
IBM Informix Web
DataBlade Module
Administrator’s Guide
Version 4.13
December 2001
Part No. 000-8674

ii IBM Informix Web Da
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
taBlade Module Administrator’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Organization of This Manual 4
Types of Users 5
Software Dependencies 5
Assumptions About Your Locale. 5

Documentation Conventions 6
Typographical Conventions 6
Icon Conventions 8
Screen-Illustration Conventions 9

Additional Documentation 9
Printed Documentation 9
Online Documentation 11

IBM Welcomes Your Comments 12

Chapter 1 Overview of the Web DataBlade Module
In This Chapter 1-3
What Is the Web DataBlade Module? 1-3
Product Architecture 1-4

Webdriver 1-4
The WebExplode() Function 1-5
Tags and Attributes 1-5
Architecture Diagram 1-6

Enterprise Replication 1-8
Converting from a 9.2x Server 1-8
Reverting to a 9.2x Server 1-9

Product Features 1-9

iv IBM In
Chapter 2 Getting Started
In This Chapter 2-3
Overview of Web DataBlade Module Configuration 2-4
Preconfiguration Tasks 2-4
Configuring the Web DataBlade Module for Your Database Server . 2-6

Who Should Run the websetup Utility? 2-7
Configuring the Web DataBlade Module: Servers on

Same Computer 2-8
Configuring the Web DataBlade Module: Servers on

Different Computers 2-12
Configuring Additional Databases 2-17
Adding and Starting the WEB Virtual Processor 2-19

Chapter 3 Configuring Webdriver
In This Chapter 3-3
Overview of Webdriver 3-4

Webdriver Variables. 3-4
How Webdriver Locates AppPages 3-8
The Web DataBlade Module Administration Tool 3-9

The Webdriver Configuration File (web.cnf) 3-9
File Permissions of the web.cnf File 3-10
Format of the web.cnf File. 3-10
Example of the web.cnf File 3-16

Setting the MI_WEBCONFIG Environment Variable 3-18
Managing Webdriver Connections to the Database 3-19
Using Server-Side Includes in AppPages 3-22
Setting Up the Web DataBlade Module Administration Tool . . . 3-22

Webdriver Mappings 3-23
Webdriver Configurations 3-23
Installing the Administration Tool in Your Database 3-24
Securing the Web DataBlade Module Administration Tool . . 3-28

Invoking and Using the Web DataBlade Module
Administration Tool 3-29

Viewing Existing Webdriver Configurations 3-31
Editing an Existing Webdriver Configuration 3-32

Changing the Current Value of a Webdriver or
User-Defined Variable 3-34

Adding a New Webdriver or User-Defined Variable. 3-35
Deleting a Webdriver or User-Defined Variable 3-38

Adding a New Webdriver Configuration 3-39
formix Web DataBlade Module Administrator’s Guide

Deleting an Existing Webdriver Configuration 3-42
Viewing Existing Webdriver Mappings 3-43
Editing an Existing Webdriver Mapping 3-43
Adding a New Webdriver Mapping 3-45

Creating the Webdriver Mapping 3-46
Adding a URL Prefix to Your Web Server 3-47

Deleting an Existing Webdriver Mapping 3-48

Chapter 4 Using the NSAPI Webdriver
In This Chapter 4-3
Overview of the NSAPI Webdriver 4-4
Configuring the NSAPI Webdriver 4-5

Executing the webconfig Utility 4-8
Adding Init Directives to the obj.conf File 4-9
Adding URL Prefix Information to the obj.conf File 4-10
Adding Object Directives to the obj.conf File 4-12
How It All Fits Together 4-14

Executing NSAPI Functions in AppPages 4-15
Creating NSAPI Functions 4-16
Invoking NSAPI Functions in an AppPage 4-17

Using Server-Side Includes in AppPages with the NSAPI
Webdriver 4-18

Implementing User Authentication with the NSAPI Webdriver . 4-20
Setting Webdriver Variables to Enable User Authentication . 4-20
Updating the obj.conf File to Enable User Authentication . . 4-23
Adding Users to the MIusertable Table. 4-24
Specifying AppPage Access Levels 4-25
Using Encrypted Passwords in the MIusertable Table . . . 4-26
Using the REMOTE_USER Web Browser Variable for

User Authentication 4-28
Additional NSAPI Webdriver Information 4-28

WebExplode() Buffer Size with NSAPI Webdriver 4-28
Passing Image Map Coordinates with the NSAPI Webdriver . 4-29

Administering the NSAPI Webdriver 4-29
NSAPI Webdriver Performance 4-29
Error Logging with NSAPI Webdriver 4-31
Table of Contents v

vi IBM In
Chapter 5 Using the Apache Webdriver
In This Chapter 5-3
Overview of the Apache Webdriver 5-3
Configuring the Apache Webdriver 5-4

Executing the webconfig Utility. 5-8
Editing the Apache Web Server Configuration File 5-9
Editing Apache Web Server Source Code 5-11
Adding URL Prefix Information to the Apache Web Server . . 5-13
How It All Fits Together 5-14

Implementing User Authentication with Apache Webdriver . . . 5-15
Setting Webdriver Variables 5-16
Updating the httpd.conf File to Enable User Authentication . . 5-19
Adding Users to the MIusertable Table 5-20
Specifying AppPage Access Levels 5-21
Using Encrypted Passwords in the MIusertable Table 5-21
Using the REMOTE_USER Web Browser Variable for User

Authentication 5-23
Using Server-Side Includes in AppPages with the Apache

Webdriver 5-24
Dynamically Loading the Apache Webdriver 5-26

Before You Begin 5-26
Updating The Apache Web Server Configuration File 5-27

Chapter 6 Using the ISAPI Webdriver
In This Chapter 6-3
Overview of the ISAPI Webdriver 6-3
Configuring the ISAPI Webdriver 6-4

Executing the webconfig.exe Utility 6-7
Adding URL Prefix Information to the Web Server 6-8
Updating the web.cnf File 6-9
Invoking AppPages with ISAPI Webdriver 6-10

Using Session Variables with the ISAPI Webdriver 6-11
Implementing Security with the ISAPI Webdriver 6-11

Setting Webdriver Security Variables 6-12
Attaching the ISAPI Filter Library 6-14
Turning On the Security Feature of the ISAPI Webdriver . . . 6-14
Adding Users to the MIusertable Table 6-15
Specifying AppPage Access Levels 6-16
Using Encrypted Passwords in the MIusertable Table 6-16
formix Web DataBlade Module Administrator’s Guide

Using the REMOTE_USER Web Server Variable for
User Authentication 6-18

Executing ISAPI Functions in an AppPage 6-19
Creating and Building the DLL 6-20
Invoking ISAPI Functions in an AppPage 6-21

Chapter 7 Using the CGI Webdriver
In This Chapter 7-3
Overview of the CGI Webdriver 7-3
Configuring the CGI Webdriver 7-4

Creating a CGI Directory for Your Web Server 7-6
Updating the web.cnf File 7-7
Executing the webconfig Utility 7-8

Invoking AppPages with the CGI Webdriver 7-9

Chapter 8 Implementing Security
In This Chapter 8-3
Database Access Security 8-4

Encrypting Passwords Manually 8-5
Resetting User Name/Password Combinations. 8-6

AppPage-Level Security 8-8
Configuring Simple Webdriver AppPage-Level Security . . 8-9
Example of Setting Simple AppPage-Level Security 8-10

Large Object Security 8-11
Setting Webdriver Variables 8-12
Background for the Example 8-13
Implementation of the Example 8-14

Chapter 9 Improving Performance
In This Chapter 9-3
Overview of Performance 9-3
AppPage Caching 9-4

AppPages That Are Not Cached 9-4
Global Cache For Dynamic Tags and User-Defined

Routine Tags 9-5
Using AppPage Caching. 9-8
Caching AppPages Retrieved with the POST Method . . . 9-18
Using the MIFUNC Tag to Dynamically Manage

AppPage Caching from Within an AppPage. . . . 9-19
Analyzing AppPage Caching 9-22
Table of Contents vii

viii IBM
Partial AppPage Caching 9-25
How Partial AppPage Caching Works 9-26
Using Variables with the MIDEFERRED Tag 9-26
Debugging Problems with Partial AppPage Caching 9-27

Large Object Caching 9-27
Setting Large Object Caching 9-28
Example of Setting Large Object Caching 9-29
Analyzing Caching Statistics for Large Objects 9-30

Using Session Variables to Improve Performance 9-31
Session Management and AppPage Caching 9-31

Chapter 10 Globalizing Your Web DataBlade Module Application
In This Chapter 10-3
Overview of Globalization 10-3
Using Locale Variables 10-4
AppPage Builder and Globalization 10-5
WebURLDecode() and WebURLEncode() Functions 10-5

Chapter 11 Deploying Web DataBlade Module Applications
In This Chapter 11-3
Overview of Deployment 11-3
Moving Applications from Development to Production 11-4

Moving Each Type of Data Separately 11-4
Moving Data All at Once 11-5
Accessing the New Production Database 11-6

Using a Web Server on a Different Computer 11-8

Chapter 12 Debugging and Troubleshooting
In This Chapter 12-3
Enabling Webdriver Tracing 12-3

Possible Trace Settings for the debug_level
Webdriver Variable 12-4

Example of Setting the debug_level Webdriver Variable . . . 12-5
Using the Webdriver Diagnostic Page 12-6
Errors While Retrieving Pages from the DataBase 12-6
Executing SQL Statements Greater Than 32 KB 12-8
 Informix Web DataBlade Module Administrator’s Guide

Chapter 13 Web DataBlade Module Utilities
In This Chapter 13-3
The cm_schema_create Utility 13-3
The cm_schema_load Utility 13-5
The createAPB20_DDW20schema Utility 13-6
The loadAPB20application Utility 13-7
The webconfig Utility 13-8
The webpwcrypt Utility 13-13
The websetup Utility 13-14

Appendix A Web DataBlade Module System Tables

Appendix B Web DataBlade Module Variables

Appendix C Notices

Glossary

Index
Table of Contents ix

Introduction
Introduction
In This Introduction 3

About This Manual 3
Organization of This Manual 4
Types of Users 5
Software Dependencies 5
Assumptions About Your Locale 5

Documentation Conventions 6
Typographical Conventions 6

Case-Sensitive Text 7
Case-Insensitive Text 7

Icon Conventions 8
Comment Icons 8
Platform Icons 8

Screen-Illustration Conventions 9

Additional Documentation 9
Printed Documentation 9
Online Documentation 11

Release Notes and Documentation Notes 11

IBM Welcomes Your Comments 12

2 IBM In
formix Web DataBlade Module Administrator’s Guide

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
The IBM Informix Web DataBlade Module Administrator’s Guide describes how to
administer Web applications that use the IBM Informix Web DataBlade
module to dynamically retrieve data from an Informix database. The manual
describes topics such as how to configure the Web DataBlade module for
your database server; how to configure the NSAPI, Apache, CGI, and ISAPI
Webdrivers; how to implement security in your Web applications; and how
to increase the performance of your Web applications.

This section discusses the organization of the manual, the intended audience,
and the associated software products that you must have to develop applica-
tions using the Web DataBlade module.
Introduction 3

Organization of This Manual
Organization of This Manual
This manual includes the following chapters:

■ Chapter 1, “Overview of the Web DataBlade Module,” provides an
overview of the architecture and features of the Web DataBlade
module.

■ Chapter 2, “Getting Started,” provides information on how to
initially set up the Web DataBlade module for your database.

■ Chapter 3, “Configuring Webdriver,” describes how to configure
Webdriver, the format of the Webdriver configuration file (web.cnf),
and how to use the Web DataBlade Module Administration Tool to
create and update Webdriver mappings and Webdriver
configurations.

■ Chapter 4, “Using the NSAPI Webdriver,” describes how to
configure and use the NSAPI Webdriver.

■ Chapter 5, “Using the Apache Webdriver,” describes how to
configure and use the Apache Webdriver.

■ Chapter 6, “Using the ISAPI Webdriver,” describes how to configure
and use the ISAPI Webdriver.

■ Chapter 7, “Using the CGI Webdriver,” describes how to configure
and use the CGI Webdriver.

■ Chapter 8, “Implementing Security,” describes how to implement
security in a Web DataBlade module application by using AppPage-
level security, database access password encryption, and large object
security.

■ Chapter 9, “Improving Performance,” describes ways of improving
the performance of your Web DataBlade module applications by
using AppPage caching and large object caching.

■ Chapter 10, “Globalizing Your Web DataBlade Module Appli-
cation,” describes how to write and execute AppPages and database
content that is multibyte in format.

■ Chapter 11, “Deploying Web DataBlade Module Applications,”
describes how to deploy a Web DataBlade module application from
a development environment to a production environment.

■ Chapter 12, “Debugging and Troubleshooting,” describes how to
debug and troubleshoot your Web DataBlade module application.
4 IBM Informix Web DataBlade Module Administrator’s Guide

Types of Users
■ Chapter 13, “Web DataBlade Module Utilities,” describes the Web
DataBlade module utilities.

■ Appendix A, “Web DataBlade Module System Tables,” describes
system tables of the Web DataBlade module.

■ Appendix B, “Web DataBlade Module Variables,” lists all of the
Webdriver variables.

A Notices appendix describes IBM products, features, and services; a
glossary of relevant terms follows, and an index directs you to areas of
particular interest.

Types of Users
This manual is written for users who administer Web DataBlade module
applications and the databases that store the applications.

Software Dependencies
To use the Web DataBlade module, you must use IBM Informix Dynamic
Server as your database server. Check the release notes for specific version
compatibility. The release notes also list the Web servers that have been
certified for this release of the Web DataBlade module.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for date, time, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters, such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.
Introduction 5

Documentation Conventions
For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see Chapter 10, “Globalizing Your
Web DataBlade Module Application,” as well as the IBM Informix Guide to GLS
Functionality.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other volumes in the
documentation set.

The following conventions are discussed:

■ Typographical conventions

■ Icon conventions

■ Screen-illustration conventions

Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

 (1 of 2)
6 IBM Informix Web DataBlade Module Administrator’s Guide

Typographical Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Case-Sensitive Text

Variable names used in the Web DataBlade module are case sensitive, are
preceded by a dollar sign ($), and consist of alphanumeric and underscore
characters. Variables that begin with an underscore are reserved for system
use.

Case-Insensitive Text

Tags identify the elements of an HTML page and specify the structure and
formatting for that page. The Web DataBlade module includes a set of tags
that are processed by the WebExplode() function. These tags are known as
AppPage tags.

The AppPage tags use the SGML processing instruction tag format,
<?tag_info>, <?/tag_info>. An SGML processor ignores tags that it does not
recognize, including AppPage tags. Like other SGML processing tags, the
AppPage tags and attributes are not case sensitive. You can use uppercase
letters, lowercase letters, or any combination of the two.

The text and many of the examples in this manual show function and data
type names in mixed lettercasing (uppercase and lowercase). Because
IBM Informix Dynamic Server is case insensitive, you do not need to enter
function names exactly as shown; you can use uppercase letters, lowercase
letters, or any combination of the two.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞ Options” means choose the Options item from the
Tools menu.

Convention Meaning

 (2 of 2)
Introduction 7

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Platform Icons

Platform icons identify paragraphs that contain platform-specific
information.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the platform-specific information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that is specific to Windows
operating systems

Identifies information that is specific to UNIX operating
systems

Windows

UNIX
8 IBM Informix Web DataBlade Module Administrator’s Guide

Screen-Illustration Conventions
Screen-Illustration Conventions
The illustrations in this manual represent a generic rendition of various
windowing environments. The details of dialog boxes, controls, and
windows have been deleted or redesigned to provide this generic look.
Therefore, the illustrations in this manual depict Web browser output a little
differently than the way it appears on your screen.

Additional Documentation
This section describes the Web DataBlade module documentation available
from Informix:

■ Printed documentation

■ Online documentation

Printed Documentation
The following Informix manuals are part of the Web DataBlade module
documentation set and provide more information about the DataBlade
module:

■ The IBM Informix Web DataBlade Module Application Developer’s Guide
describes how to develop Web-enabled database applications that
dynamically retrieve data from the Informix database.

■ The IBM Informix Web DataBlade Module Administrator’s Guide
describes how to administer Web applications that use the Web
DataBlade module to dynamically retrieve data from an Informix
database. The manual describes topics such as how to configure the
Web DataBlade module for your database server; how to configure
the NSAPI, Apache, CGI, and ISAPI Webdrivers; how to implement
security in your Web applications; and how to increase the perfor-
mance of your Web applications.
Introduction 9

Printed Documentation
The following related IBM Informix documents complement the information
in this manual:

■ Data Director for Web is a set of Windows tools that allows you to
develop and manage Informix-based Web sites and that provides an
interface to the Web DataBlade module. For detailed information
about Data Director for Web, refer to the IBM Informix Data Director for
Web User’s Guide.

■ Before you can use the Web DataBlade module, you must install and
configure IBM Informix Dynamic Server. The Administrator’s Guide
for your database server provides information about how to
configure IBM Informix Dynamic Server and also contains infor-
mation about how it interacts with DataBlade modules.

■ Once you have installed the Web DataBlade module, you must use
BladeManager to register it into the database where the DataBlade
module will be used. See the DataBlade Module Installation and Regis-
tration Guide for details on registering DataBlade modules.

■ If you have never used Structured Query Language (SQL), read the
IBM Informix Guide to SQL: Tutorial. It provides a tutorial on SQL as it
is implemented by IBM Informix products. It also describes the
fundamental ideas and terminology for planning and implementing
an object-relational database.

■ A companion volume to the Tutorial, the IBM Informix Guide to SQL:
Reference, includes details of the IBM Informix system catalog tables,
describes IBM Informix and common environment variables that you
should set, and describes the column data types that IBM Informix
database servers support.

■ An additional companion volume to the Reference, the IBM Informix
Guide to SQL: Syntax, provides a detailed description of all the SQL
statements supported by IBM Informix products. This guide also
provides a detailed description of Stored Procedure Language (SPL)
statements.

■ The DB-Access User’s Manual describes how to invoke the DB-Access
utility to access, modify, and retrieve information from IBM Informix
database servers.

■ The Performance Guide for your database server provides information
on how to improve the performance of your SQL queries.
10 IBM Informix Web DataBlade Module Administrator’s Guide

Online Documentation
■ If you plan to develop your own DataBlade modules using the Web
DataBlade module as a foundation, read the DataBlade Developers Kit
User’s Guide. This manual describes how to develop DataBlade
modules using BladeSmith, BladePack, and BladeManager.

■ When errors occur, you can look them up by number and learn their
cause and solution in the IBM Informix Error Messages manual. If you
prefer, you can look up the error messages in the online message file
described in the introduction to the IBM Informix Error Messages
manual.

Online Documentation
The online documentation for the Web DataBlade module includes release
notes and documentation notes.

Release Notes and Documentation Notes

In addition to printed documentation, the following sections describe the
online files that supplement the information in this manual. Examine these
files before you begin using the Web DataBlade module. They contain vital
information about application and performance issues.

On UNIX platforms, the following online files appear in the
$INFORMIXDIR/extend/web.version directory, where version refers to the
current version of the Web DataBlade module.

Online File Purpose

WEBDOC.TXT Describes features that are not covered in the manual or that
have been modified since publication

WEBREL.TXT Describes any special actions that are required to configure and
use the Web DataBlade module on your computer

This file also describes new features and feature differences
from earlier versions of the Web DataBlade module and how
these differences might affect current products. Additionally,
this file contains information about any bugs and their
workarounds.

♦

UNIX
Introduction 11

IBM Welcomes Your Comments
The following items appear in the Informix folder. To display this folder,
choose Start➞ Programs➞ Informix from the Task Bar.

IBM Welcomes Your Comments
To help us with future versions of our manuals, we want to know about any
corrections or clarifications that you would find useful. Include the following
information:

■ The name and version of your manual

■ Any comments that you have about the manual

■ Your name, address, and phone number

Send electronic mail to:

doc@informix.com

We appreciate your suggestions.

Program Group Item Description

Documentation Notes This item includes additions or corrections to manuals,
along with information about features that might not be
covered in the manuals or that have been modified since
publication.

Release Notes This item describes feature differences from earlier
versions of IBM Informix products and how these
differences might affect current products. This file also
contains information about any known problems and
their workarounds.

♦

Windows
12 IBM Informix Web DataBlade Module Administrator’s Guide

1
Chapter
Overview of the Web DataBlade
Module
In This Chapter . 1-3

What Is the Web DataBlade Module? 1-3

Product Architecture 1-4
Webdriver . 1-4
The WebExplode() Function 1-5
Tags and Attributes 1-5
Architecture Diagram 1-6

Enterprise Replication 1-8
Converting from a 9.2x Server. 1-8
Reverting to a 9.2x Server 1-9

Product Features 1-9

1-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter provides an overview of the IBM Informix Web DataBlade
module. It includes the following topics:

■ “What Is the Web DataBlade Module?” following

■ “Product Architecture” on page 1-4

■ “Product Features” on page 1-9

What Is the Web DataBlade Module?
The Web DataBlade module is a collection of SQL functions, data types, tags,
and client applications that enables you to create Web applications that
dynamically retrieve data from an Informix database.

In typical Web database applications, most of the logic is in gateway appli-
cation code written in Perl, Tcl, or C. This Common Gateway Interface (CGI)
application connects to a database, builds and executes SQL statements, and
formats the results.

Using the Web DataBlade module, you need not develop a CGI application to
dynamically access database data. Instead, you create HTML pages that
include Web-DataBlade-module-specific tags (also called AppPage tags) and
functions that dynamically execute the SQL statements you specify and
format the results. These pages are called Application Pages (AppPages). The
types of data you retrieve can include traditional data types, as well as HTML,
image, audio, and video data.
Overview of the Web DataBlade Module 1-3

Product Architecture
AppPages are themselves stored in the database. A Web application that uses
the Web DataBlade module, therefore, first retrieves the AppPage from the
database and then passes the AppPage through an SQL function that inter-
prets the special AppPage tags and functions, typically to retrieve or update
data from database tables and to format the results.

