
IBM Informix

IBM Informix User-Defined Routines and Data Types

Developer’s Guide

Version 11.50

SC23-9438-00

���

IBM Informix

IBM Informix User-Defined Routines and Data Types

Developer’s Guide

Version 11.50

SC23-9438-00

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page B-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . ix

In This Introduction . ix

About This Publication . ix

Types of Users . ix

Software Dependencies . ix

Assumptions About Your Locale . x

Demonstration Databases . x

Documentation Conventions . x

Typographical Conventions . x

Feature, Product, and Platform Markup . xi

Example Code Conventions . xi

Additional Documentation . xii

Compliance with Industry Standards . xii

How to Provide Documentation Feedback . xii

Chapter 1. Extending the Database Server . 1-1

In This Chapter . 1-1

Creating User-Defined Routines . 1-1

Extending Built-In Data Types . 1-2

Extending Operators . 1-2

Building Opaque Data Types . 1-3

Extending Operator Classes . 1-3

Routine Management . 1-3

Chapter 2. Using a User-Defined Routine . 2-1

In This Chapter . 2-1

User-Defined Routines . 2-1

SPL Routines . 2-1

External-Language Routines . 2-2

Information About User-Defined Routines . 2-2

Tasks That You Can Perform with User-Defined Routines . 2-3

Extending Data Type Support . 2-3

Supporting User-Defined Data Types . 2-3

Creating an End-User Routine . 2-9

Invoking a User-Defined Routine . 2-11

Chapter 3. Running a User-Defined Routine 3-1

In This Chapter . 3-1

Invoking a UDR in an SQL Statement . 3-1

Invoking a UDR with an EXECUTE Statement . 3-2

Invoking a User-Defined Function in an Expression . 3-2

Invoking a Function That Is Bound to an Operator . 3-3

Named Parameters and UDRs . 3-3

Invoking a UDR in an SPL Routine . 3-3

Executing a User-Defined Routine . 3-4

Parsing the SQL Statement . 3-4

Optimizing the SQL Statement . 3-4

Executing a UDR Across Databases of the Same Database Server Instance 3-4

Executing the Routine . 3-5

Understanding Routine Resolution . 3-8

The Routine Signature . 3-8

Overloading Routines . 3-9

The Routine-Resolution Process . 3-11

Routine Resolution with User-Defined Data Types . 3-15

Null Arguments in Overloaded Routines . 3-18

© Copyright IBM Corp. 1996, 2008 iii

Chapter 4. Developing a User-Defined Routine 4-1

In This Chapter . 4-1

Planning the Routine . 4-1

Naming the Routine . 4-2

Defining Routine Parameters . 4-2

Returning Values . 4-4

Naming Return Parameters . 4-6

Using an Iterator Function . 4-7

Adhering to Coding Standards . 4-14

Writing the Routine . 4-15

Creating a User-Defined Interface for XA Data Sources 4-15

Registering a User-Defined Routine . 4-16

Privileges Required to Create a Routine . 4-17

Creating an SPL Routine . 4-18

Creating an External-Language Routine . 4-20

Reviewing Information about User-Defined Routines . 4-23

Using a UDR With HDR . 4-24

Chapter 5. Extending Data Types . 5-1

In This Chapter . 5-1

Understanding the Data Type System . 5-1

Understanding Data Types . 5-2

Built-In Data Types . 5-2

Extended Data Types . 5-5

Extending the Data Type System . 5-8

Operations . 5-8

Casts . 5-8

Operator Classes . 5-9

Optimizer Information . 5-9

Chapter 6. Extending Operators and Built-In Functions 6-1

In This Chapter . 6-1

Operators and Operator Functions . 6-1

Arithmetic Operators . 6-2

Text Operators . 6-2

Relational Operators . 6-2

Overloading an Operator Function . 6-3

Built-In Functions . 6-3

Built-In Functions That You Can Overload . 6-3

Built-In Functions That You Cannot Overload . 6-4

Overloading a Built-In Function . 6-4

Chapter 7. Creating User-Defined Casts . 7-1

In This Chapter . 7-1

Understanding Casts . 7-1

Built-In Casts . 7-1

User-Defined Casts . 7-1

Casts That You Cannot Create . 7-2

Creating a User-Defined Cast . 7-2

Choosing the Kind of User-Defined Cast . 7-3

Choosing the Cast Mechanism . 7-4

Defining the Direction of the Cast . 7-6

Dropping a Cast . 7-7

Chapter 8. Creating User-Defined Aggregates 8-1

In This Chapter . 8-1

Extending Existing Aggregates . 8-2

Overloading Operators for Built-In Aggregates . 8-2

Extending an Aggregate . 8-2

Example of Extending a Built-In Aggregate . 8-3

iv IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating User-Defined Aggregates . 8-3

Support Functions . 8-4

Resolving the Support Functions . 8-6

Support-Function States . 8-7

Using C or Java Support Functions . 8-7

Example of a User-Defined Aggregate . 8-8

Managing Aggregates . 8-10

Parallel Execution of Aggregates . 8-10

Privileges for User-Defined Aggregates . 8-10

Aggregate Information in the System Catalog . 8-11

Aggregate Information from the Command Line . 8-11

Dropping an Aggregate . 8-11

Chapter 9. Creating an Opaque Data Type . 9-1

In This Chapter . 9-1

Opaque Data Types . 9-2

The Internal Structure . 9-2

Support Functions . 9-3

Advantages of Opaque Data Types . 9-4

Creating an Opaque Data Type . 9-4

Creating the Internal Structure in C . 9-5

Creating UDT-to-Java Mappings . 9-7

Writing and Registering the Support Functions . 9-7

Registering the Opaque Data Type with the Database . 9-7

Granting Privileges for an Opaque Data Type . 9-9

Creating SQL-Invoked Functions . 9-10

Customizing Access Methods . 9-13

Using the Generic B-Tree . 9-14

Using Other Access Methods . 9-14

Other Operations on Opaque Data Types . 9-15

Accessing an Opaque Data Type . 9-15

Dropping an Opaque Data Type . 9-15

Chapter 10. Writing Support Functions . 10-1

In This Chapter . 10-1

Writing Support Functions . 10-1

Identifying Support Functions . 10-2

Choosing Function Parameters . 10-3

Setting Privileges for Support Functions . 10-4

Data Types for Support Functions . 10-4

The LVARCHAR Data Type . 10-5

The SENDRECV Data Type . 10-5

Handling the External Representation . 10-5

Input Support Function . 10-6

Output Support Function . 10-7

Handling the Internal Representation . 10-9

The Send and Receive Support Functions . 10-9

Performing Bulk Copies . 10-12

Import and Export Support Functions . 10-12

Importbinary and Exportbinary Support Functions . 10-13

The Stream Support Functions . 10-15

Inserting and Deleting Data . 10-15

The assign() Function . 10-16

The destroy() Function . 10-16

The update() Function . 10-17

The deepcopy() Function . 10-17

Handling Smart Large Objects . 10-18

Comparing Data . 10-19

Handling Locale-Sensitive Data (GLS) . 10-20

Locale-Sensitive Input and Output Support Functions 10-21

Contents v

Locale-Sensitive Receive and Send Support Functions 10-21

Using Operating System Functions . 10-21

Chapter 11. Extending an Operator Class . 11-1

In This Chapter . 11-1

Using Operator Classes . 11-1

Secondary-Access Methods . 11-1

Operator Classes . 11-2

Extending an Existing Operator Class . 11-4

Extensions of the btree_ops Operator Class . 11-5

Reasons for Extending btree_ops . 11-6

Creating an Operator Class . 11-8

Creating a New B-Tree Operator Class . 11-9

Creating an Absolute-Value Operator Class . 11-10

Defining an Operator Class for Other Secondary-Access Methods 11-11

Dropping an Operator Class . 11-11

Chapter 12. Managing a User-Defined Routine 12-1

In This Chapter . 12-1

Assigning the Execute Privilege to a Routine . 12-1

Granting and Revoking the Execute Privilege . 12-1

Privileges on Objects Associated with a UDR . 12-2

Executing a UDR as DBA . 12-3

Using DBA Privileges with Objects and Nested UDRs 12-3

Modifying a User-Defined Routine . 12-4

Modifying a C UDR . 12-5

Modifying a Java UDR . 12-6

Altering a User-Defined Routine . 12-6

Dropping a User-Defined Routine . 12-6

Chapter 13. Improving UDR Performance . 13-1

In This Chapter . 13-2

Optimizing a User-Defined Routine . 13-2

Optimizing an SPL Routine . 13-2

Updating Statistics for an SPL Routine . 13-3

Optimizing Functions in SQL Statements . 13-4

Calculating the Query Plan . 13-5

Specifying Cost and Selectivity . 13-5

Calculating Cost . 13-6

Selectivity and Cost Examples . 13-6

Extending UPDATE STATISTICS . 13-7

Using UPDATE STATISTICS . 13-7

Support Functions for UPDATE STATISTICS . 13-8

Using Negator Functions . 13-9

Using a Virtual-Processor Class . 13-10

Choosing a Virtual-Processor Class . 13-11

Using Virtual Processors with UDRs Written in C . 13-12

Managing Virtual Processors . 13-13

Parallel UDRs . 13-13

Executing UDRs in Parallel . 13-14

Enabling Parallel UDRs . 13-18

Setting the Number of Virtual Processors . 13-19

Monitoring Parallel UDRs . 13-20

Memory Considerations . 13-20

Memory Durations for C UDRs . 13-21

Stack-Size Considerations (Ext) . 13-21

Virtual-Memory Cache for Routines . 13-22

I/O Considerations . 13-23

Isolating System Catalog Tables . 13-23

Balancing the I/O Activities . 13-23

vi IBM Informix User-Defined Routines and Data Types Developer’s Guide

Appendix. Accessibility . A-1

Accessibility features for IBM Informix Dynamic Server . A-1

Accessibility Features . A-1

Keyboard Navigation . A-1

Related Accessibility Information . A-1

IBM and Accessibility . A-1

Notices . B-1

Trademarks . B-3

Index . X-1

Contents vii

viii IBM Informix User-Defined Routines and Data Types Developer’s Guide

Introduction

In This Introduction . ix

About This Publication . ix

Types of Users . ix

Software Dependencies . ix

Assumptions About Your Locale . x

Demonstration Databases . x

Documentation Conventions . x

Typographical Conventions . x

Feature, Product, and Platform Markup . xi

Example Code Conventions . xi

Additional Documentation . xii

Compliance with Industry Standards . xii

How to Provide Documentation Feedback . xii

In This Introduction

This introduction provides an overview of the information in this publication and

describes the conventions it uses.

About This Publication

This publication describes how to define new data types and enable user-defined

routines (UDRs) to extend IBM Informix Dynamic Server. It describes the tasks you

must perform to extend operations on data types, to create new casts, to extend

operator classes for secondary-access methods, to write opaque data types, and to

create and register routines.

Types of Users

This publication is written for the following users:

v Database-application programmers

v DataBlade® module developers

This publication assumes that you have the following background:

v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides

v Experience working with relational databases or exposure to database concepts

v Experience with computer programming

If you have limited experience with relational databases, SQL, or your operating

system, refer to the IBM Informix Dynamic Server Getting Started Guide for a list of

supplementary titles.

Software Dependencies

This publication assumes that you are using IBM Informix Dynamic Server, Version

11.50, as your database server.

© Copyright IBM Corp. 1996, 2008 ix

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All

culture-specific information is brought together in a single environment, called a

Global Language Support (GLS) locale.

This manual assumes that you use the U.S. 8859-1 English locale as the default

locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX® platforms or en_us.1252

(Microsoft® 1252) for Windows environments. This locale supports U.S. English

format conventions for dates, times, and currency, and also supports the ISO

8859-1 or Microsoft 1252 code set, which includes the ASCII code set plus many

8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if

you want to conform to the nondefault collation rules of character data, you need

to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other

considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration Databases

The DB-Access utility, which is provided with your IBM Informix database server

products, includes one or more of the following demonstration databases:

v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM

Informix manuals are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The

superstores_demo database includes examples of extended data types, type and

table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,

see the IBM Informix DB–Access User’s Guide. For descriptions of the databases and

their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the

$INFORMIXDIR/bin directory on UNIX platforms and in the

%INFORMIXDIR%\bin directory in Windows environments.

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM® Informix® Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

x IBM Informix User-Defined Routines and Data Types Developer’s Guide

Convention Meaning

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using an SQL API, you must use EXEC SQL

Introduction xi

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement. If you are using DB–Access, you must delimit multiple

statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/
pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

Feedback at the bottom of the page, fill out the form, and submit your feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xii IBM Informix User-Defined Routines and Data Types Developer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

Chapter 1. Extending the Database Server

In This Chapter . 1-1

Creating User-Defined Routines . 1-1

Extending Built-In Data Types . 1-2

Extending Operators . 1-2

Building Opaque Data Types . 1-3

Extending Operator Classes . 1-3

Routine Management . 1-3

In This Chapter

This publication discusses extending IBM Informix Dynamic Server by using

user-defined routines (UDRs) and user-defined data types (UDTs). You can use UDRs

and never use a UDT. Conversely, you can use UDTs and never use UDRs.

However, many of the ways that you extend data types require that you write

routines to support those extensions.

This chapter summarizes the organization of the chapters in this book and

describes which portion of the book you will need to use, depending on your

goals. This chapter contains these sections:

v “Creating User-Defined Routines”

v “Extending Built-In Data Types” on page 1-2

v “Extending Operators” on page 1-2

v “Building Opaque Data Types” on page 1-3

v “Extending Operator Classes” on page 1-3

v “Routine Management” on page 1-3

Creating User-Defined Routines

Extending the database server frequently requires that you create UDRs to support

the extensions. A routine is a collection of program statements that perform a

particular task. A UDR is a routine that you create that can be invoked in an SQL

statement, by the database server, or from another UDR.

The next three chapters in this publication discuss the basic aspects of the creation

and use of UDRs:

v Chapter 2, “Using a User-Defined Routine,” on page 2-1

v Chapter 3, “Running a User-Defined Routine,” on page 3-1

v Chapter 4, “Developing a User-Defined Routine,” on page 4-1

The Informix database server supports UDRs in the following languages:

v Stored Procedure Language (SPL)

v The C programming language

v The Java™ programming language

If you create applications with Visual Studio 2005, you must embed the manifest in

the executables and DLLs.

Use this command to embed a manifest file in a DLL:

© Copyright IBM Corp. 1996, 2008 1-1

mt.exe -manifest manifest_filename -outputresource:dll_name;2

Use this command to embed a manifest file in an executable file:

mt.exe -manifest manifest_filename -outputresource:dll_name;1

For more information about manifests, see the Microsoft web site.

Extending Built-In Data Types

Built-in data types are provided by the database server. The database server

already has functions for retrieving, storing, manipulating, and sorting built-in data

types.

You can extend built-in data types in the following ways:

v Creating complex data types based on built-in data types

v Creating UDTs (distinct and opaque data types)

v Extending the operations that are allowed for both built-in data types and

extended data types

Chapter 5, “Extending Data Types,” on page 5-1, describes the data type system

that the database uses and documents how to extend the database server by

building UDTs that are based on built-in data types. The IBM Informix Database

Design and Implementation Guide also discusses UDTs that are based on built-in data

types.

Extending Operators

When you build a UDT, either by extending a built-in data type or by creating an

opaque data type, you must provide for the operations that the data type uses. An

operation is a task that the database server performs on one or more values.

You can write special-purpose routines that extend the built-in operations of the

database. The manual discusses the following specific types of operators in detail:

v Arithmetic and relational operators

The database server provides operator symbols (+, -, =, > and so on) and built-in

functions such as cos() and abs(). You can extend these operators for extended

data types.

Chapter 6, “Extending Operators and Built-In Functions,” on page 6-1, discusses

general aspects of extending an operation and describes how to extend operator

symbols and built-in functions.

v Casts

The database server provides casts for the built-in data types. When you use

UDTs, you usually need to provide casts.

Chapter 7, “Creating User-Defined Casts,” on page 7-1, describes how to create

casts. The IBM Informix Database Design and Implementation Guide discusses how

to use casts.

v Aggregates

An aggregate produces one value that summarizes some aspect of a selected

column; for example, the average or the count. You can extend aggregates in two

ways:

– Create a new aggregate, such as an aggregate that provides the sum of the

square of each value in the column.

1-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

– Extend an existing aggregate, such as AVG or COUNT, to include data types

that you have defined.
Creating a user-defined aggregate and extending an existing aggregate for

extended data types require different techniques. For information about both

techniques, refer to Chapter 8, “Creating User-Defined Aggregates,” on page 8-1.

Building Opaque Data Types

An opaque data type is an atomic, or fundamental, data type that you define for the

database. The database server has no information about the opaque data type until

you provide routines that describe it. As you build an opaque data type, you need

to consider the following topics:

v How the information in the opaque data type is organized

v How to store and retrieve the data type

v What the standard operations mean with respect to the opaque data type:

– What does it mean to add two pieces of data? Is it even possible to add the

data?

– When is one data item larger than another?

– Can you relate this data to built-in data types?
v What unique operations this data has:

– Does this data type allow you to find a picture?

– Can you say that one data item is inside another?

Chapter 9, “Creating an Opaque Data Type,” on page 9-1, describes the basic steps

for creating an opaque data type. Chapter 10, “Writing Support Functions,” on

page 10-1, describes the support functions that an opaque data type uses.

Creating an opaque type and all of the routines that are required to support it is a

major task. Theoretically, you could sit down and write all of the required routines.

However, it is recommended that you use the IBM Informix DataBlade Developers

Kit (DBDK) because DBDK enforces standards that facilitate migration between

different versions of the database server.

A DataBlade module is a group of database objects and supporting code that

manages user-defined data or adds new features. A DataBlade module can include

extended data types, routines, casts, aggregates, access methods, SQL code, client

code, and installation programs. DataBlade modules that support various

special-purpose opaque data types are provided. To find out what DataBlade

modules are available, contact your sales representative.

Extending Operator Classes

An operator class is a set of functions that is associated with building an index.

Chapter 11, “Extending an Operator Class,” on page 11-1, describes how to create a

user-defined operator class and how to extend an existing operator class.

Routine Management

Chapter 12, “Managing a User-Defined Routine,” on page 12-1, covers the

following topics:

v Assigning Execute privilege to a UDR

v Reloading a UDR

Chapter 1. Extending the Database Server 1-3

v Altering a UDR

v Dropping a UDR

Chapter 13, “Improving UDR Performance,” on page 13-1, discusses ways that you

can optimize the performance of your UDR.

1-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 2. Using a User-Defined Routine

In This Chapter . 2-1

User-Defined Routines . 2-1

SPL Routines . 2-1

External-Language Routines . 2-2

Information About User-Defined Routines . 2-2

Tasks That You Can Perform with User-Defined Routines . 2-3

Extending Data Type Support . 2-3

Supporting User-Defined Data Types . 2-3

Cast Functions . 2-4

End-User Routines . 2-5

Aggregate Functions . 2-5

Operator Functions . 2-6

Operator-Class Functions . 2-7

Optimization Functions . 2-8

Opaque Data Type Support Functions . 2-8

Access-Method Purpose Functions . 2-9

Creating an End-User Routine . 2-9

Encapsulating Multiple SQL Statements . 2-9

Creating Triggered Actions . 2-10

Restricting Access to a Table (SPL) . 2-11

Creating Iterators . 2-11

Invoking a User-Defined Routine . 2-11

Explicit Invocation . 2-11

Implicit Invocation . 2-11

In This Chapter

This chapter introduces user-defined routines (UDRs) and covers the following

topics:

v User-Defined Routines

v Tasks That You Can Perform with User-Defined Routines

User-Defined Routines

A UDR can either return values or not, as follows:

v A user-defined function returns one or more values and therefore can be used in

SQL expressions.

Use the CREATE FUNCTION statement to register the UDR in the system

catalog tables.

v A user-defined procedure is a routine that does not return any values. You cannot

use a procedure in SQL expressions because it does not return a value.

Use the CREATE PROCEDURE statement to register the UDR in the system

catalog tables.

SPL Routines

Stored Procedure Language (SPL) is part of the database server. Many of the

examples in this book are shown in SPL because it is simple to use and requires no

support outside the database server.

SPL provides flow-control extensions to SQL. An SPL routine is a UDR that is

written in SPL and SQL. The body of an SPL routine contains SQL statements and

© Copyright IBM Corp. 1996, 2008 2-1

flow-control statements for looping and branching. For information on the syntax

of SPL statements, see the IBM Informix Guide to SQL: Syntax. For an explanation of

how to use SPL statements, refer to the IBM Informix Guide to SQL: Tutorial.

The database server parses and optimizes an SPL routine and stores it in the

system catalog tables in executable format. If possible, use SPL routines for

SQL-intensive tasks.

For more information, see “Creating an SPL Routine” on page 4-18.

External-Language Routines

An external-language routine is a UDR that is written in an external language. The

body of an external-language routine contains statements for operations such as

flow control and looping, as well as special Informix library calls to access the

database server. Therefore, you must use the appropriate compilation tool to parse

and compile an external-language routine into an executable format.

The database server supports UDRs written in C and in Java.

v Routines in C

To execute SQL statements in C UDRs, you must use the DataBlade API. You

cannot use ESQL/C in C UDRs.

To write routines in C, you need a C compiler. For information about how to

write UDRs in C, refer to the IBM Informix DataBlade API Programmer’s Guide and

the IBM Informix DataBlade API Function Reference.

v Routines in Java

To write Java routines, you must have IBM Informix Dynamic Server with

J/Foundation. You also need the Java Development Kit (JDK) to compile your

Java routines.

For information about how to write Java UDRs, refer to the J/Foundation

Developer’s Guide.

Important: It is recommended that you use the DBDK to develop UDRs in

external languages because the DBDK enforces standards that facilitate

migration between different versions of the database server.

Information About User-Defined Routines

The database server stores information about UDRs in the following system catalog

tables:

v The sysprocedures system catalog table contains information about the UDR,

such as its name, owner, and whether it is a user-defined function or

user-defined procedure.

v The sysprocbody system catalog table contains the actual code of SPL routines.

v The sysprocauth system catalog table contains information on which users of the

database server can execute a particular UDR.

The CREATE FUNCTION and CREATE PROCEDURE statements do not provide

the actual code that makes up the external routine. Instead, they store information

about the external routine (including the name of its executable file) in the

sysprocedures system catalog table. Therefore, unlike SPL routines, the code for

the body of an external routine does not reside in the system catalog of the

database.

2-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The database server stores information on external languages that it supports for

UDRs in the following system catalog tables:

v The sysroutinelangs system catalog table contains information about the

external languages.

v The syslangauth system catalog table contains information on which users of the

database server can use a particular external language.

For more information, see “Creating an External-Language Routine” on page 4-20.

Tasks That You Can Perform with User-Defined Routines

You can write UDRs to accomplish the following kinds of tasks:

v Extend support for built-in or UDTs

v Provide the end user with new functionality, called an end-user routine

The following sections summarize the tasks that a UDR can perform. For

information on how to create a UDR, see Chapter 4, “Developing a User-Defined

Routine,” on page 4-1.

Extending Data Type Support

Dynamic Server provides support for the following kinds of UDRs.

UDR Task

SPL

Routines

C

Routines

Java

Routines

For More

Information

Cast function Yes Yes Yes Chapter 7

Cost function No Yes No Chapter 13

End-user routine Yes Yes Yes page 2-9

Iterator function No Yes Yes Chapter 4

Negator function Yes Yes Yes Chapter 13

Opaque data type support

function

No Yes Yes Chapter 9

Operator function Yes Yes Yes Chapter 6

Operator-class function No Yes No Chapter 11

Parallelizable UDR No Yes Yes Chapter 13

Statistics function No Yes Yes Chapter 13

Selectivity function No Yes No Chapter 13

User-defined aggregate Yes Yes Yes

(with some

limitations)

Chapter 8

Tip: When you want to perform an iteration in SPL, use the WITH RESUME

keywords.

To extend the support for one of these kinds of functions, you can write your own

version of the appropriate function and register it with the database.

Supporting User-Defined Data Types

When you create UDTs, you also provide the following routines:

Chapter 2. Using a User-Defined Routine 2-3

v Support functions that the database server invokes implicitly to operate on the

data types

v Cast functions that the database server can invoke implicitly or that users can

specify explicitly in SQL statements to convert data from one data type to

another

v Optional operator-class functions that extend an index method, such as B-tree or

R-tree, to manage the new type

v Optional additional routines that other support functions or the end user can

call

Cast Functions

A cast performs a conversion between two data types. The database server allows

you to write your own cast functions to perform casts. The following sections

summarize how you can extend a cast function for built-in and UDTs. For more

information on how to extend casts, refer to Chapter 7, “Creating User-Defined

Casts,” on page 7-1.

Tip: If a DataBlade module defines a data type, it might also provide cast

functions between this data type and other data types in the database. For

more information on functions that a specific DataBlade module provides,

refer to the user guide for that DataBlade module.

Casting Between Built-In Data Types: The database server provides built-in casts

that perform automatic conversions between certain built-in data types. For more

information on these built-in casts, refer to the IBM Informix Guide to SQL:

Reference.

You cannot create user-defined casts to allow conversions between two built-in

data types for which a built-in cast does not currently exist. For more information

on when you might want to write new cast functions, refer to “Creating a

User-Defined Cast” on page 7-2.

Casting Between Other Data Types: You can create user-defined casts to perform

conversions between most data types, including opaque types, distinct types, row

types, and built-in types. You can write cast functions in SPL or in external

languages. For example, you can define casts for any of the following UDTs:

v Opaque data types

You can create casts to convert a UDT to other data types in the database.

Developers of opaque data types must also provide functions that serve as cast

functions between the internal and external representations of the opaque type.

For more information, see Chapter 9, “Creating an Opaque Data Type,” on page

9-1.

v Distinct data types

The database server cannot directly compare a distinct type to its source type.

However, the database server automatically registers explicit casts from the

distinct type to the source type and conversely. Although a distinct type inherits

the casts and functions of its source type, the casts and functions that you define

on a distinct type are not available to its source type.

v Named row types

You can create casts to convert a named row data type to another type. For

information about how to cast between named row types and unnamed row

types, see the IBM Informix Guide to SQL: Tutorial.

2-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

For more information on how to create and register casts on extended data types,

refer to Chapter 7, “Creating User-Defined Casts,” on page 7-1.

End-User Routines

An end-user routine is an SQL-invoked function that the SQL user can include in an

SQL statement. Such routines provide special functionality that application users

often need. An end-user routine might be as simple as “increase the price of every

item from XYZ Corporation by 5 percent” or something far more complicated.

This section summarizes how you can extend an end-user routine that operates on

the following data types:

v Built-in data types

The database server provides many functions that end users can use in SQL

statements on built-in data types. These functions are called built-in functions to

distinguish them from SQL-invoked functions that you define.

You cannot extend an existing built-in function on a built-in data type that it

supports. However, you can perform the following extensions:

– Define your own end-user routines to provide new or similar functionality.

– Define a UDR that has the same name as a built-in function but operates on a

different built-in data type.
For more information about built-in functions, see Chapter 6, “Extending

Operators and Built-In Functions,” on page 6-1.

v Extended data types

You can write an end-user routine on any data type that is registered in the

database.

For more information about end-user routines, see “Creating an End-User Routine”

on page 2-9.

Aggregate Functions

An aggregate function is an SQL-invoked function that takes values that depend on

all the rows that the query selects and returns information about these rows. The

database server supports aggregate functions that you write, called user-defined

aggregates. You can write user-defined aggregates in SPL or in external languages.

You can extend an aggregate function for built-in and UDTs, as follows:

v The database server provides built-in aggregate functions, such as COUNT,

SUM, or AVG, that operate on built-in data types.

You cannot create a user-defined aggregate that has the same name as a built-in

aggregate and that handles a built-in data type. However, you can define a new

aggregate that operates on a built-in data type.

v When you create a UDT, you can write user-defined aggregates to provide

aggregates that handle this data type. The database server provides two ways to

extend aggregates:

– Extend a built-in aggregate to handle the data type.

You overload the support functions for the built-in aggregate.

– Define a new aggregate.

You write a user-defined aggregate with a name that is different from any

existing aggregate function. You then register a new aggregate in the

database.

Chapter 2. Using a User-Defined Routine 2-5

Tip: If a DataBlade module defines a data type, it might also provide user-defined

aggregate functions on this data type. For more information on functions that

a specific DataBlade module provides, refer to the user guide for that

DataBlade module.

For more information about aggregate functions, see Chapter 8, “Creating

User-Defined Aggregates,” on page 8-1. Aggregate functions use the support

functions to compute the aggregate result. For information on support functions,

see Chapter 10, “Writing Support Functions,” on page 10-1.

Operator Functions

An operator function is an SQL-invoked function that has a corresponding operator

symbol (such as ’=’ or ’+’). These operator symbols are used within expressions in

an SQL statement.

Operator binding is the implicit invocation of an operator function when an operator

symbol is used in an SQL statement. The database server implicitly maps a built-in

operator function name to a built-in operator. For example, you can compare two

values for equality in either of the following ways.

Method of Comparison Operator Used

Operator function equal(value1, value2)

Operator symbol value1 = value2

 The following sections summarize how you can extend an operator on built-in and

UDTs. For more information on how to extend operators, refer to Chapter 6,

“Extending Operators and Built-In Functions,” on page 6-1.

Operators on Built-In Data Types: The database server provides operator

functions that operate on most built-in data types. For a complete list of operator

functions, see Chapter 6, “Extending Operators and Built-In Functions,” on page

6-1. You cannot extend an operator function that operates on a built-in data type.

Operators on User-Defined Data Types: You can extend an existing operator to

operate on a UDT. When you define the appropriate operator function, operator

binding enables SQL statements to use both the function name and its operator

symbol on the UDT. You can write operator functions in SPL or an external

language.

For example, suppose you create a data type, called Scottish, that represents

Scottish names, and you want to order the data type in a different way than the

U.S. English collating sequence. You might want the names McDonald and

MacDonald to appear together on a phone list. The default relational operators (for

example, =) for character strings do not achieve this ordering.

To cause Mc and Mac to appear together, you can create a compare() function that

compares two Scottish-name values and treats Mc and Mac identically. The database

server uses the compare (Scottish, Scottish) function when it compares two

Scottish-name values. If you define a compare() function, you must also define the

greaterthan(), lessthan(), equal() or other functions that use the compare function.

Note: Routine overloading is the ability to use the same name for multiple functions

to handle different data types.

For more information, refer to “Overloading Routines” on page 3-9.

2-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Tip: The relational operators (such as =) are the operator-class functions of the

built-in secondary-access method, the generic B-tree. Therefore, if you redefine

the relational operators to handle a UDT, you also enable that type to be used

in a B-tree index. For more information, see Operator-Class Functions in the

following section.

Operator-Class Functions

An operator class is the set of operators that the database server associates with a

secondary-access method for query optimization and building the index. A

secondary-access method (sometimes referred to as an index-access method) is a set

of database server functions that build, access, and manipulate an index structure

such as a B-tree, an R-tree, or an index structure that a DataBlade module

provides.

The query optimizer uses an operator class to determine if an index can be

considered in the cost analysis of query plans. The query optimizer can consider

use of the index for the given query when the following conditions are true:

v An index exists on the particular column or columns in the query.

v For the index that exists, the operation on the column or columns in the query

matches one of the operators in the operator class that is associated with the

index.

For more information on how to optimize queries with UDRs, refer to “Optimizing

a User-Defined Routine” on page 13-2. For more information on how to extend

operator classes, refer to “Extending an Existing Operator Class” on page 11-4.

Tip: If a DataBlade module provides a secondary-access method, it might also

provide operator classes with the strategy and support functions. For more

information on functions that a specific DataBlade module provides, refer to

the user guide for that DataBlade module.

Operator-Class Functions on Built-In Data Types: The database server provides

the default operator class for the built-in secondary-access method, the generic

B-tree. These operator-class functions handle the built-in data types. You can write

new operator-class functions that operate on built-in data types if you want to do

the following:

v Extend the default operator class for the generic B-tree to redefine the ordering

scheme that these operators support.

The compare() function implements the ordering scheme for a B-tree index. The

strategy functions (greaterthan(), lessthan(), and so on) let the query optimizer

use the index for optimizing SQL statements. If you define a compare() function,

you must also define the greaterthan(), lessthan(), or other functions that use the

compare function.

Because of routine overloading, these functions can have the same name as the

functions in the default operator class. For more information, refer to

“Overloading Routines” on page 3-9.

v Define a new operator class to provide an entirely new set of operators that

operate on the built-in data type.

You write operator-class functions with names that are different from any

existing operating-class functions associated with the secondary-access method.

You then register a new operator class that contains these new operators. The

query optimizer can choose an index on this data type when the index uses this

new operator class and the SQL statement contains one of the operators in this

operator class.

Chapter 2. Using a User-Defined Routine 2-7

Operator Classes on User-Defined Data Types: When you create a opaque data

type, you can write operator-class functions to do the following:

v Extend the default operator class for an existing secondary-access method to

handle the indexing scheme that these operators support.

You write operator-class functions with the same names as those in the existing

operator class. These functions extend the existing operator class by

implementing its indexing scheme on the opaque data type. The query optimizer

can choose an index on this data type when the index uses this operator class

and the SQL statement contains one of the operators in this operator class.

Because of routine overloading, these functions can have the same name as the

functions in the default operator class. For more information on routine

overloading, refer to “Overloading Routines” on page 3-9.

v Define a new operator class to provide an entirely new set of operators that

operate on the opaque type.

You supply the support and strategy functions that the access method requires.

These functions define the new operators that the query optimizer can recognize

as associated with the secondary-access method. The requirements for the

support and strategy functions vary from one access method to another. You

must consult the documentation for the access method before defining a new

operator class.

Optimization Functions

Optimization functions help the query optimizer determine the most efficient query

plan for a particular SQL statement. These optimization functions are as follows.

Optimization Function Description

Negator function Specifies the function to use for a NOT condition

that involves a Boolean UDR

Cost function Specifies the cost factor for execution of a

particular UDR

Selectivity function Specifies the percentage of rows for which a

Boolean UDR is expected to return true

Parallel UDR A UDR that can be run in parallel and therefore

can be run in parallel queries

Statistics function Creates distribution statistics for a UDT

 The database server provides optimization functions for the built-in data types.

You can write an optimization function on any UDT that is registered in the

database. You cannot extend existing optimization for built-in types through

optimization functions.

For more information about optimization functions, see Chapter 13, “Improving

UDR Performance,” on page 13-1.

Opaque Data Type Support Functions

When you define a new opaque data type, you provide support functions that

enable the database server to operate on the data type. The database server

requires some support functions, and others are optional. The following list shows

the standard functions that you define to support opaque data types:

v Text input and output routines

v Binary send and receive routines

v Text import and export routines

2-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v Binary import and export routines

For more information on support functions for opaque data types, refer to

Chapter 10, “Writing Support Functions,” on page 10-1.

Access-Method Purpose Functions

An access method is a set of functions that the database server uses to access and

manipulate a table or an index. The two types of access methods are as follows:

v Primary-access methods, which create and manipulate tables

A primary-access method is a set of routines that perform all the operations

needed to make a table available to a database server, such as create, drop,

insert, delete, update, and scan. The database server provides a built-in

primary-access method.

v Secondary-access methods, which create and manipulate indexes

A secondary-access method is a set of routines that perform all the operations

needed to make an index available to a database server, such as create, drop,

insert, delete, update, and scan. The database server provides the B-tree and

R-tree secondary-access methods. For information about R-tree indexes, refer to

the IBM Informix R-Tree Index User’s Guide.

DataBlade modules can provide other primary- and secondary-access methods. For

more information, refer to the IBM Informix Virtual-Table Interface Programmer’s

Guide and the IBM Informix Virtual-Index Interface Programmer’s Guide.

Creating an End-User Routine

You can write end-user routines to accomplish the following tasks:

v Encapsulate multiple SQL statements

v Create triggered actions for multiple applications

v Restrict who can read data, change data, or create objects

v Create iterators

Routines also can accomplish tasks that address new technologies, including the

following ones:

v Manipulate large objects

v Manage new data domains, such as images, web publishing, and spatial

Encapsulating Multiple SQL Statements

You create a routine to simplify writing programs or to improve performance of

SQL-intensive tasks.

Simplifying Programs: A UDR can consolidate frequently performed tasks that

require several SQL statements. Both SPL and external languages offer program

control statements that extend what SQL can accomplish alone. You can test

database values in a UDR and perform the appropriate actions for the values that

the routine finds.

By encapsulating several statements in a single routine that the database server can

call by name, you reduce program complexity. Different programs that use the

same code can execute the same routine, so that you need not include the same

code in each program. The code is stored in only one place, eliminating duplicate

code.

Chapter 2. Using a User-Defined Routine 2-9

Simplifying Changes: UDRs are especially helpful in a client/server

environment. If a change is made to application code, it must be distributed to

every client computer. A UDR resides in the database server, so only database

servers need to be changed.

Instead of centralizing database code in client applications, you create UDRs

routines to move this code to the database server. This separation allows

applications to concentrate on user-interface interaction, which is especially

important if multiple types of user interfaces are required.

Improving Performance Using SPL: Because an SPL routine contains native

database language that the database server parses and optimizes as far as possible

when you create the routine, rather than at runtime, SPL routines can improve

performance for some tasks. SPL routines can also reduce the amount of data

transferred between a client application and the database server.

For more information on performance considerations for SPL routines, refer to

Chapter 13, “Improving UDR Performance,” on page 13-1.

Creating Triggered Actions

An SQL trigger is a database mechanism that executes an action automatically

when a certain event occurs. The event that can trigger an action can be an

INSERT, DELETE, or UPDATE statement on a specific table. The table on which

the triggered event operates is called the triggering table.

An SQL trigger is available to any user who has permission to use it. When the

trigger event occurs, the database server executes the trigger action. The actions

can be any combination of one or more INSERT, DELETE, UPDATE, EXECUTE

PROCEDURE, or EXECUTE FUNCTION statements.

Because a trigger resides in the database and anyone who has the required

privilege can use it, a trigger lets you write a set of SQL statements that multiple

applications can use. It lets you avoid redundant code when multiple programs

need to perform the same database operation. By invoking triggers from the

database, a DBA can ensure that data is treated consistently across application tools

and programs.

When you create a trigger, you can define an INSTEAD OF trigger on a view. An

INSTEAD OF trigger replaces the INSERT, DELETE, or UPDATE trigger event with

a specified trigger action on a view.

You can use triggers to perform the following actions as well as others that are not

found in this list:

v Create an audit trail of activity in the database

For example, you can track updates to the orders table by updating

corroborating information in an audit table.

v Implement a business rule

For example, you can determine when an order exceeds a customer’s credit limit

and display a message to that effect.

v Derive additional data that is not available within a table or within the database

For example, when an update occurs to the quantity column of the items table,

you can calculate the corresponding adjustment to the total_price column.

For more information on triggers, See the IBM Informix Guide to SQL: Tutorial and

the IBM Informix Guide to SQL: Syntax.

2-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Restricting Access to a Table (SPL)

SPL routines offer the ability to restrict access to a table. For example, if a database

administrator grants insert permissions to a user, that user can use Informix

ESQL/C, DB–Access, or an application program to insert a row. This situation

could create a problem if an administrator wants to enforce any business rules.

Using the extra level of security that SPL routines provide, you can enforce

business rules. For example, you might have a business rule that a row must be

archived before it is deleted. You can write an SPL routine that accomplishes both

tasks and prohibits users from directly accessing the table.

Rather than granting insert privileges, an administrator can force users to execute a

routine to perform the insert.

Creating Iterators

An iterator function returns an active set of items. Each iteration of the function

returns one item of the active set. To execute an iterator function, you must

associate the function with a database cursor.

The database server does not provide any built-in iterator functions. However, you

can write iterator functions and register them with the ITERATOR routine modifier.

For more information, see “Using an Iterator Function” on page 4-7.

Invoking a User-Defined Routine

A UDR can be invoked either explicitly or implicitly. For more information, see

Chapter 3, “Running a User-Defined Routine,” on page 3-1.

Explicit Invocation

You can use the EXECUTE PROCEDURE and EXECUTE FUNCTION statements to

execute a UDR from:

v A UDR

v DB-Access

v A client application (such as an ESQL/C application)

In addition, you can use a user-defined function in an SQL expression in the

SELECT clause or WHERE clause. You cannot use a procedure in an SQL

expression because a procedure does not return a value.

Implicit Invocation

The database server can invoke a UDR implicitly for following reasons.

Implicit Call of UDR UDR Called

Built-in operator binding Operator function

Implicit casting Implicit cast function

Opaque-type processing Opaque-type support functions and statistics

functions

Query processing Optimization functions and operator-class functions

Chapter 2. Using a User-Defined Routine 2-11

2-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 3. Running a User-Defined Routine

In This Chapter . 3-1

Invoking a UDR in an SQL Statement . 3-1

Invoking a UDR with an EXECUTE Statement . 3-2

Invoking a Function . 3-2

Using a SELECT Statement in a Function Argument 3-2

Invoking a Procedure . 3-2

Invoking a User-Defined Function in an Expression . 3-2

Invoking a Function That Is Bound to an Operator . 3-3

Named Parameters and UDRs . 3-3

Invoking a UDR in an SPL Routine . 3-3

Executing a User-Defined Routine . 3-4

Parsing the SQL Statement . 3-4

Optimizing the SQL Statement . 3-4

Executing a UDR Across Databases of the Same Database Server Instance 3-4

Executing the Routine . 3-5

Executing an SPL Routine . 3-5

Executing an External Language Routine . 3-6

Understanding Routine Resolution . 3-8

The Routine Signature . 3-8

Using ANSI and Non-ANSI Routine Signatures . 3-9

Using the Routine Signature to Perform DBA Tasks . 3-9

Overloading Routines . 3-9

Creating Overloaded Routines . 3-10

Assigning a Specific Routine Name . 3-10

Specifying Overloaded Routines During Invocation 3-11

Overloading Built-In SQL Functions . 3-11

The Routine-Resolution Process . 3-11

The Routine Signature . 3-12

Candidate List of Routines . 3-12

Precedence List of Data Types . 3-13

Precedence List for Built-In Data Types . 3-14

Routine Resolution with User-Defined Data Types . 3-15

Routine Resolution in a Type Hierarchy . 3-15

Routine Resolution with Distinct Data Types . 3-16

Routine Resolution with Built-In Data Types as Source 3-17

Routine Resolution with Collection Data Types . 3-18

Null Arguments in Overloaded Routines . 3-18

In This Chapter

This chapter discusses the following topics:

v Invoking a UDR in an SQL Statement

v Invoking a UDR in an SPL Routine

v Executing a User-Defined Routine

v Understanding Routine Resolution

Invoking a UDR in an SQL Statement

You can invoke a UDR from within an SQL statement in the following ways:

v You can directly invoke a UDR with the EXECUTE FUNCTION or the

EXECUTE PROCEDURE statement.

v You can invoke a user-defined function within an expression.

© Copyright IBM Corp. 1996, 2008 3-1

Invoking a UDR with an EXECUTE Statement

For details about the syntax of the EXECUTE FUNCTION and EXECUTE

PROCEDURE statements, see the IBM Informix Guide to SQL: Syntax. For more

information about creating UDRs, refer to Chapter 4, “Developing a User-Defined

Routine,” on page 4-1.

Invoking a Function

Suppose result is a variable of type INTEGER. The following example shows how

to register and invoke a C user-defined function called nFact() that returns

N-factorial (n!):

CREATE FUNCTION nFact(arg1 n)

 RETURNING INTEGER;

 SPECIFIC nFactorial

 WITH (HANDLESNULLS, NOT VARIANT)

 EXTERNAL NAME ’/usr/lib/udtype2.so(nFactorial)’

 LANGUAGE C;

EXECUTE FUNCTION nFact (arg1);

Using a SELECT Statement in a Function Argument

As another example, suppose you create the following type hierarchy and

functions:

CREATE ROW TYPE emp_t

 (name VARCHAR(30), emp_num INT, salary DECIMAL(10,2));

CREATE ROW TYPE trainee_t (mentor VARCHAR(30)) UNDER emp_t;

CREATE TABLE trainee OF TYPE trainee_t;

INSERT INTO trainee VALUES (’sam’, 1234, 44.90, ’joe’);

CREATE FUNCTION func1 (arg1 trainee_t) RETURNING row;

DEFINE newrow trainee_t;

LET newrow = ROW(’sam’, 1234, 44.90, ’juliette’);

RETURN newrow;

END FUNCTION;

The following EXECUTE FUNCTION statement invokes the func1() function,

which has an argument that is a query that returns a row type:

EXECUTE FUNCTION

 func1 ((SELECT * from trainee where emp_num = 1234)) ...

Important: When you use a query for the argument of a user-defined function

invoked with the EXECUTE FUNCTION statement, you must enclose

the query in an additional set of parentheses.

Invoking a Procedure

The following EXECUTE PROCEDURE statement invokes the log_compare()

function:

EXECUTE PROCEDURE log_compare (arg1, arg2)

Invoking a User-Defined Function in an Expression

You can invoke a user-defined function in an expression in the select list of a

SELECT statement, or in the WHERE clause of an INSERT, SELECT, UPDATE, or

DELETE statement.

For example, with the factorial function described in “Invoking a Function” on

page 3-2, you might write the following SELECT statement:

SELECT * FROM tab_1 WHERE nFact(col1) > col3

3-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Invoking a Function That Is Bound to an Operator

Functions that are bound to specific operators get invoked automatically without

explicit invocation. Suppose an equal() function exists that takes two arguments of

type1 and returns a Boolean. If the equal operator (=) is used for comparisons

between two columns, col_1 and col_2, that are of type1, the equal() function is

invoked automatically. For example, the following query implicitly invokes the

appropriate equal() function to evaluate the WHERE clause:

SELECT * FROM tab_1

WHERE col_1 = col_2

The preceding query evaluates as though it had been specified as follows:

SELECT * FROM tab_1

WHERE equal (col_1, col_2)

Named Parameters and UDRs

Named parameters cannot be used to invoke UDRs that overload data types in

their routine signatures. Named parameters are valid in resolving non-unique

routine names only if the signatures have different numbers of parameters:

func(x::integer, y); -- VALID if only these 2 routines

func(x::integer, y, z); -- have the same ’func’ identifier

func(x::integer, y); -- NOT VALID if both routines have

func(x::float, y ; -- same identifier and 2 parameters

For both ordinal and named parameters, the routine with the fewest parameters is

executed if two or more UDR signatures have multiple numbers of defaults:

func(x, y default 1)

func(x, y default 1, z default 2)

If two registered UDRs that are both called func have the signatures shown above,

then the statement EXECUTE func(100) invokes func(100,1).

You cannot supply a subset of default values using named parameters unless the

parameters are in the positional order of the routine signature. You cannot skip a

few arguments and rely on the database server to supply their default values.

