SPEC environment variable is set to 0, only the

update count of the first statement executed in the batch is returned. If the

IFX_BATCHUPDATE_PER_SPEC environment variable is set to 1 (the default),

the return value equals the number of rows affected by all SQL statements

executed by Statement.executeBatch(). For more information, see “Using

Informix Environment Variables with the IBM Informix JDBC Driver” on page

2-11.

v When errors occur in a batch update executed in a Statement object, no rows are

affected by the statement; the statement is not executed. Calling

BatchUpdateException.getUpdateCounts() returns 0 in this case.

v When errors occur in a batch update executed in a PreparedStatement object,

rows that were successfully inserted or updated on the database server do not

revert to their pre-updated state. However, the statements are not always

committed; they are still subject to the underlying autocommit mode.

The BatchUpdate.java example file shows how to send batch updates to the

database server.

Performing Bulk Inserts

A bulk insert is an Informix extension to the Sun Microsystems JDBC 3.0 batch

update feature. The bulk insert feature improves the performance of single INSERT

3-6 IBM Informix JDBC Driver Programmer’s Guide

statements that are executed multiple times, with multiple value settings. To enable

this feature, set the IFX_USEPUT environment variable to 1. (The default value is

0.)

This feature does not work for multiple statements passed in the same

PreparedStatement instance or for statements other than INSERT. If this feature is

enabled and you pass in an INSERT statement followed by a statement with no

parameters, the statement with no parameters is ignored.

The bulk insert feature requires the client to convert the Java type to match the

target column type on the server for all data types except opaque types or complex

types.

The BulkInsert.java example, which is installed in the demo directory where your

JDBC driver is installed, shows how to perform a bulk insert.

Parameters, Escape Syntax, and Unsupported Methods

This section contains the following information:

v How to use OUT parameters

v How to use named parameters in a CallableStatement

v Support for the DESCRIBE INPUT statement

v How to use escape syntax to translate from JDBC to Informix

It also lists unsupported methods and methods that behave differently from the

standard.

Using CallableStatement OUT Parameters

CallableStatement methods handle OUT parameters in C function and Java

user-defined routines (UDRs). Two registerOutParameter() methods specify the

data type of OUT parameters to the driver. A series of getXXX() methods retrieves

OUT parameters.

Informix Dynamic Server, Version 9.2x and 9.3x, considers OUT parameters to be

statement-local variables (SLVs). SLVs are valid only for the life of a single

statement and cannot be returned directly upon executing the routine. The JDBC

CallableStatement interface provides a method for retrieving OUT parameters.

With IBM Informix Dynamic Server, Version 10.0 and later, the OUT parameter

routine makes available a valid blob descriptor and data to the JDBC client for a

BINARY OUT parameter. Using receive methods in IBM Informix JDBC Driver,

Version 3.0 and later, supporting IDS 10.0 and later, you can use these OUT

parameter descriptors and data provided by the server.

Exchange of descriptor and data between IDS and JDBC is consistent with the

existing mechanism by which data is exchanged for the result set methods of

JDBC, such as passing the blob descriptor and data through SQLI protocol

methods. (SPL UDRs are the only type of UDRs supporting BINARY OUT

parameters.)

For background information, refer to the following documentation:

v IBM Informix User-Defined Routines and Data Types Developer’s Guide provides

introductory and background information about opaque types and user-defined

routines (UDRs) for use in an Informix database.

Chapter 3. Performing Database Operations 3-7

v J/Foundation Developer’s Guide describes how to write Java UDRs for use in the

database server.

v The IBM Informix Guide to SQL: Tutorial describes how to write stored procedure

language (SPL) routines.

v The IBM Informix DataBlade API Programmer’s Guide describes how to write

external C routines.

Only Informix database servers versions 9.2 and later return an OUT parameter to

IBM Informix JDBC Driver. Informix Dynamic Server, Version 9.4 and later

supports multiple OUT parameters.

For examples of how to use OUT parameters, see the CallOut1.java,

CallOut2.java, CallOut3.java, and CallOut4.java example programs in the basic

subdirectory of the demo directory where your IBM Informix JDBC Driver is

installed.

Server and Driver Restrictions and Limitations

Server Restrictions: This section describes the restrictions imposed by different

versions of the 9.x and later Dynamic Server. It also describes enhancements made

to the JDBC Driver and the restrictions imposed by it.

 Versions 9.2x and 9.3x of Informix Dynamic Server have the following

requirements and limitations concerning OUT parameters:

v Only a function can have an OUT parameter. A function is defined as a UDR

that returns a value. A procedure is defined as a UDR that does not return a

value.

v There can be only one OUT parameter per function.

v The OUT parameter has to be the last parameter.

v You cannot specify INOUT parameters.

IBM Informix Dynamic Server, Version 10.0, or later allows you to specify

INOUT parameters (C, SPL, or Java UDRs).

v The server does not correctly return the value NULL for external functions.

v You cannot specify OUT parameters that are complex types.

v You cannot specify C and SPL routines that use the RETURN WITH RESUME

syntax.

These restrictions, for server versions 9.2x and 9.3x, are imposed whether users

create C, SPL, or Java UDRs.

The functionality of the Informix Dynamic Server, Version 9.4 allows:

v Any and all parameters to be OUT parameters for C, SPL, or Java UDRs

v User-defined procedures with no return value to have OUT parameters

v Multiple OUT parameters

You cannot specify INOUT parameters.

For more information on UDRs, see IBM Informix User-Defined Routines and Data

Types Developer’s Guide and J/Foundation Developer’s Guide.

Driver Enhancement: The CallableStatement object provides a way to call or

execute UDRs in a standard way for all database servers. Results from the

execution of these UDRs are returned as a result set or as an OUT parameter.

3-8 IBM Informix JDBC Driver Programmer’s Guide

The following is a program that creates a user-defined function, myudr, with two

OUT parameters and one IN parameter, and then executes the myudr() function.

The example requires server-side support for multiple OUT parameters; hence it

will only work for Informix Dynamic Server, Version 9.4 or above. For more

information on UDRs, see IBM Informix User-Defined Routines and Data Types

Developer’s Guide and J/Foundation Developer’s Guide.

import java.sql.*;

public class myudr {

 public myudr() {

 }

 public static void main(String args[]) {

 Connection myConn = null;

 try {

 Class.forName("com.informix.jdbc.IfxDriver");

 myConn = DriverManager.getConnection(

 "jdbc:informix-sqli:MYSYSTEM:18551/testDB:"

 +"INFORMIXSERVER=patriot1;user=USERID;"

 +"password=MYPASSWORD");

 }

 catch (ClassNotFoundException e) {

 System.out.println(

 "problem with loading Ifx Driver\n" + e.getMessage());

 }

 catch (SQLException e) {

 System.out.println(

 "problem with connecting to db\n" + e.getMessage());

 }

 try {

 Statement stmt = myConn.createStatement();

 stmt.execute("DROP FUNCTION myudr");

 }

 catch (SQLException e){

 }

 try

 {

 Statement stmt = myConn.createStatement();

 stmt.execute(

 "CREATE FUNCTION myudr(OUT arg1 int, arg2 int, OUT arg3 int)"

 +" RETURNS boolean; LET arg1 = arg2; LET arg3 = arg2 * 2;"

 +"RETURN ’t’; END FUNCTION;");

 }

 catch (SQLException e) {

 System.out.println(

 "problem with creating function\n" + e.getMessage());

 }

 Connection conn = myConn;

 try

 {

 String command = "{? = call myudr(?, ?, ?)}";

 CallableStatement cstmt = conn.prepareCall (command);

 // Register arg1 OUT parameter

 cstmt.registerOutParameter(1, Types.INTEGER);

 // Pass in value for IN parameter

 cstmt.setInt(2, 4);

 // Register arg3 OUT parameter

 cstmt.registerOutParameter(3, Types.INTEGER);

 // Execute myudr

Chapter 3. Performing Database Operations 3-9

ResultSet rs = cstmt.executeQuery();

 // executeQuery returns values via a resultSet

 while (rs.next())

 {

 // get value returned by myudr

 boolean b = rs.getBoolean(1);

 System.out.println("return value from myudr = " + b);

 }

 // Retrieve OUT parameters from myudr

 int i = cstmt.getInt(1);

 System.out.println("arg1 OUT parameter value = " + i);

 int k = cstmt.getInt(3);

 System.out.println("arg3 OUT parameter value = " + k);

 rs.close();

 cstmt.close();

 conn.close();

 }

 catch (SQLException e)

 {

 System.out.println("SQLException: " + e.getMessage());

 System.out.println("ErrorCode: " + e.getErrorCode());

 e.printStackTrace();

 }

 }

}

- - -

.../j2sdk1.4.0/bin/java ... myudr

return value from myudr = true

arg1 OUT parameter value = 4

arg3 OUT parameter value = 8

Driver Restrictions and Limitations: IBM Informix JDBC Driver has the following

requirements and limitations concerning OUT parameters:

v With Informix Dynamic Server, Version 9.2, the driver always returns a -9752

error if a function contains an OUT parameter. The driver creates an

SQLWarning object and chains this to the CallableStatement object.

You can determine if a function contains an OUT parameter by calling the

CallableStatement.getWarnings() method or by calling the

IfmxCallableStatement.hasOutParameter() method, which return TRUE if the

function has an OUT parameter.

If a function contains an OUT parameter, you must use the

CallableStatement.registerOutParameter() method to register the OUT

parameter, the setXXX() methods to register the IN and OUT parameter values,

and the getXXX() method to retrieve the OUT parameter value.

v The CallableStatement.getMetaData() method returns NULL until the

executeQuery() method has been executed. After executeQuery() has been

called, the ResultSetMetaData object contains information only for the return

value, not the OUT parameter.

v You must specify all IN parameters using setXXX() methods. You cannot use

literals in the SQL statement. For example, the following statement produces

unreliable results:

CallableStatement cstmt = myConn.prepareCall("{call

 myFunction(25, ?)}");

Instead, use a statement that does not specify literal parameters:

CallableStatement cstmt = myConn.prepareCall("{call

 myFunction(?, ?)}");

3-10 IBM Informix JDBC Driver Programmer’s Guide

Call the setXXX() methods for both parameters.

v Do not close the ResultSet returned by the CallableStatement.executeQuery()

method until you have retrieved the OUT parameter value using a getXXX()

method.

v You cannot cast the OUT parameter to a different type in the SQL statement. For

example, the following cast is ignored:

CallableStatement cstmt = myConn.prepareCall("{call

 foo(?::lvarchar, ?)}";

v The setNull() and registerOutParameter() methods both take java.sql.Types

values as parameters. There are some one-to-many mappings from

java.sql.Types values to Informix types.

In addition, some Informix types do not map to java.sql.Types values.

Extensions for setNull() and registerOutParameter() fix these problems. See “IN

and OUT Parameter Type Mapping” next.

These restrictions apply to a JDBC application that handles C, SPL, or Java UDRs.

IN and OUT Parameter Type Mapping: An exception is thrown by the

registerOutParameter(int, int), registerOutParameter(int, int, int), or setNull(int,

int) method if the driver cannot find a matching Informix type or finds a mapping

ambiguity (more than one matching Informix type). The table that follows shows

the mappings the CallableStatement interface uses. Asterisks (*) indicate

mapping ambiguities.

java.sql.Types com.informix.lang.IfxTypes

Array* IFX_TYPE_LIST

 IFX_TYPE_MULTISET

IFX_TYPE_SET

Bigint IFX_TYPE_INT8

Binary IFX_TYPE_BYTE

Bit Not supported

Blob IFX_TYPE_BLOB

Char IFX_TYPE_CHAR (n)

Clob IFX_TYPE_CLOB

Date IFX_TYPE_DATE

Decimal IFX_TYPE_DECIMAL

Distinct* Depends on base type

Double IFX_TYPE_FLOAT

Float IFX_TYPE_FLOAT1

Integer IFX_TYPE_INT

Java_Object* IFX_TYPE_UDTVAR

 IFX_TYPE_UDTFIX

Long IFX_TYPE_BIGINT

 IFX_TYPE_BIGSERIAL

Longvarbinary* IFX_TYPE_BYTE

Chapter 3. Performing Database Operations 3-11

IFX_TYPE_BLOB

Longvarchar* IFX_TYPE_TEXT

 IFX_TYPE_CLOB

IFX_TYPE_LVARCHAR

Null Not supported

Numeric IFX_TYPE_DECMIAL

Other Not supported

Real IFX_TYPE_SMFLOAT

Ref Not supported

Smallint IFX_TYPE_SMINT

Struct IFX_TYPE_ROW

Time IFX_TYPE_DTIME (hour to second)

Timestamp IFX_TYPE_DTIME (year to fraction(5))

Tinyint IFX_TYPE_SMINT

Varbinary IFX_TYPE_BYTE

Varchar IFX_TYPE_VCHAR (n)

Nothing* IFX_TYPE_BOOL

1 This mapping is JDBC compliant. You can map the JDBC FLOAT data type to the

Informix SMALLFLOAT data type for backward compatibility by setting the

IFX_SET_FLOAT_AS_SMFLOAT connection property to 1.

To avoid mapping ambiguities, use the following extensions to CallableStatement,

defined in the IfmxCallableStatement interface:

public void IfxRegisterOutParameter(int parameterIndex,

 int ifxType) throws SQLException;

public void IfxRegisterOutParameter(int parameterIndex,

 int ifxType, String name) throws SQLException;

public void IfxRegisterOutParameter(int parameterIndex,

 int ifxType, int scale) throws SQLException;

public void IfxSetNull(int i, int ifxType) throws SQLException;

public void IfxSetNull(int i, int ifxType, String name) throws

 SQLException;

Possible values for the ifxType parameter are listed in “Using the IfxTypes Class”

on page C-9.

IBM Informix Dynamic Server, Version 10.0, or later makes available to the JDBC

client valid BLOB descriptors and data to support binary OUT parameters for SPL

UDRs.

IBM Informix JDBC Driver, Version 3.0, or later can receive the OUT parameter

descriptor and data provided by the server and use it in Java applications.

Note: The single correct return value for any JDBC binary type (BINARY,

VARBINARY, LONGVARBINARY) retrieved via method getParameterType

3-12 IBM Informix JDBC Driver Programmer’s Guide

(ParameterMetaData) is -4, which is associated with

java.sql.Type.LONGVARBINARY data type. This reflects the fact that all

the JDBC binary types are mapped to the same Informix SQL data type,

BYTE.

Named Parameters in a CallableStatement

A CallableStatement provides a way to call a stored procedure on the server from a

Java program. You can use named parameters in a CallableStatement to identify

the parameters by name instead of by ordinal position. This enhancement was

introduced in the JDBC 3.0 specification. If the procedure is unique, you can omit

parameters that have default values and you can enter the parameters in any

order. Named parameters are especially useful for calling stored procedures that

have many arguments and some of those arguments have default values.

The JDBC driver ignores case for parameter names. If the stored procedure does

not have names for all the arguments, the server passes an empty string for

missing names.

Requirements and Restrictions for Named Parameters in a

CallableStatement

IBM Informix JDBC Driver has the following requirements and restrictions for

named parameters in a CallableStatement:

v Minimum requirements are IBM Informix Dynamic Server, Version 11.10.UC1 or

later and IBM Informix JDBC Driver, Version 3.10.JC1 or later.

v Parameters for the CallableStatement must be specified by either name or by the

ordinal format within a single invocation of a routine. If you name a parameter

for one argument, for example, you must use parameter names for all of the

arguments.

v Named parameters are not supported for a remote CallableStatement.

v Named parameters are supported on JDK, Version 1.4.x or later.

v Support for named parameters is subject to existing limitations for calling stored

procedures.

Verifying Support for Named Parameters in a CallableStatement: The JDBC

specification provides the DatabaseMetaData.supportsNamedParameters() method

to determine if the driver and the RDMS support named parameters in a

CallableStatement. For example:

 Connection myConn = . . . // connection to the RDBMS for Database

 . . .

 DatabaseMetaData dbmd = myConn.getMetaData();

 if (dbmd.supportsNamedParameters() == true)

 {

 System.out.println("NAMED PARAMETERS FOR CALLABLE"

 + "STATEMENTS IS SUPPORTED");

 . . .

 }

The system returns true if named parameters are supported.

Retrieving Parameter Names for Stored Procedures

To retrieve the names of parameters for stored procedures, use DatabaseMetaData

methods defined by the JDBC specification as shown in the following example.

Connection myConn = ... // connection to the RDBMS for Database

. . .

 DatabaseMetaData dbmd = myConn.getMetaData();

 ResultSet rs = dbmd.getProcedureColumns(

Chapter 3. Performing Database Operations 3-13

"myDB", schemaPattern, procedureNamePattern, columnNamePattern);

 rs.next() {

 String parameterName = rs.getString(4);

 - - - or - - -

 String parameterName = rs.getString("COLUMN_NAME");

 - - -

 System.out.println("Column Name: " + parameterName);

The names of all columns that match the parameters of the

getProcedureColumns() method will be displayed.

Parameter names are not part of the ParameterMetaData interface and cannot be

retrieved from a ParameterMetaData object.

When you use the getProcedureColumns() method, the query retrieves all

procedures owned by informix (including system-generated routines) from the

sysprocedures system catalog table. To prevent errors, verify that the stored

procedures you are using have been configured with correct permissions on the

server.

See “Unsupported Methods and Methods that Behave Differently” on page 3-19 for

important differences in JDBC API behavior for the getProcedureColumns()

method.

Named Parameters and Unique Stored Procedures

A unique stored procedure has a unique name and a unique number of arguments.

Named parameters are supported for unique stored procedures when the number

of parameters in the CallableStatement is equal to or less than the number of

arguments in the stored procedure.

Example of Number of Named Parameters Equals the Number of Arguments:

 The following stored procedure has five arguments

create procedure createProductDef(productname varchar(64),

 productdesc varchar(64),

 listprice float,

 minprice float,

 out prod_id float);

. . .

 let prod_id = <value for prod_id>;

end procedure;

The following Java code with five parameters corresponds to the stored procedure.

The question mark characters (?) within the parentheses of a JDBC call refer to the

parameters. (In this case five parameters for five arguments.) Set or register all the

parameters. Name the parameters using the format cstmt.setString("arg",

name);, where arg is the name of the argument in the corresponding stored

procedure. You do not need to name parameters in the same order as the

arguments in the stored procedure.

String sqlCall = "{call CreateProductDef(?,?,?,?,?)}";

 CallableStatement cstmt = conn.prepareCall(sqlCall);

 cstmt.setString("productname", name); // Set Product Name.

 cstmt.setString("productdesc", desc); // Set Product Description.

 cstmt.setFloat("listprice", listprice); // Set Product ListPrice.

 cstmt.setFloat("minprice", minprice); // Set Product MinPrice.

 // Register out parameter which should return the product is created.

 cstmt.registerOutParameter("prod_id", Types.FLOAT);

3-14 IBM Informix JDBC Driver Programmer’s Guide

// Execute the call.

 cstmt.execute();

 // Get the value of the id from the OUT parameter: prod_id

 float id = cstmt.getFloat("prod_id");

The Java code and the stored procedure show the following course of events:

1. A call to the stored procedure is prepared.

2. Parameter names indicate which arguments correspond to which parameter

value or type.

3. The values for the input parameters are set and the type of the output

parameter is registered.

4. The stored procedure executes using the input parameters as arguments.

5. The stored procedure returns the value of an argument as an output parameter

and the value of the output parameter is retrieved.

Example of Number of Named Parameters Is Less than the Number of

Arguments: If the number of parameters in CallableStatement is less than the

number of arguments in the stored procedure, the remaining arguments must have

default values. You do not need to set values for arguments that have default

values because the server automatically uses the default values. You must,

however, indicate the arguments that have non-default values or override default

values with a question mark character (?) in the CallableStatement.

For example, if a stored procedure has 10 arguments of which 4 have non-default

values and 6 have default values, you must have at least 4 question marks in the

CallableStatement. Alternatively, you can use 5, 6, or up to 10 question marks.

If the CallableStatement is prepared with more parameters than non-default values,

but less than the number of stored procedure arguments, it must set the values for

non-default arguments. The remaining parameters can be any of the other

arguments and they can be changed with each execution.

In the following unique stored procedure the arguments listprice and minprice

have default values:

create procedure createProductDef(productname varchar(64),

 productdesc varchar(64),

 listprice float default 100.00,

 minprice float default 90.00,

 out prod_id float);

. . .

 let prod_id = <value for prod_id>;

end procedure;

The following Java code calls the stored procedure with fewer parameters than

arguments in the stored procedure (4 parameters for 5 arguments). Because

listprice has a default value, it can be omitted from the CallableStatement.

String sqlCall = "{call CreateProductDef(?,?,?,?)}";

 // 4 params for 5 args

 CallableStatement cstmt = conn.prepareCall(sqlCall);

 cstmt.setString("productname", name); // Set Product Name.

 cstmt.setString("productdesc", desc); // Set Product Description.

 cstmt.setFloat("minprice", minprice); // Set Product MinPrice.

 // Register out parameter which should return the product id created.

Chapter 3. Performing Database Operations 3-15

cstmt.registerOutParameter("prod_id", Types.FLOAT);

 // Execute the call.

 cstmt.execute();

 // Get the value of the id from the OUT parameter: prod_id

 float id = cstmt.getFloat("prod_id");

Alternatively, for the same stored procedure you can omit the parameter for the

minprice argument. You do not need to prepare the CallableStatement again.

 cstmt.setString("productname", name); // Set Product Name.

 cstmt.setString("productdesc", desc); // Set Product Description.

 cstmt.setFloat("listprice", listprice); // Set Product ListPrice.

 // Register out parameter which should return the product id created.

 cstmt.registerOutParameter("prod_id", Types.FLOAT);

 // Execute the call.

 cstmt.execute();

 // Get the value of the id from the OUT parameter: prod_id

 float id = cstmt.getFloat("prod_id");

Or you can omit the parameters for both of the default arguments:

cstmt.setString("productname", name);

cstmt.setString("productdesc", desc);

cstmt.registerOutParameter("prod_id", Types.FLOAT);

cstmt.execute();

float id = cstmt.getFloat("prod_id");

Named Parameters and Overloaded Stored Procedures

If multiple stored procedures have the same name and the same number of

arguments, the procedures are overloaded (also known as overloaded UDRs).

The JDBC driver throws an SQLException for overloaded stored procedures

because the call cannot resolve to a single stored procedure. To prevent an

SQLException, specify the Informix server data type of the named parameters in

the parameter list by appending ::data_type to the question mark characters

where data_type is the Informix server data type. For example ?::varchar or

?::float. You must also enter the named parameters for all the arguments and in

the same order as the overloaded stored procedure's arguments.

For example, the following two procedures have the same name

(createProductDef) and the same number of arguments. The data type for the

prod_id argument is a different data type in each procedure.

Procedure 1:

create procedure createProductDef(productname varchar(64),

 productdesc varchar(64),

 listprice float default 100.00,

 minprice float default 90.00,

 prod_id float);

 ...

 let prod_id = <value for prod_id>;

end procedure;

Procedure 2:

3-16 IBM Informix JDBC Driver Programmer’s Guide

create procedure createProductDef(productname varchar(64),

 productdesc varchar(64),

 listprice float default 100.00,

 minprice float default 90.00,

 prod_id int);

 ...

 let prod_id = <value for prod_id>;

end procedure;

If you use the following Java code, it will return an SQLException because it

cannot resolve to only one procedure:

String sqlCall = "{call CreateProductDef(?,?,?,?,?)}";

CallableStatement cstmt = con.prepareCall(sqlCall);

cstmt.setString("productname", name); // Set Product Name.

If you specify the Informix data type for the argument that has a different data

type, the Java code resolves to one procedure. The following Java code resolves to

Stored Procedure 1 because the code specifies the FLOAT data type for the prod_id

argument:

String sqlCall = "{call CreateProductDef(?,?,?,?,?::float)}";

CallableStatement cstmt = con.prepareCall(sqlCall);

cstmt.setString("productname", name); // Set Product Name

JDBC Support for DESCRIBE INPUT

The SQL 92 and 99 standards specify a DESCRIBE INPUT statement for Dynamic

SQL. Version 9.4 of IBM Informix Dynamic Server provides support for this

statement. (For more information on SQL standards, syntax, and this statement, see

IBM Informix Guide to SQL: Syntax.)

The JDBC 3.0 specification introduces a ParameterMetaData class and methods

that correspond to DESCRIBE INPUT support.

The IBM Informix JDBC Driver implements the java.sql.ParameterMetaData class.

This interface is used for describing input parameters in prepared statements. The

method getParameterMetaData() has been implemented to retrieve the metadata

for a particular statement.

The ParameterMetaData class and the getParameterMetaData() method are part of

the JDBC 3.0 API and are included as interfaces in J2SDK1.4.0. Details of these

interfaces are specified in the JDBC 3.0 specification.

The IBM Informix JDBC Driver has implemented additional methods to the

ParameterMetaData interface to extend its functionality, as shown in the following

table.

 Return Type Method Description

int getParameterLength (int param) Retrieves parameter’s length

int getParameterExtendedId (int param) Retrieves parameter’s extended id

java.lang.String getParameterExtendedName (int param) Retrieves parameter’s extended name

java.lang.String getParameterExtendedOwnerName (int param) Retrieves parameter’s extended type’s

owner name

int getParameterSourceType (int param) Retrieves parameter’s SourceType

int getParameterAlignment (int param) Retrieves parameter’s alignment

Chapter 3. Performing Database Operations 3-17

Below is an example of using the ParameterMetaData interface in the IBM

Informix JDBC Driver:

. . .

try

{

 PreparedStatement pstmt = null;

 pstmt = myConn.prepareStatement(

 "select * from table_1 where int_col = ? "

 +"and string_col = ?");

 ParameterMetaData paramMeta = pstmt.getParameterMetaData();

 int count = paramMeta.getParameterCount();

 System.out.println("Count : "+count);

 for (int i=1; i <= count; i++)

 {

 System.out.println("Parameter type name : "

 +paramMeta.getParameterTypeName(i));

 System.out.println("Parameter type : "

 +paramMeta.getParameterType(i));

 System.out.println("Parameter class name : "

 +paramMeta.getParameterClassName(i));

 System.out.println("Parameter mode : "

 +paramMeta.getParameterMode(i));

 System.out.println("Parameter precision : "

 +paramMeta.getPrecision(i));

 System.out.println("Parameter scale : "

 +paramMeta.getScale(i));

 System.out.println("Parameter nullable : "

 +paramMeta.isNullable(i));

 System.out.println("Parameter signed : "

 +paramMeta.isSigned(i));

 }

. . .

Using Escape Syntax

Escape syntax indicates information that must be translated from JDBC format to

Informix native format. Valid escape syntax for SQL statements is as follows.

Type of Statement Escape Syntax

Procedure {call procedure}

Function {var = call function}

Date {d ’yyyy-mm-dd’}

Time {t ’hh:mm:ss’}

Timestamp (Datetime) {ts ’yyyy-mm-dd hh:mm:ss[.fffff]’}

Function call {fn func[(args)]}

Escape character {escape ’escape-char’}

Outer join {oj outer-join-statement}

 You can put any of this syntax in an SQL statement, as follows:

executeUpdate("insert into tab1 values({d ’1999-01-01’})");

Everything inside the brackets is converted into a valid Informix SQL statement

and returned to the calling function.

3-18 IBM Informix JDBC Driver Programmer’s Guide

Unsupported Methods and Methods that Behave Differently

The following JDBC API methods are not supported by IBM Informix JDBC Driver

and cannot be used in a Java program that connects to an Informix database:

v CallableStatement.getRef(int)

v Connection.setCatalog()

v Connection.setReadOnly()

v PreparedStatement.addBatch(String)

v PreparedStatement.setRef(int, Ref)

v PreparedStatement.setUnicodeStream(int, java.io.InputStream, int)

v ResultSet.getRef(int)

v ResultSet.getRef(String)

v ResultSet.getUnicodeStream(int)

v ResultSet.getUnicodeStream(String)

v ResultSet.refreshRow()

v ResultSet.rowDeleted()

v ResultSet.rowInserted()

v ResultSet.rowUpdated()

v ResultSet.setFetchSize()

v Statement.setMaxFieldSize()

The Connection.setCatalog() and Connection.setReadOnly() methods return with

no error. The other methods, above, throw the exception: Method not Supported.

The following JDBC API methods behave other than specified by the JavaSoft

specification:

v CallableStatement.execute()

Returns a single result set

v DatabaseMetaData.getProcedureColumns()

Example:

DBMD.getProcedureColumns(String catalog,

 String schemaPattern,

 String procedureNamePattern,

 String columnNamePattern)

Ignores the columnNamePattern field; returns NULL when used with any server

version older than 9.x.

When you use the getProcedureColumns() method, the query retrieves all

procedures owned by informix (including system-generated routines) from the

sysprocedures system catalog table. To prevent errors, verify that the stored

procedures you are using have been configured with correct permissions on the

server.

For example, if you use one of the following statements:

getProcedureColumns("","","","")

getProcedureColumns("",informix,"","")

The DatabaseMetaData.getProcedureColumns() method loads all server UDRs

or all UDRs owned by user informix. If you chose not to install J/Foundation,

or if the configuration parameters for J/Foundation are not set to valid values in

your onconfig file, the method fails. Also, if any one UDR is not set up correctly

on the server, the method fails.

Chapter 3. Performing Database Operations 3-19

For information about how to set up J/Foundation on Informix server and how

to run Java UDRs on Informix server, see the J/Foundation Developer’s Guide. For

information on how to set up and run C UDRs, see the IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

v DatabaseMetaData.othersUpdatesAreVisible()

Always returns FALSE

v DatabaseMetaData.othersDeletesAreVisible()

Always returns FALSE

v DatabaseMetaData.othersInsertsAreVisible()

Always returns FALSE

v DatabaseMetaData.ownUpdatesAreVisible()

Always returns FALSE

v DatabaseMetaData.ownDeletesAreVisible()

Always returns FALSE

v DatabaseMetaData.ownInsertsAreVisible()

Always returns FALSE

v DatabaseMetaData.deletesAreDetected()

Always returns FALSE

v DatabaseMetaData.updatesAreDetected()

Always returns FALSE

v DatabaseMetaData.insertsAreDetected()

Always returns FALSE

v PreparedStatement.execute()

Returns a single result set

v ResultSet.getFetchSize()

Always returns 0

v ResultSetMetaData.getCatalogName()

Always returns a String object containing one blank space

v ResultSetMetaData.getTableName()

Returns the table name for SELECT, INSERT, and UPDATE statements

SELECT statements with more than one table name and all other statements

return a String object containing one blank space.

v ResultSetMetaData.getSchemaName()

Always returns a String object containing one blank space

v ResultSetMetaData.isDefinitelyWriteable()

Always returns TRUE

v ResultSetMetaData.isReadOnly()

Always returns FALSE

v ResultSetMetaData.isWriteable()

Always returns TRUE

v Statement.execute()

Returns a single result set

v Connection.isReadOnly()

Returns TRUE only when connecting to a secondary server in HDR scenario (see

Important note below)

3-20 IBM Informix JDBC Driver Programmer’s Guide

Important: IBM Informix servers do not currently support read-only connections.

For the IBM Informix JDBC Driver, Version 2.21.JC4, the

implementation of the setReadOnly() method from the

java.sql.Connection interface has been changed to accept the value

passed to it by the calling process. The setReadOnly() method simply

returns to the calling process without any interaction to the Informix

database server. (Previous versions of the JDBC driver threw an

unsupported method exception.) This change has been made to

synchronize the functionality present in the IBM Informix JDBC Driver

to the IBM DB2® JDBC driver and also to achieve a higher level of

compliance in the Sun Conformance Test (CTS).

Handling Transactions

By default, all new Connection objects are in autocommit mode. When

autocommit mode is on, a COMMIT statement is automatically executed after each

statement that is sent to the database server. To turn autocommit mode off,

explicitly call Connection.setAutoCommit(false).

When autocommit mode is off, IBM Informix JDBC Driver implicitly starts a new

transaction when the next statement is sent to the database server. This transaction

lasts until the user issues a COMMIT or ROLLBACK statement. If the user has

already started a transaction by executing setAutoCommit(false) and then calls

setAutoCommit(false) again, the existing transaction continues unchanged. The

Java program must explicitly terminate the transaction by issuing either a

COMMIT or a ROLLBACK statement before it drops the connection to the

database or the database server.

If the Java program sets autocommit mode on during a transaction, IBM Informix

JDBC Driver commits the current transaction if the JDK is version 1.4 and later.

Otherwise the driver rolls back the current transaction before turning on

autocommit.

In a database that has been created with logging, if a COMMIT statement is sent to

the database server and autocommit mode is on, the error -255: Not in

transaction is returned by the database server because there is currently no user

transaction started. This occurs whether the COMMIT statement was sent with the

Connection.commit() method or directly with an SQL statement.

In a database created in ANSI mode, explicitly sending a COMMIT statement to

the database server commits an empty transaction. No error is returned because

the database server automatically starts a transaction before it executes the

statement if there is no user transaction currently open.

For an XAConnection object, autocommit mode is off by default and must remain

off while a distributed transaction is occurring. The transaction manager performs

commit and rollback operations; therefore, you should avoid performing these

operations directly.

For Dynamic Server releases later than 11.50.xC2, two JDBC classes support SQL

transactions that can be rolled back to a savepoint (rather than cancelled in its

entirety) after an adverse event is encountered:

v IfmxSavepoint (Interface)

v IfxSavepoint (Savepoint class)

Chapter 3. Performing Database Operations 3-21

+
+
+

+

+

JDBC applications can create, destroy, or rollback to savepoint objects through the

following standard JDBC methods of class IfxConnection:

v setSavepoint()

v getSavepointId()

v getSavepointName()

v releaseSavepoint()

v rollbackSavepoint()

In addition, the setSavepointUnique() method can set a named savepoint whose

identifier is unique. While the unique savepoint is active, Dynamic Server issues an

exception if the application attempts to reuse its name within the same connection.

The following restrictions apply to savepoint objects in JDBC:

v Savepoints are not valid within XA transactions.

v Savepoints cannot be used unless the current connection sets autocommit mode

off.

v Savepoints are not valid in connections to unlogged databases.

v Savepoints cannot be referenced in a triggered action.

v In cross-server distributed queries in which any participating subordinate server

does not support savepoint objects, a warning is issued if you set a savepoint

after connecting to a server that does not support savepoints, and any call to

rollbackSavepoint() fails with an error.

See the descriptions of the SAVEPOINT, RELEASE SAVEPOINT, and ROLLBACK

WORK TO SAVEPOINT statements in IBM Informix Guide to SQL: Syntax for more

information about using savepoint objects in SQL transactions.

Handling Errors

Use the JDBC API SQLException class to handle errors in your Java program. The

Informix-specific com.informix.jdbc.Message class can also be used outside a Java

program to retrieve the Informix error text for a given error number.

Handling Errors With the SQLException Class

Whenever an error occurs from either IBM Informix JDBC Driver or the database

server, an SQLException is raised. Use the following methods of the

SQLException class to retrieve the text of the error message, the error code, and

the SQLSTATE value:

v getMessage()

Returns a description of the error

SQLException inherits this method from the java.util.Throwable class.

v getErrorCode()

Returns an integer value that corresponds to the Informix database server or

IBM Informix JDBC Driver error code

v getSQLState()

Returns a string that describes the SQLSTATE value

The string follows the X/Open SQLSTATE conventions.

All IBM Informix JDBC Driver errors have error codes of the form -79XXX, such as

-79708: Can’t take null input.

3-22 IBM Informix JDBC Driver Programmer’s Guide

+
+

+

+

+

+

+

+
+
+

+

+

+
+

+

+

+
+
+
+

+
+
+

For a list of Informix database server errors, refer to IBM Informix Error Messages.

For a list of IBM Informix JDBC Driver errors, see Error Messages near the end of

this book.

The following example from the SimpleSelect.java program shows how to use the

SQLException class to catch IBM Informix JDBC Driver or database server errors

using a try-catch block:

try

 {

 PreparedStatement pstmt = conn.prepareStatement("Select *

 from x "

 + "where a = ?;");

 pstmt.setInt(1, 11);

 ResultSet r = pstmt.executeQuery();

 while(r.next())

 {

 short i = r.getShort(1);

 System.out.println("Select: column a = " + i);

 }

 r.close();

 pstmt.close();

 }

catch (SQLException e)

 {

 System.out.println("ERROR: Fetch statement failed: " +

 e.getMessage());

 }

Retrieving the Syntax Error Offset

To determine the exact location of a syntax error, use the getSQLStatementOffset()

method to return the syntax error offset.

The following example shows how to retrieve the syntax error offset from an SQL

statement (which is 10 in this example):

try {

 Statement stmt = conn.createStatement();

 String command = "select * fom tt";

 stmt.execute(command);

}

catch(Exception e)

{

 System.out.println ("Error Offset :"+((IfmxConnection conn).getSQLStatementOffset());

 System.out.println(e.getMessage());

}

Catching RSAM Error Messages

RSAM messages are attached to SQLCODE messages. For example, if an

SQLCODE message says that a table cannot be created, the RSAM message states

the reason, which might be insufficient disk space.

You can use the SQLException.getNextException() method to catch RSAM error

messages. For an example of how to catch these messages, see the

ErrorHandling.java program, which is included in IBM Informix JDBC Driver.

Handling Errors with the com.informix.jdbc.Message Class

Informix provides the class com.informix.jdbc.Message for retrieving Informix

error message text based on the Informix error number. To use this class, call the

Java interpreter java directly, passing it an Informix error number, as shown in the

following example:

java com.informix.jdbc.Message 100

Chapter 3. Performing Database Operations 3-23

The example returns the message text for Informix error 100:

100: ISAM error: duplicate value for a record with unique key.

A positive error number is returned if you specify an unsigned number when

using the com.informix.jdbc.Message class. This differs from the finderr utility,

which returns a negative error number for an unsigned number.

Accessing Database Metadata

To access information about an Informix database, use the JDBC API

DatabaseMetaData interface.

IBM Informix JDBC Driver implements all the JDBC 3.0 specifications for

DatabaseMetaData methods.

The following new methods in DatabaseMetaData have been added in IBM

Informix JDBC Driver 2.21.JC5 and later for JDBC 3.0 compliance:

v getSuperTypes()

v getSuperTables()

v getAttributes()

v getResultSetHoldability()

v getDatabaseMajorVersion()

v getDatabaseMinorVersion()

v getJDBCMajorVersion()

v getJDBCMinorVersion()

v getSQLStateType()

v locatorsUpdateCopy()

v supportsGetGeneratedKeys()

v supportsMultipleOpenResults()

v supportsNamedParameters()

v supportsGetGeneratedKeys()

v supportsMultipleOpenResults()

Starting with Dynamic Server 10.0 and IBM Informix JDBC Driver 3.0, methods

have been implemented to retrieve server-generated keys. Retrieving autogenerated

keys involves the following actions:

1. The JDBC application programmer provides an SQL statement to be executed.

2. The server executes the SQL statement and an indication that autogenerated

keys can be retrieved is returned.

3. Before the server executes the SQL statement, columnNames or columnIndexes

(if provided) are validated. An SQLException will be thrown if they are

invalid.

4. If requested, the JDBC driver and server returns a resultSet object. If no keys

were generated, the resultSet is empty, containing no rows or columns.

5. The user can request metadata for the resultSet object, and the JDBC driver

and server will return a resultSetMetaData Object.

For more information on retrieving autogenerated keys, see the JDBC 3.0

Specification, Section 13.6, “Retrieving Auto Generated Keys.”

3-24 IBM Informix JDBC Driver Programmer’s Guide

IBM Informix JDBC Driver uses the sysmaster database to get database metadata.

If you want to use the DatabaseMetaData interface in your Java program, the

sysmaster database must exist in the Informix database server to which your Java

program is connected. For example, IBM Informix SE does not have a sysmaster

database, therefore you cannot use the DatabaseMetaData interface with it.

IBM Informix JDBC Driver interprets the JDBC API term schemas to mean the

names of Informix users who own tables. The DatabaseMetaData.getSchemas()

method returns all the users found in the owner column of the systables system

catalog.

Similarly, IBM Informix JDBC Driver interprets the JDBC API term catalogs to mean

the names of Informix databases. The DatabaseMetaData.getCatalogs() method

returns the names of all the databases that currently exist in the Informix database

server to which your Java program is connected.

The example DBMetaData.java shows how to use the DatabaseMetaData and

ResultSetMetaData interfaces to gather information about a new procedure. Refer

to Appendix A for more information about this example.

Other Informix Extensions to the JDBC API

This section describes the Informix-specific extensions to the JDBC API not already

discussed in this guide. These extensions handle information that is specific to

Informix databases.

Another Informix extension, the com.informix.jdbc.Message class, is fully

described in “Handling Errors” on page 3-22.

Using the Auto Free Feature

If you enable the Informix Auto Free feature, the database server automatically

frees the cursor when it closes the cursor. Therefore, your application does not

have to send two separate requests to close and then free the cursor—closing the

cursor is sufficient.

You can enable the Auto Free feature by setting the IFX_autofree variable to TRUE

in the database URL, as in this example:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;

 user=rdtest;password=test;ifx_autofree=true;

You can also use one of the following methods:

public void setAutoFree (boolean flag)

public boolean getAutoFree()

The setAutoFree() method should be called before the executeQuery() method, but

the getAutoFree() method can be called before or after the executeQuery() method.

To use these methods, your applications must import classes from the Informix

package com.informix.jdbc and cast the Statement class to the IfmxStatement

class, as shown here:

import com.informix.jdbc.*;

...

(IfmxStatement)stmt.setAutoFree(true);

The Auto Free feature is available for the following database server versions:

Chapter 3. Performing Database Operations 3-25

v Version 7.23 and later

v Version 9.0 and later

Obtaining Driver Version Information

There are two ways to obtain version information about IBM Informix JDBC

Driver: from your Java program or from the UNIX® or MS-DOS command prompt.

 To get version information from your Java program:

1. Import the Informix package com.informix.jdbc.* into your Java program by

adding the following line to the import section:

import com.informix.jdbc.*;

2. Invoke the static method IfxDriver.getJDBCVersion(). This method returns a

String object that contains the complete version of the current IBM Informix

JDBC Driver.

An example of a version of IBM Informix JDBC Driver is 2.00.JC1.

The IfxDriver.getJDBCVersion() method returns only the version, not the serial

number you provided during installation of the driver.

Important: For version X.Y of IBM Informix JDBC Driver, the JDBC API methods

Driver.getMajorVersion() and

DatabaseMetaData.getDriverMajorVersion() always return the value

X. Similarly, the methods Driver.getMinorVersion() and

DatabaseMetaData.getDriverMinorVersion() always return the value

Y.

 To get the version of IBM Informix JDBC Driver from the command line, enter the

following command at the UNIX shell prompt or the Windows command prompt:

java com.informix.jdbc.Version

The command also returns the serial number you provided when you installed the

driver.

Storing and Retrieving XML Documents

Extensible Markup Language (XML), as defined by the World Wide Web

Consortium (W3C) provides rules, guidelines, and conventions for describing

structured data in a plain text, editable file (called an XML document). XML uses

tags only to delimit pieces of data, leaving the interpretation of the data to the

application that uses it. XML is an increasingly popular method of representing

data in an open, platform-independent format.

The currently available API for accessing XML documents is called JAXP (Java API

for XML Parsing). The API has the following two subsets:

v SAX (Simple API for XML) is an event-driven protocol, with the programmer

providing the callback methods that the XML parser invokes when it analyzes a

document.

v DOM (Document Object Model) is a random-access protocol, which converts

an XML document into a collection of objects in memory that can be

manipulated at the programmer’s discretion. DOM objects have the data type

Document.

3-26 IBM Informix JDBC Driver Programmer’s Guide

JAXP also contains a plugability layer that standardizes programmatic access to SAX

and DOM by providing standard factory methods for creating and configuring SAX

parsers and creating DOM objects.

Informix extensions to the JDBC API facilitate storage and retrieval of XML data in

database columns. The methods used during data storage assist in parsing the

XML data, verify that well-formed and valid XML data is stored, and ensure that

invalid XML data is rejected. The methods used during data retrieval assist in

converting the XML data to DOM objects and to type InputSource, which is the

standard input type to both SAX and DOM methods. The Informix extensions are

designed to support XML programmers while still providing flexibility regarding

which JAXP package the programmer is using.

Setting Up Your Environment to Use XML Methods

This section contains information you need to know to prepare your system to use

the JDBC driver XML methods.

Setting Your CLASSPATH

To use the XML methods, add the path names of the following files to your

CLASSPATH setting:

v ifxtools.jar

v xerces.jar

All of these files are located in the lib directory where you installed your driver.

Note: The Xerces XML library xerces.jar has been removed from distribution with

the IBM Informix JDBC Driver, Version 3.00. Xerces is an open source library

that is freely available for download at http://www.alphaworks.ibm.com/
tech/xml4j.

The XML methods are not part of the ifxjdbc.jar file. Instead, they are released in a

separate .jar file named ifxtools.jar. To use the methods, you must add this file to

your CLASSPATH setting along with ifxjdbc.jar.

In addition, building ifxtools.jar requires using code from a .jar file that supports

the SAX, DOM, and JAXP methods. To use ifxtools.jar, you must add these .jar

files to your CLASSPATH setting.

JDK version 1.4 or later uses the Sun Microsystems default XML parser even if the

xml4j parser is in the CLASSPATH. To use the xml4j implementation of the SAX

parser, set the following system properties in the application code or use the -D

command line option:

v The property javax.xml.parsers.SAXParserFactory must be set to

org.apache.xerces.jaxp.SAXParserFactoryImpl.

v For the Document Object Model, the property

javax.xml.parsers.DocumentBuilderFactory must be set to

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl.

For more info on how to set the properties see “Specifying a Parser Factory” on

page 3-27.

Specifying a Parser Factory

By default, the xml4j xerces parser (and as a result, ifxtools.jar) uses the

non-validating XML parser. To use an alternative SAX parser factory, run your

application from the command line as follows:

Chapter 3. Performing Database Operations 3-27

http://www.alphaworks.ibm.com/tech/xml4j
http://www.alphaworks.ibm.com/tech/xml4j

% java -Djavax.xml.parsers.SAXParserFactory=new-factory

If you are not running from the command line, the factory name must be enclosed

in double quotation marks:

% java -Djavax.xml.parsers.SAXParserFactory="new-factory"

You can also set a system property in your code:

System.setProperty("javax.xml.parsers.SAXParserFactory",

 "new-factory")

In this code, new-factory is the alternative parser factory. For example, if you are

using the xerces parser, then new-factory is replaced by

org.apache.xerces.jaxp.SAXParserFactoryImpl.

It is also possible to use an alternative document factory for DOM methods. Run

your application from the command line as follows:

% java -Djavax.xml.parsers.DocumentBuilderFactory=new-factory

If you are not running from the command line, the factory name must be enclosed

in double quotation marks:

% java -Djavax.xml.parsers.DocumentBuilderFactory="new-factory"

You can also set a system property in your code:

System.setProperty("javax.xml.parsers.DocumentBuilderFactory",

 "new-factory")

For example, if you are using the xerces parser, then new-factory is replaced by

jorg.apache.xerces.jaxp.DocumentBuilderFactoryImpl.

Inserting Data

You can use the methods in this section to insert XML data into a database column.

The parameters in method declarations in this section have the following

meanings:

v The file parameter is an XML document. The document can be referenced by a

URL (such as http://server/file.xml or file:///path/file.xml) or a path name (such

as /tmp/file.xml or c:\\work\\file.xml).

v The handler parameter is an optional class you supply, containing callback

routines that the SAX parser invokes as it is parsing the file. If no value is

specified, or if handler is set to NULL, the driver uses empty callback routines that

echo success or failure (the driver reports failure in the form of an

SQLException).

v The validating parameter tells the SAX parser factory to use a validating parser

instead of a parser that only checks form.

If you do not specify nsa or validating, the driver uses the xml4j nonvalidating

XML parser. To change the default, see the previous section, “Specifying a Parser

Factory” on page 3-27.

v The nsa parameter tells the SAX parser factory whether it should use a parser

that can handle namespaces.

The following methods parse a file using SAX and convert it to a string. You can

then use the string returned by these methods as input to the

PreparedStatement.setString() method to insert the data into a database column.

3-28 IBM Informix JDBC Driver Programmer’s Guide

public String XMLtoString(String file, String handler, boolean

 validating,boolean nsa) throws SQLException

public String XMLtoString(String file, String handler) throws

 SQLException

public String XMLtoString(String file) throws SQLException

The following methods parse a file using SAX and convert it to an object of class

InputStream. You can then use the InputStream object as input to the

PreparedStatement.setAsciiStream(), PreparedStatement.setBinaryStream(), or

PreparedStatement.setObject() methods to insert the data into a database column.

public InputStream XMLtoInputStream(String file, String handler,

 boolean validating,boolean nsa) throws SQLException;

public InputStream XMLtoInputStream(String file, String handler)

 throws SQLException;

public InputStream XMLtoInputStream(String file) throws

 SQLException;

For examples of using these methods, see “Inserting Data Examples” on page 3-30.

If no value is specified, or if handler is set to NULL, the driver uses the default

Informix handler.

Important: The driver truncates any input data that is too large for a column. For

example, if you insert the x.xml file into a column of type char (55)

instead of a column of type char (255), the driver inserts the truncated

file with no errors (the driver throws an SQLWarn exception, however).

When the truncated row is selected, the parser throws a

SAXParseException because the row contains invalid XML.

Retrieving Data

You can use the methods in this section to convert XML data that has been fetched

from a database column. These methods help you either convert selected XML text

to DOM or parse the data with SAX. The InputSource class is the input type to

JAXP parsing methods.

For information about the file, handler, nsa, and validating parameters, see “Inserting

Data” on page 3-28.

The following methods convert objects of type String or InputStream to objects of

type InputSource. You can use the ResultSet.getString(),

ResultSet.getAsciiStream(), or ResultSet.getBinaryInputStream() methods to

retrieve the data from the database column and then pass the retrieved data to

getInputSource() for use with any of the SAX or DOM parsing methods. (For an

example, see “Retrieving Data Examples” on page 3-31.)

public InputSource getInputSource(String s) throws SQLException;

public InputSource getInputSource(InputStream is) throws

 SQLException;

The following methods convert objects of type String or InputStream to objects of

type Document:

public Document StringtoDOM(String s, String handler, boolean

 validating,boolean nsa) throws SQLException

Chapter 3. Performing Database Operations 3-29

public Document StringtoDOM(String s, String handler) throws

 SQLException

public Document StringtoDOM(String s) throws SQLException

public Document InputStreamtoDOM(String s, String handler, boolean

 validating,boolean nsa) throws SQLException

public Document InputStreamtoDOM(String file, String handler)

 throws SQLException

public Document InputStreamtoDOM(String file) throws SQLException

For examples of using these methods, see “Retrieving Data Examples” on page

3-31.

Inserting Data Examples

The examples in this section illustrate converting XML documents to formats

acceptable for insertion into Informix database columns.

XMLtoString() Examples

The following example converts three XML documents to character strings and

then uses the strings as parameter values in an SQL INSERT statement:

PreparedStatement p = conn.prepareStatement("insert into tab

 values(?,?,?)");

p.setString(1, UtilXML.XMLtoString("/home/file1.xml"));

p.setString(2, UtilXML.XMLtoString("http://server/file2.xml");

p.setString(3, UtilXML.XMLtoString("file3.xml");

The following example inserts an XML file into an LVARCHAR column. In this

example, tab1 is a table created using the SQL statement:

create table tab1 (col1 lvarchar);

The code is:

try

 {

 String cmd = "insert into tab1 values (?)";

 PreparedStatement pstmt = conn.prepareStatement(cmd);

 pstmt.setString(1, UtilXML.XMLtoString("/tmp/x.xml"));

 pstmt.execute();

 pstmt.close();

 }

 catch (SQLException e)

 {

 // Error handling

 }

XMLtoInputStream() Example

The following example inserts an XML file into a text column. In this example,

table tab2 is created using the SQL statement:

create table tab2 (col1 text);

The code is:

try

 {

 String cmd = "insert into tab2 values (?)";

 PreparedStatement pstmt = conn.prepareStatement(cmd);

 pstmt.setAsciiStream(1, UtilXML.XMLtoInputStream("/tmp/x.xml"),

 (int)(new File("/tmp/x.xml").length()));

 pstmt.execute();

3-30 IBM Informix JDBC Driver Programmer’s Guide

pstmt.close();

 }

 catch (SQLException e)

 {

 // Error handling

 }

Retrieving Data Examples

The following examples illustrate retrieving data from Informix database columns

and converting the data to formats acceptable to XML parsers.

StringtoDOM() Example

This example operates under the assumption that xmlcol is a column of type

lvarchar that contains XML data. The data could be fetched and converted to DOM

with the following code:

ResultSet r = stmt.executeQuery("select xmlcol from table where

 ...");

while (r.next()

 {

 Document doc= UtilXML.StringtoDOM(r.getString("xmlcol"));

 // Process ‘doc’

 }

InputStreamtoDOM() Example

The following example fetches XML data from a text column into a DOM object:

try

 {

 String sql = "select col1 from tab2";

 Statement stmt = conn.createStatement();

 ResultSet r = stmt.executeQuery(sql);

 while(r.next())

 {

 Document doc = UtilXML.InputStreamtoDOM(r.getAsciiStream(1));

 }

 r.close();

 }

 catch (Exception e)

 {

 // Error handling

 }

getInputSource() Examples

This example retrieves the XML data stored in column xmlcol and converts it to an

object of type InputSource; the InputSource object i can then be used with any

SAX or DOM parsing methods:

InputSource i = UtilXML.getInputSource

 (resultset.getString("xmlcol"));

This example uses the implementation of Sun’s JAXP API, in xerces.jar, to parse

fetched XML data in column xmlcol:

InputSource input = UtilXML.getInputSource(resultset.getString("xmlcol"));

SAXParserFactory f = SAXParserFactory.newInstance();

SAXParser parser = f.newSAXParser();

parser.parse(input);

In the examples that follow, tab1 is a table created using the SQL statement:

create table tab1 (col1 lvarchar);

Chapter 3. Performing Database Operations 3-31

The following example fetches XML data from an LVARCHAR column into an

InputSource object for parsing. This example uses SAX parsing by invoking the

parser at org.apache.xerces.parsers.SAXParser.

try

 {

 String sql = "select col1 from tab1";

 Statement stmt = conn.createStatement();

 ResultSet r = stmt.executeQuery(sql);

 Parser p = ParserFactory.makeParser("org.apache.xerces.parsers.SAXParser");

 while(r.next())

 {

 InputSource i = UtilXML.getInputSource(r.getString(1));

 p.parse(i);

 }

 r.close();

 }

 catch (SQLException e)

 {

 // Error handling

 }

The following example fetches XML data from a text column into an InputSource

object for parsing. This is the same example as the previous one, but it uses JAXP

factory methods instead of the SAX parser to analyze the data.

try

 {

 String sql = "select col1 from tab2";

 Statement stmt = conn.createStatement();

 ResultSet r = stmt.executeQuery(sql);

 SAXParserFactory factory = SAXParserFactory.newInstance();

 Parser p = factory.newSAXParser();

 while(r.next())

 {

 InputSource i = UtilXML.getInputSource(r.getAsciiStream(1));

 p.parse(i);

 }

 r.close();

 }

 catch (Exception e)

 {

 // Error handling

 }

3-32 IBM Informix JDBC Driver Programmer’s Guide

Chapter 4. Working With Informix Types

In This Chapter . 4-2

Distinct Data Types . 4-2

Inserting Data Examples . 4-2

Retrieving Data Example . 4-3

Unsupported Methods . 4-4

BYTE and TEXT Data Types . 4-4

Caching Large Objects . 4-5

Example: Inserting or Updating Data . 4-5

Example: Selecting Data . 4-6

SERIAL and SERIAL8 Data Types . 4-7

BIGINT and BIGSERIAL Data Types . 4-8

INTERVAL Data Type . 4-9

The Interval Class . 4-9

Using Variables for Binary Qualifiers . 4-9

Using Interval Methods . 4-10

The IntervalYM Class . 4-10

Using IntervalYM Constructors . 4-10

Using IntervalYM Methods . 4-11

The IntervalDF Class . 4-12

Using IntervalDF Constructors . 4-12

Using IntervalDF Methods . 4-13

Interval Example . 4-14

Collections and Arrays . 4-14

Collection Examples . 4-14

Array Example . 4-16

Named and Unnamed Rows . 4-17

Interval and Collection Support . 4-18

Unsupported Methods . 4-18

Using the SQLData Interface . 4-18

SQLData Examples . 4-19

Using the Struct Interface . 4-21

Struct Examples . 4-22

Using the ClassGenerator Utility . 4-25

Simple Named Row Example . 4-25

Nested Named Row Example . 4-26

Caching Type Information . 4-27

Smart Large Object Data Types . 4-27

Smart Large Objects in the Database Server . 4-28

Smart Large Objects in a Client Application . 4-29

Steps for Creating Smart Large Objects . 4-30

Steps for Accessing Smart Large Objects . 4-34

Performing Operations on Smart Large Objects . 4-34

Opening a Smart Large Object . 4-35

Positioning Within a Smart Large Object . 4-35

Reading from a Smart Large Object . 4-36

Writing to a Smart Large Object . 4-37

Truncating a Smart Large Object . 4-38

Measuring a Smart Large Object . 4-38

Closing and Releasing a Smart Large Object . 4-38

Converting IfxLocator to a Hexadecimal String . 4-38

Working with Storage Characteristics . 4-39

Using System-Specified Storage Characteristics . 4-40

Working with Disk-Storage Information . 4-42

Working with Logging, Last-Access Time, and Data Integrity 4-44

Changing the Storage Characteristics . 4-46

© Copyright IBM Corp. 1996, 2008 4-1

Working with Status Characteristics . 4-48

Working with Locks . 4-48

Using Byte-Range Locking . 4-50

Caching Large Objects . 4-50

Smart Large Object Examples . 4-50

Creating a Smart Large Object . 4-50

Inserting Data into a Smart Large Object . 4-51

Retrieving Data from a Smart Large Object . 4-52

In This Chapter

This chapter explains the Informix-specific data types (other than opaque types)

supported in IBM Informix JDBC Driver. For information on opaque types, see

Chapter 5, “Working with Opaque Types,” on page 5-1. The chapter includes the

following sections:

v Distinct Data Types

v BYTE and TEXT Data Types

v SERIAL and SERIAL8 Data Types

v BIGINT and BIGSERIAL Data Types

v INTERVAL Data Type

v Collections and Arrays

v Named and Unnamed Rows

v Smart Large Object Data Types

Distinct Data Types

A distinct type can map to the underlying base type or to a user-defined Java

object. For example, a distinct type of INT can map to int or to a Java object that

encapsulates the data representation. This Java object must implement the

java.sql.SQLData interface. You must provide a custom type map as described in

Appendix C, “Mapping Data Types,” on page C-1, to map this Java object to the

corresponding SQL type name.