Product Architecture
The Web DataBlade module consists of three main components:

■ Webdriver

■ The WebExplode() function

■ Tags and attributes

These components are described in the following sections. The section
“Architecture Diagram” on page 1-6 provides an illustration of the archi-
tecture of the Web DataBlade module and how the main components work
together.

Webdriver
Webdriver is a database client application that builds the SQL queries that
execute the WebExplode() function to retrieve AppPages from your
database. Webdriver returns the HTML that results from calls to the WebEx-
plode() function to the Web server.

The Web DataBlade module includes four implementations of Webdriver:

■ NSAPI Webdriver. This implementation of Webdriver is written with
the Netscape Server API and is used only with Netscape Web servers.

■ Apache Webdriver. This implementation of Webdriver is written
with the Apache API and is used only with Apache Web servers.

■ ISAPI Webdriver. This implementation of Webdriver is written with
the Microsoft Internet Information Server API and is used only with
Microsoft Internet Information Web servers.

■ CGI Webdriver. This implementation of Webdriver is a standard CGI
program that can be executed by any Web server.
1-4 IBM Informix Web DataBlade Module Administrator’s Guide

The WebExplode() Function
For optimal performance, use the implementation of Webdriver written for
your specific Web server. Use the CGI Webdriver only for Web servers that do
not have their own implementation of Webdriver.

Important: This guide uses the term “Webdriver,” without a preceding qualifier, to
refer to Webdriver functionality that is present in all implementations of Webdriver.
The guide uses a qualified term, such as “NSAPI Webdriver,” to refer to a specific
implementation of Webdriver.

The WebExplode() Function
The WebExplode() function is an SQL function that builds dynamic HTML
pages based on data stored in your database. The WebExplode() function
parses AppPages that contain AppPage tags within HTML and dynamically
builds and executes the SQL statements and processing instructions
embedded in the AppPage tags. The WebExplode() function formats the
results of these SQL statements and processing instructions and returns the
resulting HTML page to the client application, Webdriver. The SQL statements
and processing instructions are specified using SGML-compliant processing
tags.

Tags and Attributes
The Web DataBlade module includes a built-in set of SGML-compliant tags
and attributes that enable SQL statements to be executed dynamically within
AppPages. These tags are referred to as AppPage tags.

For example, the MISQL tag allows you to execute an SQL statement, such as
SELECT, and format the results of the statement in your AppPage. The MISQL
tag has its own attributes, such as SQL, COND, and ERR.
Overview of the Web DataBlade Module 1-5

Architecture Diagram
Architecture Diagram
The following diagram illustrates the architecture of the Web DataBlade
module. The sequence of events starts with a user typing a URL in a browser
and ends with the AppPage rendered in the browser.

1. A user enters a URL with a Webdriver request and the name of an
AppPage in a browser, as shown in the following example:

http://ariel:8080/hr_map/?MIval=/welcome.html

The browser makes a request to the Web server.

2. The Web server uses its configuration files and information from its
environment to determine how to invoke Webdriver. Depending on
the type of Webdriver that has been configured for your Web
DataBlade module installation, the Web server can execute a CGI
program (CGI Webdriver), call a Netscape API shared object (NSAPI
Webdriver), call an Apache API object (Apache Webdriver), and so
on.

Figure 1-1
Web DataBlade Module Architecture

Web browser

URL: http://...

IDS ORDBMS
Webdriver

Web server

Web server
environment

Build SQL statement

AppPage table

WebExplode() function

HTML page
withdynamic

data

HTML page
with MISQL

tags

Webdriver configuration tableLookup connection
1 2

Lookup configuration

Webdriver

Build SQL statement

Look up connection

web.cnf file

Look up configuration

3

4

5

66
1-6 IBM Informix Web DataBlade Module Administrator’s Guide

Architecture Diagram
3. Webdriver refers to the web.cnf file on the operating system for
information on how to connect to an Informix database server, the
database to which to connect, the user to connect to the database as,
and the Webdriver configuration to use once a connection has been
made to the database. Webdriver establishes a connection to the
appropriate database with this information.

4. Once Webdriver has established a connection to a database, it looks
up the Webdriver configuration in the WebConfigs system table. The
Webdriver configuration describes, among other things, the
AppPage table that contains the AppPage the user requested in the
URL originally entered in the browser.

5. Using this schema-related information, Webdriver builds a SELECT
statement to retrieve the requested AppPage from the Web appli-
cation table. The SELECT statement executes the WebExplode()
function on the AppPage at the same time that it retrieves the
AppPage. The WebExplode() function expands the AppPage tags
within the AppPage and formats the results, resulting in a standard
HTML page.

6. Finally, Webdriver returns this HTML page to the Web server, which
in turn returns the HTML page to be rendered by the Web browser.

Webdriver also enables you to retrieve large objects, such as images, directly
from the database when you specify a path that identifies a large object stored
in the database.
Overview of the Web DataBlade Module 1-7

Enterprise Replication
Enterprise Replication
The IBM Informix Web DataBlade module contains enterprise replication
(ER) support for the HTML data type. The necessary support functions are
automatically created in your database when you register the Web DataBlade
module on a Version 9.30, or later, server.

Please refer to the Guide to IBM Informix Enterprise Replication for information
on how to design your replication system as well as how to administer and
manage data replication throughout your enterprise.

If you are using a tool like Application Page Builder 2.0 (APB20), you must
install the tool in each of the replicated sites and set up the tables that contain
the HTML content (the wbPages) as well as the User Dynamic Tags and other
supporting tables for replication.

If you are using the Administrator’s Tool (adminTool), you must install the
adminTool in each of the replicated sites and you must manually update the
webconfigs table with the adminTool at each site.

Important: It is your responsibility to maintain consistent system information
throughout your enterprise. This means that you must ensure that all copies of the
tables that your applications utilize are synchronized at all times.

Converting from a 9.2x Server
If you register this version of the Web DataBlade module in a database on a
9.2x server and then subsequently convert your server to Version 9.30 or later
and want to use ER, you must use BladeManager and repeat the registration
of the Web DataBlade module in your database, in order to enable ER
support. Repeat the registration procedure as follows:

% blademgr

myserver> register web.version mydatabase

Where version is the current version of the Web DataBlade module and
mydatabase is the database in which you want to register it.
1-8 IBM Informix Web DataBlade Module Administrator’s Guide

Reverting to a 9.2x Server
Reverting to a 9.2x Server
If you have registered the Web DataBlade module on a Version 9.30 server
and you want to revert your server to Version 9.2x, you must run the
revert93to92.sql script to drop the Web DataBlade module ER support
functions, as follows:

cd $INFORMIXDIR/extend/web.version

dbaccess my_database revert93to92.sql

Run the revert93to92.sql script on each database in which you have regis-
tered the Web DataBlade module.

Product Features
The Web DataBlade module includes the following features:

■ AppPage tags identify the elements of an HTML page and specify the
structure and formatting for that page; they enable you to:

❑ Embed SQL statements directly within AppPages.

❑ Handle errors within AppPages.

❑ Execute statements conditionally within AppPages.

❑ Manipulate variables within AppPages using variable-
processing functions.

❑ Use other advanced query processing and formatting
techniques.

■ Web DataBlade module dynamic tags allow you to reuse existing
AppPage segments to simplify the construction and maintenance of
your Web applications:

❑ The Web DataBlade module provides system dynamic tags that
simplify the creation of check box lists, radio button lists, and
selection lists.

❑ You can also create user dynamic tags. A user dynamic tag is a tag
that you create and add to the database.
Overview of the Web DataBlade Module 1-9

Product Features
■ Webdriver allows you to customize Web applications using infor-
mation from its configuration file, the Webdriver configurations
stored in the database, the Web server environment, URLs, HTML
forms, and your own Web application variables, without additional
CGI programming. Webdriver also allows you to track persistent
session variables between AppPages.

■ AppPage Builder (APB), a development tool that is packaged with the
Web DataBlade module, provides a user interface to create and
update AppPages and to manage multimedia database content.

APB is itself a Web DataBlade module application made up of linked
AppPages.

APB uses the same database schema as IBM Informix Data Director for
Web. Data Director for Web is a set of Windows tools that allows you
to develop and manage Informix-based Web sites and that provides
an interface to the Web DataBlade module. For detailed information
about Data Director for Web, refer to the IBM Informix Data Director for
Web User’s Guide.

■ The NSAPI, Apache, and ISAPI implementations of Webdriver allow
you to use the proprietary features of the Netscape Web server,
Microsoft Internet Information Server, and Apache Web Server,
respectively, and eliminate CGI process overhead.

■ The Web DataBlade Module Administration Tool, a Web DataBlade
module application, provides a browser-based interface to create
and update Webdriver mappings and configurations.

■ A subset of the examples in this guide and the IBM Informix Web
DataBlade Module Application Developer’s Guide are available in the
directory INFORMIXDIR/extend/web.version/examples, where
INFORMIXDIR refers to the main Informix directory and version refers
to the current version of the Web DataBlade module installed on
your computer.

Important: In some examples in this guide, long lines of code wrap to accommodate
the fonts used in the guide rather than at the most logical places for the code.
Therefore, it is not recommended that you follow these examples exactly when you
write your code.
1-10 IBM Informix Web DataBlade Module Administrator’s Guide

2
Chapter
Getting Started
In This Chapter . 2-3

Overview of Web DataBlade Module Configuration 2-4

Preconfiguration Tasks 2-4

Configuring the Web DataBlade Module for Your Database Server . . 2-6
Who Should Run the websetup Utility? 2-7
Configuring the Web DataBlade Module: Servers on

Same Computer 2-8
Configuring the Web DataBlade Module: Servers on

Different Computers 2-12
Configuring Database Components 2-13
Configuring Web Server Components. 2-15

Configuring Additional Databases 2-17

Adding and Starting the WEB Virtual Processor 2-19

2-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter describes the tasks you must perform to configure the
IBM Informix Web DataBlade module for your database server. It includes the
following topics:

■ “Overview of Web DataBlade Module Configuration,” following

■ “Preconfiguration Tasks” on page 2-4

■ “Configuring the Web DataBlade Module for Your Database Server”
on page 2-6

■ “Configuring Additional Databases” on page 2-17

■ “Adding and Starting the WEB Virtual Processor” on page 2-19

This chapter is written with the assumption that you have some knowledge
of the following topics:

■ Web server configuration and terminology. Refer to your Web
server documentation for detailed information on this topic.

■ Web DataBlade module overview and terminology. Refer to
Chapter 1, “Overview of the Web DataBlade Module,” for detailed
information on this topic.
Getting Started 2-3

Overview of Web DataBlade Module Configuration
Overview of Web DataBlade Module Configuration
The first time you configure the Web DataBlade module for your Informix
database server, you must configure both the Web server and database
components. Configuring Web server components means updating Web
server configuration files to communicate with the database server. Config-
uring database components means installing Web DataBlade module tools
into your database, such as the Web DataBlade Module Administration Tool
and AppPage Builder.

To configure the Web DataBlade module for the first time

1. Perform all the tasks described in the section “Preconfiguration
Tasks,” following.

2. Perform the procedure described in “Configuring the Web
DataBlade Module for Your Database Server” on page 2-6.

After the initial configuration, you can configure additional databases to use
the Web DataBlade module. For detailed information on this topic, refer to
“Configuring Additional Databases” on page 2-17.

Preconfiguration Tasks
Before you can configure the Web DataBlade module for your database
server, you must perform the following tasks:

1. Install the Web DataBlade module on your database server.

Refer to the DataBlade Module Installation and Registration Guide and
the release notes for the Web DataBlade module for detailed informa-
tion on installing DataBlade modules.

2. Install and configure either the IBM Informix Client Software
Developer’s Kit or IBM Informix Connect on the Web server
computer.

Refer to the IBM Informix Client Products Installation Guide for UNIX or
the IBM Informix Client Products Installation Guide for Microsoft Win-
dows Environments for detailed information on installing Informix
client products.
2-4 IBM Informix Web DataBlade Module Administrator’s Guide

Preconfiguration Tasks
3. If your Web server computer is different from your database
computer, configure the client/server communications between the
two computers. This configuration typically involves updating the
$INFORMIXDIR/etc/sqlhosts and /etc/services files on the Web
server computer.

Refer to the Administrator’s Guide for your database server for
detailed information on configuring client/server communications.

4. Create an sbspace of at least 50 MB with the onspaces utility. You can
create either the default sbspace pointed to by the SBSPACENAME
parameter of the ONCONFIG file or create a different sbspace.

Be sure you enable logging for the sbspace.

The following example creates an sbspace named sbsp1 with an ini-
tial offset of 0, a size of 100 MB, and logging turned on:
onspaces -c -S sbsp1 -g 2 -p /SBspace/sbsp1 -o 0 -s 100000 -Df
"LOGGING=ON"

Refer to the Administrator’s Guide for your database server for
detailed information on creating sbspaces with the onspaces utility
and a description of the SBSPACENAME parameter.

5. Create a database with logging enabled. If you are going to configure
an existing database to use the Web DataBlade module, be sure that
logging has been enabled for the database.

For example, the SQL statement to create the hr_db database with
logging enabled is shown in the following example:

CREATE DATABASE hr_db WITH LOG;

Refer to the IBM Informix Guide to SQL: Syntax for detailed information
on creating databases.

6. If desired, set the Informix environment variables DBDATE and
DBCENTURY to customize your environment.
Getting Started 2-5

Configuring the Web DataBlade Module for Your Database Server
7. Register the Web DataBlade module in your database with
BladeManager.

The following example shows how to use the BladeManager com-
mand line interface to register the web.4.13.UC1 DataBlade module
into the hr_db database:

register web.4.13.UC1 hr_db

Refer to the DataBlade Module Installation and Registration Guide for
detailed information on registering DataBlade modules with
BladeManager.

8. Install and configure a Web server on your computer.

Do not use a Web server installation that has been configured for Ver-
sions 3.32 or previous of the Web DataBlade module. Instead, create
a new Web server installation.

Refer to your Web server documentation for information on install-
ing and configuring a Web server.

Important: If you are configuring the Web DataBlade module for a Windows NT
database server, be sure you perform the preceding tasks as a user who has “Informix-
Admin” and “Administrator” privileges.

Configuring the Web DataBlade Module for Your
Database Server
Once you have performed the tasks in “Preconfiguration Tasks” on page 2-4,
you can configure the Web DataBlade module for your database server. The
websetup utility performs most of the configuration work.

The websetup utility configures the following Web server components:

■ The web.cnf file

■ Web server configuration files

The websetup utility also configures the following database components:

■ Web DataBlade Module Administration Tool

■ AppPage Builder (optionally)
2-6 IBM Informix Web DataBlade Module Administrator’s Guide

Who Should Run the websetup Utility?
Tip: For Windows NT, the term “websetup utility” refers to the setup.exe utility
in the directory INFORMIXDIR\extend\web.version\websetup, where INFOR-
MIXDIR is the main Informix directory and version is the current version of the Web
DataBlade module installed on your computer.

Who Should Run the websetup Utility?
Because the websetup utility configures both Web server and database
components, you need ownership permission on both servers to complete
the procedure in “Configuring the Web DataBlade Module: Servers on Same
Computer” on page 2-8.

If the same user owns both the Web server and the database, run the
websetup utility as that user.

If different users own the Web server and database, run the websetup utility
as the root user on UNIX or a user with Administrator privileges on Windows
NT. The websetup utility will then have full permission to execute its various
tasks as the appropriate user: the owner of the Web server or the owner of the
database.

If, however, you are unable to become the root user on your computer, you
must run the websetup utility twice, once for each type of user, as described
in the following procedure:

1. As the owner of the Web server, run the websetup utility and select
option 3, Configure Web server components only.

The utility guides you through the Web server component
configuration.

2. As the database owner, run the websetup utility and select option 2,
Configure Database components only.

The utility guides you through the database component
configuration.

3. Follow the instructions, provided by the websetup utility after
configuring database components, to correctly update the web.cnf
file.

If your Web server and database server are on the same computer, follow the
instructions in “Configuring the Web DataBlade Module: Servers on Same
Computer,” following.
Getting Started 2-7

Configuring the Web DataBlade Module: Servers on Same Computer
If your Web server and database server are on different computers that are
both UNIX platforms, follow the instructions in “Configuring the Web
DataBlade Module: Servers on Different Computers” on page 2-12.

Configuring the Web DataBlade Module: Servers on Same
Computer
This section is written with the assumption that you are configuring the Web
DataBlade module for a new database and not upgrading from a 3.32 or
earlier version of the Web DataBlade module. If your database is currently
registered with a 3.3 or earlier version of the Web DataBlade module and you
want to upgrade to version 4.0 or later, refer to the release notes for upgrade
instructions.

This section provides two procedures for configuring the Web DataBlade
module for your database server; use the first procedure if your database
server is on the UNIX platform and use the second procedure on page 2-11 if
your database server is on the Windows NT platform.
2-8 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the Web DataBlade Module: Servers on Same Computer
To configure the Web DataBlade module for your UNIX database server

1. Change to the directory INFORMIXDIR/extend/web.version/install,
where INFORMIXDIR refers to the main Informix directory and
version refers to the current version of the Web DataBlade module
installed on your computer.

For example, if the main Informix directory is /local1/ifmx and the
current version of the Web DataBlade module installed on your com-
puter is 4.13.UC1, execute the following UNIX command:

cd /local1/ifmx/extend/web.4.13.UC1/install

2. Run the websetup utility as the owner of the database and the Web
server, or as the root user.

Select option 1, Configure Web Server and Database Components.
The utility guides you through the setup process.

The websetup utility asks you a variety of questions about your
environment, whether you want to install database components
such as AppPage Builder, where you want to store the web.cnf file,
and so on. The websetup utility configures the Web DataBlade mod-
ule for your database server according to your answers.

You can obtain helpful information about many of the screens by
entering the letter h.

Refer to “Who Should Run the websetup Utility?” on page 2-7 for
information about the permissions you need to run the websetup
utility.

3. If you use, or are planning to use, the MIEXEC AppPage tag to
execute Perl programs in your AppPages, add a WEB virtual
processor to your database server by adding an appropriate
VPCLASS parameter of the ONCONFIG file.

For detailed information on this step, refer to “Adding and Starting
the WEB Virtual Processor” on page 2-19.
Getting Started 2-9

Configuring the Web DataBlade Module: Servers on Same Computer
4. If you are using the Apache, ISAPI, or CGI Webdriver, refer to the
appropriate chapters in this guide for instructions on how to
complete the configuration of these Webdriver implementations.
These chapters are:

■ Chapter 5, “Using the Apache Webdriver”

■ Chapter 6, “Using the ISAPI Webdriver”

■ Chapter 7, “Using the CGI Webdriver”

The websetup utility automatically configures the NSAPI Webdriver.

5. Invoke the Web DataBlade Module Administration Tool in your
browser by specifying the URL that the websetup utility provides at
the end of its execution.

Typically, this URL looks something like the following example:
http://domain:port/dbname/admin/

The domain variable refers to the name of the Web server computer,
port refers to the port number of the Web server process, and dbname
refers to the name of the database you have just configured for the
Web DataBlade module.

Use the Web DataBlade Module Administration Tool to create new
Webdriver mappings and Webdriver configurations. For example,
you might want to add a Webdriver mapping to invoke AppPage
Builder to begin developing Web applications.

For detailed information on adding Webdriver mappings and con-
figurations, refer to “Invoking and Using the Web DataBlade
Module Administration Tool” on page 3-29.
2-10 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the Web DataBlade Module: Servers on Same Computer
To configure the Web DataBlade module for your Windows NT database server

1. Set the Windows NT system environment variable INFORMIXDIR to
the full pathname of the main Informix directory.

2. Change to the directory INFORMIXDIR\extend\web.version\
websetup, where INFORMIXDIR refers to the main Informix
directory and version refers to the current version of the Web
DataBlade module installed on your computer.

For example, if the main Informix directory is c:\local1\ifmx and
the current version of the Web DataBlade module installed on your
computer is 4.13.UC1, execute the following command at the Win-
dows NT command prompt:

cd c:\local1\ifmx\extend\web.4.13.UC1\websetup

3. Run the setup.exe command as the owner of the database and the
Microsoft Internet Information server, or as a user who has Admin-
istrator privileges. This launches the websetup utility.

Select option 1, Configure Web Server and Database Components.
The utility guides you through the setup process.

The websetup utility asks you a variety of questions about your
environment, whether you want to install database components
such as AppPage Builder, where you want to store the web.cnf file,
and so on. The websetup utility configures the Web DataBlade mod-
ule for your database server according to your answers.

Refer to “Who Should Run the websetup Utility?” on page 2-7 for
information about the permissions you need to run the websetup
utility.

4. If you use, or are planning to use, the MIEXEC AppPage tag to
execute Perl programs in your AppPages, add a WEB virtual
processor to your database server by adding an appropriate
VPCLASS parameter of the ONCONFIG file.

For detailed information on this step, refer to “Adding and Starting
the WEB Virtual Processor” on page 2-19.

5. Follow the instructions in Chapter 6, “Using the ISAPI Webdriver,”
to complete the configuration of the ISAPI Webdriver.
Getting Started 2-11

Configuring the Web DataBlade Module: Servers on Different Computers
6. Invoke the Web DataBlade Module Administration Tool in your
browser by specifying the URL that the websetup utility provides at
the end of its execution.

Typically, this URL looks something like the following example:
http://domain:port/dbname/admin/

The domain variable refers to the name of the Web server computer,
port refers to the port number of the Web server process, and dbname
refers to the name of the database you have just configured for the
Web DataBlade module.

Use the Web DataBlade Module Administration Tool to create new
Webdriver mappings and Webdriver configurations. For example,
you might want to add a Webdriver mapping to invoke AppPage
Builder to begin developing Web applications.

For detailed information on adding Webdriver mappings and con-
figurations, refer to “Invoking and Using the Web DataBlade
Module Administration Tool” on page 3-29.