For example, given the signature:

func(x, y default 1, z default 2)

you can execute:

func(x=1, y=3)

but you cannot execute:

func(x=1, z=3)

Invoking a UDR in an SPL Routine

You use the CALL statement only to invoke a UDR from within an SPL program.

You can use CALL to invoke both user-defined functions and user-defined

procedures, as follows:

v When you invoke a user-defined function with the CALL statement, you must

include a RETURNING clause and the name of the value or values that the

function returns.

The following statement invokes the equal() function:

Chapter 3. Running a User-Defined Routine 3-3

CALL equal (arg1, arg2) RETURNING result

You cannot use the CALL statement to invoke a user-defined function that

contains an OUT parameter.

v A RETURNING clause is never present when you invoke a user-defined

procedure with the CALL statement because a procedure does not return a

value.

The following CALL statement invokes the log_compare() procedure:

CALL log_compare (arg1, arg2)

Executing a User-Defined Routine

When you invoke a UDR, the database server must execute it. To execute a UDR in

one of these SQL statements, the database server takes the following steps:

1. Calls the query parser

2. Calls the query optimizer

3. Executes the UDR

Parsing the SQL Statement

The query parser breaks the SQL statement into its syntactic parts. If the statement

contains a UDR, the query parser performs the following steps on the SQL

statement:

v Parses the routine call to obtain the routine signature

v Performs any necessary routine resolution on the UDR calls to determine which

UDR to execute

For a description of routine resolution, refer to “Understanding Routine

Resolution” on page 3-8.

Optimizing the SQL Statement

Once the query parser has separated the SQL statement into its syntactic parts, the

query optimizer can create a query plan that efficiently organizes the execution of

the SQL statement. The query optimizer formulates a query plan to fetch the data

rows that are required to process a query.

For more information, see “Optimizing a User-Defined Routine” on page 13-2.

Executing a UDR Across Databases of the Same Database

Server Instance

You can implicitly and explicitly execute a UDR (written in SPL, C, or Java) across

databases with built-in data types and user-defined distinct types whose base types

are built-in data type parameters and return types. These built-in data types

include BOOLEAN, LVARCHAR, BLOB, and CLOB data types. User-defined

opaque data types and distinct types whose base types are opaque data types must

be explicitly cast to built-in data types if you want multiple databases on the same

server instance to access them. All user-defined data types and casts must be

defined in all of the participating databases of the same database server instance.

You can execute SQL statements, such as SELECT, INSERT, DELETE, UPDATE, and

EXECUTE (implicit and explicit) involving the following data types across

databases on the same server instance:

v Built-in data types

3-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v User-defined distinct types whose base types are built-in data types

v Explicitly cast opaque data types

v Explicitly cast distinct types with opaque data-type columns

For example, if you use the SELECT statement in a query involving a user-defined

opaque data type, be sure that the user-defined opaque data type is defined in all

databases that you are using in the query. Then use the SELECT statement as

follows:

SELECT coludt::lvarchar FROM db2:tab2 WHERE colint > 100;

SELECT loccolint, extcoludt::lvarchar FROM loctab, db2:exttab

 WHERE loctab.loccolint = exttab.extcolint;

SELECT coldistint, coldistudt::lvarchar FROM db2:tab2

 WHERE coldistint > 100;

SELECT loccoldistint, extcoludt::lvarchar FROM loctab, db2:exttab

 WHERE loctab.loccoldistint = exttab.extcoldistint;

For more information about the SQL to use in statements for more than one

database in the same database server instance, see the IBM Informix Guide to SQL:

Syntax.

Explicit execution occurs when the EXECUTE FUNCTION or EXECUTE

PROCEDURE statement executes the UDR. Implicit execution occurs when the

UDR appears in the projection list or predicate of a query, when the UDR is called

to convert a function argument from one data type to another, or when an operator

function for a user-defined data type is executed. The execution context of the

UDR is the database in which the UDR is defined, not the local database.

Executing the Routine

For SPL routines, the routine manager executes the SPL p-code that the database

server has compiled and stored in the sysprocbody system catalog table.

For routines written in external languages, the routine manager executes the UDR in

the appropriate language. The routine manager is the specific part of the database

server that manages the execution of UDRs.

Executing an SPL Routine

Unlike a routine in C or Java, whose executable code resides in an external file, the

executable code for an SPL routine is stored directly in the sysprocbody system

catalog table of the database. When you create an SPL routine, the database server

parses the SPL routine, compiles it, and stores the executable code in the

sysprocbody system catalog table. When a statement invokes an SPL routine, the

database server executes the SPL routine from the internally-stored compiled code.

When you execute an SPL routine with the EXECUTE FUNCTION, EXECUTE

PROCEDURE, or CALL statement, the database server performs the following

tasks:

v Retrieves the p-code, execution plan, and dependency list from the system

catalog and converts them to binary format

v Parses and evaluates the arguments passed by the EXECUTE FUNCTION,

EXECUTE PROCEDURE, or CALL statement

v Checks the dependency list for each SQL statement that will be executed

Chapter 3. Running a User-Defined Routine 3-5

If an item in the dependency list indicates that reoptimization is needed,

optimization occurs at this point. If an item needed in the execution of the SQL

statement is missing (for example, a column or table has been dropped), an error

occurs at this time.

v Executes the p-code instructions

An SPL routine with the WITH RESUME clause of the RETURN statement causes

multiple executions of the same SPL routine in the same routine sequence.

However, an SPL routine does not have access to the user state of its routine

sequence.

Executing an External Language Routine

The routine manager performs the following steps to handle execution of

external-language routines:

v Loads the external-language executable code

v Creates a routine sequence

v Manages the actual execution of the UDR

Loading an Executable Code into Memory: To execute a UDR written in an

external language, the executable code must reside in database server memory. On

the first invocation of a UDR, the routine manager loads into memory the file that

contains the UDR. The database server locates that file from the externalname

column in the sysprocedures system catalog table.

C Language Support

 Use the onstat command-line utility with the -g dll option to view the dynamically

loaded libraries in which your UDRs reside. For information about the onstat

command, refer to the IBM Informix Administrator’s Reference.

End of C Language Support

 You must install shared libraries and .jar files on all database servers that need to

run the UDRs, including database servers involved in Enterprise Replication (ER)

and High-Availability Data Replication (HDR). The shared object files and .jar files

need to be installed under the same absolute path name.

After the routine manager has loaded an external-language routine into memory,

this file remains in memory until it is explicitly unloaded or the database server is

shut down. For more information, see “Dropping a User-Defined Routine” on page

12-6.

Creating the Routine Sequence: The routine sequence contains dynamic

information that is necessary to execute an instance of the routine in the context of

an SQL or SPL statement. The routine manager receives information about the

UDR from the query parser. With this information, the routine manager creates a

routine sequence for the associated UDR. Each instance of a UDR, implicit or

explicit, in an SQL or SPL statement creates at least one independent routine

sequence. Sometimes, a routine sequence consists of the single call to the UDR, as

follows:

EXECUTE PROCEDURE update_log(log_name)

However, often a UDR can be invoked on more than a row. For example, in the

following SELECT statement, the running_avg() function is called for each

matching row of the query:

3-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

SELECT name, running_avg(price)

FROM stock_history

WHERE running_avg(price) > 5.00

In the preceding query, the WHERE clause causes the database server to invoke

two functions: the running_avg() UDR and, implicitly, the built-in greaterthan()

function. The database server calls the running_avg() function for each row that it

processes and executes the function in its own separate routine sequence,

independent from the routine sequence for running_avg() in the SELECT clause.

For a fragmented stock_history table, the routine instance in the WHERE clause

might have more than one routine sequence if running_avg() was created with the

PARALLELIZABLE option. For example, if the stock_history table has four

fragments, the database server uses five routine sequences to execute

running_avg() in the WHERE clause:

v One routine sequence for the primary thread

v Four routine sequences, one for each fragment in the table, for the secondary

PDQ threads

Each individual call to a UDR within a routine sequence is called a routine

invocation.

The routine manager creates a routine-state space to hold UDR information that the

routine sequence needs. The database server obtains this information from the

query parser and passes it to the routine manager. The routine-state space holds

the following information about a UDR:

v Argument information:

– The number of arguments passed to the UDR

– The data types of each argument
v Return-value information (user-defined functions only):

– The number of return values passed from the UDR

– The data type of each return value

Important: This argument information in the routine-state space does not include

the actual argument values. It contains information only about the

argument data types.

The routine-state space also includes private user-state information for use by later

invocations of the routine in the same routine sequence. The UDR can use this

information to optimize the subsequent invocations. The user-state information is

stored in the routine-state space.

C Language Support

 For a C UDR, the routine manager creates an MI_FPARAM structure to hold

information about routine arguments and return values. The MI_FPARAM

structure that the routine manager creates to hold information about routine

arguments and return values can also contain a pointer to user-state information.

For more information, see the chapter on how to execute UDRs in the IBM Informix

DataBlade API Programmer’s Guide.

Chapter 3. Running a User-Defined Routine 3-7

JAVA Language Support

 For a Java UDR, the UDREnv interface provides most of the information that

MI_FPARAM provides for a C UDR. This interface has public methods for

returning the SQL data types of the return values, for iterator use, and for the

user-state pointer. The interface also provides facilities for logging and tracing. For

more information, refer to the J/Foundation Developer’s Guide.

End of JAVA Language Support

Managing Routine Execution: After the routine sequence exists, the routine

manager can execute the UDR, as follows:

1. It pushes arguments onto the stack for use by the routine.

2. It invokes the routine.

3. It handles the return of any UDR result.

All invocations of the same UDR within the same routine sequence have access to

the same routine-state space.

Understanding Routine Resolution

You can assign the same name to different UDRs, as long as the routine signature

is unique. It is the routine signature that uniquely identifies a UDR, not the routine

name alone. A routine that has many versions is called an overloaded routine. When

you invoke an overloaded routine, the database server must uniquely identify

which routine to execute. This process of identifying the UDR to execute is called

routine resolution.

This section provides the following information about routine resolution:

v What is the routine signature?

v What is an overloaded routine?

v How to you create overloaded routines?

v What is the routine-resolution process?

You need to understand the routine-resolution process to:

v Obtain the data results that you expect from a UDR.

v Avoid unintentional side effects if the wrong UDR executes.

v Understand when you need to write an overloaded routine.

The Routine Signature

The routine signature uniquely identifies the routine. The query parser uses the

routine signature when you invoke a UDR. The routine signature includes the

following information:

v The type of routine: procedure or function

v The routine name

v The number of parameters

v The data types of the parameters

3-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v The order of the parameters

American National Standards Institute

v The owner name

End of American National Standards Institute

Important: The signature of a routine does not include return types. Consequently,

you cannot create two user-defined functions that have the same

signature but different return types.

Using ANSI and Non-ANSI Routine Signatures

In a database that is not ANSI compliant, the routine signature must be unique

within the entire database, irrespective of the owner. If you explicitly qualify the

routine name with an owner name, the signature includes the owner name as part

of the routine name.

American National Standards Institute

In an ANSI-compliant database, the routine signature must be unique within the

name space of the user. The routine name always begins with the owner, in the

following format:

owner.routine_name

End of American National Standards Institute

 When you register the routine signature in a database with the CREATE

FUNCTION or CREATE PROCEDURE statement, the database server stores the

routine signature in the sysprocedures system catalog table. For more information,

see “Registering a User-Defined Routine” on page 4-16.

Using the Routine Signature to Perform DBA Tasks

The database server uses the routine signature when you use SQL statements to

perform DBA tasks (DROP, GRANT, REVOKE, and UPDATE STATISTICS) on

routines. The signature identifies the routine on which to perform the DBA task.

For example, the DROP statement that Figure 3-1 shows uses a routine signature.

Overloading Routines

Routine overloading refers to the ability to assign one name to multiple routines and

specify parameters of different data types on which the routines can operate.

Because the database server supports routine overloading, you can register more

than one UDR with the same name.

DROP PROCEDURE append (SET, INT)

Type of routine Routine name Parameter order and data type

Figure 3-1. Example of Routine Signature

Chapter 3. Running a User-Defined Routine 3-9

Creating Overloaded Routines

The database server can support routine overloading because it supports

polymorphism: the ability to have many entities with the same name and to choose

the entity most relevant to a particular usage.

You can have more than one routine with the same name but different parameter

lists, as in the following situations:

v You create a routine with the same name as a built-in function, such as equal(),

to process a new UDT.

v You create type hierarchies, in which subtypes inherit data representation and

functions from supertypes.

v You create distinct types, which are data types that have the same internal storage

representation as an existing data type, but have different names. Distinct types

cannot be compared to the source type without casting. Distinct types inherit

UDRs from their source types.

For example, you might create each of the following user-defined functions to

calculate the area of different data types (each data type represents a different

geometric shape):

CREATE FUNCTION area(arg1 circle) RETURNING DECIMAL...

CREATE FUNCTION area(arg1 rectangle) RETURNING DECIMAL....

CREATE FUNCTION area(arg1 polygon) RETURNING DECIMAL....

These three CREATE FUNCTION statements create an overloaded routine called

area(). Each CREATE FUNCTION statement registers an area() function for a

particular argument type. You can overload a routine so that you have a

customized area() routine for every data type that you want to evaluate.

The advantage of routine overloading is that you do not need to invent a different

name for a routine that performs the same task for different arguments. When a

routine has been overloaded, the database server can choose which routine to

execute based on the arguments of the routine when it is invoked.

Assigning a Specific Routine Name

Due to routine overloading, the database server might not be able to uniquely

identify a routine by its name alone. When you register an overloaded UDR, you

can assign a specific name to a particular signature of a routine. The specific name

serves as a shorthand identifier that refers to a particular overloaded version of a

routine.

A specific name can be up to 128 characters long and is unique in the database.

Two routines in the same database cannot have the same specific name, even if

they have different owners. To assign a unique name to an overloaded routine

with a particular data type, use the SPECIFIC keyword when you create the

routine. You specify the specific name, in addition to the routine name, in the

CREATE PROCEDURE or CREATE FUNCTION statement.

You can use the specific name instead of the full routine signature in the following

SQL statements:

v ALTER FUNCTION, ALTER PROCEDURE, ALTER ROUTINE

v DROP FUNCTION, DROP PROCEDURE, DROP ROUTINE

v GRANT

v REVOKE

v UPDATE STATISTICS

3-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

For example, suppose you assign the specific name eq_udtype1 to the UDR that

the following statement creates:

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)

 RETURNING BOOLEAN

 SPECIFIC eq_udtype1

 EXTERNAL NAME

 ’/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)’

 LANGUAGE C

You can then refer to the UDR with either the routine signature or the specific

name. The following two GRANT statements are equivalent:

GRANT EXECUTE ON equal(udtype1, udtype1) to mary

GRANT EXECUTE ON SPECIFIC eq_udtype1 to mary

Specifying Overloaded Routines During Invocation

When you invoke an overloaded routine, you must specify an argument list for the

routine. If you invoke an overloaded routine by the routine name only, the

routine-resolution process fails because the database server cannot uniquely

identify the routine without the arguments.

For example, the following SQL statement shows how you can invoke the

overloaded equal() function on a new data type, udtype1:

CREATE TABLE atest (col1 udtype1, col2 udtype1, ...)

...

SELECT * FROM employee WHERE equal(col1, col2)

Because the equal() function is an operator function bound to the equal (=)

symbol, you can also invoke the equal() function with an argument on either side

of the operator symbol, as follows:

SELECT * FROM employee WHERE col1 = col2

Stored Procedure Language Support

In SPL, the following statements show ways that you can invoke the equal()

function:

EXECUTE FUNCTION equal(col1, col2) INTO result

CALL equal(col1, col2) RETURNING result

LET result = equal(col1, col2)

End of Stored Procedure Language Support

 For more information about overloaded operator functions, refer to Chapter 6,

“Extending Operators and Built-In Functions,” on page 6-1.

Overloading Built-In SQL Functions

The database server provides built-in SQL functions that provide some basic

mathematical operations. You can overload most of these built-in SQL functions.

For example, you might want to create a sin() function on a UDT that represents

complex numbers. For a complete list of built-in SQL functions that you can

overload, see “Built-In Functions” on page 6-3.

The Routine-Resolution Process

Routine resolution refers to the process that the database server uses when you

invoke a routine. The database server also invokes routine resolution when another

routine invokes a UDR. If the routine is overloaded, the query parser resolves the

Chapter 3. Running a User-Defined Routine 3-11

UDR from the system catalog tables, based on its routine signature. The parser

performs any routine resolution necessary to determine which UDR to execute.

The Routine Signature

When a user or another routine invokes a routine, the database server searches for

a routine signature that matches the routine name and arguments. If no exact

match exists, the database server searches for a substitute routine, as follows:

1. When several arguments are passed to a routine, the database server searches

the sysprocedures system catalog table for a routine whose signature is an

exact match for the invoked routine:

a. The database server checks for a candidate routine that has the same data

type as the leftmost argument.

For more information, see “Candidate List of Routines” on page 3-12.

b. If no exact match exists for the first argument, the database server searches

the candidate list of routines using a precedence order of data types.

For more information, see “Precedence List of Data Types” on page 3-13.
2. The database server continues matching the arguments from left to right. If the

database contains a routine with a matching signature, the database server

executes this routine.

Important: If one of the arguments for the routine is null, more than one routine

might match the routine signature. If that situation occurs, the database

server generates an error. For more information, see “Null Arguments

in Overloaded Routines” on page 3-18.

Candidate List of Routines

The database server finds a list of candidate routines from the sysprocedures

system catalog table that have the following characteristics:

v The same routine name

v The same routine type (function or procedure)

v The same number of arguments

v The Execute privilege on the routine in the current session

American National Standards Institute

v Belong to the current user or user informix

End of American National Standards Institute

If the candidate list does not contain a UDR with the same data type as an

argument specified in the routine invocation, the database server checks for the

existence of cast routines that can implicitly convert the argument to a data type of

the parameter of the candidate routines.

For example, suppose you create the following two casts and two routines:

CREATE IMPLICIT CAST (type1 AS type2)

CREATE IMPLICIT CAST (type2 AS type1)

CREATE FUNCTION g(type1, type1) ...

CREATE FUNCTION g(type2, type2) ...

Suppose you invoke function g with the following statement:

EXECUTE FUNCTION g(a_type1, a_type2)

3-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The database server considers both functions as candidates. The routine-resolution

process selects the function g(type1, type1) because the leftmost argument is

evaluated first. The database server executes the second cast, cast(type2 AS type1),

to convert the second argument before the function g(type1, type1) executes.

For more information about casting, refer to Chapter 7, “Creating User-Defined

Casts,” on page 7-1.

Tip: Consider the order in which the database casts data and resolves routines as

part of your decision to overload a routine.

Precedence List of Data Types

To determine which routine in the candidate list might be appropriate to an

argument type, the database server builds a precedence list of data types for the

argument. The routine-resolution process builds a precedence list, which is a

partially ordered list of data types to match. It creates the precedence list as

follows (from highest to lowest):

1. The database server checks for a routine whose data type matches the

argument passed to a routine.

2. If the argument passed to the routine is a named row type that is a subtype in a

type hierarchy, the database server checks up the type-hierarchy tree for a

routine to execute.

For more information, refer to “Routine Resolution with User-Defined Data

Types” on page 3-15.

3. If the argument passed to the routine is a distinct type, the database server

checks the source data type for a routine to execute.

If the source type is itself a distinct type, the database server checks the source

type of that distinct type. For more information, refer to “Routine Resolution

with Distinct Data Types” on page 3-16.

4. If the argument passed to the routine is a built-in data type, the database server

checks the candidate list for a data type in the built-in data type precedence list

for the passed argument.

For more information, refer to “Precedence List for Built-In Data Types” on

page 3-14.

If a match exists in this built-in data type precedence list, the database server

searches for an implicit cast function.

5. The database server adds implicit casts of the data types in steps 1 through 4 to

the precedence list, in the order that the data types were added.

6. If the argument passed to the routine is a collection type, the database server

adds the generic type of the collection to the precedence list for the passed

argument.

7. The database server adds data types for which there are implicit casts between

any data type currently on the precedence list (except the built-in data types)

and some other data type.

If no qualifying routine exists, the database server returns the following error

message:

-674: Routine routine-name not found.

If the routine-resolution process locates more than one qualifying routine, the

database server returns this error message:

-9700: Routine routine-name cannot be resolved.

Chapter 3. Running a User-Defined Routine 3-13

Precedence List for Built-In Data Types

If a routine invocation contains a data type that is not included in the candidate

list of routines, the database server tries to find a candidate routine that has a

parameter contained in the precedence list for the data type. Table 3-1 lists the

precedence for the built-in data types when an argument in the routine invocation

does not match the parameter in the candidate list.

 Table 3-1. Precedence of Built-In Data Types

Data Type Precedence List

CHAR VARCHAR, LVARCHAR, IDSSECURITYLABEL

VARCHAR None

NCHAR NVARCHAR

NVARCHAR None

SMALLINT INT, INT8, DECIMAL, SMALLFLOAT, FLOAT

INT INT8, DECIMAL, SMALLFLOAT, FLOAT, SMALLINT

INT8 DECIMAL, SMALLFLOAT, FLOAT, INT, SMALLINT

SERIAL INT, INT8, DECIMAL, SMALLFLOAT, FLOAT, SMALLINT

SERIAL8 INT8, DECIMAL, SMALLFLOAT, FLOAT, INT, SMALLINT

DECIMAL SMALLFLOAT, FLOAT, INT8, INT, SMALLINT

SMALLFLOAT FLOAT, DECIMAL, INT8, INT, SMALLINT

FLOAT SMALLFLOAT, DECIMAL, INT8, INT, SMALLINT

MONEY DECIMAL, SMALLFLOAT, FLOAT, INT8, INT, SMALLINT

DATE None

DATETIME None

INTERVAL None

BYTE None

TEXT None

The following example shows overloaded test functions and a query that invokes

the test function. This query invokes the function with a DECIMAL argument,

test(2.0). Because a test function for a DECIMAL argument does not exist, the

routine-resolution process checks for the existence of a test function for each data

type that the precedence list in Table 3-1 shows.

CREATE FUNCTION test(arg1 INT) RETURNING INT...

CREATE FUNCTION test(arg1 MONEY) RETURNING MONEY....

CREATE TABLE mytab (a real, ...

SELECT * FROM mytab WHERE a=test(2.0);

Figure 3-2 shows the order in which the database server performs a search for the

overloaded function, test(). The database server searches for a qualifying test()

function that takes a single argument of type INTeger.

3-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Routine Resolution with User-Defined Data Types

The following sections discuss routine resolution when one or more of the

arguments in the routine signature are UDTs.

Routine Resolution in a Type Hierarchy

A type hierarchy is a relationship that you define among named row types in which

subtypes inherit representation (data fields) and behavior (routines, operators, rules)

from a named row above it (supertype) and can add additional fields and routines.

The subtype is said to inherit the attributes and behavior from the supertype.

For information about creating type hierarchies, refer to the discussion of type and

table hierarchies in the IBM Informix Database Design and Implementation Guide.

When a UDR has named row types in its parameter list, the database server must

resolve which type in the type hierarchy to pass to the UDR. When a data type in

the argument list does not match the data type of the parameter in the same

position of the routine signature, the database server searches for a routine with a

parameter in the same position that is the closest supertype of that argument.

Suppose you create the following type hierarchy and register the overloaded

function bonus() on the root supertype, emp, and the trainee subtype:

CREATE ROW TYPE emp

 (name VARCHAR(30),

 age INT,

 salary DECIMAL(10,2));

CREATE ROW TYPE trainee UNDER emp ...

CREATE ROW TYPE student_emp (gpa FLOAT) UNDER trainee;

CREATE FUNCTION bonus (emp,INT) RETURNS DECIMAL(10,2) ...

CREATE FUNCTION bonus(trainee,FLOAT) RETURNS DECIMAL(10,2).

Then you invoke the bonus() function with the following statement:

EXECUTE FUNCTION bonus(student_emp, INT);

To resolve the data type of the UDR parameter when it is a named row type, the

database server takes the following steps:

1. The database server processes the leftmost argument first:

test(x INTEGER)

test(x INT8)

test(x SMALLFLOAT)

Start routine search.

End routine search.

test(x FLOAT)

Figure 3-2. Example of Data Type Precedence During Routine Resolution

Chapter 3. Running a User-Defined Routine 3-15

a. It looks for a candidate routine named bonus with a row type parameter of

student_emp.

No candidate routines exist with this parameter, so the database server

continues with the next data type precedence, as described in “Precedence

List of Data Types” on page 3-13.

b. Because student_emp is a subtype of trainee, the database server looks for

a candidate routine with a parameter of type trainee in the first position.

The first parameter of the second function, bonus(trainee,float), matches the

first argument in the routine invocation. Therefore, this version of bonus()

goes on the precedence list.
2. The database server processes the second argument next:

a. It looks for a candidate routine with a second parameter of data type

INTEGER.

The matching candidate routine from step 1b has a second parameter of

data type FLOAT. Therefore, the database server continues with the next

data type precedence as “Precedence List of Data Types” on page 3-13

describes.

b. Because the second parameter is the INTEGER built-in data type, the

database server goes to the precedence list that Table 3-1 on page 3-14

shows.

The database server searches the candidate list of routines for a second

parameter that matches one of the data types in the precedence list for the

integer data type.

c. Because a built-in cast exists from the integer data type to the float data

type, the database server casts the integer argument to float before the

execution of the bonus() function.
3. Because of the left-to-right rule for processing the arguments, the database

server executes the second function, bonus(trainee,float).

Routine Resolution with Distinct Data Types

A distinct data type has the same internal storage representation as an existing

data type, but it has a different name and cannot be compared to the source type

without casting. Distinct types inherit functions from their source types. For more

information, refer to “Distinct Data Type” on page 5-6.

When a UDR has distinct types in its parameter list, the database server resolves

the routine signature, as follows:

v When a routine signature contains a parameter that matches the distinct data

type in the same position of the routine invocation, the routine-resolution

process selects that routine to execute.

v When a distinct data type in the argument list does not match the data type of

the parameter in the same position of the routine signature, the database server

searches for a UDR that accepts one of the following data types in the position

of that argument:

– A data type to which the user has defined an implicit cast from the type of

the argument specified in the routine invocation

For more information on casts, refer to “Cast Functions” on page 2-4.

– The source data type of the distinct type

The following sections describe source data type restrictions and provide

procedures for routine resolution with these source types.

3-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Routine Resolution with Two Different Distinct Data Types: The candidate list

can contain a routine with a parameter that is the source data type of the invoked

routine argument. If the source type is itself a distinct type, the database server

checks the source type of that distinct type. However, if the source type is not in

the precedence list for that data type, the routine-resolution process eliminates that

candidate.

For example, suppose you create the following distinct data types and table:

CREATE DISTINCT TYPE pounds AS INT;

CREATE DISTINCT TYPE stones AS INT;

CREATE TABLE test(p pounds, s stones);

Figure 3-3 shows a sample query that an SQL user might execute.

Although the source data types of the two arguments are the same, this query fails

because p and s are different distinct data types. The equal() function cannot

compare these two different data types.

Alternate SELECT Statements for Different Distinct Data Types: The database

server chooses the built-in equals function when you explicitly cast the arguments.

If you modify the SELECT statement as follows, the database server can invoke the

equals(int,int) function, and the comparison succeeds:

SELECT * FROM test WHERE p::INT = s::INT;

You can also write and register the following additional functions to allow the SQL

user to use the SELECT statement that Figure 3-3 shows:

v An overloaded function equals(pounds,stones) to handle the two distinct data

types:

CREATE FUNCTION equals(pounds, stones) ...

The advantage of creating an overloaded equals() function is that the SQL user

does not need to know that these are new data types that require explicitly

casting.

v Implicit cast functions from the data type pounds to stones and from stones to

INT:

CREATE IMPLICIT CAST (pounds AS stones);

CREATE IMPLICIT CAST (stones AS INT);

Routine Resolution with Built-In Data Types as Source

If the source type is a built-in data type, the distinct type does not inherit any

built-in casts provided for the built-in type, but it does inherit any user-defined

casts that are defined on the source type. For example, suppose you create the

following distinct data type and table:

CREATE DISTINCT TYPE inches AS FLOAT;

CREATE TABLE test(col1 inches);

INSERT INTO test VALUES (2.5::FLOAT::inches);

An SQL user might execute the following sample query:

SELECT 4.8 + col1 FROM test;

Although the source data type of the col1 argument has a built-in cast function to

convert from FLOAT to DECIMAL (the 4.8 is DECIMAL), this query fails because

the distinct type inches does not inherit the built-in cast.

SELECT * FROM test WHERE p=s;

Figure 3-3. Sample Distinct Type Invocation

Chapter 3. Running a User-Defined Routine 3-17

You must use explicit casts in the SQL query. The following queries succeed:

SELECT 4.8 + col1::INT from test;

SELECT 4.8::FLOAT::inches + col1 FROM test;

Routine Resolution with Collection Data Types

A collection data type is a complex data type whose instances are groups of elements

of the same data type that are stored in a SET, MULTISET, or LIST. An element

within a collection can be an opaque data type, distinct data type, built-in data

type, collection data type, or row type.

Null Arguments in Overloaded Routines

The database server might return an error message when you call a UDR and both

of the following conditions are true:

v The argument list of the UDR contains a null value.

v The UDR invoked is an overloaded routine.

Suppose you create the following user-defined functions:

CREATE FUNCTION func1(arg1 INT, arg2 INT) RETURNS BOOLEAN...

CREATE FUNCTION func1(arg1 MONEY, arg2 INT)

 RETURNS BOOLEAN...

CREATE FUNCTION func1(arg1 REAL, arg2 INT) RETURNS BOOLEAN...

The following statement creates a table, new_tab:

CREATE TABLE new_tab (col_int INT);

The following query is successful because the database server locates only one

func1() function that matches the function argument in the expression:

SELECT *

FROM new_tab

WHERE func1(col_int, NULL) = "t";

The null value acts as a wildcard for the second argument and matches the second

parameter type for each function func1() defined. The only func1() function with a

leftmost parameter of type INT qualifies as the function to invoke.

If more than one qualifying routine exists, the database server returns an error. The

following query returns an error because the database server cannot determine

which func1() function to invoke. The null value in the first argument matches the

first parameter of each function; all three func1() functions expect a second

argument of type INTEGER.

SELECT *

FROM new_tab

WHERE func1(NULL, col_int) = "t";

To avoid ambiguity, use null values as arguments carefully.

3-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 4. Developing a User-Defined Routine

In This Chapter . 4-1

Planning the Routine . 4-1

Naming the Routine . 4-2

Defining Routine Parameters . 4-2

Number of Arguments . 4-2

Declaring Routine Parameters . 4-3

Returning Values . 4-4

Returning a Variant or Nonvariant Value . 4-4

Using OUT Parameters and Statement-Local Variables (SLVs) 4-5

Using INOUT Parameters . 4-6

Naming Return Parameters . 4-6

Using an Iterator Function . 4-7

Creating an Iterator Function . 4-8

Registering an Iterator Function . 4-8

Invoking an Iterator Function . 4-8

Using an Iterator Function in the FROM Clause of a SELECT Statement 4-9

Adhering to Coding Standards . 4-14

Writing the Routine . 4-15

Creating a User-Defined Interface for XA Data Sources 4-15

Registering a User-Defined Routine . 4-16

Privileges Required to Create a Routine . 4-17

Database-Level Privileges Needed for Creating a Routine 4-17

Language-Level Privileges Needed for Creating . 4-18

Routine-Level Privilege . 4-18

Creating an SPL Routine . 4-18

Creating an External-Language Routine . 4-20

Registering a Routine Written in C . 4-20

Registering a Routine Written in Java . 4-21

Registering an External Routine with Modifiers . 4-21

Registering Parameters and a Return Value . 4-23

Reviewing Information about User-Defined Routines . 4-23

Using a UDR With HDR . 4-24

In This Chapter

This chapter describes the design and creation of UDRs. It covers the following

topics:

v Planning the Routine

v Writing the Routine

v Registering a User-Defined Routine

Planning the Routine

When you write a UDR, consider the following:

v Naming your routine

v Defining routine parameters

v Defining a return value (user-defined functions only)

v Adhering to coding standards

The routine name and routine parameters make up the routine signature for the

routine. The routine signature uniquely identifies the UDR in the database. For

more information, see “The Routine Signature” on page 3-8.

© Copyright IBM Corp. 1996, 2008 4-1

Consider the following questions about routine naming and design:

v Are any of my routines modal? That is, does the behavior of the routine depend

on one of its arguments?

v Can I describe what each type and routine does in two sentences?

v Do any of my routines take more than three arguments?

v Have I used polymorphism effectively?

The maximum size of a UDR depends on the language in which it is written in

and the platform where it is used. For UDRs written in C, you can create very

large shared objects. The limit depends on the compiler and the machine

architecture. The size limit for UDRs written in Java is similarly high, depending

on the size of the .jar files that you can create. For SPL you are limited to the

maximum size of an SQL statement at 64 kilobytes.

If you plan to enable the implicit or explicit execution of a UDR across databases,

all user-defined data types and casts must be defined in all of the participating

databases of the same database server instance.

Naming the Routine

Choose sensible names for your routines. Make the routine name easy to remember

and have it succinctly describe what the routine does. The database server

supports polymorphism, which allows multiple routines to have the same name.

This ability to assign one name to multiple routines is called routine overloading.

For more information on routine overloading, refer to “Overloading Routines” on

page 3-9.

Routine overloading is contrary to programming practice in some high-level

languages. For example, a C programmer might be tempted to create functions

with the following names that return the larger of their arguments:

bigger_int(integer, integer)

bigger_real(real, real)

In SQL, these routines are better defined in the following way:

bigger(integer, integer)

bigger(real, real)

The naming scheme in the second example allows users to ignore the types of the

arguments when they call the routine. They simply remember what the routine

does and let the database server choose which routine to call based on the

argument types. This feature makes the UDR simpler to use.

Defining Routine Parameters

When you invoke a UDR, you can pass it optional argument values. Each argument

value corresponds to a parameter of the routine.

Number of Arguments

Limit the number of arguments in your UDRs and make sure that these arguments

do not make the routine modal. A modal routine uses a special argument as a sort

of flag to determine which of several behaviors it should take. For example, the

following statement shows a routine call to compute containment of spatial values:

Containment(polygon, polygon, integer);

This routine determines whether the first polygon contains the second polygon or

whether the second contains the first. The caller supplies an integer argument (for

4-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

example, 1 or 0) to identify which value to compute. This is modal behavior; the

mode of the routine changes depending on the value of the third argument.

In the following example, the routine names clearly explain what computation is

performed:

Contains(polygon, polygon)

ContainedBy(polygon, polygon)

Always construct your routines to be nonmodal, as in the second example.

Declaring Routine Parameters

You define routine parameters in a parameter list when you declare the routine. In

the parameter list, each parameter provides the name and data type of a value that

the routine expects to handle. Routine parameters are optional; you can write a

UDR that has no input parameters.

When you invoke the routine, the argument value must have a data type that is

compatible with the parameter data type. If the data types are not the same, the

database server tries to resolve the differences. For more information, see “The

Routine-Resolution Process” on page 3-11.

The way that you declare a UDR depends on the language in which you write that

routine.

Stored Procedure Language Support

The parameters in an SPL routine must be declared with SQL data types, either

built-in or user defined. For more information, see “Executing an SPL Routine” on

page 3-5.

End of Stored Procedure Language Support

C and JAVA Language Support

For routines written in C or Java, you use the syntax of that language to declare

the routine. The routine parameters indicate the argument data types that the

routine expects to handle.

You declare the routine parameters with data types that the external language

supports. However, when you register the routine with CREATE FUNCTION or

CREATE PROCEDURE, you use SQL data types for the parameters. (For more

information, see “Registering Parameters and a Return Value” on page 4-23.)

Therefore, you must ensure that these external data types are compatible with the

SQL data types that the routine registration specifies.

End of C and JAVA Language Support

C Language Support

For C UDRs, the DataBlade API provides special data types for use with SQL data

types. For most of these special data types, you must use the pass by reference

mechanism. However, for a few data types, you can use the pass-by-value

mechanism. For more information, see the chapter on DataBlade API data types in

the IBM Informix DataBlade API Programmer’s Guide and the IBM Informix DataBlade

API Function Reference.

Chapter 4. Developing a User-Defined Routine 4-3

JAVA Language Support

Every Java UDR maps to an external Java static method whose class resides in a

JAR file that has been installed in a database. The SQL-to-Java data type mapping

is done according to the JDBC specification. For more information, refer to the

J/Foundation Developer’s Guide and your Java documentation.

End of JAVA Language Support

Returning Values

A common use of a UDR is to return values to the calling SQL statement. A UDR

that returns a value is called a user-defined function.

For information on how to specify the data type of the return value of a

user-defined function, see “Registering a User-Defined Routine” on page 4-16.

Returning a Variant or Nonvariant Value

By default, a user-defined function is a variant function. A variant function has any

of the following characteristics:

v It returns different results when it is invoked with the same arguments.

For example, a function whose return value is computed based on the current

date or time is a variant function.

v It has variant side effects, such as:

– Modifying some database table, variable state, or external file

– Failing to locate an external file, or a table or row in a database, and

returning an error

You can explicitly specify a variant function with the VARIANT keyword.

However, because a function is variant by default, this keyword is not required.

A nonvariant function always returns the same value when it receives the same

argument, and it has none of the preceding variant side effects. Therefore,

nonvariant functions cannot access external files or contain SQL statements, even if

the SQL statements only SELECT static data and always return the same results.

You specify a nonvariant function with the NOT VARIANT keywords.

You can create a functional index only on a nonvariant function. The return result

for a functional index cannot contain a smart large object. Functional indexes are

indexed on the value returned by the specified function rather than on the value of

a column. The value returned by a functional index cannot contain a smart large

object.

The database server can execute a nonvariant function during query compile time

if all the arguments passed to it are constants. In that case, the result replaces the

UDR expression in the query tree. This action by the database server is constant

elimination. The database server cannot execute an SQL statement during constant

elimination, thus a nonvariant function cannot execute even nonvariant SQL.

For information about creating a functional index, refer to the CREATE INDEX

statement in the IBM Informix Guide to SQL: Syntax.

4-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using OUT Parameters and Statement-Local Variables (SLVs)

You use OUT parameters to pass values from the called function to the caller. The

SPL, C, or Java called function sets the value of this parameter and returns a new

value through the parameter. Any or all arguments of a UDR can be an OUT

parameter. You cannot use OUT parameters to pass values to the called function;

OUT parameters are passed as NULL to the UDR.

The syntax for creating a UDR with OUT parameters is:

CREATE FUNCTION udr ([IN/OUT] arg0 datatype0, ...,

 [IN/OUT] argN datatypeN)

 RETURNING returntype;

...

END FUNCTION;

By default, a parameter is considered an IN parameter unless you define it as an

OUT parameter by specifying the OUT keyword.

For example, the following CREATE FUNCTION statement specifies one IN

parameter, x, and two OUT parameters, y and z.

CREATE FUNCTION my_func(x INT, OUT y INT, OUT z INT)

RETURNING INT

EXTERNAL NAME ’/usr/lib/local_site.so’

LANGUAGE C

A statement-local variable (SLV) is an OUT parameter used in the WHERE clause

of a SELECT statement. See “Using SLVs” on page 4-5 for more information.

Important: You cannot execute UDRs with OUT parameters in Data Manipulation

Language (DML) SQL statements, except by using an SLV. The

statements SELECT, UPDATE, INSERT and DELETE are DML

statements.

Important: You cannot use the EXECUTE FUNCTION statement to invoke a

user-defined function that contains an OUT parameter, unless you are

using JDBC.

Important: You cannot execute remote UDRs that contain OUT parameters.

Using SLVs: An SLV transmits OUT parameters from a user-defined function to

other parts of an SQL statement. An SLV is local to the SQL statement; that is, it is

valid only for the life of the SQL statement. It provides a temporary name by

which to access an OUT parameter value. Any or all user-defined function

arguments can be an SLV.

In the SQL statement that calls the user-defined function, you declare the SLV with

the syntax: SLV_name # SLV_type, where SLV_name is the name of the SLV variable

and SLV_type is its data type, as in:

SELECT SLV_name1, SLV_nameN FROM table WHERE

 udr (param1, SLV_name1 # SLV_type1, ...

 SLV_nameN # SLV_typeN, paramN);

For example, the following SELECT statement declares SLVs x and z that are typed

as INTEGER in its WHERE clause and then accesses both SLVs in the projection

list:

SELECT x, z WHERE my_func(x # INT, y, z # INT) < 100

 AND (x = 3) AND (z = 5)

Chapter 4. Developing a User-Defined Routine 4-5

For more information on the syntax and use of an SLV, see the description of

function expressions within the Expression section in the IBM Informix Guide to

SQL: Syntax.

SPL Procedures With No Return Values: SPL procedures with no return values

are only accessible through the JDBC CallableStatement interface. SPL procedures

with no return values can use OUT parameters. The syntax for creating such a

procedure is:

CREATE PROCEDURE spl_udr ([IN/OUT] arg0 datatype0, ...,

 [IN/OUT] argN datatypeN);

...

END PROCEDURE;

For example, the following SQL statement creates an SPL procedure with two OUT

parameters and one IN parameter:

CREATE PROCEDURE myspl (OUT arg1 int, arg2 int, OUT arg3 int);

LET arg1 = arg2;

LET arg3 = arg2 * 2;

END PROCEDURE;

SPL procedures that do not return values cannot be used in the WHERE clause of

a SELECT statement and therefore cannot generate SLVs.

Using INOUT Parameters

Dynamic Server supports UDRs written in Java or C that have multiple INOUT

parameters. When an INOUT parameter is used, the bind value passed by the

client for the INOUT parameter is passed to the UDR and the modified value is

retrieved and returned to the client. The parameter can be of any type that

Dynamic Server supports, including user-defined types and complex types.

An example of a UDR with an INOUT parameter is:

CREATE PROCEDURE CALC (INOUT Param1 float)

EXTERNAL NAME "$INFORMIXDIR/etc/myudr.so(calc)"

LANGUAGE C;

/* C code for the routine */

void calc (mi_double_precision *Param1)

{

 #define PI 3.1415;

 Param1 *= PI;

 return;

}

You can use INOUT parameters in the CREATE FUNCTION statement, as shown

in the following syntax:

 CREATE FUNCTION func ([IN|OUT|INOUT] arg0 DataType, ...,

[IN|OUT|INOUT] argN DataType) RETURNING ReturnType;

 END FUNCTION;

Naming Return Parameters

You can define names for each return parameter of an SPL UDR. Specify the names

in the RETURNS/RETURNING clause of the CREATE PROCEDURE/FUNCTION

statement.

The syntax for the CREATE PROCEDURE/FUNCTION statement is:

RETURNS/RETURNING data_type AS return_param_name [{, data_type AS

return_param_name}]

4-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The return_param_name parameter defines the name of the return parameter and

follows the same rules as for table column names. Either all return parameters

should have names or none should have names. The names of the return

parameters for a function or procedure should be unique. Return parameter names

cannot be referenced within the body of the procedure. There is no relation

between the names of the return parameters and any variables within the function

or procedure itself, as shown in the following example:

CREATE PROCEDURE NamedRetProc()

RETURNING int AS p_customer_num, char(20) AS p_fname, char(20) AS

p_lname;

DEFINE v_id int;

DEFINE v_fname char(15);

DEFINE v_lname char(15);

FOREACH curA FOR SELECT customer_num, fname, lmname

 INTO v_id, v_fname, v_lname FROM customer

RETURN v_id,v_fname, v_lname WITH RESUME;

END FOREACH;

ENDPROCEDURE;

The NamedRetProc() procedure returns data with the return parameter names

shown above the returned values, as below, instead of the name expression that

appears if you do not name return parameters:

p_customer_num p_fname p_lname

 101 Ludwig Pauli

 102 Carole Sadler

Avoid naming return parameters if you intend to export the database to a pre-9.4

version of IBM Informix Dynamic Server that does not support this syntax. When

you export a database containing stored procedures that have names for return

parameters, the schema creation scripts also have these names. If you try to import

the database using a pre-9.4 version of IBM Informix Dynamic Server, errors will

be returned. If you decide to go ahead and import the stored procedures without

the names for return parameters, you can manually edit the schema creation

scripts to be able to import.

Tip: When you call a stored procedure in the projection list of a SELECT

statement, return parameter names are not displayed. Instead, the output

string “expression” appears. If you want to display the return parameter

name, use the AS keyword, as in: SELECT some_func(a,b) AS name1,... .

Using an Iterator Function

By default, a user-defined function returns one value; that is, it calculates its return

value and returns only once to its calling SQL statement. User-defined functions

that return their result in a single return to the calling SQL statement are called

noncursor functions because they do not require a database cursor to be executed.

For information on how to invoke noncursor functions, see “Invoking a UDR in an

SQL Statement” on page 3-1.

However, you can write a user-defined function that returns to its calling SQL

statement several times, each time returning a value. Such a user-defined function

is called an iterator function. An iterator function is a cursor function because it must

be associated with a cursor when it is executed. The cursor holds the values that

the cursor function repeatedly returns to the SQL statement. The calling program

can then access the cursor to obtain each returned value, one at a time. The

Chapter 4. Developing a User-Defined Routine 4-7

contents of the cursor are called an active set. Each time the iterator function

returns a value to the calling SQL statement, it adds one item to the active set.

Important: You cannot use OUT parameters in iterator functions.

Creating an Iterator Function

You can write iterator functions in SPL, C, or Java. Each language uses different

statements, functions, and methods to manage iterator tasks:

v An SPL iterator function uses the FOREACH keyword in conjunction with the

RETURN WITH RESUME statement.

v A C-language iterator function uses DataBlade API functions, such as

mi_fp_setisdone() and mi_fp_request(), to handle each return item of the active

set. MI_FPARAM maintains the iterator state that mi_fp_setisdone() and

mi_fp_request() access.

v A Java iterator function uses the UDREnv interface, which provides all

necessary methods and constants.

Registering an Iterator Function

By default, a function written in an external language is not an iterator. To define

an iterator function written in C or Java, you must register the function with the

ITERATOR routine modifier. The following sample CREATE FUNCTION statement

shows how to register the function TopK() as an iterator function in C:

CREATE FUNCTION TopK(INTEGER, INTEGER)

 RETURNS INTEGER

 WITH (ITERATOR, NOT VARIANT)

 EXTERNAL NAME

 ’/usr/lib/extend/misc/topkterms.so(topk_integers)’

 LANGUAGE C

Tip: An SPL iterator function does not need to be registered using the ITERATOR

modifier.

Invoking an Iterator Function

You can invoke an iterator function using one of the following methods:

v Directly with the EXECUTE FUNCTION statement:

– From DB–Access

– In a prepared cursor in an external routine

– In an external routine

– In an SPL FOREACH loop
v With an EXECUTE FUNCTION statement as part of an INSERT statement:

– From DB–Access

– In a prepared cursor in Informix ESQL/C or an external routine

– In a DataBlade API database server routine

– In an SPL FOREACH loop
v In the FROM clause of a SELECT statement

Instead of a table, the result set of the iterator function is the source from which

the query selects data. The return values from the iterator function are mapped

to a virtual table. Using an iterator function in a FROM clause is described in

detail, next.