Inserting Data Examples

The following example shows an SQL statement that defines a distinct type:

CREATE DISTINCT TYPE mymoney AS NUMERIC(10, 2);

CREATE TABLE distinct_tab (mymoney_col mymoney);

Following is an example of mapping to the base type:

String s = "insert into distinct_tab (mymoney_col) values (?)";

System.out.println(s);

pstmt = conn.prepareStatement(s);

...

BigDecimal bigDecObj = new BigDecimal(123.45);

pstmt.setBigDecimal(1, bigDecObj);

System.out.println("setBigDecimal...ok");

pstmt.executeUpdate();

When you map to the underlying type, IBM Informix JDBC Driver performs the

mapping on the client side because the database server provides implicit casting

between the underlying type and the distinct type.

4-2 IBM Informix JDBC Driver Programmer’s Guide

You can also map distinct types to Java objects that implement the SQLData

interface. The following example shows an SQL statement that defines a distinct

type:

CREATE DISTINCT TYPE mymoney AS NUMERIC(10,2)

The following code maps the distinct type to a Java object named MyMoney:

import java.sql.*;

import com.informix.jdbc.*;

public class myMoney implements SQLData

{

 private String sql_type = "mymoney";

 public java.math.BigDecimal value;

 public myMoney() { }

 public myMoney(java.math.BigDecimal value)

 this.value = value;

 public String getSQLTypeName()

 {

 return sql_type;

 {

 public void readSQL(SQLInput stream, String type) throws

 SQLException

 {

 sql_type = type;

 value = stream.readBigDecimal();

 {

 public void writeSQL(SQLOutput stream) throws SQLException

 {

 stream.writeBigDecimal(value);

 }

 // overides Object.equals()

 public boolean equals(Object b)

 return value.equals(((myMoney)b).value);

 }

 public String toString()

 {

 return "value=" + value;

 }

}

...

String s - "insert into distinct_tab (mymoney_col) values (?)";

pstmt = conn.prepareStatement(s);

myMoney mymoney = new myMoney();

mymoney.value = new java.math.BigDecimal(123.45);

pstmt.setObject(1, mymoney);

System.out.println("setObject(myMoney)...ok");

pstmt.executeUpdate();

In this case, you use the setObject() method instead of the setBigDecimal() method

to insert data.

Retrieving Data Example

You can fetch a distinct type as its underlying base type or as a Java object, if the

mapping is defined in a custom type map. Using the previous example, you can

fetch the data as a Java object, as shown in the following example:

java.util.Map customtypemap = conn.getTypeMap();

System.out.println("getTypeMap...ok");

if (customtypemap == null)

Chapter 4. Working With Informix Types 4-3

{

 System.out.println("\n***ERROR: typemap is null!");

 return;

}

customtypemap.put("mymoney", Class.forName("myMoney"));

...

String s = "select mymoney_col from distinct_tab order by 1";

try

{

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 System.out.println("Fetching data ...");

 int curRow = 0;

 while (rs.next())

 {

 curRow++;

 myMoney mymoneyret = (myMoney)rs.getObject("mymoney_col");

 }

 System.out.println("total rows expected: " + curRow);

 stmt.close();

}

catch (SQLException e)

{

 System.out.println("***ERROR: " + e.getErrorCode() + " " +

 e.getMessage());

 e.printStackTrace();

}

In this case, you use the getObject() method instead of the getBigDecimal()

method to retrieve data.

Unsupported Methods

The following methods of the SQLInput and SQLOutput interfaces are not

supported for distinct types:

v java.sql.SQLInput

– readArray()

– readCharacterStream()

– readRef()

v java.sql.SQLOutput

– writeArray()

– writeCharacterStream(Reader x)

– writeRef(Ref x)

BYTE and TEXT Data Types

This section describes the Informix BYTE and TEXT data types and how to

manipulate columns of these data types with the JDBC API.

The BYTE data type is a data type for a simple large object that stores any kind of

data in an undifferentiated byte stream. Examples of this binary data include

spreadsheets, digitized voice patterns, and video clips. The TEXT data type is a

data type for a simple large object that stores any kind of text data. It can contain

both single and multibyte characters.

Columns of either data type have a theoretical limit of 231 bytes and a practical

limit determined by your disk capacity.

4-4 IBM Informix JDBC Driver Programmer’s Guide

For more detailed information about the Informix BYTE and TEXT data types, refer

to IBM Informix Guide to SQL: Reference and IBM Informix Guide to SQL: Syntax.

Caching Large Objects

Whenever an object of type BLOB, CLOB, text, or byte is fetched from the database

server, the data is cached in client memory. If the size of the large object is bigger

than the value in the LOBCACHE environment variable, the large object data is

stored in a temporary file. For more information about the LOBCACHE variable,

see “Managing Memory for Large Objects” on page 7-2.

Example: Inserting or Updating Data

To insert into or update BYTE and TEXT columns, read a stream of data from a

source, such as an operating system file, and transmit it to the database as a

java.io.InputStream object. The PreparedStatement interface provides methods for

setting an input parameter to this Java input stream. When the statement is

executed, IBM Informix JDBC Driver makes repeated calls to the input stream,

reading its contents and transmitting those contents as the actual parameter data to

the database.

For BYTE data types, use the PreparedStatement.setBinaryStream() method to set

the input parameter to the InputStream object. For TEXT data types, use the

PreparedStatement.setAsciiStream() method.

The following example from the ByteType.java program shows how to insert the

contents of the operating system file data.dat into a column of data type BYTE:

try

{

 stmt = conn.createStatement();

 stmt.executeUpdate("create table tab1(col1 byte)");

}

catch (SQLException e)

{

 System.out.println("Failed to create table ..." + e.getMessage());

}

try

{

 pstmt = conn.prepareStatement("insert into tab1 values (?)");

}

catch (SQLException e)

{

 System.out.println("Failed to Insert into tab: " + e.toString());

}

File file = new File("data.dat");

int fileLength = (int) file.length();

InputStream value = null;

FileInputStream fileinp = null;

int row = 0;

String str = null;

int rc = 0;

ResultSet rs = null;

System.out.println("Inserting data ...\n");

try

{

 fileinp = new FileInputStream(file);

 value = (InputStream)fileinp;

}

catch (Exception e) {}

Chapter 4. Working With Informix Types 4-5

try

{

 pstmt.setBinaryStream(1,value,10); //set 1st column

}

catch (SQLException e)

{

 System.out.println("Unable to set parameter");

}

set_execute();

...

public static void set_execute()

{

try

{

 pstmt.executeUpdate();

}

catch (SQLException e)

{

 System.out.println("Failed to Insert into tab: " + e.toString());

 e.printStackTrace();

}

}

The example first creates a java.io.File object that represents the operating system

file data.dat. The example then creates a FileInputStream object to read from the

object of type File. The object of type FileInputStream is cast to its superclass

InputStream, which is the expected data type of the second parameter to the

PreparedStatement.setBinaryStream() method. The setBinaryStream() method

executes on the already prepared INSERT statement, which sets the input stream

parameter. Finally, the PreparedStatement.executeUpdate() method executes,

which inserts the contents of the data.dat operating system file into the column of

type BYTE.

The TextType.java program shows how to insert data into a column of type TEXT.

It is similar to inserting into a column of type BYTE, except the method

setAsciiStream() is used to set the input parameter instead of setBinaryStream().

Example: Selecting Data

After you select from a table into a ResultSet object, you can use the

ResultSet.getBinaryStream() and ResultSet.getAsciiStream() methods to retrieve a

stream of binary or ASCII data from columns of type BYTE and TEXT, respectively.

Both methods return an InputStream object, which can be used to read the data in

chunks.

All the data in the returned stream in the current row must be read before you call

the next() method to retrieve the next row.

The following example from the ByteType.java program shows how to select data

from a column of type BYTE and print out the data to the standard output device:

try

{

 stmt = conn.createStatement();

 rs = stmt.executeQuery("Select * from tab1");

 while(rs.next())

 {

 row++;

4-6 IBM Informix JDBC Driver Programmer’s Guide

value = rs.getBinaryStream(1);

 dispValue(value);

 }

}

catch (Exception e) { }

...

public static void dispValue(InputStream in)

{

 int size;

 byte buf;

 int count = 0;

 try

 {

 size = in.available();

 byte ary[] = new byte[size];

 buf = (byte) in.read();

 while(buf!=-1)

 {

 ary[count] = buf;

 count++;

 buf = (byte) in.read();

 }

 }

 catch (Exception e)

 {

 System.out.println("Error occured while reading stream ... \n");

 }

}

The example first puts the result of a SELECT statement into a ResultSet object. It

then executes the method ResultSet.getBinaryStream() to retrieve the BYTE data

into a Java InputStream object.

The method dispValue(), whose Java code is also included in the example, is used

to print out the contents of the column to the standard output device. The

dispValue() method uses byte arrays and the InputStream.read() method to

systematically read the contents of the column of type BYTE.

The TextType.java program shows how to select data from a column of type TEXT.

It is very similar to selecting from a column of type BYTE, except the

getAsciiStream() method is used instead of getBinaryStream().

SERIAL and SERIAL8 Data Types

IBM Informix JDBC Driver provides support for the Informix SERIAL and

SERIAL8 data types through the methods getSerial() and getSerial8(), which are

part of the implementation of the java.sql.Statement interface.

Because the SERIAL and SERIAL8 data types do not have an obvious mapping to

any JDBC API data types from the java.sql.Types class, you must import

Informix-specific classes into your Java program to handle SERIAL and SERIAL8

columns. To do this, add the following import line to your Java program:

import com.informix.jdbc.*;

Use the getSerial() and getSerial8() methods after an INSERT statement to return

the serial value that was automatically inserted into the SERIAL or SERIAL8

column of a table, respectively. The methods return 0 if any of the following

conditions are true:

v The last statement was not an INSERT statement.

v The table being inserted into does not contain a SERIAL or SERIAL8 column.

Chapter 4. Working With Informix Types 4-7

v The INSERT statement has not executed yet.

If you execute the getSerial() or getSerial8() method after a CREATE TABLE

statement, the method returns 1 by default (assuming the new table includes a

SERIAL or SERIAL8 column). If the table does not contain a SERIAL or SERIAL8

column, the method returns 0. If you assign a new serial starting number, the

method returns that number.

If you want to use the getSerial() and getSerial8() methods, you must cast the

Statement or PreparedStatement object to IfmxStatement, the Informix-specific

implementation of the Statement interface. The following example shows how to

perform the cast:

cmd = "insert into serialTable(i) values (100)";

stmt.executeUpdate(cmd);

System.out.println(cmd+"...okay");

int serialValue = ((IfmxStatement)stmt).getSerial();

System.out.println("serial value: " + serialValue);

If you want to insert consecutive serial values into a column of data type SERIAL

or SERIAL8, specify a value of 0 for the SERIAL or SERIAL8 column in the

INSERT statement. When the column is set to 0, the database server assigns the

next-highest value.

For more detailed information about the Informix SERIAL and SERIAL8 data

types, refer to the IBM Informix Guide to SQL: Reference and the IBM Informix Guide

to SQL: Syntax.

BIGINT and BIGSERIAL Data Types

The BIGINT and BIGSERIAL data types have the same range of values as INT8

and SERIAL8 data types. However, BIGINT and BIGSERIAL have advantages for

storage and computation over INT8 and SERIAL8.

Both the BIGINT and BIGSERIAL data types map to the to BIGINT Java type in

the class java.sql.Types. When data is retrieved from the database, the BIGINT and

BIGSERIAL data types map to long Java Type.

The Informix JDBC Driver provides support for the Informix BIGSERIAL and

BIGINT data types through the getBigSerial() method, which is a part of the

java.sql.Statement interface

Because the BIGSERIAL and BIGINT data types do not have an obvious mapping

to any JDBC API data types from the java.sql.Types class, you must import

Informix-specific classes into your Java program to handle BIGSERIAL and BIGINT

columns. To do this, add the following import line to your Java program:

import com.informix.jdbc.*;

Use the getBigSerial() method after an INSERT statement to return the value that

was inserted into the BIGSERIAL or BIGINT column of a table, respectively.

If you want to use the getBigSerial() method, you must cast the Statement or

PreparedStatement object to IfmxStatement, the Informix-specific implementation

of the Statement interface. The following example shows how to perform the cast:

4-8 IBM Informix JDBC Driver Programmer’s Guide

cmd = "insert into bigserialTable(i) values (100)";

stmt.executeUpdate(cmd);

System.out.println(cmd+"...okay");

long serialValue = ((IfmxStatement)stmt).getBigSerial();

System.out.println("serial value: " + serialValue);

These types are part of the com.informix.lang.IfxTypes class. See the “Using the

IfxTypes Class” on page C-9 table for the IfxTypes constants and the corresponding

Informix data types.

INTERVAL Data Type

The Informix INTERVAL data type stores a value that represents a span of time.

INTERVAL data types comprise two types: year-month intervals and day-time

intervals. A year-month interval can represent a span of years and months, and a

day-time interval can represent a span of days, hours, minutes, seconds, and

fractions of a second. For more information about the INTERVAL data type and

definitions of qualifier, precision, and fraction, refer to the following publications:

v IBM Informix Guide to SQL: Tutorial

v IBM Informix Guide to SQL: Reference

v IBM Informix Guide to SQL: Syntax

The Interval Class

The com.informix.lang.Interval class is an Informix-specific extension to the JDBC

specification from Sun Microsystems. Interval is the base class for the INTERVAL

data type. Interval has two subclasses: IntervalYM (for year-month qualifiers) and

IntervalDF (for day-time qualifiers). You use these subclasses to create and

manipulate INTERVAL data types.

Tip: Many of the Interval, IntervalYM, and IntervalDF constructors take a

Connection object as a parameter. This passes the value of the

CLIENT_LOCALE environment variable to the Interval, IntervalYM, or

IntervalDF object, which allows the display of localized error messages if an

exception is thrown. For more information, see “Support for Localized Error

Messages” on page 6-14.

For information about the string INTERVAL formats in this section, refer to the

IBM Informix Guide to SQL: Syntax.

This section discusses many of the methods you can use with the INTERVAL data

types. For complete reference information, see the online reference documentation

in the directory doc/javadoc/* after you install your software. (The doc directory is

a subdirectory of the directory where you installed IBM Informix JDBC Driver.)

Using Variables for Binary Qualifiers

You can use string qualifiers to manipulate INTERVAL data types, but using binary

qualifiers results in faster performance. The following variables are defined in the

Interval base class and represent the time unit (start and end code) of a field in the

binary qualifier. To use these variables, instantiate objects of the IntervalYM and

IntervalDF classes, which inherit these variables from the Interval base class.

Variable Description

TU_YEAR Time unit for the YEAR qualifier field

TU_MONTH Time unit for the MONTH qualifier field

Chapter 4. Working With Informix Types 4-9

TU_DAY Time unit for the DAY qualifier field

TU_HOUR Time unit for the HOUR qualifier field

TU_MINUTE Time unit for the MINUTE qualifier field

TU_SECOND Time unit for the SECOND qualifier field

TU_FRAC Time unit for the leading FRACTION qualifier field

TU_F1 Time unit for the ending field of the first position of FRACTION

TU_F2 Time unit for the ending field of the second position of FRACTION

TU_F3 Time unit for the ending field of the third position of FRACTION

TU_F4 Time unit for the ending field of the fourth position of FRACTION

TU_F5 Time unit for the ending field of the fifth position of FRACTION

Using Interval Methods

You can use the Interval methods to extract information about binary qualifiers. To

use these methods, instantiate objects of the IntervalYM and IntervalDF classes,

which inherit these variables from the Interval base class.

Some of the tasks you can perform and the methods you can use follow:

v Extracting the length of a qualifier:

public static byte getLength(short qualifier)

v Extracting the starting field code (one of the TU_XXX variables) from a qualifier:

public static byte getStartCode(short qualifier)

v Extracting the ending field code (one of the TU_XXX variables) from a qualifier:

public static byte getEndCode(short qualifier)

v Obtaining the string value that corresponds to the TU_XXX value of part of an

interval (for example, getFieldName(TU_YEAR) returns the string year):

public static String getFieldName(byte code)

v Obtaining the entire name of the interval as a character string, taking a qualifier

as input:

public static String getIfxTypeName(int type,

 short qualifier)

v Obtaining the number of digits in the FRACTION part of the INTERVAL data

type:

public static byte getScale(short qualifier)

v Creating a binary qualifier from a length, start code (TU_XXX), and end code

(TU_XXX):

public static short getQualifier(byte length, byte

 startCode, byte endCode) throws SQLException

For example, getQualifier(4, TU_YEAR, TU_MONTH) creates a binary

representation of the YEAR TO MONTH qualifier.

The IntervalYM Class

The com.informix.lang.IntervalYM class allows you to manipulate year-month

intervals.

Using IntervalYM Constructors

The default constructor is defined as follows:

public IntervalYM() throws SQLException

4-10 IBM Informix JDBC Driver Programmer’s Guide

Use this second version of the constructor to display localized error messages if an

exception is thrown:

public IntervalYM(Connection conn) throws SQLException

Use the following constructors to create year-month intervals from specific input

values:

v Two time stamps, returning the IntervalYM value that equals Timestamp1 -

Timestamp2:

public IntervalYM(Timestamp t1, Timestamp t2) throws

 SQLException

public IntervalYM (Timestamp t1, Timestamp t2, Connection

 conn) throws SQLException

The second version allows you to support localized error messages.

v Year and month values (large month values are converted to year):

public IntervalYM(int years, int months) throws

 SQLException

public IntervalYM(int years, int months,

 Connection conn) throws SQLException

The second version allows you to support localized error messages.

v A month value and the encoded qualifier:

public IntervalYM(int months, short qualifier,

 Connection conn) throws SQLException

To specify the qualifier, you can use the getQualifier() method described in

“Using Interval Methods” on page 4-10. This constructor supports localized error

messages.

v A string:

public IntervalYM(String string) throws SQLException

public IntervalYM(String string, Connection conn) throws

 SQLException

The second version allows you to support localized error messages.

v A string and qualifier:

public IntervalYM(String string, short qualifier,

 Connection conn) throws SQLException

To specify the qualifier, you can use the getQualifier() method described in

“Using Interval Methods” on page 4-10. This constructor supports localized error

messages.

v A string and qualifier information:

public IntervalYM(String string, int length,

 byte startCode, byte endCode) throws SQLException

public IntervalYM(String string, int length,

 byte startCode, byte endCode, Connection conn) throws

 SQLException

The second version allows you to support localized error messages.

Using IntervalYM Methods

The following methods allow you to manipulate year-month intervals. (You can

also use the Interval methods, described previously.) Some of the tasks you can

perform using IntervalYM methods include the following:

v Comparing two intervals:

boolean equals(Object other)

boolean greaterThan(IntervalYM other)

boolean lessThan(IntervalYM other)

Chapter 4. Working With Informix Types 4-11

v Setting a value for an interval from:

– A string:

void fromString(String other)

void set(String string)

– Year and month values (large month values are converted to years):

void set(int years, int months)

– Two time stamps:

void set(Timestamp t1, Timestamp t2)

v Setting the qualifier for an interval:

– From the length, start code, and end code:

void setQualifier(int length, byte startcode, byte

 endcode)

– Using an existing qualifier:

void setQualifier(short qualifier)

v Obtaining the number of months in the interval:

long getMonths()

v Creating a string representation of the interval in the format yyyy-mm:

String toString()

The fields present depend on the qualifier. Blanks replace leading zeros.

The IntervalDF Class

The com.informix.lang.IntervalDF class allows you to manipulate intervals.

Using IntervalDF Constructors

The default constructor is defined as follows:

public IntervalDF() throws SQLException

Use this second version of the default constructor to display localized error

messages if an exception is thrown:

public IntervalDF(Connection conn) throws SQLException

Use the following constructors to create intervals from specific input values:

v Two time stamps t1 and t2, returning the IntervalDF value that equals t1 - t2:

public IntervalDF(Timestamp t1, Timestamp t2)

 throws SQLException

public IntervalDF(Timestamp t1, Timestamp t2,

 Connection conn) throws SQLException

The second version allows you to support localized error messages.

v A number of seconds and nanoseconds (large second values are converted to

minutes, hours, or days):

public IntervalDF(long seconds, long nanos)

 throws SQLException

public IntervalDF(long seconds, long nanos, Connection conn) throws SQLException

The second version allows you to support localized error messages.

v A number of seconds, a number of nanoseconds, and qualifier:

public IntervalDF(long seconds, long nanos,

 short qualifier) throws SQLException

public IntervalDF(long seconds, long nanos,

short qualifier, Connection conn) throws SQLException

4-12 IBM Informix JDBC Driver Programmer’s Guide

To specify the qualifier, you can use the getQualifier() method described in

“Using Interval Methods” on page 4-10. The second version allows you to

support localized error messages.

v A string:

public IntervalDF(String string)

 throws SQLException

public IntervalDF(String string, Connection conn)

 throws SQLException

The second version allows you to support localized error messages.

When you use these constructors, the default qualifier is set to the following

values:

leading field precision: 2 start code: TU_DAY end code: TU_F5

For information about string INTERVAL formats, refer to the IBM Informix Guide

to SQL: Syntax.
v A string and a qualifier:

public IntervalDF(String string, short qualifier)

 throws SQLException

public IntervalDF(String string, short qualifier, Connection conn) throws SQLException

To specify the qualifier, you can use the getQualifier() method described in

“Using Interval Methods” on page 4-10. The second version allows you to

support localized error messages.

v A string and qualifier information:

public IntervalDF(String string, int length, byte startcode,

byte endcode) throws SQLException

public IntervalDF(String string, int length, byte startcode,

byte endcode, Connection conn) throws SQLException

The second version allows you to support localized error messages.

Using IntervalDF Methods

The following methods allow you to manipulate intervals. (You can also use the

Interval methods, described previously.) The tasks you can perform, and the

methods you can use, are as follows:

v Comparing two intervals:

boolean equals(Object other)

boolean greaterThan(IntervalDF other)

boolean lessThan(IntervalDF other)

v Setting a value for an interval from:

– A string:

void fromString(String other)

void set(String string)

– Second and nanosecond values (large second values are converted to minutes,

hours, or days):

void set(long seconds, long nanos)

– Two time stamps:

void set(Timestamp t1, Timestamp t2)

v Setting the qualifier from the length, start code, and end code:

void setQualifier(int length, byte startcode, byte endcode)

v Obtaining the number of nanoseconds in the interval:

long getNanoSeconds()

v Obtaining the number of seconds in the interval:

long getSeconds()

Chapter 4. Working With Informix Types 4-13

v Creating a string representation of the interval in the format ddddd hh:mm:ss.nano:

String toString()

The fields present depend on the qualifier. Blanks replace leading zeros.

Interval Example

The Intervaldemo.java program, which is included in IBM Informix JDBC Driver,

shows how to insert into and select from the two types of INTERVAL data types.

Collections and Arrays

The Sun Microsystem JDBC 3.0 specification describes only one method to

exchange collection data between a Java client and a relational database: an array.

Because the array interface does not include a constructor, IBM Informix JDBC

Driver includes an extension that allows a java.util.Collection object to be used in

the PreparedStatement.setObject() and ResultSet.getObject() methods.

If you prefer to use an Array object, use the PreparedStatement.setArray() and

ResultSet.getArray() methods. A Collection object is easier to use, but an Array

object conforms to JDBC 3.0 standards.

By default, the driver maps LIST columns to java.util.ArrayList objects and SET

and MULTISET columns to java.util.HashSet objects during a fetch. You can

override these defaults, but the class you use must implement the

java.util.Collection interface.

To override this default mapping, you can use other classes in the

java.util.Collection interface, such as the TreeSet class. You can also create your

own classes that implement the java.util.Collection interface. In either case, you

must provide a customized type map using the Connection.setTypeMap() method.

During an INSERT operation, any java.util.Collection object that is an instance of

the java.util.Set interface is mapped to an Informix MULTISET data type. An

instance of the java.util.List interface is mapped to an Informix LIST data type.

You can override these defaults by creating a customized type mapping.

For information about customized type mappings, see Appendix C.

Important: Sets are by definition unordered. If you select collection data using a

HashSet object, the order of the elements in the HashSet object might

not be the same as the order specified when the set was inserted. For

example, if the data on the database server is the set {1, 2, 3}, it might

be retrieved into the HashSet object as {3, 2, 1} or any other order.

The complete versions of all of the examples in the following sections are in the

complex-types directory where you installed the driver. For more information, see

Appendix A, “Sample Code Files,” on page A-1.

Collection Examples

Following is a sample database schema:

create table tab (a set(integer not null), b integer);

insert into tab values ("set{1, 2, 3}", 10);

The following is a fetch example using a java.util.HashSet object:

4-14 IBM Informix JDBC Driver Programmer’s Guide

java.util.HashSet set;

PreparedStatement pstmt;

ResultSet rs;

pstmt = conn.prepareStatement("select * from tab");

System.out.println("prepare ... ok");

rs = pstmt.executeQuery();

System.out.println("executeQuery ... ok");

rs.next();

set = (HashSet) rs.getObject(1);

System.out.println("getObject() ... ok");

/* The user can now use HashSet.iterator() to extract

 * each element in the collection.

 */

Iterator it = set.iterator();

Object obj;

Class cls = null;

int i = 0;

while (it.hasNext())

 {

 obj = it.next();

 if (cls == null)

 {

 cls = obj.getClass();

 System.out.println(" Collection class: " + cls.getName());

 }

 System.out.println(" element[" + i + "] = " +

 obj.toString());

 i++;

 }

pstmt.close();

In the set = (HashSet) rs.getObject(1) statement of this example, IBM Informix

JDBC Driver gets the type for column 1. Because it is a SET type, a HashSet object

is instantiated. Next, each collection element is converted into a Java object and

inserted into the collection.

The following fetch example uses a java.util.TreeSet object:

java.util.TreeSet set;

PreparedStatement pstmt;

ResultSet rs;

/*

 * Fetch a SET as a TreeSet instead of the default

 * HashSet. In this example a new java.util.Map object has

 * been allocated and passed in as a parameter to getObject().

 * Connection.getTypeMap() could have been used as well.

 */

java.util.Map map = new HashMap();

map.put("set", Class.forName("java.util.TreeSet"));

System.out.println("mapping ... ok");

pstmt = conn.prepareStatement("select * from tab");

System.out.println("prepare ... ok");

rs = pstmt.executeQuery();

System.out.println("executeQuery ... ok");

rs.next();

set = (TreeSet) rs.getObject(1, map);

System.out.println("getObject(Map) ... ok");

/* The user can now use HashSet.iterator() to extract

 * each element in the collection.

 */

Iterator it = set.iterator();

Object obj;

Class cls = null;

Chapter 4. Working With Informix Types 4-15

int i = 0;

while (it.hasNext())

 {

 obj = it.next();

 if (cls == null)

 {

 cls = obj.getClass();

 System.out.println(" Collection class: " + cls.getName());

 }

 System.out.println(" element[" + i + "] = " +

 obj.toString());

 i++;

 }

pstmt.close();

In the map.put("set", Class.forName("java.util.TreeSet")); statement, the

default mapping of set = HashSet is overridden.

In the set = (TreeSet) rs.getObject(1, map) statement, IBM Informix JDBC

Driver gets the type for column 1 and finds that it is a SET object. Then the driver

looks up the type mapping information, finds TreeSet, and instantiates a TreeSet

object. Next, each collection element is converted into a Java object and inserted

into the collection.

For more information about the uses of HashSet and TreeSet objects, refer to the

class definitions in the documentation from Sun Microsystems.

The following example shows an insert. This example inserts the set (0, 1, 2, 3, 4)

into a SET column:

java.util.HashSet set = new HashSet();

Integer intObject;

int i;

/* Populate the Java collection */

for (i=0; i < 5; i++)

 {

 intObject = new Integer(i);

 set.add(intObject);

 }

System.out.println("populate java.util.HashSet...ok");

PreparedStatement pstmt = conn.prepareStatement

 ("insert into tab values (?, 20)");

System.out.println("prepare...ok");

pstmt.setObject(1, set);

System.out.println("setObject()...ok");

pstmt.executeUpdate();

System.out.println("executeUpdate()...ok");

pstmt.close();

The pstmt.setObject(1, set) statement in this example first serializes each

element of the collection. Next, the type information is constructed as each element

is converted into a Java object. If the types of any elements in the collection do not

match the type of the first element, an exception is thrown. The type information is

sent to the database server.

Array Example

Following is a sample database schema:

CREATE TABLE tab (a set(integer not null), b integer);

INSERT INTO tab VALUES ("set{1,2,3}", 10);

4-16 IBM Informix JDBC Driver Programmer’s Guide

The following example fetches data using a java.sql.Array object:

PreparedStatement pstmt = conn.prepareStatement("select a from tab");

System.out.println("prepare ... ok");

ResultSet rs = pstmt.executeQuery();

System.out.println("executeQuery ... ok");

rs.next();

java.sql.Array array = rs.getArray(1);

System.out.println("getArray() ... ok");

pstmt.close();

/*

 * The user can now materialize the data into either

 * an array or else a ResultSet. If the collection elements

 * are primitives then the array should be an array of primitives,

 * not Objects. Mapping data can be provided at this point.

 */

Object obj = array.getArray((long) 1, 2);

int [] intArray = (int []) obj; // cast it to an array of ints

int i;

for (i=0; i < intArray.length; i++)

 {

 System.out.println("integer element = " + intArray[i]);

 }

pstmt.close();

The java.sql.Array array = rs.getArray(1) statement instantiates a

java.sql.Array object. Data is not converted at this point.

The Object obj = array.getArray((long) 1, 2) statement converts data into an

array of integers (int types, not Integer objects). Because the getArray() method

has been called with index and count values, only a subset of data is returned.

Named and Unnamed Rows

The Sun Microsystem JDBC specification refers to an SQL type called a structured

type or struct, which is equivalent to an Informix named row. The specification

defines two approaches to exchange structured-type data between a Java client and

a relational database:

v Using the SQLData interface. A single Java class per named row type

implements the SQLData interface. The class has a member for each element in

the named row.

v Using the Struct interface. This interface instantiates the necessary Java object

for each element in the named row and constructs an array of java.util.Object

Java objects.

Whether IBM Informix JDBC Driver instantiates a Java object or a Struct object for

a fetched named row depends on whether there is a customized type-mapping

entry or not, as follows:

v If there is an entry for a named row in the Connection.getTypeMap() map, or if

you provided a type mapping using the getObject() method, a single Java object

is instantiated.

v If there is no entry for a named row in the Connection.getTypeMap() map, and

if you have not provided a type mapping using the getObject() method, a Struct

object is instantiated.

Unnamed rows are always fetched into Struct objects.

Chapter 4. Working With Informix Types 4-17

Important: Regardless of whether you use the SQLData or Struct interface, if a

named or unnamed row contains an opaque data type column, there

must be a type-mapping entry for it. If you are using the Struct

interface to access a row that contains an opaque data type column,

you need a customized type map for the opaque data type column, but

not for the row as a whole.

For more information about custom type mapping, see Appendix C.

Interval and Collection Support

The java.sql.SQLOutput and java.sql.SQLInput methods are extended to support

Collection and Interval objects in named and unnamed rows. These extensions

include the following methods:

v The com.informix.jdbc.IfmxComplexSQLInput.readObject() method returns the

appropriate java.util.Collection object if the data is a set, list, or multiset data

type.

v The com.informix.jdbc.IfmxComplexSQLInput.readInterval() method returns

the appropriate IntervalYM or IntervalDF object for an interval data type,

depending on the qualifier.

v The com.informix.jdbc.IfmxComplexSQLOutput.writeObject() method accepts

objects derived from the java.util.Collection interface or from IntervalYM and

IntervalDF objects.

Unsupported Methods

The following SQLInput methods are not supported for selecting a ROW column

into a Java object that implements SQLData:

v readByte()

v readCharacterStream()

v readRef()

The following SQLOutput methods are not supported for inserting a Java object

that implements SQLData into a ROW column:

v writeByte(byte)

v writeCharacterStream(java.io.Reader x)

v writeRef(Ref x)

Using the SQLData Interface

The Java class for the named row must implement the SQLData interface. The

class must have a member for each element in the named row but can have other

members in addition to these. The members can be in any order and need not be

public.

The Java class must implement the writeSQL(), readSQL(), and

getSQLTypeName() methods for the named row as defined in the SQLData

interface, but can implement additional methods. You can use the ClassGenerator

utility to create the class; for more information, see “Using the ClassGenerator

Utility” on page 4-25.

To link this Java class with the named row, create a customized type mapping

using the Connection.setTypeMap() method or the getObject() method. For more

information about type mapping, see Appendix C.

4-18 IBM Informix JDBC Driver Programmer’s Guide

You cannot use the SQLData interface to access unnamed rows.

SQLData Examples

The complete versions of all of the examples in this section are in the

demo/complex-types directory where you installed the driver. For more

information, see Appendix A.

The following example includes a Java class that implements the java.sql.SQLData

interface.

Here is a sample database schema:

CREATE ROW TYPE fullname_t (first char(20), last char(20));

CREATE ROW TYPE person_t (id int, name fullname_t, age int);

CREATE TABLE teachers (person person_t, dept char (20));

INSERT INTO teachers VALUES ("row(100, row(‘Bill’, ’Smith’), 27)", "physics");

This is the fullname Java class:

import java.sql.*;

public class fullname implements SQLData

{

 public String first;

 public String last;

 private String sql_type = "fullname_t";

 public String getSQLTypeName()

 {

 return sql_type;

 }

 public void readSQL (SQLInput stream, String type) throws

 SQLException

 {

 sql_type = type;

 first = stream.readString();

 last = stream.readString();

 }

 public void writeSQL (SQLOutput stream) throws SQLException

 {

 stream.writeString(first);

 stream.writeString(last);

 }

 /*

 * Function not required by SQLData interface, but makes

 * it easier for displaying results.

 */

 public String toString()

 {

 String s = "fullname: ";

 s += "first: " + first + " last: " + last;

 return s;

 }

}

This is the person Java class:

import java.sql.*;

public class person implements SQLData

{

 public int id;

 public fullname name;

 public int age;

 private String sql_type = "person_t";

 public String getSQLTypeName()

 {

Chapter 4. Working With Informix Types 4-19

return sql_type;

 }

 public void readSQL (SQLInput stream, String type) throws SQLException

 {

 sql_type = type;

 id = stream.readInt();

 name = (fullname)stream.readObject();

 age = stream.readInt();

 }

 public void writeSQL (SQLOutput stream) throws SQLException

 {

 stream.writeInt(id);

 stream.writeObject(name);

 stream.writeInt(age);

 }

 public String toString()

 {

 String s = "person:";

 s += "id: " + id + "\n";

 s += " name: " + name.toString() + "\n";

 s += " age: " + age + "\n";

 return s;

 }

}

Here is an example of fetching a named row:

java.util.Map map = conn.getTypeMap();

conn.setTypeMap(map);

map.put("fullname_t", Class.forName("fullname"));

map.put("person_t", Class.forName("person"));

...

PreparedStatement pstmt;

ResultSet rs;

pstmt = conn.prepareStatement("select person from teachers");

System.out.println("prepare ...ok");

rs = pstmt.executeQuery();

System.out.println("executetQuery()...ok");

while (rs.next())

 {

 person who = (person) rs.getObject(1);

 System.out.println("getObject()...ok");

 System.out.println("Data fetched:");

 System.out.println("row: " + who.toString());

 }

pstmt.close();

The conn.getTypeMap() method returns the named row mapping information from

the java.util.Map object through the Connection object.

The map.put() method registers the mappings between the nested named row on

the database server, fullname_t, and the Java class fullname, and between the

named row on the database server, person_t, and the Java class person.

The person who = (person) rs.getObject(1) statement retrieves the named row

into the Java object who. IBM Informix JDBC Driver recognizes that this object

who is a named row, a distinct type, or an opaque type, because the information

sent by the database server has an extended name of person_t.

The driver looks up person_t and finds it is a named row. The driver calls the

map.get() method with the key person_t, which returns the person class object. An

object of class person is instantiated.

4-20 IBM Informix JDBC Driver Programmer’s Guide

The readSQL() method in the person class calls methods defined in the SQLInput

interface to convert each field in the ROW column into a Java object and assign

each to a member in the person class.

The following example shows a method for inserting a Java object into a named

row column using the setObject() method:

java.util.Map map = conn.getTypeMap();

map.put("fullname_t", Class.forName("fullname"));

map.put("person_t", Class.forName("person"));

...

PreparedStatement pstmt;

System.out.println("Populate person and fullname objects");

person who = new person();

fullname name = new fullname();

name.last = "Jones";

name.first = "Sarah";

who.id = 567;

who.name = name;

who.age = 17;

String s = "insert into teachers values (?, ’physics’)";

pstmt = conn.prepareStatement (s);

System.out.println("prepared...ok");

pstmt.setObject(1, who);

System.out.println("setObject()...ok");

int rowcount = pstmt.executeUpdate();

System.out.println("executeUpdate()...ok");

pstmt.close();

The conn.getTypeMap() method returns the named row mapping information from

the java.util.Map object through the Connection object.

The map.put() method registers the mappings between the nested named row on

the database server, fullname_t, and the Java class fullname and between the

named row on the database server, person_t, and the Java class person.

IBM Informix JDBC Driver recognizes that the object who implements the

SQLData interface, so it is either a named row, a distinct type, or an opaque type.

IBM Informix JDBC Driver calls the getSQLTypeName() method for this object

(required for classes implementing the SQLData interface), which returns person_t.

The driver looks up person_t and finds it is a named row.

The writeSQL() method in the person class calls the corresponding

SQLOutput.writeXXX() method for each member in the class, each of which maps

to one field in the named row person_t. The writeSQL() method in the class

contains calls to the SQLOutput.writeObject(name) and SQLOutput.writeInt(id)

methods. Each member of the class person is serialized and written into a stream.

Using the Struct Interface

The JDBC documentation does not specify that Struct objects can be parameters to

the PreparedStatement.setObject() method. However, IBM Informix JDBC Driver

can handle any object passed by the PreparedStatement.setObject() or

ResultSet.getObject() method that implements the java.sql.Struct interface.

You must use the Struct interface to access unnamed rows.

Chapter 4. Working With Informix Types 4-21

You do not need to create your own class to implement the java.sql.Struct

interface. However, you must perform a fetch to retrieve the ROW data and type

information before you can insert or update the ROW data. IBM Informix JDBC

Driver automatically calls the getSQLTypeName() method, which returns the type

name for a named row or the row definition for an unnamed row.

If you create your own class to implement the Struct interface, the class you create

must implement all the java.sql.Struct methods, including the getSQLTypeName()

method. You can choose what the getSQLTypeName() method returns.

Although you must return the row definition for unnamed rows, you can return

either the row name or the row definition for named rows. Each has advantages:

v Row definition. The driver does not need to query the database server for the

type information. In addition, the row definition returned does not have to

match the named row definition exactly, because the database server provides

casting, if needed. This is useful if you want to use strings to insert into an

opaque type in a row, for example.

v Row name. If a user-defined routine takes a named row as a parameter, the

signature has to match, so you must pass in a named row.

For more information about user-defined routines, see the following

publications: J/Foundation Developer’s Guide (for information specific to Java); IBM

Informix User-Defined Routines and Data Types Developer’s Guide and IBM Informix

Guide to SQL: Reference (both for general information about user-defined

routines); and IBM Informix Guide to SQL: Syntax (for the syntax to create and

invoke user-defined routines).

Important: If you use the Struct interface for a named row and provide

type-mapping information for the named row, a ClassCastException

message is generated when the ResultSet.getObject() method is called,

because Java cannot cast between an SQLData object and a Struct

object.

Struct Examples

The complete versions of all of the examples in this section are in the

demo/complex-types directory where you installed the driver. For more

information, see Appendix A.

This example fetches an unnamed ROW column. Here is a sample database

schema:

CREATE TABLE teachers

 (

 person row(

 id int,

 name row(first char(20), last char(20)),

 age int

),

 dept char(20)

);

INSERT INTO teachers VALUES ("row(100, row(’Bill’, ’Smith’), 27)", "physics");

This is the rest of the example:

PreparedStatement pstmt;

ResultSet rs;

pstmt = conn.prepareStatement("select person from teachers");

System.out.println("prepare ...ok");

rs = pstmt.executeQuery();

System.out.println("executetQuery()...ok");

4-22 IBM Informix JDBC Driver Programmer’s Guide

rs.next();

Struct person = (Struct) rs.getObject(1);

System.out.println("getObject()...ok");

System.out.println("\nData fetched:");

Integer id;

Struct name;

Integer age;

Object[] elements;

/* Get the row description */

String personRowType = person.getSQLTypeName();

System.out.println("person row description: " + personRowType);

System.out.println("");

/* Convert each element into a Java object */

elements = person.getAttributes();

/*

 * Run through the array of objects in ’person’ getting out each structure

 * field. Use the class Integer instead of int, because int is not an object.

 */

id = (Integer) elements[0];

name = (Struct) elements[1];

age = (Integer) elements[2];

System.out.println("person.id: " + id);

System.out.println("person.age: " + age);

System.out.println("");

/* Convert ’name’ as well. */

/* get the row definition for ’name’ */

String nameRowType = name.getSQLTypeName();

System.out.println("name row description: " + nameRowType);

/* Convert each element into a Java object */

elements = name.getAttributes();

/*

 * run through the array of objects in ’name’ getting out each structure

 * field.

 */

String first = (String) elements[0];

String last = (String) elements[1];

System.out.println("name.first: " + first);

System.out.println("name.last: " + last);

pstmt.close();

The Struct person = (Struct) rs.getObject(1) statement instantiates a Struct

object if column 1 is a ROW type and there is no extended data type name (if it is

a named row).

The elements = person.getAttributes(); statement performs the following

actions:

v Allocates an array of java.lang.Object objects with the correct number of

elements

v Converts each element in the row into a Java object

If the element is an opaque type, you must provide type mapping in the

Connection object or pass in a java.util.Map object in the call to the

getAttributes() method.

The String personrowType = person.getSQLTypeName(); statement returns the row

type information. If this type is a named row, the statement returns the name.

Because the type is not a named row, the statement returns the row definition:

row(int id, row(first char(20), last char(20)) name, int age).

Chapter 4. Working With Informix Types 4-23

The example then goes through the same steps for the unnamed row name as it

did for the unnamed row person.

The following example uses a user-created class, GenericStruct, which implements

the java.sql.Struct interface. As an alternative, you can use a Struct object returned

from the ResultSet.getObject() method instead of the GenericStruct class.

import java.sql.*;

import java.util.*;

public class GenericStruct implements java.sql.Struct

{

 private Object [] attributes = null;

 private String typeName = null;

 /*

 * Constructor

 */

 GenericStruct() { }

 GenericStruct(String name, Object [] obj)

 {

 typeName = name;

 attributes = obj;

 }

 public String getSQLTypeName()

 {

 return typeName;

 }

 public Object [] getAttributes()

 {

 return attributes;

 }

 public Object [] getAttributes(Map map) throws SQLException

 {

 // this class shouldn’t be used if there are elements

 // that need customized type mapping.

 return attributes;

 }

 public void setAttributes(Object [] objArray)

 {

 attributes = objArray;

 }

 public void setSQLTypeName(String name)

 {

 typeName = name;

 }

}

The following Java program inserts a ROW column:

PreparedStatement pstmt;

ResultSet rs;

GenericStruct gs;

String rowType;

pstmt = conn.prepareStatement("insert into teachers values (?, ’Math’)");

System.out.println("prepare insert...ok\n");

System.out.println("Populate name struct...");

Object[] name = new Object[2];

// populate inner row first

name[0] = new String("Jane");

name[1] = new String("Smith");

rowType = "row(first char(20), last char(20))";

gs = new GenericStruct(rowType, name);

System.out.println("Instantiate GenericStructObject...okay\n");

4-24 IBM Informix JDBC Driver Programmer’s Guide

System.out.println("Populate person struct...");

// populate outer row next

Object[] person = new Object[3];

person[0] = new Integer(99);

person[1] = gs;

person[2] = new Integer(56);

rowType = "row(id int, " +

 "name row(first char(20), last char(20)), " +

 "age int)";

gs = new GenericStruct(rowType, person);

System.out.println("Instantiate GenericStructObject...okay\n");

pstmt.setObject(1, gs);

System.out.println("setObject()...okay");

pstmt.executeUpdate();

System.out.println("executeUpdate()...okay");

pstmt.close();

At the pstmt.setObject(1, gs) statement in this example, IBM Informix JDBC

Driver determines that the information is to be transported from the client to the

database server as a ROW column, because the GenericStruct object is an instance

of the java.sql.Struct interface.

Each element in the array is serialized, verifying that each element matches the

type as defined by the getSQLTypeName() method.

Using the ClassGenerator Utility

The ClassGenerator utility generates a Java class for a named row type defined in

the system catalog. The utility is an Informix extension to Sun’s JDBC specification.

The created Java class implements the java.sql.SQLData interface. The class has

members for each field in the named row. The readSQL(), writeSQL(), and

SQLData.readSQL() methods read the attributes in the order in which they appear

in the definition of the named row type in the database. Similarly, writeSQL()

writes the data to the stream in that order.

ClassGenerator is packaged in the ifxtools.jar file, so the CLASSPATH

environment variable must point to ifxtools.jar.

The syntax for using ClassGenerator is as follows:

java ClassGenerator rowtypename [-u URL] [-c classname]

The default value for classname is the value for rowtypename.

If the URL parameter is not specified, the required information is retrieved from

the setup.std file in the home directory.

The structure of setup.std is as follows:

URL jdbc:host-name:port-number

informixserver informixservername

database database

user user

passwd password

Simple Named Row Example

To use ClassGenerator, you first create the named row on the database server as

shown in this example:

create row type employee (name char (20), age int);

Chapter 4. Working With Informix Types 4-25

Next, run ClassGenerator:

java ClassGenerator employee

The class generator generates employee.java, as shown next, and retrieves the

database URL information from setup.std, which has the following contents:

URL jdbc:davinci:1528

database test

user scott

passwd tiger

informixserver picasso_ius

Following is the generated .java file:

import java.sql.*;

import java.math.*;

public class employee implements SQLData

{

 public String name;

 public int age;

 private String sql_type;

 public String getSQLTypeName() { return "employee"; }

 public void readSQL (SQLInput stream, String type) throws

 SQLException

 {

 sql_type = type;

 name = stream.readString();

 age = stream.readInt();

 }

 public void writeSQL (SQLOutput stream) throws SQLException

 {

 stream.writeString(name);

 stream.writeInt(age);

 }

}

Nested Named Row Example

To use ClassGenerator for a nested row, you first create the named row on the

database server:

create row type manager (emp employee, salary int);

Next, run ClassGenerator. In this case, the setup.std file is not consulted, because

you provide all the needed information at the command line:

java ClassGenerator manager -c Manager -u "jdbc:davinci:1528/test:user=scott;

password=tiger;informixserver=picasso_ius"

The -c option defines the Java class you are creating, which is Manager (with

uppercase M).

The preceding command generates the following Java class:

import java.sql.*;

import java.math.*;

public class Manager implements SQLData

{

 public employee emp;

 public int salary;

 private String sql_type;

 public String getSQLTypeName() { return "manager"; }

4-26 IBM Informix JDBC Driver Programmer’s Guide

public void readSQL (SQLInput stream, String type) throws

 SQLException

 {

 sql_type = type;

 emp = (employee)stream.readObject();

 salary = stream.readInt();

 }

 public void writeSQL (SQLOutput stream) throws SQLException

 {

 stream.writeObject(emp);

 stream.writeInt(salary);

 }

}

Caching Type Information

When objects of some data types insert data into columns of certain other data

types, IBM Informix JDBC Driver verifies that the data provided matches the data

the database server expects by calling the SQLData.getSQLTypeName() method.

The driver asks the database server for the type information with each insertion.

This occurs in the following cases:

v When an SQLData object inserts data into an opaque type column and

getSQLTypeName() returns the name of the opaque type

v When a Struct or SQLData object inserts data into a row column and

getSQLTypeName() returns the name of a named row

v When an SQLData object inserts data into a DISTINCT type column

You can set an environment variable, ENABLE_CACHE_TYPE=1, in the database URL

to have the driver cache the type information the first time it is retrieved. The

driver then asks the cache for the type information before requesting the data from

the database server.

Smart Large Object Data Types

A smart large object is a large object with the following features:

v A smart large object can hold a very large amount of data.

Currently, a single smart large object can hold up to four terabytes of data. This

data is stored in a separate disk space called an sbspace.

v A smart large object is recoverable.

The database server can log changes to smart large objects and therefore can

recover smart-large-object data in the event of a system or hardware failure.

Logging of smart large objects is not the default behavior.

v A smart large object supports random access to its data.

Access to a simple large object (BYTE or TEXT) is on an “all or nothing” basis;

that is, the database server returns all of the simple large-object data that you

request at one time. With smart large objects, you can seek to a desired location

and read or write the desired number of bytes.

v You can customize storage characteristics of a smart large object.

When you create a smart large object, you can specify storage characteristics for

the smart large object such as:

– Whether the database server logs the smart large object in accordance with

the current database log mode

Chapter 4. Working With Informix Types 4-27

– Whether the database server keeps track of the last time the smart large object

was accessed

– Whether the database server uses page headers to detect data corruption

Smart large objects are stored in the database as BLOB and CLOB data types,

which you can access in two ways:

v In IBM Informix JDBC Driver 3.0, and later, and IDS servers that support smart

large object data types, you can use the standard JDBC API methods described

in the JDBC 3.0 specifications from Sun Microsystems. This is the simpler

approach.

The following JDBC 3.0 methods for BLOB and CLOB internal update have

already been implemented in previous releases:

int setBytes(long, byte[]) throws SQLException

void truncate(long) throws SQLException

The following JDBC 3.0 methods from the BLOB interface are implemented in

IBM Informix JDBC Driver, Version 3.0, or later:

OutputStream setBinaryStream(long) throws SQLException

int setBytes(long, byte[], int, int) throws SQLException

The following JDBC 3.0 methods from the CLOB interface are implemented in

IBM Informix JDBC Driver, Version 3.0, or later:

OutputStream setAsciiStream(long) throws SQLException

Writer setCharacterStream(long) throws SQLException

int setString(long, String) throws SQLException

int setString(long, String, int, int) throws SQLException

v You can use Informix extensions that are based on smart-large-object support

within Informix Dynamic Server, which are described in this section. This

approach offers more options.

This section contains the following subsections:

v Smart Large Objects in the Database Server

v Smart Large Objects in a Client Application

v Steps for Creating Smart Large Objects

v Steps for Accessing Smart Large Objects

v Performing Operations on Smart Large Objects

v Working with Storage Characteristics

v Working with Status Characteristics

v Working with Locks

v Caching Large Objects

v Smart Large Object Examples

Smart Large Objects in the Database Server

In the Informix database server, a smart large object has two parts:

v The data, which is stored in an sbspace

v A large-object handle, known as an LO handle, which identifies the location of the

smart-large-object data in its sbspace

Suppose you store the picture of an employee as a smart large object. Figure 4-1

shows how the LO handle contains information about the location of the actual

employee picture in the sbspace1_100 sbspace.

4-28 IBM Informix JDBC Driver Programmer’s Guide

In Figure 4-1, the sbspace holds the actual employee image that the LO handle

identifies. For more information about the structure of an sbspace, and the

onspaces database utility that creates and drops sbspaces, see the IBM Informix

Dynamic Server Administrator’s Guide.

Important: Smart large objects can only be stored in sbspaces. You must create an

sbspace before you attempt to insert smart large objects into the

database.

Because a smart large object is potentially very large, the database server stores

only its LO handle in a database table; it can then use this handle to find the

actual data of the smart large object in the sbspace. This arrangement minimizes

the table size.

Applications obtain the LO handle from the database and use it to locate the

smart-large-object data and to open the smart large object for read and write

operations.

Smart Large Objects in a Client Application

On the client, your JDBC application can use ResultSet methods to access

smart-large-object data, such as:

v getClob() and getAsciiStream() for CLOB data

v getBlob() and getBinaryStream() for BLOB data

v getString() for both CLOB and BLOB data

On the client side, the JDBC driver references the LO handle through an IfxLocator

object. Your JDBC application obtains an instance of the IfxLocator class to contain

the smart-large-object locator handle, as shown in Figure 4-2. Your application

creates a smart large object independently and then inserts the smart large object

into different columns, even in multiple tables. Using multiple threads, an

application can write or read data from various portions of the smart large object

in parallel, which is very efficient.

LO handle

sbspace1_100

Disk 100

Picture of
employee

Figure 4-1. Smart Large Object in the Database Server

Chapter 4. Working With Informix Types 4-29

In IDS, support for Informix smart large object data types is available only with 9.x

and later versions of the database server.

Steps for Creating Smart Large Objects

The Informix smart large object implementation is based on the following classes:

v IfxLobDescriptor stores attributes for the large object.

v IfxLocator contains the handle to the large object in the database server.

v IfxSmartBlob contains methods for working with the smart large object, such as

positioning within the object, reading data from the object, and writing data to

the object.

v IfxBblob and IfxCblob implement the java.sql.Blob and java.sql.Clob interfaces

from the Sun Microsystems JDBC 3.0 specification.

v IfxLoStat stores status information about the large object.

Tip: This section describes how to use the Informix smart-large-object interface,

but it does not currently document every method and parameter in the

interface. For a comprehensive reference to all the methods in the interface

and their parameters, see the javadoc files for IBM Informix JDBC Driver,

located in the doc/javadoc directory where your driver is installed.

 To create a smart large object:

 1. For a new smart large object, ensure that the smart large object has an sbspace

specified for its data.

For detailed documentation on the onspaces utility that creates sbspaces, see

the IBM Informix Dynamic Server Administrator’s Guide. For an example of

creating an sbspace, see “Example of Setting sbspace Characteristics” on page

4-42.

 2. Create an IfxLobDescriptor object.

This allows you to set storage characteristics for the smart large object. The

driver passes the IfxLobDescriptor object to the database server when the

IfxSmartBlob.IfxLoCreate() method creates the large object.

 3. If desired, call methods in the IfxLobDescriptor object to specify storage

characteristics.

For most smart large objects, the sbspace name is the only storage

characteristic that you need to specify. The database server can calculate

values for all other storage characteristics. You can set particular storage

characteristics to override these calculated values. However, most applications

do not need to set storage characteristics at this level of detail. For more

information, see “Working with Storage Characteristics” on page 4-39.

 4. Create an IfxLocator object.

sbspace1_100

Disk 100

Picture of
employee

LO handle

Client application

IfxLocator
object

Database server

Figure 4-2. Locating a Smart Large Object In a Client Application

4-30 IBM Informix JDBC Driver Programmer’s Guide

This is the pointer to the smart large object on the client.

 5. Create an IfxSmartBlob object.

This lets you perform various common operations on the smart large object.

 6. Execute the IfxSmartBlob.IfxLoCreate() method to create the large object in

the database server.

IfxLoCreate() takes the IfxLocator and IfxLobDescriptor objects as parameters

to identify the smart large object in the database server.

 7. Execute IfxSmartBlob.IfxLoWrite() to write data to the smart large object in

the database server.

 8. Execute additional IfxSmartBlob methods to position within the object, read

from the object, and so forth.

 9. Execute IfxSmartBlob.IfxLoClose() to close the large object.

10. Insert the smart large object into the database (see “Inserting a Smart Large

Object into a Column” on page 4-34).

11. Execute IfxSmartBlob.IfxLoRelease() to release the locator pointer.

Creating an IfxLobDescriptor Object: The IfxLobDescriptor class stores the

internal storage characteristics for a smart large object. Before you can create a

smart large object on the database server, you must create an IfxLobDescriptor

object, as follows:

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

The conn parameter is a java.sql.Connection object. The IfxLobDescriptor()

constructor sets all the default values for the object.