Configuring the Web DataBlade Module: Servers on
Different Computers
This section describes how to configure the Web DataBlade module when the
Web server and database server are on different computers. This procedure
is for UNIX platforms only.

1. Log onto the database server computer as the owner of the database
for which you are going to configure the Web DataBlade module.

2. Configure the database components by following the instructions in
the section “Configuring Database Components,” following.

3. Log onto the Web server computer as the user informix.

4. Configure the Web server components by following the instructions
in the section “Configuring Web Server Components” on page 2-15.
2-12 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the Web DataBlade Module: Servers on Different Computers
5. Invoke the Web DataBlade Module Administration Tool in your
browser by specifying the URL that the websetup utility provides at
the end of its execution.

Typically, this URL looks something like the following example:
http://domain:port/dbname/admin/

In this example, domain is the name of the Web server computer.

The variable port is the port number of the Web server process.

The variable dbname is the name of the database you have just config-
ured for the Web DataBlade module.

6. Use the Web DataBlade Module Administration Tool to create new
Webdriver mappings and Webdriver configurations. For example,
you might want to add a Webdriver mapping to invoke AppPage
Builder to begin developing Web applications.

For detailed information on adding Webdriver mappings and configurations,
refer to Chapter 3, “Configuring Webdriver.”

Configuring Database Components

This section describes step 2 of the procedure in previous section; it explains
how to configure the database components. Perform these steps on the
database server computer.

1. Copy the sample Webdriver configuration file, web.cnf.example,
from the $INFORMIXDIR/extend/web.version/install directory to
the /tmp directory (version is the version of the Web DataBlade
module that you are using, for example, 4.13.UC1).

Rename the web.cnf.example file to web.cnf.

2. Go to the directory $INFORMIXDIR/extend/web.version/install.
Getting Started 2-13

Configuring the Web DataBlade Module: Servers on Different Computers
3. Run the websetup utility and select option 2, Configure Database
Components Only. The utility guides you through the setup process.

When the utility asks you for the directory that contains the web.cnf
file, enter: /tmp.

The websetup utility asks you questions about your environment
and whether you want to install database components such as App-
Page Builder. The utility configures the Web DataBlade module for
your database server according to your answers. You can obtain
helpful information about many of the screens by entering the
letter h.

4. Delete the file /tmp/web.cnf.

5. Go to the directory $INFORMIXDIR/extend/web.version/utils.

6. Run the webconfig utility with the following command:
webconfig -addmap -p /dbname/admin -n admin
-d dbname -u user -o /tmp/temp_map

In this command, dbname is the name of the database for which you
are configuring the Web DataBlade module and user is the owner of
the database.

The -o temp_map option of the webconfig utility creates a file in the
current directory called /tmp/temp_map that contains a Webdriver
mapping. You import this file later when you are configuring the
Web server components.

7. Go to the directory $INFORMIXDIR/extend/web.version.

8. Execute the UNIX tar command to create a TAR file that contains the
necessary files for configuring the Web server components on the
Web server computer, as shown:

tar cvf /tmp/WebBundle.tar install netscape apache utils
doc

The tar command creates a TAR file called /tmp/WebBundle.tar that
contains the directories: install, netscape, apache, utils, and doc.

9. If you use, or are planning to use, the MIEXEC AppPage tag to execute
Perl programs in your AppPages, add a WEB virtual processor to
your database server by adding an appropriate VPCLASS parameter
of the ONCONFIG file.

For detailed information about this step, refer to “Adding and Start-
ing the WEB Virtual Processor” on page 2-19.
2-14 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the Web DataBlade Module: Servers on Different Computers
Configuring Web Server Components

This section describes step 4 of the procedure in “Configuring the Web
DataBlade Module: Servers on Different Computers” on page 2-12; it
explains how to configure the Web server components. Perform these steps
on the Web server computer.

1. Copy the files /tmp/temp_map and /tmp/WebBundle.tar (that you
created while configuring the database components on the database
server computer) to the /tmp directory on the Web server computer.

2. Go to the main Informix directory ($INFORMIXDIR) on your Web
server computer that contains the Informix client files.

3. Create a directory called extend/web.version. For example, if the
current version of the Web DataBlade module is 4.13.UC1, execute
the following command:

mkdir extend/web.4.13.UC1

4. Go to this new directory.

5. Using the tar command, extract the files from the
/tmp/WebBundle.tar file into this directory. For example:

tar -xvf /tmp/WebBundle.tar

6. Go to the install directory that is created by the previous step, as in:
cd install

7. Run the websetup utility and select option 3, Configure Web Server
Components Only. The utility guides you through the setup process.

The websetup utility asks you questions about your environment
and the location of your Web server. The utility configures the Web
server components according to your answers.

Be sure to note the directory in which the websetup utility stores the
web.cnf Webdriver configuration file.

You can obtain helpful information about the screens by entering the
letter h.

8. Set the environment variable MI_WEBCONFIG to the full pathname
of the web.cnf file created by the websetup utility.

9. Go to the directory $INFORMIXDIR/extend/web.version/utils.
Getting Started 2-15

Configuring the Web DataBlade Module: Servers on Different Computers
10. Run the webconfig utility with the -i option as shown:
webconfig -addmap -i /tmp/temp_map

This imports the /tmp/temp_map file that you copied to the /tmp
directory into the web.cnf file.

11. If you are using the Apache, ISAPI, or CGI Webdriver, refer to the
appropriate chapters in this guide for instructions on how to
complete the configuration of these Webdriver implementations:

■ Chapter 5, “Using the Apache Webdriver”

■ Chapter 6, “Using the ISAPI Webdriver”

■ Chapter 7, “Using the CGI Webdriver”
2-16 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring Additional Databases
Configuring Additional Databases
This section describes how you can configure the Web DataBlade module for
additional databases.

This section is written with the assumption that you have already performed
the initial configuration of the Web DataBlade module for your database
server, as described in “Configuring the Web DataBlade Module for Your
Database Server” on page 2-6.

To configure an additional database to use the Web DataBlade module

1. Create a database with logging enabled. If you are going to configure
an existing database to use the Web DataBlade module, be sure that
logging has been enabled for the database.

For example, the SQL statement to create the hr_db database with
logging enabled is shown in the following example:

CREATE DATABASE hr_db WITH LOG;

Refer to the IBM Informix Guide to SQL: Syntax for detailed information
on creating databases.

2. Register the Web DataBlade module in your database with
BladeManager.

The following example shows how to use the BladeManager com-
mand line interface to register the web.4.13.UC1 DataBlade module
into the hr_db database:

register web.4.13.UC1 hr_db

Refer to the DataBlade Module Installation and Registration Guide for
detailed information on registering DataBlade modules with
BladeManager.

3. Change to the directory INFORMIXDIR/extend/web.version/install,
where INFORMIXDIR refers to the main Informix directory and
version refers to the current version of the Web DataBlade module
installed on your computer.

For example, if the main Informix directory is /local1/ifmx and the
current version of the Web DataBlade module installed on your com-
puter is 4.13.UC1, execute the following UNIX command:

cd /local1/ifmx/extend/web.4.13.UC1/install
Getting Started 2-17

Configuring Additional Databases
4. Run the websetup utility.

Select option 2, Configure Database Components Only. The utility
guides you through the setup process.

The websetup utility asks you questions about your environment,
the location of the web.cnf file, and whether you want to install data-
base components such as AppPage Builder. The websetup utility
configures the Web DataBlade module for your database according
to your answers.

You can obtain helpful information about the screens by entering the
letter h.

5. Add a /dbname/admin URL prefix to your Web server, where dbname
refers to the name of the database you are configuring.

The following chapters, describing the NSAPI, Apache, ISAPI, and
CGI Webdrivers, provide information on adding URL prefixes to the
corresponding Web server:

■ Chapter 4, “Using the NSAPI Webdriver”

■ Chapter 5, “Using the Apache Webdriver”

■ Chapter 6, “Using the ISAPI Webdriver”

■ Chapter 7, “Using the CGI Webdriver”

6. Stop and restart your Web server.

7. Invoke the Web DataBlade Module Administration Tool in your
browser by specifying the URL that the websetup utility provides at
the end of its execution.

Typically, this URL looks something like the following example:
http://domain:port/dbname/admin/

The domain variable refers to the name of the Web server computer,
port refers to the port number of the Web server process, and dbname
refers to the name of the database you have just configured for the
Web DataBlade module.

Use the Web DataBlade Module Administration Tool to create new
Webdriver mappings and Webdriver configurations. For example,
you might want to add a Webdriver mapping to invoke AppPage
Builder to begin developing Web applications.

For detailed information on adding Webdriver mappings and con-
figurations, refer to “Invoking and Using the Web DataBlade
Module Administration Tool” on page 3-29.
2-18 IBM Informix Web DataBlade Module Administrator’s Guide

Adding and Starting the WEB Virtual Processor
Adding and Starting the WEB Virtual Processor
The Web DataBlade module uses a special virtual processor called WEB to
execute the internal database server function that performs the work of the
MIEXEC tag. Therefore, if you use, or are planning to use, the MIEXEC tag to
execute Perl programs in your AppPages, you must update the ONCONFIG
file and add a VPCLASS parameter to start the WEB virtual processor.

To add and start the WEB virtual processor

1. Add the following line to the ONCONFIG file:
VPCLASS WEB,num=1,noyield

The num parameter specifies the number of WEB virtual processors
that the database server starts. Although you can add as many as you
want, keep in mind that the more virtual processors you start, the
more resources they use. Refer to the Administrator’s Guide for your
database server for information on the optimal number of virtual
processors.

The noyield parameter specifies that the WEB virtual processor runs
to completion before it processes the next request. You must include
the noyield parameter when you specify the WEB virtual processor.

2. Restart the database server.

The database server reads the new ONCONFIG file and automati-
cally starts a WEB virtual processor when needed.

3. Verify that the WEB virtual processor has been registered with the
database server by executing the onstat command at the UNIX shell
prompt, as shown in the following example:

INFORMIXDIR/bin/onstat -g glo

INFORMIXDIR refers to the main Informix directory.

Under the heading Virtual processor summary, you should see an
entry for the WEB virtual processor.

For detailed information about virtual processors, the ONCONFIG file, the
VPCLASS parameter of the ONCONFIG file, the onstat command, and
stopping and starting the database server, refer to the Administrator’s Guide
for your database server.
Getting Started 2-19

3
Chapter
Configuring Webdriver
In This Chapter . 3-3

Overview of Webdriver 3-4
Webdriver Variables 3-4

Webdriver Variables in the web.cnf File 3-5
Webdriver Variables in the Database 3-5

How Webdriver Locates AppPages 3-8
The Web DataBlade Module Administration Tool 3-9

The Webdriver Configuration File (web.cnf) 3-9
File Permissions of the web.cnf File 3-10
Format of the web.cnf File 3-10

Global Section of the web.cnf File 3-11
Setvar Section of the web.cnf File 3-13
Map Section of the web.cnf File 3-13

Example of the web.cnf File 3-16
Variables in the Global Section 3-17
Variables in the Setvar Section 3-17
Variables in the Map Section 3-17

Setting the MI_WEBCONFIG Environment Variable 3-18

Managing Webdriver Connections to the Database 3-19

Using Server-Side Includes in AppPages 3-22

Setting Up the Web DataBlade Module Administration Tool 3-22
Webdriver Mappings 3-23
Webdriver Configurations 3-23
Installing the Administration Tool in Your Database 3-24

Creating and Loading the Tool’s Schema. 3-26
Executing the webconfig Utility 3-27

3-2 IBM
Securing the Web DataBlade Module Administration Tool 3-28

Invoking and Using the Web DataBlade Module Administration Tool . 3-29

Viewing Existing Webdriver Configurations 3-31

Editing an Existing Webdriver Configuration 3-32
Changing the Current Value of a Webdriver or

User-Defined Variable 3-34
Adding a New Webdriver or User-Defined Variable 3-35
Deleting a Webdriver or User-Defined Variable 3-38

Adding a New Webdriver Configuration 3-39

Deleting an Existing Webdriver Configuration 3-42

Viewing Existing Webdriver Mappings 3-43

Editing an Existing Webdriver Mapping 3-43

Adding a New Webdriver Mapping 3-45
Creating the Webdriver Mapping. 3-46
Adding a URL Prefix to Your Web Server 3-47

Deleting an Existing Webdriver Mapping 3-48
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter describes how to configure Webdriver. It includes the following
topics:

■ “Overview of Webdriver” on page 3-4

■ “The Webdriver Configuration File (web.cnf)” on page 3-9

■ “Setting the MI_WEBCONFIG Environment Variable” on page 3-18

■ “Managing Webdriver Connections to the Database” on page 3-19

■ “Using Server-Side Includes in AppPages” on page 3-22

■ “Setting Up the Web DataBlade Module Administration Tool” on
page 3-22

■ “Invoking and Using the Web DataBlade Module Administration
Tool” on page 3-29

■ “Viewing Existing Webdriver Configurations” on page 3-31

■ “Editing an Existing Webdriver Configuration” on page 3-32

■ “Adding a New Webdriver Configuration” on page 3-39

■ “Deleting an Existing Webdriver Configuration” on page 3-42

■ “Viewing Existing Webdriver Mappings” on page 3-43

■ “Editing an Existing Webdriver Mapping” on page 3-43

■ “Adding a New Webdriver Mapping” on page 3-45

■ “Deleting an Existing Webdriver Mapping” on page 3-48
Configuring Webdriver 3-3

Overview of Webdriver
Overview of Webdriver
Webdriver is one of the main components of the Web DataBlade module. It
provides the interface between a Web server and an Informix database. When
a user invokes an AppPage by either specifying a URL in a browser or clicking
on a link in an HTML page, Webdriver dynamically retrieves the AppPage, as
well as results of SQL statements, from the database and passes the resulting
HTML page to the Web server. AppPages are HTML pages that include Web
DataBlade module specific tags (also called AppPage tags) and functions that
dynamically execute the SQL statements you specify and format the results.
To design a Web application, you create AppPages and specify the flow
between them.

A Web server calls Webdriver through an NSAPI, ISAPI, Apache, or CGI
interface. Webdriver obtains configuration information about the Web appli-
cation environment from the following sources:

■ The Webdriver configuration file, called web.cnf by default

■ The Webdriver configuration, stored in the WebConfigs system table
in the database

■ The Web browser

■ The Web server environment

Important: This chapter uses the term “Webdriver,” without a preceding qualifier, to
refer to Webdriver functionality that is present in all implementations of Webdriver.
The chapter uses a qualified term, such as “NSAPI Webdriver,” to refer to a specific
implementation of Webdriver.

Webdriver Variables
Webdriver obtains configuration information about Web DataBlade module
applications from its own set of variables. There are two types of Webdriver
variables: those that reside in the web.cnf file and those that reside in the
database.
3-4 IBM Informix Web DataBlade Module Administrator’s Guide

Webdriver Variables
Webdriver Variables in the web.cnf File

Webdriver uses the Webdriver variables that reside in the web.cnf file to
connect to a database, set global Webdriver variables, and set Informix
environment variables, such as INFORMIXDIR, and INFORMIXSERVER. The
Webdriver variables that are used to connect to a particular database are
collectively known as Webdriver mappings.

Important: Do not set the Informix environment variables DBDATE and
DBCENTURY in your web.cnf file. Their settings will be ignored. Instead, set them
in your environment before you register the DataBlade module in your database.

The names of Webdriver mappings are reflected in certain URL prefixes
defined for a Web server. URL prefixes are the URLs that client applications
send to the Web server to invoke HTML pages, execute CGI programs, call
Web server plug-ins, and so on.

As part of the Web DataBlade module configuration for your database, you
configure the Web server so that the URL prefixes that match the names of
Webdriver mappings invoke Webdriver. This means that when a user types
in a browser a URL prefix that matches the name of a Webdriver mapping, the
Web server calls Webdriver, which in turn makes a connection to a database
and invokes the appropriate AppPage. For this reason, Webdriver mappings
can be thought of as the glue between a Web server and the database server.

The Web server finds the location of the web.cnf file using the
MI_WEBCONFIG variable, typically set in the script that starts the Web server.

Webdriver Variables in the Database

Webdriver uses the variables that reside in the database to enable Webdriver
features, such as AppPage caching, and to retrieve user-defined variable
definitions.

When Webdriver consults a Webdriver mapping to make a connection to a
database, the Webdriver mapping also specifies the Webdriver configuration to
use. A Webdriver configuration is the name given to a set of Webdriver
variables and their values that reside in the database. A Webdriver configu-
ration includes the Webdriver variables to enable Webdriver features and
user-defined variables.
Configuring Webdriver 3-5

Webdriver Variables
When you install the Web DataBlade Module Administration Tool, described
in “The Web DataBlade Module Administration Tool” on page 3-9, into your
database, the tool automatically creates the apb2, ddw, and admin
Webdriver configurations. The apb2 Webdriver configuration, for example,
defines the Webdriver variables to invoke the AppPages that make up
AppPage Builder (APB).

Important: The Web DataBlade Module Administration Tool also creates a
Webdriver configuration called apb. The apb Webdriver configuration is used to
invoke an older version of APB, used in Versions 3.3 and earlier of the Web DataBlade
module. This older version of APB uses a different database schema to store AppPages
than that of the new version of APB included in Version 4.0 and later of the Web
DataBlade module. The previous version of APB uses the Webdriver variables
MItab, MIcol, and MInam to specify the AppPage table schema; the new version of
APB uses the wbextensions table to specify the schema. The wbextensions table is
discussed in a later section in this guide.

Unless you currently use the previous version of APB to store your AppPages, you
should always specify the apb2 Webdriver configuration in the Webdriver mapping
used to invoke APB, to use the new APB as a tool for developing AppPages. Although
Version 4.0 and later of the Web DataBlade module supports the previous APB and
the use of the MItab, MIcol, and MInam Webdriver variables, future releases of the
DataBlade module might not. Refer to the release notes for information about
migrating Web DataBlade module applications from the previous schema to the new
schema that uses the wbextensions table.

Feature-Related Webdriver Variables

The feature-related Webdriver variables are those that enable specific
Webdriver features, such as AppPage caching or large object support. You do
not have to include these Webdriver variables in a Webdriver configuration;
you only add and set them when you want to enable a particular feature.

For example, if you set the following feature-related Webdriver variables,
you enable AppPage caching for Web DataBlade module applications that
use the Webdriver configuration:

■ cache_page

■ cache_directory

■ cache_admin

■ cache_admin_password
3-6 IBM Informix Web DataBlade Module Administrator’s Guide

Webdriver Variables
The apb2 Webdriver configuration, for example, does not by default include
these Webdriver variables, because AppPage caching is turned off by default.
However, by adding these Webdriver variables to the apb2 Webdriver
configuration, you enable AppPage caching for the APB application.

Specific feature-related Webdriver variables are described in detail in the
sections of this guide that describe the feature and in sections of the
IBM Informix Web DataBlade Module Application Developer’s Guide that describe
the feature.

User-Defined Webdriver Variables

A Webdriver configuration can also optionally include user-defined
variables. User-defined variables are variables that an AppPage can access
but are not used by Webdriver.

For example, you can use the Web DataBlade Module Administration Tool to
set a user-defined variable called company_name for your Webdriver config-
uration. Then, in your AppPages, you can use the MIVAR tag to access the
value of the company_name user-defined variable instead of explicitly speci-
fying the name of the company.

Overwriting Webdriver Variables in a URL

When you use the Web DataBlade Module Administration Tool to add a
Webdriver variable to a Webdriver configuration or to change its value, you
can specify whether certain Webdriver variables can be overwritten in the
URL that calls the AppPage.

The MIval Webdriver variable should always be overwritable, since MIval is
the variable that identifies the unique name of the AppPage you want to
invoke and you invoke many different AppPages in a Web application. Refer
to “How Webdriver Locates AppPages” on page 3-8 for detailed information
on the MIval Webdriver variable.

You can set the following Webdriver variables as overwritable:

■ MIval (always set as overwritable)

■ MIqry2pass

■ MI_WEBACCESSLEVEL

■ MI_WEBGROUPLEVEL
Configuring Webdriver 3-7

How Webdriver Locates AppPages
You cannot set the Webdriver variables not included in the preceding list as
overwritable. For example, almost all the feature-related Webdriver variables
are not overwritable. This is because feature-related Webdriver variables are
used to change the way Webdriver behaves and are never used in AppPages.

Important: The Web DataBlade Module Administration Tool allows you to check the
Overwrite check box for these feature-related variables. However, Webdriver ignores
this setting and never overwrites the value of these Webdriver variables.

How Webdriver Locates AppPages
Webdriver uses the wbextensions table in combination with the MIval
Webdriver variable to locate an AppPage stored in a database table.

You invoke an AppPage by either typing a URL directly in a browser or by
clicking a link that the browser resolves into a URL. This URL always includes
the MIval variable that specifies the unique name of an AppPage, as shown
in the following example:

http://ariel:8080/hr_map/?MIval=/hr_app/welcome.html

In the example, ariel:8080 specifies the domain name and port number of
the Web server process, /hr_map is the Webdriver mapping, and
/hr_app/welcome.html is the unique name of an AppPage.

Webdriver first parses the value of the MIval variable into three distinct
pieces: an extension, an ID, and a path. In the example, html is the extension,
welcome is the ID, and /hr_app is the path.

Webdriver then uses the extension value to query the wbextensions table to
determine in which database table the AppPage is stored. If you use APB as
your development tool, AppPages with the extension html are stored in the
wbPages table.

Webdriver then uses all three pieces of the MIval variable (extension, ID, and
path) to query the AppPage table and return the AppPage.

For detailed information on invoking AppPages and the wbextensions table,
refer to the IBM Informix Web DataBlade Module Application Developer’s Guide.
3-8 IBM Informix Web DataBlade Module Administrator’s Guide

The Web DataBlade Module Administration Tool
The Web DataBlade Module Administration Tool
The Web DataBlade Module Administration Tool is a Web DataBlade module
application that allows you to add, update, or delete Webdriver mappings
and Webdriver configurations for the database to which you are connected.