Existing iterator UDRs from pre-9.4 releases can be used in the FROM clause of

a SELECT statement.

4-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using an Iterator Function in the FROM Clause of a SELECT

Statement

In addition to tables, an iterator function can be specified as a source for a SELECT

statement. This means you can query the return result set of an iterator UDR using

a table interface. Therefore, you can manipulate the iterator result set in a number

of ways, such as by using the WHERE clause to filter the result set; by joining the

UDR result set with other table scans; by running GROUP BY, aggregation, and

ORDER BY operations, and so on.

Syntax and Usage: The syntax for using an iterator function in the FROM clause

is:

FROM TABLE (FUNCTION iterator_func_name ([argument_list]))

[[AS] virtual_table_name] [(virtual_column_list)]

The virtual_table_name parameter is unqualified (do not include the owner or

database name) and specifies the name of the virtual table that holds the result set

from the iterator function.

Important: The virtual table can only be referenced within the context of this

SELECT query. After the SELECT statement completes, the virtual table

no longer exists.

The virtual_column_list parameter is a comma-separated list of unqualified column

names for the virtual table. The number of columns must match the number of

values returned by the iterator (SPL functions can return more than one value).

If you want to reference virtual table columns in other parts of the SELECT

statement, for example, in the projection list, WHERE clause, or HAVING clause,

you must specify the virtual table name and virtual column names in the FROM

clause. You do not have to specify the virtual table name or column names in the

FROM clause if you use wildcard characters in the projection list of the SELECT

clause:

SELECT * FROM ...

As an example, the following statement retrieves the result set from the function

called fibseries(). This result set is held in the virtual table called vtab.

SELECT col FROM TABLE (FUNCTION fibseries(10)) vtab(col);

If a SELECT statement specifying an iterator in the FROM clause returns

unexpected results, execute the iterator function separately to verify the function is

behaving correctly. For example, run your function in DB-Access with a command

like this:

execute function iterator_udr(args)

The SQL Explain output section for a virtual table derived from an iterator UDR is

marked ITERATOR UDR SCAN.

Ensure that you call mi_fp_setisdone() in a C UDR or

UDREnv.setSetIterationIsDone(true) in a JAVA UDR when the iterator UDR is

finished. The server checks this flag internally to determine when to stop calling

the iterator UDR.

Allocating Memory: For iterator functions written in C, the default memory

duration for return values set by the server should be sufficient.

Chapter 4. Developing a User-Defined Routine 4-9

The MI_FPARAM data structure should be allocated a duration that lasts for all

iterations, usually a PER_COMMAND duration.

Running Parallel Queries: If you are running queries in parallel using the IBM

Informix Dynamic Server (IDS) parallel database query (PDQ) feature and the

iterator UDR in the FROM clause is not parallelizable, query parallelism is turned

off for the SELECT query. However, if the iterator UDR in the FROM clause is

parallelizable and no other factors disable the query parallelism, the query can run

in parallel. When PDQ is on, functional tables are treated as single non-fragmented

tables.

In the following example, the GROUP BY and aggregation operations can be run

by multiple PDQ threads and the fibseries() function can be run by a secondary

thread.

SELECT col1,col2, COUNT(*) FROM TABLE (FUNCTION fibseries(10))

tab1(col1),tab2

GROUP BY col1,col2;

Refer to your IBM Informix Dynamic Server Performance Guide for information about

running queries in parallel.

Restrictions: The following restrictions apply to using iterator functions in the

FROM clause:

v Iterator functions cannot refer to other columns in the FROM clause. For

example, the following query is invalid because the fibseries iterator function

specifies the column t.x as an argument:

SELECT t.x, vtab.col

FROM t, TABLE (FUNCTION fibseries(t.x)) vtab(col);

However, iterator functions can refer to other columns when used in an outer

query, as in:

SELECT t.x FROM t

WHERE t.y IN

 (SELECT col FROM TABLE (FUNCTION fibseries(t.y)) vtab(col));

v Iterator functions cannot generate OUT parameters and statement-local variables.

v You cannot use iterator functions as the target in INSERT, UPDATE, or DELETE

statements.

v UDRs used in the FROM clause must be iterator functions.

Example SPL Iterator Function: To create an SPL iterator function to be used in

the FROM clause, your function must use the RETURN WITH RESUME construct,

as shown in the following example.

Because an SPL UDR can return more than one value, you can specify multiple

column names in the virtual column list in the FROM clause. You can reference

any of these virtual column names in the target list of the SELECT query.

create function find_top_earners()

 returning integer,decimal,lvarchar

define ret_empid integer;

define ret_salary decimal;

define ret_empname lvarchar;

 foreach select emp_id,salary into

 ret_empid,ret_salary from salary

 if (ret_salary > 100000.00)

 select emp_name into ret_empname from employee

 where emp_id = ret_empid;

 return ret_empid,ret_salary,ret_empname with

4-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

resume;

 end if;

 end foreach;

end function;

The following query uses the above iterator UDR, find_top_earners(), to retrieve

the top earners sorted by employee name.

select vemp_name,vemp_id,vemp_sal from

 table (function find_top_accounts())

 vtab1(vemp_name,vemp_id,vemp_sal)

 order by vemp_name;

Example C Iterator Function: To write an iterator C function, you use DataBlade

API functions, such as mi_fp_request(), mi_fp_setfuncstate(), mi_fp_setisdone(),

and so on, with the MI_FPARAM data structure.

A C UDR can return only one value; therefore, there can be only one column in the

virtual column list in the FROM clause. However, a C UDR can return a row type,

which can capture multiple return values as a unit.

The following example demonstrates how to write a C iterator function and use it

in the FROM clause; relevant DataBlade API and iterator states are highlighted.

The function fibseries() is an iterator function that returns the Fibonacci series up

to the value passed to it as an argument.

create function fibseries(int x)

returns int with (handlesnulls,iterator, parallelizable)

external name "$USERFUNCDIR/fib.so"

language c;

/* A Function to return a set of integer. This function takes

stop val as a parameter and returns a fibonaucci series up to

stop val.

* Three states of fparam :

*

* SET_INIT: Allocate the function state structure defined.

This State Structure is allocated in PER_COMMAND duration to

hold the memory till the end of the command.

Make the fparam structure point to the State Structure.

Set the first two numbers of the series i.e 0 and 1; And

set the stop val field of State Structure to the stop val passed

to the function.

* SET_RETONE: Computes the next number in the series. Compares

it with the stop val to check if the exit criteria is met.

num1 = num2;num2 = next number in the series.

* SET_END: Frees the user Allocated Func State structure.

*/

#include <milib.h>

typedef struct fibState1 {

 mi_integer fib_prec1;

 mi_integer fib_prec2;

 mi_integer fib_ncomputed;

 mi_integer fib_endval;

}fibState;

mi_integer

fibseries(endval,fparam)

mi_integer endval;

MI_FPARAM *fparam;

{

 fibState *fibstate;

 mi_integer next;

 switch(mi_fp_request(fparam)) {

Chapter 4. Developing a User-Defined Routine 4-11

case SET_INIT :

 fibstate = (fibState *) mi_dalloc

(sizeof(fibState),PER_COMMAND);

 mi_fp_setfuncstate(fparam,(void *)fibstate);

 if (mi_fp_argisnull(fparam,0) || endval < 0) {

 mi_fp_setreturnisnull(fparam,0,1);

 break;

 }

 if (endval < 1) {

 fibstate->fib_prec1 = 0;

 fibstate->fib_prec2 = 1;

 fibstate->fib_ncomputed = 1;

 fibstate->fib_endval = endval;

 }

 else {

 fibstate->fib_prec1 = 0;

 fibstate->fib_prec2 = 1;

 fibstate->fib_ncomputed = 0;

 fibstate->fib_endval = endval;

 }

 break;

 case SET_RETONE :

 fibstate = mi_fp_funcstate(fparam);

 if (fibstate->fib_ncomputed < 2) {

 return((fibstate->fib_ncomputed++ == 0) ? 0 : 1);

 }

 next = fibstate->fib_prec1 + fibstate->fib_prec2;

 if (next > fibstate->fib_endval) {

 mi_fp_setisdone(fparam,1);

 return 0;

 }

 if (next == 0) {

 fibstate->fib_prec1 = 0;

 fibstate->fib_prec1 = 1;

 }

 else {

 fibstate->fib_prec1 = fibstate->fib_prec2;

 fibstate->fib_prec2 = next;

 }

 return (next);

 case SET_END :

 fibstate = mi_fp_funcstate(fparam);

 mi_free(fibstate);

 break;

 }

}

This function can be used in the FROM clause of a SELECT query:

select vcol1 from table (function fibseries(100)) vtab1(vcol1);

Example Java Iterator Function: The UDREnv interface provides all necessary

methods and constants. A Java UDR can return only one value; therefore, there can

be only one column in the virtual column list in the FROM clause.

The following example demonstrates how to write a Java iterator function and use

it in FROM clause; relevant DataBlade API and iterator states are highlighted.

The iterator UDR jenv_iter() takes an integer parameter and returns a row of

CHAR(40) columns. The parameter passed in determines the number of rows it

returns.

public interface UDREnv

{

...

// for maintaining state across UDR invocations

void setUDRState(Object state);

4-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Object getUDRState();

// for set/iterator processing

public static final int UDR_SET_INIT = 1;

public static final int UDR_SET_RETONE = 2;

public static final int UDR_SET_END = 3;

int getSetIterationState();

void setSetIterationIsDone(boolean value);

...

}

import java.lang.*;

import java.sql.*;

import com.informix.udr.*;

import informix.jvp.*;

public class Env

{

 public int count;

 //

 // test UDR meta

 //

 public static String envTest1(int i, String xchar, String

xvchar, String xlvarchar)

 throws SQLException

 {

UDREnv env = UDRManager.getUDREnv();

String res = env.getName() + "#" +

env.getReturnTypeName() + "#";

String param[] = env.getParamTypeName();

for (int j = 0; j < param.length; ++ j)

 res += param[j] + "#";

res += i + xchar + xvchar + xlvarchar;

return res;

 }

 public static String envTest2(int i, String s[])

 throws SQLException

 {

UDREnv env = UDRManager.getUDREnv();

UDRLog log = env.getLog();

String res = env.getName() + "#" +

env.getReturnTypeName() + "#";

String param[] = env.getParamTypeName();

for (int j = 0; j < param.length; ++ j)

 res += param[j] + "#";

res += i;

log.log(res);

s[0] = res;

return res;

 }

 //

 //test env state, iterator, log, traceable, and

properties

 //

 public static String envIter(int num)

throws SQLException

 {

UDREnv env = UDRManager.getUDREnv();

UDRLog log = env.getLog();

UDRTraceable tr = env.getTraceable();

JVPProperties pr = env.getProperties();

int iter = env.getSetIterationState();

Env state = (Env)env.getUDRState();

 if (iter == UDREnv.UDR_SET_INIT)

 {

 state = new Env();

 state.count = num;

 env.setUDRState(state);

 log.log("SET INIT" + state.count + " " +

state.toString());

 tr.tracePrint("UDR.ENVITER", 0, "SET INIT");

Chapter 4. Developing a User-Defined Routine 4-13

env.setSetIterationIsDone(false);

 pr.setProperty("ENVITERPROP", "AFTER INIT");

 return "INIT";

 }

 else if (iter == UDREnv.UDR_SET_END)

 {

 log.log("SET DONE");

 tr.tracePrint("UDR.ENVITER", 0, "SET DONE");

 env.setSetIterationIsDone(true);

 return "DONE";

 }

 else if (iter == UDREnv.UDR_SET_RETONE)

 {

 log.log("SET RETONE" + state.count + " " +

state.toString());

 tr.tracePrint("UDR.ENVITER", 0, "SET RETONE");

 String prv = pr.getProperty("ENVITERPROP");

 if (state.count <= 0)

env.setSetIterationIsDone(true);

 else

env.setSetIterationIsDone(false);

 -- state.count;

 pr.setProperty("ENVITERPROP", "AFTER RETONE" +

(state.count + 1));

 return new String("ELEMENT " + (state.count + 1));

//+ prv);

 }

 else

 throw new SQLException("Bad iter code");

 }

}

The following statement creates the Java iterator UDR, jenv_iter().

create function jenv_iter(int)

 returning char(40)

 with (class = "jvp", iterator)

 external name `Env.envIter(int)’

 language java;

Adhering to Coding Standards

The SQL/PSM standard is available for UDR development. In addition, a

collection of standards is available for DataBlade module development from the

IBM Informix Developer Zone at http://www.ibm.com/software/data/developer/
informix. The most important rules govern the naming of data types and routines.

DataBlade modules share these name spaces, so you must follow the naming

guidelines to guarantee that no problems occur when you register multiple

DataBlade modules in a single database.

Tip: It is recommended that you use the DBDK, Version 4.0 or later, to manage

DataBlade development. It is especially important to use the SQL registration

scripts that the DBDK generates so that BladeManager can correctly process

DataBlade upgrades.

In addition, the standards for 64-bit clean implementation, safe function-calling

practices, thread-safe development, and platform portability are important.

Adherence to these standards ensures that UDR modules are portable across

platforms.

Ask yourself the following questions when you code your UDR:

v Do I obey all naming standards?

v Is my design 64-bit clean and portable across platforms?

4-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v Is my design thread-safe?

Writing the Routine

The source for an external routine resides in a separate text file. For information

about C UDRs, refer to the IBM Informix DataBlade API Programmer’s Guide and the

IBM Informix DataBlade API Function Reference. For information about Java UDRs,

refer to the J/Foundation Developer’s Guide.

Tip: It is recommended that you use the DBDK to help write UDRs. DBDK

enforces standards that facilitate migration between different versions of the

database server.

Because external-language routines are external to the database, you must compile

the UDR source code and store it where the database server can access it when the

routine is invoked. To prepare UDR source code:

v Compile the C-language UDR and store the executable version in a shared-object

file.

For information about how to create shared-object files, refer to the IBM Informix

DataBlade API Programmer’s Guide.

v Compile the Java-language UDR and store the executable version in a .jar file.

For information about how to prepare .jar files, refer to your Java

documentation.

You must install shared object files and .jar files on all database servers that need

to run the UDRs, including database servers involved in Enterprise Replication

(ER) and High-Availability Data Replication (HDR). The shared object files and .jar

files need to be installed under the same absolute path name.

Creating a User-Defined Interface for XA Data Sources

The Dynamic Server Transaction Manager recognizes XA-compliant external data

sources, which can participate in two-phase commit transactions. You can invoke

support routines for each XA-compliant, external data source that participates in a

distributed transaction at a particular transactional event, such as prepare, commit,

or rollback. This interaction conforms to X/Open XA interface standards.

You can create user-defined support routines to provide data access mechanisms

for external data from XA data sources. The interaction between Dynamic Server

and external data sources is through a set of purpose routines, such as xa_open(),

xa_start(), xa_prepare(), xa_rollback(), xa_commit(), xa_recover(), xa_complete(

), xa_forget(), xa_close(), and xa_end() For more information these purpose

functions, see the IBM Informix DataBlade API Programmer’s Guide.

You can create and drop XA-compliant data source types and instances of

XA-compliant data sources. After you create an external XA-compliant data source,

transactions can register and unregister the data source using the

mi_xa_register_xadatasource() or ax_reg() and mi_xa_unregister_xadatasource()

or ax_unreg() functions. For information on creating and dropping XA-compliant

data source types and instances of XA-compliant data sources and information on

the functions that transactions use to register and unregister the data source, see

the IBM Informix DataBlade API Programmer’s Guide and the IBM Informix DataBlade

API Function Reference .

Chapter 4. Developing a User-Defined Routine 4-15

The MQ DataBlade module is an example of a set of user-defined routines that

provide data access mechanisms for external data from XA data sources and

provides XA-support functions to provide transactional support for the interaction

between Dynamic Server and IBM Websphere MQ. For more information, see the

IBM Informix Database Extensions User’s Guide.

Registering a User-Defined Routine

A database server administrator (DBSA), the user informix by default, can

implement security measures that establish which users can register external

routines. This prevents unauthorized users from registering the external routines.

To grant a user privileges to create or drop a UDR that has the EXTERNAL clause,

the DBSA must set the IFX_EXTEND_ROLE configuration parameter to On. When

this parameter is set to On, the EXTEND role is operational and the DBSA can grant

a user privileges to create or drop a external routine that has the EXTERNAL

clause.

After setting the IFX_EXTEND_ROLE configuration parameter to On, the DBSA

uses the following syntax to grant and revoke privileges to and from specific users.

v GRANT extend To username

v REVOKE extend From username

If the IFX_EXTEND_ROLE configuration parameter is set to Off, the EXTEND role

is not operational and any user can register external routines.

For more information on the EXTEND role, see the IBM Informix Dynamic Server

Administrator’s Guide and the IBM Informix Guide to SQL: Syntax.

If you have privileges to register a UDR or if the IFX_EXTEND_ROLE

configuration parameter is set to Off and you are responsible for registering UDRs,

you must register UDRs in all databases in which they will be used, unless the

database is on the secondary database server of an HDR pair.

The database server recognizes the following SQL statements for the registration of

UDRs in the database:

v The CREATE FUNCTION statement registers UDRs that return a value.

v The CREATE PROCEDURE statement registers UDRs that do not return a value.

 To register a user-defined routine:

1. Ensure that you have the correct privileges to register a UDR.

2. Use a CREATE FUNCTION or CREATE PROCEDURE statement to register the

UDR:

v For SPL routines, the statement lists the routine code and then compiles and

registers the routine.

v For external-language routines, the statement specifies the location of the

routine code (with an EXTERNAL NAME clause) and registers the routine.

The following example shows the syntax of a CREATE FUNCTION statement:

CREATE FUNCTION func_name(parameter_list) RETURNS ret_type

 WITH (NOT VARIANT)

 EXTERNAL NAME ’pathname’

 LANGUAGE C

4-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

This SQL statement provides the following information to the database:

v The name, func_name, and owner of the support function

v An optional specific name for the support function (not shown)

v The data types of the parameters, parameter_list, and return value, ret_type, of the

support function

v The location, pathname, of the source code for the support function

v The language of the support function: LANGUAGE C.

v The routine modifier NOT VARIANT that indicates that the function does not

return different results with different arguments.

ESQL/C

You cannot use the CREATE FUNCTION directly in an ESQL/C program. To

register an opaque-type support function from within an Informix ESQL/C

application, you must put the CREATE FUNCTION statement in an

operating-system file. Then use the CREATE FUNCTION FROM statement to

identify the location of this file. The CREATE FUNCTION FROM statement sends

the contents of the operating-system file to the database server for execution.

End of ESQL/C

Privileges Required to Create a Routine

A user must have the following privileges to issue a CREATE FUNCTION or

CREATE PROCEDURE statement that registers a UDR in the database:

v Database-level privilege

v Language-level privilege

v EXTEND role privilege

Notes:

1. If the IFX_EXTEND_ROLE configuration parameter is set to 1 or Onand the

database system administrator (DBSA) has used the GRANT statement to grant

the EXTEND role to a user, that user can create, alter, or drop DataBlade

modules or external UDRs.

2. If this feature is enabled but a user has not been granted the EXTEND role, that

user cannot create, alter, or drop Datablade modules or external UDRs.

3. If the IFX_EXTEND_ROLE configuration parameter is set to 0 or Off, the

EXTEND role is not operational and any user holding the Resource privilege on

the database can register external routines.

4. Whether this feature is operational or not, however, the EXTEND role has no

effect on creating or dropping UDRs that are written in the SPL language. For

more information, see “Registering a User-Defined Routine” on page 4-16.

After you register the UDR, you can assign routine-level privileges. For

information about how to assign privileges, refer to the GRANT statement in the

IBM Informix Guide to SQL: Syntax.

Database-Level Privileges Needed for Creating a Routine

Database-level privileges control the ability to extend the database by registering or

dropping a UDR. The following users qualify to register a new routine in the

database:

v Any user with the DBA privilege can register a routine with or without the DBA

keyword in the CREATE FUNCTION or CREATE PROCEDURE statement.

Chapter 4. Developing a User-Defined Routine 4-17

v A non-DBA user needs the Resource privilege to register a routine.

The creator has owner privileges on the routine. A user who does not have the

DBA privilege cannot use the DBA keyword in the CREATE FUNCTION or

CREATE PROCEDURE statement to register the routine.

Tip: For an explanation of the DBA keyword, see “Executing a UDR as DBA” on

page 12-3.

A DBA must grant the Resource privilege required for any non-DBA user to create

a routine. The DBA can revoke the Resource privilege, which prevents that user

from creating additional routines.

A DBA or the routine owner can cancel the registration with the DROP ROUTINE,

DROP FUNCTION, or DROP PROCEDURE statement. A DBA or routine owner

can register a modification to the routine with the ALTER ROUTINE, ALTER

FUNCTION, or ALTER PROCEDURE statement.

Language-Level Privileges Needed for Creating

The language-level Usage privilege controls the ability to write a UDR in a

particular UDR language. This privilege needs to be granted by user informix or

by another user who has been granted the DBA privilege with the WITH GRANT

OPTION.

UDR languages have the following GRANT and REVOKE requirements for the

Usage privilege:

v The DBA can grant or revoke the Usage privilege to the SPL language.

v Another user can grant the Usage privilege if the DBA applied the WITH

GRANT keywords in the GRANT EXECUTE ON statement.

The following REVOKE statement revokes Usage privilege on SPL UDRs to a user

named dorian:

REVOKE USAGE ON LANGUAGE SPL TO dorian

By default, the database server:

v Does not grant Usage privilege on external languages to PUBLIC

v Grants Usage privilege on SPL, C, and Java to PUBLIC

For more information, see the description of privileges in the IBM Informix Database

Design and Implementation Guide and the descriptions of the GRANT and REVOKE

statements in the IBM Informix Guide to SQL: Syntax

Routine-Level Privilege

When you register a UDR, you automatically receive the Execute privilege on that

routine. The Execute privilege allows you to invoke the UDR. For information

about allowing other users to execute your routine, see “Assigning the Execute

Privilege to a Routine” on page 12-1.

Creating an SPL Routine

For an SPL routine, the CREATE FUNCTION or CREATE PROCEDURE statement

performs the following tasks:

v Parses and optimizes all SQL statements, if possible

The database server puts the SQL statements in an execution plan. An execution

plan is a structure that enables the database server to store and execute the SQL

statements efficiently.

4-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The database server optimizes each SQL statement within the SPL routine and

includes the selected query plan in the execution plan. For more information on

SPL routine optimization, refer to “Optimizing an SPL Routine” on page 13-2.

v Builds a dependency list

A dependency list contains items that the database server checks to decide if an

SPL routine needs to be reoptimized at execution time. For example, the

database server checks for the existence of all tables, indexes, and columns

involved in the query.

v Parses SPL statements and convert them to p-code

The term p-code refers to pseudocode that an interpreter can execute quickly.

v Converts the p-code, execution plan, and dependency list to ASCII format

The database server stores these ASCII formats as character columns in the

system catalog tables, sysprocbody and sysprocplan.

v Stores information about the procedure, such as routine name parameters and

modifiers, in the sysprocedures system catalog table

v Stores permissions for the procedure in the sysprocauth system catalog table

For information on how to optimize an SPL routine, see Chapter 13, “Improving

UDR Performance,” on page 13-1.

For a summary of the UDR information in the system catalog tables, refer to

“Reviewing Information about User-Defined Routines” on page 4-23.

Figure 4-1 shows the parts of a CREATE FUNCTION statement that registers a

user-defined function called abs_eq().

When you create an SPL function, you can specify optional routine modifiers that

affect how the database server executes the function. Procedures in SPL do not

allow routine modifiers. Use the WITH clause of the CREATE FUNCTION

statement to list function modifiers. SPL functions allow the following routine

modifiers:

v INTERNAL

v NEGATOR

CREATE FUNCTION abs_eq(arg1 INTEGER, arg2 INTEGER)
RETURNS BOOLEAN
WITH (NOT VARIANT)
DEFINE ret BOOLEAN;
IF (arg1 < 0) THEN

LET arg1 = -arg1;
END IF
IF (arg2 < 0) THEN

LET arg2 = -arg2;
END IF
IF (arg1 = arg2) THEN

LET ret = "t";
ELSE

LET ret = "f";
END IF;
RETURN ret;

END FUNCTION;

Routine name

Routine body

Routine parameter list

Return value
(functions only)Routine modifiers

(optional)

Figure 4-1. Registering an SPL Function

Chapter 4. Developing a User-Defined Routine 4-19

v NOT VARIANT

v VARIANT

In Figure 4-1, the NOT VARIANT modifier indicates that the abs_eq() SPL function

is written so that it always returns the same value when passed the same

arguments.

You can use INOUT parameters in SPL routines as shown in the following syntax:

 CREATE PROCEDURE spl_proc ([IN|OUT|INOUT] arg0 DataType, ...,

[IN|OUT|INOUT] argN DataType);

 END PROCEDURE;

For more information about the CREATE FUNCTION and CREATE PROCEDURE

statements and about the syntax of SPL, refer to the IBM Informix Guide to SQL:

Syntax. For information about creating using SPL routines, refer to the IBM Informix

Guide to SQL: Tutorial.

Creating an External-Language Routine

You can write a routine in an external language that the database server supports.

After you create a routine, you register the routine with a CREATE FUNCTION or

CREATE PROCEDURE statement.

The CREATE FUNCTION and CREATE PROCEDURE statements specify the

location of the external routine, as follows:

v For C UDRs, the location is the full pathname of the shared-object module,

qualified with the name of the C function that implements the function or

procedure.

v For Java UDRs, location is the name of the .jar file, followed by the name of the

Java class and the name of the method within that class, including its

arguments.

For example, Figure 4-2 shows a CREATE FUNCTION statement that registers a

user-defined function called abs_eq() that is written in C. The corresponding C

function is in a shared-object file called abs.bld.

Registering a Routine Written in C

To register a C routine, write the body of the routine, compile it, and create a

shared-object file, and then use the CREATE FUNCTION or CREATE

PROCEDURE statement to register the function. The RETURNING clause of

CREATE FUNCTION specifies the return data type of the function.

CREATE FUNCTION abs_eq(arg1 INTEGER, arg2 INTEGER)
RETURNS BOOLEAN
WITH (NOT VARIANT)
EXTERNAL NAME
'$INFORMIXDIR/extend/abs.1.0/abs.bld(abs_eq)'
LANGUAGE C Language name

Routine name

Location of the routine

Routine parameter list

Return value (functions only)
Routine modifiers (optional)

Figure 4-2. Registering an External-Language Function

4-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

For example, the following CREATE FUNCTION statement registers a C function

called equal() that takes two arguments, arg1 and arg2, of data type udtype1 and

returns a single value of the data type BOOLEAN:

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)

RETURNING BOOLEAN

EXTERNAL NAME ’/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)’

LANGUAGE C

END FUNCTION;

Tip: In the preceding example, the END FUNCTION keywords are optional. C

user-defined-routines can use either RETURNS or RETURNING.

For more information, see the CREATE FUNCTION and CREATE PROCEDURE

statements in the IBM Informix Guide to SQL: Syntax. For information about how to

create a shared-object file, refer to the IBM Informix DataBlade API Programmer’s

Guide.

Registering a Routine Written in Java

To register a Java routine, write the body of the routine, compile it, create a .jar

file, and register the .jar file with install_jar(). Then use the CREATE FUNCTION

or CREATE PROCEDURE statement to register the function. For example:

CREATE PROCEDURE showusers()

 WITH (class=’jvp’)

 EXTERNAL NAME ’thisjar:admin.showusers()’

 LANGUAGE java;

A UDR written in Java runs on a JVP by default. Therefore, the CLASS routine

modifier in the preceding example is optional. However, it is recommended that, to

improve readability of your SQL statements, you include the CLASS routine

modifier when you register a UDR.

For more information, see the CREATE FUNCTION and CREATE PROCEDURE

statements in the IBM Informix Guide to SQL: Syntax. For information about how to

create a Java routine, refer to the J/Foundation Developer’s Guide.

Registering an External Routine with Modifiers

When you create a routine in an external language, you can specify optional

modifiers that tell the database server about attributes of the UDR. Use the WITH

clause of the CREATE FUNCTION and CREATE PROCEDURE statements to list

routine modifiers. Following the WITH keyword, the modifiers that you want to

specify are enclosed within parentheses and separated by commas.

For more information about using routine modifiers, refer to the IBM Informix

DataBlade API Programmer’s Guide.

Modifiers in a C UDR: The following table shows the routine modifiers that are

valid for C routines.

Chapter 4. Developing a User-Defined Routine 4-21

Valid for

Routine Modifier Description

External

Function

External

Procedure

CLASS Specifies a virtual-processor class in

which to run the UDR

Yes Yes

COSTFUNC Specifies the name of the cost function

for this UDR

Yes Yes

HANDLESNULLS Specifies that the UDR can handle null

arguments

Yes Yes

INTERNAL Specifies that the UDR is an internal

routine; that is, that the routine is not

available for use in an SQL or SPL

statement

Yes Yes

ITERATOR Specifies that the UDR is an iterator

function

Yes No

NEGATOR Specifies that the UDR is a negator

function

Yes No

NOT VARIANT Specifies that all invocations of the UDR

with the same arguments return the

same value

Yes No

PARALLELIZABLE Routine can be executed in parallel Yes Yes

PERCALL_COST Specifies the cost of execution for the

UDR

Yes Yes

SELCONST Specifies the selectivity of the UDR Yes No

SELFUNC Specifies the name of the selectivity

function for this UDR

Yes No

STACK Specifies the stack size for the UDR Yes Yes

VARIANT Specifies that all invocations of the UDR

with the same arguments do not

necessarily return the same value

Yes No

The following example shows how to use the WITH clause to specify a set of

modifiers when you create an external-language function:

CREATE FUNCTION lessthan (arg1 basetype2, arg2 basetype2)

RETURNING BOOLEAN

WITH (HANDLESNULLS, NOT VARIANT)

EXTERNAL NAME ’/usr/lib/basetype2/lib/libbtype2.so(basetype2_lessthan)’

LANGUAGE C

In this example, the HANDLESNULLS modifier indicates that the

basetype2_lessthan() function (in the shared library /usr/lib/basetype2/lib/
libbtype2.so) is coded to recognize SQL null. If HANDLESNULL is not set, the

routine manager does not execute the UDR if any arguments of the routine are

null; it simply returns null.

Modifiers in a Java UDR: The following table shows the routine modifiers that

are valid for Java routines.

Routine Modifier Type of UDR

CLASS Access to JVP

HANDLESNULLS UDR that handles SQL null values as arguments

4-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

ITERATOR Iterator function

NEGATOR Negator function

NOT VARIANT All invocations of the UDR with the same

arguments return the same value

PARALLELIZABLE Parallelizable UDR

VARIANT All invocations of the UDR with the same

arguments do not necessarily return the same value

Registering Parameters and a Return Value

The CREATE FUNCTION and CREATE PROCEDURE statements specify any

parameters and return value for a C UDR. These statements use SQL data types for

parameters and the return value. For example, suppose a C UDR has the following

C declaration:

mi_double_precision *func1(parm1, parm2)

 mi_integer parm1;

 mi_double_precision *parm2;

The following CREATE FUNCTION statement registers the func1() user-defined

function:

CREATE FUNCTION func1(INTEGER, FLOAT)

RETURNS FLOAT

Use the opaque SQL data type, POINTER, to specify a data type for an

external-language routine whose parameter or return type has no equivalent SQL

data type. The CREATE FUNCTION or CREATE PROCEDURE statement uses the

POINTER data type when the data structure that the routine receives or returns is

a private data type, not one that is available to users.

Reviewing Information about User-Defined Routines

The following table shows where the database server stores information from

CREATE FUNCTION and CREATE PROCEDURE statements in the sysprocedures

system catalog table.

Chapter 4. Developing a User-Defined Routine 4-23

UDR Information CREATE Statement Syntax Column of sysprocedures

Routine type: function or

procedure

FUNCTION or PROCEDURE

keyword

isproc

Owner name (optional) Precedes the routine name:

owner.routine_nameDefaults to the

creator of the routine

owner

Routine name After FUNCTION or

PROCEDURE keyword

procname

Specific name (optional) SPECIFIC keyword specificname

Routine parameters Parameter list numargs, paramstyle,

paramtypes

Routine modifiers WITH clause variant, handlesnulls,

iterator, percallcost,

negator, selfunc, internal,

class, stack, parallelizable,

costfunc, selconst,

modifiers

Location of the routine (if

it is external)

EXTERNAL NAME externalname

Routine language LANGUAGE langid

The database server assigns a unique identifying number to each UDR and stores

this number in the procid column of sysprocedures table.

For SPL routines, the database server also stores routine information in the

sysprocbody and sysprocplan system catalog tables. The sysprocbody table stores

both the text and the compiled version (which is not legible) of the SPL routine.

The sysprocplan table stores a compiled version of the execution plan, which is

not legible.

Using a UDR With HDR

If you are using High-Availability Data Replication (HDR), there are some rules

you must follow when running UDRs:

v Install the UDR object file on both servers of an HDR pair under the same

absolute path name.

v Name the UDR object file identically on both servers of an HDR pair.

v Register the UDR only on the primary server.

v Do not use the UDR to create any persistent external files or persistent memory

objects.

4-24 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 5. Extending Data Types

In This Chapter . 5-1

Understanding the Data Type System . 5-1

Understanding Data Types . 5-2

Built-In Data Types . 5-2

Extended Data Types . 5-5

Complex Data Types . 5-5

User-Defined Data Types . 5-6

IBM Informix DataBlade Modules . 5-7

Extending the Data Type System . 5-8

Operations . 5-8

Casts . 5-8

Operator Classes . 5-9

Providing Additional Operator Classes . 5-9

Extending Operator Classes . 5-9

Optimizer Information . 5-9

In This Chapter

You can extend Dynamic Server by extending existing data types or by creating

user-defined data types (UDTs). This chapter reviews basic information about the

data types. It covers the following topics:

v Understanding the Data Type System

v Understanding Data Types

v Extending the Data Type System

When you create a new data type or extend an existing data type, you use the

UDRs that were introduced in Chapter 2, “Using a User-Defined Routine,” on page

2-1

Understanding the Data Type System

The data type system that the database server uses is an extensible data type

system. That is, the data type system is flexible enough to let you:

v Use the data types that the data type system defines and supports.

v Define your own data types.

v Extend the data type system to support additional behavior for data types.

The data type system handles the interaction with the data types. A data type is a

descriptor that is assigned to a variable or column to indicate the type of data that

the variable or column can hold. The database server uses a data type to determine

the following information:

v The data types that the database server can use

The data type determines the layout or internal structure that the database server

can use to store the data type values on disk.

v The operations (such as multiplication, string concatenation, casting, or

aggregation) that the database server can apply to values of a particular data

type

An operation must be defined on a particular data type. Otherwise, the database

server does not allow the operation to be performed.

© Copyright IBM Corp. 1996, 2008 5-1

v The access methods that the database server can use for values in columns of this

data type:

– The primary-access method handles storage and retrieval of a particular data

type in a table. If the primary-access method does not handle a particular

data type, the database server cannot access values of that type.

– The secondary-access method handles storage and retrieval of a particular data

type in an index. If the secondary-access method does not handle a particular

data type, you cannot build an index on that data type.
v The casts that the database server can use to perform data conversion between

values of two different data types

The database server uses casts to perform data conversion between values of

two different data types.

The data type system knows how to provide this behavior for its built-in data

types. When you create a UDT, you must provide this information for your data

type.

Understanding Data Types

This section gives a brief summary of the data types that the database server

supports. Figure 5-1 contains a tree illustration that showing the hierarchy of these

data types.

For a more detailed description of data types, see the IBM Informix Database Design

and Implementation Guide.

Built-In Data Types

A built-in data type is a fundamental data type that the database server defines. A

fundamental data type is atomic; that is, it cannot be broken into smaller pieces.

Data types

Built-in data types Extended data types

Complex data types User-defined data types

Distinct Opaque

Unnamed Row Named Row

Collection types

LIST SET MULTISET

Row types

Figure 5-1. Data Types That the Database Server Supports

5-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Built-in data types serve as building blocks for other data types. Table 5-1

summarizes the built-in data types that the database server provides.

 Table 5-1. Built-In Data Types

Data Type Category Explanation

BLOB Large object Stores binary data in smart

large objects in a format that

supports random access

BOOLEAN Miscellaneous Stores the Boolean values for

true and false

BYTE Large object Stores binary data in chunks

that are not random access

CHAR(n) Character Stores single-byte or multibyte

sequences of characters,

including letters, numbers, and

symbols of fixed length

Collation® is code-set

dependent.

CHARACTER(n) Character Is a synonym for CHAR

CHARACTER VARYING(m,r) Character Is an ANSI-compliant version of

the VARCHAR data type

CLOB Large object Stores text in smart large objects

in a format that supports

random access

DATE Time Stores a calendar date

DATETIME Time Stores a calendar date combined

with the time of day

DEC Numeric Is a synonym for DECIMAL

DECIMAL(p) Numeric Stores numbers with definable

scale and precision; is a

floating-point data type

DECIMAL(p,s) Numeric Stores numbers with definable

scale and precision; is a

fixed-point data type

DOUBLE PRECISION Numeric Behaves the same way as

FLOAT

FLOAT(n) Numeric Stores double-precision

floating-point numbers that

correspond to the double data

type in C (on most platforms)

IDSSECURITYLABEL Character Is a distinct of LVARCHAR

INT Numeric Is a synonym for INTEGER

INT8 Numeric Stores an 8-byte integer value

These whole numbers can be in

the range -(263-1) to 263-1.

INTEGER Numeric Stores whole numbers from

-(231-1) to 231-1

INTERVAL Time Stores a span of time

Chapter 5. Extending Data Types 5-3

Table 5-1. Built-In Data Types (continued)

Data Type Category Explanation

LVARCHAR(m) Character Stores single-byte or multibyte

strings of letters, numbers, and

symbols of varying length to a

maximum of 32,739 bytes

If you do not specify a

maximum size, the default is

2048 bytes.

LVARCHAR is also the external

storage format for opaque data

types. Collation is code-set

dependent.

MONEY(p,s) Numeric Stores a currency amount

NCHAR(n) Character Stores single-byte and multibyte

sequences of characters,

including letters, numbers, and

symbols

Collation is locale dependent.

For more information, see the

IBM Informix GLS User’s Guide.

NUMERIC(p,s) Numeric Is a synonym for DECIMAL

NVARCHAR(m,r) Character Stores single-byte and multibyte

sequences of characters,

including letters, numbers, and

symbols of varying length to a

maximum of 255 bytes

Collation is locale dependent.

For more information, see the

IBM Informix GLS User’s Guide.

REAL Numeric Is a synonym for

SMALLFLOAT

SERIAL Numeric Stores sequential integers; has

the same range of positive

values as INTEGER

SERIAL8 Numeric Stores large sequential integers;

has the same range of positive

values as INT8

SMALLFLOAT Numeric Stores single-precision

floating-point numbers that

correspond to the float data

type in C (on most platforms)

SMALLINT Numeric Stores whole numbers from

-(215-1) to 215-1

TEXT Large object Stores text data in chunks that

are not random access

5-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Table 5-1. Built-In Data Types (continued)

Data Type Category Explanation

VARCHAR(m,r) Character Stores single-byte or multibyte

strings of letters, numbers, and

symbols of varying length to a

maximum of 255 bytes

Collation is code-set dependent.

Extended Data Types

The extensible data type system allows you to:

v Define new data types, called extended data types, to extend the data type system

v Define the behavior of extended data types:

– The operations that are supported on the extended data types

– New operator class that supports the extended data type and provides new

functionality for a secondary-access method

– Additional casts to provide data conversions between the extended data types

and other data types

– Functions that collect statistics for the optimizer

You can define the following extended data types:

v Complex data types

– Collection types

– Row types
v UDTs

– Opaque data types

– Distinct data types

The database server stores information about extended data types in the

sysxtdtypes and sysxtdtypeauth system catalog tables. For information about these

tables, refer to the IBM Informix Guide to SQL: Reference.

Complex Data Types

A complex data type is built from a combination of other data types. An SQL

statement can access individual components within the complex type. The two

kinds of complex types are as follows:

v Collection types have instances that are groups of elements of the same data type,

which can be any built-in or complex data type.

The requirements for elements with ordered position and uniqueness among the

elements determine whether the collection is a SET, LIST, or MULTISET.

v Row types have instances that are groups of related data fields, of any data type,

that form a template for a record.

The assignment of a name to the row type determines whether the row type is a

named row type or an unnamed row type.

Chapter 5. Extending Data Types 5-5

Table 5-2 summarizes the complex data types that the database server supports.

 Table 5-2. Complex Data Types of the Database Server

Data Type Explanation

LIST(e) Stores a collection of values that have an implicit position

(first, second, and so on) and allows duplicate values All

elements have the same element type, e.

MULTISET(e) Stores a collection of values that have no implicit position and

allows duplicate values All elements have the same element

type, e.

Named row type A row type created with the CREATE ROW TYPE statement

This row type has a defined name and inheritance properties

and can be used to construct a typed table. A named row type

is not equivalent to another named row type, even if its field

definitions are the same.

ROW (Unnamed row

type)

A row type created with the SQL keyword ROW This row

type has no defined name and no inheritance properties. Two

unnamed row types are equivalent if they have the same

number of fields and if corresponding fields have the same

data type, even if the fields have different names.

SET(e) Stores a collection of values that have no implicit position and

does not allow duplicate values All elements have the same

element type, e.

User-Defined Data Types

Table 5-3 summarizes the UDTs that the database server supports.

 Table 5-3. User-Defined Data Types

Data Type Explanation

Distinct Has the same internal representation as the source data type on which it is

based but has different casts and functions defined over it than those on

the source type

Opaque Fundamental data type that the user defines A fundamental data type is

atomic; that is, it cannot be broken into smaller pieces, and it can serve as

the building block for other data types.

American National Standards Institute

In an ANSI-compliant database, columns defined using user-defined types should

be in the owner.object format.

End of American National Standards Institute

Distinct Data Type: A distinct type has the same internal structure as an existing

data type. However, it has a distinct name and therefore distinct functions that

make it different from its source type. When you define a distinct type, you

provide the following information:

v The source data type, which defines the internal structure of the distinct data

type

The functions of the source data type determine how the database server

interacts with this internal structure.

v The operations that are valid on the distinct data type

5-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

You define operator functions, built-in functions, or end-user routines that

handle the distinct type. For information about building operator functions, see

Chapter 6, “Extending Operators and Built-In Functions,” on page 6-1.

v Extensions of the operator class of a secondary-access method so that its strategy

and support functions handle the distinct data type

For information about support functions, see Chapter 10, “Writing Support

Functions,” on page 10-1.

v Cast functions to provide the data conversions to and from the distinct type

The database server automatically creates explicit casts between the distinct type

and its source type. Because these two data types have the same internal format,

this cast does not require a cast function. You can write cast functions to support

data conversion between the distinct type and other data types in the database

or to support implicit casts between the distinct type and its source data type.

For information about writing casts, see Chapter 7, “Creating User-Defined

Casts,” on page 7-1.

You create a distinct data type with the CREATE DISTINCT TYPE statement. After

you create the distinct type, you can use it anywhere that other data types are

valid. For more information, refer to the description of this statement in the IBM

Informix Guide to SQL: Syntax.

Opaque Data Type: Unlike other data types (built in, complex, and distinct), the

internal structure of the opaque data type is not known to the database server.

Therefore, when you define an opaque type, you must provide the following

information:

v The internal structure of the opaque data type, which provides the format of the

data

You define the support functions of the opaque type to tell the database server

how to interact with this internal structure.

v The operations that are valid on the opaque data type

You define operator functions, built-in functions, or end-user routines that

handle the opaque type.

v Extensions of the operator class of a secondary-access method so that its strategy

and support functions handle the opaque data type

v Cast functions to provide the data conversions to and from the opaque type

The support functions of the opaque type also serve as cast functions.

You register an opaque data type with the CREATE OPAQUE TYPE statement. For

information about this statement, refer to the IBM Informix Guide to SQL: Syntax.

For more information, see Chapter 9, “Creating an Opaque Data Type,” on page

9-1, and Chapter 10, “Writing Support Functions,” on page 10-1.

IBM Informix DataBlade Modules

In addition to the extended data types that you explicitly define, you can use the

pre-packaged extended data types that are provided. For example, an IBM

Informix DataBlade module might contain the routines required to support a

spherical coordinate system. For more information on IBM Informix DataBlade

modules, consult your sales representative or refer to the user guides for the

DataBlade modules.

Chapter 5. Extending Data Types 5-7

Extending the Data Type System

You can extend the data type system by writing routines that provide the

following additional behavior for existing built-in or extended data types:

v Define operators to provide additional operations on data types.

v Define operator classes to provide new functionality for a secondary-access

method (an index) on a data type.

v Define casts to provide conversions between data types.

v Define functions that provide information for the optimizer.

You must register each new function in the database with the CREATE

FUNCTION statement.

If you plan to enable the implicit or explicit execution of a UDR across databases,

all user-defined data types and casts must be defined in all of the participating

databases of the same database server instance.

Operations

A data type tells the database server which operations it can perform on the data

type values. The database server provides the following types of operations on

data types:

v An operator function implements a particular operator symbol.

The plus() and times() functions are examples of operator functions for the +

and * operators, respectively.

v A built-in function is a predefined function that the database server provides for

use in SQL statements.

The cos() and hex() functions are examples of built-in functions.

v An aggregate function returns a single value for a set of retrieved rows.

The SUM and AVG functions are examples of aggregate functions.

v An end-user routine is a UDR that end users can use in SQL statements to

perform some useful action.

The database server provides operator functions, built-in functions, and aggregate

functions that handle the data types that it provides. For a description of these

operations and how to extend them, see Chapter 6, “Extending Operators and

Built-In Functions,” on page 6-1.

Casts

The database server looks for a cast in the syscasts system catalog table to

determine which function to use to convert the data type value to a different type.

A cast performs the necessary operations for conversion from the data type to

another data type. When two data types have different internal formats, the

database server calls a cast function to convert one data type to another. For

example, when you add an integer value to a decimal value, the database server

performs a cast to change the integer into a decimal so that it can perform the

addition.

The database server provides casts between the built-in data types. You might

want to create additional casts to provide data conversion between an existing data

type and an extended data type that you create. If the two data types have

different internal formats, you must define a cast function to perform the data

conversion. You must register the cast function with the CREATE FUNCTION

5-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

statement and create the cast with the CREATE CAST statement before it can be

used. For more information on casts, see Chapter 7, “Creating User-Defined Casts,”

on page 7-1.

Operator Classes

An operator class tells the database server which data type (or types) it can index

using a secondary-access method. The operator class must follow the requirements

of the access method. The secondary-access method builds and accesses an index.

An operator class associates a group of operators with a secondary-access method.

When you extend an operator class, you provide additional functions that can be

used as filters in queries and for which the database server can use an index.