For more information about the internal storage characteristics, see “Working with

Storage Characteristics” on page 4-39.

Creating an IfxLocator Object: The IfxLocator object (usually known as the

locator pointer or large object locator) identifies the location of the smart large object,

as shown in Figure 4-2 on page 4-30; the locator pointer is the communication link

between the database server and the client for a particular large object. Before it

creates a large object or opens a large object for reading or writing, an application

must create an IfxLocator object:

IfxLocator loPtr = new IfxLocator();

IfxLocator loPtr = new IfxLocator(Connection conn);

Use the second of these constructors to display localized error messages if an

exception is thrown. For more information, see “Support for Localized Error

Messages” on page 6-14.

Creating an IfxSmartBlob Object: To create a smart large object and obtain access

to the methods for performing operations on the object, call the IfxSmartBlob

constructor, passing a reference to the JDBC connection:

IfxSmartBlob smb = new IfxSmartBlob(myConn)

Once you have written all the methods that perform operations you need in the

smart large object, you can then use the IfxSmartBlob.IfxLoCreate() method to

create the large object in the database server and open it for access within your

application. The method signature is as follows:

Chapter 4. Working With Informix Types 4-31

public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,

 IfxLocator loPtr) throws SQLException

public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,

 IfxBblob blob)throws SQLException

public int IfxLoCreate(IfxLobDescriptor loDesc, int flag,

 IfxCblob clob throws SQLException

The return value is the locator handle, which you can use in subsequent read,

write, seek, and close methods (you can pass it as the locator file descriptor (lofd)

parameter to the methods that operate on open smart large objects; these methods

are described beginning with “Positioning Within a Smart Large Object” on page

4-35).

The flag parameter is an integer value that specifies the access mode in which the

new smart large object is opened in the server. The access mode determines which

read and write operations are valid on the open smart large object. If you do not

specify a value, the object is opened in read-only mode.

Use the access mode flag values in the following table with the IfxLoCreate() and

IfxLoOpen() methods to open or create smart large objects with specific access

modes.

Access Mode Purpose

Flag Value in

IfxSmartBlob

Read only Allows read operations only LO_RDONLY

Write only Allows write operations only LO_WRONLY

Write/Append Appends data you write to the end of the smart

large object By itself, it is equivalent to write-only

mode followed by a seek to the end of the smart

large object. Read operations fail. When you open a

smart large object in write/append mode only, the

smart large object is opened in write-only mode.

Seek operations move the seek position, but read

operations to the smart large object fail, and the

seek position remains unchanged from its position

just before the write. Write operations occur at the

seek position, and then the seek position is moved.

LO_APPEND

Read/Write Allows read and write operations LO_RDWR

The following example shows how to use a LO_RDWR flag value:

IfxSmartBlob smb = new IfxSmartBlob(myConn);

int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

The loDesc and loPtr objects are previously created IfxLobDescriptor and

IfxLocator objects, respectively.

The database server uses the following system defaults when it opens a smart

large object.

Open-Mode Information Default Open Mode

Access mode Read-only

Access method Random

Buffering Buffered access

Locking Whole-object locks

4-32 IBM Informix JDBC Driver Programmer’s Guide

For more information on locking, see “Working with Locks” on page 4-48.

The following table provides the full set of open-mode flags:

Open-Mode Flag Description

LO_APPEND Appends data you write to the end of the smart

large object

 By itself, it is equivalent to write-only mode

followed by a seek to the end of the smart large

object. Read operations fail.

When you open a smart large object in

write/append mode only, the smart large object is

opened in write-only mode. Seek operations move

the seek position, but read operations to the smart

large object fail, and the seek position remains

unchanged from its position just before the write.

Write operations occur at the seek position, and

then the seek position is moved.

LO_WRONLY Allows write operations only

LO_RDONLY Allows read operations only

LO_RDWR Allows read and write operations

LO_DIRTY_READ For open only

 Allows you to read uncommitted data pages for

the smart large object

You cannot write to a smart large object after you

set the mode to LO_DIRTY_READ. When you set

this flag, you reset the current transaction isolation

mode to Dirty Read for the smart large object.

Do not base updates on data that you obtain from

a smart large object in Dirty Read mode.

LO_RANDOM Overrides optimizer decision

 Indicates that I/O is random and that the database

server should not read ahead. Default open mode.

LO_SEQUENTIAL Overrides optimizer decision

 Indicates that reads are sequential in either forward

or reverse direction.

LO_FORWARD Used only for sequential access to indicate forward

direction

LO_REVERSE Used only for sequential access to indicate reverse

direction

LO_BUFFER Use standard database server buffer pool.

LO_NOBUFFER Do not use the standard database server buffer

pool. Use private buffers from the session pool of

the database server.

LO_NODIRTY_READ Do not allow dirty reads on smart large object. See

LO_DIRTY_READ flag for more information.

Chapter 4. Working With Informix Types 4-33

LO_LOCKALL Specifies that locking will occur on entire smart

large object

LO_LOCKRANGE Specifies that locking will occur for a range of

bytes

 You specify the range of bytes through the

IfxSmartBlob.IfxLoLock() method when you place

the lock.

Inserting a Smart Large Object into a Column: After creating a smart large

object, you must insert it into a BLOB or CLOB column to save it in the database.

To do this, you must convert the IfxLocator object to an IfxBblob or IfxCblob

object, depending upon the column type.

 To insert a smart large object into a BLOB or CLOB column:

1. Create an IfxBblob or IfxCblob object, as follows:

IfxBblob blb = new IfxBblob(loPtr);

The loPtr parameter is an IfxLocator object obtained from one of the previous

sets of steps.

2. Use the PreparedStatement.setBlob() or setClob() method to insert the object

into the column.

Important: The sbspace for the smart large object must exist in the database server

before the insertion executes.

Steps for Accessing Smart Large Objects

Follow these steps to use the Informix extensions to select a smart large object

from a database column.

 To access a smart large object:

1. Cast the java.sql.Blob or java.sql.Clob object to an IfxBblob or IfxCblob

object.

2. Use the IfxBblob.getLocator() or IfxCblob.getLocator() method to extract an

IfxLocator object.

3. Create an IfxSmartBlob object.

4. Use the IfxSmartBlob.IfxLoOpen() method to open the smart large object.

5. Use the IfxSmartBlob.IfxLoRead() method to read the data from the smart

large object.

6. Close the smart large object using the IfxSmartBlob.IfxLoClose() method.

7. Release the locator pointer in the server by calling the

IfxSmartBlob.IfxLoRelease() method.

Standard JDBC ResultSet methods such as ResultSet.getBinaryStream(),

getAsciiStream(), getString(), getBytes(), getBlob(), and getClob() can fetch BLOB

or CLOB data from a table. The Informix extension classes can then access the

data.

Performing Operations on Smart Large Objects

In the database server, you can store a smart large object directly in a column that

has one of the following data types:

v The CLOB data type holds text data.

4-34 IBM Informix JDBC Driver Programmer’s Guide

v The BLOB data type can store any kind of binary data in an undifferentiated

byte stream.

The CLOB or BLOB column holds an LO handle for the smart large object.

Therefore, when you select a CLOB or BLOB column, you do not obtain the actual

data of the smart large object, but the LO handle that identifies this data. Columns

for smart large objects have a theoretical limit of 4 terabytes and a practical limit

determined by your disk capacity.

You can use either of the following ways to store a smart large object in a column:

v For direct access to the smart large object, create a column of the CLOB or BLOB

data type.

v To hide the smart large object within an atomic data type, create an opaque type

that holds a smart large object.

In a client application, the IfxBblob and IfxCblob classes are bridges between the

way of handling smart large object data described in the Sun Microsystem JDBC

3.0 specification and the Informix extensions. The IfxBblob class implements the

java.sql.Blob interface, and the IfxCblob class implements the java.sql.Clob

interface. The Informix extensions require an IfxLocator object to identify the smart

large object in the database server.

When you query a table containing a column of type BLOB or CLOB, an object of

type Blob or Clob is returned, depending upon the column type. You can then use

the JDBC 3.0 supporting methods for objects of type Blob or Clob to access the

smart large object.

The constructors create an IfxBblob or IfxCblob object from the IfxLocator object

loPtr:

public IfxBblob(IfxLocator loPtr)

public IfxCblob(IfxLocator loPtr)

The following locator method returns an IfxLocator object from an IfxBblob or

IfxCblob object. You can then open, read, and write to the smart large object using

the IfxSmartBlob.IfxLoOpen(), IfxLoRead(), and IfxLoWrite() methods:

public IfxLocator getLocator() throws SQLException

Opening a Smart Large Object

The following methods in the IfxSmartBlob class open an existing smart large

object in the database server:

public int IfxLoOpen(IfxLocator loPtr, int flag) throws

 SQLException

public int IfxLoOpen(IfxBblob blob, int flag) throws SQLException

public int IfxLoOpen(IfxCblob clob, int flag) throws SQLException

The first version opens the smart large object that is referenced by the locator

pointer loPtr. The second and third versions open the smart large objects that are

referenced by the specified IfxBblob and IfxCblob objects, respectively. The flag

parameter is a value from the table in “Creating an IfxSmartBlob Object” on page

4-31.

Positioning Within a Smart Large Object

The IfxLoTell() method in the IfxSmartBlob class returns the current seek position,

which is the offset for the next read or write operation on the smart large object.

The IfxLoSeek() method in the IfxSmartBlob class sets the read or write position

within an already opened large object.

Chapter 4. Working With Informix Types 4-35

public long IfxLoTell(int lofd)

public long IfxLoSeek(int lofd, long offset, int whence) throws

 SQLException

The absolute position depends on the value of the second parameter, offset, and the

value of the third parameter, whence.

The lofd parameter is the locator file descriptor returned by the IfxLoCreate() or

IfxLoOpen() method. The offset parameter is an offset from the starting seek

position.

The whence parameter identifies the starting seek position. Use the whence values in

the following table to define the position within a smart large object to start a seek

operation.

Starting Seek Position Whence Value

Beginning of the smart

large object IfxSmartBlob.LO_SEEK_SET

Current location in the smart

large object IfxSmartBlob.LO_SEEK_CUR

End of the smart large object IfxSmartBlob.LO_SEEK_END

 The return value is a long integer representing the absolute position within the

smart large object.

The following example shows how to use a LO_SEEK_SET whence value:

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);

IfxLocator loPtr = new IfxLocator();

IfxSmartBlob smb = new IfxSmartBlob(myConn);

int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

int n = smb.IfxLoWrite(loFd, fin, fileLength);

smb.IfxLoClose(loFd);

loFd = smb.IfxLoOpen(loPtr, smb.LO_RDWR);

long m = smb.IfxLoSeek(loFd, 200, smb.LO_SEEK_SET);

The writing position is set at an offset of 200 bytes from the beginning of the smart

large object.

Reading from a Smart Large Object

You can read data from a smart large object in the following ways:

v Read the data from the object into a byte[] buffer.

v Read the data from the object into a file output stream.

v Read the data from the object into a file.

Use the IfxLoRead() method in the IfxSmartBlob class, which has the following

signatures, to read from a smart large object into a buffer or file output stream:

public byte[] IfxLoRead(int lofd, int nbytes) throws SQLException

public int IfxLoRead(int lofd, byte[] buffer, int nbytes) throws

 SQLException

public int IfxLoRead(int lofd, FileOutputStream fout, int nbytes

 throws SQLException

public int IfxLoRead(int lofd, byte[] buffer, int nbytes, int

 offset throws SQLException

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or

IfxLoOpen() method.

4-36 IBM Informix JDBC Driver Programmer’s Guide

The first version returns nbytes bytes of data into a byte buffer. This version of the

method allocates the memory for the buffer. The second version reads nbytes bytes

of data into an already allocated buffer. The third version reads nbytes bytes of data

into a file output stream. The fourth version reads nbytes bytes of data into a byte

buffer starting at the current seek position plus offset into the smart large object. The

return values for the last three versions indicate the number of bytes read.

Use the IfxLoToFile() method in the IfxSmartBlob class, which has the following

signatures, to read from a smart large object into a file:

public int IfxLoToFile(IfxLocator loPtr, String filename, int flag

 , int whence) throws SQLException

public int IfxLoToFile(IfxBblob blob, String filename, int flag ,

 int whence) throws SQLException

public int IfxLoToFile(IfxCblob clob, String filename, int flag ,

 int whence) throws SQLException

The first version reads the smart large object that is referenced by the locator

pointer loPtr. The second and third versions read the smart large objects that are

referenced by the specified IfxBblob and IfxCblob objects, respectively.

The flag parameter indicates whether the file is on the client or the server. The

value is either IfxSmartBlob.LO_CLIENT_FILE or IfxSmartBlob.LO_SERVER_FILE. The

whence parameter identifies the starting seek position. For the values, see

“Positioning Within a Smart Large Object” on page 4-35.

Tip: There has been a change in the signature of the following function:

 IfxSmartBlob.IfxLoToFile().

This function used to accept four parameters, but now only accepts three

parameters. All three overloaded functions for IfxLoToFile() accept three

parameters.

Writing to a Smart Large Object

You can write data to a smart large object in the following ways:

v Write the data from a byte[] buffer to the object.

v Write the data from a file input stream to the object.

v Write the data from a file to the object.

Use the IfxLoWrite() methods in the IfxSmartBlob class to write to a smart large

object from a byte[] buffer or file input stream:

public int IfxLoWrite(int lofd, byte[] buffer) throws SQLException

public int IfxLoWrite(int lofd, InputStream fin, int length)

 throws SQLException

The first version of the method writes buffer.length bytes of data from the buffer

into the smart large object. The second version writes length bytes of data from an

InputStream object into the smart large object.

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or

IfxLoOpen() method. The buffer parameter is the byte[] buffer where the data is

read. The fin parameter is the InputStream object from which data is written into

the smart large object. The length parameter is the number of bytes written into the

smart large object. The driver returns the number of bytes written.

Use the IfxLoFromFile() method in the IfxSmartBlob class to write data to a smart

large object from a file:

Chapter 4. Working With Informix Types 4-37

public int IfxLoFromFile (int lofd, String filename, int flag, int

 offset, int amount) throws SQLException

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or

IfxLoOpen() method. The flag parameter indicates whether the file is on the client

or the server. The value is either IfxSmartBlob.LO_CLIENT_FILE or

IfxSmartBlob.LO_SERVER_FILE.

The driver returns the number of bytes written.

Truncating a Smart Large Object

Use the IfxLoTruncate() method in the IfxSmartBlob class to truncate a large

object at an offset you specify. The method signature is as follows:

public void IfxLoTruncate(int lofd, long offset) throws

 SQLException

The offset parameter is the absolute position at which the smart large object is

truncated.

Measuring a Smart Large Object

Use the IfxLoSize() method in the IfxSmartBlob class to return the size of a smart

large object. This method returns a long integer representing the size of the large

object.

The method signature is as follows:

public long IfxLoSize(int lofd) throws SQLException

Closing and Releasing a Smart Large Object

After you have performed all the operations your application needs, you must

close the object and then release the resources in the server. The methods in the

IfxSmartBlob class that perform these tasks are as follows:

public void IfxLoClose(int lofd) throws SQLException

public void IfxLoRelease(IfxLocator loPtr) throws SQLException

public void IfxLoRelease(IfxBblob blob) throws SQLException

public void IfxLoRelease(IfxCblob clob) throws SQLException

For any further access to the same large object, you must reopen it with the

IfxLoOpen() method.

Converting IfxLocator to a Hexadecimal String

Some applications, for example, Web browsers, can only process ASCII data; they

require IfxLocator to be converted to hexadecimal string format. In a typical

Web-based application, the Web server queries the database table and sends the

results to the browser. Instead of sending the entire smart large object, the Web

server converts the locator into hexadecimal string format and sends it to the

browser. If the user requests the browser to display the smart large object, the

browser sends the locator in hexadecimal format back to the Web server. The Web

server then reconstructs the binary locator from the hexadecimal string and sends

the corresponding smart large object data to the browser.

To convert between the IfxLocator byte array and a hexadecimal number, use the

methods listed in the following table.

4-38 IBM Informix JDBC Driver Programmer’s Guide

Task Performed Method Signature Notes

Converts a byte array to a

hexadecimal character

string

public static String toHexString(byte[] byteBuf); Works on data other than IfxLocator

Provided in the

com.informix.util.stringUtil class

Converts a hexadecimal

character string to a byte

array

public static byte[] fromHexString(String str)

throws NumberFormatException;

Works on data other than IfxLocator

Provided in the

com.informix.util.stringUtil class

Constructs an IfxLocator

object using a byte array

public IfxLocator(byte[] byteBuf) throws

SQLException;

Provided in the IfxLocator class

Converts an IfxLocator

byte array to a

hexadecimal character

string

public String toString(); Provided in the IfxLocator class

Converts a hexadecimal

character string to an

IfxLocator byte array

public byte[] toBytes(); Provided in the IfxLocator class

The following example uses the toString() and toBytes() methods to fetch the

locator from a smart large object and then convert it into a hexadecimal string:

...

String hexLoc = "";

byte[] blobBytes;

byte[] rawLocA = null;

IfxLocator loc;

try

{

 ResultSet rs = stmt.executeQuery("select b1 from btab");

 while(rs.next())

 {

 IfxBblob b=(IfxBblob)rs.getBlob(1);

 loc =b.getLocator();

 hexLoc = loc.toString();

 rawLocA = loc.toBytes();

 }

}

catch(SQLException e)

{}

The following example uses the IfxLocator() method to construct an IfxLocator,

which is then used to read a smart large object:

...

try

{

 IfxLocator loc2 = new IfxLocator(rawLoc);

 IfxSmartBlob b2 = new IfxSmartBlob((IfxConnection)myConn);

 int lofd = b2.IfxLoOpen(loc2, b2.LO_RDWR);

 blobBytes = b2.IfxLoRead(lofd, fileLength);

}

catch(SQLException e)

 {}

Working with Storage Characteristics

Storage characteristics tell the database server how to manage a smart large object.

These characteristics include such areas as sizing, logging, locking, and open

modes. You have the following options with respect to storage characteristics:

Chapter 4. Working With Informix Types 4-39

v Use the system-specified storage characteristics as a basis for obtaining the

storage characteristics of a smart large object.

v Override the system defaults with one of the following:

– Storage characteristics defined for a particular CLOB or BLOB column in

which you want to store the smart large object

– Storage characteristics that are unique to a particular CLOB or BLOB column

called column-level storage characteristics

– Special storage characteristics that you define for this smart large object only

called user-specified storage characteristics

The database server uses a hierarchy, which Figure 4-3 shows, to obtain the storage

characteristics for a new smart large object.

For a given storage characteristic, any value defined at the column level overrides

the system-specified value, and any user-level value overrides the column-level

value. You can specify storage characteristics at the three points shown in the

following table.

 When Specified How Specified For More Information

When an sbspace

is created

Options of onspaces utility “Using System-Specified Storage

Characteristics”

IBM Informix Dynamic Server

Administrator’s Guide

When a database

table is created

Keywords in PUT clause of

CREATE TABLE statement

IBM Informix Guide to SQL: Syntax

When a smart

large object is

created

Create flags and methods in the

ifxLobDescriptor class

“Setting Create Flags” on page 4-47

Using System-Specified Storage Characteristics

The database administrator establishes system-specified storage characteristics

when he or she initializes the database server and creates an sbspace with the

onspaces utility, as follows:

Database server storage characteristics
(system defaults)

Sbspace storage characteristics
(assigned when the sbspace is created with the
utility or when you change the sbspace with)

onspaces
onspaces -ch

Column-level storage characteristics
(assigned when the table is created with the CREATE TABLE

statement or when you change the table with the ALTER TABLE statement)

User-specified storage characteristics

System-specified
storage characteristics

(assigned when the smart large object is created with an
method)IfxSmartBlob.IfxLoCreate()

Figure 4-3. Storage-Characteristics Hierarchy

4-40 IBM Informix JDBC Driver Programmer’s Guide

v If the onspaces utility has specified a value for a particular storage characteristic,

the database server uses the onspaces value as the system-specified storage

characteristic.

v If the onspaces utility has not specified a value for a particular storage

characteristic, the database server uses the system default as the system-specified

storage characteristic.

The system-specified storage characteristics apply to all smart large objects that are

stored in the sbspace, unless a smart large object specifically overrides them with

column-level or user-specified storage characteristics.

For the storage characteristics that onspaces can set, as well as the system defaults,

see Table 4-2 on page 4-43 and Table 4-3 on page 4-44.

For most applications, it is recommended that you use the system-specified default

values for the storage characteristics. Note the following exceptions:

v Your application needs to obtain extra performance.

You can use setXXX() methods in ifxLobDescriptor to change the disk-storage

information of a new smart large object. For more information, see “Setting

Create Flags” on page 4-47.

v You want to use the storage characteristics of an existing smart large object.

The IfxLoStat.getLobDescriptor() method can obtain the large-object descriptor

of an open smart large object. You can then create a new object and use the

IfxSmartBlob.ifxLoAlter() method to set its characteristics to the new descriptor.

For more information, see “Changing the Storage Characteristics” on page 4-46.

v You are working with more than one smart large object and do not want to use

the default sbspace.

The DBA can specify a default sbspace name with the SBSPACENAME

configuration parameter in the ONCONFIG file. However, you must ensure that

the location (the name of the sbspace) is correct for the smart large object that

you create. If you do not specify an sbspace name for a new smart large object,

the database server stores it in this default sbspace. This arrangement can lead to

space constraints.

v If you know the size of the smart large object, specify this size in your

application using the IfxLobDescriptor.setEstBytes() method instead of in the

onspaces utility (system level) or the CREATE TABLE or the ALTER TABLE

statement (column level).

Obtaining Information About Storage Characteristics: To obtain the column-level

storage characteristics of a smart large object, your application can call the

following method in the IfxSmartBlob class, passing the name of the column for

the colname parameter:

IfxLobDescriptor IfxLoColInfo(java.lang.String colname) throws

 SQLException

Most applications only need to ensure correct storage characteristics for an sbspace

name (the location of the smart large object). You can get information for this and

other storage characteristics by calling the various getXXX() methods in the

ifxLobDescriptor class before creating the IfxSmartBlob object. The following table

summarizes the getXXX() methods.

Method Signature in

ifxLobDescriptor Purpose

int getCreateFlags() Obtains the create flags for the object

Chapter 4. Working With Informix Types 4-41

long getEstSize() Obtains the estimated size, in bytes, of the object

int getExtSize() Obtains the extent size of the object

long getMaxBytes() Obtains the maximum size, in bytes, of the object

java.lang.String getSbspace() Obtains the name of the sbspace in the database

server in which the object is stored

Example of Setting sbspace Characteristics: The following call to the onspaces

utility creates an sbspace called sb1 in the /dev/sbspace1 partition:

onspaces -c -S sb1 -p /dev/sbspace1 -o 500 -s 2000

 -Df "AVG_LO_SIZE=32"

Table 4-1 shows the resulting system-specified storage characteristics for all smart

large objects in the sb1 sbspace.

 Table 4-1. System-Specified Storage Characteristics for the sb1 Sbspace

Disk-Storage Information System-Specified Value

Specified by onspaces

Utility

Size of extent Calculated by database server System default

Size of next extent Calculated by database server System default

Minimum extent size Calculated by database server System default

Size of smart large object 32 kilobytes

(database server uses as size

estimate)

AVG_LO_SIZE

Maximum size of I/O block Calculated by database server System default

Name of sbspace sb1 -S option

Logging OFF System default

Last-access time OFF System default

Working with Disk-Storage Information

Disk-storage information helps the database server determine how to manage the

smart large object most efficiently on disk.

Important: For most applications, use the values that the database server

calculates for the disk-storage information. Methods provided in IBM

Informix JDBC Driver are intended for special situations.

This disk-storage information includes:

v Allocation-extent information:

– Extent size:

An allocation extent is a collection of contiguous bytes within an sbspace that

the database server allocates to a smart large object at one time. The database

server performs storage allocations for smart large objects in increments of the

extent size.

You can specify an extent size by calling the ifxLobDescriptor.setExtSize()

method.

– Next-extent size:

The database server tries to allocate an extent as a single, contiguous region

in a chunk. However, if no single extent is large enough, the database server

must use multiple extents as necessary to satisfy the current write request.

4-42 IBM Informix JDBC Driver Programmer’s Guide

After the initial extent fills, the database server attempts to allocate another

extent of contiguous disk space. This process is called next-extent allocation.
For more information on extents, see the chapter on disk structure and storage

in the IBM Informix Dynamic Server Administrator’s Guide.

v Sizing information:

– Estimated number of bytes in a new smart large object

– Maximum number of bytes to which the smart large object can grow
To specify sizing information, you can use the setMaxBytes() and setEstBytes()

methods in the ifxLobDescriptor class.

If you know the size of the smart large object, specify this size using the

setEstBytes() method. This is the best way to set the extent size because the

database server can allocate the entire smart large object as one extent.

v Location:

The name of the sbspace identifies the location at which to store the smart large

object. To set this name, you can use the vifxLobDescriptor.setSbSpace()

method.

The database server uses the disk-storage information to determine how best to

size, allocate, and manage the extents of the sbspace. It can calculate all

disk-storage information for a smart large object except the sbspace name.

Table 4-2 summarizes the ways to specify disk-storage information for a smart

large object.

 Table 4-2. Specifying Disk-Storage Information

Disk-Storage Information

System-Specified Storage Characteristics

Column-Level

Storage

Characteristics

User-Specified

Storage

Characteristics

System Default

Value

Specified by onspaces

Utility

Specified by

PUT clause of

CREATE TABLE

Specified by an

IBM Informix

JDBC Driver

Method

Size of extent Calculated by

database server

EXTENT_SIZE EXTENT SIZE Yes

Size of next extent Calculated by

database server

NEXT_SIZE No No

Minimum extent size 4 kilobytes MIN_EXT_SIZE No No

Size of smart large object Calculated by

database server

Average size of all

smart large objects in

sbspace:

AVG_LO_SIZE

No Estimated size of a

particular smart

large object

Maximum size of a

particular smart

large object

Maximum size of I/O

block

Calculated by

database server

MAX_IO_SIZE No No

Name of sbspace SBSPACENAME -S option Name of an

existing sbspace in

which a smart large

object: IN clause

Yes

Chapter 4. Working With Informix Types 4-43

Working with Logging, Last-Access Time, and Data Integrity

Database administrators and applications can affect some additional

smart-large-object attributes:

v Whether to log changes to the smart large object in the system log file

v Whether to save the last-access time for a smart large object

v How to format the pages in the sbspace of the smart large object

Table 4-3 summarizes how you can alter these attributes at the system, column,

and application levels.

 Table 4-3.

Specifying Attribute Information

Attribute Information

System-Specified Storage

Characteristics

Column-Level Storage

Characteristics

User-Specified

Storage Characteristics

System Default

Value

Specified by

onspaces Utility

Specified by PUT clause

of CREATE TABLE

Specified by a JDBC

Driver Method

Logging OFF LOGGING LOG, NO LOG Yes

Last-access time OFF ACCESSTIME KEEP ACCESS TIME,

NO KEEP ACCESS TIME

Yes

Buffering mode OFF BUFFERING No No

Lock mode Lock entire smart

large object

LOCK_MODE No Yes

Data integrity High integrity No HIGH INTEG,

MODERATE INTEG

Yes

The following sections provide more information about these attributes.

Logging: By default, the database server does not log the user data of a smart

large object. You can control the logging behavior for a smart large object as part of

its create flags. For more information, see “Setting Create Flags” on page 4-47.

When a database performs logging, smart large objects might result in long

transactions for the following reasons:

v Smart large objects can be very large, even several gigabytes in size.

The amount of log storage needed to log user data can easily overflow the log.

v Smart large objects might be used in situations where data collection can be

quite long.

For example, if a smart large object holds low-quality audio recording, the

amount of data collection might be modest but the recording session might be

quite long.

A simple workaround is to divide a long transaction into multiple smaller

transactions. However, if this solution is not acceptable, you can control when the

database server performs logging of smart large objects. (Table 4-3 on page 4-44

shows how you can control the logging behavior for a smart large object.)

When logging is enabled, the database server logs changes to the user data of a

smart large object. It performs this logging in accordance with the current database

log mode.

For a database that is not ANSI compliant, the database server does not guarantee

that log records that pertain to smart large object are flushed at transaction

4-44 IBM Informix JDBC Driver Programmer’s Guide

commit. However, the metadata is always restorable to an action-consistent state;

that is, to a state that ensures no structural inconsistencies exist in the metadata

(control information of the smart large object, such as reference counts).

American National Standards Institute

 An ANSI-compliant database uses unbuffered logging. When smart-large-object

logging is enabled, all log records (metadata and user data) that pertain to smart

large objects are flushed to the log at transaction commit. However, user data is

not guaranteed to be flushed to its stable storage location at commit time.

End of American National Standards Institute

 When logging is disabled, the database server does not log changes to user data

even if the database server logs other database changes. However, the database

server always logs changes to the metadata. Therefore, the database server can still

restore the metadata to an action-consistent state.

Important: Consider carefully whether to enable logging for a smart large object.

The database server incurs considerable overhead to log smart large

objects. You must also ensure that the system log file is large enough to

hold the value of the smart large object. The logical log size must

exceed the total amount of data that the database server logs while the

update transaction is active.

Write your application so that any transactions with smart large objects that have

potentially long updates do not cause other transactions to wait. Multiple

transactions can access the same smart-large-object instance if the following

conditions are satisfied:

v The transaction can access the database row that contains an LO handle for the

smart large object.

Multiple references can exist on the same smart large object if more than one

column holds an LO handle for the same smart large object.

v Another transaction does not hold a conflicting lock on the smart large object.

For more information on smart large object locks, see “Working with Locks” on

page 4-48.

The best update performance and fewest logical-log problems result when you

disable the logging feature when you load a smart large object and re-enable it

after the load operation completes. If logging is turned on, you might want to turn

logging off before a bulk load and then perform a level-0 backup.

Last-Access Time: The last-access time of a smart large object is the system time

at which the database server last read or wrote the smart large object. The

last-access time records access to the user data and metadata of a smart large

object. This system time is stored as number of seconds since January 1, 1970. The

database server stores this last-access time in the metadata area of the sbspace.

By default, the database server does not save the last access time. You can specify

saving the last-access time by setting the LO_KEEP_LASTACCESS_TIME create

flag and calling the IfxLobDescriptor.setCreateFlags() method. For more

information, see “Setting Create Flags” on page 4-47.

Chapter 4. Working With Informix Types 4-45

The database server also tracks the last-modification time and the last change in

status for a smart large object. For more information, see “Working with Status

Characteristics” on page 4-48.

Important: Consider carefully whether to track last-access time for a smart large

object. The database server incurs considerable overhead in logging

and concurrency to maintain last-access times for smart large objects.

Data Integrity: You can specify data integrity with the LO_HIGH_INTEG and

LO_MODERATE_INTEG create flags, by calling the

IfxLobDescriptor.setCreateFlags() method. For more information, see “Setting

Create Flags” on page 4-47.

An sbpage is the unit of allocation for smart large object data, which is stored in

the user-data area of an sbspace. The structure of an sbpage in the sbspace

determines how much data integrity the database server can provide. The database

server uses the page header and trailer to detect incomplete writes and data

corruption.

The database server supports the following levels of data integrity:

v High integrity tells the database server to use both a page header and a page

trailer in each sbpage.

v Moderate integrity tells the database server to use only a page header in each

sbpage.

Moderate integrity provides the following benefits:

v It eliminates an additional data copy operation that is necessary when an sbpage

has page headers and page trailers.

v It preserves the user data alignments on pages because no page header and page

trailer are present.

Moderate integrity might be useful for smart large objects that contain large

amounts of audio or video data that is moved through the database server and

that do not require a high data integrity. By default, the database server uses high

integrity (page headers and page trailers) for sbspace pages. You can control the

data integrity for a smart large object as part of its storage characteristics.

Important: Consider carefully whether to use moderate integrity for sbpages of a

smart large object. Although moderate integrity takes less disk space

per page, it also reduces the ability of the database server to recover

information if disk errors occur.

For information on the structure of sbspace pages, see the IBM Informix Dynamic

Server Administrator’s Guide.

Changing the Storage Characteristics

The IfxLoAlter() methods in the IfxSmartBlob class let you change the storage

characteristics of a smart large object.

 To change smart-large-object characteristics:

1. Create a new large-object descriptor. For example:

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

4-46 IBM Informix JDBC Driver Programmer’s Guide

2. Call IfxLobDescriptor.setCreateFlags(), setEstBytes(),

IfxLobDescriptor.setMaxBytes(), setExtSize, and setSbspace() to specify the

new characteristics:

public void setCreateFlags(int flags)

public void setEstBytes(long estSize)

public void setMaxBytes (long maxSize)

public void setExtSize (long extSize)

public void setSbspace(java.lang.String sbspacename)

The flag parameter is a constant from “Setting Create Flags,” next.

3. Call IfxLoAlter() to alter the existing smart large object to contain the new

descriptor:

public int IfxLoAlter(IfxLocator loPtr, IfxLobDescriptor loDesc)

 throws SQLException

public int IfxLoAlter(IfxBblob blob, IfxLobDescriptor loDesc) throws SQLException

public int IfxLoAlter(IfxCblob clob, IfxLobDescriptor loDesc) throws SQLException

IfxLoAlter() obtains an exclusive lock in the server for the entire smart large object

before it proceeds with the update. It holds this lock until the update completes.

Setting Create Flags: You can change the following characteristics by calling the

IfxLobDescriptor.setCreateFlags() method:

v Logging characteristics

You can specify the LO_LOG or LO_ NOLOG constant.

LO_LOG causes the server to follow the logging procedure used with the

current database log for the corresponding smart large object. This option can

generate large amounts of log traffic and increase the risk that the logical log

fills up.

Instead of full logging, you might turn off logging when you load the smart

large object initially and then turn logging back on once the smart large object is

loaded. If you use NO LOG, you can restore the smart-large-object metadata

later to a state in which no structural inconsistencies exist. In most cases, no

transaction inconsistencies will exist either, but that result is not guaranteed.

For more usage details on logging, see “Logging” on page 4-44.

v Last-access time characteristics

You can specify the LO_ KEEP_LASTACCESS_TIME or LO

NOKEEP_LASTACCESS_TIME constant. LO_ KEEP_LASTACCESS_TIME

records, in the smart-large-object metadata, the system time at which the

corresponding smart large object was last read or written.

For more usage details on last-access time, see “Last-Access Time” on page 4-45.

v Whether to detect incomplete writes and data corruption by producing user-data

pages with a page header and page trailer

You can specify the LO_ HIGH_INTEG or LO_moderate_integ constant. LO_

HIGH_INTEG is the default data-integrity behavior.

For more usage details on data integrity, see “Data Integrity” on page 4-46.

The following example sets multiple flags:

loDesc.setCreateFlags

 (IfxSmartBlob.LO_LOG+IfxSmartBlob.LO_TEMP+...)

A parallel getXXX() method lets you obtain the current storage characteristics for

the large object:

public int getCreateFlags()

Chapter 4. Working With Informix Types 4-47

For more detailed information on all of the characteristics, see the section

describing the PUT clause for the CREATE TABLE statement, in the IBM Informix

Guide to SQL: Syntax.

Working with Status Characteristics

The IfxLoStat class stores some statistical information about a smart large object

such as the size, last access time, last modified time, last status change, and so on.

Figure 4-4 shows the status information that you can obtain.

 To obtain a reference to the status structure, call the following method in the

IfxSmartBlob class:

IfxLoStat IfxLoGetStat(int lofd)

To obtain particular categories of status information, call the methods shown in

Figure 4-5.

Working with Locks

To prevent simultaneous access to smart-large-object data, the database server

obtains a lock on this data when you open the smart large object. This

smart-large-object lock is distinct from the following kinds of locks:

Status Information Description

Last-access time The time, in seconds, that the smart large object was last accessed

 This value is available only if the last-access time attribute is enabled for the

smart large object. For more information, see “Last-Access Time” on page 4-45.

Last-change time The time, in seconds, of the last change in status for the smart large object

 A change in status includes changes to metadata and user data (data updates and

changes to the number of references). This system time is stored as number of

seconds since January 1, 1970.

Last-modification time The time, in seconds, that the smart large object was last modified

 A modification includes only changes to user data (data updates). This system

time is stored as the number of seconds since January 1, 1970.

On some platforms, the last-modification time might also have a microseconds

component, which can be obtained separately from the seconds component.

Size The size, in bytes, of the smart large object

Storage characteristics See “Working with Storage Characteristics” on page 4-39.

Figure 4-4. Status Information for a Smart Large Object

Status Information Method Signature in ifxLoStat Class

Last-access time int getLastAccessTime()

Last-change time int getLastStatusTime()

Last-modification time int getLastModifyTimeM() - time in microseconds

 int getLastModifyTimeS() - time rounded to seconds

Size int getSize()

Storage characteristics ifxLobDescriptor getLobDescriptor()

Figure 4-5. Methods for Obtaining Status Information

4-48 IBM Informix JDBC Driver Programmer’s Guide

v Row locks

A lock on a smart large object does not lock the row in which the smart large

object resides. However, if you retrieve a smart large object from a row and the

row is still current, the database server might hold a row lock as well as a

smart-large-object lock. Locks are held on the smart large object instead of on

the row because many columns could be accessing the same smart-large-object

data.

v Locks of different smart large objects in the same row of a table

A lock on one smart large object does not affect other smart large objects in the

row.

Table 4-4 shows the lock modes that a smart large object can support.

 Table 4-4. Lock Modes for a Smart Large Object

Lock Mode Purpose Description

Lock-all Lock the entire smart

large object

Indicates that lock requests apply to all data

for the smart large object

Byte-range Lock only specified

portions of the smart

large object

Indicates that lock requests apply only to

the specified number of bytes of

smart-large-object data

When the server opens a smart large object, it uses the following information to

determine the lock mode of the smart large object:

v The access mode of the smart large object

The database server obtains a lock as follows:

– In share mode, when you open a smart large object for reading (read-only)

– In update mode, when you open a smart large object for writing (write-only,

read/write, write/append)

When a write operation (or some other update) is actually performed on the

smart large object, the server upgrades this lock to an exclusive lock.
v The isolation level of the current transaction

If the database table has an isolation mode of Repeatable Read, the server does

not release any locks that it obtains on a smart large object until the end of the

transaction.

By default, the server chooses the lock-all lock mode.

The server retains the lock as follows:

v It holds share-mode locks and update locks (which have not yet been upgraded

to exclusive locks) until one of the following events occurs:

– The close of the smart large object

– The end of the transaction

– An explicit request to release the lock (for a byte-range lock only)
v It holds exclusive locks until the end of the transaction even if you close the

smart large object.

When one of the preceding conditions occurs, the server releases the lock on the

smart large object.

Important: You lose the lock at the end of a transaction even if the smart large

object remains open. When the server detects that a smart large object

Chapter 4. Working With Informix Types 4-49

has no active lock, it automatically obtains a new lock when the first

access occurs to the smart large object. The lock that it obtains is based

on the original access mode of the smart large object.

The server releases the lock when the current transaction terminates. However, the

server obtains the lock again when the next function that needs a lock executes. If

this behavior is undesirable, the server-side SQL application can use BEGIN

WORK transaction blocks and place a COMMIT WORK or ROLLBACK WORK

statement after the last statement that needs to use the lock.

Using Byte-Range Locking

By default, the database server uses whole lock-all locks when it needs to lock a

smart large object. Lock-all locks are an “all or nothing” lock; that is, they lock the

entire smart large object. When the database server obtains an exclusive lock, no

other user can access the data of the smart large object as long as the lock is held.

If this locking is too restrictive for the concurrency requirements of your

application, you can use byte-range locking instead of lock-all locking. With

byte-range locking, you can specify the range of bytes to lock in the

smart-large-object data. If other users access other portions of the data, they can

still acquire their own byte-range lock.

Use the IfxLoLock() method in the IfxSmartBlob class to specify byte-range

locking:

public long IfxLoLock(int lofd, long offset, int whence, long

 range, int lockmode) throws SQLException

To unlock a range of bytes in the object, use the IfxLoUnLock() method:

public long IfxLoUnLock(int lofd, long offset, int whence, long

 range) throws SQLException

The lofd parameter is the locator file descriptor returned by the IfxLoCreate() or

IfxLoOpen() method. The offset parameter is an offset from the starting seek

position. The whence parameter identifies the starting seek position. The values are

described in the table in “Positioning Within a Smart Large Object” on page 4-35.

The range parameter indicates the number of bytes to lock or unlock within the

smart large object. The lockmode parameter indicates what type of lock to create.

The values can be either IfxSmartBlob.LO_EXCLUSIVE_MODE or

IfxSmartBlob.LO_SHARED_MODE.

Caching Large Objects

Whenever an object of type BLOB, CLOB, text, or byte is fetched from the database

server, the data is cached in client memory. If the size of the large object is bigger

than the value in the LOBCACHE environment variable, the large object data is

stored in a temporary file. For more information about the LOBCACHE variable,

see “Managing Memory for Large Objects” on page 7-2.

Smart Large Object Examples

The examples on the following pages illustrate some of the tasks discussed in this

section.

Creating a Smart Large Object

This example illustrates the steps shown in “Steps for Creating Smart Large

Objects” on page 4-30.

4-50 IBM Informix JDBC Driver Programmer’s Guide

file = new File("data.dat");

FileInputStream fin = new FileInputStream(file);

byte[] buffer = new byte[200];;

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);

IfxLocator loPtr = new IfxLocator();

IfxSmartBlob smb = new IfxSmartBlob(myConn);

// Now create the large object in server. Read the data from the

 file

// data.dat and write to the large object.

int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

System.out.println("A smart-blob is created ");

int n = fin.read(buffer);

if (n > 0)

n = smb.IfxLoWrite(loFd, buffer);

System.out.println("Wrote: " + n +" bytes into it");

// Close the large object and release the locator.

smb.IfxLoClose(loFd);

System.out.println("Smart-blob is closed ");

smb.IfxLoRelease(loPtr);

System.out.println("Smart Blob Locator is released ");

The contents of the file data.dat are written to the smart large object.

Inserting Data into a Smart Large Object

The following code inserts data into a smart large object:

String s = "insert into large_tab (col1, col2) values (?,?)";

pstmt = myConn.prepareStatement(s);

file = new File("data.dat");

FileInputStream fin = new FileInputStream(file);

byte[] buffer = new byte[200];;

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);

IfxLocator loPtr = new IfxLocator();

IfxSmartBlob smb = new IfxSmartBlob(myConn);

// Create a smart large object in server

int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

System.out.println("A smart-blob has been created ");

int n = fin.read(buffer);

if (n > 0)

n = smb.IfxLoWrite(loFd, buffer);

smb.IfxLoClose(loFd);

System.out.println("Wrote: " + n +" bytes into it");

System.out.println("Smart-blob is closed ");

Blob blb = new IfxBblob(loPtr);

pstmt.setInt(1, 2); // set the Integer column

pstmt.setBlob(2, blb); // set the blob column

pstmt.executeUpdate();

System.out.println("Binding of smart large object to table is

 done");

pstmt.close();

smb.IfxLoRelease(loPtr);

System.out.println("Smart Blob Locator is released ");

The contents of the file data.dat are written to the BLOB column of the large_tab

table.

Chapter 4. Working With Informix Types 4-51

Retrieving Data from a Smart Large Object

The example in this section illustrates the steps in “Steps for Accessing Smart

Large Objects” on page 4-34.

The following code example shows how to access the smart large object data using

Informix extension classes:

byte[] buffer = new byte[200];

System.out.println("Reading data now ...");

try

 {

 int row = 0;

 Statement stmt = myConn.createStatement();

 ResultSet rs = stmt.executeQuery("Select * from demo_14");

 while(rs.next())

 {

 row++;

 String str = rs.getString(1);

 InputStream value = rs.getAsciiStream(2);

 IfxBblob b = (IfxBblob) rs.getBlob(2);

 IfxLocator loPtr = b.getLocator();

 IfxSmartBlob smb = new IfxSmartBlob(myConn);

 int loFd = smb.IfxLoOpen(loPtr, smb.LO_RDONLY);

 System.out.println("The Smart Blob is Opened for reading ..");

 int number = smb.IfxLoRead(loFd, buffer, buffer.length);

 System.out.println("Read total " + number + " bytes");

 smb.IfxLoClose(loFd);

 System.out.println("Closed the Smart Blob ..");

 smb.IfxLoRelease(loPtr);

 System.out.println("Locator is released ..");

 }

 rs.close();

 }

catch(SQLException e)

 {

 System.out.println("Select Failed ...\n" +e.getMessage());

 }

First, the ResultSet.getBlob() method gets an object of type BLOB. The casting is

required to convert the returned object to an object of type IfxBblob. Next, the

IfxBblob.getLocator() method gets an IfxLocator object from the IfxBblob object.

After the IfxLocator object is available, you can instantiate an IfxSmartBlob object

and use the IfxLoOpen() and IfxLoRead() methods to read the smart large object

data. Fetching CLOB data is similar, but it uses the methods ResultSet.getClob(),

IfxCblob.getLocator(), and so on.

If you use getBlob() or getClob() to fetch data from a column of type BLOB, you

do not need to use the Informix extensions to retrieve the actual BLOB content as

outlined in the preceding sample code. You can simply use

Java.Blob.getBinaryStream() or Java.Clob.getAsciiStream() to retrieve the content.

IBM Informix JDBC Driver implicitly gets the content from the database server for

you, using basically the same steps as the sample code. This approach is simpler

than the approach of the preceding example but does not provide as many options

for reading the contents of the BLOB column.

4-52 IBM Informix JDBC Driver Programmer’s Guide

Chapter 5. Working with Opaque Types

In This Chapter . 5-2

Using the IfmxUDTSQLInput Interface . 5-3

Reading Data . 5-3

Positioning in the Data Stream . 5-3

Setting or Obtaining Data Attributes . 5-3

Using the IfmxUDTSQLOutput Interface . 5-4

Mapping Opaque Data Types . 5-4

Caching Type Information . 5-4

Unsupported Methods . 5-5

Creating Opaque Types and UDRs . 5-5

Overview of Creating Opaque Types and UDRs . 5-5

Preparing to Create Opaque Types and UDRs . 5-6

Steps to Creating Opaque Types . 5-7

Steps to Creating UDRs . 5-9

Requirements for the Java Class . 5-10

SQL Names . 5-11

Specifying Characteristics for an Opaque Type . 5-11

Specifying Field Count . 5-11

Specifying Additional Field Characteristics . 5-12

Specifying Length . 5-12

Specifying Alignment . 5-13

Alignment Values . 5-13

Specifying SQL Names . 5-13

Specifying the Java Class Name . 5-13

Specifying Java Source File Retention . 5-13

Creating the JAR and Class Files . 5-14

Creating the .class and .java Files . 5-14

Creating the .jar File . 5-14

Sending the Class Definition to the Database Server . 5-14

Specifying Deployment Descriptor Actions . 5-15

Specifying a JAR File Temporary Path . 5-15

Creating an Opaque Type from Existing Code . 5-15

Using setXXXCast() Methods . 5-16

Using setSupportUDR() and setUDR() . 5-16

Removing Opaque Types and JAR Files . 5-17

Creating UDRs . 5-17

Removing UDRs and JAR Files . 5-19

Removing Overloaded UDRs . 5-19

Obtaining Information About Opaque Types and UDRs 5-19

getXXX() Methods in the UDTMetaData Class . 5-19

getXXX() Methods in the UDRMetaData Class . 5-20

Executing in a Transaction . 5-20

Examples . 5-21

Class Definition . 5-21

Inserting Data . 5-22

Retrieving Data . 5-23

Using Smart Large Objects Within an Opaque Type . 5-23

Creating an Opaque Type from an Existing Java Class with UDTManager 5-25

Creating an Opaque Type Using Default Support Functions 5-25

Creating an Opaque Type Using Support Functions You Supply 5-30

Creating an Opaque Type Without an Existing Java Class 5-32

© Copyright IBM Corp. 1996, 2008 5-1

Creating UDRs with UDRManager . 5-35

In This Chapter

An opaque data type is an atomic data type that you define to extend the database

server. The database server has no information about the opaque data type until

you provide routines that describe it.

Extending the database server also frequently requires that you create user-defined

routines (UDRs) to support the extensions. A UDR is a routine that you create that

can be invoked in an SQL statement, by the database server, or from another UDR.

UDRs can be part of opaque types, or they can be separate.

The JDBC 3.0 standard provides the java.sql.SQLInput and java.sql.SQLOutput

methods to access opaque types. The definition of these interfaces is extended to

fully support Informix fixed binary and variable binary opaque types. This

extension includes the following interfaces:

v IfmxUdtSQLInput

v IfmxUdtSQLOutput

In addition, the following classes simplify creating Java opaque types and UDRs in

the database server from a JDBC client application:

v UDTManager

v UDTMetaData

v UDRManager

v UDRMetaData

The UDTManager and UDRManager classes provide an infrastructure for

mapping client-side Java classes as opaque data types and UDRs and storing their

instances in the database.

This facility works only in client-side JDBC. For details about the features and

limitations of server-side JDBC, see the J/Foundation Developer’s Guide.

For detailed information about opaque types and UDRs, see the following

publications:

v IBM Informix User-Defined Routines and Data Types Developer’s Guide discusses the

terms and concepts about opaque types and UDRs that you need to use the

information in this section, including the internal data structure, support

functions, and implicit and explicit casts.

v The J/Foundation Developer’s Guide discusses information specific to writing UDRs

in Java.

This chapter includes the following topics:

v Using the IfmxUDTSQLInput Interface

v Using the IfmxUDTSQLOutput Interface

v Mapping Opaque Data Types

v Caching Type Information

v Creating Opaque Types and UDRs

v Examples

5-2 IBM Informix JDBC Driver Programmer’s Guide

Using the IfmxUDTSQLInput Interface

The com.informix.jdbc.IfmxUdtSQLInput interface extends java.sql.SQLInput

with several added methods. To use these methods, you must cast the SQLInput

references to IfmxUdtSQLInput. The methods allow you to perform the following

functions:

v Read data.

v Position in the data stream.

v Set or obtain attributes of the data.

Reading Data

The readString() method reads the next attribute in the stream as a Java string.

The readBytes() method reads the next attribute in the stream as a Java byte array.

Both methods are similar to the SQLInput.readBytes() method except that a fixed

length of data is read in:

public String readString(int maxlen) throws SQLException;

public byte[] readBytes(int maxlen) throws SQLException;

In both methods, you must supply a length for IBM Informix JDBC Driver to read

the next attribute properly, because the characteristics of the opaque type are

unknown to the driver. The maxlen parameter specifies the maximum length of

data to read in.

Positioning in the Data Stream

The getCurrentPosition() method retrieves the current position in the input stream.

The setCurrentPosition() method changes the position in the input stream to the

position specified by the position parameter:

public int getCurrentPosition();

public void setCurrentPosition(int position) throws SQLException;

public void skipBytes(int len) throws SQLException;

The position parameter must be a positive integer. The skipBytes() method changes

the position in the input stream by the number of bytes specified by the len

parameter, relative to the current position. The len parameter must be a positive

integer.

In both setCurrentPosition() and skipBytes(), IBM Informix JDBC Driver generates

an SQLException if the new position specified is after the end of the input stream.

Setting or Obtaining Data Attributes

The length() method returns the total length of the entire data stream. The

getAutoAlignment() method retrieves the TRUE or FALSE (on or off) state of the

auto alignment feature. The setAutoAlignment() method sets the state to TRUE or

FALSE:

public int length();

public boolean getAutoAlignment();

public void setAutoAlignment(boolean value);

Important: Setting the auto alignment feature might result in discarded bytes from

the input stream if the data is not already aligned. JDBC applications

should provide aligned data or set the auto alignment feature to FALSE.

Chapter 5. Working with Opaque Types 5-3

Using the IfmxUDTSQLOutput Interface

The com.informix.jdbc.IfmxUdtSQLOutput interface extends java.sql.SQLOutput

with the following added methods:

public void writeString(String str, int length) throws

 SQLException;

public void writeBytes(byte[] b, int length) throws SQLException;

To use these methods, you must cast the SQLOutput references to

IfmxUdtSQLOutput.

Use the writeString() method to write the next attribute to the stream as a Java

string. If the string passed in is shorter than the specified length, IBM Informix

JDBC Driver pads the string with zeros.

Use the writeBytes() method to write the next attribute to the stream as a Java

byte array.

Both methods are similar to the SQLOutput.writeBytes() method except that a

fixed length of data is written to the stream. If the array or string passed in is

shorter than the specified length, IBM Informix JDBC Driver pads the array or

string with zeros. In both methods, you must supply a length for IBM Informix

JDBC Driver to write the next attribute properly, because the opaque type is

unknown to the driver.

Mapping Opaque Data Types

Informix opaque types map to Java objects, which must implement the

java.sql.SQLData interface. These Java objects describe all the data members that

make up the opaque type. These Java objects are strongly typed; that is, each read

or write method in the readSQL or writeSQL method of the Java object must

match the corresponding data member in the opaque type definition. IBM Informix

JDBC Driver cannot perform any type conversion because the type structure is

unknown to it.

IBM Informix JDBC Driver also requires that all opaque data be transported as

Informix DataBlade® API data types, as defined in mitypes.h (this file is included

in all Informix Dynamic Server installations). All opaque data is stored in the

database server table in a C struct, which is made up of various DataBlade API

types, as defined in the opaque type.

You do not need to handle mapping between Java and C if you use the UDT and

UDR Manager facility to create opaque types. For more information, see “Creating

Opaque Types and UDRs” on page 5-5.

Caching Type Information

When objects of some data types insert data into columns of certain other data

types, IBM Informix JDBC Driver verifies that the data provided matches the data

the database server expects by calling the SQLData.getSQLTypeName() method.

The driver asks the database server for the type information with each insertion.

This occurs in the following cases:

v When an SQLData object inserts data into an opaque type column and

getSQLTypeName() returns the name of the opaque type

5-4 IBM Informix JDBC Driver Programmer’s Guide

v When a Struct or SQLData object inserts data into a row column and

getSQLTypeName() returns the name of a named row

v When an SQLData object inserts data into a DISTINCT type column

You can set an environment variable, ENABLE_CACHE_TYPE=1, in the database URL,

to have the driver cache the type information the first time it is retrieved. The

driver then asks the cache for the type information before requesting the data from

the database server.

Unsupported Methods

The following methods of the SQLInput and SQLOutput interfaces are not

supported for opaque types:

v java.sql.SQLInput

– readAsciiStream()

– readBinaryStream()

– readBytes()

– readCharacterStream()

– readObject()

– readRef()

– readString()

v java.sql.SQLOutput

– writeAsciiStream(InputStream x)

– writeBinaryStream(InputStream x)

– writeBytes(byte[] x)

– writeCharacterStream(Reader x)

– writeObject(Object x)

– writeRef(Ref x)

– writeString(String x)

Creating Opaque Types and UDRs

The UDTManager and UDRManager classes allow you to easily create and deploy

opaque types and user-defined routines (UDRs) in the database server.

Before using the information in this section, read the following two additional

publications:

v For information about configuring your system to support Java UDRs, see the

J/Foundation Developer’s Guide.

v For detailed information about developing opaque types, see IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

Overview of Creating Opaque Types and UDRs

In the database server, any Java class that implements the java.sql.SQLData

interface and is accessible to the Java Virtual Machine can be stored as an opaque

type. The UDTManager and UDRManager classes, together with their supporting

UDTMetaData and UDRMetaData classes, extend this facility to client

applications: your Java client application can use these classes to create opaque

types and user-defined routines and transfer their class definitions to the database

server. The client does not need to be accessible to the database server to use this

functionality.

Chapter 5. Working with Opaque Types 5-5

Important: This functionality is tightly coupled with server support for creating

and using Java opaque types and user-defined routines. Any

limitations on using Java opaque types and user-defined routines that

exist in your version of the database server apply equally to Java

opaque types and routines you create in your client applications.

When you use the UDTManager and UDTMetaData classes, IBM Informix JDBC

Driver performs all of the following actions for your application:

1. Obtains the JAR file you specify

2. Transports the JAR file from the client local area to the server local area

You define the server local area using the UDTManager.setJarFileTmpPath()

method. The default is /tmp on UNIX systems and C:\temp on Windows

systems.

3. Installs the JAR file in the server

4. Registers the opaque data type in the database with the CREATE OPAQUE

TYPE SQL statement, taking input from the UDTMetaData class

5. Registers the support functions and casts you provide for the opaque type

using the CREATE Function and CREATE CAST SQL statements

You define support functions and casts using the setSupportUDR() and

setXXXCast() methods in the UDTMetaData class.

If you do not provide input and output functions for the opaque type, the

driver registers the default functions (see the release notes for any limitations

on this feature).