You must install the Web DataBlade Module Administration Tool in each
database in which the Web DataBlade module has been registered, usually
with the websetup utility. You run the websetup utility when you initially
configure the Web DataBlade module for your database. For detailed infor-
mation on running the websetup utility, refer to Chapter 2, “Getting
Started.”

For detailed information about the Web DataBlade Module Administration
Tool and how to use it to modify or add Webdriver mappings and Webdriver
configurations, refer to “Invoking and Using the Web DataBlade Module
Administration Tool” on page 3-29.

The Webdriver Configuration File (web.cnf)
The Webdriver configuration file contains information about the connection
between the Web server and your Web DataBlade module application.
Webdriver reads this file to find out information such as how to connect to
the Informix database server, which database to connect to, and what global
variables have been set.

The Webdriver configuration file also contains a mapping between the URL
prefixes of the Web server and the Webdriver configurations stored in an
Informix database. URL prefixes are the URLs that client applications send to
the Web server to invoke HTML pages, execute CGI programs, call Web server
plug-ins, and so on.

Important: You can name the Webdriver configuration file anything you want. By
convention, however, this file is called web.cnf. For clarity and consistency, this book
uses the name web.cnf for the Webdriver configuration file.
Configuring Webdriver 3-9

File Permissions of the web.cnf File
You usually never have to manually update the Map sections of the web.cnf
file because the Web DataBlade Module Administration Tool does this for
you when you update the corresponding Webdriver mapping. However, if
you need to update or add Webdriver variables to the Global or Setvar
sections of the web.cnf file, then you must do so manually since the Web
DataBlade Module Administration Tool cannot update these sections of the
web.cnf file.

The Web DataBlade Module Administration Tool is described later in this
chapter, in the section “Invoking and Using the Web DataBlade Module
Administration Tool” on page 3-29.

File Permissions of the web.cnf File
The web.cnf file must be owned by the user who owns the Web server
process. This means that, for example, if the Web server process is owned by
the user nobody, then the web.cnf file must also be owned by the user
nobody.

In addition, the web.cnf file should have read and write permissions for the
owner of the file and read permissions for everyone else.

Format of the web.cnf File
The web.cnf file uses SGML-like syntax to store the information needed to
connect the Web server with your Web DataBlade module application. The
information typically takes the following form:

<Section>
variable1 value1
variable2 value2
...
</Section>

Section refers to the section of the web.cnf file that is being described and
determines the variables you can include in the description.

You can include the following three sections in the web.cnf file: Global,
Setvar, and Map. The following sections describe each section of the file.
3-10 IBM Informix Web DataBlade Module Administrator’s Guide

Format of the web.cnf File
Global Section of the web.cnf File

The Global section of the web.cnf file describes the Webdriver variables that
are global to the client connection to the database.

When Webdriver makes a connection to a database, it automatically includes
the variables in the Global section of the web.cnf file in every Webdriver
configuration in every database in the database server. These variables
(except for debug_level) cannot be overwritten for a particular Webdriver
configuration.

The following table lists all the variables you can set in the Global section of
the web.cnf file.

Variable Mandatory? Description

dbconnmax No Specifies the maximum number of connections to the database

The default value is 16.

anchorvar Yes Specifies the name of the anchor variable used when an AppPage calls
another AppPage

This variable is mandatory. For the NSAPI and Apache Webdrivers,
anchorvar should always be set to WEB_HOME, with a trailing forward
slash (/). For the ISAPI Webdriver, the variable should be set to
WEB_HOME/drvisapi.dll. For the CGI Webdriver, the variable should
be set to WEB_HOME/webdriver.

Since anchorvar is always set to WEB_HOME, you can always use
WEB_HOME as an anchor variable in any AppPage.

driverdir No Specifies the directory that Webdriver uses to internally coordinate its
interaction with the Web server

The default value of this variable is /tmp.

This variable is only used by the Apache and CGI implementations of
Webdriver.

debug_file No Specifies the full pathname of the log file to which Webdriver
messages are written

For more information on Webdriver tracing, refer to Chapter 12,
“Debugging and Troubleshooting.”

 (1 of 2)
Configuring Webdriver 3-11

Format of the web.cnf File
The following example shows a Global section of a web.cnf file:

<Global>
dbconnmax 10
anchorvar WEB_HOME/
debug_file /disk1/webdriver.log
debug_level 0xffff
config_user admin_user
config_password 9492876034038402873092864
</Global>

debug_level No Enables Webdriver tracing to the log file specified by the debug_file
variable

For more information on Webdriver tracing, refer to Chapter 12.

You can override the value of the debug_level variable in the Global
section of the web.cnf file by setting it in your Webdriver configu-
ration using the Web DataBlade Module Administration Tool.

maxcharsize No When set to a value greater than 1, each character sent to the WebEx-
plode() function is URL-encoded.

If this variable is not set, Webdriver URL-encodes only special
characters (such as &) before sending it to the WebExplode() function.

Informix recommends you set this variable to a value greater than 1
only if you are using a multibyte character set. This is because you
might see a degradation in performance if Webdriver is forced to
URL-encode every character before sending it to the WebExplode()
function.

You can override the value of this variable for your Webdriver
mapping by adding it as a Webdriver variable to the appropriate
Webdriver configuration.

config_user No The name of the user who is allowed to use the Web DataBlade
Module Administration Tool

Add this variable to the web.cnf file only with the webconfig utility.
For more information about this variable, refer to “Securing the Web
DataBlade Module Administration Tool” on page 3-28.

config_password No The password of the config_user user

Add this variable to the web.cnf file only with the webconfig utility.
For more information about this variable, refer to “Securing the Web
DataBlade Module Administration Tool” on page 3-28.

Variable Mandatory? Description

 (2 of 2)
3-12 IBM Informix Web DataBlade Module Administrator’s Guide

Format of the web.cnf File
The variables in this Global section show that the maximum number of
Webdriver connections to all databases at any one time is 10. WEB_HOME is
the anchor variable. Webdriver tracing has been enabled, and all Webdriver
messages are written to the file /disk1/webdriver.log. The user allowed to
use the Web DataBlade Module Administration Tool, specified by the
config_user variable, is admin_user.

Setvar Section of the web.cnf File

The Setvar section of the web.cnf file describes environment variables, or
variables that you can also set on UNIX or Windows. In particular, the Setvar
section describes the Informix environment variables such as INFORMIXDIR,
and INFORMIXSERVER.

When Webdriver makes a connection to a database, it automatically includes
the variables in the Setvar section of the web.cnf file in every Webdriver
configuration in every database in the database server.

The following example shows the Setvar section of a web.cnf file:

<Setvar>
INFORMIXDIR /disk1/informix
INFORMIXSERVER myserver
</Setvar>

Map Section of the web.cnf File

The Map section of the web.cnf file describes the mapping between a URL
prefix on the Web server and a Webdriver configuration stored in a database.
The variables in the Map section describe how Webdriver connects to a
particular database. The collection of variables that make up a single Map
section in the web.cnf file is called a Webdriver mapping.

Although you can include only one Global and Setvar section in the web.cnf
file, you can include many Map sections, one for each different Webdriver
mapping.
Configuring Webdriver 3-13

Format of the web.cnf File
The format of a Map section in the web.cnf file is slightly different from that
of the Global and Setvar sections:

<Map path=/URL_prefix>
variable1 value1
variable2 value2
....
</Map>

The /URL_prefix variable refers to the name of the Webdriver mapping. This
is the same name as that of the Web server URL prefix that you specify when
you invoke AppPages in a browser. The variables specified for the
/URL_prefix Webdriver mapping describe the database to connect to, the user
to connect to the database as, and the name of the Webdriver configuration
stored in the WebConfigs table to use.

Each database in which the Web DataBlade module has been registered
should have a Webdriver mapping called /dbname/admin, where dbname
refers to the name of the database. This means you should also define a
/dbname/adminURL prefix for your Web server. Use this URL prefix to invoke
the Web DataBlade Module Administration Tool for the dbname database. For
example, the URL prefix to invoke the Web DataBlade Module Adminis-
tration Tool for the hr_db database should be /hr_db/admin. For more
information on the /dbname/adminWebdriver mapping, refer to “Setting Up
the Web DataBlade Module Administration Tool” on page 3-22.

Informix recommends that the format for URL prefixes used to invoke Web
DataBlade module applications other than the Web DataBlade Module
Administration Tool include a descriptive name. For example, a good name
for a URL prefix to invoke a Human Resources application is /hr_app.

Important: Use the Web DataBlade Module Administration Tool to add new
Webdriver mappings and to enter URL prefixes to ensure that Webdriver is automat-
ically updated with the new information.
3-14 IBM Informix Web DataBlade Module Administrator’s Guide

Format of the web.cnf File
The following table lists all the variables that can be included in the Map
section of the web.cnf file.

The following example shows a Map section in a web.cnf file for the URL
prefix /hr_app:

<Map path=/hr_app>
database hr_db
user hr_user
password 8492849034038402434324324
password_key hr_key
server hr_server
config_name hr_config
</Map>

Map Variable Mandatory? Description

database Yes The name of the database to which Webdriver connects when a URL
prefix specifies this Webdriver mapping

user Yes The name of the user who connects to the database specified by the
database variable

password Yes The encrypted password of the user specified by the user variable

password_key Yes The key that Webdriver uses to decrypt the password specified by the
password variable

server No The Informix database server to use when making the connection to
the database

If this variable is not set, the connection is made using the INFOR-
MIXSERVER database server.

config_name Yes The name of the Webdriver configuration to use

The Webdriver configuration is stored in the WebConfigs system
table in the database specified by the database variable.

config_security No When set to ON, security is enabled for this Webdriver mapping, which
means that only the user specified by the config_user variable in the
Global section of the web.cnf file can use this Webdriver mapping.

The config_security variable should appear only in Webdriver
mappings used to invoke the Web DataBlade Module Administration
Tool.

Refer to “Securing the Web DataBlade Module Administration Tool”
on page 3-28 for more information on this variable.
Configuring Webdriver 3-15

Example of the web.cnf File
If a URL invokes an AppPage with the /hr_app URL prefix, Webdriver
connects to the hr_db database as the hr_user user, using the hr_server
Informix database server instead of the default myserver database server
specified by the INFORMIXSERVER variable in the Setvar section. Once
Webdriver connects to the hr_db database, it uses the hr_config Webdriver
configuration stored in the WebConfigs system table to determine the
Webdriver variables.

Example of the web.cnf File
The following example shows a complete web.cnf file that includes Global,
Setvar, and Map sections:

<Global>
dbconnmax 10
anchorvar WEB_HOME/
debug_file /disk1/webdriver.log
debug_level 0xffff
config_user admin_user
config_password 9492876034038402873092864
</Global>

<Setvar>
INFORMIXDIR /disk1/informix
INFORMIXSERVER myserver
</Setvar>

<Map path=/hr_db/admin>
database hr_db
user hr_user
password 8492849034038402434324324
password_key hr_key
config_name admin
config_security ON
</Map>

<Map path=/hr_app>
database hr_db
user hr_user
password 8492849034038402434324324
password_key hr_key
server hr_server
config_name hr_config
</Map>
3-16 IBM Informix Web DataBlade Module Administrator’s Guide

Example of the web.cnf File
Variables in the Global Section

The variables in the Global section indicate that the maximum number of
Webdriver connections to all databases at any one time is 10. WEB_HOME has
been set as the anchor variable. Webdriver tracing has been enabled, and all
Webdriver messages are written to the file /disk1/webdriver.log. The user
allowed to use the Web DataBlade Module Administration Tool, specified by
the config_user variable, is admin_user.

Variables in the Setvar Section

The variables in the Setvar section set the Informix environment variables
INFORMIXDIR, and INFORMIXSERVER.

Variables in the Map Section

Two Webdriver mappings are defined: /hr_db/admin and /hr_app.

The /hr_db/admin URL prefix in a URL invokes the Web DataBlade Module
Administration Tool for the hr_db database. It connects to the database as the
hr_user user. Once Webdriver connects to the hr_db database, it uses the
special Webdriver configuration called admin to bring up the Web DataBlade
Module Administration Tool. The special security feature of the Web
DataBlade Module Administration Tool is enabled, since the config_security
variable is set to ON.

If a URL invokes an AppPage with the /hr_app URL prefix, Webdriver
connects to the hr_db database as the hr_user user, using the hr_server
Informix database server instead of the default myserver database server
specified by the INFORMIXSERVER variable in the Setvar section. Once
Webdriver connects to the hr_db database, it uses the hr_config Webdriver
configuration stored in the WebConfigs system table to determine the
Webdriver variables.

For more detailed information on using the Web DataBlade Module Admin-
istration Tool, refer to “Invoking and Using the Web DataBlade Module
Administration Tool” on page 3-29.
Configuring Webdriver 3-17

Setting the MI_WEBCONFIG Environment Variable
Setting the MI_WEBCONFIG Environment Variable
The MI_WEBCONFIG environment variable lets the Web server find the
location of the web.cnf file. The type of Webdriver you are using (NSAPI,
ISAPI, Apache, or CGI) determines how and where you set this environment
variable.

The MI_WEBCONFIG variable should be set to the full pathname of the
web.cnf file. For example, if the web.cnf file is located in the directory
/local/informix_info, the MI_WEBCONFIG environment variable should be
set to the value /local/informix_info/web.cnf.

The following table describes how and where to set the MI_WEBCONFIG
environment variable depending on the type of Webdriver you are using.

Type of
Webdriver How to Set MI_WEBCONFIG

NSAPI Set the variable in the Netscape Web server startup file and in the
environment of the user who starts the Netscape Web server
processes.

The Netscape server startup file is usually a shell script that you
execute to start the Netscape Web server processes.

ISAPI Set MI_WEBCONFIG as a system environment variable.

To set system environment variables on Windows NT, choose
Start➞ Settings➞ Control Panel and double-click the System icon.
Click the Environment tab, and add the value to the first list box.

Apache Set the variable in the Apache Web server startup file. This file is
usually a shell script that you execute to bring up the Apache Web
server processes.

If you do not use a shell script to start up the Apache Web server
because you execute the httpd process directly at the operating
system prompt, be sure the MI_WEBCONFIG environment
variable is set in the environment of the user who starts the Apache
Web server.

CGI CGI Webdriver ignores the environment variable
MI_WEBCONFIG and always looks for the web.cnf file in the same
directory as the CGI Webdriver program.
3-18 IBM Informix Web DataBlade Module Administrator’s Guide

Managing Webdriver Connections to the Database
You must also set the MI_WEBCONFIG variable in your operating system
environment if you use any of the Web DataBlade module utilities, such as
webconfig.

Managing Webdriver Connections to the Database
The Webdriver configuration file (web.cnf) contains information that
Webdriver uses to connect to an Informix database. You can modify the
behavior of these connections for specific Webdriver configurations by
setting the Webdriver variables described in the following table.

Webdriver Variable Mandatory? Description

connection_life No Specifies the life of a connection, or in other words, the maximum
number of requests (an integer value) that Webdriver makes to
the database before the connection is shut down and
reestablished

The default value is 100.

You should set this Webdriver variable to another value only
under the guidance of Technical Support.

connection_wait No Specifies the amount of time, in milliseconds, that Webdriver
yields and waits to establish a connection if Webdriver was
unable to make the initial connection due to the maximum
number of database connections having already been reached

The maximum number of Webdriver connections to the database
server is specified by the dbconnmax Webdriver variable in the
Global section of web.cnf file.

 (1 of 3)
Configuring Webdriver 3-19

Managing Webdriver Connections to the Database
connect_as_user No When set to ON, specifies that Webdriver establish the connection
to the database as the user specified by the REMOTE_USER Web
browser variable and not as the user specified in the Map section
of the web.cnf file

By default, if this Webdriver variable is not set, Webdriver always
establishes connections to the database as the user specified by
the user Webdriver variable in the appropriate Map section of the
web.cnf file.

This Webdriver variable applies only to the NSAPI, ISAPI, and
Apache implementation of Webdriver. In addition, you can only
use this Webdriver variable if you have enabled user authenti-
cation for the corresponding Web server.

connect_user_max No Specifies the maximum number of connections that Webdriver
establishes as the user specified by the REMOTE_USER Web
browser variable

The default value of this Webdriver variable is 1.

The connect_user_max Webdriver variable can only be set in
conjunction with the connect_as_user Webdriver variable.

This Webdriver variable applies only to the NSAPI, ISAPI, and
Apache implementation of Webdriver. In addition, you can only
use this Webdriver variable if you have enabled user authenti-
cation for the corresponding Web server. For details on enabling
user authentication, refer to Chapter 4, “Using the NSAPI
Webdriver,” Chapter 5, “Using the Apache Webdriver,” and
Chapter 6, “Using the ISAPI Webdriver.”

query_timeout No Specifies the maximum number of seconds that Webdriver
allows a query to run before Webdriver interrupts the query.

keepalive No Specifies the interval in seconds at which Webdriver checks the
Web browser connection

If the browser is no longer connected because a STOP or
CANCEL signal has been sent by the browser, the running query
is interrupted, and the Web server is freed to execute the next
query request.

This variable applies only to the NSAPI, ISAPI, and Apache
implementation of Webdriver.

Webdriver Variable Mandatory? Description

 (2 of 3)
3-20 IBM Informix Web DataBlade Module Administrator’s Guide

Managing Webdriver Connections to the Database
Use the Web DataBlade Module Administration Tool to set these Webdriver
variables for your Webdriver configuration. For detailed information on
using the Web DataBlade Module Administration Tool, refer to “Invoking
and Using the Web DataBlade Module Administration Tool” on page 3-29.

init_sql No Specifies that Webdriver send initial SQL statements to the
database server when Webdriver makes a connection to the
database

Set this Webdriver variable to one or more SQL statements,
separated by semicolons and terminated by a carriage return. Do
not include quotes.

For example, if you want to set the isolation level of the
connection to the database to dirty read, set the init_sql
Webdriver variable to the value SET ISOLATION TO DIRTY READ;

max_html_size No Specifies the largest AppPage, in bytes, that Webdriver sends to
the browser

AppPages larger than this size are not sent to the browser.

The default value for this Webdriver variable is 128 KB.

maxcharsize No When set to a value greater than 1, each character sent to the
WebExplode() function is URL-encoded.

If this variable is not set, Webdriver URL-encodes only special
characters (such as &) before sending it to the WebExplode()
function.

It is recommended that you set this variable to a value greater
than 1 only if you are using a multibyte character set. This is
because you might see a degradation in performance if
Webdriver is forced to URL-encode every character before
sending it to the WebExplode() function.

You can specify the maxcharsize variable in the Global section of
the web.cnf file if you want to specify globally that characters
should be URL-encoded. By adding the variable to a Webdriver
configuration, however, you can control this behavior for a single
Webdriver configuration and not for the whole database server.

Webdriver Variable Mandatory? Description

 (3 of 3)
Configuring Webdriver 3-21

Using Server-Side Includes in AppPages
Using Server-Side Includes in AppPages
Server-side includes define a mechanism for including dynamic text in
AppPages. Server-side includes are special command codes that are recog-
nized and interpreted by the Web server. The Web server places the output of
the commands in the AppPage before the Web server sends the AppPage to
the browser. You can use server-side includes to embed, for example, a date
or time stamp in the text of the AppPage.

If you want to use server-side includes in your AppPages, you must use
either the NSAPI or Apache Webdriver; the ISAPI and CGI Webdrivers do not
recognize server-side includes. By default, the NSAPI Webdriver is automat-
ically configured to recognize server-side includes. For the Apache
Webdriver, however, you must perform an extra configuration step for it to
recognize server-side includes. For detailed information, refer to Chapter 5,
“Using the Apache Webdriver.”

Setting Up the Web DataBlade Module
Administration Tool
The Web DataBlade Module Administration Tool is a Web DataBlade module
application with client-side JavaScript that allows you to add, update, or
delete Webdriver mappings and Webdriver configurations for the database
to which you are connected.

You must install the Web DataBlade Module Administration Tool in every
database in which the Web DataBlade module is registered, typically with the
websetup utility.

Important: You can use the Web DataBlade Module Administration Tool to add,
update, or delete Webdriver configurations and Webdriver mappings only in the
database to which you are connected.
3-22 IBM Informix Web DataBlade Module Administrator’s Guide

Webdriver Mappings
Webdriver Mappings
Webdriver mappings, defined in the Map section of the web.cnf file, are the set
of the Webdriver variables that are used to connect to a particular database.
The Map sections provide a mapping between a Web server URL prefix and
a Webdriver configuration stored in the database. When a user specifies a
URL prefix in the URL used to invoke an AppPage, Webdriver uses the Map
entry in the web.cnf file to determine the database to which to connect, the
user to connect to the database as, and the Webdriver configuration to use
once connected to the database.

Webdriver Configurations
The term Webdriver configuration refers to the set of Webdriver and user-
defined variables, and their values, that reside in the database. Webdriver
configurations are associated with a particular Web DataBlade module appli-
cation. Each configuration can include Webdriver variables that are used to
configure Webdriver features, such as AppPage caching, large object caching,
AppPage-level security, and so on.

For example, a sales Webdriver configuration might enable AppPage caching
(cache_page and cache_directory Webdriver variables) and enable
AppPage-level security (MIpagelevel Webdriver variable). A
human_resources Webdriver configuration might include unrelated
Webdriver variables.

You can include disabled Webdriver variables in a Webdriver configuration.
This means that although the Web DataBlade Module Administration Tool
lists the Webdriver variable as being part of the Webdriver configuration, the
Webdriver variable does not affect the way Webdriver behaves. This feature
is useful when you develop applications and need to disable and enable
Webdriver functionality many times and you do not want to keep adding
and deleting the variable from the Webdriver configuration.
Configuring Webdriver 3-23

Installing the Administration Tool in Your Database
Installing the Administration Tool in Your Database
This section describes how to install the Web DataBlade Module Adminis-
tration Tool in a new database. The procedure shows how to create the tool’s
database schema, load the AppPages, add a special Webdriver mapping to
the web.cnf file to invoke the Web DataBlade Module Administration Tool,
and add a URL prefix to your Web server configuration file that maps to the
URL prefix specified in the special Webdriver mapping.