The database server provides a default operator class for the built-in

secondary-access method, a generic B-tree. This default operator class uses the

relational operators (<, >, =, and so on) to order values in the generic B-tree. These

relational operators are defined for the built-in data types.

Providing Additional Operator Classes

To provide additional sequences in which the B-tree can order values in the index,

you might want to create an additional operator class for the generic B-tree.

Extending Operator Classes

The default operator class provides only for built-in data types. You might want to

extend an operator class to support an extended data type for the following

reasons:

v To enable the default operator class to handle values of the extended data type

in a generic B-tree

v To provide a new sequence for the values of the extended data type to be stored

in a generic B-tree

v To extend an operator class of some other secondary-access method so that it

handles the extended data type

To extend or implement an operator class, you must define strategy and support

functions that handle each extended data type you want to index. For more

information, see Chapter 11, “Extending an Operator Class,” on page 11-1.

You must register each new operator class in the database with the CREATE

OPCLASS statement. For information about this statement, refer to the IBM

Informix Guide to SQL: Syntax.

Optimizer Information

The UPDATE STATISTICS statement collects information for built-in data types.

The optimizer uses the information to determine the cost associated with a query.

To collect statistics on opaque and distinct UDTs, you must provide the functions

that collect the information. For more information on these functions, see

Chapter 13, “Improving UDR Performance,” on page 13-1.

Chapter 5. Extending Data Types 5-9

5-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 6. Extending Operators and Built-In Functions

In This Chapter . 6-1

Operators and Operator Functions . 6-1

Arithmetic Operators . 6-2

Text Operators . 6-2

Relational Operators . 6-2

Overloading an Operator Function . 6-3

Built-In Functions . 6-3

Built-In Functions That You Can Overload . 6-3

Built-In Functions That You Cannot Overload . 6-4

Built-In Aggregates . 6-4

Status Functions . 6-4

Optical Subsystem Functions . 6-4

Overloading a Built-In Function . 6-4

In This Chapter

This chapter discusses the operators and built-in functions that you can extend for

use with UDTs. An operation is a task that the database server performs on one or

more values.

The database server provides SQL-invoked functions that provide operations

within SQL statements:

v Operator symbols (such as +, -, /, and *) and their associated operator functions

v Built-in functions such as cos() and abs()

v Aggregate functions such as SUM and AVG

These functions handle the built-in data types. For a UDT to use any of these

functions, you can write a new function that has the same name but accepts the

UDT in its parameter list.

The property called routine overloading allows you to create a user-defined function

whose name is already defined in the database but whose parameter list is

different. All functions with the same name have the same functionality, but they

operate on different data types.

For more information on routine overloading and routine resolution, refer to

“Understanding Routine Resolution” on page 3-8. For information about aggregate

functions, refer to Chapter 8, “Creating User-Defined Aggregates,” on page 8-1

Operators and Operator Functions

An operator function implements a particular operator symbol. The database server

provides special SQL-invoked functions, called operator functions, that implement

operators. An operator function processes one to three arguments and returns a

value. When an SQL statement contains an operator, the database server

automatically invokes the associated operator function.

The association between an operator and an operator function is called operator

binding. You can overload an operator function to provide the operator for a UDT.

The SQL user can then use the operator with the UDT as well as with the built-in

© Copyright IBM Corp. 1996, 2008 6-1

data types. When an SQL statement contains an operator, the database server

automatically invokes the associated operator function.

Arithmetic Operators

Arithmetic operators usually operate on numeric values. The following table lists

the operator functions for the arithmetic operators that the database server

provides.

 Arithmetic Operator Operator Function

+ (binary) plus()

- (binary) minus()

* times()

+ (unary) positive()

- (unary) negate()

/ divide()

You can overload these operators so that you can use them with user-defined

types. For an example of overloading the plus() and divide() functions, refer to

“Example of a User-Defined Aggregate” on page 8-8.

Text Operators

Text operators operate on character strings. The following table lists the text

operators that the database server provides.

Text Operator Operator Function

LIKE like()

MATCHES matches()

|| concat()

 For information on syntax and use of the LIKE and MATCHES operators, see the

Condition segment in the IBM Informix Guide to SQL: Syntax.

Relational Operators

Relational operators operate on expressions of numeric and string values. The

following table lists the operator functions that the database server provides.

Relational Operator Operator Function

= equal()

<> and != notequal()

> greaterthan()

< lessthan()

>= greaterthanorequal()

<= lessthanorequal()

 All relational operator functions must return a Boolean value. For more

information on relational operators, see the Relational Operator segment in the

IBM Informix Guide to SQL: Syntax.

6-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

For end users to be able to use values of a new data type with relational operators,

you must write new relational-operator functions that can handle the new data

type. In these functions, you can:

v Determine what the relational operators mean for that data type.

For example, you might create the circle opaque data type to implement a circle.

A circle is a spatial object that does not have a single value to compare.

However, you can define relational operators on this data type that can use the

value of its area: one circle is less than a second circle if its area is less than the

area of the second.

v Change from lexicographical sequence to some other ordering for a data type.

For example, suppose you create a data type, ScottishName, that holds Scottish

names, and you want to order the data type in a different way than the U.S.

English collating sequence. You might want the names McDonald and MacDonald

to appear together on a phone list. You can define relational operators for this

data type that equate the strings Mc and Mac. For more information, see

“Changing the Sort Order” on page 11-7.

After you define the relational operators, you can use SQL statements such as

the following one:

SELECT * FROM employee

 WHERE emp_name = ’McDonald’::ScottishName

The relational-operator functions are strategy functions for the built-in

secondary-access method, a generic B-tree. For information on strategy functions,

see “Operator Classes” on page 11-2.

Overloading an Operator Function

When you write a new version of an operator function, follow these rules:

v The name of the operator function must match the name of an arithmetic, text,

or relational-operator function. The name is case insensitive; the plus() function

is the same as the Plus() function.

v The operator function must handle the correct number of parameters.

v The operator function must return the correct data type.

Tip: Although the compare() function is not strictly an operator function, when

you overload the relational operators, you should prepare a corresponding

compare() function, because the database server uses compare() to process

queries that SELECT DISTINCT or have an ORDER BY clause.

If you define a compare() function, you must also define the greaterthan(),

lessthan(), or other functions that use the compare function.

Built-In Functions

The database server provides special SQL-invoked functions, called built-in

functions, that provide some basic mathematical operations. For detailed

information about built-in functions, see the Expression segment in the IBM

Informix Guide to SQL: Syntax.

Built-In Functions That You Can Overload

You can overload built-in functions that provide basic operations and certain text

and time functions, including the following ones.

 abs() trunc() atan() extend()

Chapter 6. Extending Operators and Built-In Functions 6-3

hex() exp() atan2() decode()

mod() log10() length() nvl()

pow() logn() char_length() initcap()

root() cos(), sin() character_length() lower()

round() tan() octet_length() lpad(), rpad()

sqrt() acos(), asin() atan2() upper()

Built-In Functions That You Cannot Overload

The following sections list built-in functions that you cannot overload.

Built-In Aggregates

Each aggregate function uses built-in functions to generate the aggregate result.

You cannot overload a built-in aggregate function. Instead, you overload the

necessary support functions. For a list of the aggregate functions and their related

operator functions, refer to “Overloading Operators for Built-In Aggregates” on

page 8-2.

Status Functions

You cannot overload the following functions that describe time, date, the database

server, and the user.

 cardinality() day() month() user

current dbinfo() sitename weekday()

date() dbservername today year()

datetime() mdy() trim()

Tip: Technically, CURRENT, DBSERVERNAME, SITENAME, TODAY, and USER,

are not built-in functions, but built-in macros. You can register overloaded

routines by those names, but you cannot use them in SQL statements.

Optical Subsystem Functions

The following table lists the built-in functions for the Optical Subsystem that you

cannot overload.

 descr() volume() family()

Overloading a Built-In Function

The database server provides functions that handle the built-in data types. You can

write a new version of a built-in function that allows the function to operate on

your new data type. If you write a new version of a built-in function, follow these

rules:

v The function must be one that you can overload, as listed in “Built-In Functions

That You Can Overload” on page 6-3. The name is case insensitive; the abs()

function is the same as the Abs() function.

v The function must handle the correct number of parameters, and these

parameters must be the correct data type.

v The function must return the correct data type, where appropriate.

6-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 7. Creating User-Defined Casts

In This Chapter . 7-1

Understanding Casts . 7-1

Built-In Casts . 7-1

User-Defined Casts . 7-1

Opaque Data Types . 7-2

Distinct Data Types . 7-2

Named Row Types . 7-2

Casts That You Cannot Create . 7-2

Creating a User-Defined Cast . 7-2

Choosing the Kind of User-Defined Cast . 7-3

Implicit Cast . 7-3

Explicit Cast . 7-3

Choosing the Cast Mechanism . 7-4

Straight Cast . 7-4

Cast Function . 7-4

Example of a Cast Function . 7-5

Defining the Direction of the Cast . 7-6

Dropping a Cast . 7-7

In This Chapter

A cast is a mechanism that converts a value from one data type to another.

This chapter describes how to create casts for UDTs; the chapter contains the

following information:

v Understanding Casts

v Creating a User-Defined Cast

v Dropping a Cast

Understanding Casts

Casts allow you to make comparisons between values of different data types or

substitute a value of one data type for a value of another data type. For example,

when you add a floating-point number to an integer, the computer must change

(cast) the integer to a floating-point value before it can perform the addition.

Built-In Casts

A built-in cast performs an automatic conversion between two built-in data types.

The database server provides casts between most of the built-in data types.

For more information on built-in casts, refer to the chapter on data types in the

IBM Informix Database Design and Implementation Guide.

User-Defined Casts

A user-defined cast is a cast that you define to perform conversion from one UDT to

another data type, either built-in or user-defined. You can create user-defined casts

to perform conversions between most data types, including opaque types, distinct

types, row types, and built-in types.

© Copyright IBM Corp. 1996, 2008 7-1

Opaque Data Types

When you create an opaque data type, you define casts to handle conversions

between the internal and external representations of the opaque data type. You

might also create casts to handle conversions between the opaque data type and

other data types in the database.

For information about how to create and register casts for opaque data types, see

“Creating Casts for Opaque Data Types” on page 9-8.

Distinct Data Types

When you create a distinct data type, the database server automatically registers

explicit casts from the distinct data type to the source data type and from the

source data type to the distinct data type. You must create casts on distinct types

to handle conversions between the new distinct data type and other data types in

the database or use explicit casts in your SQL statements.

For more information and examples that show how you can create and use casts

for distinct types, refer to the chapter on casting in the IBM Informix Database

Design and Implementation Guide.

Named Row Types

In most cases, you can explicitly cast a named row type to another row type value

without creating the cast. However, in some cases, you might want to create a cast

that allows for comparisons between a named row type and some other data type.

For information about how to cast between named row types and unnamed row

types, refer to the chapter on casting in the IBM Informix Database Design and

Implementation Guide.

Casts That You Cannot Create

You cannot create a user-defined cast that includes any of the following data types

as either the source data type or target data type for the cast:

v Collection data types: LIST, MULTISET, or SET

v Unnamed row types

v Smart-large-object data types: CLOB or BLOB

v Simple-large-object data types: TEXT or BYTE

Creating a User-Defined Cast

You create a user-defined cast with the CREATE CAST statement, which registers

the cast in the syscasts system catalog table. The person who registers a cast with

CREATE CAST owns the cast.

For information about the syntax of the CREATE CAST statement, refer to the IBM

Informix Guide to SQL: Syntax. For a general discussion of using casts, refer to the

IBM Informix Database Design and Implementation Guide.

The CREATE CAST statement provides the following information about the cast to

the database server:

v The kind of user-defined cast to create

v The cast mechanism that the database server is to use to perform the data

conversion

v The direction of the cast

7-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The CREATE CAST statement specifies the source and target data types to

determine the direction of the cast. For full data conversion between two data

types, you must define one cast in each direction of the conversion.

Choosing the Kind of User-Defined Cast

You specify how a database server treats a cast when you use the CREATE CAST

statement. The database server supports two kinds of user-defined casts:

v Implicit cast

v Explicit cast

The database server invokes an explicit cast to perform conversions between two

data types only when you specify the CAST AS keywords or the double colon

(::) cast operator.

Implicit Cast

An implicit cast governs what automatic data conversion occurs for an operation

that involves two different data types. All casts between built-in data types are

implicit.

The database server automatically invokes an implicit cast when it performs the

following tasks:

v It passes arguments of one data type to a UDR whose parameters are of another

data type.

v It evaluates expressions and needs to operate on two similar data types.

Conversion of one data type to another can involve loss of data. Be careful of

creating implicit casts for such conversions. The end user cannot control when the

database server invokes an implicit cast and therefore cannot avoid the loss of data

that is inherent to such a conversion.

The database server invokes an implicit cast automatically, without a cast operator.

However, you also can explicitly invoke an implicit cast with the CAST AS

keywords or the :: cast operator.

To create an implicit cast, specify the IMPLICIT keyword of the CREATE CAST

statement. The following CREATE CAST statement creates an implicit cast from the

percent data type to the DECIMAL data type:

CREATE IMPLICIT CAST (percent AS DECIMAL)

Explicit Cast

An explicit cast governs what data conversion an end user can specify for UDTs

(such as opaque data types, distinct data types, and row types). The database

server invokes an explicit cast only when it encounters one of the following syntax

structures:

v The CAST AS keywords

For example, the following expression uses the CAST AS keywords to invoke an

explicit cast between the percent and INTEGER data types:

WHERE col1 > (CAST percent AS INTEGER)

v The :: cast operator

For example, the following expression uses the cast operator to invoke an

explicit cast between the percent and INTEGER data types:

WHERE col1 > (percent::INTEGER)

Chapter 7. Creating User-Defined Casts 7-3

The conversion of one data type to another can involve loss of data. If you define

such conversions as explicit casts, the end user can control when the loss of data

that is inherent to such a conversion is acceptable.

To create an explicit cast, specify the EXPLICIT keyword of the CREATE CAST

statement. If you omit the keyword, the default is an explicit cast. Both of the

following CREATE CAST statements create explicit casts from the percent data

type to the INTEGER data type:

CREATE EXPLICIT CAST (percent AS INTEGER)

CREATE CAST (percent AS INTEGER)

Choosing the Cast Mechanism

The CREATE CAST statement can optionally specify the name of a cast function

that implements the cast. The database server does not automatically perform data

conversion on extended data types. You must specify a cast function if the two

data types have different internal structures.

The database server can implement a cast with one of following mechanisms:

v Perform™ a straight cast if two data types have internal structures that are the

same

v Call a cast function to perform the data conversion

Straight Cast

A straight cast tells the database server that two data types have the same internal

structure. With such a cast, the database server does not need to manipulate data

to convert from the source data type to the target data type. Therefore, you do not

need to specify a WITH clause in the CREATE CAST statement.

For example, suppose you need to compare the values of an INTEGER data type

and a UDT my_int that has the same internal structure as the INTEGER data type.

This conversion does not require a cast function because the database server does

not need to perform any manipulation on the values of these two data types to

compare them. The following CREATE CAST statements create the explicit casts

that allow you to convert between values of data type INT and my_int:

CREATE CAST (INT AS my_int)

CREATE CAST (my_int AS INT)

The first cast defines a valid conversion from INT to my_int, and the second cast

defines a valid conversion from my_int to INT.

Built-in casts have no cast function associated with them. Because a distinct data

type and its source data type have the same internal structure, distinct types do

not require cast functions to be cast to their source data type. The database server

automatically creates explicit casts between a distinct data type and its source data

type.

Cast Function

You can create special SQL-invoked functions, called cast functions, that implement

data conversion between two dissimilar data types. When two data types have

different storage structures, you must create a cast function that defines how to

convert the data in the source data type to data of the target data type.

 To create a cast that has a cast function:

1. Write the cast function.

7-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The cast function takes the source data type as its argument and returns the

target data type.

2. Register the cast function with the CREATE FUNCTION statement.

3. Register the cast with the CREATE CAST statement.

Use the WITH clause of the CREATE CAST statement to specify the cast

function. To invoke a cast function, the function must reside in the current

database. However, the cast function does not need to exist when you register

the cast.

Example of a Cast Function

For example, suppose you want to compare values of two opaque data types,

int_type and float_type. Both types have an external LVARCHAR format that you

can use as an intermediate type for converting from one to the other. The CREATE

FUNCTION statement in Figure 7-1 creates and registers an SPL function,

int_to_float(), as an argument. It casts the int_type input value to an LVARCHAR,

and then casts the LVARCHAR result to float_type and returns the float_type

result.

The int_to_float() function uses a nested cast and the support functions of the

int_type and float_type opaque types to obtain the return value, as follows:

1. The int_to_float() function converts the int_type argument to LVARCHAR with

the inner cast:

CAST(int_arg AS LVARCHAR)

The output support function of the int_type opaque data type serves as the cast

function for this inner cast. This output support function must be defined as

part of the definition of the int_type opaque data type; it converts the internal

format of int_type to its external (LVARCHAR) format.

2. The int_to_float() function converts the LVARCHAR value to float_type with

the outer cast:

CAST((LVARCHAR value from step 1) AS float_type)

The input support function of the float_type opaque data type serves as the

cast function for this outer cast. This input support function must be defined as

part of the definition of the float_type opaque data type; it converts the

external (LVARCHAR) format of float_type to its internal format.

For information about input and output support functions, refer to

“Locale-Sensitive Input and Output Support Functions” on page 10-21.

After you create this cast function, use the CREATE CAST statement to register the

function as a cast. You cannot use the function as a cast until you register it with

the CREATE CAST statement. The CREATE CAST statement in Figure 7-2 creates

an explicit cast that uses the int_to_float() function as its cast function.

CREATE FUNCTION int_to_float(int_arg int_type)

 RETURNS float_type

 RETURN CAST(CAST(int_arg AS LVARCHAR) AS float_type);

END FUNCTION;

Figure 7-1. An SPL Function as a Cast Function from int_type to float_type

CREATE EXPLICIT CAST (int_type AS float_type

 WITH int_to_float);

Figure 7-2. An Explicit Cast from int_type to a float_type

Chapter 7. Creating User-Defined Casts 7-5

After you register the function as an explicit cast, the end user can invoke the

function with the CAST AS keywords or with the :: cast operator to convert an

int_type value to a float_type value. For the syntax of the CREATE FUNCTION

and CREATE CAST statements, refer to the IBM Informix Guide to SQL: Syntax.

Defining the Direction of the Cast

A cast tells the database server how to convert from a source data type to a target

data type. The CREATE CAST statement provides the name of the source and

target data types for the cast. The source data type is the data type that needs to

be converted, and the target data type is the data type to which the source data

type should be converted. For example, the following CREATE CAST statement

creates a cast whose source data type is DECIMAL and whose target data type is a

UDT called percent:

CREATE CAST (DECIMAL AS percent)

When you register a user-defined cast, the combination of source data type and

target data type must be unique within the database.

To provide data conversion between two data types, you must define a cast for

each direction of the conversion. For example, the explicit cast in Figure 7-2 enables

the database server to convert from the int_type opaque data type to the

float_type opaque data type. Therefore, the end user can perform the following

cast in an INSERT statement to convert an int_type value, it_val, to a float_type

column, ft_col:

INSERT INTO table1 (ft_col) VALUES (it_value::float_type)

However, this cast does not provide the inverse conversion: from float_type to

int_type. If you try to insert a float_type value in an int_type column, the

database server generates an error. To enable the database server to perform this

conversion, you need to define another cast function, one that takes a float_type

argument and returns an int_type value. Figure 7-3 shows the CREATE

FUNCTION statement that defines the float_to_int() SPL function.

The float_to_int() function also uses a nested cast and the support functions of the

int_type and float_type opaque types to obtain the return value:

1. The float_to_int() function converts the float_type value to LVARCHAR with

the inner cast.

CAST(float_arg AS LVARCHAR)

The output support function of the float_type opaque data type serves as the

cast function for this inner cast. This output support function must be defined

as part of the definition of the float_type opaque data type; it converts the

internal format of float_type to its external (LVARCHAR) format.

2. The float_to_int() function converts the LVARCHAR value to int_type with the

outer cast.

CAST(LVARCHAR value AS int_type)

The input support function of the int_type opaque data type serves as the cast

function for this outer cast. This input support function must be defined as part

CREATE FUNCTION float_to_int(float_arg float_type)

 RETURNS int_type

 RETURN CAST(CAST(float_arg AS LVARCHAR) AS int_type);

END FUNCTION;

Figure 7-3. An SPL Function as a Cast Function from float_type to int_type

7-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

of the definition of the int_type opaque data type; it converts the external

(LVARCHAR) format of int_type to its internal format.

The CREATE CAST statement in Figure 7-4 creates an explicit cast that uses the

int_to_float() function as its cast function.

The end user can now perform the following cast in an INSERT statement to

convert a float_type value, ft_val, for an int_type column, it_col:

INSERT INTO table1 (it_col) VALUES (ft_value::int_type)

Together, the explicit casts in Figure 7-2 on page 7-5 and in Figure 7-4 enable the

database server to convert between the float_type and int_type opaque data types.

Each explicit cast provides a cast function that performs one direction of the

conversion.

Dropping a Cast

The DROP CAST statement removes the definition for a cast from the database.

The database server removes the class definition from the syscasts system catalog

table. You must be the owner (the person who created the cast) or the DBA to drop

its definition from the database.

Warning: Do not drop the built-in casts, which user informix owns. The database

server uses built-in casts for automatic conversions between built-in data

types. Do not drop support functions for opaque data types that serve as

casts if you still want to use the opaque data type in the database.

The following statements create and then remove casts between the mytype and

DECIMAL data types:

CREATE CAST (decimal AS mytype WITH dec_to_mytype);

CREATE CAST (mytype AS decimal WITH mytype_to_decimal);

...

...

DROP CAST (decimal AS mytype);

DROP CAST (mytype AS decimal);

Dropping a cast has no effect on the function associated with the cast. The

previous statements do not affect the dec_to_mytype or mytype_to_decimal

functions. Use the DROP FUNCTION statement to remove a function from the

database. For information about the syntax of DROP CAST and DROP

FUNCTION, refer to the IBM Informix Guide to SQL: Syntax.

CREATE EXPLICIT CAST (float_type AS int_type

 WITH float_to_int);

Figure 7-4. An Explicit Cast from float_type to int_type

Chapter 7. Creating User-Defined Casts 7-7

7-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 8. Creating User-Defined Aggregates

In This Chapter . 8-1

Extending Existing Aggregates . 8-2

Overloading Operators for Built-In Aggregates . 8-2

Extending an Aggregate . 8-2

Example of Extending a Built-In Aggregate . 8-3

Creating User-Defined Aggregates . 8-3

Support Functions . 8-4

INIT Function . 8-4

ITER Function . 8-5

FINAL Function . 8-5

COMBINE Function . 8-6

Resolving the Support Functions . 8-6

Support-Function States . 8-7

Using C or Java Support Functions . 8-7

Example of a User-Defined Aggregate . 8-8

Using User-Defined Data Types with User-Defined Aggregates 8-8

Omitting Support Functions . 8-9

Managing Aggregates . 8-10

Parallel Execution of Aggregates . 8-10

Privileges for User-Defined Aggregates . 8-10

Aggregate Information in the System Catalog . 8-11

Aggregate Information from the Command Line . 8-11

Dropping an Aggregate . 8-11

In This Chapter

This chapter describes how to extend the functionality of aggregates in the

database server.

An aggregate is a function that returns one value for a set of queried rows. The

database server provides two ways to extend aggregates:

v Extensions of built-in aggregates

A built-in aggregate is an aggregate that the database server provides, such as

COUNT, SUM, or AVG. You can extend the built-in aggregates for use with

UDTs.

v User-defined aggregates

A user-defined aggregate is an aggregate that you define to provide an aggregate

function that the database server does not provide.

The term user-defined aggregates is often used loosely to include both extensions of

built-in aggregates and new, user-defined aggregates. The database server manages

all aggregates, whether built in or user defined. After you create an extension to

the aggregate system, you use all aggregates in the same way, regardless of how

the aggregate was created.

The techniques for providing the two types of extensions are different. This chapter

provides separate discussions of the two methods for extending aggregates.

For information about how to use aggregates in SELECT statements, refer to the

IBM Informix Guide to SQL: Tutorial. For information about the syntax of aggregates,

refer to the IBM Informix Guide to SQL: Syntax.

© Copyright IBM Corp. 1996, 2008 8-1

Extending Existing Aggregates

The database server provides built-in aggregate functions, such as SUM and

COUNT, that operate on the built-in data types. You can extend a built-in

aggregate so that it can operate on UDTs. To extend a built-in aggregate, you must

create UDRs that overload several binary operators.

Overloading Operators for Built-In Aggregates

The following table shows the operators that you must overload for each of the

built-in aggregates. For example, if you need only the SUM aggregate for a UDT,

you need to overload only the plus() operator.

 Aggregate Required Operators Return Type

AVG plus(udt, udt), divide(udt, integer) Return type of divide()

COUNT -- (no new operators required) Integer

COUNT DISTINCT equal(udt,udt) Boolean

DISTINCT

(or UNIQUE)

compare(udt, udt) Boolean

MAX greaterthanorequal(udt, udt) Boolean

MIN lesthanorequal(udt, udt) Boolean

RANGE lessthanorequal(udt, udt),

greaterthanorequal(udt, udt),

minus(udt, udt)

Return type of minus()

SUM plus(udt, udt) Return type of plus()

STDEV times(udt, udt),

divide(udt, integer),

plus(udt, udt),

minus(udt, udt),

sqrt(udt)

Return type of divide()

VARIANCE times(udt, udt),

divide(udt, integer),

plus(udt, udt),

minus(udt, udt)

Return type of divide()

The database server uses the compare() function for indexing as well as for

DISTINCT and UNIQUE aggregations. However, the database server calls the

equal() function to process COUNT DISTINCT. You must write the compare()

function in C or in Java.

Extending an Aggregate

When you extend a built-in aggregate to include a UDT, you do not use the

CREATE AGGREGATE statement because the aggregate itself already exists.

 To extend a built-in aggregate:

1. Develop support functions to overload the required operators.

2. Register each function with a CREATE FUNCTION statement.

For more information, refer to “Registering a User-Defined Routine” on page

4-16.

After you register the support functions that overload the binary operators, you

can use the built-in aggregates in an SQL statement.

8-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

For the syntax of the CREATE FUNCTION statement, see the IBM Informix Guide to

SQL: Syntax. For more information about how to write overloaded functions, refer

to “Overloading Routines” on page 3-9. For information about how to write

functions in external languages, refer to the IBM Informix DataBlade API

Programmer’s Guide or the J/Foundation Developer’s Guide.

Example of Extending a Built-In Aggregate

The following example uses SPL functions to overload the plus() and divide()

operators for a row type, complex, that represents a complex number. After you

overload the operators, you can use the SUM, AVG, and COUNT operators with

complex.

CREATE ROW TYPE complex(real FLOAT, imag FLOAT);

CREATE FUNCTION plus (c1 complex, c2 complex)

 RETURNING complex;

 RETURN row(c1.real +c2.real, c1.imag +c2.imag)::complex;

END FUNCTION;

CREATE FUNCTION divide (c1 complex, count INT)

 RETURNING complex;

 RETURN row(c1.real/count, c1.imag/count)::complex;

END FUNCTION;

You can now use the extended aggregates as follows:

CREATE TABLE c_test (a complex, b integer);

INSERT INTO c_test VALUES (ROW(4,8)::complex,14);

INSERT INTO c_test VALUES (ROW(7,9)::complex,3);

...

SELECT SUM(a) FROM c_test;

SELECT AVG(a) FROM c_test;

SELECT COUNT(a) FROM c_test;

Creating User-Defined Aggregates

A user-defined aggregate extends the database server by providing information

that allows the database server to apply that aggregate to data in the database. To

create a user-defined aggregate, write and register support functions that perform

the aggregation and then implement the aggregate with the CREATE Aggregate

statement.

The CREATE Aggregate statement provides the following information about the

aggregate to the database server:

v The name of the aggregate

v The owner of the aggregate

v The names of the functions that support the aggregate

v Modifiers to the aggregate

For the syntax of the CREATE AGGREGATE statement, see the IBM Informix Guide

to SQL: Syntax.

You cannot create a user-defined aggregate for any of the following data types:

v Collection data types: LIST, MULTISET, or SET

v Unnamed row types

v Smart-large-object data types: CLOB or BLOB

v Simple-large-object data types: TEXT or BYTE

Chapter 8. Creating User-Defined Aggregates 8-3

Support Functions

The CREATE AGGREGATE statement expects information about four support

functions. The following table summarizes these support functions. You must

provide support functions for each data type that will use the aggregate.

Function Type Purpose

INIT Initializes the data structures required for

computing the aggregate

ITER Merges a single (row) value with the previous

partial result

COMBINE Merges one partial result with another partial

result, thus allowing parallel execution of the

aggregate

FINAL Converts the partial result into the final value

 It can perform clean-up operations and release

resources.

 You can write the support functions in SPL, C, or Java. For information about SPL,

refer to the IBM Informix Guide to SQL: Syntax. For information about writing

functions in external languages, refer to the IBM Informix DataBlade API

Programmer’s Guide or the J/Foundation Developer’s Guide.

The following CREATE AGGREGATE statement registers the SUMSQ aggregate

with support functions named init_func, iter_func, combine_func, and final_func.

You can register an aggregate even though you have not yet written the support

functions.

CREATE AGGREGATE sumsq

 (INIT = init_func,

 ITER = iter_func,

 COMBINE = combine_func,

 FINAL = final_func);

When you create a user-defined aggregate, you must overload each support

function to provide for each data type on which the aggregate will operate. That is,

if you create a new aggregate, SUMSQ, whose iterator function is iter_func, you

must overload the iter_func function for each applicable data type. Aggregate

names are not case sensitive. When you create and use an aggregate, you can use

either uppercase or lowercase.

INIT Function

The INIT function initializes the data structures required by the rest of the

computation of the aggregate. For example, if you write a C function, the INIT

function can set up large objects or temporary files for storing intermediate results.

The INIT function returns the initial result of the aggregate, which is of the state

type.

The INIT function can take one or two arguments. The first argument must be the

same type as the column that is aggregated. The database server uses the type of

the first argument to resolve overloaded INIT functions.

C and JAVA Language Support

The first argument of the INIT function is a dummy argument and always has a

null value. Therefore, all functions that serve as INIT functions must be defined

8-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

with the HANDLESNULLS modifier.

End of C and JAVA Language Support

Omitting the INIT Function: You can omit the INIT function for simple binary

operators whose state type is the same as the type of the first argument of the

aggregate. In that case, the database server uses null as the initial result value.

Using the Optional Second Argument: You can use the optional second

argument of the INIT function as a setup argument to customize the aggregate

computation. For example, you could prepare an aggregate that would exclude the

N largest and N smallest values from its calculation of an average. In that case, the

value of N would be the second argument of the aggregate expression.

The setup expression must come from the group-by columns because the value of

the setup should remain the same throughout the computation of the aggregate.

C Language Support

 The setup expression cannot be a lone host variable reference.

End of C Language Support

ITER Function

The iteration function, ITER, merges a single value with a partial result and

returns a partial result. The ITER function does the main job of processing the

information from each row that your query selects. For example, for the AVG

aggregate, the ITER function adds the current value to the current sum and

increments the row count by one.

The ITER function is required for all user-defined aggregates. If no INIT function

is defined for a user-defined aggregate, the ITER function must explicitly handle

nulls.

The ITER function obtains the state of the aggregate computation from its state

argument.

SPL routines handle null arguments by default. In C and Java functions, you must

explicitly handle null values in the ITER function and register the function with

the HANDLESNULLS modifier.

C Language Support

The ITER function should not maintain additional states in its FPARAM structure

because the FPARAM structure is not shared among support functions. However,

you can use the FPARAM structure to cache information that does not affect the

aggregate result.

End of C Language Support

FINAL Function

The FINAL function converts the internal result to the result type that it returns to

the user. For example, for the AVG aggregate, the FINAL function returns the

current sum divided by the current row count.

Chapter 8. Creating User-Defined Aggregates 8-5

The FINAL function is not required for aggregates that are derived from simple

binary operators whose result type is the same as the state type and the column

type. If you do not define a FINAL function, the database server simply returns

the final state.

C and JAVA Language Support

The FINAL function can perform cleanup work to release resources that the INIT

function allocated. However, it must not free the state itself.

End of C and JAVA Language Support

COMBINE Function

The COMBINE function merges one partial result with another partial result and

returns the updated partial result. For example, for the AVG aggregate, the

COMBINE function adds the two partial results and adds the two partial counts.

If the aggregate is derived from a simple binary operator whose result type is the

same as the state type and the column type, the COMBINE function can be the

same as the ITER function. For example, for the AVG aggregate, the COMBINE

function adds the current sum and the row count of one partial result to the same

values for another partial result and returns the new values.

The database server uses the COMBINE function for parallel execution. When a

query includes an aggregate, the database server uses parallel execution when the

query includes only aggregates. However, the COMBINE function might also be

used even when a query is not parallelized. For example, when a query contains

both distinct and nondistinct aggregates, the database server can decompose the

computation of the nondistinct aggregate into subaggregates based on the distinct

column values. Therefore, you must provide a COMBINE function for each

user-defined aggregate.

Parallel aggregation must give the same results as an aggregate that is not

computed in parallel. You must write the COMBINE function so that the result of

aggregating over a set of rows is the same as aggregating over two partitions of

the set separately and then combining the results.

C and JAVA Language Support

The COMBINE function can perform clean-up work to release resources that the

INIT function allocated. However, it must not free the state arguments.

End of C and JAVA Language Support

Resolving the Support Functions

When an SQL statement uses a user-defined aggregate, the database server

resolves the support functions to the proper UDRs.

The database server resolves the support functions without a database owner name.

Therefore, the user-defined function resolution logic attempts the following

schemas, respectively: the current user, the schema of the argument types, and the

Informix schema, respectively. For more information about routine resolution, refer

to “Understanding Routine Resolution” on page 3-8.

8-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Support-Function States

The database server uses the following steps to find the support functions:

1. If the CREATE AGGREGATE statement includes an INIT function, resolve the

following UDR:

init_func (dt_agg, dt_setup)

The return type of the INIT function establishes a state type that the database

server uses to resolve the other support functions. If the INIT function is

omitted, the state type is the data type of the argument of the aggregate.

2. For the ITER function, resolve the following UDR:

iter_func (state_type, dt_agg)

The return type of the ITER function should be the state type.

3. For the COMBINE function, resolve the following UDR:

comb_func (state_type, state_type)

The return type of the COMBINE function should be the state type.

4. If the FINAL function is specified, resolve the following UDR:

final_func (state_type)

The return type of the user-defined aggregate is the return type of the FINAL

function. If the FINAL function is not specified, the return type is the state

type.

The preceding steps use the following variables.

Variable Description

comb_func Name of the COMBINE function

dt_aggr Data type of the first argument of the aggregate

dt_setup Data type of the second, or setup, argument of the aggregate

final_func Name of the FINAL function

init_func Name of the INIT function

iter_func Name of the ITER function

state_type The state type that the return value of the INIT function

establishes

 Aggregate states should never be null. That is, the support functions should not

return a null value. The database server cannot distinguish a null value from the

result of aggregating over an empty table. Therefore, although null values do not

cause runtime errors, the COMBINE function and the FINAL function ignore

them.

Using C or Java Support Functions

When you use C or Java to write routines for the support functions, you must

consider the treatment of null values. Unless the HANDLESNULLS modifier is

present, rows with null values in the column that is aggregated do not contribute

to the aggregate computation. If the iteration function, ITER, uses

HANDLESNULLS, all of the support functions must be declared to handle null

values. The initialization function, INIT, must always be able to handle null

values.

User-defined aggregates are strongly typed. That is, the database server uses the

state type information from the support functions to ensure that values are well

Chapter 8. Creating User-Defined Aggregates 8-7

typed and that their memory is properly managed. With caution, you might be

able to use the generic user-defined type pointer to avoid creating a new state type.

 To create a user-defined aggregate:

1. Write the functions that support the aggregate.

2. Register the support function with the CREATE FUNCTION statement.

3. Register the aggregate with the CREATE AGGREGATE statement.

After you register the aggregate, you can use the aggregate in an SQL statement.

For more information about registering a function, refer to “Registering a

User-Defined Routine” on page 4-16. For the syntax of the CREATE FUNCTION

and CREATE aggregate statements, see the IBM Informix Guide to SQL: Syntax.

Example of a User-Defined Aggregate

The following example uses SPL functions to provide the support functions for a

new aggregate, SUMSQ, that calculates the sum of squares. After you register the

support functions and create the aggregate, you can use the SUMSQ aggregate

with any column that has a data type that casts to a float data type.

CREATE FUNCTION ssq_init (dummy float)

 RETURNING float;

 RETURN 0;

END FUNCTION;

CREATE FUNCTION ssq_iter (result float, value float)

 RETURNING float;

 RETURN result + value * value;

END FUNCTION;

CREATE FUNCTION ssq_combine(partial1 float, partial2 float)

 RETURNING float;

 RETURN partial1 + partial2;

END FUNCTION;

CREATE FUNCTION ssq_final(final float)

 RETURNING float;

 RETURN final;

END FUNCTION;

CREATE AGGREGATE sumsq WITH

 (INIT = ssq_init,

 ITER = ssq_iter,

 COMBINE = ssq_combine,

 FINAL = ssq_final);

Now, for example, you can use SUMSQ with the INTEGER column of the c_test

table illustrated in “Example of Extending a Built-In Aggregate” on page 8-3.

SELECT SUMSQ(b) FROM c_test;

Using User-Defined Data Types with User-Defined Aggregates

You cannot use SUMSQ with the complex column of the c_test table illustrated in

“Example of Extending a Built-In Aggregate” on page 8-3 because the complex

data type does not cast to the FLOAT data type. To use SUMSQ with the complex

data type, you must overload the support functions of the SUMSQ aggregate.

CREATE FUNCTION ssq_init (dummy complex)

 RETURNING complex;

 RETURN ROW(0,0)::complex;

END FUNCTION;

8-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

CREATE FUNCTION ssq_iter (partial complex, c complex)

 RETURNING complex;

 RETURN ROW (

 (partial.real + c.real*c.real - c.imag*c.imag),

 (partial.imag + 2*c.real*c.imag)

)::complex;

END FUNCTION;

CREATE FUNCTION ssq_combine(p1 complex, p2 complex)

 RETURNING complex;

 RETURN ROW(p1.real + p2.real,

 p1.imag + p2.imag)::complex;

END FUNCTION;

CREATE FUNCTION ssq_final(final complex)

 RETURNING complex;

 RETURN final::complex;

END FUNCTION;

When you overload support functions for a user-defined aggregate, you must

prepare exactly the same functions as those declared in the CREATE AGGREGATE

statement. In this example, that requirement means overloading each of the

support functions.

Omitting Support Functions

For completeness, the preceding examples show all four support functions: INIT,

ITER, COMBINE, and FINAL. Because SUMSQ is a simple aggregate, the

examples could have omitted the INIT and FINAL functions. You could use the

following commands to create the SSQ2 aggregate:

CREATE FUNCTION ssq2_iter (result float, opr float)

 RETURNING float;

 IF result IS NULL THEN

 LET result = (opr*opr);

 ELSE

 LET result = result + opr*opr;

 END IF

 RETURN result;

END FUNCTION;

CREATE FUNCTION ssq2_combine(partial1 float, partial2 float)

 RETURNING float;

 RETURN partial1 + partial2;

END FUNCTION;

CREATE AGGREGATE ssq2 WITH

 (ITER = ssq2_iter,

 COMBINE = ssq2_combine);

Difference Between SUMSQ and SSQ2 Aggregates: The INIT function for

SUMSQ explicitly initializes the state; that is, the result. Because the SSQ2

aggregate does not include an INIT function, the ITER function must explicitly

handle the case where the result is null.

The behavior of the SSQ2 aggregate is not exactly the same as that of the SUMSQ

aggregate. You can use SSQ2 only with a column of the FLOAT data type unless

you explicitly cast the column to FLOAT. In the following example, the first

SELECT statement fails, but the other SELECT statements succeed:

CREATE TABLE trial (t INT);

 INSERT INTO trial VALUES (2);

 INSERT INTO trial VALUES (3);

Chapter 8. Creating User-Defined Aggregates 8-9

SELECT ssq2(t) FROM trial; -- fails

SELECT ssq2(t::float) FROM trial; -- succeeds

SELECT sumsq(t) from trial; -- succeeds

Because the INIT function was omitted from the declaration of SSQ2, the aggregate

uses the data type of the aggregate argument as its state type. The ITER function

expects a FLOAT data type. Thus, when the INIT function is omitted, the

aggregate argument must be a FLOAT data type. For more about the state type,

refer to “Resolving the Support Functions” on page 8-6.

Overloading the Support Functions for SSQ2: Because any overloaded functions

must be the same as those in the declaration of the aggregate, you must overload

ssq2_iter and ssq2_combine to extend the SSQ2 aggregate to the complex data

type.

CREATE FUNCTION ssq2_iter (partial complex, c complex)

 RETURNING complex;

 RETURN ROW (

 (partial.real + c.real*c.real - c.imag*c.imag),

 (partial.imag + 2*c.real*c.imag)

)::complex;

END FUNCTION;

CREATE FUNCTION ssq2_combine(p1 complex, p2 complex)

 RETURNING complex;

 RETURN ROW(p1.real + p2.real,

 p1.imag + p2.imag)::complex;

END FUNCTION;

Managing Aggregates

The database server provides tools for managing user-defined or user-extended

aggregates and their associated functions.

Parallel Execution of Aggregates

In aggregate-only queries, the database server can break the computation of the

aggregate into several pieces and compute each piece in parallel. The database

server then uses the COMBINE function to combine the partial results from all

pieces in a single result value. The database server uses the optimizer to decide

when and how to parallelize an aggregate. This action is transparent to the user.

In queries that are not exclusively aggregate, the database server can still compute

multiple aggregate results in parallel. In such cases, the database server computes

each aggregate result sequentially (without using the COMBINE function).

For more information about parallelization and optimization, refer to the IBM

Informix Performance Guide.

Privileges for User-Defined Aggregates

No privileges are directly associated with user-defined or user-extended

aggregates. Instead, you must set the correct privileges for the functions that

support the aggregates.

To create a function, you must have RESOURCE or DBA database-level privileges.

When you create a function in a database that is not ANSI compliant, any user can

use the function. When you create a function in an ANSI-compliant database, you

must explicitly grant the Execute privilege on that function, so that users can use

the function and thus the related aggregate.

8-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

For more information about privileges, refer to the GRANT statement in the IBM

Informix Guide to SQL: Syntax.

Aggregate Information in the System Catalog

The CREATE AGGREGATE statement registers an aggregate in the sysaggregates

system catalog table. The person who registers the aggregate with CREATE

AGGREGATE is the owner of the aggregate. The sysaggregates table does not

include information about built-in aggregates.

Both user-extended built-in aggregates and user-defined aggregates require

user-defined functions. The system catalog tables sysprocauth, sysprocbody, and

sysprocedures record information about the functions that you create, including

those that support user-defined aggregates and extensions of built-in aggregates.

For descriptions of the system catalog tables, see the IBM Informix Guide to SQL:

Reference.

Aggregate Information from the Command Line

The -g cac agg option of the onstat utility provides information about user-defined

aggregates. For information about onstat, refer to the IBM Informix Administrator’s

Reference.

Dropping an Aggregate

The DROP AGGREGATE statement removes the definition of an aggregate from

the database. You must be the owner of the aggregate or the database

administrator (DBA) to drop its definition from the database.

If you are the owner or the DBA, the following statement removes the aggregate

SUMSQ from the database:

DROP AGGREGATE SUMSQ;

Dropping an aggregate has no effect on functions that are associated with the

aggregate. Use the DROP FUNCTION statement to remove a function from the

database.

Chapter 8. Creating User-Defined Aggregates 8-11

8-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 9. Creating an Opaque Data Type

In This Chapter . 9-1

Opaque Data Types . 9-2

The Internal Structure . 9-2

A Fixed-Length Opaque Data Type . 9-2

A Varying-Length Opaque Data Type . 9-2

Support Functions . 9-3

Operator Functions . 9-3

Built-In Functions . 9-3

Aggregate Functions . 9-3

Statistics-Collecting Routines . 9-4

End-User Routines . 9-4

Advantages of Opaque Data Types . 9-4

Creating an Opaque Data Type . 9-4

Creating the Internal Structure in C . 9-5

Data Type Size . 9-5

Memory Alignment . 9-6

Parameter Passing . 9-7

Creating UDT-to-Java Mappings . 9-7

Writing and Registering the Support Functions . 9-7

Registering the Opaque Data Type with the Database . 9-7

Registering the Opaque Data Type . 9-8

Creating Casts for Opaque Data Types . 9-8

Using Non In-Row Storage . 9-9

Granting Privileges for an Opaque Data Type . 9-9

Creating SQL-Invoked Functions . 9-10

Arithmetic and Text Operator Functions for Opaque Data Types 9-11

Built-in Functions for Opaque Data Types . 9-11

Aggregate Functions for Opaque Data Types . 9-11

Conditional Operators for Opaque Data Types . 9-11

Relational Operators for Opaque Data Types . 9-12

Comparison Function for Opaque Data Types . 9-13

Customizing Access Methods . 9-13

Using the Generic B-Tree . 9-14

Using Other Access Methods . 9-14

Indexing Spatial Data . 9-14

Indexing Other Types of Data . 9-14

Other Operations on Opaque Data Types . 9-15

Accessing an Opaque Data Type . 9-15

Dropping an Opaque Data Type . 9-15

In This Chapter

This chapter provides the following information:

v Opaque Data Types

v Creating an Opaque Data Type

v Customizing Access Methods

v Other Operations on Opaque Data Types

© Copyright IBM Corp. 1996, 2008 9-1

Opaque Data Types

An opaque data type is an atomic data type that you define for the database. An

opaque data type gets its name from the fact that the database server maintains no

information about the internal representation of the data type. Unlike built-in

types, for which the database server maintains information about the internal

format, the opaque types are encapsulated; that is, the database server has no

knowledge of the format of the data within an opaque data type.

When you define an opaque data type, you extend the data type system of the

database server. You can use the new opaque data type in the same way as any

built-in data type that the database server provides. To define the opaque data

type to the database server, you must provide the following information in an

external language (C or Java):

v A data structure that defines the internal storage of the opaque data type

v Support functions that allow the database server to interact with this internal

structure

v Optional modifiers that specify how the data type should be treated

v Optional additional routines that can be called by other support functions or by

end users to operate on the opaque data type

The following sections introduce each of these parts of an opaque data type. For

information on how to create these parts, see “Creating an Opaque Data Type” on

page 9-4.

The Internal Structure

To create an opaque data type, you must first provide a data structure that stores

the data in its internal representation. This data structure is called the internal

structure of the opaque data type because it is how the data is stored on disk. The

support functions that you write operate on this internal structure; the database

server never sees the internal structure. You create the internal structure as a data

structure in the external language.