6. Registers any other nonsupport routines or casts (if any) that you specified,

taking input from the UDTMetaData.setUDR() and

UDTMetaData.setXXXCast() method calls in your application

7. Creates a mapping between an SQL OPAQUE type and a Java object (using the

sqlj.setUDTExtName() method)

When you use the UDRManager and UDRMetaData classes, IBM Informix JDBC

Driver performs the following actions:

1. Obtains the JAR file you specify

2. Transports the JAR file from the client local area to the server local area

3. Installs the JAR file in the server

4. Registers the UDRs in the database with the CREATE FUNCTION SQL

statement, taking input from the UDRMetaData.setUDR() method calls in your

application

The methods in the UDT and UDR Manager facility perform the following main

functions:

v Creating opaque types in Java without preexisting Java classes, using the default

input and output methods the server provides

v Converting existing Java classes on the client to opaque types and UDRs in the

database server

v Converting Java static methods to UDRs

Preparing to Create Opaque Types and UDRs

Before using the UDT and UDR Manager facility, perform the following setup

tasks:

v Make sure your database server supports Java.

5-6 IBM Informix JDBC Driver Programmer’s Guide

The UDT and UDR Manager facility does not work in legacy servers that do not

include Java support.

v Include either the ifxtools.jar or ifxtools_g.jar file in your CLASSPATH setting.

v Create a directory named /usr/informix in the database server, with owner and

group set to user informix and permissions set to 777.

v Add the following entry to the /etc/group file in the database server:

informix::unique-id-number:

v Check the release notes for the driver and database server for any further

limitations in this release.

Steps to Creating Opaque Types

Using UDT Manager, you can create a Java opaque type from an existing Java class

that implements the SQLData interface. UDT Manager can also help you create a

Java opaque type without requiring that you have the Java class ready; you specify

the characteristics of the opaque type you want to create, and the UDT Manager

facility creates the Java class and then the Java opaque type.

Follow the steps in this section to use the UDTManager classes.

 To create an opaque type from an existing Java class:

1. Ensure that the class meets the requirements for conversion to an opaque type.

For the requirements, see “Requirements for the Java Class” on page 5-10.

2. If you do not want to use the default input and output routines provided by

the server, write support UDRs for input and output.

For general information about writing support UDRs, see IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

3. Create a default sbspace on the database server to hold the JAR file that

contains the code for the opaque type.

For information about creating an sbspace, see the Administrator’s Guide for

your database server and the J/Foundation Developer’s Guide.

4. Open a JDBC connection.

Make sure a database object is associated with the connection object. The driver

cannot create an opaque type without a database object. For details about

creating a connection with a database object, see Chapter 2.

5. Instantiate an UDTManager object and an UDTMetaData object:

UDTManager udtmgr = new UDTManager(connection);

UDTMetaData mdata = new UDTMetaData();

6. Set properties for the opaque type by calling methods in the UDTMetaData

object.

At a minimum, you must specify the SQL name, UDT length, and JAR file SQL

name. For an explanation of SQL names, see “SQL Names” on page 5-11.

You can also specify the alignment, implicit and explicit casts, and any support

UDRs:

mdata.setSQLName("circle2");

mdata.setLength(24);

mdata.setAlignment(UDTMetaData.EIGHT_BYTE)

mdata.setJarFileSQLName("circle2_jar");

mdata.setUDR(areamethod, "area");

mdata.setSupportUDR(input, "input", UDTMetaData.INPUT)

mdata.setSupportUDR(output, "output",UDTMetaData.OUTPUT)

Chapter 5. Working with Opaque Types 5-7

mdata.SetImplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_

 LVARCHAR, "input");

mdata.SetExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_

 LVARCHAR, "output");

7. If desired, specify a path name where the driver should place the JAR file in

the database server file system:

String pathname = "/work/srv93/examples";

udtmgr.setJarFileTmpPath(pathname);

Make sure the path exists in the server file system. For more information, see

“Specifying a JAR File Temporary Path” on page 5-15.

8. Create the opaque type:

udtmgr.createUDT(mdata, "Circle2.jar", "Circle2", 0);

For additional information on creating an opaque type from existing code, see

“Creating an Opaque Type from Existing Code” on page 5-15.

For a complete code example of using the preceding steps to create an opaque

type, see “Creating an Opaque Type from an Existing Java Class with

UDTManager” on page 5-25.

 To create an opaque type without an existing Java class:

1. Create a default sbspace on the database server to hold the JAR file that

contains the code for the opaque type.

For information about creating an sbspace, see the Administrator’s Guide for

your database server and the J/Foundation Developer’s Guide.

2. Open a JDBC connection.

Make sure the connection object has a database object associated with it. For

details, see Chapter 2, “Connecting to the Database,” on page 2-1.

3. Instantiate a UDTManager object and a UDTMetaData object:

UDTManager udtmgr = new UDTManager(connection);

UDTMetaData mdata = new UDTMetaData();

4. Specify the characteristics of the opaque type by calling methods in the

UDTMetaData class:

mdata.setSQLName("acircle");

mdata.setLength(24);

mdata.setFieldCount(3);

mdata.setFieldName(1, "x");

mdata.setFieldName(2, "y");

mdata.setFieldName(3, "radius");

mdata.setFieldType

 (1,com.informix.lang.IfxTypes.IFX_TYPE_INT);

mdata.setFieldType

 (2,com.informix.lang.IfxTypes.IFX_TYPE_INT);

mdata.setFieldType

 (3,com.informix.lang.IfxTypes.IFX_TYPE_INT);

mdata.setJarFileSQLName("ACircleJar");

For more information on setting characteristics for opaque types, see

“Specifying Characteristics for an Opaque Type” on page 5-11.

5. Create the Java file, the class file, and the JAR file:

mdata.keepJavaFile(true);

String classname = udtmgr.createUDTClass(mdata);

String jarfilename = udtmgr.createJar(mdata, new String[]

 {classname + .class"});

For more information, see “Creating the JAR and Class Files” on page 5-14.

5-8 IBM Informix JDBC Driver Programmer’s Guide

6. If desired, specify a path name where the driver should place the JAR file in

the database server file system:

String pathname = "/work/srv93/examples";

udtmgr.setJarFileTmpPath(pathname);

Make sure the path exists in the server file system. For more information, see

“Specifying a JAR File Temporary Path” on page 5-15.

7. Send the class definition to the database server:

udtmgr.createUDT(mdata, jarfilename, classname, 0);

For more information, see “Sending the Class Definition to the Database

Server” on page 5-14.

For a complete code example of using the preceding steps to create an opaque

type, see “Creating an Opaque Type Without an Existing Java Class” on page 5-32.

Steps to Creating UDRs

The following section tells how to create a UDR from a Java class.

 To create a UDR:

1. Write a Java class with one or more static method to be registered as UDRs.

For more information, see “Requirements for the Java Class” on page 5-10.

2. Create an sbspace on the database server to hold the JAR file that contains the

code for the UDR.

For information about creating an sbspace, see the Administrator’s Guide for

your database server and the J/Foundation Developer’s Guide.

3. Open a JDBC connection.

Make sure the connection object has a database object associated with it. For

details, see Chapter 2.

4. Instantiate a UDRManager object and a UDRMetaData object:

UDRManager udrmgr = new UDRManager(myConn);

UDRMetaData mdata = new UDRMetaData();

5. Create java.lang.Reflect.Method objects for the static methods to be registered

as UDRs. In the following example, method1 is an instance that represents the

udr1(string, string) method in the Group1 java class; method2 is an instance

that represents the udr2(Integer, String, String) method in the Group1 Java

class:

Class gp1 = Class.forName("Group1");

Method method1 = gp1.getMethod("udr1",

 new Class[]{String.class, String.class});

Method method2 = gp1.getMethod("udr2",

 new Class[]{Integer.class, String.class, String.class});

6. Specify which methods to register as UDRs.

The second parameter specifies the SQL name of the UDR:

mdata.setUDR(method1, "group1_udr1");

mdata.setUDR(method2, "group1_udr2");

For more information, see “Creating UDRs” on page 5-17.

7. Specify the JAR file SQL name:

mdata.setJarFileSQLName("group1_jar");

8. If desired, specify a path name where the driver should place the JAR file in

the database server file system:

String pathname = "/work/srv93/examples";

udrmgr.setJarFileTmpPath(pathname);

Chapter 5. Working with Opaque Types 5-9

Make sure the path exists in the database server file system. For more

information, see “Specifying a JAR File Temporary Path” on page 5-15.

9. Install the UDRs in the database server:

udrmgr.createUDRs(mdata, "Group1.jar", "Group1", 0);

For more information, see “Creating UDRs” on page 5-17.

For complete code examples of creating UDRs, see “Creating UDRs with

UDRManager” on page 5-35.

Requirements for the Java Class

To qualify for converting into an opaque type, your Java class must meet the

following conditions:

v The class must implement the java.sql.SQLData interface. For an example, see

“Examples” on page 5-21.

v If the class contains another opaque type, the additional opaque type must be

implemented in a similar way and the additional .class file must be packaged as

part of the same JAR file as the original opaque type.

v If the class contains DISTINCT types, the class can either implement the

SQLData interface for the DISTINCT types or let the driver map the DISTINCT

types to the base types. For more information, see “Distinct Data Types” on page

4-2.

v The class cannot contain complex types.

v If you are creating an opaque type from an existing Java class and using the

default support functions in the database server, you must cast the SQLInput

and SQLOutput streams in SQLData.readSQL() and SQLData.writeSQL() to

IfmxUDTSQLInput and IfmxUDTSQLOutput.

For a code example that shows how to do this, see “Creating an Opaque Type

Using Default Support Functions” on page 5-25.

v All Java methods for the opaque type must be in the same .java file with the

class that defines the opaque type.

Additional requirements for UDRs are as follows:

v All class methods to be registered as UDRs must be static.

v The method argument types and the return types must be valid Java data types.

v The methods can use all basic nongraphic Java packages that are included in the

JDK, such as java.util, java.io, java.net, java.rmi, java.sql, and so forth.

v Data types of method arguments and return types must conform to the data

type mapping tables shown in “Data Type Mapping for UDT Manager and UDR

Manager” on page C-14.

v The following SQL argument or return types are not supported:

– MONEY

– DATETIME with qualifier other than hour to second or year to fraction(5)

– INTERVAL with qualifier other than year to month or day to fraction(5)

– Any data type not shown in the mapping tables for method arguments and

return types; for the tables, see “Data Type Mapping for UDT Manager and

UDR Manager” on page C-14.

5-10 IBM Informix JDBC Driver Programmer’s Guide

SQL Names

Some of the methods in the UDTMetaData class set an SQL name for an opaque

type or a JAR file that contains the opaque type or UDR code. The SQL name is

the name of the object as referenced in SQL statements. For example, assume your

application makes the following call:

mdata.setSQLName("circle2");

The name as used in an SQL statement is as follows:

CREATE TABLE tab (c circle2);

Similarly, assume the application sets the JAR file name as follows:

mdata.setJarFileSQLname("circle2_jar");

The JAR filename as referenced in SQL is as follows:

CREATE FUNCTION circle2_output (...)

RETURNS circle2

EXTERNAL NAME

 ’circle2_jar: circle2.fromString (...)’

LANGUAGE JAVA

NOT VARIANT

END FUNCTION;

Important: There is no default value for an SQL name. Use the setSQLname() or

setJarFileSQLName() method to specify a name, otherwise an SQL

exception will be thrown.

Specifying Characteristics for an Opaque Type

The following sections provide additional information about creating an opaque

type without a preexisting Java class. Details about creating an opaque type from

an existing Java class begin with “Creating an Opaque Type from Existing Code”

on page 5-15.

Using the methods in the UDTMetaData class, you can specify characteristics for a

new opaque type. The characteristics you can specify are described on the

following pages. These settings apply for new opaque types; for opaque types

created from existing files, see “Creating an Opaque Type from Existing Code” on

page 5-15.

You can set the following characteristics:

v The number of fields in the internal data structure that defines the opaque type

v Additional characteristics, such as data type, name, and scale, of each field in the

internal structure that defines the opaque type

v The length of the opaque type

v The alignment of the opaque type

v The SQL name of the opaque type and the JAR file

v The name of the generated Java class

v Whether to keep the generated .java file

Specifying Field Count

The setFieldCount() method specifies the number of fields in the internal data

structure that defines the opaque type:

public void setFieldCount(int fieldCount) throws SQLException

Chapter 5. Working with Opaque Types 5-11

Specifying Additional Field Characteristics

The following methods set additional characteristics for fields in the internal data

structure:

public void setFieldName (int field, String name) throws SQLException

public void setFieldType (int field, int ifxtype) throws SQLException

public void setFieldTypeName(int field, String sqltypename) throws SQLException

public void setFieldLength(int field, int length) throws SQLException

The field parameter indicates the field for which the driver should set or obtain a

characteristic. The first field is 1; the second field is 2, and so forth.

The name you specify with setFieldName() appears in the Java class file. The

following example sets the first field name to IMAGE.

mdata.setFieldName(1, "IMAGE");

The setFieldType() method sets the data type of a field using a constant from the

file com.informix.lang.IfxTypes. For more information, see “Mapping for Field

Types” on page C-16. The following example specifies the CHAR data type for

values in the third field:

mdata.setFieldType(3, com.informix.lang.IfxTypes.IFX_TYPE_CHAR);

The setFieldTypeName() method sets the data type of a field using the SQL data

type name:

mdata.setFieldTypeName(1, "IMAGE_UDT");

This method is valid only for opaque and distinct types; for other types, the driver

ignores the information.

The length parameter has the following meanings, depending on the data type of

the field:

Character types Maximum length in characters

DATETIME Encoded length

INTERVAL Encoded length

Other data type or no type specified

Driver ignores the information

 The possible values for encoded length are those in the JDBC 2.20 specification:

hour to second; year to second; and year to fraction(1), year to fraction(2), up

through year to fraction(5).

The following example specifies that the third (VARCHAR) field in an opaque type

cannot store more than 24 characters:

mdata.setFieldLength(3, 24);

Specifying Length

The setLength() method specifies the total length of the opaque type:

public void setLength(int length) throws SQLException

If you are creating an opaque type from an existing Java class and do not specify a

length, the driver creates a variable-length opaque type. If you are creating an

opaque type without an existing Java class, you must specify a length; UDT

Manager creates only fixed-length opaque types in this case.

5-12 IBM Informix JDBC Driver Programmer’s Guide

Specifying Alignment

The setAlignment() method specifies the opaque type’s alignment:

public void setAlignment(int alignment)

The alignment parameter is one of the alignment values shown in the next section.

If you do not specify an alignment, the database server aligns the opaque type on

4-byte boundaries.

Alignment Values

Alignment values are shown in the following table.

Value Constant Structure Begins With

Boundary

Aligned On

1 SINGLE_BYTE 1-byte quantity single-byte

2 TWO_BYTE 2-byte quantity (such as SMALLINT) 2-byte

4 FOUR_BYTE 4-byte quantity (such as FLOAT or UNSIGNED

INT)

4-byte

8 EIGHT_BYTE 8-byte quantity 8-byte

Specifying SQL Names

Specify SQL names with the setSQLName() and setJarFileSQLName() methods:

public void setSQLName(String name) throws SQLException

public void setJarFileSQLName(String name) throws SQLException

By default, the driver uses the name you set through the setSQLName() method as

the filenames of the Java class and JAR files generated when you call the

UDTManager.createUDTCclass() and UDTManager.createJar() methods. For

example, if you called setSQLName("circle") and then called createUDTCclass()

and createJar(), the class filename generated would be circle.class and the JAR

filename would be circle.jar. You can specify a Java class filename other than the

default by calling the setClassName() method.

The JAR file SQL name is the name as it will be referenced in the SQL CREATE

FUNCTION statement the driver uses to register a UDR.

Important: The JAR file SQL name is the name of the JAR file in SQL statements;

it has no relationship to the contents of the JAR file.

Specifying the Java Class Name

Use setClassName() to specify the Java class name:

public void setClassName(String name)throws SQLException

If you do not set a class name with setClassName(), the driver uses the SQL name

of the opaque type (set through setSQLName()) as the name of the Java class and

the filename of the .class file generated by the createUDTCclass() method.

Specifying Java Source File Retention

Use keepJavaFile() to specify whether to retain the .java source file:

public void keepJavaFile(boolean value)

The value parameter indicates whether the createUDTClass() method should retain

the .java file that it generates when it creates the Java class file for the new opaque

type. The default is to remove the file. The following example specifies keeping the

.java file:

Chapter 5. Working with Opaque Types 5-13

mdata.keepJavaFile(true);

Creating the JAR and Class Files

Once you have specified the characteristics of the opaque type through the

UDTMetaData methods, you can use the methods in the UDTManager class to

create opaque types and their class and JAR files in the following order:

1. Instantiate the UDTManager object.

The constructor is defined as follows:

public UDTManager(Connection conn) throws SQLException

2. Create the .class and .java files with the createUDTClass() method.

3. Create the .jar file with the createJar() method.

4. Create the opaque type with the createUDT() method.

Creating the .class and .java Files

The createUDTClass() method has the following signature:

public String createUDTClass(UDTMetaData mdata) throws SQLException

The createUDTClass() method causes the driver to perform all of the following

actions for your application:

1. Creates a Java class with the name you specified in the

UDTMetaData.setClassName() method

If no class name was specified, the driver uses the name specified in the

UDTMetaData.setSQLName() method.

2. Puts the Java class code into a .java file and then compile the file to a .class file

3. Returns the name of the newly created class to your application

If you specified TRUE by calling the UDTMetaData.keepJavaFile() method, the

driver retains the generated .java file. The default is to delete the .java file.

Your application should call the createUDTClass() method only to create new

.class and .java files to define an opaque type, not to generate an opaque type

from existing files.

Creating the .jar File

The createJar() method compiles the class files you specify in the classnames list.

The files in the list must have the .class extension.

public String createJar(UDTMetaData mdata, String[] classnames)

 throws SQLException;

The driver creates a JAR file named sqlname.jar (where sqlname is the name you

specified by calling UDTMetaData.setSQLName()) and returns the filename to

your application.

Sending the Class Definition to the Database Server

After you have created the JAR file, use the UDTManager.createUDT() method to

create the opaque type by sending the class definition to the database server:

public void createUDT(UDTMetaData mdata, String jarfile, String

 classname, int deploy) throws SQLException;

The jarfile parameter is the path name of a JAR (.jar) file that contains the class

definition for the opaque type. By default, the classes in the java.io package

resolve relative path names against the current user directory as named by the

5-14 IBM Informix JDBC Driver Programmer’s Guide

system property user.dir; it is typically the directory in which the Java Virtual

Machine was invoked. The filename must be included in your CLASSPATH setting

if you use an absolute path name.

The classname parameter is the name of the class that implements the opaque type.

The SQL name of the opaque type defaults to the class name if your application

does not call setClassName(). You can specify an SQL name by calling the

UDTMetaData.setSQLName() method.

Important: If your application calls createUDT() within a transaction or your

database is ANSI or enables logging, some extra guidelines apply. For

more information, see “Executing in a Transaction” on page 5-20.

Specifying Deployment Descriptor Actions

In the UDTManager and UDRManager methods, the deploy parameter indicates

whether install_actions should be executed if a deployment descriptor is present in

the JAR file. The undeploy parameter indicates whether remove_actions should be

executed.

0 Execute install_actions or remove_actions.

Nonzero Do not execute install_actions or remove_actions.

 A deployment descriptor allows you to include the SQL statements for creating

and dropping UDRs in a JAR file. For more information about the deployment

descriptor, see the J/Foundation Developer’s Guide and the SQLJ specification.

Specifying a JAR File Temporary Path

When the driver ships the JAR file for an opaque type or UDR, it places the file by

default in /tmp (on UNIX) or in c:\temp (on Windows). You can specify an

alternative path name by calling the setJarTmpPath() method in either the

UDTManager or UDRManager class:

public void setJarTmpPath(String path) throws SQLException

You can call this method at any point before calling createUDT() or createUDR(),

the UDTManager or UDRManager objects. The path parameter must be an

absolute path name, and you must ensure that the path exists on the server file

system.

Creating an Opaque Type from Existing Code

The preceding pages describe methods you use to create a new opaque type

without an existing Java class. When you create an opaque type from existing Java

code, you specify the SQL name, JAR file SQL name, support UDRs (if any), and

any additional nonsupport UDRs that are included in the opaque type. (For an

explanation of SQL names, see “SQL Names” on page 5-11.) You can also specify

the length, alignment, and implicit and explicit casts.

To create an opaque type from existing code, use the following methods:

v UDTMetaData.setSQLName() to specify the SQL name of the opaque type as

referenced in SQL statements

v UDTMetaData.setSupportUDR() for each support UDR in the opaque type

Support UDRs are input/output, send/receive, and so forth.

v UDTMetaData.setUDR() for each nonsupport UDR in the opaque type

v UDTMetaData.setJarFileSQLName() to specify an SQL name for the JAR file

Chapter 5. Working with Opaque Types 5-15

v UDTMetaData.setImplicitCast() or UDTMetaData.setExplicitCast() to specify

each cast

v UDTMetaData.setLength() if the opaque type is fixed length (the driver defaults

to variable length)

v UDTMetaData.setAlignment() to specify the byte boundary on which the

opaque type is aligned (necessary only if you do not want the database server to

default to a 4-byte boundary)

v UDTManager.createJar() to create a JAR (.jar) file if you do not already have

one

v UDTManager.createUDT() to create the opaque type

In addition, the setXXXCast(), setSupportUDR(), and setUDR() methods are used

only for creating an opaque type from existing code:

public void setImplicitCast(int ifxtype, String methodsqlname)

 throws SQLException

public void setExplicitCast(int ifxtype, String methodsqlname)

 throws SQLException

public void setSupportUDR(Method method, String sqlname, int type)

 throws SQLException

public void setUDR(Method method, String sqlname)

 throws SQLException

Using setXXXCast() Methods

The setXXXCast() methods specify the implicit or explicit cast to convert data from

an opaque type to the data type specified.

The ifxtype parameter is a type code from the class com.informix.lang.IfxTypes.

Data type mapping between the ifxtype parameter and the SQL type in the

database server is detailed in “Mapping for Casts” on page C-15. The

methodsqlname parameter is the SQL name of the Java method that implements the

cast.

The following example sets an implicit cast implemented by a Java method with

the SQL name circle2_input:

setImplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_LVARCHAR,

 "circle2_input");

The following example sets an explicit cast implemented by a Java method with

the SQL name circle_output:

setExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_LVARCHAR,

 "circle2_output");

The following example sets an explicit cast for converting a circle2 opaque type to

an integer:

setExplicitCast(com.informix.lang.IfxTypes.IFX_TYPE_INT,

 "circle2_to_int");

Using setSupportUDR() and setUDR()

The setSupportUDR() method specifies a Java method in an existing Java class

that will be registered as a support UDR for the opaque type.

The method parameter specifies an object from java.lang.reflect.Method to be

registered as a Java support UDR for the opaque type in the database server.

5-16 IBM Informix JDBC Driver Programmer’s Guide

Support UDRs are Input, Output, Send, Receive, and so forth (for more

information, see IBM Informix User-Defined Routines and Data Types Developer’s

Guide.)

The sqlname parameter specifies the SQL name of the method. For more

information, see “SQL Names” on page 5-11.

The type parameter specifies the kind of support UDR, as follows:

UDTMetaData.INPUT

UDTMetaData.OUTPUT

UDTMetaData.SEND

UDTMetaData.RECEIVE

UDTMetaData.IMPORT

UDTMetaData.EXPORT

UDTMetaData.BINARYIMPORT

UDTMetaData.BINARYEXPORT

For step-by-step information on creating an opaque type from existing code, see on

page 5-7.

Tip: It is not necessary to register the methods in the SQLData interface. For

example, you do not need to register SQLData.getSQLTypeName(),

SQLData.readSQL(), or SQLData.writeSQL().

To specify other UDRs, use setUDR() as described in “Creating UDRs” on page

5-17.

Removing Opaque Types and JAR Files

You can remove opaque types and their JAR files using the following methods:

public static void removeUDT(String sqlname) throws SQLException

public static void removeJar(String jarfilesqlname, int undeploy)

 throws SQLException

The removeUDT() method removes the opaque type, with all its casts and UDRs,

from the database server. It does not remove the JAR file itself because other

opaque types or UDRs could be using the same JAR file.

Important: If your application calls removeUDT() within a transaction or if your

database is ANSI or enables logging, some extra guidelines apply. For

more information, see “Executing in a Transaction” on page 5-20.

The removeJar() method removes the JAR file from the system catalog. The

jarfilesqlname parameter is the name you specified with the setJarFileSQLName()

method.

For the undeploy parameter, see “Specifying Deployment Descriptor Actions” on

page 5-15.

Important: Before calling removeJar(), you must first remove all functions and

procedures that depend on the JAR file. Otherwise, the database server

fails to remove the file.

Creating UDRs

Using UDR Manager to create UDRs in the database server involves:

v Coding the UDRs and packaging the code in a JAR file

For details about coding UDRs, see the J/Foundation Developer’s Guide.

Chapter 5. Working with Opaque Types 5-17

v Creating a default sbspace in the database server to hold the JAR file that

contains the code for the UDR

For information about creating an sbspace, see the Administrator’s Guide for your

database server and the J/Foundation Developer’s Guide.

v Calling methods in the UDRMetaData class to specify the information necessary

for IBM Informix JDBC Driver to register the UDRs in the database server

v If desired, specifying a path name where the driver should place the JAR file in

the database server file system

v Installing the UDRs in the server

Creating a UDR for a C-language opaque type is not supported; the opaque type

must be in Java.

To specify a UDR for the driver to register, use this method in UDRMetaData:

public void setUDR(Method method, String sqlname) throws SQLException

The method parameter specifies an object from java.lang.Reflect.Method to be

registered as a Java UDR in the database server. The sqlname parameter is the name

of the method as used in SQL statements.

Once you have specified the UDRs to be registered, you can set the JAR file SQL

name using UDRMetaData.setJarFileSQLName() and then use the

UDRManager.createUDRs() method to install the UDRs in the database server, as

follows:

public void createUDRs(UDRMetaData mdata, String jarfile, String

 classname, int deploy) throws SQLException

The jarfile parameter is the absolute or relative path name of the client-side JAR file

that contains the Java method definitions. If you use the absolute path name, the

JAR filename must be included in your CLASSPATH setting.

The classname parameter is the name of a Java class that contains the methods you

want to register as UDRs in the database server. Requirements for preparing the

Java methods are described on page 5-9.

For the deploy parameter, see “Specifying Deployment Descriptor Actions” on page

5-15.

The createUDRs() method causes the driver to perform all of the following steps

for your application:

1. Obtain the JAR file designated by the first parameter.

2. Transport the JAR file from the client local area to the server local area.

3. Register the UDRs specified in the UDRMetaData object (set through one or

more calls to UDRMetaData.setUDR()).

4. Install the JAR file and create the UDRs in the server.

After createUDRs() executes, your application can use the UDRs in SQL

statements.

Important: If your application calls createUDRs() within a transaction, or if your

database is ANSI or enables logging, some extra guidelines apply. For

more information, see “Executing in a Transaction” on page 5-20.

5-18 IBM Informix JDBC Driver Programmer’s Guide

Removing UDRs and JAR Files

You can remove UDRs using the following methods:

public void removeUDR(String sqlname) throws SQLException

public void removeJar(String jarfilesqlname, int undeploy) throws

 SQLException

Tip: The removeUDR() method removes the UDR from the server but does not

remove the JAR file, because other opaque types or UDRs could be using the

same JAR file.

The removeJar() method is described in “Removing Opaque Types and JAR Files”

on page 5-17.

Removing Overloaded UDRs

To remove overloaded UDRs, use the removeUDR() method with an additional

parameter:

public void removeUDR(String sqlname, Class[] methodparams) throws

 SQLException

The methodparams parameter specifies the data type of each parameter in the UDR.

Specify NULL to indicate no parameters. For example, assume a UDR named

print() is overloaded with two additional method signatures.

Java Method Signature Corresponding SQL Name

void print() print1

void print(String x, String y, int r)

print2

void print(int a, int b) print3

 The code to remove all three UDRs is:

udrmgr.removeUDR("print1", null);

udrmgr.removeUDR("print2",

 new Class[] {String.class, String.class, int.class});

udrmgr.removeUDR("print3", new Class[] {int.class, int.class});

Obtaining Information About Opaque Types and UDRs

Many of the setXXX() methods in the UDTMetaData and UDRMetaData classes

have parallel getXXX() methods for obtaining characteristics of existing opaque

types and UDRs.

getXXX() Methods in the UDTMetaData Class

The following table summarizes the available getXXX() methods in the

UDTMetaData class. For the field parameter, 1 designates the first field in the

internal data structure, 2 is the second, and so forth. For details about SQL names,

see “SQL Names” on page 5-11.

 Information Obtained Method Signature Notes

Number of fields in the

internal data structure

public int getFieldCount() Returns 0 if no fields are present

Name of a field in the

internal data structure

public String getFieldName

int field) throws SQLException

Returns NULL if no name exists

Data type code of a field in

the internal data structure

public int getFieldType

(int field) throws SQLException

Data type codes come from the class

com.informix.lang.IfxTypes. Returns -1

if no data type exists

Chapter 5. Working with Opaque Types 5-19

Information Obtained Method Signature Notes

Data type name of a field in

the internal data structure

public String getFieldTypeName

(int field) throws SQLException

Returns NULL if no name exists

For character type:

maximum number of

characters in the field;

for date-time or interval

type: encoded qualifier

public int getFieldLength

(int field) throws SQLException

Returns -1 if no length was set

SQL name of the opaque

type

public String getSQLName() Returns NULL if no name was set

SQL name of the JAR file public String getJarFileSQLName() Returns NULL if no name was set

Name of the Java class for

the opaque type

public String getClassName() If no class name was set through

setClassName(), sqlname is returned (this

is the default). If no SQL name was set

through setSQLName(), returns NULL

Length of a fixed-length

opaque type

public int getLength() Returns-1 if no length was set

Alignment of an opaque

type

public int getAlignment() Returns -1 if no alignment was set

For the alignment codes, see “Alignment

Values” on page 5-13.

An array of Method objects

that have been specified as

support UDRs through

setSupportUDR()

public Method[] getSupportUDRs() For details about support UDRs, see the

description of setSupportUDR() in

“Creating an Opaque Type from Existing

Code” on page 5-15. Returns NULL if no

support UDRs were specified

SQL name of a Java method

that was specified as a

support UDR through

setSupportUDR()

public String

getSupportUDRSQLName (Method method)

throws SQLException

Returns NULL if no name was set

getXXX() Methods in the UDRMetaData Class

To obtain information about UDRs, use the methods in the following table.

 Information Obtained Method Signature Notes

An array of

java.lang.Method.Reflect

methods that have been

specified as UDRs for an

opaque type.

public Method[] getUDRs() To specify a UDR for an opaque type, call

the UDTMetaData.setUDR() method.

Returns NULL if no UDRs were specified

SQL name of a Java method public String

getUDRSQLName(Method method)

throws SQLException

Returns NULL if no SQL name was

specified for the UDR Method object

Executing in a Transaction

If your database is ANSI or has logging enabled, and the application is not already

in a transaction, the driver executes the SQL statements to create opaque types and

UDRs on the server within a transaction. This means that either all the steps will

succeed, or all will fail. If the opaque type or UDR creation fails at any point, the

driver rolls back the transaction and throws an SQLException.

If the application is already in a transaction when the UDTManager.createUDT()

or UDRManager.createUDRs() method calls are issued, the SQL statements are

5-20 IBM Informix JDBC Driver Programmer’s Guide

executed within the existing transaction. This means that if the driver returns an

SQLException to your application during the creation of the opaque type or UDR,

your application must roll back the transaction to ensure the integrity of the

database. Otherwise, the opaque type, parts of its casts, or UDRs could be left in

the database.

Examples

The rest of this chapter contains examples for creating and using opaque types and

UDRs. The following examples are included:

v “Class Definition” on page 5-21

v “Inserting Data” on page 5-22

v “Retrieving Data” on page 5-23

v “Using Smart Large Objects Within an Opaque Type” on page 5-23

v “Creating an Opaque Type from an Existing Java Class with UDTManager” on

page 5-25

v “Creating UDRs with UDRManager” on page 5-35

The first four examples are released with your JDBC driver software in the

demo/udt-distinct directory; the last two are in the demo/tools/udtudrmgr

directory. See the README file in each directory for a description of the files.

Class Definition

The class for the C opaque type, charattrUDT in the following example, must

implement the SQLData interface:

import java.sql.*;

import com.informix.jdbc.*;

/*

 * C struct of charattr_udt:

 *

 * typedef struct charattr_type

 * {

 * char chr1[4+1];

 * mi_boolean bold; // mi_boolean (1 byte)

 * mi_smallint fontsize; // mi_smallint (2 bytes)

 * }

 * charattr;

 *

 * typedef charattr charattr_udt;

 *

 */

public class charattrUDT implements SQLData

{

 private String sql_type = "charattr_udt";

 // an ASCII character/a multibyte character, and is null-terminated.

 public String chr1;

 // Is the character in boldface?

 public boolean bold;

 // font size of the character

 public short fontsize;

 public charattrUDT() { }

 public charattrUDT(String chr1, boolean bold, short fontsize)

 {

 this.chr1 = chr1;

 this.bold = bold;

 this.fontsize = fontsize;

 }

 public String getSQLTypeName()

 {

Chapter 5. Working with Opaque Types 5-21

return sql_type;

 }

 // reads a stream of data values and builds a Java object

 public void readSQL(SQLInput stream, String type) throws SQLException

 {

 sql_type = type;

 chr1 = ((IfmxUDTSQLInput)stream).readString(5);

 bold = stream.readBoolean();

 fontsize = stream.readShort();

 }

 // writes a sequence of values from a Java object to a stream

 public void writeSQL(SQLOutput stream) throws SQLException

 {

 ((IfmxUDTSQLOutput)stream).writeString(chr1, 5);

 stream.writeBoolean(bold);

 stream.writeShort(fontsize);

 }

 // overides Object.equals()

 public boolean equals(Object b)

 {

 return (chr1.equals(((charattrUDT)b).chr1) &&

 bold == ((charattrUDT)b).bold &&

 fontsize == ((charattrUDT)b).fontsize);

 }

 public String toString()

 {

 return "chr1=" + chr1 + " bold=" + bold + " fontsize=" + fontsize;

 }

}

In your JDBC application, a custom type map must map the SQL-type name

charattr_udt to the charattrUDT class:

java.util.Map customtypemap = conn.getTypeMap();

if (customtypemap == null)

 {

 System.out.println("\n***ERROR: typemap is null!");

 return;

 }

customtypemap.put("charattr_udt", Class.forName("charattrUDT"));

Inserting Data

You can insert an opaque type as either its original type or its cast type. The

following example shows how to insert opaque data using the original type:

String s = "insert into charattr_tab (int_col, charattr_col)

 values (?, ?)";

System.out.println(s);

pstmt = conn.prepareStatement(s);

...

charattrUDT charattr = new charattrUDT();

charattr.chr1 = "a";

charattr.bold = true;

charattr.fontsize = (short)1;

pstmt.setInt(1, 1);

System.out.println("setInt...ok");

pstmt.setObject(2, charattr);

System.out.println("setObject(charattrUDT)...ok");

pstmt.executeUpdate();

If a casting function is defined, and you would like to insert data as the casting

type instead of the original type, you must call the setXXX() method that

corresponds to the casting type. For example, if you have defined a function

5-22 IBM Informix JDBC Driver Programmer’s Guide

casting CHAR or LVARCHAR to a charattrUDT column, you can use the

setString() method to insert data, as follows:

// Insert into UDT column using setString(int,String) and Java

 String object.

String s =

 "insert into charattr_tab " +

 "(decimal_col, date_col, charattr_col, float_col) " +

 "values (?,?,?,?)";

writeOutputFile(s);

PreparedStatement pstmt = myConn.prepareStatement(s);

...

String strObj = "(A, f, 18)";

pstmt.setString(3, strObj);

...

Retrieving Data

To retrieve Informix opaque types, you must use ResultSet.getObject(). IBM

Informix JDBC Driver converts the data to a Java object according to the custom

type map you provide. Using the previous example of the charattrUDT type, you

can fetch the opaque data, as in the following example:

String s = "select int_col, charattr_col from charattr_tab order by 1";

System.out.println(s);

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(s);

System.out.println("execute...ok");

System.out.println("Fetching data ...");

int curRow = 0;

while (rs.next())

 {

 curRow++;

 System.out.println("currentrow=" + curRow + " : ");

 int intret = rs.getInt("int_col");

 System.out.println(" int_col " + intret);

 charattrUDT charattrret = (charattrUDT)rs.getObject("charattr_col");

 System.out.print(" charattr_col ");

 if (curRow == 2 || curRow == 6)

 {

 if (rs.wasNull())

 System.out.println("<null>");

 else

 System.out.println("***ERROR: " + charattrret);

 }

 else

 System.out.println(charattrret+"");

 } //while

System.out.println("total rows expected: " + curRow);

stmt.close();

Using Smart Large Objects Within an Opaque Type

A smart large object can be a data member within an opaque type, although you

are most likely to create a large object on the database server, outside of the

opaque type context, using the Informix extension classes. For more information

about smart large objects, see “Smart Large Object Data Types” on page 4-27.

A large object is stored as an IfxLocator object within the opaque type; in the C

struct that defines the opaque type internally, the large object is referenced through

Chapter 5. Working with Opaque Types 5-23

a locator pointer of type MI_LO_HANDLE. The object is created using the

methods provided in the IfxSmartBlob class, and the large object handle obtained

from these methods becomes the data member within the opaque type. Both BLOB

and CLOB objects use the same large object handle, as shown in the following

example:

import java.sql.*;

import com.informix.jdbc.*;

/*

 * C struct of large_bin_udt:

 *

 * typedef struct LARGE_BIN_TYPE

 * {

 * MI_LO_HANDLE lb_handle; // handle to large object (72 bytes)

 * }

 * large_bin_udt;

 *

 */

public class largebinUDT implements SQLData

{

 private String sql_type = "large_bin_udt";

 public Clob lb_handle;

 public largebinUDT() { }

 public largebinUDT(Clob clob)

 {

 lb_handle = clob;

 }

 public String getSQLTypeName()

 {

 return sql_type;

 }

 // reads a stream of data values and builds a Java object

 public void readSQL(SQLInput stream, String type) throws SQLException

 {

 sql_type = type;

 lb_handle = stream.readClob();

 }

 // writes a sequence of values from a Java object to a stream

 public void writeSQL(SQLOutput stream) throws SQLException

 {

 stream.writeClob(lb_handle);

 }

}

In a JDBC application, you create the MI_LO_HANDLE object using the methods

provided by the IfxSmartBlob class:

String s = "insert into largebin_tab (int_col, largebin_col, lvc_col) " +

 "values (?,?,?)";

System.out.println(s);

pstmt = conn.prepareStatement(s);

...

// create a large object using IfxSmartBlob’s methods

String filename = "lbin_in1.dat";

File file = new File(filename);

int fileLength = (int) file.length();

FileInputStream fin = new FileInputStream(file);

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

System.out.println("create large object descriptor...ok");

IfxLocator loPtr = new IfxLocator();

IfxSmartBlob smb = new IfxSmartBlob((IfxConnection)conn);

5-24 IBM Informix JDBC Driver Programmer’s Guide

int loFd = smb.IfxLoCreate(loDesc, 8, loPtr);

System.out.println("create large object...ok");

int n = smb.IfxLoWrite(loFd, fin, fileLength);

System.out.println("write file content into large object...ok");

pstmt.setInt(1, 1);

System.out.println("setInt...ok");

// initialize largebin object using the large object created

// above, before doing setObject for the large_bin_udt column.

largebinUDT largebinObj = new largebinUDT();

largebinObj.lb_handle = new IfxCblob(loPtr);

pstmt.setObject(2, largebinObj);

System.out.println("setObject(largebinUDT)...ok");

pstmt.setString(3, "Hong Kong");

System.out.println("setString...ok");

pstmt.executeUpdate();

System.out.println("execute...ok");

// close/release large object

smb.IfxLoClose(loFd);

System.out.println("close large object...ok");

smb.IfxLoRelease(loPtr);

System.out.println("release large object...ok");

See “Smart Large Object Data Types” on page 4-27 for details.

Creating an Opaque Type from an Existing Java Class with

UDTManager

The following example shows how an application can use the UDTManager and

UDTMetaData classes to convert an existing Java class on the client (inaccessible

to the database server) to an SQL opaque type in the database server.

Creating an Opaque Type Using Default Support Functions

The following example creates an opaque type named Circle, using an existing

Java class and using the default support functions provided in the database server:

*/

import java.sql.*;

import com.informix.jdbc.IfmxUDTSQLInput;

import com.informix.jdbc.IfmxUDTSQLOutput;

public class Circle implements SQLData

{

 private static double PI = 3.14159;

 double x; // x coordinate

 double y; // y coordinate

 double radius;

 private String type = "circle";

 public String getSQLTypeName() { return type; }

 public void readSQL(SQLInput stream, String typeName)

 throws SQLException

 {

 // To be able to use the DEFAULT support functions supplied

 // by the server, you must cast the stream to IfmxUDTSQLInput.

 // (Server requirement)

Chapter 5. Working with Opaque Types 5-25

IfmxUDTSQLInput in = (IfmxUDTSQLInput) stream;

 x = in.readDouble();

 y = in.readDouble();

 radius = in.readDouble();

 }

 public void writeSQL(SQLOutput stream) throws SQLException

 {

 // To be able to use the DEFAULT support functions supplied

 // by the server, have to cast the stream to IfmxUDTSQLOutput.

 // (Server requirement)

 IfmxUDTSQLOutput out = (IfmxUDTSQLOutput) stream;

 out.writeDouble(x);

 out.writeDouble(y);

 out.writeDouble(radius);

 }

 public static double area(Circle c)

 {

 return PI * c.radius * c.radius;

 }

}

Using the Opaque Type: The following JDBC client application installs the class

Circle (which is packaged in Circle .jar) as an opaque type in the system catalog.

Applications can then use the opaque type Circle as a data type in SQL statements:

import java.sql.*;

import java.lang.reflect.*;

public class PlayWithCircle

{

 String dbname = "test";

 String url = null;

 Connection conn = null;

 public static void main (String args[])

 {

 new PlayWithCircle(args);

 }

 PlayWithCircle(String args[])

 {

 System.out.println("----------------");

 System.out.println("- Start - Demo 1");

 System.out.println("----------------");

 // -----------

 // Getting URL

 // -----------

 if (args.length == 0)

 {

 System.out.println("\n***ERROR: connection URL must be provided " +

 "in order to run the demo!");

 return;

 }

 url = args[0];

 // --------------

 // Loading driver

 // --------------

 try

 {

 System.out.print("Loading JDBC driver...");

 Class.forName("com.informix.jdbc.IfxDriver");

 System.out.println("ok");

5-26 IBM Informix JDBC Driver Programmer’s Guide

}

 catch (java.lang.ClassNotFoundException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 // ------------------

 // Getting connection

 // ------------------

 try

 {

 System.out.print("Getting connection...");

 conn = DriverManager.getConnection(url);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("URL = ’" + url + "’");

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 System.out.println();

 // -------------------

 // Setup UDT meta data

 // -------------------

 Method areamethod = null;

 try

 {

 Class c = Class.forName("Circle");

 areamethod = c.getMethod("area", new Class[] {c});

 }

 catch (ClassNotFoundException e)

 {

 System.out.println("Cannot get Class: " + e.toString());

 return;

 }

 catch (NoSuchMethodException e)

 {

 System.out.println("Cannot get Method: " + e.toString());

 return;

 }

 UDTMetaData mdata = null;

 try

 {

 System.out.print("Setting mdata...");

 mdata = new UDTMetaData();

 mdata.setSQLName("circle");

 mdata.setLength(24);

 mdata.setAlignment(UDTMetaData.EIGHT_BYTE);

 mdata.setUDR(areamethod, "area");

 mdata.setJarFileSQLName("circle_jar");

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 // -------------------------------

 // Install the UDT in the database

 // -------------------------------

 UDTManager udtmgr = null;

 try

 {

 udtmgr = new UDTManager(conn);

Chapter 5. Working with Opaque Types 5-27

System.out.println("\ncreateJar()");

 String jarfilename = udtmgr.createJar(mdata,

 new String[] {"Circle.class"}); // jarfilename = circle.jar

 System.out.println(" jarfilename = " + jarfilename);

 System.out.println("\nsetJarTmpPath()");

 udtmgr.setJarTmpPath("/tmp");

 System.out.print("\ncreateUDT()...");

 udtmgr.createUDT(mdata,

 "/vobs/jdbc/demo/tools/udtudrmgr/" + jarfilename, "Circle", 0);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 System.out.println();

 // ---------------

 // Now use the UDT

 // ---------------

 try

 {

 String s = "drop table tab";

 System.out.print(s + "...");

 Statement stmt = conn.createStatement();

 int count = stmt.executeUpdate(s);

 stmt.close();

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 // -206 The specified table (%s) is not in the database.

 if (e.getErrorCode() != -206)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 System.out.println("ok");

 }

 executeUpdate("create table tab (c circle)");

 // test DEFAULT Input function

 executeUpdate("insert into tab values (’10 10 10’)");

 // test DEFAULT Output function

 try

 {

 String s = "select c::lvarchar from tab";

 System.out.println(s);

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 if (rs.next())

 {

 String c = rs.getString(1);

 System.out.println(" circle = ’" + c + "’");

 }

 rs.close();

 stmt.close();

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 System.out.println();

 // test DEFAULT Send function

 try

 {

5-28 IBM Informix JDBC Driver Programmer’s Guide

// setup type map before using getObject() for UDT data.

 java.util.Map customtypemap = conn.getTypeMap();

 System.out.println("getTypeMap...ok");

 if (customtypemap == null)

 {

 System.out.println("***ERROR: map is null!");

 return;

 }

 customtypemap.put("circle", Class.forName("Circle"));

 System.out.println("put...ok");

 String s = "select c from tab";

 System.out.println(s);

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 if (rs.next())

 {

 Circle c = (Circle)rs.getObject(1, customtypemap);

 System.out.println(" c.x = " + c.x);

 System.out.println(" c.y = " + c.y);

 System.out.println(" c.radius = " + c.radius);

 }

 rs.close();

 stmt.close();

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 catch (ClassNotFoundException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 System.out.println();

 // test user’s non-support UDR

 try

 {

 String s = "select area(c) from tab";

 System.out.println(s);

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 if (rs.next())

 {

 double a = rs.getDouble(1);

 System.out.println(" area = " + a);

 }

 rs.close();

 stmt.close();

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 System.out.println();

 executeUpdate("drop table tab");

 // ------------------

 // Closing connection

 // ------------------

 try

 {

 System.out.print("Closing connection...");

 conn.close();

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 }

}

Chapter 5. Working with Opaque Types 5-29

Creating an Opaque Type Using Support Functions You Supply

In this example, the Java class Circle2 on the client is mapped to an SQL opaque

type named circle2. The circle2 opaque type uses support functions provided by

the programmer.

import java.sql.*;

import java.text.*;

import com.informix.jdbc.IfmxUDTSQLInput;

import com.informix.jdbc.IfmxUDTSQLOutput;

public class Circle2 implements SQLData

{

 private static double PI = 3.14159;

 double x; // x coordinate

 double y; // y coordinate

 double radius;

 private String type = "circle2";

 public String getSQLTypeName() { return type; }

 public void readSQL(SQLInput stream, String typeName)

 throws SQLException

 {

/* commented out - because the first release of the UDT/UDR Manager feature

 * does not support mixing user-supplied support functions

 * with server DEFAULT support functions.

 * However, once the mix is supported, this code needs to be used to

 * replace the existing code.

 *

 // To be able to use the DEFAULT support functions (other than

 // Input/Output) supplied by the server, you must cast the stream

 // to IfmxUDTSQLInput.

 IfmxUDTSQLInput in = (IfmxUDTSQLInput) stream;

 x = in.readDouble();

 y = in.readDouble();

 radius = in.readDouble();

 */

 x = stream.readDouble();

 y = stream.readDouble();

 radius = stream.readDouble();

 }

 public void writeSQL(SQLOutput stream) throws SQLException

 {

/* commented out - because the 1st release of UDT/UDR Manager feature

 * doesn’t support the mixing of user support functions

 * with server DEFAULT support functions.

 * However, once the mix is supported, this code needs to be used to

 * replace the existing code.

 *

 // To be able to use the DEFAULT support functions (other than

 // Input/Output) supplied by the server, you must cast the stream

 // to IfmxUDTSQLOutput.

 IfmxUDTSQLOutput out = (IfmxUDTSQLOutput) stream;

 out.writeDouble(x);

 out.writeDouble(y);

 out.writeDouble(radius);

 */

 stream.writeDouble(x);

 stream.writeDouble(y);

 stream.writeDouble(radius);

 }

 /**

 * Input function - return the object from the String representation -

5-30 IBM Informix JDBC Driver Programmer’s Guide

* ’x y radius’.

 */

 public static Circle2 fromString(String text)

 {

 Number a = null;

 Number b = null;

 Number r = null;

 try

 {

 ParsePosition ps = new ParsePosition(0);

 a = NumberFormat.getInstance().parse(text, ps);

 ps.setIndex(ps.getIndex() + 1);

 b = NumberFormat.getInstance().parse(text, ps);

 ps.setIndex(ps.getIndex() + 1);

 r = NumberFormat.getInstance().parse(text, ps);

 }

 catch (Exception e)

 {

 System.out.println("In exception : " + e.getMessage());

 }

 Circle2 c = new Circle2();

 c.x = a.doubleValue();

 c.y = b.doubleValue();

 c.radius = r.doubleValue();

 return c;

 }

 /**

 * Output function - return the string of the form ’x y radius’.

 */

 public static String makeString(Circle2 c)

 {

 StringBuffer sbuff = new StringBuffer();

 FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);

 NumberFormat.getInstance().format(c.x, sbuff, fp);

 sbuff.append(" ");

 NumberFormat.getInstance().format(c.y, sbuff, fp);

 sbuff.append(" ");

 NumberFormat.getInstance().format(c.radius, sbuff, fp);

 return sbuff.toString();

 }

 /**

 * user function - get the area of a circle.

 */

 public static double area(Circle2 c)

 {

 return PI * c.radius * c.radius;

 }

}

Using the Opaque Type: The following JDBC client application installs the class

Circle2 (which is packaged in Circle2.jar) as an opaque type in the system catalog.

Applications can then use the opaque type Circle2 as a data type in SQL

statements:

import java.sql.*;

import java.lang.reflect.*;

public class PlayWithCircle2

{

 String dbname = "test";

 String url = null;

 Connection conn = null;

Chapter 5. Working with Opaque Types 5-31

public static void main (String args[])

 {

 new PlayWithCircle2(args);

 }

 PlayWithCircle2(String args[])

 {

 // -----------

 // Getting URL

 // -----------

 if (args.length == 0)

 {

 System.out.println("\n***ERROR: connection URL must be provided " +

 "in order to run the demo!");

 return;

 }

 url = args[0];

 // --------------

 // Loading driver

 // --------------

 try

 {

 System.out.print("Loading JDBC driver...");

 Class.forName("com.informix.jdbc.IfxDriver");

 }

 catch (java.lang.ClassNotFoundException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 try

 {

 conn = DriverManager.getConnection(url);

 }

 catch (SQLException e)

 {

 System.out.println("URL = ’" + url + "’");

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 System.out.println();

Creating an Opaque Type Without an Existing Java Class

In this example, the Java class MyCircle on the client is used to create a

fixed-length opaque type in the database server named ACircle. The ACircle

opaque type uses the default support functions provided by the database server:

import java.sql.*;

public class MyCircle

{

 String dbname = "test";

 String url = null;

 Connection conn = null;

 public static void main (String args[])

 {

 new MyCircle(args);

 }

 MyCircle(String args[])

 {

 System.out.println("----------------");

5-32 IBM Informix JDBC Driver Programmer’s Guide

System.out.println("- Start - Demo 3");

 System.out.println("----------------");

 // -----------

 // Getting URL

 // -----------

 if (args.length == 0)

 {

 System.out.println("\n***ERROR: connection URL must be provided " +

 "in order to run the demo!");

 return;

 }

 url = args[0];

 // --------------

 // Loading driver

 // --------------

 try

 {

 System.out.print("Loading JDBC driver...");

 Class.forName("com.informix.jdbc.IfxDriver");

 System.out.println("ok");

 }

 catch (java.lang.ClassNotFoundException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 // ------------------

 // Getting connection

 // ------------------

 try

 {

 System.out.print("Getting connection...");

 conn = DriverManager.getConnection(url);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("URL = ’" + url + "’");

 System.out.println("\n***ERROR: " + e.getMessage());

 e.printStackTrace();

 return;

 }

 // -------------------

 // Setup UDT meta data

 // -------------------

 UDTMetaData mdata = null;

 try

 {

 mdata = new UDTMetaData();

 System.out.print("Setting fields in mdata...");

 mdata.setSQLName("acircle");

 mdata.setLength(24);

 mdata.setFieldCount(3);

 mdata.setFieldName(1, "x");

 mdata.setFieldName(2, "y");

 mdata.setFieldName(3, "radius");

 mdata.setFieldType(1, com.informix.lang.IfxTypes.IFX_TYPE_INT);

 mdata.setFieldType(2, com.informix.lang.IfxTypes.IFX_TYPE_INT);

 mdata.setFieldType(3, com.informix.lang.IfxTypes.IFX_TYPE_INT);

 // set class name if don’t want to use the default name

 // <udtsqlname>.class

 mdata.setClassName("ACircle");

 mdata.setJarFileSQLName("ACircleJar");

 mdata.keepJavaFile(true);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

Chapter 5. Working with Opaque Types 5-33

System.out.println("***ERROR: " + e.getMessage());

 return;

 }

 // --

 // create java file for UDT and install UDT in the database

 // --

 UDTManager udtmgr = null;

 try

 {

 udtmgr = new UDTManager(conn);

 System.out.println("Creating .class/.java files - " +

 "createUDTClass()");

 String classname = udtmgr.createUDTClass(mdata); // generated

 //java file is kept

 System.out.println(" classname = " + classname);

 System.out.println("\nCreating .jar file - createJar()");

 String jarfilename = udtmgr.createJar(mdata,

 new String[]{"ACircle.class"}); // jarfilename is

 // <udtsqlname>.jar

 // ie. acircle.jar

 System.out.println("\nsetJarTmpPath()");

 udtmgr.setJarTmpPath("/tmp");

 System.out.print("\ncreateUDT()...");

 udtmgr.createUDT(mdata,

 "/vobs/jdbc/demo/tools/udtudrmgr/" + jarfilename, "ACircle", 0);

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 System.out.println();

 // ---------------

 // Now use the UDT

 // ---------------

 try

 {

 String s = "drop table tab";

 System.out.print(s + "...");

 Statement stmt = conn.createStatement();

 int count = stmt.executeUpdate(s);

 stmt.close();

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 // -206 The specified table (%s) is not in the database.

 if (e.getErrorCode() != -206)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 return;

 }

 System.out.println("ok");

 }

 executeUpdate("create table tab (c acircle)");

 // test DEFAULT Input function

 executeUpdate("insert into tab values (’10 10 10’)");

 // test DEFAULT Output function

 try

 {

 String s = "select c::lvarchar from tab";

5-34 IBM Informix JDBC Driver Programmer’s Guide

System.out.println(s);

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(s);

 if (rs.next())

 {

 String c = rs.getString(1);

 System.out.println(" acircle = ’" + c + "’");

 }

 rs.close();

 stmt.close();

 }

 catch (SQLException e)

 {

 System.out.println("***ERROR: " + e.getMessage());

 }

 System.out.println();

 executeUpdate("drop table tab");

 // ------------------

 // Closing connection

 // ------------------

 try

 {

 System.out.print("Closing connection...");

 conn.close();

 System.out.println("ok");

 }

 catch (SQLException e)

 {

 System.out.println("\n***ERROR: " + e.getMessage());

 }

 System.out.println("------------------");

 System.out.println("- End - UDT Demo 3");

 System.out.println("------------------");

 }

Creating UDRs with UDRManager

The following code shows how an application can use the UDRManager and

UDRMetaData classes to convert methods in a Java class on the client (inaccessible

to the database server) to Java UDRs in the database server. Applications can later

reference the UDRs in SQL statements. In this example, the Java class on the client

is named Group1. The class has two routines, udr1 and udr2.

The following code creates methods in the Group1 class to be registered as UDRs

in the database server:

import java.sql.*;

public class Group1

{

 public static String udr1 (String s1, String s2)

 throws SQLException

 {

 return s1 + s2;

 }

 // Return a formatted string with all inputs

 public static String udr2 (Integer i, String s1,

 String s2) throws SQLException

 {

 return "{" + i + "," + s1 + "," + s2 +"}";

 }

}

Chapter 5. Working with Opaque Types 5-35

The following code creates Java methods udr1 and udr2 as UDRs group1_udr1

and group1_udr2 in the database server and then uses the UDRs:

import java.sql.*;

import java.lang.reflect.*;

public class PlayWithGroup1

{

// Open a connection...

url = "jdbc:informix-sqli://hostname:portnum:db/:

 informixserver=servname;user=scott;password=tiger;

myConn = DriverManager.getConnection(url);

//Install the routines in the database.