You must have already used BladeManager to register the Web DataBlade
module in the database before you execute the following procedure. The
procedures in this section use an example database called production.

Tip: The Web DataBlade Module Administration Tool might already be installed in
your database if you used the websetup utility to initially configure the Web
DataBlade module for your database. The websetup utility also adds a special
Webdriver mapping to the web.cnf file to bring up the Web DataBlade Module
Administration Tool. If you are using the NSAPI Webdriver, the websetup utility
might also have updated the Netscape configuration file (obj.conf) with the
necessary Web DataBlade module information.

Check your web.cnf file to see if it contains a Webdriver mapping of the form
/dbname/admin, where dbname refers to the name of your database. Also check
your database to see if it contains the tables WebConfigs, WebCMPages,
WebCMImages, and WebEnvVariables, which are the Web DataBlade Module
Administration Tool system tables. If any of these mappings or tables exist, the Web
DataBlade Module Administration Tool is already configured for your database, and
you can invoke the tool as described in “Invoking and Using the Web DataBlade
Module Administration Tool” on page 3-29.
3-24 IBM Informix Web DataBlade Module Administrator’s Guide

Installing the Administration Tool in Your Database
To configure the Web DataBlade Module Administration Tool for a new database

1. Execute the cm_schema_create and cm_schema_load utilities to
create the Web DataBlade Module Administration Tool database
schema and load its AppPages and initial Webdriver configurations
into the new database.

For detailed information on this step, refer to “Creating and Loading
the Tool’s Schema” on page 3-26.

2. Use the webconfig utility to add a special Webdriver mapping called
/dbname/admin to the web.cnf file used to invoke the Web
DataBlade Module Administration Tool for this database.

For detailed information on this step, refer to “Executing the web-
config Utility” on page 3-27.

3. Make the /dbname/admin URL prefix known to your Web server.

You typically use your Web server’s administration server to per-
form this step.

Be sure that the name of the new Web server URL prefix is exactly the
same as the name of the special Webdriver mapping you created in
step 2.

The following chapters provide information on this step, for NSAPI,
Apache, and ISAPI Web servers: Chapter 4, “Using the NSAPI Web-
driver,” Chapter 5, “Using the Apache Webdriver,” and Chapter 6,
“Using the ISAPI Webdriver.”

Once you have completed all the preceding steps you should be able to
invoke the Web DataBlade Module Administration Tool for your new
database by using the /dbname/admin URL prefix in your URL, as described
in “Invoking and Using the Web DataBlade Module Administration Tool” on
page 3-29.
Configuring Webdriver 3-25

Installing the Administration Tool in Your Database
Creating and Loading the Tool’s Schema

To create the Web DataBlade Module Administration Tool schema, use the
cm_schema_create utility, passing it the name of the database and the name
of an sbspace, as shown in the following example:

cm_schema_create production sbspace

To load the AppPages into the WebCMPages system table, use the
cm_schema_load utility, as shown in the following example:

cm_schema_load production

The cm_schema_load utility also loads all the Webdriver variables into the
WebEnvVariables system table and the following three initial Webdriver
configurations into the WebConfigs system table:

■ admin. This is the Webdriver configuration that the Web DataBlade
Module Administration Tool uses.

This Webdriver configuration does not show up in the list of existing
Webdriver configurations in the Web DataBlade Module Adminis-
tration Tool because you should never modify it.

■ apb2. This is the Webdriver configuration to invoke AppPage
Builder (APB).

■ ddw. This is the Webdriver configuration for IBM Informix Data
Director for Web.

For information on using IBM Informix Data Director for Web, refer to
the IBM Informix Data Director for Web User’s Guide.

Important: The cm_schema_load utility also loads a Webdriver configuration
called apb that invokes a previous (pre-Version 4.0) version of APB. You should use
this Webdriver configuration only if you are using the previous version of APB. New
users should always use the apb2 Webdriver configuration.

The cm_schema_create and cm_schema_load utilities are located in the
directory INFORMIXDIR/extend/web.version/admtool, where INFORMIXDIR
is the main Informix directory and version is the version of the Web
DataBlade module installed on your computer.

For detailed information on using the cm_schema_create and
cm_schema_load utilities, refer to “The cm_schema_create Utility” on
page 13-3 and “The cm_schema_load Utility” on page 13-5, respectively.
3-26 IBM Informix Web DataBlade Module Administrator’s Guide

Installing the Administration Tool in Your Database
Executing the webconfig Utility

The webconfig utility adds new Webdriver mappings to the web.cnf file.
When you configure the Web DataBlade Module Administration Tool for
your database, you use the webconfig utility to add a special Webdriver
mapping that you use to invoke the Web DataBlade Module Administration
Tool.

Before you execute the webconfig utility, be sure you set the MI_WEBCONFIG
environment variable to point to the full pathname of the web.cnf file. For
more information on this environment variable, refer to “Setting the
MI_WEBCONFIG Environment Variable” on page 3-18.

Although you can call this special Webdriver mapping anything you want, it
is recommended that you call it /dbname/admin, where dbname refers to the
name of the database for which you are configuring the Web DataBlade
Module Administration Tool.

You must specify the admin Webdriver configuration with the -n option to
the webconfig utility.

For example, to add a special Webdriver mapping for the Web DataBlade
Module Administration Tool for the production database and the
admin_user user, execute the following command:

webconfig -addmap -p /production/admin -n admin -d production -u admin_user

The webconfig utility asks for the password for user admin_user and a
password key.

The resulting Map section in the web.cnf file looks something like the
following example:

<Map path=/production/admin>
database production
user admin_user
password 8492849034038402434324324
password_key admin_key
config_name admin
config_security ON
</Map>

For detailed information on using the webconfig utility, refer to “The
webconfig Utility” on page 13-8.
Configuring Webdriver 3-27

Securing the Web DataBlade Module Administration Tool
Securing the Web DataBlade Module Administration Tool
Although you can use the features described in Chapter 8, “Implementing
Security,” to secure the Web DataBlade Module Administration Tool for your
database, the methods might not always be adequate to ensure that no other
user has access to the tool. For this reason, the Web DataBlade module
provides an added security feature to specifically secure the Web DataBlade
Module Administration Tool.

Because this security feature also uses Web server authentication, you can
only use it with the NSAPI, ISAPI, and Apache Webdrivers. This feature has
no effect when used with CGI Webdriver.

To enable the Web DataBlade Module Administration Tool security feature

1. Be sure the /dbname/admin URL prefix in the Web server uses Web
server authentication.

For more information on enabling Web server authentication for a
Webdriver mapping, refer to the appropriate NSAPI, ISAPI, or
Apache Webdriver chapter.

2. Set the MI_WEBCONFIG environment variable to point to the full
pathname of the web.cnf file.

3. Execute the webconfig utility with the -secure option at the
operating system prompt to enable the security feature, as shown in
the following example:

webconfig -secure

The webconfig utility asks for the name and password of the user
allowed to use the Web DataBlade Module Administration Tool. The
utility updates the config_user and config_password variables in the
Global section of the web.cnf file with this information. Only the
encrypted password is actually written to the web.cnf file.

Once you have enabled the security feature for the Web DataBlade Module
Administration Tool, you must provide the name and password of the user
specified in step 3 every time you invoke the tool. The password is compared
to the password stored in the Global section of the web.cnf file. If the
password matches, you are allowed to use the tool; otherwise, you are not
allowed to even view the tool.
3-28 IBM Informix Web DataBlade Module Administrator’s Guide

Invoking and Using the Web DataBlade Module Administration Tool
Invoking and Using the Web DataBlade Module
Administration Tool
To invoke the Web DataBlade Module Administration Tool, use the URL
prefix you added to the Web server configuration file when you configured
your database to use the Web DataBlade Module Administration Tool. This
URL prefix is typically /dbname/admin, where dbname refers to the name of
the database to which you want to connect.

For example, if your Web server is on a computer called ariel at port number
8080, the following URL will invoke the Web DataBlade Module Adminis-
tration Tool in your Web browser for the database production:

http://ariel:8080/production/admin/

Tip: Many Web servers require you to add the extra slash at the end of the URL.

The /dbname/admin URL prefix is added to your Web server’s configuration
file and the web.cnf file when the Web DataBlade module is initially
configured for your database. This can happen automatically with the
websetup utility or manually if you have manually configured the Web
DataBlade Module Administration Tool for your database.

For more information on configuring the Web DataBlade Module Adminis-
tration Tool for new databases, refer to “Setting Up the Web DataBlade
Module Administration Tool” on page 3-22.
Configuring Webdriver 3-29

Invoking and Using the Web DataBlade Module Administration Tool
The main Web DataBlade Module Administration Tool AppPage is divided
into three frames, as shown in the following figure.

The top frame includes the name of the tool and buttons for viewing
Webdriver configuration or Webdriver mapping information. It also includes
a button to invoke help about the tool.

The left frame lists either the Webdriver configurations or the Webdriver
mappings that currently exist in the database. The type of information that is
displayed depends on which button you click in the top frame.

The left frame also contains a button to add a new Webdriver configuration
or Webdriver mapping. The type of button that is displayed depends on
which button you click in the top frame.

The right frame displays the details of the Webdriver configuration or
Webdriver mapping that you select in the left frame.

Figure 3-1
Main Web DataBlade Module Administration Tool AppPage

Web Browser - [Web DataBlade Module Administration Tool]

URL: http://ariel:8080/hr_db/admin/

Web DataBlade Module Administration Tool Configurations Mappings Online Help

Add Configuration

apb2

Add New Webdriver Configuration

Configuration Name:

Base new Config on: apb2

ResetSubmit

ddw
hr_config

apb
3-30 IBM Informix Web DataBlade Module Administrator’s Guide

Viewing Existing Webdriver Configurations
Viewing Existing Webdriver Configurations
This section describes how to view the Webdriver configurations that
currently exist in the database to which you are connected.

To view all the Webdriver configurations

1. Click Configurations in the top frame of the Web DataBlade Module
Administration Tool.

A list of all existing Webdriver configurations appears in the left
frame below the Add Configuration button.

2. To view the details of a Webdriver configuration, click its name.

A table appears in the right frame, listing all the Webdriver variables
currently associated with the Webdriver configuration, as shown in
Figure 3-2 on page 3-33. The table contains the following columns:

■ The Variable column lists the name of the Webdriver variable.
Click the button labelled ? to the left of each Webdriver variable
to bring up help information about the Webdriver variable.

■ The Value column shows the current value of the Webdriver
variable.

■ The Overwrite column specifies whether the variable can be
overwritten in the URL used to bring up AppPages. For example,
the Webdriver variable MIval should always be overwritable
since this is the variable used to identify the AppPage you want
to bring up in your browser. Only certain Webdriver variables
can be overwritten; for the full list, refer to “Overwriting
Webdriver Variables in a URL” on page 3-7.

If Overwrite is checked, the corresponding Webdriver variable is
overwritable; if the check box is unchecked, the Webdriver vari-
able is not overwritable.

■ The Disable column specifies whether the Webdriver variable is
disabled or enabled. When the Webdriver variable is disabled, it
does not have any effect on the way Webdriver behaves. By
default, all Webdriver variables are enabled.

If Disable is checked, the corresponding Webdriver variable is
disabled; if the check box is unchecked, the Webdriver variable
is enabled.
Configuring Webdriver 3-31

Editing an Existing Webdriver Configuration
3. To sort, in ascending alphabetical order, the list of Webdriver
variables and the list of current Webdriver variable values, click the
Variable or Value column header, respectively. Click the Overwrite
or Disable column header to group all respective checked and
unchecked items together.

Important: The Web DataBlade Module Administration Tool discards any changes
to the current AppPage that have not been saved to the database before it sorts the list
of Webdriver variables.

The other buttons on the page, such as the Remove button to the right of the
Disable column, are used when you edit Webdriver configurations. They are
described in the following section.

Editing an Existing Webdriver Configuration
This section describes how to edit an existing Webdriver configuration.

The following list describes the types of changes you can make to a
Webdriver configuration:

■ Change the current value, the overwrite specification, or the disable
specification for a Webdriver or user-defined variable.

For detailed instructions on how to make this type of change, refer to
“Changing the Current Value of a Webdriver or User-Defined Vari-
able” on page 3-34.

■ Add a new Webdriver or user-defined variable to the Webdriver
configuration.

For detailed instructions on how to make this type of change, refer to
“Adding a New Webdriver or User-Defined Variable” on page 3-35.

■ Delete a Webdriver or user-defined variable from the Webdriver
configuration.

For detailed instructions on how to make this type of change, refer to
“Adding a New Webdriver or User-Defined Variable” on page 3-35.

Webdriver variables are all those variables defined and used by the Web
DataBlade module, such as redirect_url, cache_admin, and MIusername.
For a complete list of Webdriver variables, refer to Appendix B, “Web
DataBlade Module Variables.”
3-32 IBM Informix Web DataBlade Module Administrator’s Guide

Editing an Existing Webdriver Configuration
User-defined variables are variables defined by the AppPage developer and
used in AppPages. The Web DataBlade module does not need to use these
variables to function correctly.

The following figure shows the Edit Webdriver Configuration
<config_name> AppPage of the Web DataBlade Module Administration Tool
you use to edit Webdriver configurations.

Figure 3-2
AppPage to Edit a Webdriver Configuration

Web Browser - [Web DataBlade Module Administration Tool]

URL: http://ariel:8080/hr_db/admin/?MIval=Cm&curr_config=hr_config

Web DataBlade Module Administration Tool Configurations Mappings Online Help

Add Configuration

apb2
ddw
hr_config

Edit Webdriver Configuration hr_config

Variable

off

Reset DeleteSubmit

?

Value Overwrite Disable

RemoveMI_WEBTAGSCACHE

? RemoveMI_WEBTAGSTABLE

? RemoveMIval

? Removeschema_version

? Removeshow_exceptions

Add User VariableAdd Webdriver Variable

apb

wbtags

/hr_app/welcome.html

wb

on
Configuring Webdriver 3-33

Changing the Current Value of a Webdriver or User-Defined Variable
Changing the Current Value of a Webdriver or User-Defined
Variable
This section describes how to use the Web DataBlade Module Administration
Tool to edit a Webdriver configuration by changing the current value of a
Webdriver or user-defined variable.

To change the current value of a Webdriver or user-defined variable

1. Click Configurations in the top frame of the Web DataBlade Module
Administration Tool.

A list of all existing Webdriver configurations appears in the left
frame below the Add Configuration button.

2. Click the name of the Webdriver configuration.

The Edit Webdriver Configuration <config_name> AppPage appears
in the right frame.

3. Enter the new value of the Webdriver or user-defined variable in the
Value column of the table that lists all the Webdriver variables for the
Webdriver configuration.

The new value of the Webdriver variable is validated against an
internal list of possible values for the variable; if the new value does
not match one of the possible values, an error is returned. For exam-
ple, the session Webdriver variable can only be set to cookie, url, or
auto; therefore, the Web DataBlade Module Administration Tool will
not let you change the value of the session variable to anything other
than these possible values.

4. To change whether a Webdriver or user-defined variable can be
overwritten in the URL that calls the AppPage, check its Overwrite
check box.

If Overwrite is checked for a Webdriver or user-defined variable, the
variable can be overwritten in the URL. Only certain Webdriver vari-
ables can be overwritten; for the full list, refer to “Overwriting
Webdriver Variables in a URL” on page 3-7.

5. To change whether a Webdriver or user-defined variable is disabled,
check its Disable check box. If Disable is checked for a Webdriver or
user-defined variable, the variable is disabled.
3-34 IBM Informix Web DataBlade Module Administrator’s Guide

Adding a New Webdriver or User-Defined Variable
6. Click Submit to update the database with the new information.

All the modifications to the database, including inserts, updates, and
deletes, for the Webdriver configuration are executed in a single
database transaction.

Important: No changes are made to the database until you click Submit.

After the Web DataBlade Module Administration Tool makes the changes to
the database, it returns one of two messages. The tool returns the following
message if the Webdriver configuration is not assigned to a Webdriver
mapping:

Changes have been saved to the database

The tool returns the following message if the Webdriver configuration is
assigned to a Webdriver mapping:

Changes have been saved to the database. The configuration
config_name has been updated in cache.

Click Reset instead of Submit to set the Webdriver variables back to their
value after the last change to the database.

Adding a New Webdriver or User-Defined Variable
This section describes how to use the Web DataBlade Module Administration
Tool to edit a Webdriver configuration by adding a new Webdriver or user-
defined variable.

To add a new Webdriver or user-defined variable

1. Click Configurations in the top frame of the Web DataBlade Module
Administration Tool.

A list of all existing Webdriver configurations appears in the left
frame below the Add Configuration button.

2. Click the name of the Webdriver configuration.

The Edit Webdriver Configuration <config_name> AppPage appears
in the right frame.
Configuring Webdriver 3-35

Adding a New Webdriver or User-Defined Variable
3. Click Add Webdriver Variable or Add User Variable, whichever is
appropriate.

When you click Add Webdriver Variable, the Add Webdriver Vari-
able to <config_name> AppPage appears, as shown in the following
figure.

4. In the list box, select the name of the Webdriver variable you want to
add.

5. Enter the value for the Webdriver variable in the Value text box.

If the Webdriver variable has a specified list of possible values, the
default value automatically appears in the Value text box.

6. Check the Overwrite check box if you want the Webdriver variable
to be overwritten in the URL that brings up the AppPage.

Only certain Webdriver variables can be overwritten; for the full list,
refer to “Overwriting Webdriver Variables in a URL” on page 3-7.

Figure 3-3
AppPage to Add a Webdriver Variable to an Existing Webdriver Configuration

Web Browser - [Web DataBlade Module Administration Tool]

URL: http://ariel:8080/hr_db/admin/?MIval=Cm&curr_config=hr_config

Web DataBlade Module Administration Tool Configurations Mappings Online Help

Add Configuration

apb2
ddw
hr_config

Add Webdriver Variable to hr_config

Variable Name:

Value:

Overwrite:

Disable:

MI_WEBEXPLEVEL

Reset CancelAdd

apb
3-36 IBM Informix Web DataBlade Module Administrator’s Guide

Adding a New Webdriver or User-Defined Variable
7. Check the Disable check box if you want to disable the Webdriver
variable so that it has no affect on the way Webdriver behaves.

8. Click Add.

If you tried to set the value of a Webdriver variable that has a speci-
fied list of possible values to anything other than one of those
possible values, an error is returned. Otherwise, the Edit Webdriver
Configuration <config_name> AppPage reappears, with the new
Webdriver variable listed in the table.

9. Click Submit to update the database with the new information.

All the modifications to the database, including insertions, updates,
and deletions, for the Webdriver configuration are executed in a sin-
gle database transaction.

Important: No changes are made to the database until you click Submit.

After the Web DataBlade Module Administration Tool makes the changes to
the database, it returns one of two messages. The tool returns the following
message if the Webdriver configuration is not assigned to a Webdriver
mapping:

Changes have been saved to the database

The tool returns the following message if the Webdriver configuration is
assigned to a Webdriver mapping:

Changes have been saved to the database. The configuration
config_name has been updated in cache.

Click Reset instead of Submit to set all the Webdriver variables back to their
value after the last change to the database.

Adding a user-defined variable is very similar to adding a Webdriver
variable, except that you enter the name of the user-defined variable in a text
box instead of selecting the name from a list box.
Configuring Webdriver 3-37

Deleting a Webdriver or User-Defined Variable
Deleting a Webdriver or User-Defined Variable
This section describes how use the Web DataBlade Module Administration
Tool to edit a Webdriver configuration by deleting a Webdriver or user-
defined variable.

To delete a Webdriver or user-defined variable

1. Click Configurations in the top frame of the Web DataBlade Module
Administration Tool.

A list of all existing Webdriver configurations appears in the left
frame below the Add Configuration button.

2. Click the name of the Webdriver configuration.

The Edit Webdriver Configuration <config_name> AppPage appears
in the right frame.

3. Click Remove for the variable you want to delete.

The variable is removed from the table that lists the variables for the
Webdriver configuration.

4. Click Submit to update the database with the new information.

All the modifications to the database, including insertions, updates,
and deletions, for the Webdriver configuration are executed in a sin-
gle database transaction.

Important: No changes are made to the database until you click Submit.

After the Web DataBlade Module Administration Tool makes the changes to
the database, it returns one of two messages. The tool returns the following
message if the Webdriver configuration is not assigned to a Webdriver
mapping:

Changes have been saved to the database

The tool returns the following message is the Webdriver configuration is
assigned to a Webdriver mapping:

Changes have been saved to the database. The configuration
config_name has been updated in cache.

Click Reset instead of Submit to set all the Webdriver variables back to their
values after the last change to the database.
3-38 IBM Informix Web DataBlade Module Administrator’s Guide

Adding a New Webdriver Configuration
Adding a New Webdriver Configuration
This section describes how to add a new Webdriver configuration.

When you create a new Webdriver configuration, you always base it on an
existing Webdriver configuration. The installation of the Web DataBlade
Module Administration Tool creates the following two Webdriver configura-
tions, which you can use as a basis for a new Webdriver configuration:

■ apb2: Use this Webdriver configuration if you want to access APB.
The apb2 Webdriver configuration includes the following Webdriver
variables:

❑ MI_WEBTAGSCACHE

❑ MI_WEBTAGSTABLE

❑ MIval

❑ schema_version

❑ show_exceptions

■ ddw: Use this Webdriver configuration if you want access
IBM Informix Data Director for Web. The ddw Webdriver configu-
ration includes the same Webdriver variables as the apb2
configuration but with a different value for the MIval Webdriver
variable. This means that the different Webdriver configurations
invoke different default AppPages.

For more information on IBM Informix Data Director for Web, refer to
the IBM Informix Data Director for Web User’s Guide.