You can define an internal structure that supports either a fixed-length opaque

data type or a varying-length opaque data type.

A Fixed-Length Opaque Data Type

A fixed-length opaque data type has an internal structure whose size is the same for

all possible values of the opaque data type. Fixed-length opaque types are useful

for data that you can represent in fixed-length fields, such as numeric values.

You provide the size when you register the opaque data type in the database. For

more information, see “Data Type Size” on page 9-5.

A Varying-Length Opaque Data Type

A varying-length opaque data type has an internal structure whose size might be

different for different values of the opaque data type. Varying-length opaque types

are useful for storage of multirepresentational data, such as images. For example,

image sizes vary from one picture to another. You might store data up to a certain

size within the opaque data type and use a smart large object in the opaque data

type if the image size exceeds that size.

When you register the opaque data type in the database, you indicate that the size

is varying, and you can indicate a maximum size for the internal structure. For

more information, see “Data Type Size” on page 9-5.

9-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

A multirepresentational data type is a varying-length data type that stores data

directly in the internal structure of the opaque type if the length of the data is

smaller than a specified threshold. If the length of the data is greater than the

threshold, the data type stores the value in a smart large object and then stores the

smart large object handle in the opaque type.

When you insert a value into a multirepresentational data type, the assign()

support function determines where the data should be stored. When you delete

data, the destroy() support function determines whether the data should be

removed from the internal structure or from a smart large object. The update() and

deepcopy() functions provide more efficient management for UDTs that contain

smart large objects. For more information about these functions, see “Handling

Smart Large Objects” on page 10-18. For information about how to use

multirepresentational data types, refer to the IBM Informix DataBlade API

Programmer’s Guide.

Support Functions

Support functions provide the basic functionality that the database server needs to

interact with your opaque data type. However, you might want to write additional

UDRs to provide the following kinds of functions for your opaque data type:

v Operator functions

v Built-in functions

v Aggregate functions

v Statistics-collecting routines

v Selectivity functions

v End-user routines

Operator Functions

An operator function is a user-defined function, such as plus() or equal(), that has a

corresponding operator symbol. For an operator function to operate on the opaque

data type, you must overload the routine for the opaque data type.

For general information about the operator functions that the database server

provides, see “Operators and Operator Functions” on page 6-1. For general

information on overloading routines, refer to “Overloading Routines” on page 3-9.

For information on how to overload an operator function on an opaque data type,

see “Arithmetic and Text Operator Functions for Opaque Data Types” on page

9-11.

Built-In Functions

A built-in function is a predefined function, such as cos() or length(), that the

database server provides for use in an SQL expression. The database server

supports built-in functions on the built-in data types. For an opaque data type, you

must overload the function for the opaque type.

For general information about these built-in functions, see “Built-In Functions” on

page 6-3. For information on how to overload a built-in function on an opaque

data type, see “Built-in Functions for Opaque Data Types” on page 9-11.

Aggregate Functions

An aggregate function returns one value, such as SUM or AVG, for a set of queried

rows. You can extend the built-in aggregates to provide for your opaque data

types. You can also create new, special-purpose aggregate functions.

Chapter 9. Creating an Opaque Data Type 9-3

For information about how to extend the built-in aggregates, refer to “Extending

Existing Aggregates” on page 8-2. For information about how to create new

aggregate functions, refer to “Creating User-Defined Aggregates” on page 8-3. For

information about how to use aggregate functions, see the Expression segment in

the IBM Informix Guide to SQL: Syntax.

Statistics-Collecting Routines

The UPDATE STATISTICS statement calls the statcollect() function to collect

statistics for the optimizer to use. The statprint() function formats information so

that the database server can display it.

For more information, refer to “The statcollect() Function” on page 13-8.

End-User Routines

The database server allows you to define SQL-invoked functions or procedures

that the end user can use in expressions or SQL statements. These end-user

routines provide additional functionality that an end user might need to work with

the opaque data type. Examples of end-user routines include:

v Functions that return a particular value in the opaque data type

Because the opaque data type is encapsulated, an end-user function is the only

way that users can access fields of the internal structure.

v Cast functions

Several of the support functions serve as cast functions between basic data types

that the database server uses. You might also write additional cast functions

between the opaque data type and other data types (built-in, opaque, or

complex) of the database.

v Functions or procedures that perform common operations on the opaque data

type

If an operation or task is performed often on the opaque data type, you might

want to write an end-user routine to perform this task.

For more information about end-user routines, see Chapter 4, “Developing a

User-Defined Routine,” on page 4-1.

Advantages of Opaque Data Types

Both an opaque data type and a row data type allow you to define members of the

data type. The advantages of creating an opaque data type rather than a row data

type are as follows.

v The opaque data type is more compact to store.

The opaque data type does not have the overhead in the system catalog that a

row data type requires.

v The opaque data type is more efficient.

The support functions of an opaque data type manipulate the internal structure

of the opaque data type directly. You do not need to take special steps

(DataBlade API calls or SQL dot notation) to extract data from the members as

you must do for the fields of a row data type.

Creating an Opaque Data Type

To create an opaque data type, follow these steps:

1. Create the internal structure for the opaque data type.

2. Write and register the support functions.

9-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

3. Register the opaque data type in the database with the CREATE OPAQUE

TYPE statement.

4. Provide access to the opaque data type and its support functions with the

GRANT statement.

5. Write any SQL-invoked functions that are needed to support the opaque data

type.

6. Provide any customized secondary-access methods that the opaque data type

might need.

The following sections describe each of these steps.

Creating the Internal Structure in C

The internal structure of an opaque data type is a C data structure. For the internal

structure, use the C typedefs that the DataBlade API supplies for those fields

whose size might vary by platform. Use of these typedefs, such as mi_integer and

mi_float, improves the portability of the opaque data type. For more information

on these data types, see the IBM Informix DataBlade API Programmer’s Guide.

When you create the internal structure, consider the following impacts of the size

of this structure:

v The final structure size of the new opaque data type

v The alignment in memory of the opaque data type

v The method for passing the opaque data type to UDRs

You provide this information when you create the opaque data type with the

CREATE OPAQUE TYPE statement.

Data Type Size

To save space in the database, lay out internal structures as compactly as possible.

The database server stores values in their internal representation, so any internal

structure with padding between entries consumes unnecessary space.

The INTERNALLENGTH keyword of the CREATE OPAQUE TYPE statement

supplies the final size of the internal structure. This keyword provides the

following two ways to specify the size:

v Specify the actual size, in bytes, of the internal structure to define a fixed-length

opaque data type.

v Specify the VARIABLE keyword to define a varying-length opaque data type.

A Fixed-Length Opaque Data Type: When you specify the actual size for

INTERNALLENGTH, you create a fixed-length opaque data type. The size of a

fixed-length opaque data type must match the value that the C-language sizeof()

directive returns for the internal structure. The maximum internal length for a

fixed-length opaque type is 32760 bytes.

On most compilers, the sizeof() directive rounds up to the nearest 4-byte size to

ensure that pointer match on arrays of structures works correctly. However, you do

not need to round up for the size of a fixed-length opaque data type. Instead you

can specify alignment for the opaque data type with the ALIGNMENT modifier.

For more information, see “Memory Alignment” on page 9-6.

Chapter 9. Creating an Opaque Data Type 9-5

A Varying-Length Opaque Data Type: When you specify the VARIABLE

keyword for the INTERNALLENGTH modifier, you create a varying-length

opaque data type. The default maximum size for a varying-length opaque data

type is 2 kilobytes.

To specify a different maximum size for a varying-length opaque data type, use the

MAXLEN modifier. The maximum internal length for a varying-length opaque

type is 32740 bytes. When you specify a MAXLEN value, the database server can

optimize resource allocation for the opaque data type. If the size of the data for an

opaque data type exceeds the MAXLEN value, the database server returns an error.

A varying-length opaque data type is also limited to 195 columns within the 32740

byte maximum length.

For example, the following CREATE OPAQUE TYPE statement defines a

varying-length opaque data type called var_type whose maximum size is 4

kilobytes:

CREATE OPAQUE TYPE var_type (INTERNALLENGTH=VARIABLE,

 MAXLEN=4096);

Only the last member of the internal structure can be of varying size.

The C data structure for a varying-length opaque type must be stored in an

mi_lvarchar data structure. For information about mi_lvarchar, refer to the IBM

Informix DataBlade API Function Reference.

Memory Alignment

When the database server passes the data type to a UDR, it aligns opaque-type

data on a specified byte boundary. Alignment requirements depend on the C

definition of the opaque data type and on the system (hardware and compiler) on

which the opaque data type is compiled.

You can specify the memory-alignment requirement for your opaque data type

with the ALIGNMENT modifier of the CREATE OPAQUE TYPE statement. The

following table summarizes valid alignment values.

 ALIGNMENT

Value Meaning Purpose

1 Align structure on

single-byte boundary.

Structures that begin with 1-byte quantities

2 Align structure on 2-byte

boundary.

Structures that begin with 2-byte quantities

such as mi_unsigned_smallint

4 Align structure on 4-byte

boundary.

Structures that begin with 4-byte quantities

such as float or mi_unsigned_integer

8 Align structure on 8-byte

boundary.

Structures that contain members of the C

double data type

Structures that begin with single-byte characters, char, can be aligned anywhere.

Arrays of a data type should follow the same alignment restrictions as the data

type itself.

For example, the following CREATE OPAQUE TYPE statement specifies a

fixed-length opaque data type, called LongLong, of 18 bytes that must be aligned

on a 1-byte boundary:

CREATE OPAQUE TYPE LongLong (INTERNALLENGTH=18, ALIGNMENT=1);

9-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

If you do not include the ALIGNMENT modifier in the CREATE OPAQUE TYPE

statement, the default alignment is a 4-byte boundary.

Parameter Passing

The database server can pass opaque-type values to a UDR in either of the

following ways:

v Pass by value passes the actual value of the opaque data type to a UDR.

v Pass by reference passes a pointer to the value of the opaque data type to a UDR.

By default, the database server passes all opaque types by reference. For the

database server to pass an opaque data type by value, specify the

PASSEDBYVALUE modifier in the CREATE OPAQUE TYPE statement. Only an

opaque data type whose size is 4 bytes or smaller can be passed by value.

However, the DataBlade API data type mi_real, although only 4 bytes in length, is

always passed by reference.

The following CREATE OPAQUE TYPE statement specifies that the two_bytes

opaque data type be passed by value:

CREATE OPAQUE TYPE two_bytes (INTERNALLENGTH=2, ALIGNMENT=2,

 PASSEDBYVALUE);

Creating UDT-to-Java Mappings

The routine manager needs a mapping between SQL data values and Java objects

to be able to pass parameters to and retrieve return results from a UDR. The SQL

to Java data-type mapping is performed according to the JDBC specification. For

built-in SQL data types, the routine manager can use mappings to existing JDBC

data types.

 To create the mapping between a user-defined SQL data type and a Java object:

1. Create a user-defined class that implements the SQLData interface. (For more

information, refer to the JDBC 2.0 specification).

2. Bind this user-defined class to the user-defined SQL data type using the

setUDTExtName built-in procedure.

Writing and Registering the Support Functions

An opaque data type needs support functions that provide casts for input and

output, operator functions, cost functions, selectivity functions, operator-class

functions and statistics functions. For more information about these functions, refer

to Chapter 10, “Writing Support Functions,” on page 10-1, and Chapter 11,

“Extending an Operator Class,” on page 11-1.

Registering the Opaque Data Type with the Database

After you create the internal structure and support functions for the opaque data

type, use the following SQL statements to register them with the database:

v The CREATE OPAQUE TYPE statement registers an opaque data type as a data

type.

v The CREATE FUNCTION statement registers a support function.

v The CREATE CAST statement registers a support function as cast functions.

Chapter 9. Creating an Opaque Data Type 9-7

Registering the Opaque Data Type

To create an opaque data type within a database, you must have the Resource

privilege on the database. The CREATE OPAQUE TYPE statement registers an

opaque data type with the database. It provides the following information to the

database:

v The name and owner of the opaque data type

The opaque-type name is the name of the data type that SQL statements use. It

does not have to be the name of the internal structure for the opaque data type.

You might find it useful to create a special prefix to identify the data type as an

opaque data type. The opaque-type name must be unique within the name

space.

v The size of the opaque data type

You specify this size information with the INTERNALLENGTH modifier. It

indicates whether the data type is a fixed-length or varying-length opaque data

type. For more information, see “Creating the Internal Structure in C” on page

9-5.

v The values of the different opaque-type modifiers

The CREATE OPAQUE TYPE statement can specify the following modifiers for

an opaque data type: MAXLEN, PASSEDBYVALUE, CANNOTHASH, and

ALIGNMENT. You determine this information when you create the internal

structure for the opaque data type. For more information, see “Creating the

Internal Structure in C” on page 9-5.

The CREATE OPAQUE TYPE statement stores this information in the sysxtdtypes

system catalog table. When it stores a new opaque data type in sysxtdtypes, the

CREATE OPAQUE TYPE statement causes a unique value, called an extended

identifier, to be assigned to the opaque data type. Throughout the system catalog,

an opaque data type is identified by its extended identifier, not by its name. (For

more information on the columns of the sysxtdtypes system catalog, see the

chapter on system catalog tables in the IBM Informix Guide to SQL: Reference.)

To register a new opaque data type in a database, you must have the Resource

privilege on that database. By default, a new opaque data type has Usage

permission assigned to the owner. For information on how to change the

permission of an opaque data type, see “Granting Privileges for an Opaque Data

Type” on page 9-9.

For more information on the syntax of the CREATE OPAQUE TYPE, CREATE

FUNCTION, and CREATE FUNCTION FROM statements, see their descriptions in

the IBM Informix Guide to SQL: Syntax.

Creating Casts for Opaque Data Types

For each of the support functions in the following table, the database server uses a

cast to convert the opaque data type to a particular internal data type.

9-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Support

Function

Cast

From To Type of Cast

input LVARCHAR opaque data type implicit

output opaque data type LVARCHAR explicit

receive SENDRECV opaque data type implicit

send opaque data type SENDRECV explicit

import IMPEXP opaque data type implicit

export opaque data type IMPEXP explicit

importbinary IMPEXPBIN opaque data type implicit

exportbinary opaque data type IMPEXPBIN explicit

streamread STREAM opaque data type implicit

streamwrite opaque data type STREAM explicit

For the database server to perform these casts, you must create the casts with the

CREATE CAST statement. The database server can then call the appropriate

support function when it needs to cast opaque-type data to or from the

LVARCHAR, SENDRECV, IMPEXP, IMPEXPBIN, or STREAM data types.

The CREATE CAST statement stores information about cast functions in the

syscasts system catalog table. For more information on the CREATE CAST

statement, see the description in the IBM Informix Guide to SQL: Syntax. For a

description of casting, see the IBM Informix Guide to SQL: Tutorial.

Using Non In-Row Storage

An opaque data type can use the following types of non in-row storage:

v Smart large object (BLOB and CLOB)

v Files

v A non in-row storage type that is dependent on the local computer

For example, this storage type might be a reference to a tape storage system.

v A non in-row storage type that is not dependent on the database server

For example, this storage type might be a file reference that includes the location

of the computer where the user of the reference goes directly to the designated

computer, bypassing the database server where the reference is stored.

The routines that support the opaque data type should do the following:

v Include room in the storage handle for location information

The location information should include the database server name, and, if the

data type is dependent on a particular database, the database name.

v Provide routines to set and get the location information from the storage handle

to include in the server-send support functions

v Provide support for remote data in the access routines

For example, the open routine must recognize a reference to a remote database

server and access it appropriately.

Granting Privileges for an Opaque Data Type

After you create the opaque data type and register it with the database, use the

GRANT statement to define the following privileges on this data type:

v Privileges on the use of the opaque data type

Chapter 9. Creating an Opaque Data Type 9-9

v Privileges on the support functions of the opaque data type

The CREATE OPAQUE TYPE statement creates a new opaque data type with the

Usage privilege granted to the owner of the opaque data type and the DBA. To use

the opaque data type in an SQL statement, you must have the Usage privilege. The

owner can grant the Usage privilege to other users with the USAGE ON TYPE

clause of the GRANT statement.

The database server checks for the Usage privilege whenever the opaque-type

name appears in an SQL statement (such as a column data type in CREATE TABLE

or a cast data type in CREATE CAST). The database server does not check for the

Usage privilege when an SQL statement:

v Accesses columns of the opaque data type

The Select, Insert, Update, and Delete table-level privileges determine access to a

column.

v Invokes a UDR with the opaque data type as an argument

The Execute routine privilege determines access to a UDR.

For example, the following GRANT statement assigns the Usage privilege on the

circle opaque data type to user dexter:

GRANT USAGE ON TYPE circle TO dexter

The sysxtdtypeauth system catalog table stores data type-level privileges. This

table contains privileges for each opaque and distinct data type that is defined in

the database. The table contains one row for each set of privileges granted.

For information about setting the privileges for support functions, refer to “Setting

Privileges for Support Functions” on page 10-4.

Creating SQL-Invoked Functions

An SQL-invoked function is a user-defined function that an end user can explicitly

call in an SQL statement. You might write SQL-invoked functions to extend the

functionality of an opaque data type in the following ways:

v Overloading arithmetic or built-in functions to provide arithmetic operations and

built-in functions on the opaque data type

v Overloading relational-operator functions to provide comparison operations on

the opaque data type

v Writing new end-user routines to provide additional functionality for the opaque

data type

v Writing new cast functions to provide additional data conversions to and from

the opaque data type

The SQL functions that the database server defines handle the built-in data types.

For a UDT to use any of these functions, you can overload the function that

handles the UDT. For more information on the details of writing user-defined

functions, see Chapter 4, “Developing a User-Defined Routine,” on page 4-1. For

information about overloading functions, refer to “Overloading Routines” on page

3-9.

The database server supports the following types of SQL-invoked functions that

allow you to operate on data in expressions of SQL statements:

v Arithmetic and text operator functions

v Built-in functions

9-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v Aggregate functions

The database server also supports the following types of functions that allow you

to compare data in expressions of SQL statements:

v SQL operators in a conditional clause

v Relational operator functions

Arithmetic and Text Operator Functions for Opaque Data Types

The database server provides operator functions for arithmetic operators (see

“Arithmetic Operators” on page 6-2) and text operators (see “Text Operators” on

page 6-2). The operator functions that the database server provides handle the

built-in data types. You can overload an operator function to provide the

associated operation on your new opaque data type.

If you overload an operator function, make sure you follow these rules:

1. The name of the operator function must match the name of one of the

functions that the database server provides. The name is not case sensitive; the

plus() function is the same as the Plus() function.

2. The operator function must handle the correct number of parameters.

3. The operator function must return the correct data type, where appropriate.

Built-in Functions for Opaque Data Types

The database server provides special SQL-invoked functions, called built-in

functions, that provide some basic mathematical operations. The built-in functions

that the database server provides handle the built-in data types. You can overload

a built-in function to provide the associated operation on your new opaque data

type. If you overload a built-in function, follow these rules:

1. The name of the built-in function must match the name listed in “Built-In

Functions That You Can Overload” on page 6-3. However, the name is not case

sensitive; the abs() function is the same as the Abs() function.

2. The built-in function must be one that can be overridden.

3. The built-in function must handle the correct number of parameters, and these

parameters must be of the correct data type.

4. The built-in function must return the correct data type, where appropriate.

For more information on built-in functions, see the IBM Informix Guide to SQL:

Syntax.

Aggregate Functions for Opaque Data Types

You can extend the built-in aggregate functions, such as SUM and AVG, to operate

on your opaque data type. You can also create new aggregates. Chapter 8,

“Creating User-Defined Aggregates,” on page 8-1, describes how to extend or

create aggregates.

Conditional Operators for Opaque Data Types

The database server supports the following relational operators on an opaque data

type in the conditional clause of SQL statements:

v The IS and IS NOT operators

v The IN operator if the equal() function has been defined

v The BETWEEN operator if the compare() function has been defined

Chapter 9. Creating an Opaque Data Type 9-11

Tip: The database server also uses the compare() function as the support function

for the default B-tree operator class. For more information, see “Extensions of

the btree_ops Operator Class” on page 11-5.

For more information on the conditional clause, see the Condition segment in the

IBM Informix Guide to SQL: Syntax. For more information on the compare()

function, see “Comparison Function for Opaque Data Types” on page 9-13.

Relational Operators for Opaque Data Types

The database server provides operator functions for the relational operators listed

in “Relational Operators” on page 6-2. The relational-operator functions that the

database server provides handle the built-in data types. You can overload a

relational-operator function to provide the associated operation on your new

opaque data type.

If you overload a relational-operator function, make sure you follow these rules:

1. The name of the relational-operator function must match a name listed in

“Relational Operators” on page 6-2. However, the name is not case sensitive;

the equal() function is the same as the Equal() function.

2. The relational-operator function must take two parameters, both of the opaque

data type.

3. The relational-operator function must be a Boolean function; that is, it must

return a BOOLEAN value.

You must define an equal() function to handle your opaque data type if you want

to allow columns of this data type to be:

v Constrained as UNIQUE or PRIMARY KEY

For more information on constraints, see the CREATE TABLE statement in the

IBM Informix Guide to SQL: Syntax.

v Compared with the equal (=) operator in an expression

v Used with the IN operator in a condition

Hashable Data Types: The database server uses a built-in bit-hashing function to

produce the hash value for a data type, which means that the built-in hash

function can be used only for bit-hashable data types. If your opaque data type is

not bit hashable, the database server cannot use its built-in hash function for the

equality comparison. Therefore, if your data type is not bit-hashable, you cannot

use it in the following cases:

v In the GROUP BY clause of a SELECT statement

v In hash joins

v With the IN operator in a WHERE clause

v COUNT DISTINCT aggregates

Nonhashable Data Types: For opaque types that are not bit hashable using the

built-in hashing function of the database server, specify the CANNOTHASH

modifier in the CREATE OPAQUE TYPE statement.

Hashable data types have the following property: if A = B, then hash(A) = hash(B),

which means that A and B have identical bit representations.

Multirepresentational data types are not bit hashable because they store large

quantities of data in a smart large object and then store the large object handle in

the user-defined type. It is the smart-large-object handle that makes the

9-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

multirepresentational data type nonhashable. That is, the CREATE OPAQUE TYPE

statement for a multirepresentational data type must include the CANNOTHASH

modifier.

Comparison Function for Opaque Data Types

The compare() function is an SQL-invoked function that sorts the target data type.

The database server uses the compare() function to execute the following clauses

and keywords of the SELECT statement:

v The ORDER BY clause

v The UNIQUE and DISTINCT keywords

v The UNION keyword

The database server also uses the compare() function to evaluate the BETWEEN

operator in the condition of an SQL statement. For more information on

conditional clauses, see the Condition segment in the IBM Informix Guide to SQL:

Syntax.

The database server provides compare() functions that handle the built-in data

types. For the database server to be able to sort an opaque data type, you must

define a compare() function to handle this opaque data type.

If you define a compare() function, you must also define the greaterthan(),

lessthan(), equal or other functions that use the compare function.

If you overload the compare() function, make sure you follow these rules:

1. The name of the function must be compare(). The name is not case sensitive;

the compare() function is the same as the Compare() function.

2. The function must accept two arguments, each of the data types to be

compared.

3. The function must return an integer value to indicate the result of the

comparison, as follows:

v <0 to indicate that the first argument precedes the second argument

v 0 to indicate that the two arguments are the same

v >0 to indicate that the first argument comes after the second argument

The compare() function is also the support function for the default operator class

of the B-tree secondary-access method. For more information, see “Generic B-Tree

Index” on page 11-2.

Customizing Access Methods

The database server provides the full implementation of the generic B-tree

secondary-access method, and it provides definitions for the R-tree

secondary-access method. By default, the CREATE INDEX statement builds a

generic B-tree index for the column or user-defined function.

When you create an opaque data type, you must ensure that secondary-access

methods exist that support the new data type. Consider the following factors about

the secondary-access methods and their support for the opaque data type:

v Does the generic B-tree support the opaque data type?

v If the opaque-type data is spatial, can you use the R-tree index?

v Do other secondary-access methods exist that might better index your

opaque-type data?

Chapter 9. Creating an Opaque Data Type 9-13

To create an index of a particular secondary-access method on a column of an

opaque data type, the database server must find an operator class that is associated

with the secondary-access method. This operator class must specify operations

(strategy functions) on the opaque data type as well as the functions that the

secondary-access method uses (support functions).

For more information about an operator class and operator-class functions, see

“Operator Classes” on page 11-2.

Using the Generic B-Tree

The generic B-tree secondary-access method has a default operator class,

btree_ops, whose operator-class functions handle indexing for the built-in data

types. These operator-class functions have the following functionality for built-in

data types:

v They order the data in lexicographical sequence.

If this sequence is not logical for your opaque data type, you can define

operator-class functions for the opaque data type that provide the sequence you

need.

v They expect to compare two single, one-dimensional values for a given data

type.

If the opaque data type holds more than one value, but you can define a single

value for it, you can define operator-class functions for the opaque data type

that compare two of these one-dimensional values. If you cannot define a

one-dimensional value for the opaque data type, you cannot use a B-tree index

as its secondary-access method.

To provide support for columns and user-defined functions of the opaque data

type, you can extend the btree_ops operator-class functions so that they handle the

new opaque data type. The generic B-tree secondary-access method uses the new

operator-class functions to store values of the opaque data type in a B-tree index.

For more information about how to extend the default B-tree operator class, see

“Extensions of the btree_ops Operator Class” on page 11-5.

Using Other Access Methods

The way that the generic B-tree secondary-access method orders data is useful for

one-dimensional data. When your data type is not one-dimensional, you might

need to use some other access method.

For information about the R-tree access method, refer to the IBM Informix R-Tree

Index User’s Guide. For more information on the secondary-access methods that

Data Blade modules provide, check the user guide for your DataBlade module.

Indexing Spatial Data

The R-tree secondary-access method is useful for spatial or multidimensional data

such as maps and diagrams. To use an R-tree index, you must install a spatial

DataBlade module such as the Spatial DataBlade module, Geodetic DataBlade

module, or any third-party DataBlade module that implements an R-tree index. For

more information, refer to the user documentation for your custom access method.

Indexing Other Types of Data

Your opaque data type might have data that is not optimally indexed by either a

generic B-tree or an R-tree. Often, DataBlade modules that define new opaque data

9-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

types provide their own secondary-access methods for these data types. For

information about creating an access method, refer to the IBM Informix Virtual-Index

Interface Programmer’s Guide.

Other Operations on Opaque Data Types

This section describes the following operations that you can perform on opaque

data types:

v How to access an opaque data type from a client application

v How to drop an opaque data type from a database

Accessing an Opaque Data Type

After you create the opaque data type, the following client programs can use it

once they connect to the database in which it is registered:

v An Informix ESQL/C application that uses SQL statements and an lvarchar,

fixed binary, or var binary host variable

For more information, see the chapter on opaque types in the IBM Informix

ESQL/C Programmer’s Manual.

v A C routine that uses the DataBlade API

For more information, see the IBM Informix DataBlade API Programmer’s Guide.

v An SPL UDR

For more information, see the chapter on SPL in the IBM Informix Guide to SQL:

Tutorial.

v A client application written in the Java language

To write Java routines, you must have IBM Informix Dynamic Server with

J/Foundation. You also need the Java Development Kit (JDK) to compile your

Java routines. For information about how to write Java UDRs, refer to the

J/Foundation Developer’s Guide.

You can use an opaque data type in any way that you use other data types of the

database.

Dropping an Opaque Data Type

You cannot drop an opaque data type if any dependencies on it still exist in the

database. Therefore, to drop an opaque data type from a database, you reverse the

process of registering the data type, as follows:

1. Remove or change the data type of any columns in the database that have the

opaque data type as their data type.

Use the ALTER TABLE statement to change the data type of database columns.

Use the DROP TABLE statement to remove the entire table.

2. The REVOKE statement with the USAGE ON TYPE clause removes one set of

privileges assigned to the opaque data type.

This statement removes the row of the sysxtdtypeauth system catalog table that

defines the privileges of the opaque data type. Use the statement to drop each

set of privileges that have been assigned to the opaque data type.

3. The REVOKE statement with the EXECUTE ON FUNCTION or EXECUTE ON

ROUTINE clause removes the privileges assigned to a support function of the

opaque data type.

This statement removes the row of the sysprocauth system catalog table that

defines the privileges of the opaque data type. Use the statement to drop each

set of privileges that have been assigned to a support function. You must drop

Chapter 9. Creating an Opaque Data Type 9-15

the privileges for each support function. If you assigned a specific name to the

support function, use the SPECIFIC keyword to identify the specific name.

4. The DROP CAST statement drops a cast function for a support function of an

opaque data type.

This statement removes the row of the syscasts system catalog table that

defines the cast function for a support function. Use the statement to drop each

of the casts that you defined. For more information, see “Creating Casts for

Opaque Data Types” on page 9-8.

5. The DROP FUNCTION or DROP ROUTINE statement removes a support

function of the opaque data type from the current database.

This statement removes the row of the sysprocedures system catalog table that

registers a support function. Use the statement to drop each of the support

functions that you registered.

6. The DROP TYPE statement removes the opaque data type from the current

database.

This statement removes the row of the sysxtdtypes system catalog table that

describes the opaque data type. Once you drop an opaque data type from a

database, no users of that database can access the data type. You must be the

owner of the opaque data type or have DBA privileges to remove the data

type.

To use these SQL statements, you must be either the owner of the object that you

drop or have DBA privileges. For more information on the syntax of the REVOKE,

DROP FUNCTION, DROP ROUTINE, DROP CAST, and DROP TYPE statements,

see their descriptions in the IBM Informix Guide to SQL: Syntax.

9-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 10. Writing Support Functions

In This Chapter . 10-1

Writing Support Functions . 10-1

Identifying Support Functions . 10-2

Choosing Function Parameters . 10-3

Setting Privileges for Support Functions . 10-4

Data Types for Support Functions . 10-4

The LVARCHAR Data Type . 10-5

The SENDRECV Data Type . 10-5

Handling the External Representation . 10-5

Input Support Function . 10-6

Output Support Function . 10-7

Handling the Internal Representation . 10-9

The Send and Receive Support Functions . 10-9

The SENDRECV Data Type . 10-9

Receive Support Function . 10-10

Send Support Function . 10-11

Performing Bulk Copies . 10-12

Import and Export Support Functions . 10-12

The IMPEXP Data Type . 10-13

Import Support Function . 10-13

Export Support Function . 10-13

Importbinary and Exportbinary Support Functions . 10-13

IMPEXPBIN Data Type . 10-14

Importbinary Support Function . 10-14

Exportbinary Support Function . 10-14

The Stream Support Functions . 10-15

Inserting and Deleting Data . 10-15

The assign() Function . 10-16

The destroy() Function . 10-16

The update() Function . 10-17

The deepcopy() Function . 10-17

Handling Smart Large Objects . 10-18

Comparing Data . 10-19

Handling Locale-Sensitive Data (GLS) . 10-20

Locale-Sensitive Input and Output Support Functions 10-21

Locale-Sensitive Receive and Send Support Functions 10-21

Using Operating System Functions . 10-21

In This Chapter

This chapter describes the support functions for opaque data types and operator

classes.

Writing Support Functions

The support functions for an opaque data type are a set of well-defined, data type

specific functions that the database server automatically invokes. Typically, these

functions are not explicitly invoked in an SQL statement.

© Copyright IBM Corp. 1996, 2008 10-1

Identifying Support Functions

The following table summarizes the support functions for opaque data types.

 Function Purpose Reference

input Converts opaque data from its external

text representation to its internal

representation. Supports insertion of data

in text format into a column of the

opaque type. Requires an implicit cast

from the LVARCHAR data type to

opaque data type.

“Input Support Function” on

page 10-6

output Converts opaque data from its internal

representation to its external text

representation. Supports selection of data

from a column of the opaque type in its

external text format. Requires an explicit

cast from the opaque data type to

LVARCHAR opaque data type.

“Output Support Function” on

page 10-7

receive Converts opaque data from its external

binary representation on the client

computer to its internal representation on

the database server computer. Supports

insertion of binary data into a column of

the opaque type. Requires an implicit cast

from the SENDRECV data type to the

opaque data type.

“Receive Support Function” on

page 10-10

send Converts opaque data from its internal

representation on the database server

computer to its external binary

representation on the client computer.

Supports selection of binary data from a

column of the opaque type. Requires an

explicit cast from the opaque data type to

the SENDRECV data type.

“Send Support Function” on

page 10-11

import Performs processing of opaque data for

bulk load of text data in a column of the

opaque type. Requires an implicit cast

from the IMPEXP to the opaque data

type.

“Import Support Function” on

page 10-13

export Performs processing of opaque data for

bulk unload of text data from a column

of the opaque type. Requires an explicit

cast from the opaque to the IMPEXP data

type.

“Export Support Function” on

page 10-13

importbinary Performs processing of opaque data for

bulk load of binary data in a column of

the opaque type. Requires an implicit cast

from the IMPEXPBIN to the opaque data

type.

“Importbinary Support

Function” on page 10-14

exportbinary Performs processing of opaque data for

bulk unload of binary data from a

column of the opaque type. Requires an

explicit cast from the opaque to the

IMPEXPBIN data type.

“Exportbinary Support

Function” on page 10-14

10-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Function Purpose Reference

streamread Converts opaque data from its stream

representation to its database server

internal representation.

streamwrite Converts opaque data from its internal

representation on the database server to

its stream representation.

assign Performs any processing required before

the database server stores opaque data to

disk. Supports storage of opaque data for

INSERT, UPDATE, and LOAD statements.

“The assign() Function” on page

10-16

destroy Performs any processing necessary before

the database server removes a row that

contains an opaque data type.

“The destroy() Function” on

page 10-16

lohandles Returns a list of the embedded

large-object handles in the opaque data

type.

“Handling Smart Large Objects”

on page 10-18

compare Supports opaque data types during

ORDER BY, UNIQUE, DISTINCT, and

UNION clauses, and BETWEEN

comparisons. Also supports CREATE

INDEX for B-tree indexes.

“Comparing Data” on page

10-19

deepcopy Supports multirepresentational data types

as function return values

“The deepcopy() Function” on

page 10-17

update Supports in-place update on smart large

objects

“The update() Function” on

page 10-17

Most support functions can have arbitrary names. The database server identifies a

support function by the task that it needs to perform. For example, if the client

binds a binary value to INSERT, the database server looks for a cast function in the

syscasts system catalog table that converts the UDT value from its external binary

format (SENDRECV) to the opaque data type.

The following functions must be named explicitly: compare(), assign(), destroy(),

update() and deepcopy(). However, the names are not case sensitive. That is, you

can name the function compare() or Compare().

It is recommended that you give your support functions names that help

document the purpose of the function. For example, if your opaque data type is

named sphere, you might name the receive and send functions sphere_receive()

and sphere_send().

Whenever possible, you should create the support functions as NOT VARIANT for

better performance. For information about variant and non-variant functions, refer

to “Returning a Variant or Nonvariant Value” on page 4-4.

Choosing Function Parameters

The following table summarizes the SQL data types for the parameter list and

return type of CREATE FUNCTION statements that register support functions.

 Support

Function

Parameter

Type Return Type Refer to

input lvarchar opaque data type page 10-6

Chapter 10. Writing Support Functions 10-3

Support

Function

Parameter

Type Return Type Refer to

output opaque data type lvarchar page 10-7

receive sendrecv opaque data type page 10-9

send opaque data type sendrecv page 10-9

import impexp opaque data type page 10-12

export opaque data type impexp page 10-12

importbinary impexPbin opaque data type page 10-13

exportbinary opaque data type impexpbin page 10-13

assign opaque data type opaque data type page 10-16

destroy opaque data type - no return value - page 10-16

update opaque data type,

opaque data type

opaque data type page 10-17

deepcopy opaque data type page 10-17

lohandles opaque data type - list of pointers - page 10-18

compare user-defined type,

user-defined type

- integer values to show less than,

greater than and equal -

page 10-19

In the preceding table, opaque data type is the name of the data type that you

specify in the CREATE OPAQUE TYPE statement. For more information, see

“Registering the Opaque Data Type” on page 9-8.

When the CREATE FUNCTION statement stores a new support function in

sysprocedures, it causes the database server to assign a unique value, called a

routine identifier, to the support function. Throughout the system catalog a support

function is identified by its routine identifier, not by its name.

Setting Privileges for Support Functions

The CREATE FUNCTION statement registers a function with the Execute privilege

granted to the owner of the support function and the DBA. Such a function is

called an owner-privileged function.

To execute a support function in an SQL statement, the user must have the Execute

privilege. Usually, the default privilege is adequate for support functions that are

implicit casts because implicit casts should not generally be called within SQL

statements. Support functions that are explicit casts might have the Execute

privilege granted so that users can call them explicitly. The owner grants the

Execute privilege to other users with the EXECUTE ON clause of the GRANT

statement.

The sysprocauth system catalog table stores routine-level privileges. This table

contains privileges for each UDR and therefore for all support functions that are

defined in the database. The table contains one row for each set of privileges

granted.

Data Types for Support Functions

The database server provides data types for use with UDTs and UDRs. Although

these data types are predefined by the database server, the database server treats

them as extended data types.

10-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The sysxtdtypes system catalog table records extended data types, both predefined

and user-defined. This section discusses predefined data types that are specifically

used by UDTs and UDRs.

The LVARCHAR Data Type

The database server uses the LVARCHAR data type to transfer the external text

representation of an opaque data type between the database server and an

application. Although the actual internal, binary representation for the opaque data

type might contain nontext types, such as integers or double precision

floating-point values, the data in its external text format is an LVARCHAR. The

input and output support functions serve as cast functions between the

LVARCHAR and opaque data types.

Tip: Columns of type LVARCHAR are limited to 32,739 bytes. However, you can

use LVARCHAR columns to transport opaque data with a maximum length of

the data string of 2 gigabytes. The available memory on your system might

restrict this limit to a lower value.

The DataBlade API provides the mi_lvarchar data type to hold the external

representation of opaque-type data. For more information, see the IBM Informix

DataBlade API Programmer’s Guide.

ESQL/C

Informix ESQL/C applications use lvarchar to transfer the external text

representation of an opaque type. The database server implicitly invokes the input

and output support functions when it receives an SQL statement that contains an

lvarchar host variable.

ESQL/C applications use varbinary to transfer the external binary representation

of an opaque type.

End of ESQL/C

The SENDRECV Data Type

When you create an opaque data type, you must supply support functions that

convert the opaque data between its internal representation on the client computer

and its internal representation on the database server computer. These functions

use the sendrecv data type as input or output parameters.

Handling the External Representation

Every opaque type has an internal and external representation. The internal

representation is the internal structure that you define for the opaque type. (For

more information, see “The Internal Structure” on page 9-2.) The external text

representation is a character string that is a printable version of the opaque value.

The opaque type might also have an external binary representation.

When you define an opaque type, you must supply support functions that convert

between the internal and external representations of the opaque type:

v The input function converts from external text representation to internal

representation.

v The output function converts from internal to the external text representation.

Chapter 10. Writing Support Functions 10-5

These support functions do not have to be named input and output, but they do

have to perform the specified conversions. They should be reciprocal functions;

that is, the input function should produce a value that the output function accepts

as an argument and vice versa. For the database server to execute these support

functions automatically, you must provide an implicit cast from LVARCHAR to the

user-defined type that invokes the input function. Similarly, you must also provide

an explicit cast from the UDT to LVARCHAR that invokes the output function.

The database server raises an error if it cannot find the proper support function to

carry out a task. For example, if an application tries to INSERT a value in an

external text format, the database server looks for a cast from LVARCHAR to the

user-defined type. If that cast does not exist, the database server raises an error.

Global Language Support

For your opaque data type to accept an external representation on nondefault

locales, you must use the IBM Informix GLS API in the input and output functions

to access Informix locales from within these functions. For more information, see

“Handling Locale-Sensitive Data (GLS)” on page 10-20.

End of Global Language Support

Input Support Function

The database server calls the input function when it receives the external

representation of an opaque type from a client application. For example, when a

client application issues an INSERT or UPDATE statement, it can send the text

representation of an opaque type to the database server to be stored in an

opaque-type column. The database server calls the input function to convert this

external representation to an internal representation that it stores on disk.

Figure 10-1 shows when the database server executes the input support function.

If the opaque data type is pass by reference, the input support function should

perform the following tasks:

VALUES ('string');

T

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
Server A

Database
server

INSERT or UPDATE Input

INSERT INTO table1 Support function

Figure 10-1. Execution of the Input Support Function

10-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v Allocate enough space to hold the internal representation.

C Language Support

 The function can use the mi_alloc() DataBlade API function to allocate the space

for the internal structure.

End of C Language Support

v Parse the input string.

It must obtain the individual members from the input string and store them in

the appropriate fields of the internal structure

v Return a pointer to the internal structure.

If the opaque data type is pass by value, the input support function should

perform these same basic tasks but return the actual value in the internal structure

instead of a pointer to this structure. You can use pass by value only for opaque

types that are less than 4 bytes in length.

C Language Support

The input function takes an mi_lvarchar value as an argument and returns the

internal structure for the opaque type. The following function signature is an input

support function for a fixed-length opaque data type whose internal structure is

ll_longlong_t:

ll_longlong_t * ll_longlong_input(mi_lvarchar *extrnl_format);

The ll_longlong_input() function is a cast function from the LVARCHAR data type

to the ll_longlong_t internal structure. It must be registered as an implicit cast

function with the CREATE IMPLICIT CAST statement. For more information on

cast functions, see “Creating Casts for Opaque Data Types” on page 9-8.

End of C Language Support

Output Support Function

The database server calls the output function when it sends the external

representation of an opaque type to a client application. For example, when a client

application issues a SELECT or FETCH statement, the application can save the

data of an opaque type that it receives from the database server in a character host

variable. The database server calls the output function to convert the internal

representation that is stored on disk to the external representation that the

character host variable requires.

Figure 10-2 shows when the database server executes the output support function.

Chapter 10. Writing Support Functions 10-7

If the opaque data type is pass by reference, the output support function should

perform the following tasks:

v Accept a pointer to the internal representation as an argument.

v Allocate enough space to hold the external representation.

C Language Support

 The support function can use the mi_alloc() function to allocate the space for the

character string. For more information on memory management and the

mi_alloc() function, refer to the IBM Informix DataBlade API Programmer’s Guide

and the IBM Informix DataBlade API Function Reference.

End of C Language Support

v Create the output string from the individual members of the internal structure.

The function must build the external representation with the values from the

appropriate fields of the internal structure.

v Return a pointer to the character string.

If the opaque data type is pass by value, the output support function should

perform the same basic tasks but accept the actual value in the internal structure.

You can use pass by value only for opaque types that are 4 bytes or less.

C Language Support

The output function takes the internal structure for the opaque type as an

argument and returns an mi_lvarchar value. The following function signature is

for an output support function of an opaque data type whose internal structure is

ll_longlong_t:

mi_lvarchar * ll_longlong_output(ll_longlong_t *intrnl_format);

The ll_longlong_output() function is a cast function from the ll_longlong_t

internal structure to the LVARCHAR data type. It must be registered as an explicit

cast function with the CREATE EXPLICIT CAST statement. For more information

on cast functions, see “Creating Casts for Opaque Data Types” on page 9-8.

End of C Language Support

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
Server A

Database
server

SELECT or FETCH Output

SELECT * INTO char_var
FROM table1

Figure 10-2. Execution of the Output Support Function

10-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Handling the Internal Representation

If a client application that uses an opaque data type executes on a different

computer than the database server, the computers involved might have different

ways of representing the internal structure of the opaque type. For example, the

client computer might use a different byte ordering than the database server

computer.

You must supply send and receive support functions, sometimes called transport

functions, that convert data between the client application and the database server,

commonly called receive and send functions.

You can choose arbitrary names for these support functions. The cast functions that

use the functions identify the support functions to the database server.

The receive and send functions support the transfer of opaque types:

v The receive function converts incoming data to the internal representation of the

local database server.

v The send function converts outgoing data from the internal representation of the

local database server to an appropriate representation for the client application

or the external database.

The send and receive functions should be reciprocal functions; that is, the receive

function should produce a value that the send function accepts as an argument

and the send function should produce a value that the receive function accepts as

an argument.

The functions must handle conversions for all platform variations that the client

application or external database server might encounter. When the local database

server accepts a client connection or connects to a remote database server, it

receives a description of the internal representations that the client or the remote

database server uses. The database server uses this description to determine which

data representation to use in its receive and send support functions.

The IBM Informix DataBlade API provides functions that support conversion

between different internal representations of opaque types. The send and receive

functions can call DataBlade API routines for each member of the internal structure

to convert them to the appropriate representation for the destination platform.

Global Language Support

For an opaque data type to accept an internal representation on nondefault locales,

you must use the IBM Informix GLS API in the receive and send functions to

access Informix locales from within these functions. For more information, see

“Handling Locale-Sensitive Data (GLS)” on page 10-20.

End of Global Language Support

The Send and Receive Support Functions

The database server uses the send and receive support functions when it passes

data to and from a client application.

The SENDRECV Data Type

The SENDRECV data type holds the external binary representation of an opaque

data type when it is transferred between the client computer and the database

Chapter 10. Writing Support Functions 10-9

server computer. The SENDRECV data type allows for any possible change in the

size of the data when it is converted between the two representations. The receive

and send support functions serve as cast functions between the SENDRECV and

opaque data type.

ESQL/C

Informix ESQL/C applications do not use the SENDRECV data type. Instead, these

applications use fixed binary and var binary host variables in SQL statements to

transfer the internal representation of an opaque type on the client computer. The

database server implicitly invokes the receive and send support functions when it

receives an SQL statement that contains a fixed binary or var binary host variable.

End of ESQL/C

Receive Support Function

The receive support function converts opaque data from its external binary

representation on the client computer to its internal representation on the database

server computer and provides an implicit cast from the SENDRECV to the opaque

data type.

The database server calls the receive function when it receives the external binary

representation of an opaque type from a client application. For example, when a

client application issues an INSERT or UPDATE statement, it can send the external

binary representation of an opaque type to the database server to be stored in a

column.

Figure 10-3 shows when the database server executes the receive support function.

The database server calls the receive function to convert the external binary

representation of the client computer to the internal representation of the database

server computer, where the opaque type is stored on disk.

C Language Support

The receive function takes as an argument an mi_sendrecv structure (that holds

the internal structure on the client computer) and returns the internal structure for

the opaque type (the internal representation on the database server computer). The

following function signature is for a receive support function of an opaque data

type whose internal structure is ll_longlong_t:

ll_longlong_t * ll_longlong_receive(mi_sendrecv

*client_intrnl_format);

Figure 10-3. Execution of the Receive Support Function

10-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The ll_longlong_receive() function is a cast function from the SENDRECV data

type to the ll_longlong_t internal structure. It must be registered as an implicit cast

function with the CREATE IMPLICIT CAST statement. For more information on

cast functions, see “Creating Casts for Opaque Data Types” on page 9-8.