UDRManager udtmgr = new UDRManager(myConn);

UDRMetaData mdata = new UDRMetaData();

Class gp1 = Class.forName("Group1");

Method method1 = gp1.getMethod("udr1",

 new Class[]{String.class, String.class});

Method method2 = gp1.getMethod("udr2",

 new Class[]{Integer.class, String.class, String.class});

mdata.setUDR(method1, "group1_udr1");

mdata.setUDR(method2, "group1_udr2");

mdata.setJarFileSQLName("group1_jar");

udtmgr.createUDRs(mdata, "Group1.jar", "Group1", 0);

// Use the UDRs in SQL statements:

Statement stmt = myConn.createStatement();

stmt.executeUpdate("create table tab (c1 varchar(10),

 c2 char(20)", c3 int);

stmt.close();

Statement stmt = myConn.createStatement();

stmt.executeUpdate("insert into tab values (’hello’, ’world’,

 222)");

stmt.close();

Statement stmt = myConn.createStatement();

ResultSet r = stmt.executeQuery("select c3, group1_udr2(c3, c1, c2)

 from tab where group1_udr1(c1, c2) = ’hello world’");

...

}

5-36 IBM Informix JDBC Driver Programmer’s Guide

Chapter 6. Internationalization and Date Formats

In This Chapter . 6-1

Support for JDK and Internationalization . 6-1

Support for IBM Informix GLS Variables . 6-2

Support for DATE End-User Formats . 6-3

GL_DATE Variable . 6-3

DBDATE Variable . 6-5

DBCENTURY Variable . 6-7

Precedence Rules for End-User Formats . 6-8

Support for Code-Set Conversion . 6-8

Unicode to Database Code Set . 6-9

Unicode to Client Code Set . 6-10

Connecting to a Database with Non-ASCII Characters 6-10

Code-Set Conversion for TEXT and CLOB Data Types 6-11

Converting Using the IFX_CODESETLOB Environment Variable 6-11

Converting Using JDK Methods . 6-12

Code-Set Conversion for BLOB and BYTE Data Types 6-13

User-Defined Locales . 6-13

Connecting with the NEWLOCALE and NEWCODESET Environment Variables 6-13

Connecting with the NEWNLSMAP Environment Variable 6-14

Support for Localized Error Messages . 6-14

In This Chapter

This chapter explains how IBM Informix JDBC Driver extends the JDK

internationalization features by providing access to Informix databases that are

based on different locales and code sets. This chapter includes the following

sections:

v Support for JDK and Internationalization

v Support for IBM Informix GLS Variables

v Support for DATE End-User Formats

v Precedence Rules for End-User Formats

v Support for Code-Set Conversion

v User-Defined Locales

v Support for Localized Error Messages

Internationalization allows you to develop software independently of the countries

or languages of its users and then to localize your software for multiple countries

or regions.

For general information about setting up global language support (GLS), refer to

the IBM Informix GLS User’s Guide.

Support for JDK and Internationalization

The JDK provides a rich set of APIs for developing global applications. These

internationalization APIs are based on the Unicode 2.0 code set and can adapt text,

numbers, dates, currency, and user-defined objects to any country’s conventions.

The internationalization APIs are concentrated in three packages:

© Copyright IBM Corp. 1996, 2008 6-1

v The java.text package contains classes and interfaces for handling text in a

locale-sensitive way.

v The java.io package contains new classes for importing and exporting

non-Unicode character data.

v The java.util package contains the Locale class, the localization support classes,

and new classes for date and time handling.

For more information about JDK internationalization support, see the Sun

Microsystems documentation.

Warning: There is no connection between JDK locales and JDK code sets; you must

keep these in agreement. For example, if you select the Japanese locale

ja_JP, there is no Java method that tells you that the SJIS code set is the

most appropriate.

Support for IBM Informix GLS Variables

Internationalization adds several environment variables to IBM Informix JDBC

Driver, which are summarized in the following table.

 Supported Informix

Environment Variables Description

CLIENT_LOCALE Specifies the locale of the client that is accessing the database.

Provides defaults for user-defined formats such as the

GL_DATE format. User-defined data types can use it for

code-set conversion. Together with the DB_LOCALE variable,

the database server uses this variable to establish the server

processing locale. The DB_LOCALE and CLIENT_LOCALE

values must be the same, or their code sets must be convertible.

DBCENTURY Enables you to specify the appropriate expansion for one- or

two-digit year DATE values

DBDATE Specifies the end-user formats of values in DATE columns.

Supported for backward compatibility; GL_DATE is preferred.

DB_LOCALE Specifies the locale of the database. IBM Informix JDBC Driver

uses this variable to perform code-set conversion between

Unicode and the database locale. Together with the

CLIENT_LOCALE variable, the database server uses this

variable to establish the server processing locale. The

DB_LOCALE and CLIENT_LOCALE values must be the same,

or their code sets must be convertible.

GL_DATE Specifies the end-user formats of values in DATE columns This

variable is supported in Informix database server versions 7.2x,

, and later.

NEWCODESET Allows new code sets to be defined between releases of IBM

Informix JDBC Driver.

NEWLOCALE Allows new locales to be defined between releases of IBM

Informix JDBC Driver.

The IBM Informix JDBC driver does not make changes to the decimal format, even

if there is a CLIENT_LOCALE setting available. Localization should be done

within the Java application with the DecimalFormat class. For more information

about this class, see the Sun Microsystems documentation.

6-2 IBM Informix JDBC Driver Programmer’s Guide

Important: The DB_LOCALE, CLIENT_LOCALE, and GL_DATE variables are

supported only if the database server supports the IBM Informix GLS

feature. If these environment variables are set and your application

connects to a non-GLS server (server versions earlier than 7.2), a

connection exception occurs. If you connect to a non-GLS server and

do not set these variables, the behavior is the same as for older

versions of IBM Informix JDBC Driver.

Support for DATE End-User Formats

The end-user format is the format in which a DATE value appears in a string

variable. This section describes the GL_DATE, DBDATE, and DBCENTURY

variables, which specify DATE end-user formats. These variables are optional.

Important: IBM Informix JDBC Driver does not support ALS 6.0, 5.0, or 4.0

formats for the DBDATE or GL_DATE environment variables.

For more information on GL_DATE, see IBM Informix GLS User’s Guide.

GL_DATE Variable

The GL_DATE environment variable specifies the end-user formats of values in

DATE columns. This variable is supported in Informix database servers Version

7.2x, or later. A GL_DATE format string can contain the following characters:

v One or more white space characters

v An ordinary character (other than the percent symbol (%) or a white space

character)

v A formatting directive, which is composed of the percent symbol (%) followed

by one or two conversion characters that specify the required replacement

Date formatting directives are defined in the following table.

Directive Replaced By

%a The abbreviated weekday name as defined in the locale

%A The full weekday name as defined in the locale

%b The abbreviated month name as defined in the locale

%B The full month name as defined in the locale

%C The century number (the year divided by 100 and truncated to an

integer) as a decimal number (00 through 99)

%d The day of the month as a decimal number (01 through 31)

 A single digit is preceded by a zero (0).

%D Same as the %m/%d/%y format

%e The day of the month as a decimal number (1 through 31)

 A single digit is preceded by a space.

%h Same as the %b formatting directive

%iy The year as a two-digit decade (00 through 99)

 It is the Informix-specific formatting directive for %y.

%iY The year as a four-digit decade (0000 through 9999)

 It is the Informix-specific formatting directive for %Y.

Chapter 6. Internationalization and Date Formats 6-3

%m The month as a decimal number (01 through 12)

%n A newline character

%t The TAB character

%w The weekday as a decimal number (0 through 6)

 The 0 represents the locale equivalent of Sunday.

%x A special date representation that the locale defines

%y The year as a two-digit decade (00 through 99)

%Y The year as a four-digit decade (0000 through 9999)

%% % (to allow % in the format string)

Important: GL_DATE optional date format qualifiers for field specifications are

not supported.

For example, using %4m to display a month as a decimal number with

a maximum field width of 4 is not supported.

The GL_DATE conversion modifier O, which indicates use of

alternative digits for alternative date formats, is not supported.

White space or other nonalphanumeric characters must appear between any two

formatting directives. If a GL_DATE variable format does not correspond to any of

the valid formatting directives, errors can result when the database server attempts

to format the date.

For example, for a U.S. English locale, you can format an internal DATE value for

09/29/1998 using the following format:

* Sep 29, 1998 this day is:(Tuesday), a fine day *

To create this format, set the GL_DATE environment variable to this value:

* %b %d, %Y this day is:(%A), a fine day *

To insert this date value into a database table that has a date column, you can

perform the following types of inserts:

v Nonnative SQL, in which SQL statements are sent to the database server

unchanged

Enter the date value exactly as expected by the GL_DATE setting.

v Native SQL, in which escape syntax is converted to an Informix-specific format

Enter the date value in the JDBC escape format yyyy-mm-dd; the value is

converted to the GL_DATE format automatically.

The following example shows both types of inserts:

To retrieve the formatted GL_DATE DATE value from the database, call the

getString() method of the ResultSet class.

To enter strings that represent dates into database table columns of char, varchar,

or lvarchar type, you can also build date objects that represent the date string

value. The date string value must be in GL_DATE format.

The following example shows both ways of selecting DATE values:

6-4 IBM Informix JDBC Driver Programmer’s Guide

PreparedStatement pstmt = conn.prepareStatement("Select * from

 tablename "

 + "where col2 like ?;");

pstmt.setString(1, "%Tue%");

ResultSet r = pstmt.executeQuery();

while(r.next())

 {

 String s = r.getString(1);

 java.sql.Date d = r.getDate(2);

 System.out.println("Select: column col1 (GL_DATE format) = <"

 + s + ">");

 System.out.println("Select: column col2 (JDBC Escape format) = <"

 + d + ">");

 }

r.close();

pstmt.close();

DBDATE Variable

Support for the DBDATE environment variable provides backward compatibility

for client applications that are based on Informix database server versions prior to

7.2x, 8.x, or 9.x. You should use the GL_DATE environment variable for new

applications.

The DBDATE environment variable specifies the end-user formats of values in

DATE columns. End-user formats are used in the following ways:

v When you input DATE values, IBM Informix products use the DBDATE

environment variable to interpret the input. For example, if you specify a literal

DATE value in an INSERT statement, Informix database servers require this

literal value to be compatible with the format specified by the DBDATE

variable.

v When you display DATE values, IBM Informix products use the DBDATE

environment variable to format the output.

With standard formats, you can specify the following attributes:

v The order of the month, day, and year in a date

v Whether the year is printed with two digits (Y2) or four digits (Y4)

v The separator between the month, day, and year

The format string can include the following characters:

v Hyphen (-), dot (.), and slash (/) are separator characters in a date format. A

separator appears at the end of a format string (for example Y4MD-).

v A 0 indicates that no separator is displayed.

v D and M are characters that represent the day and the month.

v Y2 and Y4 are characters that represent the year and the number of digits in the

year.

The following format strings are valid standard DBDATE formats:

v DMY2

v DMY4

v MDY4

v MDY2

v Y4MD

v Y4DM

v Y2MD

Chapter 6. Internationalization and Date Formats 6-5

v Y2DM

The separator always goes at the end of the format string (for example, DMY2/). If

no separator or an invalid character is specified, the slash (/) character is the

default.

For the U.S. ASCII English locale, the default setting for DBDATE is Y4MD-, where

Y4 represents a four-digit year, M represents the month, D represents the day, and

hyphen (-) is the separator (for example, 1998-10-08).

To insert a date value into a database table with a date column, you can perform

the following types of inserts:

v Nonnative SQL. SQL statements are sent to the database server unchanged.

Enter the date value exactly as expected by the DBDATE setting.

v Native SQL. Escape syntax is converted to an Informix-specific format. Enter the

date value in the JDBC escape format yyyy-mm-dd; the value is converted to the

DBDATE format automatically.

The following example shows both types of inserts (the DBDATE value is MDY2-):

stmt = conn.createStatement();

cmd = "create table tablename (col1 date, col2 varchar(20));";

rc = stmt.executeUpdate(cmd);..

.String[] dateVals = {"’08-10-98’", "{d ’1998-08-11’}" };

String[] charVals = {"’08-10-98’", "’08-11-98’" };

int numRows = dateVals.length;

for (int i = 0; i < numRows; i++)

 {

 cmd = "insert into tablename values(" + dateVals[i] + ", " +

 charVals[i] + ")";

 rc = stmt.executeUpdate(cmd);

 System.out.println("Insert: column col1 (date) = " + dateVals[i]);

 System.out.println("Insert: column col2 (varchar) = " + charVals[i]);

 }

To retrieve the formatted DBDATE DATE value from the database, call the

getString method of the ResultSet class.

To enter strings that represent dates into database table columns of char, varchar,

or lvarchar type, you can build date objects that represent the date string value.

The date string value needs to be in DBDATE format.

The following example shows both ways to select DATE values:

PreparedStatement pstmt = conn.prepareStatement("Select * from tablename "

 + "where col1 = ?;");

GregorianCalendar gc = new GregorianCalendar(1998, 7, 10);

java.sql.Date dateObj = new java.sql.Date(gc.getTime().getTime());

pstmt.setDate(1, dateObj);

ResultSet r = pstmt.executeQuery();

while(r.next())

 {

 String s = r.getString(1);

 java.sql.Date d = r.getDate(2);

 System.out.println("Select: column col1 (DBDATE format) = <"

 + s + ">");

 System.out.println("Select: column col2 (JDBC Escape format) = <"

 + d + ">");

 }

r.close();

pstmt.close();

6-6 IBM Informix JDBC Driver Programmer’s Guide

DBCENTURY Variable

If a String value represents a DATE value that has less than a three-digit year and

DBCENTURY is set, IBM Informix JDBC Driver converts the String value to a

DATE value and uses the DBCENTURY property to determine the correct

four-digit expansion of the year.

The methods affected and the conditions under which they are affected are

summarized in the following table.

 Method Condition

PreparedStatement.setString(int, String) The target column is DATE.

PreparedStatement.setObject(int, String) The target column is DATE.

IfxPreparedStatement.IfxSetObject(String) The target column is DATE.

ResultSet.getDate(int)ResultSet.getDate(int,

Calendar)ResultSet.getDate(String)ResultSet.

getDate(String, Calendar)

The source column is a String type.

ResultSet.getTimestamp(int)ResultSet.

getTimestamp(int, Calendar)ResultSet.

getTimestamp(String)ResultSet.getTimestamp

(String, Calendar)

The source column is a String type.

ResultSet.updateString(int,

String)ResultSet.updateString(String, String)

The target column is DATE.

ResultSet.updateObject(int,

String)ResultSet.updateObject(int, String,

int)ResultSet.updateObject(String,

String)ResultSet.updateObject(String, String, int)

The target column is DATE.

The following table describes the four possible settings for the DBCENTURY

environment variable.

 Setting Meaning Description

P Past Uses past and present centuries to expand the year value.

F Future Uses present and next centuries to expand the year value.

C Closest Uses past, present, and next centuries to expand the year value.

R Present Uses present century to expand the year value.

See the “Environment Variables” section in the IBM Informix Guide to SQL: Reference

for a discussion of the algorithms used for each setting and examples of each

setting.

Here is an example of a URL that sets the DBCENTURY value:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

 user=myname;password=mypasswd;DBCENTURY=F;

A URL must not have a line break.

IBM Informix JDBC Driver always includes four-digit years when it sends

java.sql.Date and java.sql.Timestamp values to the server. Similarly, the server

always includes four-digit years when it sends Informix date values to IBM

Informix JDBC Driver.

Chapter 6. Internationalization and Date Formats 6-7

For examples of how to use DBCENTURY with IBM Informix JDBC Driver, see the

DBCENTURYSelect.java, DBCENTURYSelect2.java, DBCENTURYSelect3.java,

DBCENTURYSelect4.java, and DBCENTURYSelect5.java example programs.

Precedence Rules for End-User Formats

The precedence rules that define how to determine an end-user format for an

internal DATE value are listed here:

v If a DBDATE format is specified, this format is used.

v If a GL_DATE format is specified, a locale must be determined:

– If a CLIENT_LOCALE value is specified, it is used in conjunction with the

GL_DATE format string to display DATE values.

– If a DB_LOCALE value is specified but a CLIENT_LOCALE value is not, the

DB_LOCALE value is compared with the database locale (read from the

systables table of the user database) to verify that the DB_LOCALE value is

valid. If the DB_LOCALE value is valid, it is used in conjunction with the

GL_DATE format string to display DATE values. If the DB_LOCALE value is

not valid, the database locale is used in conjunction with the GL_DATE

format string.

– If neither CLIENT_LOCALE nor DB_LOCALE values are specified, the

database locale is used in conjunction with the GL_DATE format string to

display DATE values.
v If a CLIENT_LOCALE value is specified, the DATE formats conform to the

default formats associated with this locale.

v If a DB_LOCALE value is specified but no CLIENT_LOCALE value is specified,

the DB_LOCALE value is compared with the database locale to verify that the

DB_LOCALE value is valid.

If the DB_LOCALE value is valid, the DB_LOCALE default formats are used. If

the DB_LOCALE value is not valid, the default formats for dates associated

with the database locale are used.

v If neither CLIENT_LOCALE nor DB_LOCALE values are specified, all DATE

values are formatted in U.S. English format, Y4MD-.

Support for Code-Set Conversion

Code-set conversion converts character data from one code set to another. In a

client/server environment, character data might need to be converted from one

code set to another if the client and database server computers use different code

sets to represent the same characters. For detailed information about code-set

conversion, see the IBM Informix GLS User’s Guide.

You must specify code-set conversion for the following types of character data:

v SQL data types (char, varchar, nchar, nvarchar)

v SQL statements

v Database objects such as database names, column names, table names, statement

identifier names, and cursor names

v Stored procedure text

v Command text

v Environment variables

IBM Informix JDBC Driver converts character data as it is sent between client and

database server. The code set (encoding) used for the conversion is specified in the

6-8 IBM Informix JDBC Driver Programmer’s Guide

systables catalog for the opened database. You set the DB_LOCALE and

CLIENT_LOCALE values in the connection properties or database URL.

Unicode to Database Code Set

Java is Unicode based, so IBM Informix JDBC Driver converts data between

Unicode and the Informix database code set. The code-set conversion value is

extracted from the DB_LOCALE value specified at the time the connection is

made. If the DB_LOCALE value is incorrect, a Database Locale information

mismatch error occurs.

The DB_LOCALE value must be a valid Informix locale, with a valid Informix

code-set name or number as shown in the compatibility table that follows. The

following table maps the supported JDK 1.4 encodings to Informix code sets.

 Informix Code Set Name Informix Code Set Number JDK Code Set

8859-1 819 8859_1

8859-2 912 8859_2

8859-3 57346 8859_3

8859-4 57347 8859_4

8859-5 915 8859_5

8859-6 1089 8859_6

8859-7 813 8859_7

8859-8 916 8859_8

8859-9 920 8859_9

ASCII 364 ASCII

sjis-s 932 SJIS

sjis 57350 SJIS

utf8 57372 UTF8

big5 57352 Big5

CP1250 1250 Cp1250

CP1251 1251 Cp1251

CP1252 1252 Cp1252

CP1253 1253 Cp1253

CP1254 1254 Cp1254

CP1255 1255 Cp1255

CP1256 1256 Cp1256

CP1257 1257 Cp1257

cp949 57356 Cp949

KS5601 57356 Cp949

ksc 57356 Cp949

ujis 57351 EUC_JP

gb 57357 ISO2022CN_GB

GB2312-80 57357 ISO2022CN_GB

cp936 57357 ISO2022CN_GB

Chapter 6. Internationalization and Date Formats 6-9

You cannot use an Informix locale with a code set for which there is no

JDK-supported encoding. This incorrect usage results in an Encoding or code set

not supported error message.

The following table shows the supported locales.

 Supported Locales

ar_ae ar_bh ar_kw ar_om ar_qa

ar_sa bg_bg ca_es cs_cz da_dk

de_at de_ch de_de el_gr en_au

en_ca en_gb en_ie en_nz en_us

es_ar es_bo es_cl es_co es_cr

es_ec es_es es_gt es_mx es_pa

es_pe es_py es_sv es_uy es_ve

fi_fi fr_be fr_ca fr_ch fr_fr

hr_hr hu_hu is_is it_ch it_it

iw_il ja_jp ko_kr mk_mk nl_be

nl_nl no_no pl_pl pt_br pt_pt

ro_ro ru_ru sh_yu sk_sk sv_se

th_th tr_tr uk_ua zh_cn zh_tw

Unicode to Client Code Set

Because the Unicode code set includes all existing code sets, the Java virtual

machine (JVM) must render the character using the platform’s local code set.

Inside the Java program, you must always use Unicode characters. The JVM on

that platform converts input and output between Unicode and the local code set.

For example, you specify button labels in Unicode, and the JVM converts the text

to display the label correctly. Similarly, when the getText() method gets user input

from a text box, the client program gets the string in Unicode, no matter how the

user entered it.

Never read a text file one byte at a time. Always use the InputStreamReader() or

OutputStreamWriter() methods to manipulate text files. By default, these methods

use the local encoding, but you can specify an encoding in the constructor of the

class, as follows:

InputStreamReader = new InputStreamReader (in, "SJIS");

You and the JVM are responsible for getting external input into the correct Java

Unicode string. Thereafter, the database locale encoding is used to send the data to

and from the database server.

Connecting to a Database with Non-ASCII Characters

If you do not specify the database name at connection time, the connection must

be opened with the correct DB_LOCALE value for the specified database.

If close database and database dbname statements are issued, the connection

continues to use the original DB_LOCALE value to interpret the database name. If

the DB_LOCALE value of the new database does not match, an error is returned.

In this case, the client program must close and reopen the connection with the

correct DB_LOCALE value for the new database.

6-10 IBM Informix JDBC Driver Programmer’s Guide

If you supply the database name at connection time, the DB_LOCALE value must

be set to the correct database locale.

You can connect to an NLS database by defining a locale using NEWCODESET

and NEWLOCALE connection properties. For information about their formats, see

Connecting with the NEWLOCALE and NEWCODESET Environment Variables .

Code-Set Conversion for TEXT and CLOB Data Types

IBM Informix JDBC Driver does not automatically convert between code sets for

TEXT, BYTE, CLOB, and BLOB data types.

You can convert between code sets for TEXT and CLOB data types in one of the

following ways:

v You can automate code-set conversion for TEXT or CLOB data between the

client and database locales by using the IFX_CODESETLOB environment

variable.

v You can convert between code sets for TEXT data by using the getBytes(),

getString(), InputStreamReader(), and OutputStreamWriter() methods.

Converting Using the IFX_CODESETLOB Environment Variable

You can automate the following pair of code-set conversions for TEXT and CLOB

data types:

v Convert from client locale to database locale before the data is sent to the

database server.

v Convert from database locale to client locale before the data is retrieved by the

client.

To automate code-set conversion for TEXT and CLOB data types, set the

IFX_CODESETLOB environment variable in the connection URL. For example:

IFX_CODESETLOB = 4096. You can also use the following methods of the

IfxDataSource class to set and get the value of IFX_CODESETLOB:

public void setIfxIFX_CODESETLOB(int codesetlobFlag);

public int getIfxIFX_CODESETLOB();

IFX_CODESETLOB can have the values listed in the following table.

Value Result

none Default

 Automatic code-set conversion is not enabled.

0 Automatic code-set conversion takes place in internal temporary

files.

> 0 Automatic code-set conversion takes place in the memory of the

client computer. The value indicates the number of bytes allocated

for the conversion.

 If the number of allocated bytes is less than the size of the large

object, an error is returned.

 To perform conversion in memory, you must specify an amount that is smaller

than the memory limits of the client machines and larger than the possible size of

any converted large object.

Chapter 6. Internationalization and Date Formats 6-11

When you are using any of the following java.sql.Clob interface methods or

Informix extensions to the Clob interface, no codeset conversion is performed, even

if the IFX_CODESETLOB environment variable is set. These methods include:

IfxCblob::setAsciiStream(long)

Clob::setAsciiStream(long position, InputStream fin, int length)

IFX_CODESETLOB takes effect only for methods from the

java.sql.PreparedStatement interface.

However when using any of following java.sql.Clob interface methods or Informix

extensions to Clob interface, Unicode characters are always converted

automatically to the database locale codeset. Here is a list of those methods:

Clob::setCharacterStream(long) throws SQLException

Clob::setString(long, String) throws SQLException

Clob:: setString(long pos, String str, int offset, int len)

IfxCblob::setSubString(long position, String str, int length)

Converting Using JDK Methods

The getBytes(), getString(), InputStreamReader(), and OutputStreamWriter()

methods take a code-set parameter that converts to and from Unicode and the

specified code set. These methods are covered in detail in Sun’s JDK

documentation.

Here is sample code that shows how to convert a file from the client code set to

Unicode and then from Unicode to the database code set:

File infile = new File("data_jpn.dat");

File outfile = new File ("data_conv.dat");..

.pstmt = conn.prepareStatement("insert into t_text values (?)");..

.// Convert data from client encoding to database encoding

System.out.println("Converting data ...\n");

try

 {

 String from = "SJIS";

 String to = "8859_1";

 convert(infile, outfile, from, to);

 }

catch (Exception e)

 {

 System.out.println("Failed to convert file");

 }

System.out.println("Inserting data ...\n");

try

 {

 int fileLength = (int) outfile.length();

 fin = new FileInputStream(outfile);

 pstmt.setAsciiStream(1 , fin, fileLength);

 pstmt.executeUpdate();

 }

catch (Exception e)

 {

 System.out.println("Failed to setAsciiStream");

 }..

.public static void convert(File infile, File outfile, String from, String to)

 throws IOException

 {

 InputStream in = new FileInputStream(infile);

 OutputStream out = new FileOutputStream(outfile);

 Reader r = new BufferedReader(new InputStreamReader(in, from));

 Writer w = new BufferedWriter(new OutputStreamWriter(out, to));

 //Copy characters from input to output. The InputStreamReader converts

 // from the input encoding to Unicode, and the OutputStreamWriter

 // converts from Unicode to the output encoding. Characters that can

6-12 IBM Informix JDBC Driver Programmer’s Guide

// not be represented in the output encoding are output as ’?’

 char[] buffer = new char[4096];

 int len;

 while ((len = r.read(buffer)) != -1)

 w.write(buffer, 0, len);

 r.close();

 w.flush();

 w.close();

 }

When you retrieve data from the database, you can use the same approach to

convert the data from the database code set to the client code set.

Code-Set Conversion for BLOB and BYTE Data Types

When you use java.sql.PreparedStatement::setCharacterStream() to insert in a

CLOB column, Java Unicode characters are converted automatically to the database

locale code set. If the environment variable IFX_CODESETLOB is set, its value

determine whether to perform code set conversion using temporary files or to

perform the code set conversion in memory. If IFX_CODESETLOB is not set, the

LOBCACHE environment variable determines whether the code set conversion

takes place in temporary files or in memory.

However, you are discouraged from using

java.sql.PreparedStatement::setCharacterStream() to insert BLOB or BYTE columns.

The JDBC driver cannot insert Java characters in a database and consequently

attempts code set conversion of the characters. Using

java.sql.PreparedStatement::setBinaryStream() is the preferred way to insert BLOB

or BYTE columns.

User-Defined Locales

IBM Informix JDBC Driver uses the JDK internationalization API to manipulate

international data. The classes and methods in this API take a JDK locale or

encoding as a parameter, but because the Informix DB_LOCALE and

CLIENT_LOCALE properties specify the locale and code set based on Informix

names, these Informix names are mapped to the JDK names. These mappings are

kept in internal tables, which are updated periodically.

For example, the Informix and JDK names for the ASCII code set are 8859-1 and

8859_1, respectively. IBM Informix JDBC Driver maps 8859-1 to 8859_1 in its

internal tables and uses the appropriate JDK name in the JDK classes and methods.

Connecting with the NEWLOCALE and NEWCODESET

Environment Variables

Because new locales may be created between updates of these tables, two

connection properties, NEWLOCALE and NEWCODESET, let you specify a locale

or code set that is not specified in the tables. Here is an example URL using these

properties:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

 user=myname; password=mypasswd;NEWLOCALE=en_us,en_us;

 NEWCODESET=8859_1,8859-1,819;

A URL must be on one line.

The NEWLOCALE and NEWCODESET properties have the following formats:

Chapter 6. Internationalization and Date Formats 6-13

NEWLOCALE=JDK-locale,Ifx-locale:JDK-locale,Ifx-locale...

NEWCODESET=JDK-encoding,Ifx-codeset,Ifx-codeset-number:JDK-

 encoding, Ifx-codeset,Ifx-codeset-number...

There is no limit to the number of locale or code-set mappings you can specify.

You can connect to an NLS database by defining a locale using NEWCODESET

and NEWLOCALE connection properties.

If you specify an incorrect number of parameters or values, you get a Locale Not

Supported or Encoding or Code Set Not Supported message.

If these properties are set in the URL or a DataSource object, the new values in

NEWLOCALE and NEWCODESET override the values in the JDBC internal

tables. For example, if JDBC already maps 8859-1 to 8859_1 internally, but you

specify NEWCODESET=8888,8859-1,819 instead, the new value 8888 is used for the

code-set conversion.

Connecting with the NEWNLSMAP Environment Variable

To support connecting to NLS databases, IBM Informix JDBC Driver maintains a

table mapping NLS locale to the corresponding JDK locale and JDK codeset. As

JDK support for more locales and codesets becomes available, an NLS locale not

previously supported can be supported with newer JDKs. IBM Informix JDBC

Driver supports a connection property, NEWNLSMAP, which lets you specify

mappings for an NLS locale that is not specified in the tables.

The NEWNLSMAP property has the following format:

NEWNLSMAP=NLS-locale,JDK-locale,JDK-codeset:NLS-locale,JDK-locale,

JDK-codeset,....

Here is an example URL using these properties:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;

user=myname;password=mypasswd;NEWNLSMAP=rumanian,ro_RO,ISO8859_2;

There is no limit to the number of mappings you can specify. If you specify an

incorrect number of parameters or values, you get a Locale Not Supported or

Encoding or Code Set Not Supported message.

Support for Localized Error Messages

Message text is usually the text of an SQLException object, but can also be an

SQLWarn object or any other text output from the driver.

There are two requirements to enable localized message text output, as follows:

v You must add the full path of the ifxlang.jar file to the $CLASSPATH (UNIX) or

%CLASSPATH% (Windows) environment variable. This JAR file contains

localized versions of all message text supported by IBM Informix JDBC Driver.

Supported languages are English, German, French, Spanish, Russian, Polish,

Czech, Slovak, Chinese (simplified and traditional), Korean, and Japanese.

v The CLIENT_LOCALE environment variable value must be passed through the

property list to the connection object at connection time if you are using a

nondefault locale. For more information about CLIENT_LOCALE and GLS

features in general, see “Support for IBM Informix GLS Variables” on page 6-2.

6-14 IBM Informix JDBC Driver Programmer’s Guide

Several public classes have constructors that take the current connection object as a

parameter so they have access to the CLIENT_LOCALE value. If you want access

to non-English error messages, you must use the constructors that include the

connection object. Otherwise, any error message text from those classes is in

English only. Affected public classes are Interval, IntervalYM, IntervalDF, and

IfxLocator. For more information about the constructors to use for these classes, see

Chapter 4, “Working With Informix Types,” on page 4-1.

For an example of how to use the localized error message support feature, see the

locmsg.java program, which is included with IBM Informix JDBC Driver.

Chapter 6. Internationalization and Date Formats 6-15

6-16 IBM Informix JDBC Driver Programmer’s Guide

Chapter 7. Tuning and Troubleshooting

In This Chapter . 7-1

Debugging Your JDBC API Program . 7-1

Managing Performance . 7-1

The FET_BUF_SIZE and BIG_FET_BUF_SIZE Environment Variables 7-2

Managing Memory for Large Objects . 7-2

Reducing Network Traffic . 7-3

Using Bulk Inserts . 7-4

Using a Connection Pool . 7-4

Deploying a ConnectionPoolDataSource Object . 7-5

Tuning the Connection Pool Manager . 7-5

Using High-Availability Data Replication with Connection Pooling 7-7

Cleaning Pooled Connections . 7-8

Managing Connections . 7-8

In This Chapter

This chapter provides tuning and troubleshooting information for IBM Informix

JDBC Driver. It covers the following topics:

v Debugging Your JDBC API Program

v Managing Performance

Debugging Your JDBC API Program

You can set the SQLIDEBUG connection property to generate binary protocol trace.

You set the connection property SQLIDEBUG to specify a file. For example:

SQLIDEBUG=C:\\tmp\\ifxjdbctrace

A new trace file is generated for every connection and is suffixed with a

timestamp. If you are using the IfxDataSource interface, you can use the

IfxDataSource.setIfxSQLIDEBUG (String fname) method. Debug versions of the

JDBC jar files are not included in IBM Informix JDBC driver, Version 3.00.JC1 and

later.

Important: The binary SQLI protocol trace feature (SQLIDEBUG) should only be

used when directed by an IBM technical support representative.

Managing Performance

This section describes issues that might affect the performance of your queries:

v The FET_BUF_SIZE and BIG_FET_BUF_SIZE environment variables

v Memory management of large objects

v Reducing network traffic

v Using bulk inserts

v Tuning the connection pool.

© Copyright IBM Corp. 1996, 2008 7-1

The FET_BUF_SIZE and BIG_FET_BUF_SIZE Environment

Variables

When a SELECT statement is sent from a Java program to an Informix database,

the returned rows, or tuples, are stored in a tuple buffer in IBM Informix JDBC

Driver. The default size of the tuple buffer is the larger of the returned tuple size

or 4096 bytes.

You can use the Informix FET_BUF_SIZE environment variable to override the

default size of the tuple buffer. FET_BUF_SIZE can be set to any positive integer

less than or equal to 32,767. If the FET_BUF_SIZE environment variable is set, and

its value is larger than the default tuple buffer size, the tuple buffer size is set to

the value of FET_BUF_SIZE.

Extended Parallel Server

In IBM Informix Extended Parallel Server, Version 8.4, you can use the

BIG_FET_BUF_SIZE connection property to override the default size of the tuple

buffer. The XPS server allows the fetch buffer size to be increased up to 2 GB.

BIG_FET_BUF_SIZE can be set to any positive integer less than or equal to 2 GB.

If the BIG_FET_BUF_SIZE environment variable is set and its value is larger than

the default tuple buffer size, the tuple buffer size is set to the value of

BIG_FET_BUF_SIZE. This could help increase the insert cursor performance for

tables fragmented on multiple coservers in IBM Informix Extended Parallel Server,

Version 8.4.

End of Extended Parallel Server

 Increasing the size of the tuple buffer can reduce network traffic between your Java

program and the database, often resulting in better performance of queries. There

are times, however, when increasing the size of the tuple buffer can actually

degrade the performance of queries. This could happen if your Java program has

many active connections to a database or if the swap space on your computer is

limited. If this is true for your Java program or computer, you might not want to

use the FET_BUF_SIZE or BIG_FET_BUF_SIZE environment variable to increase

the size of the tuple buffer.

For more information on setting Informix environment variables, see Chapter 2,

“Connecting to the Database,” on page 2-1. For more information on increasing the

fetch buffer size, see the IBM Informix Guide to SQL: Reference.

Managing Memory for Large Objects

Whenever a large object (a BYTE, TEXT, BLOB, or CLOB data type) is fetched from

the database server, the data is either cached into memory or stored in a temporary

file (if it exceeds the memory buffer). A JDBC applet can cause a security violation

if it tries to create a temporary file on the local computer. In this case, the entire

large object must be stored in memory.

You can specify how large object data is stored by using an environment variable,

LOBCACHE, that you include in the connection property list, as follows:

v To set the maximum number of bytes allocated in memory to hold the data, set

the LOBCACHE value to that number of bytes.

7-2 IBM Informix JDBC Driver Programmer’s Guide

If the data size exceeds the LOBCACHE value, the data is stored in a temporary

file. If a security violation occurs during creation of this file, the data is stored in

memory.

v To always store the data in a file, set the LOBCACHE value to 0.

In this case, if a security violation occurs, IBM Informix JDBC Driver makes no

attempt to store the data in memory. This setting is not supported for unsigned

applets. For more information, see “Using the Driver in an Applet” on page 1-9.

v To always store the data in memory, set the LOBCACHE value to a negative

number.

If the required amount of memory is not available, IBM Informix JDBC Driver

throws the SQLException message Out of Memory.

If the LOBCACHE size is invalid or not defined, the default size is 4096.

You can set the LOBCACHE value through the database URL, as follows:

URL = jdbc:informix-sqli://158.58.9.37:7110/test:user=guest;

password=iamaguest;informixserver=oltapshm;

lobcache=4096";

The preceding example stores the large object in memory if the size is 4096 bytes

or fewer. If the large object exceeds 4096 bytes, IBM Informix JDBC Driver tries to

create a temporary file. If a security violation occurs, memory is allocated for the

entire large object. If that fails, the driver throws an SQLException message.

Here is another example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:

 user=guest:passwd=whoknows;informixserver=olserv01;lobcache=0";

The preceding example uses a temporary file for storing the fetched large object.

Here is a third example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:user=guest:

 passwd=whoknows;informixserver=olserv01;lobcache=-1";

The preceding example always uses memory to store the fetched large object.

For programming information on how to use the TEXT and BYTE data types in a

Java program, refer to “BYTE and TEXT Data Types” on page 4-4. For

programming information on how to use the BLOB and CLOB data types in a Java

program, refer to “Smart Large Object Data Types” on page 4-27.

Reducing Network Traffic

The two environment variables OPTOFC and IFX_AUTOFREE can be used to

reduce network traffic when you close Statement and ResultSet objects.

Set OPTOFC to 1 to specify that the ResultSet.close() method does not require a

network round trip if all the qualifying rows have already been retrieved in the

client’s tuple buffer. The database server automatically closes the cursor after all

the rows have been retrieved.

IBM Informix JDBC Driver might or might not have additional rows in the client’s

tuple buffer before the next ResultSet.next() method is called. Therefore, unless

IBM Informix JDBC Driver has received all rows from the database server, the

ResultSet.close() method might still require a network round trip when OPTOFC

is set to 1.

Chapter 7. Tuning and Troubleshooting 7-3

Set IFX_AUTOFREE to 1 to specify that the Statement.close() method does not

require a network round trip to free the database server cursor resources if the

cursor has already been closed in the database server.

You can also use the setAutoFree(boolean flag) and getAutoFree() methods to free

database server cursor resources. For more information, see “Using the Auto Free

Feature” on page 3-25.

The database server automatically frees the cursor resources after the cursor is

closed, either explicitly by the ResultSet.close() method or implicitly by the

OPTOFC environment variable.

When the cursor resources have been freed, the cursor can no longer be referenced.

For examples of how to use the OPTOFC and IFX_AUTOFREE environment

variables, see the autofree.java and optofc.java demonstration examples described

in Appendix A, “Sample Code Files,” on page A-1. In these examples, the variables

are set with the Properties.put() method.

For more information on setting Informix environment variables, refer to “Using

Informix Environment Variables with the IBM Informix JDBC Driver” on page 2-11.

Using Bulk Inserts

The bulk insert feature improves the performance of single INSERT statements that

are executed multiple times with multiple value settings. For more information, see

“Performing Bulk Inserts” on page 3-6.

Using a Connection Pool

To improve the performance and scalability of your application, you can obtain

your connection to the database server through a DataSource object that references

a ConnectionPoolDataSource object. IBM Informix JDBC Driver provides a

Connection Pool Manager as a transparent component of the

ConnectionPoolDataSource object. The Connection Pool Manager keeps a closed

connection in a pool instead of returning the connection to the database server as

closed. Whenever a user requests a new connection, the Connection Pool Manager

gets the connection from the pool, avoiding the overhead of having the server

close and re-open the connection.

Using the ConnectionPoolDataSource object can significantly improve

performance in cases where your application receives frequent, periodic connection

requests.

For complete information about how and why to use a DataSource or

ConnectionPoolDataSource object, see the JDBC 3.0 API provided by Sun

Microsystems, available from the following Web site: http://java.sun.com.

Important: This feature does not affect IfxXAConnectionPoolDataSource, which

operates under the assumption that connection pooling is handled by

the transaction manager.

The following sections discuss how to use connection pooling with IBM Informix

JDBC Driver:

v “Deploying a ConnectionPoolDataSource Object” on page 7-5, next

v “Tuning the Connection Pool Manager” on page 7-5

7-4 IBM Informix JDBC Driver Programmer’s Guide

http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/index.html

v “Using High-Availability Data Replication with Connection Pooling” on page 7-7

v “Cleaning Pooled Connections” on page 7-8

Deploying a ConnectionPoolDataSource Object

In the following steps:

v The variable cpds refers to a ConnectionPoolDataSource object.

v The JNDI logical name for the ConnectionPoolDataSource object is myCPDS.

v The variable ds refers to a DataSource object.

v The logical name for the DataSource object is DS_Pool.

 To deploy a ConnectionPoolDataSource object:

1. Instantiate an IfxConnectionPoolDataSource object.

2. Set any desired tuning properties for the object:

cpds.setIfxCPMInitPoolSize(15);

cpds.setIfxCPMMinPoolSize(2);

cpds.setIfxCPMMaxPoolSize(20);

cpds.setIfxCPMServiceInterval(30);

3. Register the ConnectionPoolDataSource object using JNDI to map a logical

name to the object:

Context ctx = new InitialContext();

ctx.bind("myCPDS",cpds);

4. Instantiate an IfxDataSource object.

5. Associate the DataSource object with the logical name you registered for the

ConnectionPoolDataSource object:

ds.setDataSourceName("myCPDS",ds);

6. Register the DataSource object using JNDI:

Context ctx = new InitialContext();

ctx.bind("DS_Pool",ds);

Tuning the Connection Pool Manager

During the deployment phase, you or your database administrator can control how

connection pooling works in your applications by setting values for any of these

Connection Pool Manager properties:

v IFMX_CPM_INIT_POOLSIZE lets you specify the initial number of connections

to be allocated for the pool when the ConnectionPoolDataSource object is first

instantiated and the pool is initialized. The default is 0.

Set this property if your application will need many connections when the

ConnectionPoolDataSource object is first instantiated.

To obtain the value, call getIfxCPMInitPoolSize().

To set the value, call setIfxCPMInitPoolSize (int init).

v IFMX_CPM_MAX_CONNECTIONS lets you specify the maximum number of

simultaneous physical connections that the DataSource object can have with the

server.

The value -1 specifies an unlimited number. The default is -1.

To obtain the value, call getIfxCPMMaxConnections().

To set the value, call setIfxCPMMaxConnections(int limit).

v IFMX_CPM_MIN_POOLSIZE lets you specify the minimum number of

connections to maintain in the pool. See the IFMX_CPM_MIN_AGELIMIT

parameter for what to do when this minimum number of connections kept in

the pool exceeds the age limit. The default is 0.

To obtain the value, call getIfxCPMMinPoolSize().

Chapter 7. Tuning and Troubleshooting 7-5

To set the value, call setIfxCPMMinPoolSize(int min).

v IFMX_CPM_MAX_POOLSIZE lets you specify the maximum number of

connections to maintain in the pool. When the pool reaches this size, all

connections return to the server. The default is 50.

To obtain the value, call getIfxCPMMaxPoolSize().

To set the value, call setIfxCPMMaxPoolSize(int max).

v IFMX_CPM_AGELIMIT lets you specify the time, in seconds, that a free

connection is kept in the free connection pool.

The default is -1, which means that the free connections are retained until the

client terminates.

To obtain the value, call getIfxCPMAgeLimit().

To set the value, call setIfxCPMAgeLimit(long limit).

v IFMX_CPM_MIN_AGELIMIT lets you specify the additional time, in seconds,

that a connection in the free connection pool is retained when no connection

requests have been received.

Use this setting to reduce resources held in the pool when there are expected

periods in which no connection requests will be made. A value of 0 indicates

that no additional time is given to a connection in the minimum pool: the

connection is released to the server whenever it exceeds IFMX_CPM_AGELIMIT.

The default is -1, which means that a minimum number of free connections is

retained until the client terminates.

To obtain the value, call getIfxCPMMinAgeLimit().

To set the value, call setIfxCPMAgeMinLimit(long limit).

v IFMX_CPM_SERVICE_INTERVAL lets you specify the pool service frequency, in

milliseconds.

Pool service activity includes adding free connections (if the number of free

connections falls below the minimum value) and removing free connections. The

default is 50.

To obtain the value, call getIfxCPMServiceInterval().

To set the value, call setIfxCPMServiceInterval (long interval).

v IFMX_CPM_ENABLE_SWITCH_HDRPOOL lets you specify whether to allow

automatic switching between the primary and secondary connection pools of an

HDR database server pair.

Set this property if your application relies on High-Availability Data Replication

with connection pooling. The default is false.

To obtain the value, call getIfxCPMSwitchHDRPool().

To set the value, call setIfxCPMSwitchHDRPool(boolean flag).

A demonstration program is available in the connection-pool directory within the

demo directory where your JDBC driver is installed. For connection pooling with

HDR, a demonstration program is available in the hdr directory within the demo

directory. For details about the files, see Appendix A.

Some of these properties overlap Sun JDBC 3.0 properties. The following table lists

the Sun JDBC 3.0 properties and their Informix equivalents.

7-6 IBM Informix JDBC Driver Programmer’s Guide

Sun JDBC Property

Name Informix Property Name Notes

initialPoolSize IFMX_CPM_INIT_POOLSIZE

maxPoolSize IFMX_CPM_MAX_POOLSIZE For maxPoolSize, 0 indicates no

maximum size. For

IFMX_CPM_MAX_

POOLSIZE, you must specify a

value.

minPoolSize IFMX_CPM_MIN_POOLSIZE

maxIdleTime IFMX_CPM_AGELIMIT For maxIdleTime, 0 indicates no

time limit. For IFMX_CPM_

AGELIMIT, -1 indicates no time

limit.

The following Sun JDBC 3.0 properties are not supported:

v maxStatements

v propertyCycle

Using High-Availability Data Replication with Connection Pooling

IBM Informix JDBC Driver implementation of connection pooling provides the

ability to pool connections with database servers in an HDR pair:

v The primary pool contains connections to the primary server in an HDR pair.

v The secondary pool contains connections to the secondary server in an HDR

pair.

You do not have to change application code to take advantage of connection

pooling with HDR. Set the IFMX_CPM_ENABLE_SWITCH_HDRPOOL property to

true to allow switching between the two pools. When switching is allowed, the

Connection Pool Manager validates and activates the appropriate connection pool.

When the primary server fails, the Connection Pool Manager activates the

secondary pool. When the secondary pool is active, the Connection Pool Manager

validates the state of the pool to check if the primary server is running. If the

primary server is running, the Connection Pool Manager switches new connections

to the primary server and sets the active pool to the primary pool.

If IFMX_CPM_ENABLE_SWITCH_HDRPOOL is set to false, you can force

switching to the other connection pool by calling the activateHDRPool_Primary()

or activateHDRPool_Secondary() methods:

public void activateHDRPool_Primary(void) throws SQLException

public void activateHDRPool_Secondary(void) throws SQLException

The activateHDRPool_Primary() method switches the primary connection pool to

be the active connection pool. The activateHDRPool_Secondary() method switches

the secondary connection pool to be the active pool.

You can use the isReadOnly(), isHDREnabled(), and getHDRtype() methods with

connection pooling (see “Checking for Read-Only Status” on page 2-20).

A demonstration program is available in the hdr directory within the demo

directory where IBM Informix JDBC Driver is installed. For details about the files,

see Appendix A.

Chapter 7. Tuning and Troubleshooting 7-7

Cleaning Pooled Connections

You can alter connections from their original, default properties by setting database

properties, such as AUTOCOMMIT and TRANSACTION ISOLATION. When a

connection is closed, these properties revert to their default values. However, a

pooled connection does not automatically revert to default properties when it is

returned to the pool.

In IBM Informix JDBC Driver, you can call the scrubConnection() method to:

v Reset the database properties and connection level properties to the default

values.

v Close open cursors and transactions.

v Retain all statements.

This now enables the application server to cache the statements, and it can be used

across applications and sessions to provide better performance for end-user

applications.

The signature of the scrubConnection() method is:

public void scrubConnection() throws SQLException

The following example demonstrates how to call scrubConnection():

try

 {

 IfmxConnection conn = (IfmxConnection)myConn;

 conn.scrubConnection();

 }

catch (SQLException e)

 {

 e.printStackTrace();

 }

The following method verifies whether a call to scrubConnection() has released all

statements:

public boolean scrubConnectionReleasesAllStatements()

Managing Connections

The following table contrasts different implementations of the connection.close()

and scrubConnection() methods when they are in connection pool setup or not.

7-8 IBM Informix JDBC Driver Programmer’s Guide

Connection Pooling Status

Behavior with

connection.close() Method

Behavior with

scrubconnection() Method

Non-connection pool setup Closes database connection,

all associated statement

objects, and their result sets

Connection is no longer

valid.

Returns connection to

default state, keeps opened

statements, but closes result

sets Connection is still valid.

Releases resources

associated with result sets

only.

Connection Pool with Informix

Implementation

Closes connection to the

database and reopens it to

close any statements

associated with the

connection object and reset

the connection to its original

state Connection object is

then returned to the

connection pool and is

available when requested by

a new application

connection.

Returns a connection to the

default state and keeps all

open statements, but closes

all result sets. Calling this

method is not recommended

here.

Connection Pool with

AppServer Implementation

Defined by user’s

connection pooling

implementation

Returns connection to

default state and retains

opened statements, but

closes result sets

Chapter 7. Tuning and Troubleshooting 7-9

7-10 IBM Informix JDBC Driver Programmer’s Guide

Appendix A. Sample Code Files

This appendix contains tables that list and briefly describe the code examples

provided with the client-side version of IBM Informix JDBC Driver.

Most of these examples can be adapted to work with server-side JDBC by

changing the syntax of the connection URL. For more information, see “Format of

Database URLs” on page 2-6.

The examples in the tools/udtudrmgr directory and the demo/xml directory are for

client-side JDBC only in the 2.2 release.

Summary of Available Examples

The examples are provided in two directories:

v The demo directory where your IBM Informix JDBC Driver software is installed

v The tools directory beneath the demo directory

Examples in the demo Directory

Each example has its own subdirectory. Most of the directories include a README

file that describes the examples and how to run them.

Directory Type of Examples

basic Examples that show common database operations

clob-blob Examples that use smart large objects

udt-distinct Examples that use opaque and DISTINCT data

types (there are additional examples using opaque

types in “Examples in the udtudrmgr Directory”

on page A-8)

complex-types Examples that use row and collection types

rmi An example using Remote Method Invocation

stores7 The stores7 demonstration database

pickaseat An example using DataSource objects

connection-pool Examples that illustrate using a connection pool

proxy Examples that illustrate using an HTTP proxy

server

xml Examples that illustrate storing and retrieving XML

documents

hdr Examples that illustrate using High-Availability

Data Replication

Examples in the basic Directory

The following table lists the files in the basic directory.

Demo Program Name Description

autofree.java Shows how to use the IFX_AUTOFREE

environment variable

© Copyright IBM Corp. 1996, 2008 A-1

BatchUpdate.java Shows how to send batch updates to the server

ByteType.java Shows how to insert into and select from a table

that contains a column of data type BYTE

CallOut1.java Executes a C function that has an OUT parameter

using CallableStatement methods

CallOut2.java Executes an SPL function that has an OUT

parameter using CallableStatement methods

CallOut3.java Executes a C function that has a Boolean OUT

parameter using the

IfmxCallableStatement.IfxRegisterOut

Parameter() method

CallOut4.java Executes a C function that has a CLOB type OUT

parameter and uses the

IfmxCallableStatement.hasOutParameter() method

CreateDB.java Creates a database called testDB

DBCENTURYSelect.java Uses the getString() method to retrieve a date

string representation in which the four-digit year

expansion is based on the DBCENTURY property

value

DBCENTURYSelect2.java Retrieves a date string representation in which the

four-digit year expansion is based on the

DBCENTURY property value using

string-to-binary conversion

 Uses the getDate() method to build a java.sql.Date

object upon which the date string representation is

based

DBCENTURYSelect3.java Retrieves a date string representation in which the

four-digit year expansion is based on the

DBCENTURY property value using

string-to-binary conversion

 Uses the getTimestamp() method to build a

java.sql.Timestamp object upon which the date

string representation is based

DBCENTURYSelect4.java Retrieves a date string representation in which the

four-digit year expansion is based on the

DBCENTURY property value using

binary-to-string conversion

 Uses the getDate() method to build a java.sql.Date

object upon which the date string representation is

based

DBCENTURYSelect5.java Retrieves a date string representation in which the

four-digit year expansion is based on the

DBCENTURY property value using

binary-to-string conversion

 Uses the getTimestamp() method to build a

java.sql.Timestamp object upon which the date

string representation is based

A-2 IBM Informix JDBC Driver Programmer’s Guide

DBConnection.java Creates connections to both a database and a

database server

DBDATESelect.java Shows how to retrieve a date object and a date

string representation from the database based on

the DBDATE property value from the URL string

DBMetaData.java Shows how to retrieve information about a

database with the DatabaseMetaData interface

DropDB.java Drops a database called testDB

ErrorHandling.java Shows how to retrieve RSAM error messages

GLDATESelect.java Shows how to retrieve a date object and a date

string representation from the database based on

the GL_DATE property value from the URL string

Intervaldemo.java Shows how to insert and select Informix interval

data

LOCALESelect.java Shows how to retrieve a date object and a date

string representation from the database based on

the CLIENT_LOCALE property value from the

URL string

locmsg.java Shows how to use Informix extension methods that

support localized error messages

MultiRowCall.java Shows how to return multiple rows in a stored

procedure call

OptimizedSelect.java Shows how to use the FET_BUF_SIZE

environment variable to adjust the IBM Informix

JDBC Driver tuple buffer size

optofc.java Shows how to use the OPTOFC environment

variable

PropertyConnection.java Shows how to specify connection environment

variables via a property list

RSMetaData.java Shows how to retrieve information about a result

set with the ResultSetMetaData interface

ScrollCursor.java Shows how to retrieve a result set with a scroll

cursor

Serial.java Shows how to insert and select Informix SERIal

and SERIal8 data

SimpleCall.java Shows how to call a stored procedure

SimpleConnection.java Shows how to connect to a database or database

server

SimpleSelect.java Shows how to send a simple SELECT query to the

database server

TextConv.java Shows how to convert a file from the client code

set to Unicode and then from Unicode to the

database code set

TextType.java Shows how to insert into and select from a table

that contains a column of data type TEXT

Appendix A. Sample Code Files A-3

UpdateCursor1.java Shows how to create an updatable scroll cursor

using a ROWID column in the query

UpdateCursor2.java Shows how to create an updatable scroll cursor

using a SERIAL column in the query

UpdateCursor3.java Shows how to create an updatable scroll cursor

using a primary key column in the query

Examples in the clob-blob Directory

The following table lists the files in the clob-blob directory.

Demo Program Name Description

demo1.java Shows how to create two tables with BLOB and

CLOB columns and compare the data

demo2.java Shows how to create one table with BYTE and

TEXT columns and a second table with BLOB and

CLOB columns and how to compare the data

demo3.java Shows how to create one table with BLOB and

CLOB columns and a second table with BYTE and

TEXT columns and how to compare the data

demo4.java Shows how to create two tables with BYTE and

TEXT columns and compare the data

demo5.java Shows how to store data from a file into a BLOB

table column

demo6.java Shows how to read a portion of the data in a smart

large object

demo_11.java Shows how to read data from a file into a buffer

and write the contents of the buffer into a smart

large object

demo_13.java Shows how to write data into a smart large object

and then insert the smart large object into a table

demo_14.java Shows how to fetch smart large object data from a

table

Examples in the udt-distinct Directory

The following table lists the files in the udt-distinct directory (there are additional

examples using opaque types in “Examples in the udtudrmgr Directory” on page

A-8.)

Demo Program Name Description

charattrUDT.java Shows how to implement an opaque fixed-length

type using SQLData

createDB.java Creates a database that the other udt-distinct

demonstration files use

createTypes.java Shows how to create opaque and distinct types in

the database

distinct_d1.java Shows how to create a distinct type without using

SQLData

distinct_d2.java Shows how to create a second distinct type without

using SQLData

A-4 IBM Informix JDBC Driver Programmer’s Guide

dropDB.java Drops the database that the other udt-distinct

demonstration files use

largebinUDT.java Shows how to implement an opaque type (smart

large object embedded) using SQLData

manualUDT.java Shows how to implement an opaque type that

allows you to change the position in the input

stream

myMoney.java Shows how to implement a distinct type using

SQLData

udt_d1.java Shows how to create a fixed-length opaque type

udt_d2.java Shows how to create an opaque type with an

embedded smart large object

udt_d3.java Shows how to create an opaque type that allows

you to change the position in the input stream

Examples in the complex-types Directory

The following table lists the files in the complex-types directory.