The apb2 and ddw Webdriver configurations both use the same database
schema to store AppPages.
Configuring Webdriver 3-39

Adding a New Webdriver Configuration
Important: The Web DataBlade Module Administration Tool also adds an admin
Webdriver configuration when you initially install the tool in a database. You use the
admin Webdriver configuration to access the Web DataBlade Module Adminis-
tration Tool. For this reason, you should never modify or delete the admin Webdriver
configuration, and therefore, it does not appear in the list of Webdriver configurations
in the left frame of the tool.

In addition, the tool also adds a Webdriver configuration called apb. The apb
Webdriver configuration is used to invoke an older version of APB, used in Versions
3.3 and earlier of the Web DataBlade module. This older version of APB uses a
different database schema to store AppPages than that of the new version of APB
included in Version 4.0 and later of the Web DataBlade module. The old version of
APB uses the Webdriver variables MItab, MIcol, and MInam to specify the
AppPage table schema; the new version of APB uses the wbextensions table to
specify the schema. The wbextensions table is discussed in a later section in this
guide.

Unless you currently use the previous version of APB to store your AppPages, you
should always use the new APB as a tool for developing AppPages by specifying the
apb2 Webdriver configuration in the Webdriver mapping used to invoke APB.
Although Version 4.0 and later of the Web DataBlade module supports the previous
APB and the use of the MItab, MIcol, and MInam Webdriver variables, future
releases of the DataBlade module might not. Refer to the release notes for information
about migrating Web DataBlade module applications from the previous schema to the
new schema that uses the wbextensions table.

To add a new Webdriver configuration

1. Click Configurations in the top frame of the Web DataBlade Module
Administration Tool.

2. Click Add Configuration.

The Add New Webdriver Configuration AppPage appears in the
right frame.

3. Enter the name of the new Webdriver configuration.

Do not enter the name of an existing Webdriver configuration, listed
in the left frame.
3-40 IBM Informix Web DataBlade Module Administrator’s Guide

Adding a New Webdriver Configuration
4. Select an existing Webdriver configuration on which the new
Webdriver configuration will be based.

You can select one of the two default Webdriver configurations, apb2
or ddw, or a Webdriver configuration you have previously created.
All Webdriver variables currently defined for the Webdriver config-
uration you select are automatically included in the new Webdriver
configuration.

Important: When you base a new Webdriver configuration on an existing Webdriver
configuration, the Webdriver variables of the existing configuration are physically
copied to the new configuration. This means, for example, that if you subsequently
edit the existing Webdriver configuration, these changes will not be reflected in your
new Webdriver configuration.

5. Click Submit.

When you click Submit, the following events happen:

■ Your new Webdriver configuration is added to the Web
DataBlade Module Administration Tool system catalogs.

■ The name of the new Webdriver configuration appears in the left
frame of the Web DataBlade Module Administration Tool.

■ The Edit Webdriver Configuration <config_name> AppPage
automatically appears in the right frame so you can immediately
start editing your new Webdriver configuration. For detailed
information on editing your new Webdriver configuration, refer
to “Editing an Existing Webdriver Configuration” on page 3-32.

To reset all the values in the Add New Webdriver Configuration AppPage,
click Reset instead of Submit.
Configuring Webdriver 3-41

Deleting an Existing Webdriver Configuration
Deleting an Existing Webdriver Configuration
This section describes how to delete an existing Webdriver configuration.

To delete an existing Webdriver configuration

1. Click Configurations in the top frame of the Web DataBlade Module
Administration Tool.

A list of all existing Webdriver configurations appears in the left
frame below the Add Configuration button.

2. Click the name of the Webdriver configuration.

The Edit Webdriver Configuration <config_name> AppPage appears
in the right frame.

3. Click Delete.

A confirmation message appears, asking you if you really want to
delete the Webdriver configuration.

4. Click Yes.

The name of the Webdriver configuration is removed from the list of
Webdriver configurations in the left frame, and the Edit Webdriver
Configuration <config_name> AppPage in the right frame disappears
and is replaced with the Add New Webdriver Configuration
AppPage.
3-42 IBM Informix Web DataBlade Module Administrator’s Guide

Viewing Existing Webdriver Mappings
Viewing Existing Webdriver Mappings
This section describes how to view all the Webdriver mappings currently in
the web.cnf file for the database to which you are connected.

To view existing Webdriver mappings

1. Click Mappings in the top frame of the Web DataBlade Module
Administration Tool.

A list of all existing Webdriver mappings appears in the left frame
below the Add Mapping button.

The Webdriver mappings that map to databases other than the one
to which you are connected do not appear in the list.

Important: The Webdriver mapping used to bring up the Web DataBlade Module
Administration Tool for a particular database does not appear in the left frame
because this Webdriver mapping should never be modified.

2. To view the details of a Webdriver mapping, click its name.

The full details of the Webdriver mapping appear in the right frame.
These details include the name of the Webdriver configuration with
which this Webdriver mapping is associated, the name of the user to
connect to the database as, and the user’s encrypted password.

Editing an Existing Webdriver Mapping
When you edit an existing Webdriver mapping, its associated Map section in
the web.cnf file is automatically updated with the information you provide.

The web.cnf file must have correct file permissions for the Web DataBlade
Module Administration Tool to be able to correctly update the file. For details
on file permissions of the web.cnf file, refer to the section “File Permissions
of the web.cnf File” on page 3-10.
Configuring Webdriver 3-43

Editing an Existing Webdriver Mapping
To edit an existing Webdriver mapping

1. Click Mappings in the top frame of the Web DataBlade Module
Administration Tool.

2. In the left frame, click the name of the Webdriver mapping you want
to edit.

The full details of the Webdriver mapping appear in the right frame,
as shown in the following figure.

3. Enter the new information for the Webdriver mapping.

You can change the Webdriver configuration with which this Web-
driver mapping is associated and the name and password of the user
to connect to the database as.

When you edit a Webdriver mapping, the Password text box always
appears blank, even if a password exists for the Webdriver mapping.
If you do not want to change the password, leave the Password text
box blank.

Figure 3-4
AppPage to Edit a Webdriver Mapping

Web Browser - [Web DataBlade Module Administration Tool]

URL: http://ariel:8080/hr_db/admin/?MIval=Cm&curr_option=maps&curr_map=/hr_app

Web DataBlade Module Administration Tool Configurations Mappings Online Help

Add Mapping

/apb2

Edit Webdriver Mapping /hr_app

Configuration Name:

Username:

Retype Password:

apb2

Reset DeleteSubmit

Password:

informix/hr_app
3-44 IBM Informix Web DataBlade Module Administrator’s Guide

Adding a New Webdriver Mapping
4. Click Submit.

The Web DataBlade Module Administration Tool automatically
updates the Map section in the web.cnf file with the new
information.

If you want to reset all the values in the AppPage back to their original
settings, click Reset instead of Submit.

Adding a New Webdriver Mapping
When you use the Web DataBlade Module Administration Tool to add a new
Webdriver mapping, a new Map section is automatically added to the
web.cnf file with the information you provide.

The web.cnf file must have correct file permissions for the Web DataBlade
Module Administration Tool to be able to correctly update the file. Refer to
the section “File Permissions of the web.cnf File” on page 3-10 for details on
file permissions of the web.cnf file.

To add a new Webdriver mapping

1. Create a new Webdriver configuration if you do not want to use an
existing Webdriver configuration.

For detailed information on this step, refer to “Adding a New Web-
driver Configuration” on page 3-39.

2. Create the Webdriver mapping with the Web DataBlade Module
Administration Tool.

For detailed information on this step, refer to the next section.

3. Add a new URL prefix to your Web server.

For detailed information on this step, refer to “Adding a URL Prefix
to Your Web Server” on page 3-47.
Configuring Webdriver 3-45

Creating the Webdriver Mapping
Creating the Webdriver Mapping
This section describes the second step in adding a new Webdriver mapping:
creating the Webdriver mapping with the Web DataBlade Module Adminis-
tration Tool.

To create a new Webdriver mapping

1. Click Mappings in the top frame of the Web DataBlade Module
Administration Tool.

2. Click Add Mapping in the left frame.

The Add New Webdriver Mapping AppPage appears in the right
frame, as shown in the following figure.

Figure 3-5
AppPage to Add a Webdriver Mapping

Web Browser - [Web DataBlade Module Administration Tool]

URL: http://ariel:8080/hr_db/admin/?MIval=Cm&curr_option=maps

Web DataBlade Module Administration Tool Configurations Mappings Online Help

Add Mapping

/apb2

Add New Webdriver Mapping

URL prefix http://domain:port/

Configuration Name:

Retype Password:

ResetSubmit

Password:

Username:

apb2
3-46 IBM Informix Web DataBlade Module Administrator’s Guide

Adding a URL Prefix to Your Web Server
3. Enter the name of the new Webdriver mapping in the text box
labelled URL prefix http://domain:port/.

The Web DataBlade Module Administration Tool automatically pre-
fixes the name of the mapping with the necessary slashes. This
means that if you want to create a Webdriver mapping called /map-

name, enter mapname in the text box, without the first slash.

It is recommended that you pick a descriptive name for the new
Webdriver mapping. For example, if you are creating a new Web-
driver mapping that will be used for a Human Resources
application, a good name for the new Webdriver mapping is
/hr_app.

4. Choose the Webdriver configuration you want to associate with this
Webdriver mapping.

5. Enter the name and password of the user you want to connect to the
database as.

When the Web DataBlade Module Administration Tool adds the new
Webdriver mapping to the web.cnf file, it automatically creates an
encrypted password.

6. Click Submit to create the new Webdriver mapping.

The Web DataBlade Module Administration Tool writes all the infor-
mation as a Map section in the web.cnf file.

If you want to reset all the values in the AppPage back to their original
settings, click Reset instead of Submit.

Adding a URL Prefix to Your Web Server
After you have created a new Webdriver mapping, you must also create a
URL prefix on the Web server that matches its name exactly. For example, if
you created a Webdriver mapping called /hr_map, the URL prefix you create
for your Web server must be /hr_map.

Typically, you use the administration server for your particular Web server to
add new URL prefixes. Refer to your Web server documentation for infor-
mation on how to add URL prefixes.
Configuring Webdriver 3-47

Deleting an Existing Webdriver Mapping
The following chapters, describing the NSAPI, Apache, ISAPI, and CGI
Webdrivers, also provide information on adding URL prefixes to the corre-
sponding Web server:

■ Chapter 4, “Using the NSAPI Webdriver”

■ Chapter 5, “Using the Apache Webdriver”

■ Chapter 6, “Using the ISAPI Webdriver”

■ Chapter 7, “Using the CGI Webdriver”

Deleting an Existing Webdriver Mapping
When you use the Web DataBlade Module Administration Tool to delete a
Webdriver mapping, the tool deletes its associated Map section in the
web.cnf file.

The web.cnf file must have correct file permissions for the Web DataBlade
Module Administration Tool to be able to correctly update the file. Refer to
the section “File Permissions of the web.cnf File” on page 3-10 for details on
file permissions of the web.cnf file.

Important: You cannot use the Web DataBlade Module Administration Tool to
delete the Webdriver mapping you are currently using to access the tool.

To delete an existing Webdriver mapping

1. Display the details of the mapping by first clicking Mappings in the
top frame of the Web DataBlade Module Administration Tool

2. In the left frame, click the name of the Webdriver mapping you want
to delete.

The full details of the Webdriver mapping appear in the right frame.

3. Click Delete to delete the Webdriver mapping.
3-48 IBM Informix Web DataBlade Module Administrator’s Guide

4
Chapter
Using the NSAPI Webdriver
In This Chapter . 4-3

Overview of the NSAPI Webdriver 4-4

Configuring the NSAPI Webdriver 4-5
Executing the webconfig Utility 4-8
Adding Init Directives to the obj.conf File. 4-9
Adding URL Prefix Information to the obj.conf File 4-10

Adding the Initial admin URL Prefix 4-11
Adding Subsequent URL Prefixes 4-11

Adding Object Directives to the obj.conf File. 4-12
How It All Fits Together. 4-14

Executing NSAPI Functions in AppPages 4-15
Creating NSAPI Functions 4-16
Invoking NSAPI Functions in an AppPage 4-17

Using Server-Side Includes in AppPages with the NSAPI Webdriver . 4-18

Implementing User Authentication with the NSAPI Webdriver . . . 4-20
Setting Webdriver Variables to Enable User Authentication . . . 4-20

How the NSAPI Webdriver Uses the Webdriver Variables. . . 4-22
Example of Setting User Authentication Webdriver Variables . 4-22

Updating the obj.conf File to Enable User Authentication 4-23
Adding Users to the MIusertable Table 4-24
Specifying AppPage Access Levels 4-25
Using Encrypted Passwords in the MIusertable Table 4-26

Encrypting Passwords 4-26
Setting the auth_crypt_udr Webdriver Variable 4-27
Tips for Creating Your Own AppPage to Edit User

Password Information 4-27

4-2 IBM
Using the REMOTE_USER Web Browser Variable for
User Authentication 4-28

Additional NSAPI Webdriver Information 4-28
WebExplode() Buffer Size with NSAPI Webdriver 4-28
Passing Image Map Coordinates with the NSAPI Webdriver . . . 4-29

Administering the NSAPI Webdriver. 4-29
NSAPI Webdriver Performance 4-29
Error Logging with NSAPI Webdriver 4-31
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter describes how to configure and use the NSAPI Webdriver. It
includes the following topics:

■ “Overview of the NSAPI Webdriver” on page 4-4

■ “Configuring the NSAPI Webdriver” on page 4-5

■ “Executing NSAPI Functions in AppPages” on page 4-15

■ “Using Server-Side Includes in AppPages with the NSAPI
Webdriver” on page 4-18

■ “Implementing User Authentication with the NSAPI Webdriver” on
page 4-20

■ “Additional NSAPI Webdriver Information” on page 4-28

■ “Administering the NSAPI Webdriver” on page 4-29
Using the NSAPI Webdriver 4-3

Overview of the NSAPI Webdriver
Overview of the NSAPI Webdriver
The NSAPI Webdriver uses the Netscape API rather than a CGI interface to
connect to the database and execute AppPages. The NSAPI Webdriver offers
the ability to:

■ Eliminate CGI process overhead.

■ Call NSAPI functions directly in a AppPage.

This feature is described in “Invoking NSAPI Functions in an App-
Page” on page 4-17.

■ Use server-side includes in AppPages.

With this feature, AppPage developers can add sections to their App-
Pages that the Netscape Web server looks for and executes after the
AppPage is exploded.

This feature is described in “Using Server-Side Includes in AppPages
with the NSAPI Webdriver” on page 4-18.

■ Use security features built into the Netscape Web server to control
access to AppPages.

This feature is described in “Implementing User Authentication with
the NSAPI Webdriver” on page 4-20.

When the Netscape Web server is started, the NSAPI Webdriver shared object
is loaded using information specified in the Web server configuration files,
described in the following sections. If you have enabled user authentication
in the Netscape Web server, a different NSAPI Webdriver shared object is
loaded so that the database connection is also used for user validation and
security.

The NSAPI Webdriver is compatible with specific Netscape Web server
versions. Check the Web DataBlade module release notes for a list of
Netscape Web server versions that can implement the NSAPI Webdriver.
4-4 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the NSAPI Webdriver
Configuring the NSAPI Webdriver
The NSAPI Webdriver obtains configuration information about the Web
application environment from the web.cnf file, from the Webdriver configu-
ration information stored in the database, and from the obj.conf Netscape
Web server configuration file.

If you used the websetup utility to initially configure the Web DataBlade
module for your database, the utility might have automatically performed
some of the steps in the following procedure, depending on the answers you
provided the utility. In particular, the websetup utility:

■ Updates the obj.conf Netscape Web server configuration file with
the necessary information as long as the obj.conf file does not
already contain any NSAPI Webdriver information

■ Copies and updates the web.cnf file with the required information

■ Runs the webconfig utility to add the special Webdriver mapping to
invoke the Web DataBlade Module Administration Tool

The following procedure, therefore, is provided in case you need to configure
the NSAPI Webdriver manually.

For more information on the websetup utility, refer to Chapter 2, “Getting
Started,” and Chapter 13, “Web DataBlade Module Utilities.”
Using the NSAPI Webdriver 4-5

Configuring the NSAPI Webdriver
To configure the NSAPI Webdriver manually

1. If you have never run the websetup utility to configure Web server
and database components, go to step 2.

If you have previously run the websetup utility to configure Web
server and database components, but the utility did not update the
Netscape Web server configuration file, go to step 4.

If you have run the websetup utility to configure Web server and
database components and the utility updated the Netscape Web
server configuration file obj.conf, you do not need follow this proce-
dure since the NSAPI Webdriver has already been configured.

2. Copy the sample Webdriver configuration file, called
web.cnf.example, to a directory on the Web server computer and
rename it web.cnf.

The web.cnf.example file is located in the directory INFOR-
MIXDIR/extend/web.version/install, where INFORMIXDIR refers to
the main Informix directory and version refers to the current version
of the Web DataBlade module installed on your computer.

Update the web.cnf file by setting the Informix environment vari-
ables INFORMIXDIR and INFORMIXSERVER to point to the main
Informix directory and default Informix database server,
respectively.

If you already have a working web.cnf file, you do not need to per-
form this step.

3. Run the webconfig utility at the operating system command prompt
to add the special Webdriver mapping, called /dbname/admin, to the
web.cnf file that invokes the Web DataBlade Module Administration
Tool.

For detailed information on this step, refer to “Executing the web-
config Utility” on page 4-8.

4. Stop the Netscape Web server.

5. Back up the obj.conf file.

6. Register Webdriver with the Netscape Web server by adding an Init
directive to the obj.conf file.

For detailed instructions on how to perform this step, see “Adding
Init Directives to the obj.conf File” on page 4-9.
4-6 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the NSAPI Webdriver
7. Add a /dbname/admin URL prefix for your database to the obj.conf
file. This URL prefix matches the name of the special Webdriver
mapping you use to invoke the Web DataBlade Module Adminis-
tration Tool.

You only need to manually update the obj.conf file with URL prefix
information once for a particular database. You add subsequent URL
prefixes for your database with the Netscape Administration server.

For detailed instructions on how to perform this step, see “Adding
URL Prefix Information to the obj.conf File” on page 4-10.

8. Add Object directives to the obj.conf file for the two Webdriver
shared objects: the basic Webdriver shared object and the secure
Webdriver shared object.

For detailed instructions on how to perform this step, see “Adding
Object Directives to the obj.conf File” on page 4-12.

9. In the Netscape Web server startup file, typically called startup, set
the following two variables:

■ MI_WEBCONFIG. Set this environment variable to point to the
full pathname of the web.cnf file.

■ LD_LIBRARY_PATH. Update this environment variable to point
to the following Informix libraries: INFORMIXDIR/lib and
INFORMIXDIR/lib/esql. INFORMIXDIR refers to the main
Informix directory.

For more information on the MI_WEBCONFIG environment variable
and the web.cnf file, refer to Chapter 3, “Configuring Webdriver.”

10. Restart the Netscape Web server.

11. Invoke the Web DataBlade Module Administration Tool in your
browser by specifying a URL of the following form in your browser:

http://domain:port/dbname/admin/

In this URL, domain refers to the name of your Web server computer,
port refers to the port number of the Web server process, and dbname
refers to the name of your database.

Note that /dbname/admin is the URL prefix you added to your Web
server, as described in Step 7.

Many Web servers require you to add the slash at the end of the URL.

For general information on invoking AppPages with the NSAPI Webdriver,
refer to the IBM Informix Web DataBlade Module Application Developer’s Guide.
Using the NSAPI Webdriver 4-7

Executing the webconfig Utility
After you have invoked the Web DataBlade Module Administration Tool in
your browser, use it to add new Webdriver mappings and Webdriver config-
urations to invoke your own Web DataBlade module applications or existing
applications, such as AppPage Builder (APB).

For more information on adding Webdriver mappings and Webdriver
configurations with the Web DataBlade Module Administration Tool, refer
to Chapter 3. For detailed information on invoking and using APB, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Important: When you manually edit the obj.conf file for Netscape Enterprise and
FastTrack servers, the Netscape Administration server detects the changes and
generates the following JavaScript Alert:

Warning: Manual edits not loaded. Some configuration files have

been edited by hand. Use the 'Apply' button on the upper right

side of the screen to load the latest configuration files.

Click OK and then click Apply to load the changes. The Netscape Administration
server should now function normally.

Executing the webconfig Utility
Use the webconfig utility to add a special Webdriver mapping to the web.cnf
file to invoke the Web DataBlade Module Administration Tool for this
database.

Although you can call the special Webdriver mapping to invoke the Web
DataBlade Module Administration Tool anything you want, it is recom-
mended that you call it /dbname/admin, where dbname refers to the name of
the database for which you are configuring the Web DataBlade Module
Administration Tool.

When you add the special Webdriver mapping to the web.cnf file used to
invoke the Web DataBlade Module Administration Tool, you must specify the
admin Webdriver configuration with the -n option to the webconfig utility.

For example, to add a special Webdriver mapping for the Web DataBlade
Module Administration Tool for the hr_db database and the fred user,
execute the following command:

webconfig -addmap -p /hr_db/admin -n admin -d hr_db -u fred
4-8 IBM Informix Web DataBlade Module Administrator’s Guide

Adding Init Directives to the obj.conf File
The webconfig utility asks for the password for user fred and a password
key.

The resulting Map section in the web.cnf file looks like the following
example:

<Map path=/hr_db/admin>
database hr_db
user fred
password 8492849034038402434324324
password_key akey
config_name admin
config_security ON
</Map>

For detailed information on using the webconfig utility, refer to Chapter 13.

Adding Init Directives to the obj.conf File
The Init directives of the obj.conf file register Web server application
functions with the Netscape Web server and point to the location of the
shared object that contains the functions.