End of C Language Support

Send Support Function

The database server calls the send function when it sends the external binary

representation of an opaque type to a client application. For example, when a client

application issues a SELECT or FETCH statement, it can save the data of an

opaque type that it receives from the database server in a host variable that

conforms to the external binary representation of the opaque type.

Figure 10-4 shows when the database server executes the send support function.

The database server calls the send function to convert the internal representation

that is stored on disk to the external binary representation that the client computer

uses.

C Language Support

The send function takes as an argument the internal structure for the opaque type

on the database server computer and returns an mi_sendrecv structure that holds

the internal structure on the client computer. The following function signature is

for a send support function of an opaque data type whose internal structure is

ll_longlong_t:

mi_sendrecv * ll_longlong_send(ll_longlong_t *srvr_intrnl_format);

The ll_longlong_send() function is a cast function from the ll_longlong_t internal

structure to the SENDRECV data type. It must be registered as an explicit cast

function with the CREATE EXPLICIT CAST statement. For more information on

cast functions, see “Creating Casts for Opaque Data Types” on page 9-8.

End of C Language Support

Figure 10-4. Execution of the Send Support Function

Chapter 10. Writing Support Functions 10-11

Performing Bulk Copies

The database server can copy data in and out of a database with a bulk copy

operation. In a bulk copy, the database server sends large numbers of column

values in a copy file, rather than copying each column value individually. For large

amounts of data, bulk copying is far more efficient than moving values

individually.

The following Informix utilities can perform bulk copies:

v DB–Access performs bulk copies with the LOAD and UNLOAD statements.

v The dbimport and dbexport utilities perform bulk copies.

v The High Performance Loader (HPL) performs bulk copies.

v The pload utility loads and unloads a database from external files.

The database server can perform bulk copies on binary (internal) or character

(external) representations of opaque-type data.

Import and Export Support Functions

The import and export support functions perform any tasks needed to process

external text representation of an opaque type for a bulk load and unload. When

the database server copies data to or from a database in external text format, it

calls the following support functions for every value copied to or from the copy

file:

v The import function imports text data by converting from external text

representation to the internal format.

v The export function exports text data by converting from the internal format to

the external text representation.

These support functions do not have to be named import and export, but they do

have to perform the specified conversions. They should be reciprocal functions;

that is, the import function should produce a value that the export function accepts

as an argument and vice versa.

The import and export functions can take special actions on the values before they

are copied. Typically, only opaque data types that contain smart large objects have

import and export functions defined for them. For example, the export function for

such a data type might create a file on the client computer, write the

smart-large-object data from the database to this file, and send the name of the

client file as the data to store in the copy file. Similarly, the import function for

such a data type might take the client filename from the copy file, open the client

file, and load the large-object data from the copy file into the database. The

advantage of this design is that the smart-large-object data does not appear in the

copy file; therefore, the copy file grows more slowly and is easier for users to read.

For small opaque data types, you do not usually need to define the import and

export support functions. If you do not define import and export support

functions, the database server uses the input and output functions, respectively,

when it performs bulk copies.

For large opaque data types, the data that the input and output functions generate

might be too large to fit in the file or might not represent all of the data in the

object. To resolve this problem, you can use the import functions filetoclob() and

filetoblob() and the export function lotofile().

10-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The IMPEXP Data Type

SQL statements support an internal data type called IMPEXP to hold the external

representation of an opaque data type for a bulk copy. The IMPEXP data type

allows for any possible change in the size of the data when it is converted between

the two representations. The import and export support functions serve as cast

functions between the IMPEXP and opaque data type.

Import Support Function

The import support function takes as an argument the structure that holds the

bulk-copy format of the external representation of the user-defined type and

returns the internal structure for the user-defined type.

Any files that the import function reads must reside on the database server

computer. If you do not provide an import support function, the database server

uses the input support function to import text data.

C Language Support

The following function signature is for an import support function of an opaque

data type whose internal structure is ll_longlong_t:

ll_longlong_t * ll_longlong_import(mi_impexp

*extrnl_bcopy_format);

The ll_longlong_import() function is a cast function from the IMPEXP data type to

the ll_longlong_t data structure. It must be registered as an implicit cast function

with the CREATE IMPLICIT CAST statement. For more information on cast

functions, see “Creating Casts for Opaque Data Types” on page 9-8.

End of C Language Support

Export Support Function

The export function takes as an argument the internal structure for the opaque

type and a structure that holds the bulk-copy format of the external representation

of the opaque type.

If you do not provide an export support function, the database server uses the

output support function to export text data.

C Language Support

The following function signature is for an export support function of an opaque

data type whose internal structure is ll_longlong_t:

mi_impexp * ll_longlong_export(ll_long_t *intrnl_bcopy_format);

The ll_longlong_export() function is a cast function from the ll_longlong_t internal

structure to the IMPEXP data type. It must be registered as an explicit cast function

with the CREATE EXPLICIT CAST statement. For more information on cast

functions, see “Creating Casts for Opaque Data Types” on page 9-8.

End of C Language Support

Importbinary and Exportbinary Support Functions

The importbinary and exportbinary support functions perform any tasks needed to

process the external binary representation of an opaque type for a bulk copy, as

follows:

Chapter 10. Writing Support Functions 10-13

v The importbinary function imports binary data by converting from some binary

representation to the internal representation.

v The exportbinary function exports binary data by converting from internal

representation to some binary representation.

These support functions do not have to be named importbinary and exportbinary,

but they do have to perform the specified conversions. They should be reciprocal

functions; that is, the importbinary function should produce a value that the

exportbinary function accepts as an argument and conversely. The IBM Informix

DataBlade API provides functions that support conversion between different

internal representations of opaque types.

For opaque data types that have identical external and internal representations, the

import and importbinary support functions can be the same function. Similarly, the

export and exportbinary support functions can be the same function.

IMPEXPBIN Data Type

SQL statements support an internal data type called IMPEXPBIN to hold the

external binary representation of an opaque data type for a bulk copy. The

IMPEXPBIN data type allows for any possible change in the size of the data when

it is converted between the two representations. The importbinary and

exportbinary support functions serve as cast functions between the IMPEXPBIN

and opaque data type.

Importbinary Support Function

The importbinary support function takes as an argument a structure that holds the

bulk-copy format of the external binary format of the opaque type and returns the

internal structure for the opaque type.

Any files that the import function reads must reside on the database server

computer. If you do not provide an importbinary support function, the database

server imports the binary data in the database server internal representation of the

opaque data type.

C Language Support

The following function signature is for an importbinary support function of an

opaque data type whose internal structure is ll_longlong_t:

ll_longlong_t * ll_longlong_importbin(mi_impexpbin

*client_intrnl_bcopy_format);

The ll_longlong_importbin() function is a cast function from the IMPEXPBIN data

type to the ll_longlong_t internal structure. It must be registered as an implicit cast

function with the CREATE IMPLICIT CAST statement. For more information, see

“Creating Casts for Opaque Data Types” on page 9-8.

End of C Language Support

Exportbinary Support Function

The exportbinary support function takes as an argument the internal structure for

the opaque type and returns a structure that holds the bulk-copy format of the

external binary representation of the opaque type.

If you do not provide an exportbinary support function, the database server

exports the binary data in the external binary representation of the opaque data

10-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

type.

C Language Support

The following function signature is for an exportbinary support function of an

opaque data type whose internal structure is ll_longlong_t:

mi_impexpbin * ll_longlong_exportbin(ll_longlong_t

*srvr_intrnl_bopy_format);

The ll_longlong_exportbin() function is a cast function from the ll_longlong_t

internal structure to the IMPEXPBIN data type. It must be registered as an explicit

cast function with the CREATE EXPLICIT CAST statement. For more information,

see “Creating Casts for Opaque Data Types” on page 9-8.

End of C Language Support

The Stream Support Functions

The streamread() and streamwrite() support functions allow the database server to

treat opaque data in a stream representation. That is, in a sequential, flattened

format. The DataBlade API provides generic functions that handle the transfer of

stream data between the database server and other sites or storage media. The IBM

Informix DataBlade API Programmer’s Guide provides detailed information about

using generic stream functions.

Important: These support functions must be named streamread and streamwrite.

The names are case insensitive.

Inserting and Deleting Data

Some opaque data types might require special processing before they are saved to

or removed from disk. The following support functions perform this special

processing:

v assign()

v destroy()

v update()

v deepcopy()

Important: These support functions must be named assign, destroy, update, and

deepcopy. The names are case insensitive.

The assign() and destroy() functions are required for opaque types that include

smart large objects or multirepresentational data. If the data is stored in a smart

large object, the internal structure of the opaque data type contains the LO handle

to identify the location of the data; it does not contain the data itself. The assign(),

update(), and deepcopy() support functions decide how and where to store the

data, and the destroy() support function decides how to remove the data,

regardless of where it is stored.

These functions use the mi_* memory allocation functions that are documented in

the IBM Informix DataBlade API Function Reference. For detailed discussions about

multirepresentational data types, refer to the DataBlade Developers Corner of the

IBM Informix Developer Zone at http://www.ibm.com/software/data/developer/
informix.

Chapter 10. Writing Support Functions 10-15

The assign() Function

The assign() function contains special processing to perform before an opaque data

type is inserted into a table. The database server calls the assign() function just

before it stores the internal representation of an opaque type on disk. For example,

when a client application issues an INSERT, UPDATE, or LOAD statement, the

database server calls the assign() function before it saves the internal

representation of an opaque type in a column.

Figure 10-5 shows when the database server executes the assign() function.

When you INSERT a value of an opaque data type, the assign() function takes the

opaque data type as an argument, performs whatever additional processing might

be required, and returns the final opaque type value for the database server to

store in the table.

The destroy() Function

The destroy() function performs any processing necessary before the database

server removes a row that contains opaque data. The database server calls the

destroy() function just before it removes the internal representation of an opaque

type from disk. For example, when a client application issues a DELETE or DROP

TABLE statement, the database server calls the destroy() function before it deletes

an opaque-type value from a column.

Figure 10-6 shows when the database server executes the destroy() function.

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
Server A

Database
server

INSERT or UPDATE receive()

INSERT INTO table1
VALUES (fixedbin_var)

Internal format
of opaque type

assign()

Figure 10-5. Execution of the assign() Support Function

10-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The destroy() function takes as an opaque data type. It does not return a value.

The update() Function

The update() function allows the database server to handle in-place updates of

opaque data type values, improving the performance for an opaque type that has

an expensive constructor. For example, an opaque type that contains a smart large

object might benefit from an update() function. If no update() function is present,

the database server calls the assign() function, which creates an entirely new smart

large object, and then calls the destroy() function to delete the old smart large

object. If the update only changes a few bytes in a large object, this is clearly not

efficient.

The update() function provides for in-place update of an opaque data type. Like

the assign() and destroy() functions, the update() function is an SQL function

defined on a given UDT. It takes two arguments, both of the same UDT type, and

returns the same UDT type. The first argument is the original value of the

user-defined type, and the second argument is the new UDT value. The function

must handle NULL.

The following statement registers an update() function for the

multirepresentational data type MyUDT:

CREATE FUNCTION Update (MyUDT, MyUDT)

 RETURNS MyUDT

 WITH (HANDLESNULLS, NOT VARIANT)

 EXTERNAL NAME’/usr/lib/extend/blades/MyUDT.so(MyUDT_update)’

 LANGUAGE C;

The update function must check for updates that cross the threshold for

multirepresentational data. For example, if a large quantity of data is updated to a

small quantity, the update() routine needs to decrement the smart blob reference

count and return the updated value as an in-row object.

The deepcopy() Function

Multirepresentational opaque types typically defer creating a smart large object

until the database server calls the assign() function. Until assign() is called, the

opaque type stores a large value in separately allocated memory and stores the

pointer to that memory in the data structure of the opaque type.

However, the database server does not know about this additional memory when

it copies a return value, so it copies only part of the value. In other words, the

database server performs a shallow copy. This means that only allocations with a

very high memory duration persist long enough for some query contexts.

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
Server A

Database
server

DELETE or DROP TABLE destroy()

DELETE FROM table1
WHERE...

Figure 10-6. Execution of the destroy() Support Function

Chapter 10. Writing Support Functions 10-17

The deepcopy() support function provides the method for the database server to

copy the entire opaque type value and lets the opaque type support routines that

use the default memory duration.

Alternatively, you might use some higher memory duration such as

PER_STMT_EXEC. However, this strategy increases memory usage significantly

because there are cases where using the default memory duration is sufficient. For

information about PER_STMT_EXEC, refer to the IBM Informix DataBlade API

Programmer’s Guide and the IBM Informix DataBlade API Function Reference.

The deepcopy() function should make a copy of the input opaque type using

memory allocated from default memory duration and return the copy. The

functions that deepcopy() can use to allocate memory from default memory

duration include mi_alloc, mi_zalloc, mi_new_var, and mi_var_copy. It is

important to use memory allocated from those functions for the return UDT

because the database server prepares the appropriate default memory duration

depending on the query context before it invokes deepcopy().

If the input UDT contains pointers to an out-of-row buffer, deepcopy() can copy

the out-of-row data using memory from mi_alloc and store the pointer with that of

memory in the copied UDT.

If the input UDT contains a reference to a smart large object, deepcopy() should

copy the large object handle to the return value, but deepcopy() does not need to

copy the large object.

Handling Smart Large Objects

If an opaque data type contains an embedded smart large object, you can define an

lohandles() function for the opaque type. The lohandles() support function takes

an instance of the opaque type and returns a list of the pointer structures for the

smart large objects that are embedded in the data type. You might, for example,

use a lohandles() function to provide information about which smart large object a

given data type value is referencing.

The database server uses the lohandles() support function when it must search

opaque-type values for references to smart large objects. The database server does

not automatically call lohandles(). To execute this function, you must call it

explicitly. You might use lohandles() for the following tasks:

v Performing an archive of the database

v Obtaining a reference count for the smart large objects

v Running the oncheck utility

A lohandles() support function does not perform automatic incrementing and

decrementing of the reference count for a smart large object. You must handle the

reference count explicitly in the assign() and destroy() functions, as follows:

v In the assign() function, increment the reference count with the DataBlade API

function mi_lo_increfcount().

v In the destroy() function, decrement the reference count with the DataBlade API

function mi_lo_decrefcount().

If you define an opaque type that references one or more smart large objects, you

must consider defining the following support functions:

v assign()

10-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v destroy()

v update()

v deepcopy()

v An import function

v An export function

v An importbinary function

v An exportbinary function

For more information on assign() and destroy() support functions, see “Inserting

and Deleting Data” on page 10-15. For information on the import, export,

importbinary, and exportbinary support functions, see “Performing Bulk Copies”

on page 10-12.

Comparing Data

The compare() function is an SQL-invoked function that sorts the target data type.

The database server uses the compare() function in the CREATE INDEX statement

and to execute the following components of the SELECT statement:

v The ORDER BY clause

v The UNIQUE and DISTINCT keywords

v The UNION keyword

v The BETWEEN operator

For more information on the SELECT statement, see the IBM Informix Guide to SQL:

Syntax.

If you define a compare() function, you must also define the greaterthan(),

lessthan(), equal or other functions that use the compare function.

For the database server to be able to sort an opaque type, you must define a

compare() function that handles the opaque type. The compare() function must

follow these rules:

1. The name of the function must be compare(). However, the name is not case

sensitive; the compare() function is the same as the Compare() function.

2. The function must accept two arguments, each of the data types to be

compared.

3. The function must return an integer value to indicate the result of the

comparison, as follows:

v <0 to indicate that the first argument is less than (<) the second argument

v 0 to indicate that the two arguments are equal (=)

v >0 to indicate that the first argument is greater than (>) the second argument

The compare() function is the support function for the built-in secondary-access

method, B-tree. For more information on the built-in secondary-access method, see

“Generic B-Tree Index” on page 11-2. For more information on how to customize a

secondary-access method for an opaque data type, see “Using Operator Classes”

on page 11-1.

Chapter 10. Writing Support Functions 10-19

Handling Locale-Sensitive Data (GLS)

An Informix database has a fixed locale per database. This locale, the database

locale, is attached to the database at the time that the database is created. In any

given database, all character data types (such as CHAR, NCHAR, VARCHAR,

NVARCHAR, and TEXT) contain data in the code set that the database locale

supports.

However, using the SQL statement SET COLLATION you can specify the collation

order to use at runtime, which is independent of the locale used to store data in

the database, and lasts for the duration of the session. You can use the

mi_get_db_locale() function to determine which locale a user has set for the

collation order in a session. If the user has not changed the collation,

mi_get_db_locale() returns the default database locale. See the IBM Informix Guide

to SQL: Syntax for information about the SET COLLATION statement. See the IBM

Informix DataBlade API Function Reference for information about the

mi_get_db_locale() function.

An opaque data type can hold character data. The following support functions

provide the ability to transfer opaque-type data between a client application and

the database server:

v The input and output support functions provide the ability to transfer the

external representation of the opaque type.

v The receive and send support functions provide the ability to transfer the

internal representation of the opaque type.

However, the ability to transfer the data between client application and database

server is not sufficient to support locale-sensitive data. It does not ensure that the

data is correctly manipulated at each end. You must ensure that both sides of the

connection handle the locale-sensitive data, as follows:

v At the client side of the connection, the client application must handle the

locale-sensitive data for opaque-type columns correctly.

It must also have the CLIENT_LOCALE environment variable set correctly.

v At the database server side of the connection, you must ensure that the

appropriate support functions handle the locale-sensitive data.

In addition, the DB_LOCALE and SERVER_LOCALE environment variables

must be set correctly.

For more information on the CLIENT_LOCALE, DB_LOCALE, and

SERVER_LOCALE environment variables, see the IBM Informix GLS User’s Guide.

To help you write support functions that handle locale-sensitive data, the IBM

Informix GLS API is provided. The GLS API is a thread-safe library. This library

contains C functions that allow your support functions to obtain locale-specific

information from GLS locales, including:

v Functions to manipulate locale-sensitive data in a portable fashion

v Functions to handle single-byte and multibyte character access

v Functions to manipulate other locale-sensitive data, such as the end-user formats

of date, time, or monetary data

For an overview of the GLS API, see the IBM Informix GLS User’s Guide. For a

description of the GLS API functions, see the IBM Informix GLS User’s Guide.

10-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Locale-Sensitive Input and Output Support Functions

The LVARCHAR (and mi_lvarchar) data type can hold data in the code set of the

client or database locale. This data includes single-byte (ASCII and non-ASCII) and

multibyte character data. The LVARCHAR data type holds opaque-type data as it

is transferred to and from the database server in its external representation.

Therefore, the external representation of an opaque data type can hold single-byte

or multibyte data.

However, you must write the input and output support functions to interpret the

LVARCHAR data in the correct locale. These support functions might need to

perform code-set conversion if the client locale and database locale support

different code sets. For more information on code-set conversion, see the IBM

Informix GLS User’s Guide.

Locale-Sensitive Receive and Send Support Functions

The SENDRECV (and mi_sendrecv) data type holds the internal structure of an

opaque type. This internal structure can contain the following types of

locale-sensitive data:

v Character fields that can hold data in the code set of the client or database locale

This data includes single-byte (ASCII and non-ASCII) and multibyte character

data.

v Monetary, date, or time fields that hold a locale-specific representation of the

data

The client application has no way of interpreting the fields of the internal structure

because an opaque type is encapsulated.

The SENDRECV data type holds opaque-type data as it is transferred to and from

the database server in this internal representation. You must write the receive and

send support functions to interpret the locale-specific data within the SENDRECV

structure.

Using Operating System Functions

You can use the mi_system() function from within a DataBlade module or C UDR

to execute operating system commands, external user executables, or shell scripts.

The mi_system() function creates a child process to execute the command, waits

for its completion, and then returns the command’s exit status to the calling

routine. The child process inherits the user and group IDs of the client running the

session. The mi_system() function does not perform any validation on the

command you run; therefore, you must run appropriate and accurate commands.

See the IBM Informix DataBlade API Programmer’s Guide and IBM Informix DataBlade

API Function Referencefor more details on this functions.

Chapter 10. Writing Support Functions 10-21

10-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 11. Extending an Operator Class

In This Chapter . 11-1

Using Operator Classes . 11-1

Secondary-Access Methods . 11-1

Generic B-Tree Index . 11-2

R-Tree Index . 11-2

Other User-Defined Secondary-Access Methods . 11-2

Operator Classes . 11-2

Generic B-Tree Operator Class . 11-3

R-Tree Index Operator Class . 11-4

Extending an Existing Operator Class . 11-4

Extensions of the btree_ops Operator Class . 11-5

Reasons for Extending btree_ops . 11-6

Generating a Single Value for a New Data Type . 11-6

Changing the Sort Order . 11-7

Creating an Operator Class . 11-8

Creating a New B-Tree Operator Class . 11-9

Creating an Absolute-Value Operator Class . 11-10

Defining an Operator Class for Other Secondary-Access Methods 11-11

Dropping an Operator Class . 11-11

In This Chapter

This chapter describes how to extend the functionality of operator classes. An

operator class is the set of functions that is associated with a secondary-access

method. The database server provides two ways to extend operator classes:

v Extensions of operator classes that the database server provides

When you want to order the data in a different sequence or provide index

support for a UDT, you must extend an operator class.

v User-defined operator classes

When one of the existing secondary-access methods cannot easily index a UDT,

you might need to create a new operator class.

Using Operator Classes

For most situations, when you build an index, you can use the default operators

that are defined for a secondary-access method. This section provides a brief

introduction to secondary-access methods and operator classes.

For a more detailed discussion of this topic, see the IBM Informix Performance Guide.

Secondary-Access Methods

A secondary-access method, often called an index, is a set of user-defined functions

that build, access, and manipulate an index structure. These functions encapsulate

index operations, such as how to scan, insert, delete, or update nodes in an index.

A secondary-access method describes how to access the data in an index that is

built on a column (column index) or on a user-defined function (functional index).

Typically, a secondary-access method speeds up the retrieval of a type of data.

The database server provides definitions for the following secondary-access

methods in the system catalog tables of each database:

© Copyright IBM Corp. 1996, 2008 11-1

v A generic B-tree

v An R-tree

DataBlade modules can provide additional secondary-access methods for use with

UDTs. For more information about secondary-access methods of DataBlade

modules, refer to the user guide for each DataBlade module. For more information

about R-trees, refer to the IBM Informix R-Tree Index User’s Guide.

Generic B-Tree Index

In traditional relational database systems, the B-tree access method handles only

built-in data types and therefore can compare only two keys of built-in data types.

The B-tree index is useful for a query that retrieves a range of data values. To

support UDTs, the database server provides an extended version of a B-tree, the

generic B-tree index.

The database server uses the generic B-tree index as the built-in secondary-access

method. This secondary-access method is registered in the sysams system catalog

table with the name btree. When you use the CREATE INDEX statement (without

the USING clause) to create an index, the database server creates a generic B-tree

index. The following statement creates a B-tree index on the zipcode column of the

customer table:

CREATE INDEX zip_ix ON customer (zipcode)

For more information, see the CREATE INDEX statement in the IBM Informix Guide

to SQL: Syntax.

R-Tree Index

The database server can support the R-tree index for columns that contain spatial

data such as maps and diagrams. An R-tree index is most beneficial when queries

look for objects that are within other objects or for an object that contains one or

more objects.

To use an R-tree index, install a spatial DataBlade module such as the Spatial

DataBlade module, Geodetic DataBlade module, or any other third-party

DataBlade module that implements an R-tree index.

Other User-Defined Secondary-Access Methods

A DataBlade module can provide a UDT to handle a particular type of data. The

module might also provide a new secondary-access method (index) for the new

data type that it defines. For example, the Excalibur Text DataBlade module

provides an index to search text data. For more information, refer to the Excalibur

Text Search DataBlade Module User’s Guide. For more information on the types of

data and functions that each DataBlade module provides, refer to the user guide

for the DataBlade module. The sysams system catalog table describes the

secondary-access methods that exist in your database. For information about

sysams, see the IBM Informix Guide to SQL: Reference.

Operator Classes

An operator class is a group of functions that allow the secondary-access method to

store and search for values of a particular data type. The query optimizer uses an

operator class to determine if an index can process the query with the least cost.

For more information on the query optimizer, see the IBM Informix Performance

Guide.

The operator-class functions fall into the following categories:

11-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v Strategy functions

The database server uses the strategy functions of a secondary-access method to

help the query optimizer determine whether a specific index is applicable to a

specific operation on a data type. The strategy functions are the operators that

can appear in the filter of an SQL statement.

v Support functions

The database server uses the support functions of a secondary-access method to

build and access the index. End users do not call these functions directly. When

an operator in the filter of a query matches one of the strategy functions, the

secondary-access method uses the support functions to traverse the index and

obtain the results.

Each secondary-access method has a default operator class associated with it. By

default, the CREATE INDEX statement associates the default operator class with an

index.

The database server stores information about operator classes in the sysopclasses

system catalog table.

Generic B-Tree Operator Class

The built-in secondary-access method, the generic B-tree, has a single operator

class defined in the sysopclasses system catalog table. This operator class, called

btree_ops, is the default operator class for the btree secondary-access method.

The database server uses the btree_ops operator class to specify:

v The strategy functions to tell the optimizer which filters in a query can use a

B-tree index

v The support function to build and search the B-tree index

The CREATE INDEX statement in “Generic B-Tree Index” on page 11-2 shows how

to create a B-tree index whose column uses the btree_ops operator class. This

CREATE INDEX statement does not need to specify the btree_ops operator class

because btree_ops is the default operator class for the btree access method.

For more information on the btree secondary-access method, see “Generic B-Tree

Index” on page 11-2.

B-Tree Strategy Functions: The btree_ops operator class defines the following

strategy functions for the btree access method:

v lessthan (<)

v lessthanorequal (<=)

v equal (=)

v greaterthanorequal (>=)

v greaterthan (>)

These strategy functions are all operator functions. That is, each function is

associated with an operator symbol; in this case, with a relational-operator symbol.

For more information, see “Relational Operators” on page 6-2.

B-Tree Support Function: The btree_ops operator class has one support function,

a comparison function called compare(). The compare() function is a user-defined

function that returns an integer value to indicate whether its first argument is

equal to, less than, or greater than its second argument, as follows:

Chapter 11. Extending an Operator Class 11-3

v A value of 0 when the first argument is equal to the second argument

v A value less than 0 when the first argument is less than the second argument

v A value greater than 0 when the first argument is greater than the second

argument

The B-tree secondary-access method uses the compare() function to traverse the

nodes of the generic B-tree index. To search for data values in a generic B-tree

index, the secondary-access method uses the compare() function to compare the

key value in the query to the key value in an index node. The result of the

comparison determines if the secondary-access method needs to search the next

lower level of the index or if the key resides in the current node.

The generic B-tree access method also uses the compare() function to perform the

following tasks for generic B-tree indexes:

v Sort the keys before building the index

v Determine the linear ordering of keys in a generic B-tree index

v Evaluate the relational operators

The database server uses the compare() function to evaluate comparisons in the

SELECT statement. To provide support for these comparisons for opaque data

types, you must write the compare() function. For more information, see

“Conditional Operators for Opaque Data Types” on page 9-11.

R-Tree Index Operator Class

The R-tree secondary-access method has an operator class defined in the

sysopclasses system catalog table. This operator class, called rtree_ops, is the

default operator class for the rtree secondary-access method. The database server

defines the default R-tree operator class in the system catalog tables but does not

provide the operator-class functions to implement this operator class.

To use an R-tree index, install a spatial DataBlade module such as the Spatial

DataBlade module, Geodetic DataBlade module, or any other third-party

DataBlade module that implements an R-tree index. For more information on

R-tree indexes, refer to IBM Informix R-Tree Index User’s Guide. For more

information on the spatial DataBlade modules, consult the appropriate DataBlade

module user guide.

Extending an Existing Operator Class

You can define operator-class functions of an operator class only for existing data

types. When you create a UDT, you must determine whether you need to create

operator-class functions for this data type. The creation of new operator-class

functions that have the same names as the existing operator class functions is the

most common way to extend an existing operator class.

To extend the functionality of an operator-class function, write a function that has

the same name and return value. You provide parameters for the new data type

and write the function to handle the new parameters. Routine overloading allows

you to create many functions, all with the same name but each with a different

parameter list. The database server then uses routine resolution to determine which

of the overloaded functions to use based on the data type of the value. For more

information on routine overloading and routine resolution, see Chapter 3,

“Running a User-Defined Routine,” on page 3-1.

 To define operator-class functions for a user-defined data type:

11-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

1. Decide which of the secondary-access methods can support the UDT.

2. Extend the operator classes of the chosen secondary-access method or methods.

To allow end users to use the user-defined type with the operators that are

associated with the secondary-access method, write new strategy and support

functions to handle this new data type.

Extensions of the btree_ops Operator Class

Before the database server can support generic B-tree indexes on a UDT, the

operator classes associated with the B-tree secondary-access method must be able

to handle that data type. The default operator class for the generic B-tree

secondary-access method is called btree_ops. Initially, the operator-class functions

(strategy and support functions) of the btree_ops operator class handle the built-in

data types. When you define a new data type, you must extend these

operator-class functions to handle the data type.

Important: You cannot extend the btree_ops operator class for the built-in data

types.

After you determine how you want to implement the relational operators for a

UDT, you can extend the btree_ops operator class so that the query optimizer can

consider use of a B-tree index for a query that contains a relational operator.

 To extend the default operator class for a generic B-tree index:

1. Write functions for the B-tree strategy functions that accept the UDT in their

parameter list.

The relational-operator functions serve as the strategy functions for the

btree_ops operator class. If you have already defined these relational-operator

functions for the UDT, the generic B-tree index uses them as its strategy

functions. For example, you might have defined the relational-operator

functions when you extended an aggregate for the user-defined type. (See

“Example of Extending a Built-In Aggregate” on page 8-3.)

2. Register the strategy functions in the database with the CREATE FUNCTION

statement.

If you already registered the relational-operator functions, you do not need to

reregister them as strategy functions.

3. Write a function in C or Java for the B-tree support function, compare(), that

accepts the UDT in its parameter list. (The compare() function cannot be in

SPL.)

The compare() function also provides support for a UDT in comparison

operations in a SELECT statement (such as the ORDER BY clause or the

BETWEEN operator). If you have already defined this comparison function for

the UDT, the generic B-tree index uses it as its support function.

When you define a compare() function, you must also define the greaterthan(),

lessthan(), equal() or other functions that use the compare function.

4. Register the support functions in the database with the CREATE FUNCTION

statement.

For opaque data types, you might have already defined this function to provide

support for the comparison operations in a SELECT statement (such as the

ORDER BY clause or the BETWEEN operator) on your opaque data type.

For more information on strategy functions, see “B-Tree Strategy Functions” on

page 11-3. For information on relational operators for an opaque data type, see

“Conditional Operators for Opaque Data Types” on page 9-11.

Chapter 11. Extending an Operator Class 11-5

After you register the support function, use the CREATE INDEX statement to

create a B-tree index on the column of the table that contains the UDT. The

CREATE INDEX statement does not need the USING clause because you have

extended the default operating class for the default index type, a generic B-tree

index, to support your UDT.

The query optimizer can now consider use of this generic B-tree index to execute

queries efficiently. For more information on the performance aspects of column

indexes, see the IBM Informix Performance Guide.

The previous steps extend the default operator class of the generic B-tree index.

You could also define a new operator class to provide another order sequence. For

more information, see “Creating a New B-Tree Operator Class” on page 11-9.

Reasons for Extending btree_ops

The strategy functions of btree_ops are the relational operations that end users can

use in expressions. (For a list of the relational operators, see “B-Tree Strategy

Functions” on page 11-3.) The generic B-tree index handles only the built-in data

types. When you write relational-operator functions that handle a new UDT, you

extend the generic B-tree so that it can handle the UDT in a column or a

user-defined function. To create B-tree indexes on columns or functions of the new

data type, you must write new relational-operator functions that can handle the

new data type.

In the relational-operator functions, you determine the following behavior of a

B-tree index:

v What single value does the B-tree secondary-access method use to order the

index?

For a particular UDT, the relational-operator functions must compare two values

of this data type for the data type to be stored in the B-tree index.

v In what order does the B-tree index sort the values?

For a particular UDT, the relational-operator functions must determine what

constitutes an ordered sequence of the values.

Generating a Single Value for a New Data Type

A B-tree index indexes one-dimensional objects. It uses the relational-operator

functions to compare two one-dimensional values. It then uses the relationship

between these values to determine how to traverse the B-tree and in which node to

store a value.

The relational-operator functions handle built-in data types. (For more information

on built-in data types, see the chapter on data types in the IBM Informix Guide to

SQL: Reference.) The built-in data types contain one-dimensional values. For

example, the INTEGER data type holds a single integer value. The CHAR data

type holds a single character string. The DATE data type holds a single date value.

The values of all these data types can be ordered linearly (in one dimension). The

relational-operator functions can compare these values to determine their linear

ordering.

When you create a new UDT, you must ensure that the relational-operator

functions can compare two values of the UDT. Otherwise, the comparison cannot

occur, and the UDT cannot be used in a B-tree index.

For example, suppose you create the circle opaque type to implement a circle. A

circle is a spatial object that might be indexed best with a user-defined

11-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

secondary-access method such as an R-tree, which handles multidimensional

objects. However, you can use the circle data type in a B-tree index if you define

the relational operators on the value of its area: one circle is less than a second

circle if its area is less than the area of the second.

Changing the Sort Order

A generic B-tree uses the relational operators to determine which value is less than

another. These operators use lexicographical sequence (numeric order for numbers,

alphabetic order for characters, chronological order for dates and times) for the

values that they order.

Global Language Support

The relational-operator functions use the code-set order for character data types

(CHAR, VARCHAR, LVARCHAR, and IDSSECURITYLABEL) and a localized order

for the NCHAR and NVARCHAR data types. When you use the default locale,

U.S. English, code-set order and localized order are those of the ISO 8895-1 code

set. When you use a nondefault locale, these two orders might be different. For

more information on locales, see the IBM Informix GLS User’s Guide.

End of Global Language Support

 For some UDTs, the relational operators in the default B-tree operator class might

not achieve the order that you want. You can define the relational-operator

functions for a particular user-defined type so that the sort order changes from a

lexicographical sequence to some other sequence.

Tip: When you extend an operator class, you can change the sort order for a UDT.

To provide an alternative sort order for all data types that the B-tree handles,

you must define a new operator class. For more information, see “Creating a

New B-Tree Operator Class” on page 11-9.

For example, suppose you create an opaque data type, ScottishName, that holds

Scottish names, and you want to order the data type in a different way than the

U.S. English collating sequence. You might want the names McDonald and

MacDonald to appear together on a phone list. This data type can use a B-tree

index because it defines the relational operators that equate the strings Mc and

Mac.

To order the data type in this way, write the relational-operator functions so that

they implement this new order. For the strings Mc and Mac to be equal, you must

define the relational-operator functions that:

v Accept the opaque data type, ScottishName, in the parameter list

v Contain code that equates Mc and Mac

The following steps use the steps described in “Extensions of the btree_ops

Operator Class” on page 11-5 to extend the btree_ops operator class.

 To support the ScottishName data type:

1. Prepare and register the strategy functions that handle the ScottishName data

type: lessthan(), lessthanorequal(), equal(), greaterthan(), and

greaterthanorequal().

For more information, refer to Chapter 4, “Developing a User-Defined Routine,”

on page 4-1.

Chapter 11. Extending an Operator Class 11-7

2. Prepare and register the external function for the compare() support function

that handles the ScottishName data type.

You can now create a B-tree index on a ScottishName column:

CREATE TABLE scot_cust

(

 cust_id integer,

 cust_name ScottishName

 ...

);

CREATE INDEX cname_ix

 ON scot_cust (cust_name);

The optimizer can now choose whether to use the cname_ix index to evaluate the

following query:

SELECT * FROM scot_cust

WHERE cust_name = ’McDonald’::ScottishName

Creating an Operator Class

For most indexing, the operators in the default operator class of a secondary-access

method provide adequate support. However, when you want to order the data in a

different sequence than the default operator class provides, you can define a new

operator class for the secondary-access method.

The CREATE OPCLASS statement creates an operator class. It provides the

following information about the operator class to the database server:

v The name of the operator class

v The name of the secondary-access method with which to associate the functions

of the operator class

v The names and, optionally, the parameters of the strategy functions

v The names of the support functions

The database server stores this information in the sysopclasses system catalog

table. You must have the Resource privilege for the database or be the DBA to

create an operator class.

The database server provides the default operator class, btree_ops, for the generic

B-tree access method. The following CREATE OPCLASS statement creates a new

operator class for the generic B-tree access method. You must list the strategy

functions in the order shown:

CREATE OPCLASS new_btree_ops FOR btree

 STRATEGIES (lessthan, lessthanorequal, equal,

 greaterthanorequal, greaterthan)

 SUPPORT(compare);

For more information, see “Generic B-Tree Index” on page 11-2.

You might want to create a new operator class for:

v The generic B-tree secondary-access method

A new operator class can provide an additional sort order for all data types that

the B-tree index can handle.

v Any user-defined secondary-access methods

A new operator class can provide additional functionality to the strategy

functions of the operator class.

11-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating a New B-Tree Operator Class

To traverse the index structure, the generic B-tree index uses the sequence that the

relational operators define. By default, a B-tree uses the lexicographical sequence of

data because the default operator class, btree_ops, contains the relational-operator

functions. (For more information on this sequence, see “Changing the Sort Order”

on page 11-7.) For a generic B-tree to use a different sequence for its index values,

you can create a new operator class for the btree secondary-access method. You

can then specify the new operator class when you define an index on that data

type.

When you create a new operator class for the generic B-tree index, you provide an

additional sequence for organizing data in a B-tree. When you create the B-tree

index, you can specify the sequence that you want a column (or user-defined

function) in the index to have.

 To create a new operator class for a generic B-tree index:

1. Write functions for the B-tree strategy functions that accept the appropriate

data type in their parameter list.

The B-tree secondary-access method expects five strategy functions; therefore,

any new operator class must define exactly five. The parameter data types can

be built in or user defined. However, each function must return a Boolean

value. For more information on strategy functions, see “B-Tree Strategy

Functions” on page 11-3.

2. Register the new strategy functions in the database with the CREATE

FUNCTION statement.

You must register the set of strategy functions for each data type on which you

are supporting the operator class.

3. Write the external function for the new B-tree support function that accepts the

appropriate data type in its parameter list.

The B-tree secondary-access method expects one support function; therefore,

any new operator class must define only one. The parameter data types can be

built-in or UDTs. However, the return type must be integer. For more

information on support functions, see “B-Tree Support Function” on page 11-3.

4. Register the new support function in the database with the CREATE

FUNCTION statement.

You must register a support function for each data type on which you are

supporting the operator class.

5. Create the new operator class for the B-tree secondary-access method, btree.

When you create an operator class, specify the following in the CREATE

OPCLASS statement:

v After the OPCLASS keyword, the name of the new operator class

v In the FOR clause, btree as the name of the secondary-access method with

which to associate the operator class

v In the STRATEGIES clause, a parenthetical list of the names of the strategy

functions for the operator class

You registered these functions in step 2. You must list the functions in the

order that the B-tree secondary-access method expects: the first function is

the replacement for lessthan(), the second for lessthanorequal(), and so on.

v In the SUPPORT clause, the name of the support function to use to search

the index

Chapter 11. Extending an Operator Class 11-9

You registered this function in step 4. It is the replacement for the compare()

function.
For more information on how to use the CREATE OPCLASS statement, refer to

the IBM Informix Guide to SQL: Syntax.

These steps create the new operator class of the generic B-tree index. You can also

extend the default operator class to provide support for new data types. For more

information, see “Extensions of the btree_ops Operator Class” on page 11-5.

To use the new operator class, specify the name of the operator class after the

column or function name in the CREATE INDEX statement.

Creating an Absolute-Value Operator Class

As an example, suppose you want to define a new ordering for integers. The

lexicographical sequence of the default B-tree operator class orders integers

numerically: -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3. Instead, you might want the numbers

-4, 2, -1, -3 to appear in order of absolute value.

-1, 2, -3, -4

To obtain the absolute-value order, you must define external functions that treat

negative integers as positive integers. The following steps create a new operator

class called abs_btree_ops with strategy and support functions that provide the

absolute-value order:

1. Write and register external functions for the new strategy functions:

abs_lessthan(), abs_lessthanorequal(), abs_equal(), abs_greaterthan(), and

abs_greaterthanorequal().

For more information, refer to Chapter 4, “Developing a User-Defined Routine,”

on page 4-1.

2. Register the five new strategy functions with the CREATE FUNCTION

statement.

3. Write the C function for the new support function: abs_compare().

Compile this function and store it in the absbtree.so shared-object file.

4. Register the new support function with the CREATE FUNCTION statement.

5. Create the new abs_btree_ops operator class for the B-tree secondary-access

method.

You can now create a B-tree index on an INTEGER column and associate the new

operator class with this column:

CREATE TABLE cust_tab

(

 cust_name varchar(20),

 cust_num integer

 ...

);

CREATE INDEX c_num1_ix

 ON cust_tab (cust_num abs_btree_ops);

The c_num1_ix index uses the new operator class, abs_btree_ops, for the

cust_num column. An end user can now use the absolute value functions in SQL

statements, as in the following example:

SELECT * FROM cust_tab WHERE abs_lt(cust_num, 7)

11-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

In addition, because the abs_lt() function is part of an operator class, the query

optimizer can use the c_num1_ix index when it looks for all cust_tab rows with

cust_num values between -7 and 7. A cust_num value of -8 does not satisfy this

query.

The default operator class is still available for indexes. The following CREATE

INDEX statement defines a second index on the cust_num column:

CREATE INDEX c_num2_ix ON cust_tab (cust_num);

The c_num2_ix index uses the default operator class, btree_ops, for the cust_num

column. The following query uses the operator function for the default less than (<)

operator:

SELECT * FROM cust_tab WHERE lessthan(cust_num, 7)

The query optimizer can use the c_num2_ix index when it looks for all cust_tab

rows with cust_num values less than 7. A cust_num value of -8 does satisfy this

query.

Defining an Operator Class for Other Secondary-Access

Methods

You can also define operator classes for user-defined secondary-access methods. A

user-defined secondary-access method is one that a database developer has defined to

implement a particular type of index. These access methods might have been

defined in the database by a DataBlade module.

Tip: You can examine the sysams system catalog table to determine which

secondary-access methods your database defines. For information on the

columns of the sysams system catalog table, see the IBM Informix Guide to

SQL: Reference.

When you define an operator class on a user-defined secondary-access method,

you provide support and strategy functions just as you do when you create an

operator class on the generic B-tree index. You must be careful to conform to any

operator class requirements of the user-defined secondary-access class. Before you

implement an operator class for a user-defined secondary-access method, consult

the documentation for the method.

You perform the same steps to define an operator class on a user-defined

secondary-access method as you use to define an operator class on the generic

B-tree index. (See “Creating a New B-Tree Operator Class” on page 11-9.) The only

difference is that to create the index, you must specify the name of the

user-defined secondary-access method in the USING clause of the CREATE INDEX

statement.

Dropping an Operator Class

The DROP OPCLASS statement removes the definition for an operator class from

the database. The database server removes the operator-class definition from the

sysopclasses system catalog table. You must be the owner of the operator class or

the DBA to drop its definition from the database.

You must remove all dependent objects before you can drop the operator class. For

example, suppose you have created a new operator class called abs_btree_ops for

Chapter 11. Extending an Operator Class 11-11

the generic B-tree index. (For more information, see “Creating a New B-Tree

Operator Class” on page 11-9.) To drop the abs_btree_ops operator class from the

database, you must first ensure that:

v You are the owner (the person who created the operator class) or the DBA.

v No indexes are currently defined that use the abs_btree_ops operator class.

If such indexes exist, you must first remove them from the database.

After you meet the preceding conditions, the following statement removes the

definition of abs_btree_ops from the database:

DROP OPCLASS abs_btree_ops RESTRICT

The RESTRICT keyword is required in the DROP OPCLASS syntax.

11-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 12. Managing a User-Defined Routine

In This Chapter . 12-1

Assigning the Execute Privilege to a Routine . 12-1

Granting and Revoking the Execute Privilege . 12-1

Privileges on Objects Associated with a UDR . 12-2

Executing a UDR as DBA . 12-3

Using DBA Privileges with Objects and Nested UDRs 12-3

Modifying a User-Defined Routine . 12-4

Modifying a C UDR . 12-5

Removing Routines from the Shared Library . 12-5

Modifying a Java UDR . 12-6

Altering a User-Defined Routine . 12-6

Dropping a User-Defined Routine . 12-6

In This Chapter

This chapter describes how to manage UDRs. It includes the following topics:

v Assigning the Execute Privilege to a Routine

v Modifying a User-Defined Routine

v Altering a User-Defined Routine

v Dropping a User-Defined Routine

Assigning the Execute Privilege to a Routine

The Execute privilege enables users to invoke a UDR. You might invoke the UDR

from the EXECUTE or CALL statements or from a function in an expression. By

default, the following users have Execute privilege, which enables them to invoke

a UDR:

v Any user with the DBA privilege can execute any routine in the database.

v If the routine is registered with the qualified CREATE DBA FUNCTION or

CREATE DBA PROCEDURE statements, only users with the DBA privilege have

the Execute privilege for that routine by default.

v If the database is not ANSI compliant, user public (any user with Connect

database privilege) automatically has the Execute privilege to a routine that is

not registered with the DBA keyword.

American National Standards Institute

v In an ANSI-compliant database, the procedure owner and any user with the

DBA privilege can execute the routine without receiving additional privileges.

End of American National Standards Institute

Granting and Revoking the Execute Privilege

To control the Execute privilege on a UDR, use the EXECUTE ON clause of the

GRANT and REVOKE statements. The database server stores privileges for UDRs

in the sysprocauth system catalog table.

UDRs have the following GRANT and REVOKE requirements for the Execute

privilege:

© Copyright IBM Corp. 1996, 2008 12-1

v The DBA can grant the Execute privilege to or revoke it from any routine in the

database.

v The creator of a routine can grant or revoke the Execute privilege on that

particular routine. The creator forfeits the ability to grant or revoke by including

the AS grantor clause with the GRANT EXECUTE ON statement.

v Another user can grant the Execute privilege if the owner applied the WITH

GRANT keywords in the GRANT EXECUTE ON statement.

A DBA or the routine owner must explicitly grant the Execute privilege to

non-DBA users for the following conditions:

v A routine in an ANSI-compliant database

v A database with the NODEFDAC environment variable set to yes

v A routine that was registered with the DBA keyword

An owner can restrict the Execute privilege on a routine even though the database

server grants that privilege to public by default. To do so, issue the REVOKE

EXECUTE ON...PUBLIC statement. The DBA and owner can still execute the

routine and can grant the Execute privilege to specific users, if applicable.

A user might receive the Execute privilege accompanied by the WITH GRANT

option authority to grant the Execute privilege to other users. If a user loses the

Execute privilege on a routine, the Execute privilege is also revoked from all users

to whom that user granted the Execute privilege.