Demo Program Name Description

createDB.java Creates a database with named rows

list1.java Inserts and selects a simple collection using both

the java.sql.Array and java.util.Collection classes

list2.java Inserts and selects a collection with a nested row

element

 Uses both the java.sql.Array and

java.util.Collection classes for the collection and

both the SQLData and Struct interfaces for the

nested row

r1_t.java Defines the SQLData class for named row r1_t

r2_t.java Defines the SQLData class for named row r2_t

GenericStruct.java Instantiates a java.sql.Struct object for inserting

into named or unnamed rows

row1.java Inserts and selects a simple named row using both

the SQLData and Struct interfaces

row2.java Inserts and selects a named row with a nested

collection using both the SQLData and Struct

interfaces

 The SQLData interface uses the Informix

IfmxComplexSQLOutput. writeObject() and

IfmxComplexSQLOutput.readObject() extension

methods to write and read the nested collection.

row3.java Inserts and selects an unnamed row with a nested

collection

fullname.java Contains the SQLData class for the named row

fullname_t

 Used by the demo1.java and demo2.java files

Appendix A. Sample Code Files A-5

person.java Contains the SQLData class for the named row

person_t Used by the demo1.java and demo2.java

files

demo1.java Fetches a named row into an SQLData object

demo2.java Inserts an SQLData object into a named row

column

demo3.java Fetches an unnamed row column into a Struct

object

demo4.java Inserts a Struct object into a named row column

demo5.java Fetches an Informix SET column into a

java.util.HashSet object

demo6.java Fetches an Informix SET column into a

java.util.TreeSet object

 A customized type mapping is provided to

override the default.

demo7.java Inserts a java.util.HashSet object into an Informix

SET column

demo8.java Fetches an Informix SET column into a

java.sql.Array object

dropDB.java Drops the database

Examples in the proxy Directory

The following table lists the files in the proxy directory. A README file in the

directory contains setup information.

Demo Program Name Description

ProxySelect.java (application) Creates a sample database and

connects to it using four scenarios:

v Connection with a proxy server and no LDAP

server

v Connection with an LDAP server and no proxy

server

v Connection using an sqlhosts file

v Direct connection (no proxy servlet, sqlhosts

file, or LDAP server)

proxy.sh (shell script) Launches ProxySelect.java. To run the

script (and the demo), type:

proxy.sh -d ProxySelect -s 2

proxy.java (applet) Performs the same operations as

ProxySelect.java from an applet. To run the applet,

type:

appletviewer proxy.html

proxy.html HTML file for proxy.java

ifmx.conf Sample LDAP configuration file

ifmx.ldif Sample LDAP ldif file

A-6 IBM Informix JDBC Driver Programmer’s Guide

Examples in the connection-pool Directory

The following table lists the files in the connection-pool directory. A README file

in the directory contains setup information.

Demo Program Name Description

AppSimulator.java Simulates multiple client threads making

DataSource connections

SetupDB.java Creates and populates a sample database. See the

comments at the beginning of the code for a

sample run command

DS_Pool.prop Lists properties for a connection-pooling

application

myCPDS.prop Lists properties for a connection-pooling

application, with the optional tuning parameters

included

DS_no_Pool.prop Lists properties for an application without

connection pooling

Register.java Registers a DataSource object with a JNDI Name

registry

 A sample run command is:

java Register DS_no_Pool /tmp

runDemo (Shell script) Creates and populates a sample

database; registers the data sources DS_no_Pool

and DS_Pool; and runs an application to simulate

multiple client threads that connect to the sample

database

Examples in the xml Directory

The following table lists the files in the xml directory.

Demod Program Name Description

CreateDB.java Creates a sample database

makefile Compiles the examples

myHandler.java Sample class of callback routines for the SAX

parser

sample1.xml Simple XML slide

sample2.xml Sample set of XML slides

sample2.dtd Document-type definition for sample1.xml

xmldemo1.java Uses XMLtoString(), getInputSource(), and

myHandler.java to convert the XML in

sample1.xml to an InputSource object and then

parses it using the SAX parser

Examples In the hdr Directory

The following table lists the files in the hdr directory. A README file in the

directory contains setup information.

Demo Program Name Description

SetupDB.java Creates a sample database and table

Appendix A. Sample Code Files A-7

Register.java Registers the DS_no_Pool and DS_Pool DataSource

objects with a JNDI Name registry. A sample run

command is:

java Register DS_no_Pool /tmp

AppSimulator.java Simulates High-Availability Data Replication

redirection for pooled and nonpooled connections

made with the DataSource.getConnection()

method

HdrSimpleConnect.java Shows how to implement HDR redirection with the

DriverManager.getConnection() method

Examples in the tools Directory

The tools directory includes the following subdirectories:

v The udtudrmgr directory contains examples that use UDT and UDR Manager to

create opaque types and UDRs.

v The classgenerator directory contains sample output files of the ClassGenerator

utility.

Examples in the udtudrmgr Directory

The following table lists the files in the udtudrmgr directory. A README file in

the directory contains setup information.

Demo Program Name Description

createDB.java Creates a sample database

dropDB.java Drops the sample database

Circle.java (Demo application 1) Implements a Java class,

using the default Input and Output functions, to

be converted to a Java opaque type

PlayWithCircle.java (Demo application 1) Uses the Circle opaque type

in a client application

Circle2.java (Demo application 2) Implements a Java class, with

user-supplied Input and Output functions, to be

converted to a Java opaque type

PlayWithCircle2.java (Demo application 2) Uses the Circle2 opaque type

in a client application

MyCircle.java (Demo application 3) Creates a fixed-length opaque

type without a preexisting Java class

Group1.java (Demo application 4) Maps methods in an existing

Java class to Java UDRs

PlayWithGroup1.java (Demo application 4) Uses the UDRs from

Group1.java in a client application

A-8 IBM Informix JDBC Driver Programmer’s Guide

Appendix B. DataSource Extensions

This appendix lists the Informix extensions to standard JDBC classes:

v The IfxDataSource class, which implements the DataSource interface

v The IfxConnectionPoolDataSource class, which implements the

ConnectionPoolDataSource interface

For information about how and why to use a DataSource or

ConnectionPoolDataSource object, see the JDBC 3.0 API provided by Sun

Microsystems, available from the following Web site: http://java.sun.com.

IBM Informix JDBC Driver provides extensions for the following purposes:

v Reading and writing properties

v Getting and setting standard properties

v Getting and setting Informix connection properties

v Getting and setting Connection Pool DataSource properties

Reading and Writing Properties

The following methods are defined in the extended DataSource interface for

reading and writing properties. These methods allow you to define a new

DataSource object by editing the property list of an existing DataSource object.

public Properties getDsProperties();

Returns the Property object contained in the DataSource object

public void addProp(String key, Object value);

Adds a property to the property list

The key parameter specifies which property is to be added.

The value parameter is the value of the property.

public Object getProp(String key);

Gets the value of a property from the property list

The key parameter specifies which property is to be retrieved.

public void removeProperty(String key);

Removes a property from the property list

The key parameter specifies which property is to be removed.

public void readProperties(InputStream in) throws IOException;

Reads properties into a DataSource object from an InputStream object

The in parameter is the InputStream object from which the properties are to be

read.

© Copyright IBM Corp. 1996, 2008 B-1

http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/index.html

An exception occurs when an I/O error is encountered while reading from the

input stream.

public void writeProperties(OutputStream out) throws IOException;

Writes the properties of the DataSource object to an OutputStream object

The out parameter is the OutputStream object to which the properties are to be

written.

An exception occurs when an I/O error is encountered while writing to the output

stream.

Getting and Setting Standard Properties

The following methods are defined in the extended DataSource interface for

getting and setting properties defined in the JDBC 3.0 API from Sun Microsystems.

Property getXXX() and setXXX() Method Signatures

portNumber

public int getPortNumber();

public void setPortNumber(int value);

databaseName

public String getDatabaseName();

public void setDatabaseName(String value);

serverName

public String getServerName();

public void setServerName(String value);

user

public String getUser();

public void setUser(String value);

password

public String getPassword();

public void setPassword(String value);

description

public String getDescription();

public void setDescription(String value);

dataSourceName

public String getDataSourceName();

public void setDataSourceName(String value);

 The networkProtocol and roleName properties are not supported by IBM Informix

JDBC Driver.

Getting and Setting Informix Connection Properties

The following methods are defined in the extended DataSource interface for

getting and setting Informix environment variable values.

 Environment Variable getIfxXXX() and setIfxXXX() Method Signatures

CLIENT_LOCALE public String getIfxCLIENT_LOCALE()

public void setIfxCLIENT_LOCALE(String value)

CSM public String getIfxCSM()

public void setIfxCSM (String csm)

B-2 IBM Informix JDBC Driver Programmer’s Guide

Environment Variable getIfxXXX() and setIfxXXX() Method Signatures

DBANSIWARN public boolean isIfxDBANSIWARN()

public void setIfxDBANSIWARN(boolean value)

DBCENTURY public String getIfxDBCENTURY()

public void setIfxDBCENTURY(String value)

DBDATE public String getIfxDBDATE()

public void setIfxDBDATE(String value)

DB_LOCALE public String getIfxDB_LOCALE()

public void setIfxDB_LOCALE(String value)

DBSPACETEMP public String getIfxDBSPACETEMP()

public void setIfxDBSPACETEMP(String value)

DBTEMP public String getIfxDBTEMP()

public void setIfxDBTEMP(String value)

DBUPSPACE public String getIfxDBUPSPACE()

public void setIfxDBUPSPACE(String value)

DELIMIDENT public boolean isIfxDELIMIDENT()

public void setIfxDELIMIDENT(boolean value)

ENABLE_CACHE_TYPE public boolean isIfxENABLE_CACHE_TYPE()

public void setIfxENABLE_CACHE_TYPE(boolean value)

ENABLE_HDRSWITCH public booleangetIfxENABLE_HDRSWITCH()

public void setIfxENABLE_HDRSWITCH(boolean value)

FET_BUF_SIZE public int getIfxFET_BUF_SIZE()

public void setIfxFET_BUF_SIZE(int value)

GL_DATE public String getIfxGL_DATE()

public void setIfxGL_DATE(String value)

IFX_AUTOFREE public boolean isIfxIFX_AUTOFREE()

public void setIfxIFX_AUTOFREE(boolean value)

IFX_CODESETLOB public int getIfxIFX_CODESETLOB()

public void setIfxIFX_CODESETLOB(int codesetlobFlag)

IFX_DIRECTIVES public String getIfxIFX_DIRECTIVES()

public void setIfxIFX_DIRECTIVES(String value)

IFX_EXTDIRECTIVES public String getIfxIFX_EXTDIRECTIVES()

public void setIfxIFX_EXTDIRECTIVES(String value)

IFX_FLAT_UCSQ public int getIfxIFX_FLAT_UCSQ()

public void setIfxIFX_FLAT_UCSQ(int value)

IFX_GET_SMFLOAT_AS_

FLOAT

public boolean getIfxIFX_GET_SMFLOAT_AS_FLOAT()

public void setIfxIFX_IFX_GET_SMFLOAT_AS_FLOAT(boolean value)

IFX_ISOLATION_LEVEL public String getIfxIFX_ISOLATION_LEVEL()

public void setIfxIFX_ISOLATION_LEVEL (String iso_level)

IFX_LOCK_MODE_WAIT public int getIfxIFX_LOCK_MODE_WAIT()

public void setIfxIFX_LOCK_MODE_WAIT (int lock_time)

IFX_SET_FLOAT_AS_

SMFLOAT

public boolean getIfxIFX_SET_FLOAT_AS_SMFLOAT()

public void setIfxIFX_SET_FLOAT_AS_SMFLOAT(boolean value)

IFX_TRIMTRAILINGSPACES public int getIfxIFX_TRIMTRAILINGSPACES()

public void setIfxIFX_TRIMTRAILINGSPACES(int value)

IFXHOST public String getIfxIFXHOST()

public void setIfxIFXHOST(String value)

IFXHOST_SECONDARY public String getIfxIFXHOST_SECONDARY()

public void setIfxIFXHOST_SECONDARY(String value)

Appendix B. DataSource Extensions B-3

Environment Variable getIfxXXX() and setIfxXXX() Method Signatures

IFX_USEPUT public boolean isIfxIFX_USEPUT()

public void setIfxIFX_USEPUT(boolean value)

IFX_XASPEC public String getIfxIFX_XASPEC() (returns y or n)

public void IfxIFX_XASPEC(String XASPEC_flag) (only y, Y, n, or N are valid)

IFX_XASTDCOMPLIANCE_

XAEND

public int getIfxIFX_XASTDCOMPLIANCE_XAEND()

public void setIfxIFX_XASTDCOMPLIANCE_

XAEND(int value)

INFORMIXCONRETRY public int getIfxINFORMIXCONRETRY()

public void setIfxINFORMIXCONRETRY(int value)

INFORMIXCONTIME public int getIfxINFORMIXCONTIME()

public void setIfxINFORMIXCONTIME(int value)

INFORMIXOPCACHE public String getIfxINFORMIXOPCACHE()

public void setIfxINFORMIXOPCACHE(String value)

INFORMIXSERVER_

SECONDARY

public String getIfxINFORMIXSERVER_SECONDARY()

public void setIfxINFORMIXSERVER_SECONDARY(String value)

INFORMIXSTACKSIZE public int getIfxINFORMIXSTACKSIZE()

public void setIfxINFORMIXSTACKSIZE(int value)

JDBCTEMP public String getIfxJDBCTEMP()

public void setIfxJDBCTEMP(String value)

LDAP_IFXBASE public String getIfxLDAP_IFXBASE()

public void setIfxLDAP_IFXBASE(String value)

LDAP_PASSWD public String getIfxLDAP_PASSWD()

public void setIfxLDAP_PASSWD(String value)

LDAP_URL public String getIfxLDAP_URL()

public void setIfxLDAP_URL(String value)

LDAP_USER public String getIfxLDAP_USER()

public void setIfxLDAP_USER(String value)

LOBCACHE public int getIfxLOBCACHE()

public void setIfxLOBCACHE(int value)

NEWCODESET public String getIfxNEWCODESET()

public void setIfxNEWCODESET(String value)

NEWLOCALE public String getIfxNEWLOCALE()

public void setIfxNEWLOCALE(String value)

NEWNLSMAP public String getIfxNEWNLSMAP()

public void setIfxNEWNLSMAP (String value)

NODEFDAC public String getIfxNODEFDAC()

public void setIfxNODEFDAC(String value)

OPT_GOAL public String getIfxOPT_GOAL()

public void setIfxOPT_GOAL(String value)

OPTCOMPIND public String getIfxOPTCOMPIND()

public void setIfxOPTCOMPIND(String value)

OPTOFC public String getIfxOPTOFC()

public void setIfxOPTOFC(String value)

PATH public String getIfxPATH()

public void setIfxPATH(String value)

PDQPRIORITY public String getIfxPDQPRIORITY()

public void setIfxPDQPRIORITY(String value)

B-4 IBM Informix JDBC Driver Programmer’s Guide

Environment Variable getIfxXXX() and setIfxXXX() Method Signatures

PLCONFIG public String getIfxPLCONFIG()

public void setIfxPLCONFIG(String value)

PLOAD_LO_PATH public String getIfxPLOAD_LO_PATH()

public void setIfxPLOAD_LO_PATH(String value)

PORTNO_SECONDARY public String getIfxPORTNO_SECONDARY()

public void setIfxPORTNO_SECONDARY(int value)

PROXY public String getIfxPROXY()

public void setIfxPROXY(String value)

PSORT_DBTEMP public String getIfxPSORT_DBTEMP()

public void setIfxPSORT_DBTEMP(String value)

PSORT_NPROCS public String getIfxPSORT_NPROCS()

public void setIfxPSORT_NPROCS(String value)

SECURITY public String getIfxSECURITY()

public void setIfxSECURITY(String value)

SQLH_FILE public String getIfxSQLH_FILE()

public void setIfxSQLH_FILE(String value)

SQLH_TYPE public String getIfxSQLH_TYPE()

public void setIfxSQLH_TYPE(String value)

SQLIDEBUG public String getIfxSQLIDEBUG ()

public void setIfxSQLIDEBUG (String value)

STMT_CACHE public String getIfxSTMT_CACHE()

public void setIfxSTMT_CACHE(String value)

USEV5SERVER public boolean isIfxUSEV5SERVER()

public void setIfxUSEV5SERVER(boolean value)

Getting and Setting Connection Pool DataSource Properties

The code you write to use a ConnectionPoolDataSource object is the same as the

code you write to use a DataSource object. Additional tuning parameters let you

or your database administrator control some aspects of connection pool

management with the Connection Pool Manager. These are more fully described in

“Using a Connection Pool” on page 7-4. The following table summarizes them.

Appendix B. DataSource Extensions B-5

Property getXXX() and setXXX() Method Signatures

IFMX_CPM_ENABLE_SWITCH_

HDRPOOL

public void setIfxCPMSwitchHDRPool (boolean flag)

public int getIfxCPMSwitchHDRPool()

IFMX_CPM_INIT_POOLSIZE public void setIfxCPMInitPoolSize (int init)

public int getIfxCPMInitPoolSize()

IFMX_CPM_MAX_CONNECTIONS public void setIfxCPMMaxConnections (int limit)

public int getIfxCPMMaxConnections()

IFMX_CPM_MIN_POOLSIZE public void setIfxCPMMinPoolSize (int min)

public int getIfxCPMMinPoolSize()

IFMX_CPM_MAX_POOLSIZE public void setIfxCPMMaxPoolSize (int max)

public int getIfxCPMMaxPoolSize()

IFMX_CPM_MIN_AGELIMIT public void setIfxCPMMinAgeLimit (long limit)

public long getIfxCPMMinAgeLimit()

IFMX_CPM_MAX_AGELIMIT public void setIfxCPMMaxAgeLimit (long limit)

public long getIfxCPMMaxAgeLimit()

IFMX_CPM_SERVICE_INTERVAL public void setIfxCPMServiceInterval (long interval)

public long getIfxCPMServiceInterval()

B-6 IBM Informix JDBC Driver Programmer’s Guide

Appendix C. Mapping Data Types

This appendix discusses mapping issues between data types defined in a Java

program and the data types supported by the Informix database server. It covers

the following topics:

v “Data Type Mapping Between Informix and JDBC Data Types,” next

v “Data Type Mapping for PreparedStatement.setXXX() Extensions” on page C-5

v “Data Type Mapping for ResultSet.getXXX() Methods” on page C-12

v “Data Type Mapping for UDT Manager and UDR Manager” on page C-14

Data Type Mapping Between Informix and JDBC Data Types

Because there are variations between the SQL data types supported by each

database vendor, the JDBC API defines a set of generic SQL data types in the class

java.sql.Types. Use these JDBC API data types to reference generic SQL types in

your Java programs that use the JDBC API to connect to Informix databases.

The following table shows the Informix data type to which each JDBC API data

type maps.

JDBC API Data Type Informix Data Type

BIGINT INT8, BIGINT, BIGSERIAL

BINARY BYTE

BIT

1 BOOLEAN

REF Not supported

CHAR CHAR(n)

DATE DATE

DECIMAL DECIMAL

DOUBLE FLOAT

FLOAT FLOAT2

INTEGER INTEGER

LONGVARBINARY BYTE or BLOB

LONGVARCHAR TEXT or CLOB

NUMERIC DECIMAL

NUMERIC MONEY

REAL SMALLFLOAT

SMALLINT SMALLINT

TIME DATETIME HOUR TO SECOND2

TIMESTAMP DATETIME YEAR TO FRACTION(5)3

TINYINT SMALLINT

VARBINARY BYTE

VARCHAR VARCHAR(m,r)

© Copyright IBM Corp. 1996, 2008 C-1

BOOLEAN BOOLEAN

SMALLINT SMALLINT

1 With Java 1.4 is , java.sql.Types.BOOLEAN maps to BOOLEAN.

2 This mapping is JDBC compliant. You can map the JDBC FLOAT data type to the

Informix SMALLFLOAT data type for backward compatibility by setting the

IFX_SET_FLOAT_AS_SMFLOAT environment variable to 1.

3 Informix DATETIME types are very restrictive and are not interchangeable. For

more information, see “Field Lengths and Date-Time Data” on page C-17.

Data Type Mapping Between Extended Types and Java and

JDBC Types

The following table lists mappings between the extended data types supported in

Informix Dynamic Server and the corresponding Java and JDBC types.

C-2 IBM Informix JDBC Driver Programmer’s Guide

JDBC Type Java Object Type Informix Type

java.sql.Types.LONGVARCHAR java.sql.String

 java.io.inputStream

 LVARCHAR

 IfxTypes.IFX_TYPE_LVARCHAR

java.sql.Types.JAVA_OBJECT java.sql.SQLData Opaque type

 IfxTypes.IFX_TYPE_UDTFIXED

 IfxTypes.IFX_TYPE_UDTVAR

java.sql.Types.LONGVARBINARY

 java.sql.Types.BLOB

java.sql.Blob

 java.io.inputStream

 byte[]

BLOB

 IfxTypes.IFX_TYPE_BLOB

java.sql.Types.LONGVARCHAR

 java.sql.Types.CLOB

java.sql.Clob

 java.io.inputStream

 java.lang.String

CLOB

 IfxTypes.IFX_TYPE_CLOB

java.sql.Types.LONGVARBINARY

 java.sql.Types.BLOB

java.io.inputStream

 java.sql.Blob byte[]

BYTE

 IfxTypes.IFX_TYPE_BYTE

java.sql.Types.LONGVARCHAR

 java.sql.Types.CLOB

java.io.InputStream

 java.sql.Clob java.sql.String

TEXT

 IfxTypes.IFX_TYPE_TEXT

java.sql.Types.JAVA_OBJECT

 java.sql.Types.STRUCT

java.sql.SQLData

 java.sql.Struct

Named row

 IfxTypes.IFX_TYPE_ROW

java.sql.Types.STRUCT java.sql.Struct Unnamed row

 IfxTypes.IFX_TYPE_ROW

java.sql.Types.ARRAY

 java.sql.Types.OTHER

java.sql.Array

 java.util.LinkedList

 java.util.HashSet

 java.util.TreeSet

set, multiset

 IfxTypes.IFX_TYPE_SET

 IfxTypes.IFX_TYPE_MULTISET

java.sql.Types.ARRAY

 java.sql.Types.OTHER

java.sql.Array

 java.util.ArrayList

 java.util.LinkedList

LIST

 IfxTypes.IFX_TYPE_LIST

A Java boolean object can map to an Informix smallint data type or an Informix

boolean data type. IBM Informix JDBC Driver attempts to map it according to the

column type. However, in cases such as PreparedStatement host variables, IBM

Informix JDBC Driver cannot access the column types, so the mapping is

somewhat limited. For more details on data type mapping, refer to “Data Type

Mapping for PreparedStatement.setXXX() Extensions” on page C-5.

Appendix C. Mapping Data Types C-3

Data Type Mapping Between C Opaque Types and Java

To create an opaque type using Java, you can use the UDT and UDR Manager

facility. For more information, see Chapter 5, “Working with Opaque Types,” on

page 5-1.

All opaque data is stored in the database server table in a C struct, which is made

up of various DataBlade API types, as defined in the opaque type. (For more

information, see the IBM Informix DataBlade API Programmer’s Guide.)

The following table lists the mapping of DataBlade API types to their

corresponding Java types.

DataBlade API Type Java Type

MI_LO_HANDLE BLOB or CLOB

gl_wchar_t String

mi_boolean boolean

mi_char String

mi_char1 String

mi_date Date

mi_datetime TimeStamp

mi_decimal BigDecimal

mi_double_precision double

mi_int1 byte

mi_int8 long

mi_integer int

mi_interval Not supported

mi_money BigDecimal

mi_numeric BigDecimal

mi_real float

mi_smallint short

mi_string String

mi_unsigned_char1 String

mi_unsigned_int8 long

mi_unsigned_integer int

mi_unsigned_smallint short

mi_wchar String

 The C struct may contain padding bytes. IBM Informix JDBC Driver automatically

skips these padding bytes to make sure the next data member is properly aligned.

Therefore, your Java objects do not have to take care of alignment themselves.

C-4 IBM Informix JDBC Driver Programmer’s Guide

Data Type Mapping for PreparedStatement.setXXX() Extensions

Informix Dynamic Server introduces many extended data types. As a result, there

can be multiple mappings between a JDBC or Java data type and the

corresponding Informix data type.

For example, you can use PreparedStatement.setAsciiStream() to insert into either

a text column or a CLOB column. Similarly, you can also use

PreparedStatement.setBinaryStream() to insert into a byte column or a BLOB

column. Because the actual column information is not available to IBM Informix

JDBC Driver at all times, there can be ambiguity for the driver when it maps data

types.

Normally, with INSERT, SELECT, or DELETE statements, the column information

is available to the driver, so the driver can determine how the data can be sent to

the database server.

However, when the data is referenced in an UPDATE statement or inside a

WHERE clause, IBM Informix JDBC Driver does not have access to the column

information. In those cases, unless you use the Informix extensions, the driver

maps those columns using the corresponding Informix data types listed in the first

table in “Data Type Mapping Between Informix and JDBC Data Types” on page

C-1. For the PreparedStatement.setAsciiStream() method, the driver tries to map

to a text data type, and for the PreparedStatement.setBinaryStream() method, it

tries to map to a byte data type.

Using the Mapping Extensions

To direct the driver to map to a certain data type (so there is no ambiguity in

UPDATE statements and WHERE clauses), you can use extensions to the

PreparedStatement.setXXX() methods. The only data types that might have

ambiguity are boolean, lvarchar, text, byte, BLOB, and CLOB.

To use these extended methods, you must cast your PreparedStatement references

to IfmxPreparedStatement. For example, the following code casts the statement

variable p_stmt to IfmxPreparedStatement to call the IfxSetObject() method and

insert the contents of a file as a large object of type CLOB. IfxSetObject() is

defined as I:

public void IfxSetObject(int i, Object x, int scale, int ifxType)

 throws SQLException

public void IfxSetObject(int i, Object x, int ifxType) throws

 SQLexception

The code is:

File file = new File("sblob_06.dat");

int fileLength = (int)file.length();

byte[] buffer = new byte[fileLength];

FileInputStream fin = new FileInputStream(file);

fin.read(buffer,0,fileLength);

String str = new String(buffer);

writeOutputFile("Prepare");

PreparedStatement p_stmt = myConn.prepareStatement

 ("insert into sblob_t20(c1) values(?)");

writeOutputFile("IfxSetObject");

((IfmxPreparedStatement)p_stmt).IfxSetObject(1,str,30,IfxTypes.IFX

 _TYPE_CLOB);

Appendix C. Mapping Data Types C-5

For the IfmxPreparedStatement.IfxSetObject extension, you cannot simply

overload the method signature with an added ifxType parameter, because such

overloading creates method ambiguity. You must name the method to IfxSetObject

instead.

Using the Extensions for Opaque Types

The extensions for processing opaque types allow your application to specify the

return type to which the database server should cast the opaque type before

returning it to the client. This is known as prebinding the return value. The methods

are:

v setBindColType(), which allows applications to specify the output type of

result-set values using standard JDBC data types from java.sql.Types

v setBindColIfxType(), which allows applications to specify the output type of

result-set values using Informix data types from com.informix.lang.IfxTypes

For more information about the available types, see “Using the IfxTypes Class”

on page C-9.

v clearBindColType(), which resets values set through the previous two methods

In the following sections:

v The colIndex parameter specifies the column: 1 is the first column, 2 the second,

and so forth

v The sqltype parameter is a value from java.sql.Types: for example,

Types.INTEGER.

v The ifxtype parameter is a value from IfxTypes: for example,

IfxTypes.IFX_TYPE_DECIMAL.

setBindColType() Methods: The methods are as follows:

public void setBindColType(int colIndex, int sqltype) throws SQLException;

public void setBindColType(int colIndex, int sqltype, int scale)

 throws SQLException;

public void setBindColType(int colIndex, int sqltype, String name)

 throws SQLException;

The first overloaded method allows applications to specify the output type to be

java.sql.DECIMAL or java.sql.NUMERIC; the scale parameter specifies the number of

digits to the right of the decimal point. The second overloaded method allows

applications to specify the output type to be java.sql.STRUCT, java.sql.ARRAY,

java.sql.DISTINCT, or java.sql.JAVA_OBJECT by assigning one of these values to

the name parameter.

setBindColIfxType() Methods: The methods are as follows:

public void setBindColIfxType(int colIndex, int ifxtype) throws SQLException;

public void setBindColIfxType(int colIndex, int ifxtype, int scale)

 throws SQLException;

public void setBindColIfxType(int colIndex, int ifxtype, String name)

 throws SQLException;

The first overloaded method allows applications to specify the output type to be

IFX_TYPE_DECIMAL or IFX_TYPE_NUMERIC; the scale parameter specifies the number of

digits to the right of the decimal point. The second overloaded method allows

applications to specify the output type to be IFX_TYPE_LIST, IFX_TYPE_ROW,

IFX_TYPE_MULTISET, IFX_TYPE_SET, IFX_TYPE_UDTVAR, or IFX_TYPE_UDTFIXED by

assigning one of these values to the name parameter.

clearBindColType() Method: The method is as follows:

C-6 IBM Informix JDBC Driver Programmer’s Guide

public void clearBindColType() throws SQLException;

Prebinding Example: The following code from the udt_bindCol.java sample

program prebinds an opaque type to an Informix VARCHAR and then to a

standard Java Integer type. The table used in this example has one int column and

one opaque type column and is defined as follows:

create table charattr_tab (int_col int, charattr_col charattr_udt)

The code to select and prebind the opaque type in the charattr_col column is as

follows:

String s = "select int_col, charattr_col as cast_udt_to_lvc, " +

 "charattr_col as cast_udt_to_int from charattr_tab order by 1";

pstmt = conn.prepareStatement(s);

 ((IfxPreparedStatement)pstmt).setBindColIfxType(2,IfxTypes.IFX_TYPE_LVARCHAR);

((IfxPreparedStatement)pstmt).setBindColType(3,Types.INTEGER);

ResultSet rs = pstmt.executeQuery();

System.out.println("Fetching data ...");

int curRow = 0;

while (rs.next())

{

 curRow++;

 int intret = rs.getInt("int_col");

 String strret = rs.getString("cast_udt_to_lvc");

 int intret2 = rs.getInt("cast_udt_to_int");

} // end while

Using Other Mapping Extensions

The remaining method signatures are listed next, along with any additional

considerations that apply. In each case, the Informix type must be the last

parameter to the standard JDBC PreparedStatement.setXXX() interface.

IfmxPreparedStatement.setArray()

public void setArray(int parameterIndex, Array x, int ifxType)

 throws SQLException

IfmxPreparedStatement.setAsciiStream()

public void setAsciiStream(int i, InputStream x, int length, int

 ifxType) throws SQLException

When your application is inserting a very large ASCII value into a

LONGVARCHAR column, it is sometimes more efficient to send the ASCII value

to the server using java.io.InputStream.

IfmxPreparedStatement.setBigDecimal()

public void setBigDecimal(int i, BigDecimal x, int ifxType)

 throws SQLException

IfmxPreparedStatement.setBinaryStream()

public void setBinaryStream(int i, InputStream x, int length, int

 ifxType) throws SQLException

When your application is inserting a very large binary value into a

LONGVARbinary column, it is sometimes more efficient to send the binary value

to the server using java.io.InputStream.

IfmxPreparedStatement.setBlob()

Appendix C. Mapping Data Types C-7

public void setBlob(int parameterIndex, Blob x, int ifxType)

 throws SQLException

IfmxPreparedStatement.setBoolean()

public void setBoolean(int i, boolean x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setByte()

public void setByte(int i, byte x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setBytes()

public void setBytes(int i, byte x[], int ifxType) throws

 SQLException

IfmxPreparedStatement.setCharacterStream()

public void setCharacterStream(int parameterIndex, Reader reader,

 int length, int ifxType) throws SQLException

When your application is setting a LONGVARCHAR parameter to a very large

UNICODE value, it is sometimes more efficient to send the UNICODE value to the

server using java.io.Reader.

IfmxPreparedStatement.setClob()

public void setClob(int parameterIndex, Clob x, int ifxType)

 throws SQLException

IfmxPreparedStatement.setDate()

public void setDate(int i, Date x, int ifxType) throws

 SQLException

public void setDate(int parameterIndex, Date x, Calendar Cal,

 int ifxType) throws SQLException

IfmxPreparedStatement.setDouble()

public void setDouble(int i, double x, int ifxType) throws SQ

 LException

IfmxPreparedStatement.setFloat()

public void setFloat(int i, float x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setInt()

public void setInt(int i, int x, int ifxType) throws SQLException

IfmxPreparedStatement.setLong()

public void setLong(int i, long x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setNull()

public void setNull(int i, int sqlType, int ifxType) throws

 SQLException

IfmxPreparedStatement.setShort()

public void setShort(int i, short x, int ifxType) throws

SQLException

C-8 IBM Informix JDBC Driver Programmer’s Guide

IfmxPreparedStatement.setString()

public void setString(int i, String x, int ifxType) throws

 SQLException

IfmxPreparedStatement.setTime()

public void setTime(int i, Time x, int ifxType) throws

 SQLException

public void setTime(int parameterIndex, Time time, Calendar Cal,

 int ifxType) throws SQLException

IfmxPreparedStatement.setTimestamp()

public void setTimestamp(int i, Timestamp x, int ifxType) throws

 SQLException

public void setTimestamp(int parameterIndex, Timestamp x, Calendar

 Cal) throws SQLException

Using the IfxTypes Class

The extended IfmxPreparedStatement methods require you to pass in the Informix

data type to which you want to map. These types are part of the

com.informix.lang.IfxTypes class.

The following table shows the IfxTypes constants and the corresponding Informix

data types.

IfxTypes Constant Informix Data Type

IfxTypes.IFX_TYPE_BIGINT BIGINT

IfxTypes.IFX_TYPE_BIGSERIAL

BIGSERIAL

IfxTypes.IFX_TYPE_CHAR CHAR

IfxTypes.IFX_TYPE_SMALLINT

SMALLINT

IfxTypes.IFX_TYPE_INT INT

IfxTypes.IFX_TYPE_FLOAT FLOAT

IfxTypes.IFX_TYPE_SMFLOAT SMALLFLOAT

IfxTypes.IFX_TYPE_DECIMAL DECIMAL

IfxTypes.IFX_TYPE_SERIAL SERIAL

IfxTypes.IFX_TYPE_DATE DATE

IfxTypes.IFX_TYPE_MONEY MONEY

IfxTypes.IFX_TYPE_NULL NULL

IfxTypes.IFX_TYPE_DATETIME

DATETIME

IfxTypes.IFX_TYPE_BYTE BYTE

IfxTypes.IFX_TYPE_TEXT TEXT

IfxTypes.IFX_TYPE_VARCHAR

VARCHAR

IfxTypes.IFX_TYPE_INTERVAL

INTERVAL

IfxTypes.IFX_TYPE_NCHAR NCHAR

Appendix C. Mapping Data Types C-9

IfxTypes.IFX_TYPE_NVARCHAR

NVARCHAR

IfxTypes.IFX_TYPE_INT8 INT8

IfxTypes.IFX_TYPE_SERIAL8 SERIAL8

IfxTypes.IFX_TYPE_SET SQLSET

IfxTypes.IFX_TYPE_MULTISET

SQLMULTISET

IfxTypes.IFX_TYPE_LIST SQLLIST

IfxTypes.IFX_TYPE_ROW SQLROW

IfxTypes.IFX_TYPE_COLLECTION

COLLECTION

IfxTypes.IFX_TYPE_UDTVAR UDTVAR

IfxTypes.IFX_TYPE_UDTFIXED

UDTFIXED

IfxTypes.IFX_TYPE_REFSER8 REFSER8

IfxTypes.IFX_TYPE_LVARCHAR

LVARCHAR

IfxTypes.IFX_TYPE_SENDRECV

SENDRECV

IfxTypes.IFX_TYPE_BOOL BOOLEAN

IfxTypes.IFX_TYPE_IMPEXP IMPEXP

IfxTypes.IFX_TYPE_IMPEXPBIN

IMPEXPBIN

IfxTypes.IFX_TYPE_CLOB CLOB

IfxTypes.IFX_TYPE_BLOB BLOB

Extension Summary

The following table lists the PreparedStatement.setXXX() methods that Informix

JDBC Driver supports for nonextended data types. The top heading lists the

standard JDBC API data types defined in the java.sql.Types class. These translate

to specific Informix data types, as shown in the table in “Data Type Mapping

Between Extended Types and Java and JDBC Types” on page C-2. The table below

lists the setXXX() methods you can use to write data of a particular JDBC API data

type. An uppercase and bold X indicates the setXXX() method that it is

recommended you use with IBM Informix JDBC Driver; a lowercase x indicates

other setXXX()methods that IBM Informix JDBC Driver supports.

setXXX() Method

JDBC API Data Types from java.sql.Types

T
IN

Y
IN

T

S
M

A
L

L
IN

T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

FL
O

A
T

D
O

U
B

L
E

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

C
H

A
R

V
A

R
C

H
A

R

L
O

N
G

V
A

R
C

H
A

R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

L
O

N
G

V
A

R
B

IN
A

R
Y

D
A

T
E

T
IM

E

T
IM

E
S

TA
M

P

setByte() X x x x x x x x x x1 x1

setShort() x X x x x x x x x x1 x1

C-10 IBM Informix JDBC Driver Programmer’s Guide

setXXX() Method

JDBC API Data Types from java.sql.Types

T
IN

Y
IN

T

S
M

A
L

L
IN

T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

FL
O

A
T

D
O

U
B

L
E

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

C
H

A
R

V
A

R
C

H
A

R

L
O

N
G

V
A

R
C

H
A

R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

L
O

N
G

V
A

R
B

IN
A

R
Y

D
A

T
E

T
IM

E

T
IM

E
S

TA
M

P

setInt() x x X x x x x x x x1 x1

setLong() x x x X x x x x x x1 x1

setFloat() x x x x X x x x x x1 x1

setDouble() x x x x x X X x x x1 x1

setBigDecimal() x x x x x x x X X x x

setBoolean() x x x x x x x x x x x

setString() x x x x x x x x x X X x x x x x x x

setBytes() x X X x

setDate() x x X x

setTime() x x X x

setTimestamp() x x x X

setAsciiStream() X x x x

setCharacterStream() X x x x

setUnicodeStream()

setBinaryStream() x x x X

setObject() x x x x x x x x x x x x2 x x x2 x x3 x

Notes:1 The column value must match the type of setXXX() exactly, or an SQLException is raised. If the column value is not

within the allowed value range, the setXXX() method raises an exception instead of converting the data type. For example,

setByte(1) raises an SQLException if the value being written is 1000.

2 A byte array is written.3 A Timestamp object is written

instead of a Time object.

The setNull() method writes an SQL null value.

The following table lists the PreparedStatement.setXXX() methods that IBM

Informix JDBC Driver supports for the Informix extended data types, the

mappings for which are shown in the table “Data Type Mapping Between

Extended Types and Java and JDBC Types” on page C-2. The table lists the

setXXX() methods you can use to write data of a particular extended data type.

An uppercase and bold X indicates the recommended setXXX() method to use; a

lowercase x indicates other setXXX() methods supported by IBM Informix JDBC

Driver. The table does not include setXXX() methods that you cannot use with any

of the Informix extended data types.

Appendix C. Mapping Data Types C-11

setXXX() Method

Informix Extended Data Types

B
O

O
L

E
A

N

LV
A

R
C

H
A

R

O
p

aq
u

e
ty

p
es

B
L

O
B

C
L

O
B

B
Y

T
E

T
E

X
T

N
A

M
E

D

R

O
W

U
N

N
A

M
E

D

R

O
W

S
E

T

or

M

U
LT

IS
E

T

L
IS

T

setByte() x x

setShort() x

setInt() x

setBoolean() X

setString() X x x

setBytes() x x

setAsciiStream() x x X

setCharacterStream() x x X

setBinaryStream() x x X

setObject() x x X x x x x X X x x

setArray() x x

setBlob() X

setClob() X

The setNull() method writes an SQL null value.

Data Type Mapping for ResultSet.getXXX() Methods

Use the ResultSet.getXXX() methods to transfer data from an Informix database to

a Java program that uses the JDBC API to connect to an Informix database. For

example, use the ResultSet.getString() method to get the data stored in a column

of data type LVARCHAR.

Important: If you use an expression within an SQL statement—for example,

SELECT mytype::LVARCHAR FROM mytab—you might not be able to use

ResultSet.getXXX(columnName) to retrieve the value. Use

ResultSet.getXXX(columnIndex) to retrieve the value instead.

The following table lists the ResultSet.getXXX() methods that IBM Informix JDBC

Driver supports for nonextended data types. The top heading lists the standard

JDBC API data types defined in the java.sql.Types class. These translate to specific

Informix data types, as shown in the first table in “Data Type Mapping Between

Informix and JDBC Data Types” on page C-1. The table lists the getXXX() methods

you can use to retrieve data of a particular JDBC API data type.

An uppercase and bold X indicates the recommended getXXX() method to use; a

lowercase x indicates other getXXX() methods supported by IBM Informix JDBC

Driver.

C-12 IBM Informix JDBC Driver Programmer’s Guide

getXXX() Method

JDBC API Data Types from java.sql.Types

T
IN

Y
IN

T

S
M

A
L

L
IN

T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

FL
O

A
T

D
O

U
B

L
E

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

C
H

A
R

V
A

R
C

H
A

R

L
O

N
G

V
A

R
C

H
A

R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

L
O

N
G

V
A

R
B

IN
A

R
Y

D
A

T
E

T
IM

E

T
IM

E
S

TA
M

P

getByte() X x x x x x x x x x1 x1

getShort() x X x x x x x x x x1 x1

getInt() x x X x x x x x x x1 x1

getLong() x x x X x x x x x x1 x1

getFloat() x x x x X x x x x x1 x1

getDouble() x x x x x X X x x x1 x1

getBigDecimal() x x x x x x x X X x x

getBoolean() x x x x x x x x x x x

getString() x x x x x x x x x X X x x x x x x x

getBytes() x X X x

getDate() x x X x

getTime() x x X x

getTimestamp() x x x X

getAsciiStream() X x x x

getCharacterStream() X x x x

getUnicodeStream()

getBinaryStream() x x x X

getObject() x x x x x x x x x x x x2 x x x2 x x3 x

Notes:1 The column value must match the type of getXXX() exactly, or an SQLException is raised. If the column

value is not within the allowed value range, the getXXX() method raises an exception instead of converting the data

type. For example, getByte(1) raises an SQLException if the column value is 1000.2 A byte array is returned.3 A

Timestamp object is returned instead of a Time object.

The getXXX() methods return a null value if the retrieved column value is an SQL

null value.

The following table lists the ResultSet.getXXX() methods that IBM Informix JDBC

Driver supports for the Informix extended data types, the mappings for which are

shown in the table “Data Type Mapping Between Extended Types and Java and

JDBC Types” on page C-2. The table lists the getXXX() methods you can use to

retrieve data of a particular extended data type.

An uppercase and bold X indicates the recommended getXXX() method to use; a

lowercase x indicates other getXXX() methods supported by IBM Informix JDBC

Driver. The table does not include getXXX() methods that you cannot use with any

of the Informix extended data types.

Appendix C. Mapping Data Types C-13

getXXX() Method

Informix Extended Data Types

B
O

O
L

E
A

N

LV
A

R
C

H
A

R

O
p

aq
u

e
ty

p
es

B
L

O
B

C
L

O
B

B
Y

T
E

T
E

X
T

N
A

M
E

D

R

O
W

U
N

N
A

M
E

D

R

O
W

S
E

T

or

M

U
LT

IS
E

T

L
IS

T

getByte() x x

getShort() x

getInt() x

getBoolean() X

getString() X x x

getBytes() x x

getAsciiStream() x x X

getCharacterStream() x x X

getBinaryStream() x x X

getObject() x x X x x x x X X x x

getArray() x x

getBlob() X

getClob() X

The getXXX() methods return a null value if the retrieved column value is an SQL

null value.

Data Type Mapping for UDT Manager and UDR Manager

When you use the UDTManager and UDRManager classes to create opaque types

and Java UDRs in the database server, the driver maps Java method arguments

and return types to SQL data types according to the tables in this section. Any data

type not shown in these tables is not supported.

If the Java method has arguments of any of the following Java types, the

arguments and return type are mapped to SQL types in the server as shown in the

following table. The table shows the Informix data type to which each Java data

type maps.

Java Data Type SQL Data Type

boolean, java.lang.Boolean BOOLEAN

char CHAR(1)

byte CHAR(1)

short, java.lang.Short SMALLINT

int, java.lang.Integer INT

long, java.lang.Long INT8

float, java.lang.Float SMALLFLOAT

double, java.lang.Double FLOAT1

C-14 IBM Informix JDBC Driver Programmer’s Guide

java.lang.String LVARCHAR

java.math.BigDecimal DECIMAL

 Default precision is set by the server to be:

DECIMAL(16,0) for an ANSI database

decimal (16,255) for a non-ANSI database

java.sql.Date DATE

java.sql.Time DATETIME HOUR TO SECOND

java.sql.Timestamp DATETIME YEAR TO FRACTION(5)

com.informix.lang.IntervalYM INTERVAL YEAR TO MONTH

com.informix.lang.IntervalDF INTERVAL DAY TO FRACTION(5)

java.sql.Blob BLOB

java.sql.Clob CLOB

1 This mapping is JDBC compliant. You can map the Java double data type (via the

JDBC FLOAT data type) to the Informix SMALLFLOAT data type for backward

compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT environment variable

to 1.

Mapping for Casts

The following table shows the mapping supported between the type defined for

the ifxtype parameter in the UDTMetaData.setXXXCast() methods and SQL data

types in the server.

ifxtype Parameter Type from

com.informix.lang.IfxTypes Informix Data Type

IFX_TYPE_CHAR CHAR

IFX_TYPE_SMALLINT SMALLINT

IFX_TYPE_INT INT

IFX_TYPE_FLOAT FLOAT

IFX_TYPE_SMFLOAT SMALLFLOAT

IFX_TYPE_DECIMAL DECIMAL

IFX_TYPE_SERIAL SERIAL

IFX_TYPE_DATE DATE

IFX_TYPE_MONEY MONEY

IFX_TYPE_DATETIME DATETIME

IFX_TYPE_BYTE BYTE

IFX_TYPE_TEXT TEXT

IFX_TYPE_VARCHAR VARCHAR

IFX_TYPE_INTERVAL INTERVAL

IFX_TYPE_NCHAR NCHAR

IFX_TYPE_NVARCHAR NVARCHAR

IFX_TYPE_INT8 INT8

Appendix C. Mapping Data Types C-15

IFX_TYPE_SERIAL8 SERIAL8

IFX_TYPE_LVARCHAR LVARCHAR

IFX_TYPE_SENDRECV SENDRECV

IFX_TYPE_BOOL BOOLEAN

IFX_TYPE_IMPEXP IMPEXP

IFX_TYPE_IMPEXPBIN IMPEXPBIN

IFX_TYPE_CLOB CLOB

IFX_TYPE_BLOB BLOB

Mapping for Field Types

The following table shows the mapping supported between the types defined for

the ifxtype parameter in the UDTMetaData.setFieldType() method and the Java

data types as they appear in the Java class file. Data types not shown in this table

are not supported within the opaque type.

ifxtype Parameter Type from

com.informix.lang.IfxTypes Java Data Type

IFX_TYPE_BIGINT long

IFX_TYPE_BIGSERIAL long

IFX_TYPE_CHAR java.lang.String

IFX_TYPE_SMALLINT short

IFX_TYPE_INT int

IFX_TYPE_FLOAT double

IFX_TYPE_SMFLOAT float1

IFX_TYPE_DECIMAL java.lang.BigDecimal

IFX_TYPE_SERIAL int

IFX_TYPE_DATE Date

IFX_TYPE_MONEY java.lang.BigDecimal

IFX_TYPE_DATETIME java.lang.Timestamp if starting qualifier is Year,

Month, or Day; otherwise, java.lang.Time (see

“Field Lengths and Date-Time Data” on page

C-17).

IFX_TYPE_INTERVAL com.informix.lang.IfxIntervalYM if starting

qualifier is Year or Month; otherwise,

com.informix.lang.IfxIntervalDF (see “Field Lengths

and Date-Time Data” on page C-17).

IFX_TYPE_NCHAR java.lang.String

IFX_TYPE_INT8 long

IFX_TYPE_SERIAL8 long

IFX_TYPE_BOOL boolean

IFX_TYPE_CLOB java.sql.Clob

IFX_TYPE_BLOB java.sql.Blob

C-16 IBM Informix JDBC Driver Programmer’s Guide

1 This mapping is JDBC compliant. You can map IFX_TYPE_SMFLOAT data type

(via the JDBC FLOAT data type) to the Java double data type for backward

compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT environment variable

to 1.

Field Lengths and Date-Time Data

When you set a field type to a date-time or interval data type by calling

setFieldType(IFX_TYPE_DATETIME) or setFieldType(IFX_TYPE_INTERVAL), the

driver maps the date-time field to either java.sql.Timestamp or java.sql.Time,

depending on the encoded length you set by calling setFieldLength().

For example, given that the standard format for a date-time field is YYYY-MM-DD

HH:MM:SS, the driver uses the following mapping algorithm:

v If the encoded length has the start code from hour or less, it is mapped to

java.sql.Time.

v If the encoded length has the start code from year or less, it is mapped to

java.sql.TimeStamp.

For intervals, the standards are either YYYY-MM or DD HH:MM:SS.frac. The

mapping is as follows:

v If the encoded length has the start code from day or less, it is mapped to

com.informix.jdbc.IfxIntervalDF.

v If the encoded length has the start code from year or less, it is mapped to

com.informix.jdbc.IfxIntervalYM.

Appendix C. Mapping Data Types C-17

C-18 IBM Informix JDBC Driver Programmer’s Guide

Appendix D. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft Windows navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our publications are available in dotted decimal format. For more

information about the dotted decimal format, go to “Dotted Decimal Syntax

Diagrams.”

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

Dotted Decimal Syntax Diagrams

The syntax diagrams in our publications are available in dotted decimal format,

which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two

or more syntax elements are always present together (or always absent together),

the elements can appear on the same line, because they can be considered as a

single compound syntax element.

© Copyright IBM Corp. 1996, 2008 D-1

http://www.ibm.com/able

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To

hear these numbers correctly, make sure that your screen reader is set to read

punctuation. All syntax elements that have the same dotted decimal number (for

example, all syntax elements that have the number 3.1) are mutually exclusive

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can

include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a

syntax element with dotted decimal number 3 is followed by a series of syntax

elements with dotted decimal number 3.1, all the syntax elements numbered 3.1

are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add

information about the syntax elements. Occasionally, these words and symbols

might occur at the beginning of the element itself. For ease of identification, if the

word or symbol is a part of the syntax element, the word or symbol is preceded by

the backslash (\) character. The * symbol can be used next to a dotted decimal

number to indicate that the syntax element repeats. For example, syntax element

*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE

indicates that syntax element FILE repeats. Format 3* * FILE indicates that

syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax

elements, are shown in the syntax just before the items they separate. These

characters can appear on the same line as each item, or on a separate line with the

same dotted decimal number as the relevant items. The line can also show another

symbol that provides information about the syntax elements. For example, the lines

5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the

LASTRUN and DELETE syntax elements, the elements must be separated by a comma.

If no separator is given, assume that you use a blank to separate each syntax

element.

If a syntax element is preceded by the % symbol, this identifies a reference that is

defined elsewhere. The string following the % symbol is the name of a syntax

fragment rather than a literal. For example, the line 2.1 %OP1 means that you

should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed

by the ? symbol indicates that all the syntax elements with a

corresponding dotted decimal number, and any subordinate syntax

elements, are optional. If there is only one syntax element with a dotted

decimal number, the ? symbol is displayed on the same line as the syntax

element (for example, 5? NOTIFY). If there is more than one syntax element

with a dotted decimal number, the ? symbol is displayed on a line by

itself, followed by the syntax elements that are optional. For example, if

you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax

elements NOTIFY and UPDATE are optional; that is, you can choose one or

none of them. The ? symbol is equivalent to a bypass line in a railroad

diagram.

! Specifies a default syntax element. A dotted decimal number followed by

the ! symbol and a syntax element indicates that the syntax element is the

default option for all syntax elements that share the same dotted decimal

number. Only one of the syntax elements that share the same dotted

decimal number can specify a ! symbol. For example, if you hear the lines

D-2 IBM Informix JDBC Driver Programmer’s Guide

2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

default option for the FILE keyword. In this example, if you include the

FILE keyword but do not specify an option, default option KEEP is applied.

A default option also applies to the next higher dotted decimal number. In

this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1

(DELETE), the default option KEEP only applies to the next higher dotted

decimal number, 2.1 (which does not have an associated keyword), and

does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A

dotted decimal number followed by the * symbol indicates that this syntax

element can be used zero or more times; that is, it is optional and can be

repeated. For example, if you hear the line 5.1* data-area, you know that

you can include more than one data area or you can include none. If you

hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include

HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is

only one item with that dotted decimal number, you can repeat that

same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items

have that dotted decimal number, you can use more than one item

from the list, but you cannot use the items more than once each. In the

previous example, you could write HOST STATE, but you could not write

HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax

diagram.

+ Specifies a syntax element that must be included one or more times. A

dotted decimal number followed by the + symbol indicates that this syntax

element must be included one or more times. For example, if you hear the

line 6.1+ data-area, you must include at least one data area. If you hear

the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,

STATE, or both. As for the * symbol, you can only repeat a particular item if

it is the only item with that dotted decimal number. The + symbol, like the

* symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix D. Accessibility D-3

D-4 IBM Informix JDBC Driver Programmer’s Guide

Error Messages

-79700 Method not supported

Explanation: IBM Informix JDBC Driver does not

support this JDBC method.

-79702 Can’t create new object

Explanation: The software could not allocate memory

for a new String object.

-79703 Row/column index out of range

Explanation: The row or column index is out of range.

User response: Compare the index to the number of

rows and columns expected from the query to ensure

that it is within range.

-79704 Can’t load driver

Explanation: IBM Informix JDBC Driver could not

create an instance of itself and register it in the

DriverManager class. The rest of the SQLException

text describes what failed.

-79705 Incorrect URL format

Explanation: The database URL you have submitted is

invalid. IBM Informix JDBC Driver does not recognize

the syntax.

User response: Check the syntax and try again.

-79706 Incomplete input

Explanation: An invalid character was found during

conversion of a String value to an IntervalDF or

IntervalYM object.

User response: Check “INTERVAL Data Type” on

page 4-9 for correct values.

-79707 Invalid qualifier

Explanation: An error was found during construction

of an Interval qualifier from atomic elements: length,

start, or end values.

User response: Check the length, start, and end values

to verify that they are correct. See “INTERVAL Data

Type” on page 4-9 for correct values.

-79708 Can’t take null input

Explanation: The string you have provided is null.

IBM Informix JDBC Driver does not understand null

input in this case.

User response: Check the input string to ensure that it

has the proper value.

-79709 Error in date format

Explanation: The expected input is a valid date string

in the following format: yyyy-mm-dd.

User response: Check the date and verify that it has a

four-digit year, followed by a valid two-digit month

and two-digit day. The delimiter must be a hyphen (-

).

-79710 Syntax error in SQL escape clause

Explanation: Invalid syntax was passed to a jdbc

escape clause. Valid JDBC escape clause syntax is

demarcated by braces and a keyword: for example,

{keyword syntax}.

User response: Check the JDBC specification for a list

of valid escape clause keywords and syntax.

-79711 Error in time format

Explanation: An invalid time format was passed to a

JDBC escape clause. The escape clause syntax for time

literals has the following format: {t ’hh:mm:ss’}.

-79712 Error in timestamp format

Explanation: An invalid time stamp format was

passed to a JDBC escape clause. The escape clause

syntax for time stamp literals has the following format:

{ts ’yyyy-mm-dd hh:mm:ss.f...’}.

-79713 Incorrect number of arguments

Explanation: An incorrect number of arguments was

passed to the scalar function escape syntax. The correct

syntax is {fn function(arguments)}.

User response: Verify that the correct number of

arguments was passed to the function.

-79714 Type not supported

Explanation: You have specified a data type that is

not supported by IBM Informix JDBC Driver.

User response: Check your program to make sure the

data type used is among those supported by the driver.

-79715 Syntax error

Explanation: Invalid syntax was passed to a jdbc

escape clause. Valid JDBC escape clause syntax is

© Copyright IBM Corp. 1996, 2008 E-1

demarcated by braces and a keyword: {keyword syntax}.

User response: Check the JDBC specification for a list

of valid escape clause keywords and syntax.

-79716 System or internal error

Explanation: An operating or runtime system error or

a driver internal error occurred. The accompanying

message describes the problem.

-79717 Invalid qualifier length

Explanation: The length value for an Interval object is

incorrect.

User response: See “INTERVAL Data Type” on page

4-9 for correct values.

-79718 Invalid qualifier start code

Explanation: The start value for an Interval object is

incorrect.

User response: See “INTERVAL Data Type” on page

4-9 for correct values.

-79719 Invalid qualifier end code

Explanation: The end value for an Interval object is

incorrect.

User response: See “INTERVAL Data Type” on page

4-9 for correct values.

-79720 Invalid qualifier start or end code

Explanation: The start or end value for an Interval

object is incorrect.

User response: See “INTERVAL Data Type” on page

4-9 for correct values.

-79721 Invalid interval string

Explanation: An error occurred during conversion of a

String value to an IntervalDF or IntervalYM object.

Check “INTERVAL Data Type” on page 4-9 for the

correct format.

-79722 Numeric character(s) expected

Explanation: An error occurred during conversion of a

String value to an IntervalDF or IntervalYM object. A

numeric value was expected and not found. Check

“INTERVAL Data Type” on page 4-9 for the correct

format.

-79723 Delimiter character(s) expected

Explanation: An error occurred during conversion of a

String value to an IntervalDF or IntervalYM object. A

delimiter was expected and not found. Check the

“INTERVAL Data Type” on page 4-9 for the correct

format.