You can register only one NSAPI Webdriver with a particular Netscape Web
server. This is because the names of the modules registered in the Netscape
Web server are always the same for any version of the Web DataBlade
module (informix_auth, informix_require_auth, informix_explode, and
informix_init), and you cannot register more than one module with the same
name with the Netscape Web server.

To register Webdriver as an NSAPI function, you must add the following
directives to the beginning of the obj.conf file (if you are running iPlanet
Version 6, you must make this change in the file magnus.conf instead of
obj.conf):

Init fn="load-modules" \
shlib="path_to_INFORMIXDIR/extend/web.version/netscape/drivernsapi35.so" \
funcs="informix_auth,informix_require_auth,informix_explode,informix_init"
Init fn="informix_init"

Init directives in the obj.conf file must fit on a single line; for clarity, however,
the example shows the first Init directive on three separate lines.
Using the NSAPI Webdriver 4-9

Adding URL Prefix Information to the obj.conf File
The first Init directive registers the functions used by the NSAPI Webdriver
and points to the shared object that contains these functions. Specify the full
path to the directory where the shared object resides in the shlib parameter.
The second Init directive indicates that the Web server initializes the NSAPI
Webdriver with the informix_init NSAPI function upon startup.

When you enter Init directives in the obj.conf file, replace the italicized
path_to_INFORMIXDIR with the contents of the INFORMIXDIR Informix
environment variable and version with the version of the Web DataBlade
module you are currently using.

For example, assume that the INFORMIXDIR environment variable is
/disk1/informix and the version of the Web DataBlade module you are
currently using is 4.13.UC1. The Init directive entry would look like this:

Init fn="load-modules" \
shlib="/disk1/informix/extend/web.4.13.UC1/netscape/drivernsapi35.so" \
funcs="informix_auth,informix_require_auth,informix_explode,informix_init"
Init fn="informix_init"

Init directives in the obj.conf file must fit on a single line; for clarity, however,
the example shows the first Init directive on three separate lines.

Adding URL Prefix Information to the obj.conf File
You add a URL prefix to the obj.conf file by adding a NameTrans directive.
The NameTrans directives in the obj.conf file specify the Netscape object that
is called when a user specifies the URL prefix in a browser.

You only need to manually add the first NameTrans directive for a particular
database to the obj.conf file, typically one whose URL prefix points to the
special Webdriver mapping that invokes the Web DataBlade Module Admin-
istration Tool. Use the Netscape Administration server to add any
subsequent NameTrans directives.

You can include many NameTrans directives in the obj.conf file, but each
NameTrans directive points to only one Object directive.

Important: When you subsequently use the Web DataBlade Module Administration
Tool to add a new Webdriver mapping, you must also add a new URL prefix to the
Netscape Web Server. Be sure the URL prefix is exactly the same as the name of the
new Webdriver mapping. For detailed information on Webdriver mappings, refer to
Chapter 3.
4-10 IBM Informix Web DataBlade Module Administrator’s Guide

Adding URL Prefix Information to the obj.conf File
Adding the Initial admin URL Prefix

To add the initial URL prefix to invoke the Web DataBlade Module Adminis-
tration Tool, add the following NameTrans directive for the /dbname/admin
URL prefix in the default Object directive:

NameTrans fn="pfx2dir" from="/dbname/admin" dir="/ifx" name="ifx-webdriver"

The dbname variable refers to the name of the database with which you are
currently working.

Important: The Netscape Web server evaluates the directives in sequential order;
therefore, to ensure that the correct URL mapping is chosen, the NSAPI Webdriver
NameTrans directives should precede other NameTrans directives.

The preceding NameTrans directive indicates to the Web server that any URL
that includes the /dbname/admin URL prefix specified in the from parameter
follows the directives for the object specified by the name parameter, or ifx-
webdriver. The name parameter maps to the Object setting for the named
object; the section “Adding Object Directives to the obj.conf File” on
page 4-12 describes how to add Webdriver Object directives to the obj.conf
file.

The following example shows a NameTrans directive for the /hr_db/admin
URL prefix within the default Object directive:

<Object name=default>
NameTrans fn="pfx2dir" from="/hr_db/admin" dir="/ifx" name="ifx-webdriver"
</Object>

Adding Subsequent URL Prefixes

After you have added the NameTrans directive that specifies the
/dbname/admin URL prefix to invoke the Web DataBlade Module Adminis-
tration Tool, you might later want to add a NameTrans directive that
specifies, for example, the /apb URL prefix to invoke APB for your database.

Use the Netscape Administration server to add all subsequent NameTrans
directives to the obj.conf file.

Important: The following procedure is written with the assumption that you have
added the two Object directives for the two types of Webdriver objects to the obj.conf
file. For more information on adding Object directives, refer to “Adding Object
Directives to the obj.conf File” on page 4-12.
Using the NSAPI Webdriver 4-11

Adding Object Directives to the obj.conf File
To use the Netscape Administration server to add subsequent NameTrans
directives

1. Click your Netscape Web server name from the main Netscape
Administration Web page.

2. Click Content Management and then click the Additional
Document Directories link.

3. Enter the URL prefix in the URL prefix text box.

For example, if you are adding a URL prefix to invoke APB for the
hr_db database, enter the following text in the text box:

/hr_db/apb

4. Enter /ifx in the Map to Directory text box.

5. In the Apply Style list box, choose ifx-webdriver if you want to use
the basic Webdriver or ifx-webdriver-auth if you want to use the
secure Webdriver.

6. Click OK.

You can ignore the warning that states that the /ifx directory does not
exist.

7. Click Save and Apply.

The Netscape Web server is automatically restarted.

Adding Object Directives to the obj.conf File
The Object directives in the obj.conf file describe the object named in the
name parameter of the NameTrans directives.

Add two Object directives to the obj.conf file for the two types of Webdriver
objects: the basic Webdriver and the secure Webdriver.

The following example shows the Object directive for the basic ifx-webdriver
object:

<Object name="ifx-webdriver">
Service method=(GET|POST) fn="informix_explode"
</Object>

The Service directive indicates the call to the informix_explode NSAPI
function, which in turn makes the call to the Informix WebExplode()
function.
4-12 IBM Informix Web DataBlade Module Administrator’s Guide

Adding Object Directives to the obj.conf File
The following example shows the Object directive for the secure
ifx-webdriver-auth object; the directive contains more information about
how user authentication is performed:

<Object name="ifx-webdriver-auth">
AuthTrans fn="basic-auth" auth-type="basic" userdb="ifx"
userfn="informix_auth"

PathCheck fn="informix_require_auth" auth-type="basic" realm="Secure"
Service method=(GET|POST) fn="informix_explode"
</Object>

The PathCheck directive indicates that user authentication is required. The
AuthTrans directive indicates that the informix_auth NSAPI function
performs the user authentication.

For detailed information on using Netscape Web server user authentication
with the NSAPI Webdriver, see “Implementing User Authentication with the
NSAPI Webdriver” on page 4-20.
Using the NSAPI Webdriver 4-13

How It All Fits Together
How It All Fits Together
The URL prefix specified in the from parameter of the NameTrans directive
matches the name of the Webdriver mapping specified in the web.cnf file.
This Webdriver mapping then maps to a Webdriver configuration in the
database specified in the web.cnf file, as shown in Figure 4-1.

Figure 4-1
Mapping Between Netscape obj.conf File, web.cnf, and WebConfigs Configuration Table

IDS ORDBMS

WebConfigs

web.cnf file

user hr_user

config_name hr_config
password xyz

</Map >

<Map /hr_app>
database hr_db

hr_config

Netscape’s obj.cnf file

NameTrans fn=”pfx2dir” from=”/hr_app” dir=”/hr” name=”ifx-webdriver”

Configuration Table

hr_db Database
4-14 IBM Informix Web DataBlade Module Administrator’s Guide

Executing NSAPI Functions in AppPages
Executing NSAPI Functions in AppPages
The NSAPI Webdriver is a Netscape server application function. NSAPI uses
the dynamic linking functions of operating systems to enable you to load
NSAPI-compliant code modules, or NSAPI functions, into the Web server at
runtime. When you include these NSAPI functions as Web server extensions,
you can use the NSAPI Webdriver and the MIFUNC tag to call the NSAPI
functions within an AppPage.

When the WebExplode() function encounters an MIFUNC tag in an AppPage,
it passes the function name to the NSAPI Webdriver. The NSAPI Webdriver
uses the Netscape function lookup routine to find the code module. The
argument list supplied to the MIFUNC call is then passed through to the
function, using the Request vars pblock structure. After the function is
executed, any value that has been modified is passed back to the WebEx-
plode() function. When the code between the MIFUNC tags is processed, the
new values are effectively passed by reference.

To call an NSAPI function within an AppPage

1. Create the NSAPI function.

For detailed instructions for this step, see “Creating NSAPI Func-
tions,” following.

2. Configure the obj.conf Netscape configuration file to load the
function.

Refer to your Netscape Web server documentation for detailed
instructions on this step.

3. Invoke the function in the MIFUNC tag within an AppPage.

For detailed instructions for this step, see “Invoking NSAPI Func-
tions in an AppPage” on page 4-17.
Using the NSAPI Webdriver 4-15

Creating NSAPI Functions
Creating NSAPI Functions
NSAPI functions are described by the following prototype:

int function(pblock *pb, Session *sn, Request *rq)

For additional information on writing NSAPI functions, see the Netscape
server API documentation or visit the Netscape developer’s Web site at
http://developer.netscape.com.

The following example shows how to make a call to a function that executes
a program (in this case, the UNIX ls -l command) and returns the results
within the AppPage.

When you write the NSAPI function, you define variables that are passed by
reference, or imported, to the function. (Use the Request vars pblock
structure to import variables from the AppPage and to return, or export,
values to the AppPage.) The following example_dir() function imports the
OPTIONS variable and exports results in the RESULTS variable:

#include <stdio.h>
#include <nsapi.h>
#define MAXRESULTS 16384

example_dir(pblock *param, Session *sn, Request *rq)
{
char *result;
char cmd[128];
char *options;
char fname[60];
int bcount;
int fd;

 /* extract the options */

 options = pblock_findval("OPTIONS",rq->vars);

 sprintf(fname, "/tmp/dir.%d-%d", getpid(), systhread_current());
 sprintf(cmd, "/bin/ls %s >%s", options, fname);
 system(cmd);

 /* allocate some memory */

 result = malloc(MAXRESULTS);

 /* read results */

 fd = open(fname,0);
 bcount = read(fd, result, MAXRESULTS);
 close(fd);

 sprintf(cmd, "rm %s", fname);
 system(cmd);
4-16 IBM Informix Web DataBlade Module Administrator’s Guide

Invoking NSAPI Functions in an AppPage
 /* null terminate */
 *(result + bcount - 1) = '\0';

 pblock_remove("RESULTS",rq->vars);
 pblock_nvinsert("RESULTS",result,rq->vars);
 free(result);
}

Use the standard NSAPI return codes in your functions. For example, return
the REQ_PROCEED code for successful completion of the function and return
the REQ_ABORTED code for failure.

Invoking NSAPI Functions in an AppPage
Within the MIFUNC tag, you must include the variables to be imported and
exported (passed by reference) as name/value pairs. You must also specify
the FUNCTION attribute to locate the NSAPI function in the Web server.
Assign the value of the FUNCTION attribute to the name of the NSAPI
function.

When the MIFUNC tag is executed, all AppPage processing stops until the
function has completed execution. After the NSAPI function is executed,
AppPage processing continues, and everything between the MIFUNC tags is
executed using the variables that have been modified by reference in the
NSAPI function, in addition to the variables originally supplied to the
AppPage.

The following AppPage segment invokes the example_dir() function.

<?MIBLOCK COND=$(NXST,$opt)><?MIVAR>$(SETVAR,$opt,"-l
/tmp")<?/MIVAR><?/MIBLOCK>

<?MIFUNC FUNCTION=example_dir OPTIONS=$opt RESULTS="">
<?MIVAR>$(HTTPHEADER,Content-type,text/plain)$RESULTS<?/MIVAR>
<?/MIFUNC>

You can nest MIFUNC tags so that one function can execute depending on the
results of another. You can also include any number of MIFUNC tags in an
AppPage; however, you should pay attention to the ordering of the tags to
achieve the desired result.

For more information on using the MIFUNC Web DataBlade module tag in
AppPages, refer to the IBM Informix Web DataBlade Module Application
Developer’s Guide.
Using the NSAPI Webdriver 4-17

Using Server-Side Includes in AppPages with the NSAPI Webdriver
Using Server-Side Includes in AppPages with the
NSAPI Webdriver
Server-side includes (also called parsed html) are special commands embedded
in an HTML page that are recognized and interpreted by the Web server; the
output of the commands is placed in the HTML page before the AppPage is
sent to the browser. Server-side includes can be used, for example, to include
a date or time stamp in the text of the HTML page.

The following procedure describes the steps you must take for the NSAPI
Webdriver to correctly handle AppPages that contains server-side includes.

To use server-side includes in an AppPage

1. In your AppPage, use the PARSE-HTML variable-processing function
together with the MIVAR tag to indicate that your AppPage contains
server-side includes.

The PARSE-HTML variable-processing function has two options:
SHARED and DYNAMIC.

The SHARED option specifies that Webdriver send the cached App-
Page to the Web server. This option presumes that you have enabled
AppPage caching for the AppPage. The following example shows
how to specify the SHARED option:

<?MIVAR>$(PARSE-HTML,SHARED)<?/MIVAR>
Webdriver sends the cached AppPage to the Web server.

The DYNAMIC option specifies that Webdriver always send the App-
Page to the WebExplode() function for dynamic processing and then
temporarily store the AppPage in a directory that will subsequently
be read by the Web server. The following example shows how to
specify the DYNAMIC option:

<?MIVAR>$(PARSE-HTML,DYNAMIC)<?/MIVAR>
Webdriver sends the AppPage to the WebExplode function
and then temporarily stores it in a directory for the
Web server to read.

For more information on the PARSE-HTML variable processing func-
tion, refer to the IBM Informix Web DataBlade Module Application
Developer’s Guide.
4-18 IBM Informix Web DataBlade Module Administrator’s Guide

Using Server-Side Includes in AppPages with the NSAPI Webdriver
2. If you specified the SHARED option in step 1, enable AppPage caching
for the AppPage.

For detailed information on enabling AppPage caching, refer to
Chapter 9, “Improving Performance.”

3. If you specified the DYNAMIC option in step 1, use the Web DataBlade
Module Administration Tool to set the parse_html_directory
Webdriver variable in your Webdriver configuration.

The following table describes this Webdriver variable.

For detailed information on using the Web DataBlade Module Adminis-
tration Tool, refer to Chapter 3, “Configuring Webdriver.”

Webdriver Variable Mandatory? Description

parse_html_directory Yes Specifies the full pathname of the
directory on the Web server computer
where Webdriver temporarily stores the
AppPage to be subsequently read by the
Web server

Webdriver does not create this directory,
so be sure the directory exists before you
use server-side includes in an AppPage.
Using the NSAPI Webdriver 4-19

Implementing User Authentication with the NSAPI Webdriver
Implementing User Authentication with the NSAPI
Webdriver
You can use the user authentication feature of the Netscape Web server to
control user access to AppPages. User authentication refers to the process of
users verifying their identity by entering a user name and password when
they access secure AppPages.

To implement user authentication with NSAPI Webdriver

1. Set Webdriver variables in your Webdriver configuration to enable
user authentication for the NSAPI Webdriver.

For detailed information on this step, refer to “Setting Webdriver
Variables to Enable User Authentication” on page 4-20.

2. Update the Netscape Web server configuration file, obj.conf, to
enable user authentication for the Netscape Web server.

For detailed information on this step, refer to “Updating the obj.conf
File to Enable User Authentication” on page 4-23.

3. Add users to authenticate against to the appropriate database table.

For detailed information on this step, refer to “Adding Users to the
MIusertable Table” on page 4-24.

4. Set the access level for each AppPage for which you want to control
access.

For detailed information on this step, refer to “Specifying AppPage
Access Levels” on page 4-25.

Setting Webdriver Variables to Enable User Authentication
This section describes the first step of the four-part process described in
“Implementing User Authentication with the NSAPI Webdriver” on
page 4-20: setting the Webdriver variables necessary to enable user authenti-
cation with the NSAPI Webdriver.
4-20 IBM Informix Web DataBlade Module Administrator’s Guide

Setting Webdriver Variables to Enable User Authentication
Use the Web DataBlade Module Administration Tool to set the Webdriver
variables described in the following table.

Variable Name Mandatory? Content

MIusertable Yes Name of the table that contains user access
information

MIusername Yes Name of the VARCHAR column in the user
access table (MIusertable) that contains the
name of the database user

MIuserpasswd Yes Name of the VARCHAR column of the user
access table (MIusertable) that contains the
password of the database user

MIuserlevel Yes Name of the INTEGER column of the user
access table (MIusertable) that contains the
access level of the database user

MIpagelevel Yes Name of the INTEGER column of the table
that stores your AppPage that contains the
access level of the AppPage

MIusergroup No Name of the INTEGER column of the user
access table (MIusertable) that contains the
group access level of the user

redirect_url No URL to redirect users to if they do not have
access to the AppPage they attempt to
retrieve

auth_crypt_udr No Enables password encryption when set to ON

If password encyrption is enabled, Webdriver
encrypts the password entered by the user
and compares it to the encrypted password in
the MIusertable table. If they match, then the
user is authenticated.

If set to OFF (default value), then Webdriver
does not encrypt the password.

Refer to “Using Encrypted Passwords in the
MIusertable Table” on page 4-26 for detailed
information on using encrypted passwords.
Using the NSAPI Webdriver 4-21

Setting Webdriver Variables to Enable User Authentication
For detailed information on using the Web DataBlade Module Adminis-
tration Tool, refer to Chapter 3, “Configuring Webdriver.”

Important: If MIpagelevel has not been set for your Webdriver configuration, no
user authentication check is performed.

How the NSAPI Webdriver Uses the Webdriver Variables

If the access level of the retrieved AppPage is less than or equal to the access
level of the authenticated user, Webdriver allows the user to access the
AppPage. Webdriver stores the access level of the user (obtained from the
value of the MIuserlevel column of the MIusertable table) in the
MI_WEBACCESSLEVEL variable. Webdriver does not allow this variable to be
overridden in the URL. Additionally, the Web server stores the name of the
remote user in the REMOTE_USER Web server environment variable. You can
access the value of REMOTE_USER within your AppPages. Webdriver does
not allow this variable to be overridden in the URL.

When user authentication is not available or access is denied, you can redirect
the browser to another URL by setting the redirect_url variable to that URL.
If redirect_url is not set and a user attempts to access an AppPage with an
access level higher than 0, an access error is raised. You can access the error
by creating an error page from which you can query the MI_DRIVER_ERROR
variable. For detailed information on using the MI_DRIVER_ERROR variable,
refer to the IBM Informix Web DataBlade Module Application Developer’s Guide.

Example of Setting User Authentication Webdriver Variables

The following table shows sample values for the Webdriver variables that
enable NSAPI security. User access settings are based on the wbUsers table,
described in the schema for APB in the IBM Informix Web DataBlade Module
Application Developer’s Guide.

Webdriver Variable Sample Value

MIpagelevel read_level

MIusertable wbUsers

MIusername name

 (1 of 2)
4-22 IBM Informix Web DataBlade Module Administrator’s Guide

Updating the obj.conf File to Enable User Authentication
Updating the obj.conf File to Enable User Authentication
This section describes the second step of the four-part process described in
“Implementing User Authentication with the NSAPI Webdriver” on
page 4-20: updating the obj.conf file.

You add user authentication information to the obj.conf file by adding a new
Object directive that specifies user authentication information. You specify
user authentication information by including AuthTrans and PathCheck
directives in this new Objective directive.

The following example shows an Objective directive in the obj.conf file that
specifies user authentication information:

<Object name="ifx-webdriver-auth">
AuthTrans userfn="informix_auth" userdb="ifx" fn="basic-auth"
auth-type="basic"

PathCheck realm="Secure" fn="informix_require_auth" auth-type="basic"
Service method="(GET|POST)" fn="informix_explode"
</Object>

The name of this Object directive is ifx-webdriver-auth, and the directive
includes AuthTrans and PathCheck directives that invoke the secure
Webdriver object.

You add the following NameTrans directive to the obj.conf file to use the
secure Webdriver object:

NameTrans from="/secure" fn="pfx2dir" dir="/secure"
name="ifx_webdriver-auth"

In the example, /secure is the URL prefix.

MIuserpasswd password

MIuserlevel security_level

redirect_url http://domain/hp_app/errors

Webdriver Variable Sample Value

 (2 of 2)
Using the NSAPI Webdriver 4-23

Adding Users to the MIusertable Table
The following example shows standard NameTrans and Object directive
entries in the obj.conf file for nonsecure users:

<Object name="ifx-webdriver">
Service method="(GET|POST)" fn="informix_explode"
</Object>

NameTrans from="/guest" fn="pfx2dir" dir="/guest" name="ifx-webdriver"

In the example, /guest is the URL prefix.

For a description of the preceding obj.conf file entries, see “Adding URL
Prefix Information to the obj.conf File” on page 4-10.

An AppPage can only be accessed by authorized users with an access level
(MIuserlevel) equal to or higher than the access level for the AppPage
(MIpagelevel). Both unauthorized and authorized users can access
AppPages from the same AppPage table.

For the preceding obj.conf file entries, an example of a guest URL is:

http://mydomain:port/guest?MIval=/pagename.html

An example of a secure URL is:

http://mydomain:port/secure?MIval=/pagename.html

Customize the layout and information on the AppPages based on both the
REMOTE_USER and the MI_WEBACCESSLEVEL variables to display different
information to guest and secure users.

Adding Users to the MIusertable Table
This section describes the third step of the four-part process described in
“Implementing User Authentication with the NSAPI Webdriver” on
page 4-20: adding users to the MIusertable table.