The following example shows an equal() function defined for a UDT and the

GRANT statement to enable user mary to execute this variation of the equal()

function:

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)

RETURNING BOOLEAN

EXTERNAL NAME "/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)"

LANGUAGE C

END FUNCTION;

GRANT EXECUTE ON equal(udtype1, udtype1) to mary

User mary does not have permission to execute any other UDR named equal().

For more information, see the GRANT and REVOKE statements in the IBM

Informix Guide to SQL: Syntax.

Privileges on Objects Associated with a UDR

The database server checks the existence of any referenced objects and verifies that

the user who invokes the UDR has the necessary privileges to access the referenced

objects. For example, if a user executes a UDR that updates data in a table, the

user must have the Update privilege for the table or columns referenced in the

UDR.

A routine can reference the following objects:

v Tables and columns

v UDTs

v Other routines executed by the routine

In the course of routine execution, the owner of the routine, not the user who runs

the routine, owns any unqualified objects that the routine creates. The database

12-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

server verifies that the objects exist and that the UDR owner has the necessary

privileges to access them. The user who executes the UDR runs with the privileges

of the owner of the UDR.

The following example shows an SPL procedure called promo() that creates two

tables, hotcatalog and libby.mailers:

CREATE PROCEDURE promo()

 CREATE TABLE hotcatalog

 (

 catlog_num INTEGER

 cat_advert VARCHAR(255, 65)

 cat_picture BLOB

) PUT cat_picturein sb1;

 CREATE TABLE libby.maillist

 (

 cust_num INTEGER

 interested_in SET(catlog_num INTEGER)

);

END PROCEDURE;

Suppose user tony executes the CREATE PROCEDURE statement to register the

SPL promo() procedure. User marty executes the promo() procedure with an

EXECUTE PROCEDURE statement, which creates the table hotcatalog. Because no

owner name qualifies table name hotcatalog, the routine owner (tony) owns

hotcatalog. By contrast, the qualified name libby.maillist identifies libby as the

owner of maillist.

Executing a UDR as DBA

If a DBA creates a routine using the DBA keyword, the database server

automatically grants the Execute privilege only to other users with the DBA

privilege. However, a DBA can explicitly grant the Execute privilege on a DBA

routine to a non-DBA user.

When a user executes a routine that was registered with the DBA keyword, that

user assumes the privileges of a DBA for the duration of the routine. If a user who

does not have the DBA privilege runs a DBA routine, the database server implicitly

grants a temporary DBA privilege to the invoker. Before the database server exits

from a DBA routine, it implicitly revokes the temporary DBA privilege.

Using DBA Privileges with Objects and Nested UDRs

Objects created in the course of running a DBA routine are owned by the user who

executes the routine unless a statement in the routine explicitly names someone

else as the owner. For example, suppose that user tony registers the promo()

routine shown in “Privileges on Objects Associated with a UDR” on page 12-2, but

includes the DBA keyword:

CREATE DBA PROCEDURE promo()

...

END PROCEDURE;

Although user tony owns the routine, if user marty runs it, user marty owns table

hotcatalog. User libby owns libby.maillist because her name qualifies the table

name, making her the table owner.

Chapter 12. Managing a User-Defined Routine 12-3

A called routine does not inherit the DBA privilege. If a DBA routine executes a

routine that was created without the DBA keyword, the DBA privileges do not

affect the called routine.

If a routine that is registered without the DBA keyword calls a DBA routine, the

caller must have Execute privileges on the called DBA routine. Statements within

the DBA routine execute as they would within any DBA routine.

The following example demonstrates what occurs when a DBA and non-DBA

routine interact. Procedure dbspace_cleanup() executes procedure cluster_catalog().

Procedure cluster_catalog() creates an index. The C-language source for

cluster_catalog() includes the following statements:

strcopy(statement, "CREATE INDEX stmt");

ret = mi_exec(conn,

"create cluster index c_clust_ix on catalog(catalog_num)",

MI_QUERY_NORMAL);

DBA procedure dbspace_cleanup() invokes the other routine with the following

statement:

EXECUTE PROCEDURE cluster_catalog(hotcatalog)

Assume tony registered dbspace_cleanup() as a DBA procedure, and

cluster_catalog() is registered without the DBA keyword, as follows:

CREATE DBA PROCEDURE dbspace_cleanup(loc CHAR)

 EXTERNAL NAME ...

 LANGUAGE C

END PROCEDURE

CREATE PROCEDURE cluster_catalog(catalog CHAR)

 EXTERNAL NAME ...

LANGUAGE C

END PROCEDURE

GRANT EXECUTION ON dbspace_cleanup(CHAR) to marty;

User marty runs dbpace_cleanup(). Index c_clust_ix is created by a non-DBA

routine. Therefore tony, who owns both routines, also owns c_clust_ix. By contrast,

marty owns index c_clust_ix if cluster_catalog() is a DBA procedure, as in the

following registering and grant statements:

CREATE PROCEDURE dbspace_cleanup(loc CHAR)

 EXTERNAL NAME ...

 LANGUAGE C

END PROCEDURE

CREATE DBA PROCEDURE cluster_catalog(catalog CHAR)

 EXTERNAL NAME ...

LANGUAGE C

END PROCEDURE

GRANT EXECUTION ON cluster_catalog(CHAR) to marty;

The dbspace_cleanup() procedure need not be a DBA procedure to call a DBA

procedure.

Modifying a User-Defined Routine

To modify a UDR, you might need to drop and then reregister the routine and its

support functions and reload the files that hold the executable version of the

routine with new executable files. However you can make some changes in place.

ALTER FUNCTION and ALTER PROCEDURE let you modify some attributes of a

routine without dropping the routine.

12-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Modifying a C UDR

When the database server shuts down, it releases all memory that it has reserved,

including memory for shared-object modules.

To unload a shared-object module from memory without restarting the database

server, you must drop all routines that the shared library contains. Use the SQL

DROP ROUTINE, DROP FUNCTION, or DROP PROCEDURE statement to

unregister a UDR. These statements remove the registration information about the

UDR from the system catalog tables.

Removing Routines from the Shared Library

The following conditions cause the database server to remove the shared-object file

from the memory map:

v You drop all routines in the module.

v All instances of the routines finish executing.

v You explicitly call ifx_unload_module.

Once these conditions are true, the database server automatically unloads the

shared-object file from memory. It also puts a message in the log file to indicate

that the shared object is unloaded. Once the shared object is unloaded, you can

replace the shared-object file on disk and reregister its UDRs in the database.

You can use the onstat utility to verify that a module actually was unloaded:

onstat -g dll

Do not overwrite a shared-object file on disk while it is loaded in memory because

you might cause the database server to generate an error when the overwritten

module is accessed or unloaded. Use the ifx_replace_module() function to replace

a loaded shared object file with a new version. For information on the

ifx_replace_module() function, see the description of Function Expressions within

the Expression segment in the IBM Informix Guide to SQL: Syntax.

For example, to replace the circle.so shared DataBlade API library that resides in

the /usr/apps/opaque_types directory with one that resides in the

/usr/apps/shared_libs directory, you can use the EXECUTE FUNCTION statement

to execute the ifx_replace_module(), as follows:

EXECUTE FUNCTION

 ifx_replace_module("/usr/apps/opaque_types/circle.so",

 "/usr/apps/shared_libs/circle.so", "c")

The ifx_replace_module() function updates the sysprocedures system catalog with

the new name or location. This functions return one of the following integer

values:

v Zero indicates success.

v A negative value indicates an error message number.

You can also execute the ifx_replace_module() function in a SELECT statement, as

follows:

SELECT

 ifx_replace_module("/usr/apps/opaque_types/circle.so",

 "/usr/apps/shared_libs/circle.so", "c")

 FROM customer

 WHERE customer_id = 100

Chapter 12. Managing a User-Defined Routine 12-5

If you do not want the shared library replaced multiple times with this SELECT

statement, ensure that the SELECT statement returns only one row of values.

ESQL/C

When you execute these functions from within an ESQL/C application, you must

associate the EXECUTE FUNCTION statement with a function cursor. For more

information on writing Informix ESQL/C applications, refer to the IBM Informix

ESQL/C Programmer’s Manual.

End of ESQL/C

Modifying a Java UDR

To modify a Java UDR, you can use the SQL/J replace_jar method. For example,

the following command replaces the .jar file in the database with a new copy:

execute procedure replace_jar(

"file:/d:/informix/extend/Zip.1.0/Zip.jar", "ZipJar");

Altering a User-Defined Routine

You can use the ALTER FUNCTION, ALTER PROCEDURE, and ALTER ROUTINE

statements to change the routine modifiers or pathname of a previously defined

UDR. These statements let you modify characteristics that control how the function

executes. You can also add or replace related UDRs that provide alternatives for

the optimizer, which can improve performance.

Dropping a User-Defined Routine

You can use the DROP FUNCTION, DROP PROCEDURE, and DROP ROUTINE

statements to drop a previously defined UDR. These statements remove the text

and executable versions of the routine from the database.

You cannot drop a UDR that is in use by some database function, such as the

definition of an opaque data type, a cast, a user-defined aggregate, an operator

class, or an access method.

For information on these SQL statements, refer to their description in the IBM

Informix Guide to SQL: Syntax.

12-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 13. Improving UDR Performance

In This Chapter . 13-2

Optimizing a User-Defined Routine . 13-2

Optimizing an SPL Routine . 13-2

Optimization Levels . 13-2

Automatic Optimization . 13-3

Updating Statistics for an SPL Routine . 13-3

Optimizing Functions in SQL Statements . 13-4

Calculating the Query Plan . 13-5

Specifying Cost and Selectivity . 13-5

Constant Cost and Selectivity Values . 13-5

Dynamic Cost and Selectivity Values . 13-6

Calculating Cost . 13-6

Selectivity and Cost Examples . 13-6

Extending UPDATE STATISTICS . 13-7

Using UPDATE STATISTICS . 13-7

Support Functions for UPDATE STATISTICS . 13-8

The stat Data Type . 13-8

The statcollect() Function . 13-8

The statprint() Function . 13-9

Example of User-Defined Statistics Functions . 13-9

Using Negator Functions . 13-9

Using a Virtual-Processor Class . 13-10

Choosing a Virtual-Processor Class . 13-11

CPU Virtual-Processor Class . 13-11

User-Defined Virtual-Processor Class (C) . 13-12

JVM Virtual-Processor Class (Java) . 13-12

Using Virtual Processors with UDRs Written in C . 13-12

Managing Virtual Processors . 13-13

Adding and Dropping Virtual Processors . 13-13

Monitoring Virtual-Processor Classes . 13-13

Parallel UDRs . 13-13

Executing UDRs in Parallel . 13-14

Execution of a UDR in a Query Expression . 13-14

FastPath Execution of a UDR in a DataBlade API (C) 13-16

Implicit UDR Execution of a User-Defined Aggregate 13-16

Implicit UDR Execution of a Comparison Operator 13-17

Implicit Execution of an Assign UDR . 13-17

Execution of a Comparison UDR for Sort . 13-17

Execution of a UDR by an Index on a UDT column 13-17

Enabling Parallel UDRs . 13-18

Specifying the PARALLELIZABLE Modifier . 13-18

Writing PDQ Thread-Safe UDRs . 13-18

Turning On PDQ and Reviewing Other Configuration Parameters 13-18

Step-By-Step Procedure to Enable Parallel UDRs . 13-19

Setting the Number of Virtual Processors . 13-19

Monitoring Parallel UDRs . 13-20

Memory Considerations . 13-20

Memory Durations for C UDRs . 13-21

Stack-Size Considerations (Ext) . 13-21

Virtual-Memory Cache for Routines . 13-22

The sysprocedures System Catalog Table . 13-22

UDR Cache . 13-23

I/O Considerations . 13-23

Isolating System Catalog Tables . 13-23

© Copyright IBM Corp. 1996, 2008 13-1

Balancing the I/O Activities . 13-23

In This Chapter

This chapter describes performance considerations for UDRs and includes the

following topics:

v Optimizing a User-Defined Routine

v Optimizing Functions in SQL Statements

v Extending UPDATE STATISTICS

v Using Negator Functions

v Using a Virtual-Processor Class

v Parallel UDRs

v Memory Considerations

v I/O Considerations

Optimizing a User-Defined Routine

The query optimizer decides how to perform a query. A query plan is a specific way

a query might be performed. A query plan includes how to access the table or

tables included in the query, the order of joining tables, and the use of temporary

tables. The query optimizer finds all feasible query plans. The optimizer estimates

the cost to run each plan and then selects the plan with the lowest cost estimate.

Tip: For more information on query optimization, refer to the IBM Informix

Performance Guide.

Optimizing an SPL Routine

During SPL optimization, the query optimizer evaluates the possible query plans

and selects the query plan with the lowest cost. The database server puts the

selected query plan for each SQL statement in an execution plan for the SPL

routine. The database server optimizes each SQL statement within the SPL routine

and includes the selected query plan in the execution plan.

Optimization Levels

The current optimization level set in an SPL routine affects how the SPL routine is

optimized. The SQL statement, SET OPTIMIZATION, sets the optimization level,

which in turn determines the algorithm that the query optimizer uses, as follows.

 SET OPTIMIZATION Statement Algorithm Used

SET OPTIMIZATION HIGH Invokes a sophisticated, cost-based strategy that

examines all reasonable query plans and selects the

best overall alternative For large joins, this algorithm

can incur more overhead than desired. In extreme

cases, you can run out of memory.

SET OPTIMIZATION LOW Invokes a strategy that eliminates unlikely join

strategies during the early stages, which reduces the

time and resources spent during optimization

However, when you specify a low level of

optimization, the optimal strategy might not be

selected because it was eliminated from consideration

during early stages of the algorithm.

13-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

For SPL routines that remain unchanged or change only slightly, you might want

to set the SET OPTIMIZATION statement to HIGH when you create the routine.

This optimization level stores the best query plans for the routine. Then set

optimization to LOW before you execute the routine. The routine then uses the

optimal query plans and runs at the more cost-effective rate if reoptimization

occurs.

Automatic Optimization

When you create an SPL routine, the database server attempts to optimize the SQL

statements within the routine at that time. If the tables cannot be examined at

compile time (they might not exist or might not be available), the creation does not

fail. In this case, the database server optimizes the SQL statements the first time

that the SPL routine executes. The database server stores the optimized execution

plan in the sysprocplan system catalog table for use by other processes.

The database server uses the dependency list to keep track of changes that would

cause reoptimization the next time that an SPL routine executes. The database

server reoptimizes an SQL statement the next time that an SPL routine executes

after one of the following situations:

v Execution of any data definition language (DDL) statement (such as ALTER

TABLE, DROP INDEX, or CREATE INDEX) that might alter the query plan

v Alteration of a table that is linked to another table with a referential constraint

(in either direction)

v Execution of UPDATE STATISTICS FOR TABLE for any table involved in the

query

The UPDATE STATISTICS FOR TABLE statement changes the version number of

the specified table in systables.

The database server updates the sysprocplan system catalog table with the

reoptimized execution plan.

Updating Statistics for an SPL Routine

The database server stores statistics about the amount and nature of the data in a

table in the systables, syscolumns, and sysindices system catalog tables. The

statistics that the database server stores include the following information:

v Number of rows

v Maximum and minimum values of columns

v Number of unique values

v Indexes that exist on a table, including the columns and functional values that

are part of the index key

The query optimizer uses these statistics to determine the cost of each possible

query plan. Run UPDATE STATISTICS to update these values whenever you have

made a large number of changes to the table.

The UPDATE STATISTICS statement can have no modifying clauses or several

modifying clauses, as in the following statements:

UPDATE STATISTICS FOR TABLE tablename

UPDATE STATISTICS FOR ROUTINE routinename

Execution of UPDATE STATISTICS affects optimization and changes the system

catalog in the following ways:

v No UPDATE STATISTICS statement

Chapter 13. Improving UDR Performance 13-3

If you do not execute UPDATE STATISTICS after the size or content of a table

changes, no SQL statements within the SPL routine are reoptimized. The next

time a routine executes, the database server reoptimizes its execution plan if any

objects that are referenced in the routine have changed.

v UPDATE STATISTICS

When you specify no additional clauses, the database server reoptimizes SQL

statements in all SPL routines and changes the statistics for all tables.

v UPDATE STATISTICS FOR TABLE

When you specify the FOR TABLE clause without a table name, the database

server changes the statistics for all tables and does not reoptimize any SQL

statements in SPL routines.

v UPDATE STATISTICS FOR TABLE table name

When you specify a table name in the FOR TABLE clause, the database server

changes the statistics for the specified table. The database server does not

reoptimize any SQL statements in SPL routines.

v UPDATE STATISTICS...

When you specify one of the following clauses, the database server reoptimizes

SQL statements in all SPL routines. The database server does not update the

statistics in the system catalog tables.

– FOR FUNCTION

– FOR PROCEDURE

– FOR ROUTINE
v UPDATE STATISTICS... routine name

When you include a routine name in one of the following clauses, the database

server reoptimizes SQL statements in the named routine. The database server

does not update the statistics in the system catalog tables.

– FOR FUNCTION routine name

– FOR PROCEDURE routine name

– FOR ROUTINE routine name

After the database server reoptimizes SQL statements, it updates the sysprocplan

system catalog table with the reoptimized execution plan. For more information

about sysprocplan, refer to the IBM Informix Guide to SQL: Reference. For more

information about the UPDATE STATISTICS statement, refer to the IBM Informix

Guide to SQL: Syntax.

Optimizing Functions in SQL Statements

The optimizer by itself cannot evaluate the cost of executing a function in an SQL

statement because of the possibility of complex logic, user-defined types, and so

on. Because some functions can be expensive to execute, the creator of the function

should provide information about the cost and selectivity of the function to help in

optimizing the SQL statement.

For example, the following SQL statement includes two functions:

SELECT * FROM T WHERE expensive(t1) and cheap(t2);

If the cheap() function is less expensive to execute than the expensive() function,

the optimizer should place the cheap() function first in the execution plan.

The UDRs discussed in the following sections appear in the WHERE or HAVING

clause of an SQL statement. These UDRs return a value of TRUE or FALSE.

13-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Calculating the Query Plan

The optimizer computes the cost for all possible plans and then chooses the

lowest-cost plan. Cost includes the number of disk accesses, the number of

network accesses, and the amount of work in memory to access rows and sort

data.

Selectivity is also a factor in the total cost. Selectivity is the percentage of rows that

pass the filter. The optimizer expresses the selectivity as a number from 0 to 1,

which represents the percentage of rows in the table that pass the filter.

The larger the selectivity value, the less likely that a row will disqualify the filter.

Therefore, the database server generally evaluates a UDR with a smaller selectivity

value before it evaluates a UDR with a larger selectivity value. Similarly, the

database server generally evaluates a lower cost UDR before a higher cost one. The

ultimate order of UDR filter evaluation depends on a combination of the cost and

selectivity of the UDR.

For more information on how the optimizer calculates the query plan, refer to the

IBM Informix Performance Guide.

Specifying Cost and Selectivity

You can provide the cost and selectivity of the function to the optimizer. The

database server uses cost and selectivity together to determine the best path.

To provide the cost and selectivity for a function, include modifiers in the CREATE

FUNCTION statement. You can include the cost and selectivity values in the

CREATE FUNCTION statement or calculate the values with functions called

during the optimization phase.

If you do not specify your own cost and selectivity values for a function, the

database server uses a default selectivity of 0.1 and a default cost of 0. Because the

default cost and selectivity are low, the database server considers a UDR with

default cost and selectivity inexpensive to execute and will most likely execute that

UDR before other UDRs in the WHERE clause.

The database server assigns a cost of 0 to all built-in functions, such as SIN and

DATE.

Constant Cost and Selectivity Values

The following modifiers specify a cost or selectivity value when you execute the

CREATE FUNCTION statement. The cost or selectivity value does not change for

each invocation of the function:

v percall_cost=integer

The percall_cost modifier specifies the cost of executing the function once. The

integer value is a number.

v selconst=float

The selconst modifier specifies the selectivity of a function. The float value is a

floating-point number between 0 and 1 that represents the fraction of the rows

for which you expect the routine to return TRUE.

Chapter 13. Improving UDR Performance 13-5

Dynamic Cost and Selectivity Values

In some cases, the cost and selectivity of a function can vary significantly,

depending upon the input to the function. If the input can change the

optimization, use the following modifiers, which specify a function that computes

the cost and selectivity at runtime:

v costfunc=CostFunction

This modifier specifies the name of a function, CostFunction, that the optimizer

executes to find the cost of executing your function one time.

v selfunc=SelectivityFunction

This modifier specifies the name of a function, SelectivityFunction, that the

optimizer executes to find the selectivity of your function.

You write these cost and selectivity functions to provide the optimizer with enough

information about your function to create the best query plan.

The selectivity functions for a UDT might need statistics about the nature of the

data in the UDT column. The database server does not generate distributions or

maximum and minimum value statistics for a UDT. You need to write and register

user-defined statistics functions to generate and store statistics for a UDT in the

system catalog tables, in the same locations as statistics stored for built-in data

types. For more information about user-defined statistics, refer to “Extending

UPDATE STATISTICS” on page 13-7. For information about writing these

functions, refer to the IBM Informix DataBlade API Programmer’s Guide.

Calculating Cost

The cost you specify for a function must be compatible with the cost that the

optimizer calculates for other parts of the SQL statement. The following formula is

one method to approximate the costing algorithm that the optimizer uses:

1. Execute the following SQL statements from DB–Access, where bigtable is any

large table:

SET EXPLAIN ON;

SELECT count(*) from bigtable;

Time the query.

2. Let secost be the cost the optimizer assigned for the scan. Read the

sqexplain.out file to get secost.

For information about sqexplain.out, refer to the IBM Informix Performance

Guide.

3. Let satime be the time required to complete the SQL statement.

4. Execute and time your function. Let facost be the actual time required to

execute the function once.

The cost of executing the function once can be approximated as follows:

((secost/satime)*facost)

Truncate the calculated cost to an integer value.

Selectivity and Cost Examples

The following example creates a function that determines if a point is within a

circle. When an SQL statement contains this function, the optimizer executes the

function contains_sel() to determine the selectivity of the contains() function.

CREATE FUNCTION contains(c circle, p point)

RETURNING boolean WITH(selfunc=contains_sel)

EXTERNAL NAME "$USERFUNCDIR/circle.so" LANGUAGE C;

13-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The following example creates two functions, each with cost and selectivity values:

CREATE FUNCTION expensive(cust int)

RETURNING boolean WITH(percall_cost=50,selconst=.1)

EXTERNAL NAME "/ix/9.4/exp_func.so" LANGUAGE c;

CREATE FUNCTION cheap(cust int)

RETURNING boolean WITH(percall_cost=1,selconst=.1)

EXTERNAL NAME "/ix/9.4/exp_func.so" LANGUAGE C;

When both of these functions are in one SQL statement, the optimizer executes the

cheap() function first because of the lower cost. The following SET EXPLAIN

output, which lists cheap() first in the Filters: line, shows that indeed the optimizer

did execute cheap() first:

QUERY:

select * from customer

where expensive(customer_num)

and cheap(customer_num)

Estimated Cost: 8

Estimated # of Rows Returned: 1

 1) informix.customer: SEQUENTIAL SCAN

 Filters: (lsuto.cheap(informix.customer.customer_num)AND

lsuto.expensive(informix.customer.customer_num))

For an example of a C function that calculates a cost dynamically, refer to the

\%INFORMIXDIR\dbdk\examples\Types\dapi\Statistics\Box\src\c directory

after you install the DBDK.

Extending UPDATE STATISTICS

The UPDATE STATISTICS statement collects statistics about the data in your

database. The optimizer uses these statistics to determine the best path for an SQL

statement.

For SQL statements that use UDTs, the optimizer can call custom selectivity and

cost functions. (For more information on creating selectivity and cost functions,

refer to “Optimizing Functions in SQL Statements” on page 13-4.) Selectivity and

cost functions might need to use statistics about the nature of the data in a column.

When you create the statcollect() function that collects statistics for a UDT, the

database server executes this function automatically when a user runs the UPDATE

STATISTICS statement with the MEDIUM or HIGH keyword.

Using UPDATE STATISTICS

The syntax of UPDATE STATISTICS is the same for UDTs as for built-in data

types. Because the data distributions provide the optimizer with equivalent

statistics, the database server does not calculate colmin and colmax for UDTs.

The statcollect() function executes once for every row that the database server

scans during UPDATE STATISTICS. The number of rows that the database server

scans depends on the mode and the confidence level. Executing UPDATE

STATISTICS in HIGH mode causes the database server to scan all rows in the

table. In MEDIUM mode the database server chooses the number of rows to scan

based on the confidence level. The higher the confidence level, the higher the

number of rows that the database server scans. For general information about

UPDATE STATISTICS, refer to the IBM Informix Guide to SQL: Syntax.

The statistics that the database server collects might require a smart large object for

storage. The configuration parameter SBSSPACENAME specifies an sbspace for

Chapter 13. Improving UDR Performance 13-7

storing this information. If SBSSPACENAME is not set, the database server might

not be able to collect the specified statistics.

Support Functions for UPDATE STATISTICS

The statcollect() and statprint() functions support the collection of statistics. If you

want UPDATE STATISTICS to generate statistics for a UDT, you must create these

functions.

The stat Data Type

The statcollect() and statprint() functions use an SQL data type called stat.

C Language Support

The corresponding C language structure is called mi_statretval. For an exact

description of mi_statretval, see the libmi header file.

Most of the information in mi_statretval is manipulated internally. However, two

fields must be filled in by statcollect():

v The statdata field should contain the histogram for the distribution. UDTs are

stored in a multirepresentational format.

v The szind field should be set to either MI_MULTIREP_SMALL or

MI_MULTIREP_LARGE.

End of C Language Support

The statcollect() Function

When you run UPDATE STATISTICS, the database server calls the appropriate

statcollect() function for each column that the database server scans.

The statcollect() function takes four arguments:

v The first argument is of the same data type as the UDT for which the

statcollect() function is called.

The database server uses this argument to resolve the function and to pass in

values.

The first time the database server invokes this function, it sets this parameter to

null. On subsequent invocations, this argument contains the column value.

v The second argument is a double-precision value that indicates the number of

rows that the database server must scan to gather the statistics.

v The third argument is a double-precision value that is the resolution specified by

the UPDATE STATISTICS statement. The resolution value specifies the bucket

size for the distribution. However, you might choose to ignore this parameter if

it does not make sense for your UDT.

v The fourth argument is an MI_FPARAM structure that the database server uses

to pass information to the UDR as well as a place to store state information.

On the first call to statcollect(), MI_FPARAM contains a SET_INIT value. Check for

this value in statcollect() and perform any initialization operations, such as

allocating memory and initializing values.

On subsequent calls to statcollect(), MI_FPARAM contains a SET_RETONE value.

At this point, statcollect() should read the column value from the first argument

and place it in your distribution structure.

13-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

After all rows have been processed, the last call to statcollect() puts a value of

SET_END in MI_FPARAM. For this final call, statcollect() should put the statistics

in the stat data type and perform any memory deallocation.

You must declare the statcollect() function with HANDLESNULLS, but the

function itself can ignore nulls if desired.

Allocate any memory used across multiple invocations of statcollect() from the

PER_COMMAND pool and free it as soon as possible. Any memory not used

across multiple invocations of statcollect() should be allocated from the

PER_ROUTINE pool.

The statprint() Function

The statprint() function converts the statistics data that the statcollect() function

collects to an LVARCHAR value that the database server can use to display

information. The dbschema utility executes the statprint() function.

The statprint() function has two arguments. The first argument is a dummy

argument of the required data type. The database server uses this argument to

resolve the function. The first time the database server executes this function, it

sets the first parameter to null.

The second argument is a value of the stat data type. The stat data type is a

multirepresentational data type that the database server uses to store data that the

statcollect() function collects.

The statprint() function must take the histogram, which is stored in

multi-representational form, and convert it to a printable form.

After you register the functions, make sure those with DBA privilege or the table

owner can execute the statcollect() and statprint() UDRs.

Example of User-Defined Statistics Functions

For examples of statprint() and statcollect() functions written in C, refer to the

\%INFORMIXDIR\dbdk\examples\Types\dapi\Statistics\Box\src\c directory,

after you install the Informix DataBlade Developers Kit.

Using Negator Functions

A negator function takes the same arguments as its companion function, in the same

order, but returns the Boolean complement. That is, if a function returns TRUE for a

given set of arguments, its negator function returns FALSE when passed the same

arguments, in the same order. In certain cases, the database server can process a

query more efficiently if the sense of the query is reversed; that is, if the query is,

“Is x greater than y?” instead of, “Is y less than or equal to x?”

The NEGATOR modifier of the CREATE FUNCTION statement names a

companion function, a negator function, to the current function. When you provide

a negator function, the optimizer can use a negator function instead of the function

you specify when it is more efficient to do so. If a function has a negator function,

any user who executes the function must have the Execute privilege on both the

function and its negator. In addition, a function must have the same owner as its

negator function.

You can write negator functions in SPL, C, or Java. The following example shows

CREATE FUNCTION statements that specify negator functions:

Chapter 13. Improving UDR Performance 13-9

CREATE ROW TYPE complex(real FLOAT, imag FLOAT);

CREATE FUNCTION equal (c1 complex, c2 complex)

 RETURNING BOOLEAN WITH (NEGATOR = notequal)

 DEFINE a BOOLEAN;

 IF (c1.real = c2.real) AND (c1.imag = c2.imag) THEN

 LET a = ’t’;

 ELSE

 LET a = ’f’;

 END IF;

 RETURN a;

END FUNCTION;

CREATE FUNCTION notequal (c1 complex, c2 complex)

 RETURNING BOOLEAN WITH (NEGATOR = equal)

 DEFINE a BOOLEAN;

 IF (c1.real != c2.real) OR (c1.imag != c2.imag) THEN

 LET a = ’t’;

 ELSE

 LET a = ’f’;

 END IF;

 RETURN a;

END FUNCTION;

Using a Virtual-Processor Class

A virtual process is a process that the database server uses to execute queries and

perform other tasks, such as disk I/O and network management. A small number

of virtual processors (VPs) can carry out tasks on behalf of many client

applications because the database server breaks the client-application requests into

pieces called threads. The VP can schedule the individual threads internally for

processing. Therefore, VPs are multithreaded processes because they can run

multiple concurrent threads.

The database server implements its own threads to schedule client-application

requests. These threads are not the same as operating-system threads, which

multithreaded operating systems provide.

Virtual processors are grouped into virtual-processor classes, or VP classes. All VPs

in a particular VP class handle the same type of processing. The database server

supports the following VP classes.

Virtual-Processor Class Description

CPU Central processing (the primary VP class, which

controls client-application requests)

AIO Asynchronous disk I/O

SHM Shared-memory network communication

JVP Special VP class for execution of Java UDRs

User-defined Special VP classes for additional types of

processing

 For general information about virtual processors, see the IBM Informix

Administrator’s Guide.

13-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Choosing a Virtual-Processor Class

The database server supports the following classes of virtual processors for the

execution of a UDR.

 Virtual-Processor Class Description

CPU VP Required VP for execution of SPL routines Default VP for

execution of C UDRs. A UDR must be well behaved to run in

the CPU VP.

User-defined VP VP for execution of C UDR that has some ill-behaved

characteristics but does not contain system() functions. For

information on system() functions, see “Using Operating System

Functions” on page 10-21.

JVP VP for execution of Java UDRThis VP class contains the Java

Virtual Machine (Java VM).

The database server defines the CPU VP and the JVP classes.

CPU Virtual-Processor Class

The CPU virtual-processor class is the primary VP class of the database server. It

runs the following kinds of threads:

v All session threads

Session threads process requests from the SQL client applications.

v Some internal threads

Internal threads perform services internal to the database server.

The CPU VP class is the default VP class for a UDR. You do not need to specify

the CLASS routine modifier in the CREATE FUNCTION or CREATE PROCEDURE

statement to have the UDR execute in the CPU VP class.

Stored Procedure Language Support

SPL routines must always run in the CPU VP. Therefore, you do not need to specify

the CLASS routine modifier for an SPL routine. The following CREATE

FUNCTION statement registers the getTotal() SPL routine, which runs in the CPU

VP:

CREATE FUNCTION getTotal(order_num, state_code)

 RETURNS MONEY

...

END FUNCTION

You cannot run an SPL routine in a user-defined VP.

End of Stored Procedure Language Support

C Language Support

By default, a C UDR runs in the CPU VP class. Generally, UDRs perform best in

the CPU VP class because threads do not have to migrate among operating-system

processes during query execution. However, to run in the CPU VP, the C UDR

must be well behaved; that is, it must adhere to the following programming

requirements:

v Preserves concurrency of the CPU VP:

– Yields the CPU VP for intense calculations

Chapter 13. Improving UDR Performance 13-11

– Does not perform blocking operating-system calls
v Is thread safe:

– Does not modify static or global data

– Does not allocate local resources

– Does not modify the global VP state
v Does not make unsafe operating-system calls

Important: Use the CPU VP with caution. If a UDR contains errors or does not

adhere to these guidelines, this routine might affect the normal

processing of other user queries.

You can relax some of these programming requirements if you run your C UDR in

a user-defined VP class. For more information, see “User-Defined Virtual-Processor

Class (C)” on page 13-12.

End of C Language Support

User-Defined Virtual-Processor Class (C)

For routines written in C, you can designate a user-defined class of virtual

processors, called user-defined VPs, to run the routine.

Use of user-defined VPs can result in lower performance because queries normally

execute in the CPU VP, and the query thread must migrate to the user-defined VP

to evaluate external routines.

JVM Virtual-Processor Class (Java)

Java routines always run in a Java VP. When you register a Java routine, you can

specify the following CLASS routine modifier for legibility, but it is not required:

CLASS = jvp

Using Virtual Processors with UDRs Written in C

To run in the CPU VP class, a C UDR must be well behaved; that is, it must

adhere to special programming requirements. Running in a user-defined VP relaxes

some, but not all, of the programming requirements of a well-behaved routine. For

example, these routines can issue direct file-system calls that block further

processing by the virtual processor until the I/O is complete. Because virtual

processors are not CPU virtual processors, however, the normal processing of user

queries is not affected. However, they still cannot perform local resource

allocations because they might migrate among the VPs.

Tip: The DataBlade Developers corner of the IBM Informix Developer Zone

(http://www.ibm.com/software/data/developer/informix) has a detailed

article about data safety when using operating-system functions with

user-defined VPs.

 To assign a C UDR to a user-defined VP class:

1. When you register an external function or procedure, assign it to a class of

virtual processors with the CLASS routine modifier of the CREATE FUNCTION

or CREATE PROCEDURE statement.

The CLASS routine modifier specifies the virtual-processor class with the

following syntax:

CLASS = vpclass_name

13-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

In this syntax, vpclass_name is the name of the user-defined VP class that you

have configured in the database server. The class name is not case sensitive.

2. Configure new user-defined virtual-processor classes in the ONCONFIG file

with the VPCLASS configuration parameter.

The following sample ONCONFIG entry creates the user-defined VP class

newvp:

VPCLASS newvp,num=3 # New VP class for testing

The num option specifies the number of virtual processors that the database

server starts. For the newvp virtual-processor class, the database server initially

starts three virtual processors.

The VP class need not exist when the routine is registered. However, when you

execute the routine, the class must exist and have virtual processors assigned to it.

If the class does not have any virtual processors, you receive an SQL error.

For more information on how to choose a virtual-processor class for a C UDR, see

the IBM Informix DataBlade API Programmer’s Guide. For information on the

VPCLASS configuration parameter, see the IBM Informix Administrator’s Reference.

Managing Virtual Processors

You can use the onmode and onstat utilities to manage virtual processors. For

additional information about onmode and onstat, refer to the IBM Informix

Administrator’s Reference.

Adding and Dropping Virtual Processors

You can add or drop virtual processors in a user-defined VP class or in the CPU

VP class while the database server is online. Use onmode -p to add virtual

processors to the class. For example, the following command adds two virtual

processors to the newvp class:

onmode -p +2 newvp

Monitoring Virtual-Processor Classes

You can monitor VPs with the onstat utility. The -g glo option prints information

about global multithreading such as CPU use of virtual processors and total

number of sessions. A user-defined VP class appears in the onstat -g glo output as

a new process.

Parallel UDRs

The parallel database query (PDQ) feature executes a single query with multiple

threads in parallel. Another feature, table fragmentation, allows you to store the

parts of a table on different disks. PDQ delivers maximum performance benefits

when the data that is being queried is in fragmented tables.

PDQ features allow the database server to distribute the work for one aspect of an

SQL statement among several processors. For example, if an SQL statement

requires a scan of several parts of a table that reside on different disks, multiple

scans can occur simultaneously.

A PDQ is a query that the database server processes with PDQ techniques when

the optimizer chooses parallel execution. When the database server processes a

query with PDQ, it first divides the query into subplans. The database server then

allocates the subplans to a number of threads that process the subplans in parallel.

Because each subplan represents a smaller amount of processing time when

Chapter 13. Improving UDR Performance 13-13

compared to the original query and because each subplan is processed

simultaneously with all other subplans, the database server can drastically reduce

the time that is required to process the query.

For more information on the PDQ feature, refer to the IBM Informix Administrator’s

Guide. For more information on the performance implications of PDQ, refer to the

IBM Informix Performance Guide.

Executing UDRs in Parallel

The database server can execute the following UDRs in parallel if they are part of a

PDQ and PDQPRIORITY is turned on:

v C UDRs that call only DataBlade API functions that are PDQ thread-safe can

execute in parallel.

v Java UDRs that call only DataBlade API functions that are PDQ thread-safe can

execute in parallel.

For more information, refer to “Writing PDQ Thread-Safe UDRs” on page 13-18.

v Built-in function UDR

Examples of built-in function UDRs include overloaded operators for UDTs,

such as the following operators that are used for a generic B-tree index:

– lessthan (<)

– lessthanorequal (<=)

– equal (=)

– greaterthanorequal (>=)

– greaterthan (>)

UDRs can execute in parallel in the following situations if they are part of a PDQ

and PDQPRIORITY is turned on:

v A UDR used as an expression in a query

v DataBlade API FastPath executing a UDR

v Implicit UDR execution when evaluating a user-defined aggregate on a column

of a user-defined type

v Implicit UDR execution for overloading of comparison operator

v Assign UDR executed implicitly

v Comparison UDR execution for sort

v A UDR that a generic B-tree index executes

A UDR cannot execute the following SQL statements in parallel:

v Singleton execution with the EXECUTE FUNCTION statement in either

DB–Access or Informix ESQL/C

v INSERT INTO tablename EXECUTE udr()

v FOREACH EXECUTE udr() END FOREACH

v OPEN CURSOR EXECUTE udr()

v Remote UDR execution

Execution of a UDR in a Query Expression

One way to execute UDRs is as an expression in a query. You can take advantage

of parallel execution if the UDR is in an expression in one of the following parts of

a query:

v WHERE clause

v SELECT list

13-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v GROUP by list

v Overloaded comparison operator

v User-defined aggregate

v HAVING clause

v Select list for parallel insertion statement

v Generic B-tree index scan on multiple index fragments provided that the

compare function used in the B-tree index scan is parallelizable

v Virtual Table Interface (VTI) or Virtual Index Interface (VII) fragments, provided

that all am_purpose functions for the VTI or VII are all parallelizable

Parallel UDR in WHERE Clause: The following example is a typical PDQ that

contains two UDRs:

SELECT c_udr1(tabid) FROM tab

 WHERE tabname = c_udr2(3) AND

 tabid > 100;

If the table tab has multiple fragments and the optimizer decides to run the select

statement in parallel, the following operations can execute in parallel:

v The scan of table tab is performed by multiple scan threads in parallel. Each

scan thread fetches a row from a fragment of tab.

v Each scan thread also evaluates the WHERE condition in parallel. Each scan

thread executes the UDR c_udr2() in parallel.

v Each scan thread also executes the UDR c_udr1() in the select list in parallel.

Parallel UDR in a Join: The following sample query contains a join between table

t1 and t2:

SELECT t1.x, t2.y

 FROM t1, t2

 where t1.x = t2.y and

 c_udr(t1.z, t2.z, 3) > 5 and

 c_udr1(t1.u) > 4 and

 c_udr2(t2.u) < 5;

If the tables t1 and t2 have multiple fragments and the optimizer decides to run

the select statement in parallel, the following operations can execute in parallel:

v The scan of table t1 is performed by multiple scan threads in parallel. Each scan

thread fetches a row from a fragment of t1 and executes the UDR c_udr1() in

parallel.

v The scan of table t2 is performed by multiple scan threads in parallel. Each scan

thread fetches a row from a fragment of t2 and executes the UDR c_udr2() in

parallel.

v The join of tables t1 and t2 is performed by multiple join threads in parallel.

Each join thread fetches a row from a fragment of t2 and executes the UDR

c_udr() in parallel.

Parallel UDR in the Select List: If you use a UDR in the select list and do not

specify a WHERE clause, the UDR can execute in parallel if any of the following

conditions are true:

v The GROUP BY clause is specified in the query.

v The ORDER BY clause is specified in the query.

v An aggregate such as MIN, MAX, AVG is specified in the query.

v The query is a parallel INSERT...SELECT statement.

v The query is a SELECT...INTO statement.

Chapter 13. Improving UDR Performance 13-15

The next section shows a sample query with a UDR in the select list and no

WHERE clause.

Parallel UDR with GROUP BY: The following sample query contains a GROUP

BY clause. This sample query has a UDR in the select list and no WHERE clause.

SELECT c_udr1(tabid), COUNT(*)

 FROM t1 GROUP BY 1;

If the optimizer decides to run the select statement in parallel, the following

operations can execute in parallel:

v The scan of table t1 is performed by multiple scan threads in parallel. The table

t1 has multiple fragments. Each scan thread fetches a row from a fragment of t1.

v Multiple threads execute the UDR c_udr2() in parallel to process the GROUP BY

clause. If table t1 is unfragmented, the GROUP BY operation can still execute in

parallel even though the scan operation does not execute in parallel.

Parallel UDR in Select List for Parallel Insert: The following sample query is a

parallel insert statement. Suppose you create an opaque data type circle, create a

table cir_t that defines a column of type circle, create a UDR area, and then execute

the following sample query:

INSERT INTO cirt_t_target

SELECT circle, area(circle)

 FROM cir_t

 WHERE circle > "(6,2,4)";

In this query, the following operations can execute in parallel:

v The expression circle > “(6,2,4)” in the WHERE clause

If the table cir_t is fragmented, multiple scans of the table can execute in

parallel, one scan on each fragment. Then multiple > comparison operators can

execute in parallel, one operator per fragment.

v The UDR area(circle) in the select list

If the table cir_t has multiple fragments, multiple area UDRs can execute in

parallel, one UDR on each fragment.

v The INSERT into cir_t_target

If the table cir_t_target has multiple fragments, multiple INSERT statements can

execute in parallel, one on each fragment.

FastPath Execution of a UDR in a DataBlade API (C)

A C UDR can use the following DataBlade API calls to invoke a UDR directly:

v mi_routine_get()

v mi_routine_exec()

DataBlade API FastPath execution of a UDR executes in parallel as long as the

UDR is parallelizable and calls only DataBlade API functions that are PDQ thread

safe.

Implicit UDR Execution of a User-Defined Aggregate

A user-defined aggregate (UDA) can execute in parallel as long as the UDR is

parallelizable and calls only DataBlade API functions that are PDQ thread safe.

For example, suppose you create a UDA named uda and use it in the following

SQL query:

select grp, uda(udt_col) FROM tab GROUP BY grp;

13-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

If the data type of column udt_col is a UDT whose aggregation requires a UDR

call, the following operations can execute in parallel:

v Each group thread executes the aggregation UDR uda in parallel.

v If the GROUP BY column grp is a UDT column, the equal() UDR function on

the UDT column executes in parallel by the scan thread for the hash

repartitioning on the group by keys.

v If the table tab is fragmented, multiple scan threads can read the table in

parallel.

Implicit UDR Execution of a Comparison Operator

When you create opaque data types, you can create overloaded routines for

comparison operators such as equal (=) or greaterthanorequal (>=).

The following sample query selects rows using a filter on the UDT column:

SELECT * FROM tab WHERE udt_col = "xyz";

The database server converts the comparison operator = to call the equal UDR on

the udt_col column. If the table tab is fragmented, the following operations can

execute in parallel:

v Multiple scans of the table can execute in parallel, one scan on each fragment.

v Multiple = comparison operators can execute in parallel, one operator per

fragment of table tab.

Implicit Execution of an Assign UDR

When you create opaque data types, you create the support function assign() to

insert, update, or load the UDT data in the table.

The following sample SQL statement inserts data in a UDT column:

INSERT INTO tab (udtcol) SELECT udtcol FROM t1;

If the table tab has multiple fragments and the udtcol data type has an assign()

function, each insert thread that inserts a fragment of table tab executes the

assign() UDR in parallel.

The support function destroy() for a UDT does not execute in parallel because the

destroy() UDR is called during a DELETE statement that is not executed in

parallel.

Execution of a Comparison UDR for Sort

When you create opaque data types, you create the support function compare() to

sort the UDT data during ORDER BY, UNIQUE, DISTINCT, and UNION clauses

and CREATE INDEX operations.

SELECT udtcol FROM t ORDER BY 1;

If the udtcol column has a comparison UDR that is parallelizable and the client

enables parallel sort, each sort thread participating in the parallel sort for the order

by clause executes the comparison UDR in parallel.

Execution of a UDR by an Index on a UDT column

The database server supports indexing on a uDT column. Therefore, index build,

search, and recovery require execution of UDRs that operate on UDT columns.

Chapter 13. Improving UDR Performance 13-17

Currently, the database server does not support fragmentation by expression on

UDT columns. As a result, the index built on a UDT column by the database server

is not fragmented because index fragmentation makes sense only if the

fragmentation is based on expression.

Enabling Parallel UDRs

By default, a UDR does not execute in parallel. To enable parallel execution of

UDRs, you must take the following actions:

v Specify the PARALLELIZABLE modifier in the CREATE FUNCTION or ALTER

FUNCTION statement.

v Ensure that the UDR does not call non-PDQ thread-safe functions.

v Turn on PDQ.

v Use the UDR in a PDQ.

Specifying the PARALLELIZABLE Modifier

When you register a UDR, you must specify the PARALLELIZABLE modifier in

the CREATE FUNCTION or ALTER FUNCTION statement. However, an SPL

routine is not parallelizable even if it is declared as parallelizable.

Writing PDQ Thread-Safe UDRs

External-language UDRs can execute in parallel as long as they are PDQ

thread-safe DataBlade API functions.

The following DataBlade API function categories are PDQ thread safe:

v Data handling

Exception in this category: collection manipulation functions (mi_collection_*)

are not PDQ thread safe.

v Session, thread, and transaction management

v Function execution

v Memory management

v Exception handling

v Callbacks

v Miscellaneous

If an external-language UDR calls a non-PDQ thread-safe function that was created

with the PARALLELIZABLE modifier, the database server aborts the query and

issues the following error message:

-7422 Can not issue DAPI function %s in a secondary

PDQ thread.