-79724 Character(s) expected

Explanation: An error occurred during conversion of a

String value to an IntervalDF or IntervalYM object.

End of string was encountered before conversion was

complete.

User response: Check “INTERVAL Data Type” on

page 4-9 for the correct format.

-79725 Extra character(s) found

Explanation: An error occurred during conversion of a

String value to an IntervalDF or IntervalYM object.

End of string was expected, but there were more

characters in the string.

User response: Check “INTERVAL Data Type” on

page 4-9 for the correct format.

-79726 Null SQL statement

Explanation: The SQL statement passed in was null.

User response: Check the SQL statement string of

your program to make sure it contains a valid

statement.

-79727 Statement was not prepared

Explanation: The SQL statement was not prepared

properly. If you use host variables (for example, insert

into mytab values (?, ?);) in your SQL statement,

you must use connection.prepareStatement() to

prepare the SQL statement before you can execute it.

-79728 Unknown object type

Explanation: If this is a null opaque type, the type is

unknown and cannot be processed. If this is a complex

type, the data in the collection or array is of an

unknown type and cannot be mapped to an Informix

type. If this is a row, one of the elements in the row

cannot be mapped to an Informix type. Verify the

customized type mapping or data type of the object.

-79729 Method cannot take argument

Explanation: The method does not take an argument.

Refer to your Java API specification or the appropriate

section of this guide to make sure you are using the

method properly.

E-2 IBM Informix JDBC Driver Programmer’s Guide

-79730 Connection not established

Explanation: A connection was not established.

User response: You must obtain the connection by

calling the DriverManager.getConnection() or

DataSource.getConnection() method first.

-79731 MaxRows out of range

Explanation: You have specified an out-of-range

maxRow value. Make sure you specify a value between

0 and Integer.MAX_VALUE.

-79732 Illegal cursor name

Explanation: The cursor name specified is not valid.

Make sure the string passed in is not null or empty.

-79733 No active result

Explanation: The statement does not contain an active

result. Check your program logic to make sure you

have called the executeXXX() method before you

attempt to refer to the result.

-79734 INFORMIXSERVER has to be specified

Explanation: INFORMIXSERVER is a property

required for connecting to an Informix database. You

can specify it in the database URL or as part of a

Properties object that is passed to the connect()

method.

-79735 Can’t instantiate protocol

Explanation: An internal error occurred during a

connection attempt. Call technical support.

-79736 No connection/statement establish yet

Explanation: There is no current connection or

statement.

User response: Check your program to make sure a

connection was properly established or a statement was

created.

-79737 No meta data

Explanation: There is no metadata available for this

SQL statement.

User response: Make sure the statement generates a

result set before you attempt to use it.

-79738 No such column name

Explanation: The column name specified does not

exist. Make sure the column name is correct.

-79739 No current row

Explanation: The cursor is not properly positioned.

You must first position the cursor within the result set

by using a method such as ResultSet.next(),

ResultSet.beforeFirst(), ResultSet.first(), or

ResultSet.absolute().

-79740 No statement created

Explanation: There is no current statement. Make sure

the statement was properly created.

-79741 Can’t convert to

Explanation: There is no data conversion possible

from the column data type to the one specified. The

actual data type is appended to the end of this

message.

User response: Review your program logic to make

sure that the conversion you have asked for is

supported. Refer to Appendix C for the data mapping

matrix.

-79742 Can’t convert from

Explanation: No data conversion is possible from the

data type you specified to the column data type. The

actual data type is appended to the end of this

message.

User response: Check your program logic to make

sure that the conversion you have asked for is

supported. Refer to Appendix C for the data mapping

matrix.

-79744 Transactions not supported

Explanation: The user has tried to call commit() or

rollback() on a database that does not support

transactions or has tried to set autoCommit to False on

a nonlogging database.

User response: Verify that the current database has

the correct logging mode and review the program logic.

-79745 Read only mode not supported

Explanation: Informix does not support read-only

mode.

-79746 No Transaction Isolation on non-logging

db’s

Explanation: Informix does not support setting the

transaction isolation level on nonlogging databases.

Error Messages E-3

-79747 Invalid transaction isolation level

Explanation: If the database server could not complete

the rollback, this error occurs. See the rest of the

SQLException message for more details about why the

rollback failed.

 This error also occurs if an invalid transaction level is

passed to setTransactionIsolation(). The valid values

are:

v TRANSACTION_READ_UNCOMMITTED

v TRANSACTION_READ_COMMITTED

v TRANSACTION_REPEATABLE_READ

v TRANSACTION_SERIALIZABLE

-79748 Can’t lock the connection

Explanation: IBM Informix JDBC Driver normally

locks the connection object just before beginning the

data exchange with the database server. The driver

could not obtain the lock. Only one thread at a time

should use the connection object.

-79749 Number of input values does not match

number of question marks

Explanation: The number of variables that you set

using the PreparedStatement.setXXX() methods in this

statement does not match the number of ? placeholders

that you wrote into the statement.

User response: Locate the text of the statement and

verify the number of placeholders and then check the

calls to PreparedStatement.setXXX().

-79750 Method only for queries

Explanation: The Statement.executeQuery(String) and

PreparedStatement.executeQuery() methods should

only be used if the statement is a SELECT statement.

For other statements, use the

Statement.execute(String), Statement.executeBatch(),

Statement.executeUpdate(String),

Statement.getUpdateCount(), Statement.getResultSet(),

or PreparedStatement.executeUpdate() method.

-79755 Object is null

Explanation: The object passed in is null. Check your

program logic to make sure your object reference is

valid.

-79756 Must start with ’jdbc’

Explanation: The first token of the database URL must

be the keyword jdbc (case insensitive), as in the

following example:

jdbc:informix-sqli://mymachine:1234/

 mydatabase:user=me:

 password=secret

-79757 Invalid subprotocol

Explanation: The current valid subprotocol is

informix-sqli.

-79758 Invalid IP address

Explanation: When you connect to an Informix

database server via an ip address, the ip address must

be valid. A valid ip address is a set of four numbers

between 0 and 255, separated by dots (.): for example,

127.0.0.1.

-79759 Invalid port number

Explanation: The port number must be a valid

four-digit number, as follows:

jdbc:informix-sqli://mymachine:1234/

 mydatabase:user=me:

 password=secret

In this example, 1234 is the port number.

-79760 Invalid database name

Explanation: This statement contains the name of a

database in some invalid format.

 The maximum length for database names and cursor

names depends on the version of the database server.

In 7.x, 8.x, and 9.1x versions of the Informix database

server, the maximum length is 18 characters.

 For IBM Informix SE, database names should be no

longer than 10 characters (fewer in some host operating

systems).

 Both database and cursor names must begin with a

letter and contain only letters, numbers, and underscore

characters. In the 6.0 and later versions of the database

server, database and cursor names can begin with an

underscore.

 In MS-DOS systems, filenames can be a maximum of

eight characters plus a three-character extension.

-79761 Invalid Property format

Explanation: The database URL accepts property

values in key=value pairs. For example,

user=informix:password=informix adds the key=value

pairs to the list of properties that are passed to the

connection object.

User response: Check the syntax of the key=value pair

for syntax errors. Make sure there is only one = sign;

that there are no spaces separating the key, value, or =;

and that key=value pairs are separated by one colon(:

), again with no spaces.

E-4 IBM Informix JDBC Driver Programmer’s Guide

-79762 Attempt to connect to a non 5.x server

Explanation: When connecting to a Version 5.x

database server, the user must set the database URL

property USE5SERVER to any non-null value. If a

connection is then made to a Version 6.0 or later

database server, this exception is thrown.

User response: Verify that the version of the database

server is correct and modify the database URL as

needed.

-79764 Invalid Fetch Direction value

Explanation: An invalid fetch direction was passed as

an argument to the Statement.setFetchDirection() or

ResultSet.setFetchDirection() method. Valid values are

FETCH_FORWARD, FETCH_REVERSE, and

FETCH_UNKNOWN.

-79765 ResultSet Type is

TYPE_FETCH_FORWARD, direction can

only be FETCH_FORWARD

Explanation: The result set type has been set to

TYPE_FORWARD_ONLY, but the setFetchDirection()

method has been called with a value other than

FETCH_FORWARD. The direction specified must be

consistent with the result type specified.

-79766 Incorrect Fetch Size value

Explanation: The Statement.setFetchSize() method

has been called with an invalid value. Verify that the

value passed in is greater than 0. If the setMaxRows()

method has been called, the fetch size must not exceed

that value.

-79767 ResultSet Type is

TYPE_FORWARD_ONLY

Explanation: A method such as

ResultSet.beforeFirst(), ResultSet.afterLast(),

ResultSet.first(), ResultSet.last(), ResultSet.absolute(),

ResultSet.relative(), ResultSet.current(), or

ResultSet.previous() has been called, but the result set

type is TYPE_FORWARD_ONLY. Call only the

ResultSet.next() method if the result set type is

TYPE_FORWARD_ONLY.

-79768 Incorrect row value

Explanation: The ResultSet.absolute(int) method has

been called with a value of 0. The parameter must be

greater than 0.

-79769 A customized type map is required for

this data type

Explanation: You must register a customized type

map to use any opaque types.

-79770 Cannot find the SQLTypeName

specified in the SQLData or Struct

Explanation: The SQLTypename object you specified

in the SQLData or Struct class does not exist in the

database. Make sure that the type name is valid.

-79771 Input value is not valid

Explanation: The input value is not accepted for this

data type. Make sure this is a valid input for this data

type.

-79772 No more data to read or write. Verify

your SQLData class or

getSQLTypeName()

Explanation: This error occurs when a Java

user-defined routine attempts to read or set a position

beyond the end of the opaque type data available from

a data input stream.

User response: Check the length and structure of the

opaque type carefully against the data-input UDR code.

The SQLTypeName object that was returned by the

getSQLTypeName() method might also be incorrect.

-79774 Unable to create local file

Explanation: Large object data read from the database

server can be stored either in memory or in a local file.

If the LOBCACHE value is 0 or the large object size is

greater than the LOBCACHE value, the large object

data from the database server is always stored in a file.

In this case, if a security exception occurs, IBM

Informix JDBC Driver makes no attempt to store the

large object into memory and throws this exception.

-79775 Only TYPE_SCROLL_INSENSITIVE

and TYPE_FORWARD_ONLY are

supported

Explanation: IBM Informix JDBC Driver only supports

a result set type of TYPE_SCROLL_INSENSITIVE and

TYPE_FORWARD_ONLY. Only these values should be

used.

-79776 Type requested (%s) does not match row

type information (%s) type

Explanation: Row type information was acquired

either through the system catalogs or through the

supplied row definition. The row data provided does

not match this row element type. The type information

must be modified, or the data must be provided.

Error Messages E-5

-79777 readObject/writeObject() only supports

UDTs, Distincts and complex types

Explanation: The SQLData.writeObject() method was

called for an object that is not a user-defined, distinct,

or complex type.

User response: Verify that you have provided

customized type-mapping information.

-79778 Type mapping class must be a

java.util.Collection implementation

Explanation: You provided a type mapping to

override the default for a set, list, or multiset data type,

but the class does not implement the

java.util.Collection interface.

-79780 Data within a collection must all be the

same Java class and length.

Explanation: Verify that all the objects in the collection

are of the same class.

-79781 Index/Count out of range

Explanation: Array.getArray() or Array.getResultSet()

was called with index and count values. Either the

index is out of range or the count is too big.

User response: Verify that the number of elements in

the array is sufficient for the index and count values.

-79782 Method can be called only once

Explanation: Make sure methods such as

Statement.getUpdateCount() and

Statement.getResultSet() are called only once per

result.

-79783 Encoding or code set not supported

Explanation: The encoding or code set entered in the

DB_LOCALE or CLIENT_LOCALE variable is not

valid.

User response: Check “Support for Code-Set

Conversion” on page 6-8 for valid code sets.

-79784 Locale not supported

Explanation: The locale entered in the DB_LOCALE

or CLIENT_LOCALE variable is not valid.

User response: Check “Support for Code-Set

Conversion” on page 6-8 for valid locales.

-79785 Unable to convert JDBC escape format

date string to localized date string

Explanation: The JDBC escape format for date values

must be specified in the format

{d ’yyyy-mm-dd’}. Verify that the JDBC escape date

format specified is correct.

User response: Verify the DBDATE and GL_DATE

settings for the correct date string format if either of

these was set to a value in the connection database

URL string or property list.

-79786 Unable to build a Date object based on

localized date string representation

Explanation: The localized date string representation

specified in a char, varchar, or lvarchar column is not

correct, and a date object cannot be built based on the

year, month, and day values.

User response: Verify that the date string

representation conforms to the DBDATE or GL_DATE

date formats if either one of these is specified in a

connection database URL string or property list. If

neither DBDATE or GL_DATE is specified but a

CLIENT_LOCALE or DB_LOCALE is explicitly set in a

connection database URL string or property list, verify

that the date string representation conforms to the JDK

short default format (DateFormat.SHORT).

-79788 User name must be specified

Explanation: The user name is required to establish a

connection with IBM Informix JDBC Driver.

User response: Make sure you pass in

user=your_user_name as part of the database URL or

one of the properties.

-79789 Server does not support GLS variables

DB_LOCALE, CLIENT_LOCALE or

GL_DATE

Explanation: These variables can only be used if the

database server supports GLS.

User response: Check the documentation for your

database server version and omit these variables if they

are not supported.

-79790 Invalid complex type definition string

Explanation: The value returned by the

getSQLTypeName() method is either null or invalid.

User response: Check the string to verify that it is

either a valid named-row name or a valid row type

definition.

E-6 IBM Informix JDBC Driver Programmer’s Guide

-79792 Row must contain data

Explanation: The Array.getAttributes() or

Array.getAttributes(Map) method has returned 0

elements. These methods must return a nonzero

number.

-79793 Data in array does not match

getBaseType() value

Explanation: The Array.getArray() or

Array.getArray(Map) method has returned an array

where the element type does not match the JDBC base

type.

-79794 Row length provided (%s) doesn’t match

row type information (%s)

Explanation: Data in the row does not match the

length in the row type information. You do not have to

pad string lengths to match what is in the row

definition, but lengths for other data types should

match.

-79795 Row extended id provided (%s) doesn’t

match row type information (%s)

Explanation: The extended ID of the object in the row

does not match the extended ID as defined in row type

information.

User response: Either update the row type

information (if you are providing the row definition) or

check the type mapping information.

-79796 Cannot find UDT, distinct or named row

(%s) in database

Explanation: The getSQLTypeName() method has

returned a name that can not be found in the database.

User response: Verify that the Struct or SQLData

object returns the correct information.

-79797 DBDATE setting must be at least 4

characters and no longer than 6

characters

Explanation: This error occurs because the DBDATE

format string that is passed to the database server

either has too few characters or too many.

User response: To fix the problem, verify the

DBDATE format string with the user documentation

and make sure that the correct year, month, day, and

possibly era parts of the DBDATE format string are

correctly identified.

-79798 A numerical year expansion is required

after ’Y’ character in DBDATE string

Explanation: This error occurs because the DBDATE

format string has a year designation (specified by the

character Y), but there is no character following the

year designation to denote the numerical year

expansion (2 or 4).

User response: To fix the problem, modify the

DBDATE format string to include the numerical year

expansion value after the Y character.

-79799 An invalid character is found in the

DBDATE string after the ’Y’ character

Explanation: This error occurs because the DBDATE

format string has a year designation (specified by the

character Y), but the character following the year

designation is not a 2 or 4 (for two-digit years and

four-digit years, respectively).

User response: To fix the problem, modify the

DBDATE format string to include the required

numerical year expansion value after the Y character.

Only a 2 or 4 character should immediately follow the

Y character designation.

-79800 No ’Y’ character is specified before the

numerical year expansion value

Explanation: This error occurs because the DBDATE

format string has a numerical year expansion (2 or 4 to

denote two-digit years or four-digit years, respectively),

but the year designation character (Y) was not found

immediately before the numerical year expansion

character specified.

User response: To fix the problem, modify the

DBDATE format string to include the required Y

character immediately before the numerical year

expansion value requested.

-79801 An invalid character is found in

DBDATE format string

Explanation: This error occurs because the DBDATE

format string has a character that is not allowed.

User response: To fix the problem, modify the

DBDATE format string to only include the correct date

part designations: year (Y), numerical year expansion

value (2 or 4), month (M), and day (D). Optionally, you

can include an era designation (E) and a default

separator character (hyphen, dot, or slash), which is

specified at the end of the DBDATE format string.

Refer to the user documentation for further information

on correct DBDATE format string character

designations.

Error Messages E-7

-79802 Not enough tokens are specified in the

string representation of a date value

Explanation: This error occurs because the date string

specified does not have the minimum number of

tokens or separators needed to form a valid date value

(composed of year, month, and day numerical parts).

For example, 12/15/98 is a valid date string

representation with the slash character as the separator

or token. But 12/1598 is not a valid date string

representation, because there are not enough separators

or tokens.

User response: To fix the problem, modify the date

string representation to include a valid format for

separating the day, month, and year parts of a date

value.

-79803 Date string index out of bounds during

date format parsing to build Date object

Explanation: This error occurs because there is not a

one-to-one correspondence between the date string

format required by DBDATE or GL_DATE and the

actual date string representation you defined. For

example, if GL_DATE is set to %b %D %y and you

specify a character string of Oct, there is a definite

mismatch between the format required by GL_DATE

and the actual date string.

User response: To fix the problem, modify the date

string representation of the DBDATE or GL_DATE

setting so that the date format specified matches

one-to-one with the required date string representation.

-79804 No more tokens are found in DBDATE

string representation of a date value

Explanation: This error occurs because the date string

specified does not have any more tokens or separators

needed to form a valid date value (composed of year,

month, and day numerical parts) based on the

DBDATE format string. For example, 12/15/98 is a

valid date string representation when DBDATE is set

to MDY2/. But 12/1598 is not a valid date string

representation, because there are not enough separators

or tokens.

User response: To fix the problem, modify the date

string representation to include a valid format for

separating the day, month, and year parts of a date

value based on the DBDATE format string setting.

-79805 No era designation found in

DBDATE/GL_DATE string

representation of date value

Explanation: This error occurs because the date string

specified does not have a valid era designation, as

required by the DBDATE or GL_DATE format string

setting. For example, if DBDATE is set to Y2MDE-, but

the date string representation specified by the user is

98-12-15, this is an error because there is no era

designation at the end of the date string value.

User response: To fix the problem, modify the date

string representation to include a valid era designation

based on the DBDATE or GL_DATE format string

setting. In this example, a date string representation of

98-12-15 AD would probably suffice, depending on the

locale.

-79806 Numerical day value can not be

determined from date string based on

DBDATE

Explanation: This error occurs because the date string

specified does not have a valid numerical day

designation as required by the DBDATE format string

setting. For example, if DBDATE is set to Y2MD-, but the

date string representation you specify is 98-12-blah,

this is an error, because blah is not a valid numerical

day representation.

User response: To fix the problem, modify the date

string representation to include a valid numerical day

designation (from 1 to 31) based on the DBDATE

format string setting.

-79807 Numerical month value can not be

determined from date string based on

DBDATE

Explanation: This error occurs because the date string

specified does not have a valid numerical month

designation as required by the DBDATE format string

setting. For example, if DBDATE is set to Y2MD-, but the

date string representation you specify is 98-blah-15,

this is an error, because blah is not a valid numerical

month representation.

User response: To fix the problem, modify the date

string representation to include a valid numerical

month designation (from 1 to 12) based on the

DBDATE format string setting.

-79808 Not enough tokens specified in %D

directive representation of date string

Explanation: This error occurs because the date string

specified does not have the correct number of tokens or

separators needed to form a valid date value based on

the GL_DATE %D directive (mm/dd/yy format). For

example, 12/15/98 is a valid date string representation

based on the GL_DATE %D directive, but 12/1598 is

not a valid date string representation, because there are

not enough separators or tokens.

User response: To fix the problem, modify the date

string representation to include a valid format for the

GL_DATE %D directive.

E-8 IBM Informix JDBC Driver Programmer’s Guide

-79809 Not enough tokens specified in %x

directive representation of date string

Explanation: This error occurs because the date string

specified does not have the correct number of tokens or

separators needed to form a valid date value based on

the GL_DATE %x directive (format required is based

on day, month, and year parts, and the ordering of

these parts is determined by the specified locale). For

example, 12/15/98 is a valid date string representation

based on the GL_DATE %x directive for the U.S.

English locale, but 12/1598 is not a valid date string

representation because there are not enough separators

or tokens.

User response: To fix the problem, modify the date

string representation to include a valid format for the

GL_DATE %x directive based on the locale.

-79811 Connection without user/password not

supported

Explanation: You called the getConnection() method

for the DataSource object, and the user name or the

password is null.

User response: Use the user name and password

arguments of the getConnection() method or set these

values in the DataSource object.

-79812 User/Password does not match with

datasource

Explanation: You called the getConnection(user,

passwd) method for the DataSource object, and the

values you supplied did not match the values already

found in the data source.

-79814 Blob/Clob object is either closed or

invalid

Explanation: If you retrieve a smart large object using

the ResultSet.getBlob() or ResultSet.getClob() method

or create one using the IfxBlob() or IfxCblob()

constructor, a smart large object is opened. You can

then read from or write to the smart large object. After

you execute the IfxBlob.close() method, do not use the

smart large object handle for further read/write

operations, or this exception is thrown.

-79815 Not in Insert mode. Need to call

moveToInsertRow() first

Explanation: You tried to use the insertRow() method,

but the mode is not set to Insert.

User response: Call the moveToInsertRow() method

before calling insertRow().

-79816 Cannot determine the table name

Explanation: The table name in the query is either

incorrect or refers to a table that does not exist.

-79817 No serial, rowid, or primary key

specified in the statement

Explanation: The updatable scrollable feature works

only for tables that have a SERIAL column, a primary

key, or a row ID specified in the query. If the table does

not have any of the above, an updatable scrollable

cursor cannot be created.

-79818 Statement concurrency type is not set to

CONCUR_UPDATABLE

Explanation: You tried to call the insertRow(),

updateRow(), or deleteRow() method for a statement

that has not been created with the

CONCUR_UPDATABLE concurrency type.

User response: Re-create the statement with this type

set for the concurrency attribute.

-79819 Still in Insert mode. Call

moveToCurrentRow() first

Explanation: You cannot call the updateRow() or

deleteRow() method while still in Insert mode. Call the

moveToCurrentRow() method first.

-79820 Function contains an output parameter

Explanation: You have passed in a statement that

contains an OUT parameter, but you have not used the

driver’s CallableStatement.registerOutParameter() and

getXXX() methods to process the OUT parameter.

-79821 Name unneccessary for this data type

Explanation: If you have a data type that requires a

name (an opaque type or complex type) you must call

a method that has a parameter for the name, such as

the following methods:

public void IfxSetNull(int i, int ifxType,

 String name)

public void registerOutParameter

 (int parameterIndex,

 int sqlType, java.lang.String name);

public void IfxRegisterOutParameter

 (int parameterIndex,

 int ifxType, java.lang.String name);

The data type you have specified does not require a

name.

User response: Use another method that does not

have a type parameter.

Error Messages E-9

-79822 OUT parameter has not been registered

Explanation: The function specified using the

CallableStatement interface has an OUT parameter that

has not been registered.

User response: Call one of the registerOutParameter()

or IfxRegisterOutParameter() methods to register the

OUT parameter type before calling the executeQuery()

method.

-79823 IN parameter has not been set

Explanation: The function specified using the

CallableStatement interface has an IN parameter that

has not been set.

User response: Call the setNull() or IfxSetNull()

method if you want to set a null IN parameter.

Otherwise, call one of the set methods inherited from

the PreparedStatement interface.

-79824 OUT parameter has not been set

Explanation: The function specified using the

CallableStatement interface has an OUT parameter that

has not been set.

User response: Call the setNull() or IfxSetNull()

method if you want to set a null OUT parameter.

Otherwise, call one of the set methods inherited from

the PreparedStatement interface.

-79825 Type name is required for this data type

Explanation: This data type is an opaque type, distinct

type, or complex type, and it requires a name.

User response: Use set methods for IN parameters

and register methods for OUT parameters that take a

type name as a parameter.

-79826 Ambiguous java.sql.Type, use

IfxRegisterOutParameter()

Explanation: The SQL type specified either has no

mapping to an Informix data type or has more than

one mapping.

User response: Use one of the

IfxRegisterOutParameter() methods to specify the

Informix data type.

-79827 Function doesn’t have an output

parameter

Explanation: This function does not have an OUT

parameter, or this function has an OUT parameter

whose value the server version does not return. None

of the methods in the CallableStatement interface

apply. Use the inherited methods from the

PreparedStatement interface.

-79828 Function parameter specified isn’t an

OUT parameter

Explanation: Informix functions can have only one

OUT parameter, and it is always the last parameter.

-79829 Invalid directive used for the GL_DATE

environment variable

Explanation: One or more of the directives specified

by the GL_DATE environment variable is not allowed.

Refer to “GL_DATE Variable” on page 6-3 for a list of

the valid directives for a GL_DATE format.

-79830 Insufficient information given for

building a Time or Timestamp Java

object.

Explanation: To perform string-to-binary conversions

correctly for building a java.sql.Timestamp or

java.sql.Time object, all the DATETIME fields must be

specified for the chosen date string representation. For

java.sql.Timestamp objects, the year, month, day, hour,

minute, and second parts must be specified in the

string representation. For java.sql.Time objects, the

hour, minute, and second parts must be specified in the

string representation.

-79831 Exceeded maximum no. of connections

configured for Connection Pool

Manager

Explanation: If you repeatedly connect to a database

using a DataSource object without closing the

connection, connections accumulate. When the total

number of connections for the DataSource object

exceeds the maximum limit (100), this error is thrown.

-79834 Distributed transactions (XA) are not

supported by this database server.

Explanation: This error occurs when the user calls the

method XAConnection.getConnection() against an XPS

server.

-79836 Proxy Error: No database connection

Explanation: This error is thrown by the Informix

HTTP Proxy if you try to communicate with the

database on an invalid or bad database connection.

User response: Make sure your application has

opened a connection to the database, check your Web

server and database error logs.

-79837 Proxy Error: Input/output error while

communicating with database

Explanation: This error is thrown by the Informix

HTTP Proxy if an error is detected while the proxy is

communicating with the database. This error can occur

E-10 IBM Informix JDBC Driver Programmer’s Guide

if your database server is not accessible.

User response: Make sure your database server is

accessible, check your database and Web server error

logs.

-79838 Cannot execute change permission

command (chmod/attrib).

Explanation: The driver is unable to change the

permissions on the client JAR file. This could happen if

your client platform does not support the chmod or

attrib command, or if the user running the JDBC

application does not have the authority to change

access permissions on the client JAR file.

User response: Make sure that the chmod or attrib

command is available for your platform and that the

user running the application has the authority to

change access permissions on the client JAR file.

-79839 Same Jar SQL name already exists in the

system catalog.

Explanation: The JAR filename specified when your

application called UDTManager.createJar() has already

been registered in the database server.

User response: Use

UDTMetaData.setJarFileSQLName() to specify a

different SQL name for the JAR file.

-79840 Unable to copy jar file from client to

server.

Explanation: This error occurs when the pathname set

using setJarTmpPath() is not writable by user informix

or the user specified in the JDBC connection.

User response: Make sure the pathname is readable

and writable by any user.

-79842 No UDR information was set in

UDRMetaData.

Explanation: Your application called the

UDRManager.createUDRs() method without specifying

any UDRs for the database server to register.

User response: Specify UDRs for the database server

to register by calling the UDRMetaData.setUDR()

method before calling the UDRManager.createUDRs()

method.

-79843 SQL name of the jar file was not set in

UDR/UDT MetaData.

Explanation: Your application called either the

UDTManager.createUDT() or the

UDRManager.createUDRs() method without specifying

an SQL name for the JAR file containing the opaque

types or UDRs for the database server to register.

User response: Specify an SQL name for a JAR file by

calling the UDTMetaData.setJarFileSQLName() or

UDRMetaData.setJarFileSQLName() method before

calling the UDTManager.createUDT() or

UDRManager.createUDRs() method.

-79844 Can’t create/remove UDT/UDR as no

database is specified in the connection.

Explanation: Your application created a connection

without specifying a database. The following example

establishes a connection and opens a database named

test:

url = "jdbc:informix-sqli:myhost:1533/test:"

+

"informixserver=myserver;user=rdtest;

 password=test";

conn = DriverManager.getConnection(url);

The following example establishes a connection with no

database open:

url = "jdbc:informix-sqli:myhost:1533:"

+

"informixserver=myserver;user=rdtest;

 password=test";

conn = DriverManager.getConnection(url);

User response: To resolve this problem, use the

following SQL statements after the connection is

established and before calling the createUDT() or

createUDRs() methods:

Statement stmt = conn.createStatement();

stmt.executeUpdate("create database test

 ...");

Alternatively, use the following code:

stmt.executeUpdate("database test");

-79845 JAR file on the client does not exist or

can’t be read.

Explanation: This error occurs for one of the following

reasons:

v You failed to create a client JAR file.

v You specified an incorrect pathname for the client

JAR file.

v The user running the JDBC application or the user

specified in the connection does not have permission

to open or read the client JAR file.

-79846 Invalid JAR file name.

Explanation: The client JAR file your application

specified as the second parameter to

UDTManager.createUDT() or

UDRManager.createUDRs() must end with the .jar

extension.

Error Messages E-11

-79847 The ’javac’ or ’jar’ command failed.

Explanation: The driver encountered compilation

errors in one of the following cases:

v Compiling .class files into .jar files, using the jar

command, in response to a createJar() command

from the JDBC application

v Compiling .java files into .class files and .jar files,

using the javac and jar commands, in response to a

UDTManager.createUDTClass() method call from

the JDBC application.

-79848 Same UDT SQL name already exists in

the system catalog.

Explanation: Your application called

UDTMetaData.setSQLName() and specified a name

that is already in the database server.

-79849 UDT SQL name was not set in

UDTMetaData.

Explanation: Your application failed to call

UDTMetaData.setSQLName() to specify an SQL name

for the opaque type.

-79850 UDT field count was not set in

UDTMetaData.

Explanation: Your application called

UDTManager.createUDTClass() without first

specifying the number of fields in the internal data

structure that defines the opaque type.

User response: Specify the number of fields by calling

UDTMetaData.setFieldCount().

-79851 UDT length was not set in

UDTMetaData.

Explanation: Your application called

UDTManager.createUDTClass() without first

specifying a length for the opaque type.

User response: Specify the total length for the opaque

type by calling UDTMetaData.setLength().

-79852 UDT field name or field type was not

set in UDTMetaData.

Explanation: Your application called

UDTManager.createUDTClass() without first

specifying a field name and data type for each field in

the data structure that defines the opaque type.

User response: Specify the field name by calling

UDTMetaData.setFieldName(); specify a data type by

calling UDTMetaData.setFieldType().

-79853 No class files to be put into the jar.

Explanation: Your application called the createJar()

method and passed a zero-length string for the

classnames parameter. The method signature is as

follows:

createJar(UDTMetaData mdata, String[]

 classnames)

-79854 UDT java class must implement

java.sql.SQLData interface.

Explanation: Your application called

UDTManager.createUDT() to create an opaque type

whose class definition does not implement the

java.sql.SQLData interface. UDTManager cannot create

an opaque type from a class that does not implement

this interface.

-79855 Specified UDT java class is not found.

Explanation: Your application called the

UDTManager.createUDT() method but the driver could

not find a class with the name you specified for the

third parameter.

-79856 Specified UDT does not exists in the

database.

Explanation: Your application called

UDTManager.removeUDT(String sqlname) to remove

an opaque type named sqlname from the database, but

the opaque type with that name does not exist in the

database.

-79857 Invalid support function type.

Explanation: This error occurs only if your application

called the UDTMetaData.setSupportUDR() method

and passed an integer other than 0 through 7 for the

type parameter.

User response: Use the constants defined for the

support UDR types. For more information, see “Using

setSupportUDR() and setUDR()” on page 5-16.

-79858 The command to remove file on the

client failed.

Explanation: If UDTMetaData.keepJavaFile() is not

called or is set to FALSE, the driver removes the

generated .java file when the

UDTManager.createUDTClass() method executes. This

error results if the driver was unable to remove the

.java file.

E-12 IBM Informix JDBC Driver Programmer’s Guide

-79859 Invalid UDT field number.

Explanation: Your application called a

UDTMetaData.setXXX() or UDTMetaData.getXXX()

method and specified a field number that was less than

0 or greater than the value set through the

UDTMetaData.setFieldCount() method.

-79860 Ambiguous java type(s) - can’t use

Object/SQLData as method argument(s).

Explanation: One or more parameters of the method

to be registered as a UDR is of type java.lang.Object or

java.sql.SQLData. These Java data types can be

mapped to more than one Informix data type, so the

driver is unable to choose a type.

User response: Avoid using java.lang.Object or

java.sql.SQLData as method arguments.

-79861 Specified UDT field type has no Java

type match.

Explanation: Your application called

UDTMetaData.setFieldType() and specified a data

type that has no 100 percent match in Java. The

following data types are in this category:

IfxTypes.IFX_TYPE_BYTE

IfxTypes.IFX_TYPE_TEXT

IfxTypes.IFX_TYPE_VARCHAR

IfxTypes.IFX_TYPE_NVARCHAR

IfxTypes.IFX_TYPE_LVARCHAR

User response: Use IFX_TYPE_CHAR or

IFX_TYPE_NCHAR instead; these data types map to

java.lang.String.

-79862 Invalid UDT field type.

Explanation: Your application called

UDTMetaData.setFieldType() and specified an

unsupported data type for the opaque type. For

supported data types, see “Mapping for Field Types”

on page C-16.

-79863 UDT field length was not set in

UDTMetaData.

Explanation: Your application specified a field of

character, date-time, or interval type by calling

UDTMetaData.setFieldType(), but failed to specify a

field length. Call UDTMetaData.setFieldLength() to set

a field length.

-79864 Statement length exceeds the maximum

Explanation: Your application issued an SQL

PREPARE, DECLARE, or EXECUTE IMMEDIATE

statement that is longer than the database server can

handle. The limit differs with different

implementations, but in most cases is up to 32,000

characters.

User response: Review the program logic to ensure

that an error has not caused your application to present

a string that is longer than intended. If the text has the

intended length, revise the application to present fewer

statements at a time.

 This is the same as error -460 returned by the database

server.

-79865 Statement already closed

Explanation: This error occurs when an application

attempts to access a statement method after the

stmt.close() method.

-79868 ResultSet not open, operation not

permitted

Explanation: This error occurs when an application

attempts to access a ResultSet method after the

ResultSet.close() method.

-79877 Invalid parameter value for setting

maximum field size to a value less than

zero

Explanation: This error occurs when an application

attempts to set the maximum field size to a value less

than zero.

-79878 ResultSet not open, operation next not

permitted. Verify that autocommit is

OFF

Explanation: This error occurs when an application

attempts to access the ResultSet.next() method without

executing a result set query.

-79879 An unexpected exception was thrown.

See next exception for details

Explanation: This error occurs when a non-SQL

exception occurs; for example, an IO exception.

-79880 Unable to set JDK Version for the

Driver.

Explanation: This error occurs when the driver cannot

obtain the JDK version from the Java virtual machine.

-79881 Already in local transaction, so cannot

start XA transaction.

Explanation: This error occurs when the application

attempts to start an XA transaction while a local

transaction is still in progress.

Error Messages E-13

E-14 IBM Informix JDBC Driver Programmer’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 F-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

F-2 IBM Informix JDBC Driver Programmer’s Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices F-3

http://www.ibm.com/legal/copytrade.shtml

F-4 IBM Informix JDBC Driver Programmer’s Guide

Index

Special characters
.java file, retaining 5-13

(!) exclamation point
in installation path 1-7

Numerics
5.x database servers 2-15

A
absolute() method 3-5, E-3, E-5

accessibility D-1

keyboard D-1

shortcut keys D-1

Accessibility
dotted decimal format of syntax diagrams D-1

syntax diagrams, reading in a screen reader D-1

Accessing a database remotely 2-22

activateHDRPool_Primary() method 7-7

activateHDRPool_Secondary() method 7-7

addBatch() method 3-19

addProp() method B-1

afterLast() method E-5

Alignment values 5-13

Anonymous search of sqlhosts information 2-16

APPLET tag 1-9

Applets
and database access 2-22

unsigned, features unavailable for 1-10

using IBM Informix JDBC Driver in 1-9, 2-3

ARCHIVE attribute of APPLET tag 1-9

Array class 4-17

ArrayList class 4-14

Arrays 4-14, 4-16

Autocommit transaction mode 3-21

autofree.java example program 7-4, A-1

Automatically freeing the cursor 3-25, 7-4

B
Batch updates to the database 3-6

BatchUpdate.java example program 3-6, A-2

BatchUpdateException interface 3-6

beforeFirst() method E-3, E-5

BEGIN WORK statement 4-50

BIG_FET_BUF_SIZE environment variable 2-11, 7-1

BIGINT
data type 4-8

BIGSERIAL
data type 4-8

Binary qualifiers for INTERVAL data types 4-9

BLOB and CLOB data types, accessing 4-28

BLOB and CLOB example programs A-4

BLOB data type
caching 4-5, 4-50, 7-2

code set conversion for 6-13

definition of 4-35

BLOB data type (continued)
examples of

creation 4-50

data retrieval 4-52

extensions for 4-27

format of 4-35

BOOLEAN data type C-3

Browsers 1-9

Bulk inserts 3-6

BulkInsert.java example program 3-7

BYTE and TEXT example programs A-4

Byte array, converting to hexadecimal 4-38

BYTE data type
caching 7-2

code set conversion for 6-13

examples for
data inserts and updates 4-5

data retrieval 4-6

extensions for 4-4

ByteType.java example program 4-5, 4-6, A-2

C
Caching large objects 7-2

Caching type information 4-27, 5-4

CallableStatement
named parameters 3-13

with overloaded stored procedures 3-16

CallableStatement interface 3-2, 3-7, E-10

CallOut1.java example program A-2

CallOut2.java example program A-2

CallOut3.java example program A-2

CallOut4.java example program A-2

Catalogs
IBM Informix JDBC Driver interpretation 3-25

systables 3-25, 6-8

charattrUDT.java example program A-4

Class name 5-13

Classes
Array 4-17

ArrayList 4-14

extensibleObject 2-16

HashSet 4-14

helper 1-4

IfmxStatement 3-25

IfxBblob 4-35

IfxCblob 4-35

IfxConnectionEventListener 1-3

IfxConnectionPoolDataSource 1-3, B-1

IfxCoreDataSource 1-2

IfxDataSource 1-3, B-1

IfxDriver 2-2

IfxJDBCProxy 2-23

IfxLobDescriptor 4-31

IfxLocator 4-39

IfxPooledConnection 1-3

IfxTypes C-6, C-9

IfxUDTManager 5-6

IfxUDTMetaData 5-6

IfxXADataSource 1-3

Interval 4-9

© Copyright IBM Corp. 1996, 2008 X-1

Classes (continued)
IntervalDF 4-12

IntervalYM 4-10

Java.Socket 2-18

Locales 6-2

Message 3-23

Properties 2-10

ResultSet 6-4, 6-6

SessionMgr 2-23

SQLException 3-22, 3-23, C-11, C-13

SqlhDelete 2-18

SqlhUpload 2-18

TimeoutMgr 2-23

TreeSet 4-15

UDRManager 5-6

UDRMetaData 5-6

Version 3-26

Classes implemented 1-2

beyond Java specification 1-4

extending Java specification 1-3

Java interfaces 1-2

ClassGenerator utility 1-5, 4-25, A-8

CLASSPATH environment variable 1-8, 3-27, 4-25

Cleaning connections 7-8

CLIENT_LOCALE environment variable 6-2, 6-8

CLOB data type
caching 4-5, 4-50, 7-2

code set conversion 6-11

code set conversion for 6-11

definition of 4-34

examples of
creation 4-50

data retrieval 4-52

extensions for 4-27

format of 4-35

Clob::setAsciiStream(long position, InputStream fin, int length)