The database server substitutes the name of the DataBlade API function for the %s

string in this error message.

Turning On PDQ and Reviewing Other Configuration Parameters

Parallel execution of queries is turned off by default. To turn on parallel execution,

use one of the following methods:

v Set the environment variable PDQPRIORITY greater than 0.

v Execute the SQL statement SET PDQPRIORITY.

13-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The PDQ configuration parameters have the same effect on parallel UDRs as on

regular PDQ queries. For example, the DS_MAX_SCANS parameter specifies the

maximum number of scan threads that the database server can execute

concurrently.

For information on how to tune the PDQ configuration parameters, refer to the

IBM Informix Performance Guide.

Step-By-Step Procedure to Enable Parallel UDRs

The following procedure includes examples for the tasks described in the previous

sections.

 To enable parallel UDRs:

1. Create a fragmented table and load data into it.

For example, the following SQL statement creates a fragmented table:

CREATE TABLE natural_number (x integer)

 FRAGMENT BY round robin

 IN dbspace1, dbspace2;

2. Write a function that is PDQ thread safe.

C Language Support

 For example, the following C prototype shows a function that takes an integer

and determines if it is a prime number:

mi_boolean is_prime_number (x mi_integer);

End of C Language Support

For more information on how to write PDQ thread-safe functions, refer to

“Writing PDQ Thread-Safe UDRs” on page 13-18.

3. Register the function as an external UDR and specify the PARALLELIZABLE

keyword.

For example, the following SQL statement registers the is_prime_number UDR:

CREATE FUNCTION is_prime_number (x integer)

 RETURNS boolean

 WITH (parallelizable)

 EXTERNAL NAME "$USERFUNCDIR/math.udr"

 LANGUAGE C;

4. Turn on PDQ and execute the UDR in a query.

The following sample SQL statements turn on PDQ and execute the UDR in a

query:

SET PDQPRIORITY 100;

SELECT x FROM natural_number

 WHERE is_prime_number(x)

 ORDER BY x;

The database server scans each fragment of the table natural_number with

multiple scan threads executing in parallel. Each scan thread executes the UDR

is_prime_number() in parallel.

Setting the Number of Virtual Processors

The dynamic, multithreaded nature of a virtual processor allows it to perform

parallel processing. Virtual processors of the CPU class can run multiple session

threads, working in parallel, for an SQL statement contained within a UDR.

Chapter 13. Improving UDR Performance 13-19

You can increase the number of CPU virtual processors with the VPCLASS

configuration parameter in the ONCONFIG file. For example, the following

parameter specifies that the database server should start four virtual processors for

the cpu class:

VPCLASS cpu,num=4

Tip: Debugging is more difficult when you have more than one CPU because

threads can migrate between processes. The database server communication

mechanism uses the SIGUSR1 signal. When you are debugging, you must

avoid SIGUSR1 to prevent database server processes from hanging.

JAVA Language Support

On Windows, all virtual processors share the same process space. Therefore, you

do not need to start multiple instances of Java VPs to execute Java UDRs in

parallel. On UNIX, the database server must have multiple instances of JVPs to

parallelize Java UDR calls. Because the Java Virtual Machines that are embedded in

different VPs do not share states, you cannot store global states with Java class

variables. All global states must be stored in the database to be consistent.

End of JAVA Language Support

Monitoring Parallel UDRs

When PDQ is turned on, the SET EXPLAIN output shows whether the optimizer

chose to execute a query in parallel. If the optimizer chose parallel scans, the

output shows PARALLEL. If PDQ is turned off, the output shows SERIAL.

You can monitor the parallel execution of PDQs and parallel UDRs with the

following options of the onstat utility:

v onstat -g ath

This option shows the threads currently executing for each session. Each session

has a primary (sqlexec) thread. If the query is executing in parallel, onstat -g ath

shows secondary threads, such as scan and sort.

v onstat -g mem

This option shows pool sizes allocated to sessions. This output can provide hints

about how much memory the UDR uses.

v onstat -g ses

This option shows the number of threads allocated and the amount of memory

used for each session. This output can also provide hints about how much

memory the UDR uses.

For more information on interpreting the output of these onstat options, refer to

the IBM Informix Performance Guide.

Memory Considerations

As you create a UDR, consider ways to minimize its memory usage. This section

describes the following memory considerations for UDRs:

v Memory durations for external routines

v Stack-size considerations for external routines

v The virtual-memory cache for SPL and external routines

13-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Memory Durations for C UDRs

Because a C UDR executes in the memory space of the database server, its

dynamic memory allocations can increase the memory usage of the database

server. For this reason, it is very important that a UDR release its dynamically

allocated memory as soon as it no longer needs to access this memory.

To help ensure that unneeded memory is freed, the database server associates a

memory duration with memory allocation made from its shared memory. The

database server automatically reclaims shared memory based on its memory

duration.

To provide a duration that is safe for return values, use a memory duration that

lasts the life of an SQL statement. It is recommended that you use the following

memory duration instead of the PER_STATEMENT duration:

v PER_STMT_EXEC

The PER_STMT_EXEC memory duration helps improve overall database server

performance because it does not hold memory as long as the PER_STATEMENT

duration.

v PER_STMT_PREP

Use the PER_STMT_PREP memory duration when you want memory to be held

for the life of a prepared statement.

For more information on these memory durations and using onstat utility options

to monitor memory usage of C UDRs, refer to the IBM Informix DataBlade API

Programmer’s Guide.

Stack-Size Considerations (Ext)

The database server allocates local storage in external routines from shared

memory. This local storage is called the thread stack. The stack has a fixed length.

Therefore, an external routine must not consume excessive stack space, either

through large local-variable declarations or through excessively long call chains or

recursion.

Warning: An external routine that overruns the shared-memory region allocated

for its stack overwrites adjacent shared memory, with unpredictable and

probably undesirable results.

In addition, any nonstack storage that a thread allocates must be in shared

memory. Otherwise, the memory is not visible when the thread moves from one

VP to another.

The routine manager of the database server guarantees that a large stack region is

available to a thread before it calls a user-defined function, so stack exhaustion is

generally not a problem.

C Language Support

For C UDRs, you can dynamically allocate stack space. In addition, the DataBlade

API provides memory-management routines that allocate space from shared

memory rather than from process-private memory. If you use the DataBlade API,

memory visibility is not a problem.

End of C Language Support

Chapter 13. Improving UDR Performance 13-21

By default, the routine manager allocates a stack size for a UDR with the size that

the STACKSIZE configuration parameter specifies. If STACKSIZE is not set, the

routine manager uses a default stack size of 32 kilobytes. To determine how much

stack space a UDR requires, monitor the UDR from the system prompt with the

following onstat utility:

onstat -g sts

Use the onstat -g sts option to obtain information on stack-size use for each thread.

The output includes the following fields:

v The thread ID

v The maximum stack size configured for each thread

v The maximum stack size that the thread uses

You can use the output of the threads that belong to user sessions to determine if

you need to alter the maximum stack size configured for a user session. To alter

the maximum stack size for all user sessions, change the value of the STACKSIZE

configuration parameter. To alter the maximum stack size for a single user session,

change the value of the INFORMIXSTACKSIZE environment variable. For more

information, see the configuration parameter STAGEBLOB in the IBM Informix

Administrator’s Reference and the environment variable INFORMIXSTACKSIZE in

the IBM Informix Guide to SQL: Reference.

For more information on the onstat utility and the -g sts option, see the IBM

Informix Administrator’s Reference.

If the stack size is not sufficient for your UDR, you can specify its stack size with

the STACK routine modifier in the WITH clause of the CREATE FUNCTION or

CREATE PROCEDURE statement. When you specify a stack size for a UDR, the

database server allocates the specified amount of memory for every routine

invocation of the routine. If a routine does not need a larger stack, do not specify a

stack size.

Virtual-Memory Cache for Routines

The database server caches the following items in the virtual portion of the

database server shared memory:

v For SPL routines and other UDRs, information in the sysprocedures system

catalog table

v For SPL routines only, the executable form of the routine in the UDR cache

The sysprocedures System Catalog Table

When any session requires the use of an SPL routine for the first time, the database

server reads the sysprocedures system catalog tables and stores the information in

the buffer pool in shared memory. The database server uses this information in

shared memory if it is present for subsequent sessions that invoke the UDR.

The database server keeps the sysprocedures system catalog information in the

buffer pool on a most recently used basis.

The sysprocedures table includes the following information:

v Name of routine

v Compiled size (in bytes) of return values

v Compiled size (in bytes) of p-code for the routine

v Number of arguments

13-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

v Data types of parameters

v Type of routine (function or procedure)

v Location of external routine

v Virtual-processor class in which the routine executes

UDR Cache

When any session requires the use of an SPL routine for the first time, the database

server reads the system catalog tables to retrieve the code for the SPL routine. The

database server converts the p-code to an executable form. The database server

caches this executable form of the SPL routine in the virtual portion of shared

memory.

The database server keeps the executable format of an SPL routine in the UDR

cache on a most recently used basis.

You can monitor the UDR cache with the -g prc option of the onstat utility. For

more information on onstat -g prc and adjusting the size of the UDR cache with

the PC_POOLSIZE configuration parameter, refer to the IBM Informix Performance

Guide.

I/O Considerations

The database server stores UDRs and triggers in the following system catalog

tables:

v sysprocbody

v sysprocedures

v sysprocplan

v sysprocauth

v systrigbody

v systriggers

These system catalog tables can grow large with heavy use of UDRs in a database.

You can tune the key system catalog tables as you would any heavily utilized data

tables. To improve performance, use the following methods:

v Isolate system catalog tables.

v Balance® the I/O activities.

Isolating System Catalog Tables

If your database server has multiple physical disks available, you can isolate your

system catalog tables on a single device and place the tables for your application in

a separate dbspace that resides on a different device. This separation reduces

contention for the same device.

Balancing the I/O Activities

If you have a large number of UDRs that span multiple extents, you can spread

the system catalog tables across separate physical devices (chunks) within the same

dbspace to balance the I/O activities.

 To spread user-defined routine catalogs across devices:

1. Create the dbspace for the UDR system catalog tables with several chunks.

Create each chunk for the dbspace on a separate disk.

Chapter 13. Improving UDR Performance 13-23

2. Use the CREATE DATABASE statement with the IN dbspace clause to isolate

the system catalog tables in their own dbspace.

3. Load approximately half of your UDRs with the CREATE PROCEDURE or

CREATE FUNCTION statement.

4. Create a temporary table in the dbspace with an extent size large enough to use

the remainder of the disk space in the first chunk.

5. Load the remainder of the UDRs. The last half of the routines should spill into

the second chunk.

6. Drop the temporary table.

13-24 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft Windows® navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our publications are available in dotted decimal format.

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1996, 2008 A-1

http://www.ibm.com/able

A-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 B-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

B-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Index

A
accessibility A-1

keyboard A-1

shortcut keys A-1

Active set 4-7

Aggregate functions
built-in 2-5, 8-1

definition 5-8

dropping 8-11

extending built-in functions 8-2

for an opaque type 9-3

implicit execution 13-14

overloading 6-4

overloading operators 8-2

setup argument 8-5

Allocating memory, iterator function 4-9

ALTER FUNCTION statement 3-10, 4-18, 12-6

ALTER PROCEDURE statement 3-10, 4-18, 12-6

ALTER ROUTINE statement 3-10, 4-18, 12-6

ALTER TABLE statement 9-15

ANSI compliance
routine signature 3-9

user-defined types 5-6

Arithmetic operators
description 6-2

for an opaque type 9-11

assign() support function 10-15, 10-18

description of 10-16

B
BETWEEN operator, with compare() 10-19

Built-in aggregates 2-5, 8-1

Built-in cast 7-1, 7-4, 7-7

Built-in data types 5-7

defined 5-2

routine resolution with 3-14

Built-in function
defined 5-8, 6-3

for an opaque type 9-3, 9-11

overloadable 3-11

that you can overload 6-3

that you cannot overload 6-4

Bulk copies 10-12

C
C iterator function example 4-11

CALL statement 3-3, 3-5

CallableStatement interface 4-6

Cast (::) operator 7-3

CAST AS keywords 7-3

Casts
built-in 7-1, 7-4, 7-7

by a support function 9-8, 9-16

CAST AS keywords 7-3

definition 7-1

dropping 7-7

explicit 7-3

function, end-user routines 9-4

Casts (continued)
function, user-defined 7-4

implicit 7-3

not allowed 7-2

operator 7-3

routine resolution with 3-12

straight 7-4

CLASS routine modifier 4-21, 4-22, 13-11, 13-12

CLIENT_LOCALE environment variable 10-20

Code sets, ISO 8859-1 x

Coding standards 4-14

Collation order 10-20

Collection data type
aggregates 8-3

casts 7-2

definition 5-5

in type hierarchy 5-2

routine resolution 3-13, 3-18

Columns, virtual 4-9

compare() function 6-3

compare() support function
description of 11-3

sorting data 10-19

uses 9-13

with BETWEEN operator 9-11

Complex data type 5-5

concat() function 6-2

Configuration parameters
STACKSIZE 13-22

VPCLASS 13-13, 13-19

Constraints, on opaque data type 9-12

Copying data 10-12

Cost functions 2-8

COSTFUNC routine modifier 4-22

CPU virtual processor (CPU VP)
adding 13-13

definition 13-11

dropping 13-13

CREATE CAST statement
EXPLICIT keyword 7-4

IMPLICIT keyword 7-3

privileges 9-10

using 9-9

WITH clause 7-5

CREATE DISTINCT TYPE statement 5-7

CREATE FUNCTION statement
assigning specific name 3-10

choosing a user-defined VP 13-12

creating routine signature 3-9

DBA keyword 4-17, 4-18, 12-3

privileges 10-4

privileges required 4-17

registering a function 3-9, 4-16, 4-18, 4-20

registering an external function 4-20, 4-21

registering an iterator function 4-8

registering an SPL function 4-18

registering arguments 4-23

registering return value 4-23

RETURNING clause 4-20

SPECIFIC keyword 3-10

specifying stack size 13-22

© Copyright IBM Corp. 1996, 2008 X-1

CREATE FUNCTION statement (continued)
using 5-8

WITH clause 4-19, 4-21

CREATE INDEX statement
built-in secondary-access method 11-2

compare() function 10-19

default operator class 11-3

USING clause 11-3

CREATE OPAQUE TYPE statement
ALIGNMENT modifier 9-6

CANNOTHASH modifier 9-12

INTERNALLENGTH keyword 9-5

MAXLEN modifier 9-6, 9-7

registering the opaque type 9-8

CREATE OPCLASS statement 11-8

CREATE PROCEDURE statement
assigning specific name 3-10

choosing a user-defined VP 13-12

creating routine signature 3-9

DBA keyword 4-17, 4-18, 12-3

privileges required 4-17

registering a procedure 4-20

registering a user-defined procedure 3-9, 4-16

registering arguments 4-23

registering return value 4-23

SPECIFIC keyword 3-10

specifying stack size 13-22

WITH clause 4-19, 4-21

CREATE TABLE statement 9-10

Cursor function 4-7

D
Data types

built-in 5-2

complex 5-5

DataBlade modules 5-7

definition 5-1

extended 5-5

Database-level privilege 4-17

DataBlade API data types
mi_float 9-5

mi_integer 9-5

mi_lvarchar 10-5

mi_real 9-7

mi_unsigned_integer 9-6

mi_unsigned_smallint 9-6

DataBlade API memory management 13-21

DataBlade module data types 5-7

DB_LOCALE environment variable 10-20

DBA privilege 4-17, 12-3

deepcopy() support function 10-15, 10-19

Default locale x

defined 3-6

Demonstration databases x

destroy() support function 10-15, 10-16, 10-19

smart large objects 9-3

disability A-1

Distinct data types
casts for 7-2, 7-4

description of 3-16, 5-6

routine resolution with 3-10

divide() function 6-2

DROP AGGREGATE statement 8-11

DROP CAST statement 7-7, 9-16

DROP FUNCTION statement 3-10, 4-18, 9-16, 12-5, 12-6

DROP OPCLASS statement 11-11

DROP PROCEDURE statement 3-10, 4-18, 12-6

DROP ROUTINE statement 3-10, 4-18, 9-16, 12-5, 12-6

DROP TYPE statement 9-16

E
en_us.8859-1 locale x

End-user routine
definition of 5-8

for an opaque data type 9-4

Environment variable, NODEFDAC 12-2

equal() function 6-2, 9-11, 9-12, 11-3, 13-14, 13-17

Examples, using CLASS 4-21

EXECUTE FUNCTION statement
invoking a function 3-2

OUT parameters with 4-5

SPL statements 3-5

Execute privilege 12-1

DBA keyword 12-3

granting 12-1

on a routine 4-18

EXECUTE PROCEDURE statement
invoking a user-defined procedure 3-2

SPL statements 3-5

Execution plan 3-5, 4-18, 13-2

Explicit cast 7-3

Export support function
as cast function 9-9

description of 10-12, 10-13

example 10-13

for smart large objects 10-19

lotofile() 10-12

parameter type 10-4

return type 10-4

summary of 10-2

Exportbinary support function
as cast function 9-9

description of 10-13, 10-14

example 10-15

for smart large objects 10-19

parameter type 10-4

return type 10-4

summary of 10-2

expression return name 4-7

EXTEND role 4-16

Extended data types 9-8

Extended identifier 9-8

External files 4-24

External routines
definition of 2-2

description of 2-2

designing 4-1

executing 3-5

in C 2-2

in Java 2-2

registering 4-20

return values 4-4

routine modifiers 4-21

stack usage 13-21

F
filetoblob() function 10-12

filetoclob() function 10-12

FROM clause, iterator function 4-9

Functional index 11-1

X-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Functional index (continued)
not on smart large object 4-4

G
Generic B-tree

default operator class 11-3, 11-5

extending 11-5, 11-9

new operator class 11-9

strategy functions 11-3

Global Language Support (GLS)
API 10-20

description of x

GRANT statement
example using signature 3-11, 12-2

example using specific name 3-11

Execute privilege 10-4, 12-1

Resource privilege 9-8, 11-8

Usage privilege 4-18

when granting privileges to register UDRs 4-16

greaterthan() function 6-2, 11-3, 13-14

greaterthanorequal() function 6-2, 11-3, 13-14, 13-17

H
HANDLESNULLS modifier

C routine
description 4-22

Java routine 4-22

statcollect() function 13-9

High-Availability Data Replication (HDR) 3-6, 4-15, 4-16, 4-24

I
IBM Informix Developers Zone 10-15

IBM Informix GLS API 10-20

IFX_EXTEND_ROLE configuration parameter 4-16

IMPEXP data type
casting from 9-9

casting to 9-9

description of 10-13

return value 10-4

IMPEXPBIN data type
casting 9-9

description of 10-14

return value 10-4

Implicit cast 7-3

Import function
filetoclob(), filetoblob() 10-12

Import support function
as cast function 9-9

description of 10-12, 10-13

for smart large objects 10-19

parameter type 10-4

return type 10-4

summary of 10-2

Importbinary support function
as cast function 9-9

description of 10-13, 10-14

for smart large objects 10-19

parameter type 10-4

return type 10-4

summary of 10-2

IN operator 9-12

IN parameters 4-5

Index
description of 11-1

informix user 4-18

informix user account 3-12

INFORMIXDIR/bin directory x

INOUT parameter 4-6, 4-20

Input support function
as cast function 7-5, 7-6, 9-9

description of 10-6

example 10-7

locale-sensitive data 10-21

parameter type 10-3

return type 10-3

summary of 10-2

tasks 10-6

INTERNAL routine modifier 4-22

ISO 8859-1 code set x

Iterator functions 4-9

active set 4-7

creating 4-7, 4-8

definition of 4-7

invoking 4-8

registering 4-8

restrictions 4-10

writing 2-11

ITERATOR routine modifier 2-11, 4-8, 4-22, 4-23

J
Java iterator function example 4-12

JDBC CallableStatement interface 4-6

L
Language

external 2-2, 4-24

SPL 2-1

lessthan() function 6-2, 11-3, 13-14

lessthanorequal() function 6-2, 11-3, 13-14

like() function 6-2

Locales
default x

en_us.8859-1 x

lohandles() function 10-18

summary of 10-3

lotofile() function 10-12

LVARCHAR data type
casting 9-9

locale-sensitive data 10-21

parameter to input function 10-3

M
Manifest file 1-1

Mapping
between SQL and Java 9-7

creating 9-7

matches() function 6-2

Memory
iterator function 4-9

Memory allocation
functions 10-15

Memory objects 4-24

mi_fp_request() routine 4-8

mi_fp_setisdone() routine 4-8, 4-9

Index X-3

mi_lvarchar data type
defined 10-5

locale-sensitive data 10-21

mi_real data type 9-7

mi_sendrecv data type
locale-sensitive data 10-21

mi_system() function 10-21, 13-11

mi_unsigned_integer data type 9-6

mi_unsigned_smallint data type 9-6

minus() function 6-2

Modal routines 4-2

Monitoring
stack size 13-22

Multirepresentational data 9-2

defined 9-3

not hashable 9-12

N
Name space

DataBlade-module objects 4-14

Named parameters 3-3

Named row data types
defined 5-6

routine-resolution precedence 3-13

type hierarchy 3-10, 3-15

Named row type
user-defined cast 7-2

Naming
return parameters 4-6

negate() operator function 6-2

Negator functions 2-8, 13-9

NEGATOR keyword routine modifier 4-22, 4-23

NODEFDAC environment variable 12-2

Noncursor function 4-7

Nonvariant function 4-4

NOT VARIANT routine modifier 4-22

notequal() function 6-2

Null values
aggregate initialization 8-5

as wildcard argument 3-18

in statcollect() function 13-8

in support functions 8-7

O
onmode utility 13-13

onstat utility 3-6, 13-13, 13-22

Opaque data types
as parameter 9-7

casts for 7-2

comparing 10-19

constraints on 9-12

defined 1-3, 5-7, 9-2

dropping 9-15

extended identifier 9-8

external representation 10-5

fixed-length 9-2, 9-5

in sysxtdtypeauth table 9-10, 10-4

indexes on 9-13

internal structure 9-2

locale-specific data 10-20

memory alignment of 9-6

pass by value 10-8

privileges 9-15

registering 9-8

Opaque data types (continued)
structure size 9-5

system catalog table 9-10, 10-4

varying-length 9-6

Operating system 13-12

Operation
built-in function 6-3

operator function 6-1

Operator
arithmetic 6-2

binding 2-6, 6-1

defined 5-8, 6-1

relational 6-2

text 6-2

Operator class
creating 11-8

defined 1-3, 2-7, 11-1, 11-2

dropping 11-11

privileges on 11-8

use for 2-7

Operator function
defined 5-8, 6-1

opaque data type 9-3, 9-11

relational 6-2, 9-12

text 6-2

Optimization
functions 2-8

Optimization level 13-2

OUT parameter 4-5

Output support function
as cast function 7-5, 7-6, 9-9

defined 10-7

example 10-8

locale-sensitive data 10-21

parameter type 10-4

return type 10-4

summary of 10-2

tasks 10-8

P
P-code 13-23

defined 4-19

size of 13-22

SPL routines 3-5

Parallel database queries 4-10, 13-16

Parallel UDRs
defined 2-8

enabling 13-19

execution of 13-14

GROUP BY 13-16

INSERT 13-16

iterator functions 4-10

joins 13-15

scans 13-15

SELECT list 13-15, 13-16

sorts 13-17

when use 13-14

PARALLELIZABLE routine modifier 4-23

Parameter
INOUT 4-6, 4-20

OUT 4-5

return 4-6

PERCALL_COST routine modifier 4-22

Persistent external files 4-24

Persistent memory objects 4-24

Platform portability 4-14

X-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

plus() function 6-2

POINTER data type 4-23

Polymorphism 3-10, 4-2

positive() function 6-2

Pound (#) sign
SLV indicator 4-5

Primary key
using opaque UDT 9-12

Privilege
database-level 4-17

DBA 4-17, 12-3

Execute 4-18, 12-1

on a support function 10-4

opaque type 9-8, 9-15

operator class 11-8

Resource 4-18

routine-level 4-18, 10-4, 12-1

support function 9-15

type-level 9-10

user-defined routine 4-17

Q
Query optimizer 2-7, 3-4, 13-3

Query parser 3-4, 3-11

Query plans 3-4, 13-2

R
R-tree index

default operator class 11-4

uses of 11-2

Receive support function
cast function 9-9

defined 10-10

example 10-10

locale-sensitive data 10-21

parameter type 10-4

return type 10-4

Registering a user-defined routine
privileges 4-17

steps 4-16

Relational operators
defined 6-2

opaque type 9-12

Resource privilege 4-18

Restrictions
iterator function 4-10

Result sets
iterator function 4-9

Return parameters
naming 4-6

RETURN WITH RESUME statement 4-10

REVOKE statement
Execute privilege 9-15, 12-1

Usage privilege 4-18, 9-15

using specific name 3-10

when granting privileges to register UDRs 4-16

Routine argument
defined 4-2

distinct data type 3-16

in routine resolution 3-12

in routine-state space 3-7

modal 4-2

named row type as 3-15

not matching parameter data type 3-16

Routine argument (continued)
registering 4-24

wildcard 3-18

Routine identifier
defined 10-4

Routine manager
creating a routine sequence 3-6

loading a shared-object file 3-6

managing routine execution 3-8

role of 3-6

stack space and 13-21

Routine modifier
CLASS 4-21, 4-22, 13-11, 13-12

COSTFUNC 4-22

external routine 4-21

HANDLESNULLS 4-22

INTERNAL 4-22

ITERATOR 2-11, 4-8, 4-22, 4-23

NEGATOR 4-22, 4-23

NOT VARIANT 4-22

PARALLELIZABLE 4-23

PERCALL_COST 4-22

SELCONST 4-22

SELFUNC 4-22

specifying 4-24

STACK 4-22, 13-22

VARIANT 4-4, 4-22

Routine name
ANSI-compliance 3-9

candidate routines 3-12

choosing 4-2

component of routine signature 3-8

overloaded 3-8, 3-9

registering 4-24

Routine overloading
aggregate functions 6-4

assigning specific routine name 3-10

built-in functions 6-3

built-in SQL functions 3-11

dedfined 3-10

defined 3-8, 4-2

in operator binding 2-6

invoking overloaded routine 3-11

optical functions 6-4

status functions 6-4

using 6-1, 11-4

Routine owner
ANSI-compliant database 3-9

component of routine signature 3-9

database not ANSI compliant 3-9

in specific routine name 3-10

registering 4-24

Routine parameter
component of signature 3-8

overloaded 3-9

registering 4-24

Routine resolution
candidate list 3-12

defined 3-8, 3-11

effect of inheritance 3-15

effect of null value argument 3-18

order of arguments 3-15

precedence 3-12, 3-13

purpose 11-4

type hierarchy 3-15

understanding 3-8

Index X-5

Routine return value
in routine-state space 3-7

nonvariant 4-4

using 4-4

Routine sequence 3-6

Routine signature
ANSI-compliance 3-9

defined 3-8

in routine resolution 3-8, 3-12

registering 3-9

uniqueness 3-9

Routine type 3-8, 4-24

Routine-level privileges 4-18, 12-1

Routine-state space 3-7

Routines 1-1

Runtime
setting collation order 10-20

S
Scans

parallel 13-20

Secondary-access methods
defined 11-1

defined by database server 11-1

defining new operator classes 11-11

user-defined 11-2

SELCONST routine modifier 4-22

SELECT statements
BETWEEN operator 10-19

DISTINCT keyword 9-13, 10-19

GROUP BY clause 9-12

ORDER BY clause 9-13, 10-19

UNION keyword 9-13, 10-19

UNIQUE keyword 9-13, 10-19

SELECT statements, iterator function 4-9

Selectivity functions 2-8

SELFUNC routine modifier 4-22

Send support function
as cast function 9-9

defined 10-11

example 10-11

locale-sensitive data 10-21

parameter type 10-4

return type 10-4

summary of 10-2

SENDRECV data type
casting from 9-9

casting to 9-9

locale-sensitive data 10-21

return value in send function 10-4

SERVER_LOCALE environment variable 10-20

SET COLLATION statement 10-20

SET EXPLAIN
parallel scans 13-20

serial scans 13-20

SET OPTIMIZATION statement 13-2

setUDTExtName 9-7

Setup argument, aggregates 8-5

Shared-object files
loading 3-6

reloading 12-4

unloading 12-5

shortcut keys
keyboard A-1

SIGUSR1 signal 13-20

Smart large objects 9-2, 10-12

Smart large objects (continued)
aggregates 8-3

not in functional index 4-4

SPECIFIC keyword 3-10

Specific routine name
assigning 3-10

defined 3-10

registering 4-24

SPL iterator function example 4-10

SPL procedure 4-6

SPL routines
caching sysprocedures 13-22

default virtual-processor class 13-11

defined 2-1

dependency list 3-5, 4-19

designing 4-1

executing 3-5

execution plan 13-2

FOREACH loop 4-8

invoking a UDR 3-3

optimization level 13-2

optimizing 13-2

p-code 3-5, 4-19

registering 4-18

SPL cache 13-23

updating statistics 13-3

SPL UDR, return parameters 4-6

SQL data types
built-in 3-14

IMPEXP 10-13

IMPEXPBIN 10-14

in registration 4-23

POINTER 4-23

SQL Explain output, iterator function 4-9

SQL statements
execution plan 4-18, 4-19

invoking a UDR 3-1

optimizing 3-4, 4-18, 13-2

parsing 3-4, 4-18

query optimizer 3-4

query parser 3-4

query plan 3-4

specific name 3-10

statement-local variable 4-5

where invalid 4-4

SQL-invoked function
built-in functions 6-3

cast functions 7-4

definition of 6-1

opaque data types 9-10

operator functions 6-1

Stack
monitoring stack size 13-22

STACK routine modifier 4-22, 13-22

Stack space 13-21

STACKSIZE configuration parameter 13-22

Statement Local Variables 4-5

declaring 4-5

defined 4-5

iterator functions 4-10

OUT parameters and 4-5

referencing in function 4-5

scope of 4-5

Statistics function 2-8

stores_demo database x

Strategy functions
defined 11-3

X-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Strategy functions (continued)
for generic B-tree 11-3

streamread() support function
as cast function 9-9

streamwrite() support function
as cast function 9-9

superstores_demo database x

Support functions
as casts 9-8

bulk copy 10-12

defined 11-3

dropping 9-16

export 10-2

exportbinary 10-2

for generic B-tree 11-3

IBM Informix GLS API 10-20

import 10-2

importbinary 10-2

input 10-2

lohandles() 10-3

naming 10-3

output 10-2

privileges 9-15

registering 10-3

routine identifier 10-4

send 10-2

summary 10-1

sysams system catalog table 11-11

syscasts system catalog table 7-2, 7-7, 9-9, 9-16

syscolumns system catalog table 13-3

sysindexes system catalog tables 13-3

syslangauth system catalog table 2-3

sysopclasses system catalog table 11-11

sysprocauth system catalog table 2-2, 4-19, 9-15, 10-4, 12-1,

13-23

sysprocbody system catalog table 2-2, 3-5, 4-19, 4-24, 13-23

sysprocedures system catalog table 10-4

cached in memory 13-22

candidate routines 3-12

columns of 4-24

contents of 13-22

defined 2-2, 9-16

I/O considerations 13-23

path column 3-6, 12-5

UDR information 4-19

sysprocplan system catalog table 4-19, 4-24, 13-3, 13-4, 13-23

sysroutinelangs system catalog table 2-3

systables system catalog table 13-3

System catalog tables
isolating 13-23

sysams 11-11

syscasts 7-2, 9-9

syscolumns 13-3

sysindices 13-3

syslangauth 2-3

sysprocauth 2-2, 4-19, 10-4, 12-1, 13-23

sysprocbody 3-5, 4-19, 4-24, 13-23

sysprocedures 2-2, 4-19, 13-22

sysprocplan 4-19, 4-24, 13-3, 13-4, 13-23

sysroutinelangs 2-3

systables 13-3

systrigbody 13-23

systriggers 13-23

sysxtdtypeauth 5-5, 9-10

sysxtdtypes 5-5, 9-8

systrigbody system catalog table 13-23

systriggers system catalog table 13-23

sysxtdtypeauth system catalog table 5-5, 9-10, 9-15

sysxtdtypes system catalog table 5-5, 9-8, 9-16, 10-5

T
Text operator

defined 6-2

for an opaque type 9-11

Thread-safe UDRs 13-18

Threads
defined 13-10

insert 13-16, 13-17

join 13-15

primary 13-20

scan 13-15, 13-16, 13-20

secondary 13-20

sort 13-17

sqlexec 13-20

times() function 6-2

Transport functions 10-9

Triggered action statement 2-10

Type hierarchy 3-10, 3-13, 3-15

Type inheritance 3-15

U
UDREnv interface 4-8

UDREnv.setSetIterationIsDone() method 4-9

UNIX operating system
default locale x

Unnamed row type
aggregates 8-3

UPDATE STATISTICS statement 3-10, 13-3

update() support function 10-15, 10-17, 10-19

User state
SPL routines 3-6

User-defined aggregates
defined 2-5, 8-1

dropping 8-11

parallel execution 13-15, 13-16

User-defined casts
cast function 7-4

creating 7-2

definition of 7-1

dropping 7-7

implicit 7-3

kinds of 7-3

straight 7-4

User-defined function
cursor 4-7

defined 2-1

invoking in an expression 3-2

invoking with CALL 3-3

iterator 4-7

negator 13-9

noncursor 4-7

nonvariant 4-4

variant 4-4

User-defined procedure 2-1

invoking with CALL 3-4

registering 4-16

User-defined routines
altering 12-6

assigning privileges to 4-17

choosing a VP class 13-11

coding standards for 4-14

Index X-7

User-defined routines (continued)
database-level privileges 4-17

DBA tasks on 3-9

default VP class 13-11

defined 1-1

designing 4-1

dropping 4-18, 12-6

enabling parallel execution 13-19

executing 3-4, 3-5, 3-8, 13-13

executing across databases 3-4

HDR 4-24

invoking 3-1

loading 3-6

location of 4-24

managing 12-1

memory considerations 13-20

modal 4-2

naming 4-2

nonmodal 4-3

optimizing 13-2

parallelizable 2-8, 13-13

performance considerations 13-2

privileges 12-1

registering 4-16

registration privileges 4-17

reloading 12-4

returning a value 4-4

routine resolution 3-11

routine sequence for 3-6

routine-level privileges 4-18

routine-state space 3-7

size maximum 4-2

tasks 2-3

unloading 12-5

updating statistics 13-3

user state 3-7

well-behaved 13-11, 13-12

wildcard argument 3-18

User-defined virtual processors
adding 13-13

dropping 13-13

V
Variant function 4-4

VARIANT routine modifier 4-4, 4-22

Virtual processors
choosing for UDR 13-11

classes 13-10

CPU 13-11

defined 13-10

monitoring 13-13

setting number of 13-19

user-defined 13-12

using 13-10

VP classes 13-11

Virtual table
iterator function 4-9

VPCLASS configuration parameter 13-13, 13-19

W
Wildcard, argument for a routine 3-18

Windows, default locale for x

X
XA-compliant external data sources 4-15

X-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

����

Printed in USA

SC23-9438-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

ix

Ve
rs

io
n

11
.5

0
IB

M

In

fo
rm

ix

Us

er
-D

ef
in

ed

Ro

ut
in

es

an

d
Da

ta

Ty

pe
s

De
ve

lo
pe

r’s

Gu

id
e

�
�

�

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Chapter 1. Extending the Database Server
	In This Chapter
	Creating User-Defined Routines
	Extending Built-In Data Types
	Extending Operators
	Building Opaque Data Types
	Extending Operator Classes
	Routine Management

	Chapter 2. Using a User-Defined Routine
	In This Chapter
	User-Defined Routines
	SPL Routines
	External-Language Routines
	Information About User-Defined Routines

	Tasks That You Can Perform with User-Defined Routines
	Extending Data Type Support
	Supporting User-Defined Data Types
	Cast Functions
	End-User Routines
	Aggregate Functions
	Operator Functions
	Operator-Class Functions
	Optimization Functions
	Opaque Data Type Support Functions
	Access-Method Purpose Functions

	Creating an End-User Routine
	Encapsulating Multiple SQL Statements
	Creating Triggered Actions
	Restricting Access to a Table (SPL)
	Creating Iterators

	Invoking a User-Defined Routine
	Explicit Invocation
	Implicit Invocation

	Chapter 3. Running a User-Defined Routine
	In This Chapter
	Invoking a UDR in an SQL Statement
	Invoking a UDR with an EXECUTE Statement
	Invoking a Function
	Using a SELECT Statement in a Function Argument
	Invoking a Procedure

	Invoking a User-Defined Function in an Expression
	Invoking a Function That Is Bound to an Operator
	Named Parameters and UDRs

	Invoking a UDR in an SPL Routine
	Executing a User-Defined Routine
	Parsing the SQL Statement
	Optimizing the SQL Statement
	Executing a UDR Across Databases of the Same Database Server Instance
	Executing the Routine
	Executing an SPL Routine
	Executing an External Language Routine

	Understanding Routine Resolution
	The Routine Signature
	Using ANSI and Non-ANSI Routine Signatures
	Using the Routine Signature to Perform DBA Tasks

	Overloading Routines
	Creating Overloaded Routines
	Assigning a Specific Routine Name
	Specifying Overloaded Routines During Invocation
	Overloading Built-In SQL Functions

	The Routine-Resolution Process
	The Routine Signature
	Candidate List of Routines
	Precedence List of Data Types
	Precedence List for Built-In Data Types

	Routine Resolution with User-Defined Data Types
	Routine Resolution in a Type Hierarchy
	Routine Resolution with Distinct Data Types
	Routine Resolution with Built-In Data Types as Source
	Routine Resolution with Collection Data Types

	Null Arguments in Overloaded Routines

	Chapter 4. Developing a User-Defined Routine
	In This Chapter
	Planning the Routine
	Naming the Routine
	Defining Routine Parameters
	Number of Arguments
	Declaring Routine Parameters

	Returning Values
	Returning a Variant or Nonvariant Value
	Using OUT Parameters and Statement-Local Variables (SLVs)
	Using INOUT Parameters

	Naming Return Parameters
	Using an Iterator Function
	Creating an Iterator Function
	Registering an Iterator Function
	Invoking an Iterator Function
	Using an Iterator Function in the FROM Clause of a SELECT Statement

	Adhering to Coding Standards

	Writing the Routine
	Creating a User-Defined Interface for XA Data Sources

	Registering a User-Defined Routine
	Privileges Required to Create a Routine
	Database-Level Privileges Needed for Creating a Routine
	Language-Level Privileges Needed for Creating
	Routine-Level Privilege

	Creating an SPL Routine
	Creating an External-Language Routine
	Registering a Routine Written in C
	Registering a Routine Written in Java
	Registering an External Routine with Modifiers
	Registering Parameters and a Return Value

	Reviewing Information about User-Defined Routines

	Using a UDR With HDR

	Chapter 5. Extending Data Types
	In This Chapter
	Understanding the Data Type System
	Understanding Data Types
	Built-In Data Types
	Extended Data Types
	Complex Data Types
	User-Defined Data Types
	IBM Informix DataBlade Modules

	Extending the Data Type System
	Operations
	Casts
	Operator Classes
	Providing Additional Operator Classes
	Extending Operator Classes

	Optimizer Information

	Chapter 6. Extending Operators and Built-In Functions
	In This Chapter
	Operators and Operator Functions
	Arithmetic Operators
	Text Operators
	Relational Operators
	Overloading an Operator Function

	Built-In Functions
	Built-In Functions That You Can Overload
	Built-In Functions That You Cannot Overload
	Built-In Aggregates
	Status Functions
	Optical Subsystem Functions

	Overloading a Built-In Function

	Chapter 7. Creating User-Defined Casts
	In This Chapter
	Understanding Casts
	Built-In Casts
	User-Defined Casts
	Opaque Data Types
	Distinct Data Types
	Named Row Types

	Casts That You Cannot Create

	Creating a User-Defined Cast
	Choosing the Kind of User-Defined Cast
	Implicit Cast
	Explicit Cast

	Choosing the Cast Mechanism
	Straight Cast
	Cast Function
	Example of a Cast Function

	Defining the Direction of the Cast

	Dropping a Cast

	Chapter 8. Creating User-Defined Aggregates
	In This Chapter
	Extending Existing Aggregates
	Overloading Operators for Built-In Aggregates
	Extending an Aggregate
	Example of Extending a Built-In Aggregate

	Creating User-Defined Aggregates
	Support Functions
	INIT Function
	ITER Function
	FINAL Function
	COMBINE Function

	Resolving the Support Functions
	Support-Function States
	Using C or Java Support Functions
	Example of a User-Defined Aggregate
	Using User-Defined Data Types with User-Defined Aggregates
	Omitting Support Functions

	Managing Aggregates
	Parallel Execution of Aggregates
	Privileges for User-Defined Aggregates
	Aggregate Information in the System Catalog
	Aggregate Information from the Command Line

	Dropping an Aggregate

	Chapter 9. Creating an Opaque Data Type
	In This Chapter
	Opaque Data Types
	The Internal Structure
	A Fixed-Length Opaque Data Type
	A Varying-Length Opaque Data Type

	Support Functions
	Operator Functions
	Built-In Functions
	Aggregate Functions
	Statistics-Collecting Routines
	End-User Routines

	Advantages of Opaque Data Types

	Creating an Opaque Data Type
	Creating the Internal Structure in C
	Data Type Size
	Memory Alignment
	Parameter Passing

	Creating UDT-to-Java Mappings
	Writing and Registering the Support Functions
	Registering the Opaque Data Type with the Database
	Registering the Opaque Data Type
	Creating Casts for Opaque Data Types
	Using Non In-Row Storage

	Granting Privileges for an Opaque Data Type
	Creating SQL-Invoked Functions
	Arithmetic and Text Operator Functions for Opaque Data Types
	Built-in Functions for Opaque Data Types
	Aggregate Functions for Opaque Data Types
	Conditional Operators for Opaque Data Types
	Relational Operators for Opaque Data Types
	Comparison Function for Opaque Data Types

	Customizing Access Methods
	Using the Generic B-Tree
	Using Other Access Methods
	Indexing Spatial Data
	Indexing Other Types of Data

	Other Operations on Opaque Data Types
	Accessing an Opaque Data Type
	Dropping an Opaque Data Type

	Chapter 10. Writing Support Functions
	In This Chapter
	Writing Support Functions
	Identifying Support Functions
	Choosing Function Parameters
	Setting Privileges for Support Functions

	Data Types for Support Functions
	The LVARCHAR Data Type
	The SENDRECV Data Type

	Handling the External Representation
	Input Support Function
	Output Support Function

	Handling the Internal Representation
	The Send and Receive Support Functions
	The SENDRECV Data Type
	Receive Support Function
	Send Support Function

	Performing Bulk Copies
	Import and Export Support Functions
	The IMPEXP Data Type
	Import Support Function
	Export Support Function

	Importbinary and Exportbinary Support Functions
	IMPEXPBIN Data Type
	Importbinary Support Function
	Exportbinary Support Function

	The Stream Support Functions

	Inserting and Deleting Data
	The assign() Function
	The destroy() Function
	The update() Function
	The deepcopy() Function

	Handling Smart Large Objects
	Comparing Data
	Handling Locale-Sensitive Data (GLS)
	Locale-Sensitive Input and Output Support Functions
	Locale-Sensitive Receive and Send Support Functions

	Using Operating System Functions

	Chapter 11. Extending an Operator Class
	In This Chapter
	Using Operator Classes
	Secondary-Access Methods
	Generic B-Tree Index
	R-Tree Index
	Other User-Defined Secondary-Access Methods

	Operator Classes
	Generic B-Tree Operator Class
	R-Tree Index Operator Class

	Extending an Existing Operator Class
	Extensions of the btree_ops Operator Class
	Reasons for Extending btree_ops
	Generating a Single Value for a New Data Type
	Changing the Sort Order

	Creating an Operator Class
	Creating a New B-Tree Operator Class
	Creating an Absolute-Value Operator Class
	Defining an Operator Class for Other Secondary-Access Methods

	Dropping an Operator Class

	Chapter 12. Managing a User-Defined Routine
	In This Chapter
	Assigning the Execute Privilege to a Routine
	Granting and Revoking the Execute Privilege
	Privileges on Objects Associated with a UDR
	Executing a UDR as DBA
	Using DBA Privileges with Objects and Nested UDRs

	Modifying a User-Defined Routine
	Modifying a C UDR
	Removing Routines from the Shared Library

	Modifying a Java UDR

	Altering a User-Defined Routine
	Dropping a User-Defined Routine

	Chapter 13. Improving UDR Performance
	In This Chapter
	Optimizing a User-Defined Routine
	Optimizing an SPL Routine
	Optimization Levels
	Automatic Optimization

	Updating Statistics for an SPL Routine

	Optimizing Functions in SQL Statements
	Calculating the Query Plan
	Specifying Cost and Selectivity
	Constant Cost and Selectivity Values
	Dynamic Cost and Selectivity Values

	Calculating Cost
	Selectivity and Cost Examples

	Extending UPDATE STATISTICS
	Using UPDATE STATISTICS
	Support Functions for UPDATE STATISTICS
	The stat Data Type
	The statcollect() Function
	The statprint() Function
	Example of User-Defined Statistics Functions

	Using Negator Functions
	Using a Virtual-Processor Class
	Choosing a Virtual-Processor Class
	CPU Virtual-Processor Class
	User-Defined Virtual-Processor Class (C)
	JVM Virtual-Processor Class (Java)

	Using Virtual Processors with UDRs Written in C
	Managing Virtual Processors
	Adding and Dropping Virtual Processors
	Monitoring Virtual-Processor Classes

	Parallel UDRs
	Executing UDRs in Parallel
	Execution of a UDR in a Query Expression
	FastPath Execution of a UDR in a DataBlade API (C)
	Implicit UDR Execution of a User-Defined Aggregate
	Implicit UDR Execution of a Comparison Operator
	Implicit Execution of an Assign UDR
	Execution of a Comparison UDR for Sort
	Execution of a UDR by an Index on a UDT column

	Enabling Parallel UDRs
	Specifying the PARALLELIZABLE Modifier
	Writing PDQ Thread-Safe UDRs
	Turning On PDQ and Reviewing Other Configuration Parameters
	Step-By-Step Procedure to Enable Parallel UDRs

	Setting the Number of Virtual Processors
	Monitoring Parallel UDRs

	Memory Considerations
	Memory Durations for C UDRs
	Stack-Size Considerations (Ext)
	Virtual-Memory Cache for Routines
	The sysprocedures System Catalog Table
	UDR Cache

	I/O Considerations
	Isolating System Catalog Tables
	Balancing the I/O Activities

	Appendix. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Notices
	Trademarks

	Index