method 6-12

close() method 2-12, 2-14, 3-4, 7-3

Code sets
conversion of 6-8, 6-11

converting TEXT data types 6-11

synchronizing with locales 6-2

table of 6-9

user-defined 6-13

codeset conversion 6-12

Collection data types
examples of

using the array interface 4-16

using the collection interface 4-14

extensions for 4-14

in named and unnamed rows 4-18

Collection interface 4-14

com.informix.jdbc.Message class 3-25

COMMIT WORK statement 4-50

commit() method 3-21

Concurrency and multiple threads 3-4

connect() method E-3

Connection interface 3-2, 3-21

Connection pool 7-4

cleaning connections 7-8

demo program 7-6

example programs A-7

properties for B-5

Sun JDBC 3.0 properties 7-6

tuning parameters 7-5

using 7-4

with HDR 7-7

Connection Pool Manager 7-5

properties B-5

Connection pooling 1-2, 2-2, 2-4, B-1

Connection properties
DATABASE 2-3

IFXHOST 2-3

INFORMIXSERVER 2-3

PASSWORD 2-4, 2-8

PORTNO 2-3

USER 2-4, 2-7

Connection.close() method 2-33

ConnectionEventListener interface 1-3

ConnectionPoolDataSource B-5

ConnectionPoolDataSource interface 1-3

ConnectionPoolDataSource object 7-4

Connections
cleaning 7-8

creating using a DataSource object 2-3

creating using DriverManager. getConnection() 2-5

to a database with non-ASCII characters 6-10

Constructors
IfxBblob() 4-35

IfxCblob() 4-35

IfxLobDescriptor() 4-31

IfxLocator() 4-31

IntervalDF() 4-12

IntervalYM() 4-10

Converting
decimal notation 6-2

IfxLocator to hexadecimal 4-38

CORBA 2-26

Create opaque type from existing code 5-15

createJar() method 5-14

createTypes.java example program A-4

createUDRs() method 5-18

createUDT() method 5-14

createUDTClass() method 5-14

Creating opaque type without preexisting class 5-11

Creating smart large objects 4-30

Cryptology options 2-26

CSM environment variable 2-11

current() method E-5

Cursors
automatically freeing 2-12, 3-25, 7-4

hold 3-5

scroll 3-4

D
Data integrity 4-46

Data types
BLOB 7-2

BOOLEAN C-3

BYTE 4-4, 7-2

CLOB 7-2

collection 4-14

DataBlade API 5-4

distinct 4-2

INTERVAL 4-9

LVARCHAR C-3, C-12

mapping
for CallableStatement parameters 3-11

opaque data types 5-4

named row 4-17

opaque 5-2

and transactions 5-20

SERIAL 4-7

X-2 IBM Informix JDBC Driver Programmer’s Guide

Data types (continued)
SERIAL8 4-7

TEXT 4-4, 7-2

unnamed row 4-17

DATABASE environment variable 2-3, 2-7

database local codeset 6-12

Database Locale information mismatch 6-9

Database server name
setting in database URLs 2-7

setting in DataSource objects 2-3

DatabaseMetaData interface 3-24, 3-26

DatabaseMetaData methods 3-24

DatabaseMetaData.supportsNamedParameters() method 3-13

Databases
batch updates of 3-6

names of, setting
in database URLs 2-7

in DataSource objects 2-3

querying 3-2

remote access options 2-22

specifying the locale of 6-2

URL 2-5, 2-6

with non-ASCII characters 6-10

DataBlade API data types 5-4

DataSource interface
example of A-1

extensions of B-1

Informix classes supporting 1-3

standard properties 2-3, B-2

Dates
DBDATE formats of 6-5

formatting directives for 6-3

four-digit year expansion 6-7

GL_DATE formats of 6-3

inserting values 6-4, 6-6

native SQL formats of 6-4, 6-6

nonnative SQL formats of 6-4, 6-6

precedence rules for end-user formats 6-8

represented by strings 6-4

retrieving values 6-4, 6-6

string-to-date conversion 6-7

support for end-user formats 6-3

DB_LOCALE environment variable 6-2, 6-8

DBANSIWARN environment variable 2-11

DBCENTURY environment variable 6-2, 6-7

DBCENTURYSelect.java example program 6-8, A-2

DBCENTURYSelect2.java example program 6-8, A-2

DBCENTURYSelect3.java example program 6-8, A-2

DBCENTURYSelect4.java example program 6-8, A-2

DBCENTURYSelect5.java example program 6-8, A-2

DBConnection.java example program 2-9, A-3

DBDATE environment variable 6-2, 6-5, 6-8

DBDATESelect.java example program A-3

DBMetaData.java example program A-3

DBSPACETEMP environment variable 2-11

DBTEMP environment variable 2-11

DBUPSPACE environment variable 2-11

Deallocating resources 3-4

Debugging 7-1

Decimal conversion 6-2

deleteRow() method 3-5, E-9

deletesAreDetected() method 3-20

DELIMIDENT environment variable 2-11

Deploy parameter 5-15

Deployment descriptor 5-15

DESCRIBE INPUT statement 3-17

Directives, formatting, for dates 6-3

Disabilities, visual
reading syntax diagrams D-1

disability D-1

dispValue() method 4-7

Distinct data types
caching type information 4-27, 5-4

examples for
inserting data 4-2

retrieving data 4-3

extensions for 4-2

unsupported methods for 4-4

distinct_d1.java example program A-4

distinct_d2.java example program A-4

Distributed transactions 1-2, 2-2, 2-4, 3-21

DOM (Document Object Model) 3-26

Dotted decimal format of syntax diagrams D-1

Driver interface 3-26

Driver restrictions, limitations 3-10

DriverManager interface 1-2, 2-3, 2-5, 2-10

Dynamic SQL 3-17

E
ENABLE_CACHE_TYPE environment variable 2-11, 4-27, 5-5

ENABLE_HDRSWITCH environment variable 2-11, 2-19

End-user formats for dates
precedence rules for 6-8

support for 6-3

Environment variables
BIG_FET_BUF_SIZE 2-11

CLASSPATH 1-8, 3-27, 4-25

CLIENT_LOCALE 6-2, 6-8

CSM 2-11

DATABASE 2-3, 2-7

DB_LOCALE 6-2, 6-8

DBANSIWARN 2-11

DBCENTURY 6-2, 6-7

DBDATE 6-2, 6-5, 6-8

DBSPACETEMP 2-11

DBTEMP 2-11

DBUPSPACE 2-11

DELIMIDENT 2-11

ENABLE_CACHE_TYPE 2-11, 4-27, 5-5

ENABLE_HDRSWITCH 2-11, 2-19

FET_BUF_SIZE 2-11, 7-2, A-3

GL_DATE 6-2, 6-3, 6-8

IFMX_CPM_AGELIMIT 7-6

IFMX_CPM_ENABLE_SWITCH_HDRPOOL 7-6

IFMX_CPM_INIT_POOLSIZE 7-5

IFMX_CPM_MAX_CONNECTIONS 7-5

IFMX_CPM_MAX_POOLSIZE 7-6

IFMX_CPM_MIN_AGELIMIT 7-6

IFMX_CPM_MIN_POOLSIZE 7-5

IFMX_CPM_SERVICE_INTERVAL 7-6

IFX_AUTOFREE 2-12, 7-3, A-1

IFX_BATCHUPDATE_PER_SPEC 2-12, 3-6

IFX_CODESETLOB 2-12, 6-11, 6-12

IFX_DIRECTIVES 2-12

IFX_EXTDIRECTIVES 2-12

IFX_FLAT_UCSQ 2-13

IFX_GET_SMFLOAT_AS_FLOAT 2-12

IFX_PAD_VARCHAR 2-13

IFX_SET_FLOAT_AS_SMFLOAT 2-13

IFX_TRIMTRAILINGSPACES 2-13

IFX_USEPUT 2-13, 3-6

IFX_XASPEC 2-13

IFX_XASTDCOMPLIANCE_XAEND 2-13

Index X-3

Environment variables (continued)
IFXHOST 2-3, 2-7, 2-13

IFXHOST_SECONDARY 2-14, 2-19

INFORMIXCONRETRY 2-14

INFORMIXCONTIME 2-14

INFORMIXOPCACHE 2-14

INFORMIXSERVER 2-3, 2-7, 2-9, 2-14

INFORMIXSERVER_SECONDARY 2-14, 2-19

INFORMIXSTACKSIZE 2-14

JDBCTEMP 2-14

LOBCACHE 2-14, 4-5, 4-50, 7-2

NEWCODESET 6-2, 6-13

NEWLOCALE 6-2, 6-13

NEWNLSMAP 2-14, 6-14

NODEFDAC 2-14

OPT_GOAL 2-14

OPTCOMPIND 2-14

OPTOFC 2-14, 7-3, A-3

PATH 2-15

PDQPRIORITY 2-15

PLCONFIG 2-15

PLOAD_LO_PATH 2-15

PORTNO 2-3, 2-7

PORTNO_SECONDARY 2-15, 2-19

PROXY 2-15

PSORT_DBTEMP 2-15

PSORT_NPROCS 2-15

SECURITY 2-15

specifying 2-8, 2-10

SQLH_TYPE 2-15

SQLIDEBUG 2-15

STMT_CACHE 2-15

supported 6-2

USEV5SERVER 2-15

equals() method 4-11, 4-13

Error messages
localization of 6-14

RSAM 3-23

SQLCODE 3-23

standard Informix E-1

ErrorHandling.java example program 3-23, A-3

Errors
handling 3-22

retrieving message text 3-23

retrieving syntax error offset 3-23

SQLException class, using 3-22

Escape syntax 3-18

Example programs
connection pool A-7

HDR A-7

proxy server A-6

XML documents A-7

Examples
autofree.java 7-4, A-1

BatchUpdate.java 3-6, A-2

BLOB and CLOB A-4

BLOB and CLOB data types
creation 4-50

data retrieval 4-52

BulkInsert.java 3-7

BYTE and TEXT A-4

BYTE and TEXT data types 4-5, 4-6

ByteType.java 4-5, 4-6, A-2

CallOut1.java A-2

CallOut2.java A-2

CallOut3.java A-2

CallOut4.java A-2

Examples (continued)
charattrUDT.java A-4

collection data types
using the array interface 4-16

using the collection interface 4-14

createTypes.java A-4

DataSource A-1

DBCENTURYSelect.java 6-8, A-2

DBCENTURYSelect2.java 6-8, A-2

DBCENTURYSelect3.java 6-8, A-2

DBCENTURYSelect4.java 6-8, A-2

DBCENTURYSelect5.java 6-8, A-2

DBConnection.java 2-9, A-3

DBDATESelect.java A-3

DBMetaData.java A-3

distinct data types
inserting data 4-2

retrieving data 4-3

distinct_d1.java A-4

distinct_d2.java A-4

ErrorHandling.java 3-23, A-3

GenericStruct.java A-5

GLDATESelect.java A-3

Intervaldemo.java 4-14, A-3

largebinUDT.java A-5

list1.java A-5

list2.java A-5

LOCALESelect.java A-3

locmsg.java 6-15, A-3

manualUDT.java A-5

MultiRowCall.java A-3

myMoney.java A-5

named and unnamed rows
creating a Struct class for 4-24

using the SQLData interface for a named row 4-19

using the Struct interface 4-22

named row A-5

opaque data types
defining a class for 5-21

large objects 5-23

retrieving data 5-23

OptimizedSelect.java A-3

optofc.java 2-10, 7-4, A-3

OUT parameter 3-8

PropertyConnection.java A-3

row3.java A-5

RSMetaData.java A-3

ScrollCursor.java 3-5, A-3

Serial.java A-3

SimpleCall.java A-3

SimpleConnection.java A-3

SimpleSelect.java A-3

smart large object A-4

TextConv.java A-3

TextType.java 4-6, 4-7, A-3

UDR Manager A-8

UDT Manager A-8

udt_d1.java A-5

udt_d2.java A-5

udt_d3.java A-5

UpdateCursor1.java 3-5, A-4

UpdateCursor2.java 3-5, A-4

UpdateCursor3.java 3-5, A-4

user-defined routines 5-35

XML documents 3-30

Exclamation point (!)
in installation path 1-7

X-4 IBM Informix JDBC Driver Programmer’s Guide

execute() method 3-3, 3-19, 3-20, E-4

executeBatch() method E-4

executeQuery() method 3-2, 3-10, 3-11, 3-25

executeUpdate() method 2-9, 4-6, E-4

executeXXX() method E-3

extensibleObject class 2-16

F
Federal Information Processing Standards compliance 2-27

FET_BUF_SIZE environment variable 2-11, 7-1, 7-2, A-3

File interface 4-6

FileInputStream interface 4-6

Files
SessionMgr.class 2-23

FilesTimeoutMgr.class 2-23

FIPS compliance 2-27

first() method E-3, E-5

Formatting directives for dates 6-3

forName() method 2-2

Freeing cursors 2-12

fromHexString() method 4-39

fromString() method 4-12, 4-13

G
GenericStruct.java example program A-5

getAlignment() method 5-20

getArray() method 4-14, 4-17, E-7

getAsciiStream() method 4-6, 4-7, 4-34

getAttributes() method 4-23, E-7

getAutoAlignment() method 5-3

getAutoFree() method 3-25, 7-4

getBigSerial() method 4-8

getBinaryStream() method 4-6, 4-7, 4-34

getBlob() method 4-34, 4-52, E-9

getBytes() method 4-34, 6-11, 6-12

getCatalogName() method 3-20

getCatalogs() method 3-25

getClassName() method 5-20

getClob() method 4-34, 4-52, E-9

getConnection() method 2-5, 2-9, 2-10, E-3

getCurrentPosition() method 5-3

getDatabaseName() method B-2

getDataSourceName() method B-2

getDate() method 6-7

getDescription() method B-2

getDriverMajorVersion() method 3-26

getDriverMinorVersion() method 3-26

getDsProperties() method B-1

getEndCode() method 4-10

getErrorCode() method 3-22

getFetchSize() method 3-20

getFieldCount() method 5-19

getFieldLength() method 5-20

getFieldName method 5-19

getFieldName() method 4-10

getFieldTypeName() method 5-20

getHDRtype() method 2-20

getIfxCLIENT_LOCALE() method B-2

getIfxCPMInitPoolSize() method B-6

getIfxCPMMaxAgeLimit() method B-6

getIfxCPMMaxConnections() method B-6

getIfxCPMMaxPoolSize() method B-6

getIfxCPMMinAgeLimit() method B-6

getIfxCPMMinPoolSize() method B-6

getIfxCPMServiceInterval() method B-6

getIfxCPMSwitchHDRPool() method B-6

getIfxCSM() method B-2

getIfxDB_LOCALE() method B-3

getIfxDBCENTURY() method B-3

getIfxDBDATE() method B-3

getIfxDBSPACETEMP() method B-3

getIfxDBTEMP() method B-3

getIfxDBUPSPACE() method B-3

getIfxFET_BUF_SIZE() method B-3

getIfxGL_DATE() method B-3

getIfxIFX_CODESETLOB() method B-3

getIfxIFX_DIRECTIVES() method B-3

getIfxIFX_EXTDIRECTIVES() method B-3

getIfxIFX_FLAT_UCSQ() method B-3

getIfxIFX_IFX_GET_SMFLOAT_AS_FLOAT() method B-3

getIfxIFX_ISOLATION_LEVEL() method B-3

getIfxIFX_LOCK_MODE_WAIT() B-3

getIfxIFX_LOCK_MODE_WAIT() method B-3

getIfxIFX_SET_FLOAT_AS_SMFLOAT() method B-3

getIfxIFX_TRIMTRAILINGSPACES() method B-3

getIfxIFX_XASPEC() method B-4

getIfxIFXHOST_SECONDARY() method B-3

getIfxIFXHOST() method B-3

getIfxINFORMIXCONRETRY() method B-4

getIfxINFORMIXCONTIME() method B-4

getIfxINFORMIXOPCACHE() method B-4

getIfxINFORMIXSERVER_SECONDARY() method B-4

getIfxINFORMIXSTACKSIZE() method B-4

getIfxJDBCTEMP() method B-4

getIfxLDAP_IFXBASE() method B-4

getIfxLDAP_PASSWD() method B-4

getIfxLDAP_URL() method B-4

getIfxLDAP_USER() method B-4

getIfxLOBCACHE() method B-4

getIfxNEWCODESET() method B-4

getIfxNEWLOCALE() method B-4

getIfxNEWNLSMAP() method B-4

getIfxNODEFDAC() method B-4

getIfxOPT_GOAL() method B-4

getIfxOPTCOMPIND() method B-4

getIfxOPTOFC() method B-4

getIfxPATH() method B-4

getIfxPDQPRIORITY() method B-4

getIfxPLCONFIG() method B-5

getIfxPLOAD_LO_PATH() method B-5

getIfxPORTNO_SECONDARY() method B-5

getIfxPROXY() method B-5

getIfxPSORT_DBTEMP() method B-5

getIfxPSORT_NPROCS() method B-5

getIfxSECURITY() method B-5

getIfxSQLH_FILE() method B-5

getIfxSQLH_TYPE() method B-5

getIfxSQLIDEBUG () method B-5

getIfxSTMT_CACHE() method B-5

getIfxTypeName() method 4-10

getInputSource() method 3-29

getJarFileSQLName() method 5-20

getJDBCVersion() method 3-26

getLength() method 4-10, 5-20

getLocator() method 4-35, 4-52

getMajorVersion() method 3-26

getMessage() method 3-22

getMetaData() method 3-10

getMinorVersion() method 3-26

getMonths() method 4-12

getNanoSeconds() method 4-13

Index X-5

getNextException() method 3-23

getObject() method 4-14, 4-17, 4-18, 4-21, 4-24

getParameterAlignment method 3-17

getParameterExtendedId method 3-17

getParameterExtendedName method 3-17

getParameterExtendedOwnerName method 3-17

getParameterLength method 3-17

getParameterMetaData() method 3-17

getParameterSourceType method 3-17

getPassword() method B-2

getPortNumber() method B-2

getProcedureColumns() method 3-19

getProp() method B-1

getQualifier() method 4-10

getRef() method 3-19

getResultSet() method E-4, E-6

getSavepointId() method 3-21

getSavepointName() method 3-21

getScale() method 4-10

getSchemaName() method 3-20

getSchemas() method 3-25

getSeconds() method 4-13

getSerial() method 4-7

getSerial8() method 4-7

getServerName() method B-2

getSQLName() method 5-20

getSQLState() method 3-22

getSQLStatementOffset() method 3-23

getSQLTypeName() method 4-18, 4-21, 4-22, 4-23, 4-25, 4-27,

5-4

getStartCode() method 4-10

getString() method 4-34, 6-4, 6-6, 6-11, 6-12

getTableName() method 3-20

getText() method 6-10

getTimestamp() method 6-7

getTypeMap() method 4-17, 4-20, 4-21

getUDR() method 5-20

getUDRSQLname() method 5-20

getUnicodeStream() method 3-19

getUpdateCount() method E-4, E-6

getUpdateCounts() method 3-6

getUser() method B-2

getWarnings() method 3-10

getXXX() method 3-3, 3-7, C-12, C-13, E-9

GL_DATE environment variable 6-2, 6-3, 6-8

GLDATESelect.java example program A-3

Global Language Support (GLS) 6-1

greaterThan() method 4-11, 4-13

Group entries in an HDR pair 2-19

group option, of sqlhosts file 2-16

H
HashSet class 4-14

hasOutParameter() method 3-10

HDR
group entry 2-19

HDR pair 2-19

Hexadecimal format, converting between 4-38

Hexadecimal string format 4-38

High-Availability Data Replication
checking read-only status 2-20

demo for 2-19

environment variables for 2-19

example programs A-7

IFMX_CPM_ENABLE_SWITCH_HDRPOOL 7-6

retrying connections 2-21

High-Availability Data Replication (continued)
specifying secondary servers 2-19

using 2-18

with connection pooling 7-7

Hold cursors 3-5

Host names, setting
in database URLs 2-7

in DataSource objects 2-3

HTTP proxy 2-22, 2-23

I
IBM Informix JDBC Driver

connection pools, using with 7-4

IBM xml4j parser 3-27

IFMX_CPM_AGELIMIT environment variable 7-6

IFMX_CPM_ENABLE_SWITCH_HDRPOOL environment

variable 7-6

IFMX_CPM_INIT_POOLSIZE environment variable 7-5

IFMX_CPM_MAX_CONNECTIONS environment variable 7-5

IFMX_CPM_MAX_POOLSIZE environment variable 7-6

IFMX_CPM_MIN_AGELIMIT environment variable 7-6

IFMX_CPM_MIN_POOLSIZE environment variable 7-5

IFMX_CPM_SERVICE_INTERVAL environment variable 7-6

IfmxCallableStatement interface 3-12

IfmxStatement class 3-25

IfmxUdtSQLInput interface 5-2, 5-3

IfmxUdtSQLOutput interface 5-2, 5-4

IFX_AUTOFREE environment variable 2-12, 7-3, A-1

IFX_BATCHUPDATE_PER_SPEC environment variable 2-12,

3-6

IFX_CODESETLOB 6-12

IFX_CODESETLOB environment variable 2-12, 6-11, 6-12

IFX_DIRECTIVES environment variable 2-12

IFX_EXTDIRECTIVES environment variable 2-12

IFX_FLAT_UCSQ environment variable 2-13

IFX_GET_SMFLOAT_AS_FLOAT environment variable 2-12

IFX_ISOLATION_LEVEL 2-12, 2-15

IFX_LOCK_MODE_WAIT 2-15

IFX_LOCK_MODE_WAIT environment variable 2-13

IFX_PAD_VARCHAR environment variable 2-13

IFX_SET_FLOAT_AS_SMFLOAT environment variable 2-13

IFX_TRIMTRAILINGSPACES environment variable 2-13

IFX_USEPUT environment variable 2-13, 3-6

IFX_XASPEC environment variable 2-13

IFX_XASTDCOMPLIANCE_XAEND environment

variable 2-13

IFX_XASTDCOMPLIANCE_XAEND() method B-4

IFX_XASTDCOMPLIANCE_XAEND(int value) method B-4

IfxBblob class 4-35

IfxBblob() constructor 4-35

IfxCblob class 4-35

IfxCblob interface 4-35

IfxCblob::setAsciiStream(long) method 6-12

IfxCblob() constructor 4-35

IfxConnectionEventListener class 1-3

IfxConnectionPoolDataSource class 1-3, B-1

IfxCoreDataSource class 1-2

IfxDataSource class 1-3, B-1

IfxDriver class 2-2

IFXHOST environment variable 2-3, 2-7, 2-13

IFXHOST_SECONDARY environment variable 2-14, 2-19

ifxjdbc.jar 1-6

ifxjdbc.jar file 1-5, 1-9

IfxJDBCProxy class 2-23

IfxJDBCProxy.class file 1-5, 2-23

ifxjdbcx.jar 1-6

X-6 IBM Informix JDBC Driver Programmer’s Guide

ifxjdbcx.jar file 1-5

ifxlang.jar file 1-5, 6-14

IfxLobDescriptor class 4-31

IfxLobDescriptor() constructor 4-31

IfxLocator class 4-39

IfxLocator object 4-31

converting to hex format 4-38

converting to hexadecimal 4-38

IfxLocator() constructor 4-31

IfxLocator() method 4-39

IfxLoClose() method 4-38

IfxLoCreate() method 4-32

IfxLoOpen() method 4-32, 4-35, 4-52

IfxLoRead() method 4-35, 4-36, 4-52

IfxLoRelease() method 4-38

IfxLoSeek() method 4-36

IfxLoSize() method 4-38

IfxLoTell() method 4-36

IfxLoTruncate() method 4-38

IfxLoWrite() method 4-35, 4-37

IfxPooledConnection class 1-3

IfxRegisterOutParameter() method 3-12, E-9, E-10

IfxSetNull() method 3-12, E-9

IfxSetObject() method 6-7, C-5

ifxsqlj.jar file 1-5

ifxtools.jar file 1-4, 1-5, 3-27, 4-25

IfxTypes class C-6, C-9

IfxXADataSource class 1-3

Informix base distinguished name 2-18

Informix extensions
to Clob interface 6-12

INFORMIX-SE 5.x database servers 2-15

INFORMIXCONRETRY environment variable 2-14

INFORMIXCONTIME environment variable 2-14

INFORMIXOPCACHE environment variable 2-14

INFORMIXSERVER environment variable 2-3, 2-7, 2-9, 2-14

INFORMIXSERVER_SECONDARY environment

variable 2-14, 2-19

INFORMIXSTACKSIZE environment variable 2-14

initialPoolSize 7-7

INOUT parameters 3-8

InputStream interface 4-5

InputStreamReader() method 6-10, 6-11, 6-12

InputStreamtoDOM() method 3-29

Inserting DATE values 6-4, 6-6

Inserting smart large objects 4-34

Inserting XML data 3-28

insertRow() method E-9

Inserts, bulk 3-6

insertsAreDetected() method 3-20

install.txt file 1-6

Installing
console mode 1-7

graphical mode 1-7

silent mode 1-7

Interfaces
BatchUpdateException 3-6

CallableStatement 3-2, 3-7, E-10

Collections 4-14

ConnectionEventListener 1-3

ConnectionPoolDataSource 1-3

Connections 3-2, 3-21

DatabaseMetaData 3-24, 3-26

DataSource 2-3

Informix classes supporting 1-3

standard properties B-2

Driver 3-26

Interfaces (continued)
DriverManager 1-2, 2-3, 2-5, 2-10

FileInputStream 4-6

Files 4-6

IfmxCallableStatement 3-12

IfmxUdtSQLInput 5-3

IfmxUdtSQLOutput 5-4

IfxCblob 4-35

InputStream 4-5

java.sql.Blob 4-35

java.sql.PreparedStatement 6-12

List 4-14

PooledConnection 1-3

PreparedStatement 3-2, 3-6, C-5, C-12

ResultSet 3-2, 3-3, 7-3, C-12, C-14

ResultSetMetaData 3-2

Set 4-14

SQLData 4-17, 4-21, 4-25, 5-4, 5-5

SQLInput 4-21

Statements 2-9, 3-2, 3-6, 7-3

Struct 4-17, 4-21

Types 4-7, C-1

XAConnection 3-21

XADataSource 1-3

Internationalization 6-1, 6-15

Interval class 4-9

INTERVAL data type
binary qualifiers for 4-9

extensions for 4-9

in named and unnamed rows 4-18

Intervaldemo.java example program 4-14, A-3

IntervalDF class 4-12

IntervalDF() constructor 4-12

IntervalYM class 4-10

IntervalYM() constructor 4-10

IP address, setting
in database URLs 2-7

in DataSource objects 2-3

IPv6 aware 2-8

isDefinitelyWriteable() method 3-20

isHDREnabled() method 2-20

isIfxDBANSIWARN() method B-3

isIfxDELIMIDENT() method B-3

isIfxENABLE_CACHE_TYPE() method B-3

isIfxIFX_AUTOFREE() method B-3

isIfxIFX_USEPUT() method B-4

isIfxUSEV5SERVER() method B-5

isReadOnly() method 2-20, 3-20

isWriteable() method 3-20

J
JAR file, location on server 5-15

JAR files
for JNDI 2-16

for LDAP SPI 2-16

ifxjdbc.jar 1-5, 1-9

ifxjdbcx.jar 1-5

ifxlang.jar 1-5, 6-14

ifxsqlj.jar 1-5

ifxtools.jar 1-5, 4-25

jar utility 1-9

Java naming and directory interface (JNDI)
and the sqlhosts file 2-16

JAR files for 2-16

Java virtual machine (JVM) 1-8

java.io file 6-2

Index X-7

Java.Socket class 2-18

java.sql.Blob interface 4-35

java.sql.Clob interface 6-12

methods 6-12

java.sql.ParameterMetaData class 3-17

java.sql.PreparedStatement 6-12

methods from 6-12

java.sql.PreparedStatement interface 6-12

java.sql.PreparedStatement::setBinaryStream() 6-13

java.text file 6-2

java.util file 6-2

JavaSoft 1-1, 1-9

JDBC 3.0
methods 4-28

JDBC 3.0 specification
java.sql.Blob interface 4-30

java.sql.Clob interface 4-30

JDBC 3.0 Specification compliance 3-24

JDBC API 1-1

JDBC driver, general 1-2

jdbcrel.htm file 1-6

JDBCTEMP environment variable 2-14

K
keepJavaFile() method 5-13

L
largebinUDT.java example program A-5

last() method E-5

LDAP server 2-4

and HTTP proxy 2-25

updating with sqlhosts data 2-18

length() method 5-3

lessThan() method 4-11, 4-13

Lightweight directory access protocol (LDAP) server
administration requirements for 2-17

and the sqlhosts file 2-16

and unsigned applets 1-10

JAR files for 2-16

loader for 1-5

URL syntax for 2-16

utilities for 2-18

version requirement 2-16

Limitations, driver 3-10

Limitations, server 3-8

List interface 4-14

list1.java example program A-5

list2.java example program A-5

LO handle
in BLOB column 4-35

in CLOB column 4-35

Loading IBM Informix JDBC Driver 2-2

LOBCACHE environment variable 2-14, 4-5, 4-50, 7-2

Locale class 6-2

Locales
client, specifying 6-2

database, specifying 6-2

synchronizing with code sets 6-2

table of 6-10

user-defined 6-13

LOCALESelect.java example program A-3

Localization 6-1

decimal notation 6-2

Locator object 4-31

Lock
row 4-49

locmsg.java example program 6-15, A-3

Logging installation events 1-8

LVARCHAR data type C-3, C-12

M
manualUDT.java example program A-5

map.get() method 4-20

map.put() method 4-20, 4-21

Mapping
for CallableStatement parameters 3-11

opaque data types 5-4

maxIdleTime 7-7

maxPoolSize 7-7

maxStatements 7-7

Message class 3-23

Metadata, accessing database 3-24

Methods
absolute() 3-5, E-3, E-5

activateHDRPool_Primary() 7-7

activateHDRPool_Secondary() 7-7

addBatch() 3-19

addProp() B-1

afterLast() E-5

beforeFirst() E-3, E-5

Clob::setAsciiStream(long position, InputStream fin, int

length) 6-12

close() 2-12, 2-14, 3-4, 7-3

commit() 3-21

connect() E-3

createJar() 5-14

createUDRs() 5-18

createUDT() 5-14

createUDTClass() 5-14

current() E-5

DatabaseMetaData 3-13

DatabaseMetaData.supportsNamedParameters() 3-13

deleteRow() E-9

deleteRow(), and scroll cursors 3-5

deletesAreDetected() 3-20

dispValue() 4-7

equals() 4-11, 4-13

execute() 3-3, 3-19, 3-20, E-4

executeBatch() E-4

executeQuery() 3-2, 3-10, 3-11, 3-25

executeUpdate() 2-9, 4-6, E-4

executeXXX() E-3

first() E-3, E-5

forName() 2-2

fromHexString() 4-39

fromString() 4-12, 4-13

getAlignment() 5-12

getArray() 4-14, 4-17, E-7

getAsciiStream() 4-6, 4-7, 4-34

getAttributes() 4-23, E-7

getAutoAlignment() 5-3

getAutoFree() 3-25, 7-4

getBigSerial() 4-8

getBinaryStream() 4-6, 4-7, 4-34

getBlob() 4-34, 4-52, E-9

getBytes() 4-34, 6-11, 6-12

getCatalogName() 3-20

getCatalogs() 3-25

getClassName() 5-20

getClob() 4-34, 4-52, E-9

X-8 IBM Informix JDBC Driver Programmer’s Guide

Methods (continued)
getConnection() 2-5, 2-9, 2-10, E-3

getCurrentPosition() 5-3

getDatabaseName() B-2

getDataSourceName() B-2

getDate() 6-7

getDescription() B-2

getDriverMajorVersion() 3-26

getDriverMinorVersion() 3-26

getDsProperties() B-1

getEndCode() 4-10

getErrorCode() 3-22

getFetchSize() 3-20

getFieldCount() 5-19

getFieldLength() 5-20

getFieldName() 4-10, 5-19

getFieldType() 5-19

getFieldTypeName() 5-20

getHDRtype() 2-20

getIfxCLIENT_LOCALE() B-2

getIfxCPMInitPoolSize() B-6

getIfxCPMMaxAgeLimit() B-6

getIfxCPMMaxConnections() B-6

getIfxCPMMaxPoolSize() B-6

getIfxCPMMinAgeLimit() B-6

getIfxCPMMinPoolSize() B-6

getIfxCPMServiceInterval() B-6

getIfxCPMSwitchHDRPool() B-6

getIfxCSM() B-2

getIfxDB_LOCALE() B-3

getIfxDBCENTURY() B-3

getIfxDBDATE() B-3

getIfxDBSPACETEMP() B-3

getIfxDBTEMP() B-3

getIfxDBUPSPACE() B-3

getIfxFET_BUF_SIZE() B-3

getIfxGL_DATE() B-3

getIfxIFX_CODESETLOB() B-3

getIfxIFX_DIRECTIVES() B-3

getIfxIFX_EXTDIRECTIVES() B-3

getIfxIFX_FLAT_UCSQ() B-3

getIfxIFX_IFX_GET_SMFLOAT_AS_FLOAT() B-3

getIfxIFX_ISOLATION_LEVEL() B-3

getIfxIFX_SET_FLOAT_AS_SMFLOAT() B-3

getIfxIFX_TRIMTRAILINGSPACES() B-3

getIfxIFX_XASPEC() B-4

getIfxIFXHOST_SECONDARY() B-3

getIfxIFXHOST() B-3

getIfxINFORMIXCONRETRY() B-4

getIfxINFORMIXCONTIME() B-4

getIfxINFORMIXOPCACHE() B-4

getIfxINFORMIXSERVER_SECONDARY() B-4

getIfxINFORMIXSTACKSIZE() B-4

getIfxJDBCTEMP() B-4

getIfxLDAP_IFXBASE() B-4

getIfxLDAP_PASSWD() B-4

getIfxLDAP_URL() B-4

getIfxLDAP_USER() B-4

getIfxLOBCACHE() B-4

getIfxNEWCODESET() B-4

getIfxNEWLOCALE() B-4

getIfxNEWNLSMAP() B-4

getIfxNODEFDAC() B-4

getIfxOPT_GOAL() B-4

getIfxOPTCOMPIND() B-4

getIfxOPTOFC() B-4

getIfxPATH() B-4

Methods (continued)
getIfxPDQPRIORITY() B-4

getIfxPLCONFIG() B-5

getIfxPLOAD_LO_PATH() B-5

getIfxPORTNO_SECONDARY() B-5

getIfxPROXY() B-5

getIfxPSORT_DBTEMP() B-5

getIfxPSORT_NPROCS() B-5

getIfxSECURITY() B-5

getIfxSQLH_FILE() B-5

getIfxSQLH_TYPE() B-5

getIfxSQLIDEBUG () B-5

getIfxSTMT_CACHE() B-5

getIfxTypeName() 4-10

getInputSource() 3-29

getJarFileSQLName() 5-20

getJDBCVersion() 3-26

getLength() 4-10, 5-12

getLocator() 4-35, 4-52

getMajorVersion() 3-26

getMessage() 3-22

getMetaData() 3-10

getMinorVersion() 3-26

getMonths() 4-12

getNanoSeconds() 4-13

getNextException() 3-23

getObject() 4-14, 4-17, 4-18, 4-21, 4-24

getPassword() B-2

getPortNumber() B-2

getProcedureColumns() 3-19

getProp() B-1

getQualifier() 4-10

getRef() 3-19

getResultSet() E-4, E-6

getSavepointId() 3-21

getSavepointName() 3-21

getScale() 4-10

getSchemaName() 3-20

getSchemas() 3-25

getSeconds() 4-13

getSerial() 4-7

getSerial8() 4-7

getServerName() B-2

getSQLName() 5-20

getSQLState() 3-22

getSQLStatementOffset() 3-23

getSQLTypeName() 4-18, 4-21, 4-22, 4-23, 4-25, 4-27, 5-4

getStartCode() 4-10

getString() 4-34, 6-4, 6-6, 6-11, 6-12

getTableName() 3-20

getText() 6-10

getTimestamp() 6-7

getTypeMap() 4-17, 4-20, 4-21

getUDR() 5-18

getUDRSQLname() 5-18

getUnicodeStream() 3-19

getUpdateCount() E-4, E-6

getUpdateCounts() 3-6

getUser() B-2

getWarnings() 3-10

getXXX() 3-3, 3-7, C-12, C-13, E-9

greaterThan() 4-11, 4-13

hasOutParameter() 3-10

IFX_XASTDCOMPLIANCE_XAEND() B-4

IFX_XASTDCOMPLIANCE_XAEND(int value) B-4

IfxCblob::setAsciiStream(long) 6-12

IfxLocator() 4-39

Index X-9

Methods (continued)
IfxLoClose() 4-38

IfxLoCreate() 4-32

IfxLoOpen() 4-32, 4-35, 4-52

IfxLoRead() 4-35, 4-36, 4-52

IfxLoRelease() 4-38

IfxLoSeek() 4-36

IfxLoSize() 4-38

IfxLoTell() 4-36

IfxLoTruncate() 4-38

IfxLoWrite() 4-35, 4-37

IfxRegisterOutParameter() 3-12, E-9, E-10

IfxSetNull() 3-12, E-9

IfxSetObject() 6-7, C-5

InputStreamReader() 6-10, 6-11, 6-12

InputStreamtoDOM() 3-29

insertRow() E-9

insertsAreDetected() 3-20

isDefinitelyWriteable() 3-20

isHDREnabled() 2-20

isIfxDBANSIWARN() B-3

isIfxDELIMIDENT() B-3

isIfxENABLE_CACHE_TYPE() B-3

isIfxIFX_AUTOFREE() B-3

isIfxIFX_USEPUT() B-4

isIfxUSEV5SERVER() B-5

isReadOnly() 2-20, 3-20

isWriteable() 3-20

keepJavaFile() 5-13

last() E-5

length() 5-3

lessThan() 4-11, 4-13

map.get() 4-20

map.put() 4-20, 4-21

moveToCurrentRow() E-9

moveToInsertRow() E-9

next() 2-14, 3-3, 4-6, 7-3

othersDeletesAreVisible() 3-20

othersInsertsAreVisible() 3-20

othersUpdatesAreVisible() 3-20

OutputStreamWriter() 6-10, 6-11, 6-12

ownDeletesAreVisible() 3-20

ownInsertsAreVisible() 3-20

ownUpdatesAreVisible() 3-20

prepareStatement() 3-2

previous() E-5

put() 2-10, 7-4

read() 4-7

readArray() 4-4

readAsciiStream() 5-5

readBinaryStream() 5-5

readByte() 4-18

readBytes() 5-3, 5-5

readCharacterStream() 4-4, 4-18, 5-5

readObject() 4-18, 5-5

readProperties() B-1

readRef() 4-4, 4-18, 5-5

readSQL() 4-18, 4-21, 4-25, 5-4

readString() 5-3, 5-5

refreshRow() 3-19

registerDriver() 2-3

registerOutParameter() 3-7, E-9, E-10

relative() E-5

releaseSavepoint() 3-21

removeJar() 5-19

removeProperty() B-1

removeUDR() 5-19

Methods (continued)
rollbackSavepoint() 3-21

rowDeleted() 3-19

rowInserted() 3-19

rowUpdated() 3-19

scrubConnection() 7-8

set() 4-12, 4-13

setAlignment() 5-12

setArray() 4-14, C-7

setAsciiStream() 4-5, 4-6, C-5, C-7

setAutoAlignment() 5-3

setAutoCommit() 3-21

setAutoFree() 3-25, 7-4

setBigDecimal() 4-3, 4-4, C-7

setBinaryStream() 4-5, 4-6, C-5, C-7

setBlob() C-7

setBoolean() C-8

setByte() C-8

setBytes() C-8

setCatalog() 3-19

setCharacterStream() C-8

setClassName() 5-13

setClob() C-8

setCurrentPosition() 5-3

setDatabaseName() B-2

setDataSourceName() B-2

setDate() C-8

setDescription() B-2

setDouble() C-8

setExplicitCast() 5-16

setFetchDirection() E-5

setFetchSize() 3-19, E-5

setFieldCount() 5-11

setFieldLength() 5-12

setFieldType() 5-12

setFieldTypeName() 5-12

setFloat() C-8

setIfxCLIENT_LOCALE() B-2

setIfxCPMInitPoolSize() B-6

setIfxCPMMaxAgeLimit() B-6

setIfxCPMMaxConnections() B-6

setIfxCPMMaxPoolSize() B-6

setIfxCPMMinAgeLimit() B-6

setIfxCPMMinPoolSize() B-6

setIfxCPMServiceInterval() B-6

setIfxCPMSwitchHDRPool() B-6

setIfxCSM (String csm) B-2

setIfxDB_LOCALE() B-3

setIfxDBANSIWARN() B-3

setIfxDBCENTURY() B-3

setIfxDBDATE() B-3

setIfxDBSPACETEMP() B-3

setIfxDBTEMP() B-3

setIfxDBUPSPACE() B-3

setIfxDELIMIDENT() B-3

setIfxENABLE__HDRSWITCH() B-3

setIfxENABLE_CACHE_TYPE() B-3

setIfxFET_BUF_SIZE() B-3

setIfxGL_DATE() B-3

setIfxIFX_AUTOFREE() B-3

setIfxIFX_CODESETLOB() B-3

setIfxIFX_DIRECTIVES() B-3

setIfxIFX_EXTDIRECTIVES() B-3

setIfxIFX_FLAT_UCSQ() B-3

setIfxIFX_ISOLATION_LEVEL B-3

setIfxIFX_LOCK_MODE_WAIT B-3

setIfxIFX_TRIMTRAILINGSPACES() B-3

X-10 IBM Informix JDBC Driver Programmer’s Guide

Methods (continued)
setIfxIFX_USEPUT() B-4

setIfxIFXHOST() B-3

setIfxINFORMIXCONRETRY() B-4

setIfxINFORMIXCONTIME() B-4

setIfxINFORMIXOPCACHE() B-4

setIfxINFORMIXSERVER_SECONDARY() B-4

setIfxINFORMIXSTACKSIZE() B-4

setIfxJDBCTEMP() B-4

setIfxLDAP_IFXBASE() B-4

setIfxLDAP_PASSWD() B-4

setIfxLDAP_URL() B-4

setIfxLDAP_USER() B-4

setIfxLOBCACHE() B-4

setIfxNEWCODESET() B-4

setIfxNEWLOCALE() B-4

setIfxNODEFDAC(String value) B-4

setIfxOPT_GOAL() B-4

setIfxOPTCOMPIND() B-4

setIfxOPTOFC() B-4

setIfxPATH() B-4

setIfxPDQPRIORITY() B-4

setIfxPLCONFIG() B-5

setIfxPLOAD_LO_PATH() B-5

setIfxPROXY() B-5

setIfxPSORT_DBTEMP() B-5

setIfxPSORT_NPROCS() B-5

setIfxSECURITY() B-5

setIfxSQLH_FILE() B-5

setIfxSQLH_TYPE() B-5

setIfxSQLIDEBUG B-5

setIfxSTMT_CACHE() B-5

setIfxUSEV5SERVER() B-5

setImplicitCast() 5-16

setInt() 3-2, C-8

setJarFileSQLName() 5-13, 5-17

setJarTmpPath() 5-15

setLength() 5-12

setLong() C-8

setMaxFieldSize() 3-19

setMaxRows() E-5

setNull() 3-11, C-8

setObject() 4-3, 4-4, 4-14, 4-21, 6-7

setPassword() B-2

setPortNumber() B-2

setQualifier() 4-12, 4-13

setReadOnly() 3-19

setRef() 3-19

setSavepoint() 3-21

setServerName() B-2

setShort() C-8

setSQLName() 5-13, 5-14, E-12

setString() 5-22, 6-7, C-9

setTime() C-9

setTimestamp() C-9

setTypeMap() 4-14, 4-18

setUDR() 5-18

setUDTExtName() 5-6

setUnicodeStream() 3-19

setUser() B-2

setXXX() 3-10, 5-22, C-5, C-10, C-11

skipBytes() 5-3

SQLInput() 4-18, 5-2

SQLOutput() 4-18, 5-2

StringtoDOM() 3-29

toBytes() 4-39

toHexString() 4-39

Methods (continued)
toString() 4-12, 4-14

unsupported
for distinct data types 4-4

for named rows 4-18

for opaque data types 5-5

for querying the database 3-19

updateObject() 6-7

updateRow() E-9

updateRow(), and scroll cursors 3-5

updatesAreDetected() 3-20

updateString() 6-7

writeArray() 4-4

writeAsciiStream() 5-5

writeBinaryStream() 5-5

writeByte() 4-18

writeBytes() 5-4, 5-5

writeCharacterStream() 4-4, 4-18, 5-5

writeInt() 4-21

writeObject() 4-18, 4-21, 5-5, E-6

writeProperties() B-2

writeRef() 4-4, 4-18, 5-5

writeSQL() 4-18, 4-21, 4-25, 5-4

writeString() 5-4, 5-5

writeXXX() 4-21

XMLtoInputStream 3-29

XMLtoString() 3-29

Methods, DatabaseMetaData 3-24

minPoolSize 7-7

mitypes.h file 5-4

moveToCurrentRow() method E-9

moveToInsertRow() method E-9

Multiple OUT parameters 3-8

MultiRowCall.java example program A-3

myMoney.java example program A-5

N
Name-value pairs of database URL 2-8

Named notation 3-13

Named parameters
and stored procedures 3-14

in a CallableStatement 3-13

Named row data types
examples of

creating a Struct class for 4-24

using the SQLData interface 4-19

using the Struct interface 4-22

extensions for 4-17

generating using the ClassGenerator utility 4-25

intervals and collections in 4-18

opaque data type columns in 4-18

unsupported methods for 4-18

using the SQLData interface for 4-18

using the Struct interface for 4-21

Named row example programs A-5

Native SQL date formats 6-4, 6-6

NEWCODESET environment variable 6-2, 6-13

NEWLOCALE environment variable 6-2, 6-13

NEWNLSMAP environment variable 2-14, 6-14

next() method 2-14, 3-3, 4-6, 7-3

NODEFDAC environment variable 2-14

Nonnative SQL date formats 6-4, 6-6

Index X-11

O
Objects

IfxLocator 4-31

Locator 4-31

ODBC 1-2

onspaces utility 4-40

Opaque data types
caching type information 4-27, 5-4

creating 5-5

definition of 5-2

examples of
defining a class for 5-21

large objects 5-23

retrieving data 5-23

examples of creating 5-25

mappings for 5-4

steps for creating 5-7

unsupported methods 5-5

Opaque type
SQL name 5-13

Opaque types
and transactions 5-20

creating 5-6

OPT_GOAL environment variable 2-14

OPTCOMPIND environment variable 2-14

OptimizedSelect.java example program A-3

OPTOFC environment variable 2-14, 7-3, A-3

optofc.java example program 2-10, 7-4, A-3

othersDeletesAreVisible() method 3-20

othersInsertsAreVisible() method 3-20

othersUpdatesAreVisible() method 3-20

OUT parameter 3-8

OUT parameter example programs 3-8

OutputStreamWriter() method 6-10, 6-11, 6-12

Overloaded UDRs
with a CallableStatement 3-16

Overloaded UDRs, removing 5-19

Overview of IBM Informix JDBC Driver 1-2

ownDeletesAreVisible() method 3-20

ownInsertsAreVisible() method 3-20

ownUpdatesAreVisible() method 3-20

P
ParameterMetaData class 3-14, 3-17

Parameters
named in a CallableStatement 3-13

retrieving names 3-13

PASSWORD connection property 2-4, 2-8

Passwords
setting in DataSource object 2-4

URL syntax of 2-8

PATH environment variable 2-15

PDQPRIORITY environment variable 2-15

Performance 7-2

PLCONFIG environment variable 2-15

PLOAD_LO_PATH environment variable 2-15

PooledConnection interface 1-3

Port numbers, setting
in database URLs 2-7

in DataSource objects 2-3

in sqlhosts file or LDAP server 2-16

PORTNO environment variable 2-3, 2-7

PORTNO_SECONDARY environment variable 2-15, 2-19

Precedence rules for date formats 6-8

PREPARE statements, executing multiple 3-6

PreparedStatement interface 3-2, 3-6, C-5, C-12

prepareStatement() method 3-2

previous() method E-5

Product CD, contents 1-6

Properties class 2-10

Property lists 2-10

PropertyConnection.java example program A-3

propertyCycle 7-7

PROXY environment variable 2-15

Proxy server 2-22, 2-23

example programs A-6

PSORT_DBTEMP environment variable 2-15

PSORT_NPROCS environment variable 2-15

put() method 2-10, 7-4

Q
Qualifiers, binary, for INTERVAL data types 4-9

Querying the database 3-2

R
Read-only connections 3-21

read() method 4-7

readArray() method 4-4

readAsciiStream() method 5-5

readBinaryStream() method 5-5

readByte() method 4-18

readBytes() method 5-3, 5-5

readCharacterStream() method 4-4, 4-18, 5-5

readObject() method 4-18, 5-5

readProperties() method B-1

readRef() method 4-4, 4-18, 5-5

readSQL() method 4-18, 4-21, 4-25, 5-4

readString() method 5-3, 5-5

Ref type C-1

refreshRow() method 3-19

registerDriver() method 2-3

Registering IBM Informix JDBC Driver 2-3

registerOutParameter() method 3-7, E-9, E-10

type mappings for 3-11

Relative distinguished name (RDN) 2-18

relative() method E-5

releaseSavepoint() method 3-21

Remote database access 2-22

Remote method invocation (RMI) 2-26

removeJar() method 5-17, 5-19

removeProperty() method B-1

removeUDR() method 5-19

removeUDT() method 5-17

Restrictions, driver 3-10

Restrictions, server 3-8

ResultSet class 6-4, 6-6

ResultSet interface 3-2, 3-3, 7-3, C-12, C-14

ResultSetMetaData interface 3-2

Retrieving
database names 3-25

date values 6-4, 6-6

Informix error message text 3-23

syntax error offset 3-23

user names 3-25

version information 3-26

XML data 3-29

Retrieving parameter names 3-13

RMI 2-26

ROLLBACK WORK statement 4-50

X-12 IBM Informix JDBC Driver Programmer’s Guide

rollbackSavepoint(method 3-21

row3.java example program A-5

rowDeleted() method 3-19

rowInserted() method 3-19

rowUpdated() method 3-19

RSMetaData.java example program A-3

S
Savepoint objects 3-21

SAX (Simple API for XML) 3-26

SBSPACENAME configuration parameter 4-41, 4-43

sbspaces
metadata area 4-44

name of 4-43

user-data area 4-44

Schemas, IBM Informix JDBC Driver interpretation 3-25

Screen reader
reading syntax diagrams D-1

Scroll cursors 3-4

SCROLL_INSENTIVE ResultSets 3-3

Scrollable Result Sets 3-3

ScrollCursor.java example program 3-5, A-3

scrubConnection() method 2-33, 7-8

Search, anonymous, of sqlhosts information 2-16

SECURITY environment variable 2-15

Selecting smart large objects 4-34

SERIAL columns and scroll cursors 3-5

SERIAL data type 4-7

Serial.java example program A-3

SERIAL8 data type 4-7

Server restrictions, limitations 3-8

Service provider interface (SPI) 2-16

Servlets 2-22

SessionMgr class 2-23

SessionMgr.class file 1-5, 2-23

Set interface 4-14

set() method 4-12, 4-13

setAlignment() method 5-13

setArray() method 4-14, C-7

setAsciiStream() method 4-5, 4-6, C-5, C-7

setAutoAlignment() method 5-3

setAutoCommit() method 3-21

setAutoFree() method 3-25, 7-4

setBigDecimal() method 4-3, 4-4, C-7

setBinaryStream() method 4-5, 4-6, C-5, C-7

setBlob() method C-7

setBoolean() method C-8

setByte() method C-8

setBytes() method C-8

setCatalog() method 3-19

setCharacterStream() method C-8

setClassName() method 5-13

setClob() method C-8

setCurrentPosition() method 5-3

setDatabaseName() method B-2

setDataSourceName() method B-2

setDate() method C-8

setDescription() method B-2

setDouble() method C-8

setExplicitCast() method 5-16

setFetchDirection() method E-5

setFetchSize() method 3-19, E-5

setFieldCount() method 5-11

setFieldLength() method 5-12

setFieldName method 5-12

setFieldType() method 5-12

setFieldTypeName() method 5-12

setFloat() method C-8

setIfxCLIENT_LOCALE() method B-2

setIfxCPMInitPoolSize() method B-6

setIfxCPMMaxAgeLimit() method B-6

setIfxCPMMaxConnections() method B-6

setIfxCPMMaxPoolSize() method B-6

setIfxCPMMinAgeLimit() method B-6

setIfxCPMMinPoolSize() method B-6

setIfxCPMServiceInterval() method B-6

setIfxCPMSwitchHDRPool() method B-6

setIfxCSM (String csm) method B-2

setIfxDB_LOCALE() method B-3

setIfxDBANSIWARN() method B-3

setIfxDBCENTURY() method B-3

setIfxDBDATE() method B-3

setIfxDBSPACETEMP() method B-3

setIfxDBTEMP() method B-3

setIfxDBUPSPACE() method B-3

setIfxDELIMIDENT() method B-3

setIfxENABLE__HDRSWITCH() method B-3

setIfxENABLE_CACHE_TYPE() method B-3

setIfxFET_BUF_SIZE() method B-3

setIfxGL_DATE() method B-3

setIfxIFX_AUTOFREE() method B-3

setIfxIFX_CODESETLOB() method B-3

setIfxIFX_DIRECTIVES() method B-3

setIfxIFX_EXTDIRECTIVES() method B-3

setIfxIFX_FLAT_UCSQ method B-3

setIfxIFX_ISOLATION_LEVEL method B-3

setIfxIFX_LOCK_MODE_WAIT method B-3

setIfxIFX_TRIMTRAILINGSPACES() method B-3

setIfxIFX_USEPUT() method B-4

setIfxIFXHOST() method B-3

setIfxINFORMIXCONRETRY() method B-4

setIfxINFORMIXCONTIME() method B-4

setIfxINFORMIXOPCACHE() method B-4

setIfxINFORMIXSERVER_SECONDARY() method B-4

setIfxINFORMIXSTACKSIZE() method B-4

setIfxJDBCTEMP() method B-4

setIfxLDAP_IFXBASE() method B-4

setIfxLDAP_PASSWD() method B-4

setIfxLDAP_URL() method B-4

setIfxLDAP_USER() method B-4

setIfxLOBCACHE() method B-4

setIfxNEWCODESET() method B-4

setIfxNEWLOCALE() method B-4

setIfxNODEFDAC(String value) method B-4

setIfxOPT_GOAL() method B-4

setIfxOPTCOMPIND() method B-4

setIfxOPTOFC() method B-4

setIfxPATH() method B-4

setIfxPDQPRIORITY() method B-4

setIfxPLCONFIG() method B-5

setIfxPLOAD_LO_PATH() method B-5

setIfxPROXY() method B-5

setIfxPSORT_DBTEMP() method B-5

setIfxPSORT_NPROCS() method B-5

setIfxSECURITY() method B-5

setIfxSQLH_FILE() method B-5

setIfxSQLH_TYPE() method B-5

setIfxSQLIDEBUG) method B-5

setIfxSTMT_CACHE() method B-5

setIfxUSEV5SERVER() method B-5

setImplicitCast() method 5-16

setInt() method 3-2, C-8

setJarFileSQLName() method 5-11, 5-13, 5-17

Index X-13

setJarTmpPath() method 5-15

setLength() method 5-12

setLong() method C-8

setMaxFieldSize() method 3-19

setMaxRows() method E-5

setNull() method 3-11, C-8

setObject() method 4-3, 4-4, 4-14, 4-21, 6-7

setPassword() method B-2

setPortNumber() method B-2

setQualifier() method 4-12, 4-13

setReadOnly() method 3-19

setRef() method 3-19

setSavepoint() method 3-21

setSavepointUnique() method 3-21

setServerName() method B-2

setShort() method C-8

setSQLname() method 5-11

setSQLName() method 5-13, 5-14, E-12

setString() method 5-22, 6-7, C-9

setTime() method C-9

setTimestamp() method C-9

Setting
autocommit 3-21

CLASSPATH environment variable 1-8, 1-9

properties 2-10

setTypeMap() method 4-14, 4-18

setUDR() method 5-6, 5-18, 5-20, E-11

setUDTExtName() method 5-6

setUnicodeStream() method 3-19

setup.jar file 1-5, 1-6

setup.std file 4-25

setUser() method B-2

setXXX() method 3-10, 5-22, C-5, C-10, C-11

shortcut keys
keyboard D-1

Silent mode 1-11

SimpleCall.java example program A-3

SimpleConnection.java example program A-3

SimpleSelect.java example program A-3

Single sign-on access control (SSO) 2-30

skipBytes() method 5-3

Smart large object example programs A-4

Smart large objects
access mode 4-49

attributes 4-44

buffering mode 4-44

byte data in 4-35

character data in 4-34

closing 4-49

creating 4-30

data integrity 4-46

estimated size 4-43

extent size 4-42, 4-43

inserting 4-34

last-access time 4-44, 4-45, 4-47, 4-48

last-change time 4-48

last-modification time 4-48

locking 4-44

logging 4-47

logging of 4-44, 4-47

maximum I/O block size 4-43

metadata 4-44, 4-45, 4-48

minimum extent size 4-43

next-extent size 4-42, 4-43

sbspaces 4-43

selecting 4-34

size of 4-41, 4-43, 4-48

Smart large objects (continued)
transactions with 4-44, 4-49

unlocking 4-49

user data 4-45, 4-48

Smart large objects, accessing 4-28

Smart large objects, implementation
classes

IfxBblob 4-30

IfxCblob 4-30

IfxLobDescriptor 4-30

IfxLocator 4-30

IfxLoStat 4-30

IfxSmartBlob 4-30

Smart-large-object lock
exclusive 4-47, 4-49, 4-50

lock-all 4-49

releasing 4-49

share-mode 4-49

update 4-49

update mode 4-49

Smart-large-object support in IDS 4-28

SQL date formats
native 6-4, 6-6

nonnative 6-4, 6-6

SQL name 5-11, 5-13, 5-16

SQLCODE messages 3-23

SQLData interface 4-17, 4-21, 4-25, 5-4, 5-5

SQLData objects
caching type information 4-27, 5-4

SQLException class 3-22, 3-23, C-11, C-13

SQLH_TYPE environment variable 2-15

SQLH_TYPE property 2-4

SqlhDelete utility 2-18

sqlhosts file
administration requirements for 2-17

and unsigned applets 1-10

group option 2-16

reading 2-16

URL syntax for 2-16

utilities for 2-18

SqlhUpload utility 2-18

SQLIDEBUG environment variable 2-15

SQLIDEBUG tracing 7-1

SQLInput interface 4-21

SQLInput() method 4-18, 5-2

SQLOutput() method 4-18, 5-2

SQLSTATE values 3-22

Statement interface 2-9, 3-2, 3-6, 7-3

Statement Local Variables 3-7

Status information
definition of 4-48

last-access time 4-48

last-change time 4-48

last-modification time 4-48

size 4-48

STMT_CACHE environment variable 2-15

Storage characteristics
attribute information 4-44

column-level 4-43, 4-44

definition of 4-39

disk-storage information 4-42

system default 4-41, 4-43, 4-44

system-specified 4-43, 4-44

user-specified 4-43, 4-44

Stored procedures
and named parameters 3-14

Strings, representing dates using 6-4

X-14 IBM Informix JDBC Driver Programmer’s Guide

StringtoDOM() method 3-29

Struct interface 4-17, 4-21

Struct objects
caching type information 4-27, 5-4

Structured type (Struct) 4-17

Sun JDBC 3.0 properties 7-6

Supported environment variables 6-2

Syntax diagrams
reading in a screen reader D-1

Syntax error offset, retrieving 3-23

Syntax of database URLs 2-6

sysmaster database 3-25

systables catalog
and code set conversion 6-8

and metadata 3-25

T
TEXT data type

caching 7-2

code set conversion 6-11

code set conversion for 6-11

examples for
data inserts and updates 4-5

data retrieval 4-6

extensions for 4-4

TextConv.java example program A-3

TextType.java example program 4-6, 4-7, A-3

Threads, multiple, and concurrency 3-4

TimeoutMgr class 2-23

TimeoutMgr.class file 1-5, 2-23

toBytes() method 4-39

toHexString() method 4-39

toString() method 4-12, 4-14

Methods
toString() 4-39

Transaction management
smart large objects and 4-44, 4-49

Transactions
beginning 4-50

committing 4-50

distributed 1-2, 2-2, 2-4, 3-21

handling 3-21

rolling back 4-50

Transactions, creating opaque types and UDRs 5-20

TreeSet class 4-15

TU_DAY variable 4-10, 4-13

TU_F1 variable 4-10

TU_F2 variable 4-10

TU_F3 variable 4-10

TU_F4 variable 4-10

TU_F5 variable 4-10, 4-13

TU_FRAC variable 4-10

TU_HOUR variable 4-10

TU_MINUTE variable 4-10

TU_MONTH variable 4-9

TU_SECOND variable 4-10

TU_YEAR variable 4-9

Tuple buffer 2-11, 7-2

Types interface 4-7, C-1

U
UDR Manager

example programs A-8

UDR.
See User-defined routines.

UDRManager class 1-4, 5-2, 5-6

UDRMetaData class 5-2, 5-6

UDT Manager
example programs A-8

udt_d1.java example program A-5

udt_d2.java example program A-5

udt_d3.java example program A-5

UDT.
See Opaque data types.

UDTManager class 1-4, 5-2

UDTMetaData class 5-2

udtudrmgr package 1-4

Unicode
and internationalization APIs 6-1

and the client code set 6-10

and the database code set 6-9

Unicode characters 6-12

Uninstalling
in console mode 1-10

in graphical mode 1-10

in silent mode 1-11

preventing errors 1-7

Uninstalling driver 1-10

Unique names
for stored procedures and named parameters 3-14

Unnamed row data types
examples of

creating a Struct class for 4-24

using the Struct interface 4-22

extensions for 4-17

intervals and collections in 4-18

using the Struct interface for 4-21

Unsupported methods
for distinct data types 4-4

for named rows 4-18

for opaque data types 5-5

for querying the database 3-19

UpdateCursor1.java example program 3-5, A-4

UpdateCursor2.java example program 3-5, A-4

UpdateCursor3.java example program 3-5, A-4

updateObject() method 6-7

updateRow() method 3-5, E-9

Updates, batch 3-6

updatesAreDetected() method 3-20

updateString() method 6-7

URLs
database 2-5, 2-6

syntax for LDAP server and sqlhosts file 2-16

USER connection property 2-4, 2-7

User names, setting
in database URLs 2-7

in DataSource object 2-4

User-defined routines
and named row parameters 4-22

and transactions 5-20

creating 5-6

definition of 5-2, 5-10

examples of creating 5-35

User-defined routines, steps for creating 5-9

USEV5SERVER environment variable 2-15

Using
in an applet 1-9

Using JDBC
in an application 1-8

Index X-15

Utilities
ClassGenerator 1-5, 4-25

jar 1-9

SqlhDelete 2-18

SqlhUpload 2-18

V
Variables for binary qualifiers 4-9

Version class 3-26

Version, of IBM Informix JDBC Driver 3-26

Visual disabilities
reading syntax diagrams D-1

W
writeArray() method 4-4

writeAsciiStream() method 5-5

writeBinaryStream() method 5-5

writeByte() method 4-18

writeBytes() method 5-4, 5-5

writeCharacterStream() method 4-4, 4-18, 5-5

writeInt() method 4-21

writeObject() method 4-18, 4-21, 5-5, E-6

writeProperties() method B-2

writeRef() method 4-4, 4-18, 5-5

writeSQL() method 4-18, 4-21, 4-25, 5-4

writeString() method 5-4, 5-5

writeXXX() method 4-21

X
XA (distributed transactions) 1-2, 2-2, 2-4, 3-21

XAConnection interface 3-21

XADataSource interface 1-3

xerces parser 3-27

xerces.jar file 3-27

XML documents
example programs A-7

examples 3-30

setting up environment for 3-27

XMLtoInputStream() method 3-29

XMLtoString() method 3-29

X-16 IBM Informix JDBC Driver Programmer’s Guide

����

Printed in USA

SC23-9421-02

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

ix

Ve
rs

io
n

3.
50

IB
M

In

fo
rm

ix

JD

BC

Dr

iv
er

Pr

og
ra

m
m

er
’s

Gu

id
e

�
�

�

	Contents
	Introduction
	In This Introduction
	IBM Informix Java Documentation
	About This Publication
	Supplementary JDBC Documentation
	Material Not Covered
	Types of Users
	Software Dependencies
	JDBC 3.00 Specification Compliance
	Assumptions About Your Locale

	What's New in IBM Informix JDBC Driver, Version 3.50
	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	How to Provide Documentation Feedback

	Chapter 1. Getting Started
	In This Chapter
	What Is JDBC?
	What Is a JDBC Driver?
	Overview of IBM Informix JDBC Driver
	Classes Implemented in IBM Informix JDBC Driver
	Informix Classes That Implement Java Interfaces
	Informix Classes that Extend the Java Specification
	Informix Classes That Provide Support Beyond the Java Specification
	Using UDTManager and UDRManager Classes with JDK Version 1.4, and later

	Files in IBM Informix JDBC Driver
	Client- and Server-Side JDBC Drivers

	Obtaining the JDBC Driver
	Installing the JDBC Driver
	Installing JDBC Driver in Graphical or Console mode
	Installing Informix JDBC Driver in Silent Mode

	Logging Installation Events
	Logging Examples

	Using the Driver in an Application
	Using the Driver in an Applet
	Uninstalling the JDBC Driver
	Uninstalling in Graphical or Console Mode
	Uninstalling in Silent Mode

	Chapter 2. Connecting to the Database
	In This Chapter
	Loading IBM Informix JDBC Driver
	Using a DataSource Object
	Using the DriverManager.getConnection() Method
	Format of Database URLs
	IP Address in Connection URLs

	Database Versus Database Server Connections
	Specifying Properties

	Using Informix Environment Variables with the IBM Informix JDBC Driver
	Dynamically Reading the Informix sqlhosts File
	Connection Property Syntax
	Administration Requirements
	Utilities to Update the LDAP Server with sqlhosts Data
	SqlhUpload
	SqlhDelete

	Using High-Availability Data Replication
	Secondary Server Connection Properties
	Connecting to Group Entries in an HDR Pair
	Checking for Read-Only Status
	Retrying Connections

	Using an HTTP Proxy Server
	Configuring Your Environment to Use a Proxy Server
	Specifying a Timeout

	Using the Proxy with an LDAP Server
	Specifying Where LDAP Lookup Occurs

	Specifying sqlhosts File Lookup

	Using Other Multitier Solutions
	Encryption Options
	Using the Sun JCE Security Package
	Using the IBM FIPS-compliant Security Package
	Using Password Encryption
	Configuring the Database Server

	Using Network Encryption
	Network Encryption Syntax
	Using Option Tags
	Using Option Parameters
	Configuring the Encryption CSM in the Server

	Using Single Sign-on Access Control with the Informix JDBC Driver
	PAM Authentication Method
	Using PAM in JDBC

	Closing the Connection

	Chapter 3. Performing Database Operations
	In This Chapter
	Querying the Database
	Example of Sending a Query to an Informix Database
	Using Result Sets
	Scrollable Result Set for Multiple Rows

	Deallocating Resources
	Executing Across Threads
	Using Scroll Cursors
	Scroll Sensitivity
	Client-Side Scrolling
	Result Set Updatability

	Using Hold Cursors

	Updating the Database
	Performing Batch Updates
	SQL Statements and Batch Updates
	Return Value from Statement.executeBatch() Method

	Performing Bulk Inserts

	Parameters, Escape Syntax, and Unsupported Methods
	Using CallableStatement OUT Parameters
	Server and Driver Restrictions and Limitations

	Named Parameters in a CallableStatement
	Requirements and Restrictions for Named Parameters in a CallableStatement
	Retrieving Parameter Names for Stored Procedures
	Named Parameters and Unique Stored Procedures
	Named Parameters and Overloaded Stored Procedures

	JDBC Support for DESCRIBE INPUT
	Using Escape Syntax
	Unsupported Methods and Methods that Behave Differently

	Handling Transactions
	Handling Errors
	Handling Errors With the SQLException Class
	Retrieving the Syntax Error Offset
	Catching RSAM Error Messages

	Handling Errors with the com.informix.jdbc.Message Class

	Accessing Database Metadata
	Other Informix Extensions to the JDBC API
	Using the Auto Free Feature
	Obtaining Driver Version Information

	Storing and Retrieving XML Documents
	Setting Up Your Environment to Use XML Methods
	Setting Your CLASSPATH
	Specifying a Parser Factory

	Inserting Data
	Retrieving Data
	Inserting Data Examples
	XMLtoString() Examples
	XMLtoInputStream() Example

	Retrieving Data Examples
	StringtoDOM() Example
	InputStreamtoDOM() Example
	getInputSource() Examples

	Chapter 4. Working With Informix Types
	In This Chapter
	Distinct Data Types
	Inserting Data Examples
	Retrieving Data Example
	Unsupported Methods

	BYTE and TEXT Data Types
	Caching Large Objects
	Example: Inserting or Updating Data
	Example: Selecting Data

	SERIAL and SERIAL8 Data Types
	BIGINT and BIGSERIAL Data Types
	INTERVAL Data Type
	The Interval Class
	Using Variables for Binary Qualifiers
	Using Interval Methods

	The IntervalYM Class
	Using IntervalYM Constructors
	Using IntervalYM Methods

	The IntervalDF Class
	Using IntervalDF Constructors
	Using IntervalDF Methods

	Interval Example

	Collections and Arrays
	Collection Examples
	Array Example

	Named and Unnamed Rows
	Interval and Collection Support
	Unsupported Methods
	Using the SQLData Interface
	SQLData Examples

	Using the Struct Interface
	Struct Examples

	Using the ClassGenerator Utility
	Simple Named Row Example
	Nested Named Row Example

	Caching Type Information
	Smart Large Object Data Types
	Smart Large Objects in the Database Server
	Smart Large Objects in a Client Application
	Steps for Creating Smart Large Objects
	Steps for Accessing Smart Large Objects

	Performing Operations on Smart Large Objects
	Opening a Smart Large Object
	Positioning Within a Smart Large Object
	Reading from a Smart Large Object
	Writing to a Smart Large Object
	Truncating a Smart Large Object
	Measuring a Smart Large Object
	Closing and Releasing a Smart Large Object
	Converting IfxLocator to a Hexadecimal String

	Working with Storage Characteristics
	Using System-Specified Storage Characteristics
	Working with Disk-Storage Information
	Working with Logging, Last-Access Time, and Data Integrity
	Changing the Storage Characteristics

	Working with Status Characteristics
	Working with Locks
	Using Byte-Range Locking

	Caching Large Objects
	Smart Large Object Examples
	Creating a Smart Large Object
	Inserting Data into a Smart Large Object
	Retrieving Data from a Smart Large Object

	Chapter 5. Working with Opaque Types
	In This Chapter
	Using the IfmxUDTSQLInput Interface
	Reading Data
	Positioning in the Data Stream
	Setting or Obtaining Data Attributes

	Using the IfmxUDTSQLOutput Interface
	Mapping Opaque Data Types
	Caching Type Information
	Unsupported Methods
	Creating Opaque Types and UDRs
	Overview of Creating Opaque Types and UDRs
	Preparing to Create Opaque Types and UDRs
	Steps to Creating Opaque Types
	Steps to Creating UDRs
	Requirements for the Java Class
	SQL Names
	Specifying Characteristics for an Opaque Type
	Specifying Field Count
	Specifying Additional Field Characteristics
	Specifying Length
	Specifying Alignment
	Alignment Values
	Specifying SQL Names
	Specifying the Java Class Name
	Specifying Java Source File Retention

	Creating the JAR and Class Files
	Creating the .class and .java Files
	Creating the .jar File

	Sending the Class Definition to the Database Server
	Specifying Deployment Descriptor Actions
	Specifying a JAR File Temporary Path

	Creating an Opaque Type from Existing Code
	Using setXXXCast() Methods
	Using setSupportUDR() and setUDR()

	Removing Opaque Types and JAR Files
	Creating UDRs
	Removing UDRs and JAR Files
	Removing Overloaded UDRs

	Obtaining Information About Opaque Types and UDRs
	getXXX() Methods in the UDTMetaData Class
	getXXX() Methods in the UDRMetaData Class

	Executing in a Transaction

	Examples
	Class Definition
	Inserting Data
	Retrieving Data
	Using Smart Large Objects Within an Opaque Type
	Creating an Opaque Type from an Existing Java Class with UDTManager
	Creating an Opaque Type Using Default Support Functions
	Creating an Opaque Type Using Support Functions You Supply

	Creating an Opaque Type Without an Existing Java Class
	Creating UDRs with UDRManager

	Chapter 6. Internationalization and Date Formats
	In This Chapter
	Support for JDK and Internationalization
	Support for IBM Informix GLS Variables
	Support for DATE End-User Formats
	GL_DATE Variable
	DBDATE Variable
	DBCENTURY Variable

	Precedence Rules for End-User Formats
	Support for Code-Set Conversion
	Unicode to Database Code Set
	Unicode to Client Code Set
	Connecting to a Database with Non-ASCII Characters
	Code-Set Conversion for TEXT and CLOB Data Types
	Converting Using the IFX_CODESETLOB Environment Variable
	Converting Using JDK Methods

	Code-Set Conversion for BLOB and BYTE Data Types

	User-Defined Locales
	Connecting with the NEWLOCALE and NEWCODESET Environment Variables
	Connecting with the NEWNLSMAP Environment Variable

	Support for Localized Error Messages

	Chapter 7. Tuning and Troubleshooting
	In This Chapter
	Debugging Your JDBC API Program
	Managing Performance
	The FET_BUF_SIZE and BIG_FET_BUF_SIZE Environment Variables
	Managing Memory for Large Objects
	Reducing Network Traffic
	Using Bulk Inserts
	Using a Connection Pool
	Deploying a ConnectionPoolDataSource Object
	Tuning the Connection Pool Manager
	Using High-Availability Data Replication with Connection Pooling
	Cleaning Pooled Connections
	Managing Connections

	Appendix A. Sample Code Files
	Appendix B. DataSource Extensions
	Appendix C. Mapping Data Types
	Appendix D. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Dotted Decimal Syntax Diagrams

	Error Messages
	Notices
	Trademarks

	Index