Webdriver authenticates users who request a secure AppPage against the list
of users stored in the table specified by the MIusertable Webdriver variable.
This table contains user access information, such as the name of the user, their
password, their access level, and so on. When a user requests a secure
AppPage, Webdriver checks their inputted password against the password
in the MIusertable table, looks up the user’s access level, checks it against the
access level needed to view the AppPage, and then decides whether the user
is allowed to view the AppPage.
4-24 IBM Informix Web DataBlade Module Administrator’s Guide

Specifying AppPage Access Levels
You add users to the MIusertable table with an INSERT statement with the
DB-Access or SQL Editor tools.

In the APB schema, the table to store user access information is called
wbUsers. The following example shows how to insert a new user into this
table:

INSERT INTO wbUsers VALUES
('fred' , 'fred_password', 99, 'APB 2.0', 'AppPage', 80, 20, 't', '0');

In the example, user fred has an access level of 99. This means that Webdriver
allows user fred to view AppPages whose access level is 99 or less.

When you install APB into your database, two users are automatically
inserted into the wbUsers table: default and admin.

For detailed information on encrypting the user password, refer to “Using
Encrypted Passwords in the MIusertable Table” on page 4-26.

For a detailed description of the columns of the wbUsers table, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Specifying AppPage Access Levels
This section describes the fourth step of the four-part process described in
“Implementing User Authentication with the NSAPI Webdriver” on
page 4-20: specifying AppPage access levels.

You specify the access level of an AppPage by updating the access level
column in the table that stores the AppPage. The name of the column that
contains access level information for each AppPage is specified by the
MIpagelevel Webdriver variable.

For example, in the APB schema, the table that stores AppPages is called
wbPages. The wbPages table contains a column called read_level that
specifies the minimum access level a user must have to be able to view the
corresponding AppPage. Therefore, for the APB schema, the MIpagelevel
Webdriver variable is set to read_level.

If you want to specify a high access level for a particular AppPage, then
update the read_level column in the wbPages table for that AppPage to the
appropriate integer.
Using the NSAPI Webdriver 4-25

Using Encrypted Passwords in the MIusertable Table
For a detailed description of the columns of the wbPages table, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Using Encrypted Passwords in the MIusertable Table
For security reasons, you might want to encrypt all the passwords stored in
the MIusertable table. This section describes:

■ How to encrypt the passwords in the MIusertable table

■ How to set the auth_crypt_udr Webdriver variable to ensure that
Webdriver recognizes encrypted passwords

■ How to update APB so it uses encrypted passwords

■ Tips on creating your own AppPage to insert and edit users in the
MIusertable table

Encrypting Passwords

If you set the auth_crypt_udr Webdriver variable to ON, Webdriver encrypts
the password of the user being authenticated and compares it to the
password in the MIusertable table. If they match, the user is authenticated.

This means that if you set auth_crypt_udr to ON, you must be sure all the
passwords stored in the MIusertable table are encrypted as well. Use the
webpwcrypt() routine to encrypt passwords in the MIusertable table.

For example, if you are using the APB schema and you already have users in
the wbUsers table whose passwords are not encrypted, then the following
UPDATE statement encrypts the existing passwords:

UPDATE wbUsers
SET password = webpwcrypt(password, '');

To encrypt passwords as you insert new users into the wbUsers table, use an
INSERT statement similar to the following example:

INSERT INTO wbUsers VALUES
('fred2' , webpwcrypt('fred2_password',''), 99, 'APB 2.0', 'AppPage', 80,
20, 't', '0');
4-26 IBM Informix Web DataBlade Module Administrator’s Guide

Using Encrypted Passwords in the MIusertable Table
The preceding INSERT statement is very similar to the INSERT statement in
“Adding Users to the MIusertable Table” on page 4-24 except that it executes
the webpwcrypt() routine on the password column.

For a detailed description of the columns of the wbUsers table, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Setting the auth_crypt_udr Webdriver Variable

Once you have encrypted all the passwords in the MIusertable table, you
must ensure that Webdriver always encrypts the password entered by a user
before Webdriver checks to see if the passwords match. By default, Webdriver
does not encrypt incoming passwords.

To specify that Webdriver encrypt incoming passwords before checking them
against the passwords stored in the MIusertable table, set the
auth_crypt_udr Webdriver variable for your Webdriver configuration to ON.

Tips for Creating Your Own AppPage to Edit User Password
Information

If you create your own AppPage to insert or update a user in the
MIusertable, and you use encrypted passwords, the INSERT or UPDATE
statement contains the clear text password as part of the webpwcrypt()
routine. If you have enabled tracing with the debug_level Webdriver
variable, then this INSERT or UPDATE statement might be written to the log
file, with the clear text password clearly visible.

To ensure that the clear text password is not written to the log file, set the
MIdriver Webdriver variable to debug_off to turn off logging of the UPDATE
or INSERT statements to the log file. You set the MIdriver Webdriver variable
as a hidden variable in an INPUT tag after you create a FORM with the
attribute REQUEST=POST.

The following section of the Edit User AppPage of APB shows an example of
how to use the MIdriver Webdriver variable to turn off logging of a single
INSERT or UPDATE statement:

<FORM METHOD=POST ACTION="<?MIVAR>$WEB_HOME<?/MIVAR>">
<INPUT TYPE=hidden NAME=MIval
VALUE="/APB20/apb_edit_User.html">
<INPUT TYPE=hidden NAME=MIdriver VALUE="debug_off">
Using the NSAPI Webdriver 4-27

Using the REMOTE_USER Web Browser Variable for User Authentication
Using the REMOTE_USER Web Browser Variable for User
Authentication
An additional user authentication method is available for the NSAPI
Webdriver.

If the connect_as_user Webdriver variable is set to ON in your Webdriver
configuration, all database requests connect as the user specified by the
REMOTE_USER Web browser variable instead of the user defined in the
web.cnf file for your Webdriver mapping. The user specified by the
REMOTE_USER Web browser variable must be added to the user access table
identified by the MIusertable variable (typically the wbUsers table) to
enable connect_as_user user authentication. The password in the user access
table is ignored since user authentication is performed when connecting to
the database.

Important: If you set connect_as_user to ON, the user specified by the
REMOTE_USER Web browser variable must be a valid operating system user with
database connection privileges. Therefore, this authentication method should be
restricted to Intranet, rather than Internet, applications.

Additional NSAPI Webdriver Information
This section describes information specific to the NSAPI Webdriver that you
should be aware of when you use the Web DataBlade module.

WebExplode() Buffer Size with NSAPI Webdriver
The max_html_size Webdriver variable specifies the maximum size of the
buffers returned from the WebExplode() function. Setting this variable
allows dynamic memory allocation without causing Web server memory
growth. The default buffer size is 128 KB.

For the NSAPI Webdriver, each thread initially allocates 8 KB of memory and
then grows up to the value of the max_html_size Webdriver variable.
4-28 IBM Informix Web DataBlade Module Administrator’s Guide

Passing Image Map Coordinates with the NSAPI Webdriver
Passing Image Map Coordinates with the NSAPI Webdriver
For details on passing image map coordinates with Webdriver in standard
image maps and forms, see the IBM Informix Web DataBlade Module Application
Developer’s Guide.

An example image map URL is:

http://mydomain:port/hr_app/MImap=on&MIval=image_example?100,13

Important: You must specify MImap as the first variable in PATH_INFO. The
NSAPI Webdriver ignores anything preceding MImap.

Administering the NSAPI Webdriver
This section discusses NSAPI Webdriver performance and error logging.

NSAPI Webdriver Performance
The NSAPI Webdriver shared object, drivernsapi35.so, is loaded by the
Netscape Web server. The NSAPI Webdriver uses the same threading system
used by Netscape to allow multiple simultaneous connections to a database.

As requests are made to the Web server, connections are opened to the
database. These connections remain open and are reused as new threads
request database access. Specify the maximum number of connections to the
database with the dbconnmax Webdriver variable in Global section of the
web.cnf file. The default number of connections is 16.

To monitor the database connection pool

1. Turn on the debug flag for dumping connection pool information by
setting the debug_level Webdriver variable for your Webdriver
configuration using the Web DataBlade Module Administration
Tool.

Set the variable to either 0x0400 or 1024.

2. Set a trace file by setting the debug_log Webdriver variable in the
Global section of the web.cnf file, as described in Chapter 12,
“Debugging and Troubleshooting.”
Using the NSAPI Webdriver 4-29

NSAPI Webdriver Performance
The following example shows sample output to the debug_log file:

CP[014714e8] SID S Rqs Max Database Server User QT QD KA WT
CP[014714e8]000 703 QR 14 100 webtest bldsvr webuser 0 0 0 0
CP[00000000]001 704 I 10 100 webtest bldsvr webuser 0 0 0 0
CP[00000000]002 706 I 9 100 webtest bldsvr webuser 0 0 0 0
CP[00000000]003 705 I 10 100 webtest bldsvr webuser 0 0 0 0
CP[00000000]004 707 I 8 100 webtest bldsvr webuser 0 0 0 0

In the preceding output, the number in the first column enclosed in brackets
([]) is the thread identifier.

The following table describes the remaining columns of the output to the
debug_log file.

Column Name Description

SID Session ID in the database

S Refers to the status of the thread

The status can be one of the following values:

■ QR (query request)

■ LR (large object request)

■ I (idle)

■ - (closed)

■ +R (connection opening)

Rqs Number of requests on this connection so far

Idle Number of seconds the Webdriver connection has been idle

(Only displayed when dbconntimeout is set in the web.cnf
file; dbconntimeout is described in the IBM Informix Web
DataBlade Module Application Developer’s Guide).

Max Maximum number of requests for the connection
(connection_life Webdriver variable)

Database Name of the database being accessed

Server Name of the database server being used to access the database

User Name of the user accessing database

QT Query time-out interval (query_timeout Webdriver variable)

 (1 of 2)
4-30 IBM Informix Web DataBlade Module Administrator’s Guide

Error Logging with NSAPI Webdriver
The query_timeout and keepalive Webdriver variables are described in
“Managing Webdriver Connections to the Database” on page 3-19. For
detailed information on updating Webdriver variables with the Web
DataBlade Module Administration Tool, refer to Chapter 3.

Connections are shut down and reestablished after connection_life number
of requests. The default value for connection_life is 100 requests; this value
should be modified only under the guidance of Technical Support.

If you reach the maximum number of connections (dbconnmax variable in
the Global section of the web.cnf file) and all threads are processing queries,
you will notice a WAITING message by the headers (to the right of the WT
column).

Error Logging with NSAPI Webdriver
The NSAPI Webdriver logs error messages to the Netscape Web server error
log file. The location of this file is specified by the ErrorLog directive in the
magnus.conf file.

QD Query duration (how long the query has been running, in KA
amounts)

KA Timer to check if the connection is still alive (keepalive
Webdriver variable)

WT Number of times that the last thread that succeeded in getting
a connection had to go into a wait cycle

Column Name Description

 (2 of 2)
Using the NSAPI Webdriver 4-31

5
Chapter
Using the Apache Webdriver
In This Chapter . 5-3

Overview of the Apache Webdriver 5-3

Configuring the Apache Webdriver 5-4
Executing the webconfig Utility 5-8
Editing the Apache Web Server Configuration File 5-9
Editing Apache Web Server Source Code 5-11

Editing the mod_include.c File 5-12
Editing the http_request.c File 5-12

Adding URL Prefix Information to the Apache Web Server. . . . 5-13
How It All Fits Together. 5-14

Implementing User Authentication with Apache Webdriver 5-15
Setting Webdriver Variables 5-16

How the Apache Webdriver Uses the Webdriver Variables . . 5-17
Example of Setting User Authentication Webdriver Variables . 5-18

Updating the httpd.conf File to Enable User Authentication . . . 5-19
Adding Users to the MIusertable Table 5-20
Specifying AppPage Access Levels 5-21
Using Encrypted Passwords in the MIusertable Table 5-21

Encrypting Passwords 5-22
Setting the auth_crypt_udr Webdriver Variable 5-22
Tips for Creating Your Own AppPage to Edit User Password

Information 5-23
Using the REMOTE_USER Web Browser Variable for

User Authentication 5-23

Using Server-Side Includes in AppPages with the Apache Webdriver . 5-24

5-2 IBM
Dynamically Loading the Apache Webdriver 5-26
Before You Begin 5-26
Updating The Apache Web Server Configuration File. 5-27
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter describes how to configure and use the Apache Webdriver. It
includes the following topics:

■ “Overview of the Apache Webdriver,” following

■ “Configuring the Apache Webdriver” on page 5-4

■ “Implementing User Authentication with Apache Webdriver” on
page 5-15

■ “Using Server-Side Includes in AppPages with the Apache
Webdriver” on page 5-24

Overview of the Apache Webdriver
The Apache Webdriver uses the Apache API rather than the CGI interface to
connect to the database and execute AppPages.

Usually, when you configure the Apache Webdriver, you rebuild the Apache
Web server httpd binary, to link in the Apache Webdriver object file. This
process is described in detail in “Configuring the Apache Webdriver” on
page 5-4. If you do not have the Apache source code or if you want to run the
default httpd binary that was installed at the time you installed the Apache
Web server, refer to the section “Dynamically Loading the Apache
Webdriver” on page 5-26.
Using the Apache Webdriver 5-3

Configuring the Apache Webdriver
The Apache Webdriver offers the ability to:

■ Eliminate CGI process overhead.

■ Use security features built into the Apache Web server to control
access to AppPages.

This feature is described in “Implementing User Authentication with
Apache Webdriver” on page 5-15.

■ Use server-side includes in AppPages. With this feature, AppPage
developers can add sections to their AppPages that the Apache Web
server looks for and executes after the AppPage is exploded.

This feature is described in “Using Server-Side Includes in AppPages
with the Apache Webdriver” on page 5-24.

This chapter is written with the assumption that you have already installed
the Web DataBlade module on your computer, created a database with
logging enabled, registered the Web DataBlade module in the database, and
installed the Web DataBlade Module Administration Tool in the database.

The Apache Webdriver is compatible with specific Apache Web server
versions. Check the Web DataBlade module release notes for a list of Apache
Web server versions that can implement the Apache Webdriver.

Configuring the Apache Webdriver
The Apache Webdriver obtains configuration information about the Web
application environment from the web.cnf file, from the Webdriver configu-
ration information stored in the database, and from the Apache Web server
configuration files.

The following procedure describes the basic steps you must perform to
configure the Apache Webdriver. Some of the steps are described in more
detail later in this section.
5-4 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the Apache Webdriver
If you used the websetup utility to initially configure the Web DataBlade
module for your database, the websetup utility might have automatically
performed some of the steps in the following procedure. In particular, the
websetup utility:

■ Copies and updates the web.cnf file with the required information

■ Runs the webconfig utility to add the special Webdriver mapping to
invoke the Web DataBlade Module Administration Tool

For more information on the websetup utility, refer to Chapter 2, “Getting
Started,” and Chapter 13, “Web DataBlade Module Utilities.”

Important: The following procedure assumes that you have previously installed and
configured the Apache Web server and that it is up and running. The procedure also
assumes that the configuration options you specified when you ran the Apache
configure utility are stored in the file $APACHEDIR/src/apaci. The Web DataBlade
module uses the options stored in this file when you rebuild the httpd binary.

To configure the Apache Webdriver

1. If you have never run the websetup utility to configure Web server
and database components, go to step 2.

If you have previously run the websetup utility to configure Web
server and database components, go to step 4.

2. Copy the sample Webdriver configuration file, called
web.cnf.example, to a directory on the Web server computer and
rename it web.cnf.

The web.cnf.example file is located in the directory INFOR-
MIXDIR/extend/web.version/install, where INFORMIXDIR refers to
the main Informix directory and version refers to the current version
of the Web DataBlade module installed on your computer.

Update the web.cnf file by setting the Informix environment vari-
ables INFORMIXDIR and INFORMIXSERVER to point to the main
Informix directory and default Informix database server,
respectively.

If you already have a working web.cnf file, you do not need to per-
form this step.
Using the Apache Webdriver 5-5

Configuring the Apache Webdriver
3. Run the webconfig utility at the operating system command prompt
to add the special Webdriver mapping to the web.cnf file used to
invoke the Web DataBlade Module Administration Tool.

For detailed information on this step, refer to “Executing the web-
config Utility” on page 5-8.

4. Stop the Apache Web server.

5. Register the Apache Webdriver with the Apache Web server by
editing the Apache Web server configuration file called Configu-
ration, located in the src directory under the main Apache Web
server directory.

For detailed information on this step, refer to “Editing the Apache
Web Server Configuration File” on page 5-9.

6. Configure the Apache Web server for your operating system by
running the Configure program located in the src directory under
the main Apache Web server directory.

For detailed information on this step, refer to the Apache Web site at
http://www.apache.org.

7. If you want AppPage developers to use server-side includes in their
AppPages, edit one of the Apache Web server source code files in the
src directory under the main Apache Web server directory.

For detailed information on editing Apache Web server source code,
refer to “Editing Apache Web Server Source Code” on page 5-11.

8. Set the INFORMIXDIR environment variable in your environment to
point to the main Informix directory.

9. Type make in the main Apache directory to create the new Apache
Web server binary, httpd.

For detailed information on this step, refer to the Apache Web site at
http://www.apache.org.

10. Type make install in the main Apache directory to update your
Apache installation.

For detailed information on this step, refer to the Apache Web site at
http://www.apache.org.
5-6 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the Apache Webdriver
11. Add mapping information to the Apache Web server configuration
file httpd.conf so that the Web server calls the Apache Webdriver
when you specify a URL prefix that maps to a Webdriver mapping.
At the very least, you must add a mapping that invokes the Web
DataBlade Module Administration Tool.

For detailed information on this step, refer to “Adding URL Prefix
Information to the Apache Web Server” on page 5-13.

12. Set the MI_WEBCONFIG and LD_LIBRARY_PATH environment
variables to point to the full pathname of the web.cnf file and the
Informix libraries, respectively.

Set these environment variables either in the Apache Web server
startup file or, if you start up the Web server directly at the operating
system prompt, in the environment of the user who starts up the Web
server.

For more information on the MI_WEBCONFIG environment variable
and the web.cnf file, refer to Chapter 3, “Configuring Webdriver.”

13. Restart the Apache Web server.

14. Invoke the Web DataBlade Module Administration Tool in your
browser by specifying a URL of the following form in your browser:

http://domain:port/dbname/admin/

In this URL, domain refers to the name of your Web server computer,
port refers to the port number of the Web server process, and dbname
refers to the name of your database.

As described in Step 11, /dbname/admin is the URL prefix you added
to your Web server.

Many Web servers require you add the slash at the end of the URL.

For general information on invoking AppPages with the Apache Webdriver,
refer to the IBM Informix Web DataBlade Module Application Developer’s Guide.

After you have invoked the Web DataBlade Module Administration Tool in
your browser, use it to add new Webdriver mappings and Webdriver config-
urations to invoke your own Web DataBlade module applications or to
invoke existing applications, such as AppPage Builder (APB).
Using the Apache Webdriver 5-7

Executing the webconfig Utility
For more information on adding Webdriver mappings and Webdriver
configurations with the Web DataBlade Module Administration Tool, refer
to Chapter 3, “Configuring Webdriver.” For detailed information on
invoking and using APB, refer to the IBM Informix Web DataBlade Module Appli-
cation Developer’s Guide.

Executing the webconfig Utility
Use the webconfig utility to add a special Webdriver mapping to the web.cnf
file to invoke the Web DataBlade Module Administration Tool for the
database for which you are configuring the Web DataBlade module.

Although you can name the special Webdriver mapping to invoke the Web
DataBlade Module Administration Tool anything you want, Informix recom-
mends you name it /dbname/admin, where dbname is the name of the
database for which you are configuring the Web DataBlade Module Admin-
istration Tool.

When you add the special Webdriver mapping to the web.cnf file used to
invoke the Web DataBlade Module Administration Tool, you must specify the
admin Webdriver configuration with the -n option to the webconfig utility.

For example, to add a special Webdriver mapping for the Web DataBlade
Module Administration Tool for the hr_db database and the fred user,
execute the following command:

webconfig -addmap -p /hr_db/admin -n admin -d hr_db -u fred

The webconfig utility asks for the password for user fred and a password
key.

The resulting Map section in the web.cnf file looks like the following
example:

<Map path=/hr_db/admin>
database hr_db
user fred
password 8492849034038402434324324
password_key akey
config_name admin
</Map>

For detailed information on using the webconfig utility, refer to Chapter 13,
“Web DataBlade Module Utilities.”
5-8 IBM Informix Web DataBlade Module Administrator’s Guide

Editing the Apache Web Server Configuration File
Editing the Apache Web Server Configuration File
The Configuration file, located in the src directory under the main Apache
Web server directory, specifies the modules that are compiled into the
Apache Web server binary and the flags that are used when make is executed
to create the binary. Edit this file so that the Apache Webdriver module is
compiled into the binary.

To edit the Configuration file to add the Apache Webdriver module

1. Add the following Informix directories to the EXTRA_LDFLAGS
option of the Configuration file:

■ -LINFORMIXDIR /lib

■ -LINFORMIXDIR /lib/esql

■ -LINFORMIXDIR /extend/web.version/apache

Separate each entry with a blank space.

In the preceding list, INFORMIXDIR refers to the full pathname of the
main Informix directory, and version refers to the current version of
the Web DataBlade module installed on your computer.

For example, assume that INFORMIXDIR is /disk/ifmx and the cur-
rent version of the Web DataBlade module is 4.13.UC1. The following
example shows the entry for the EXTRA_LDFLAGS option in the Con-
figuration file:
EXTRA_LDFLAGS=-L/disk/ifmx/lib -L/disk/ifmx/lib/esql
-L/disk/ifmx/extend/web.4.13.UC1/apache

The preceding entry should not contain any carriage returns: it
should fit on exactly one line.

2. Add the following directory to the EXTRA_CFLAGS option:
`APACHEDIR/src/apaci`

APACHEDIR refers to the main Apache Web server directory. Be sure
you enclose the option in back quotes (`).

For example, assume that APACHEDIR is /local/apache. The follow-
ing example shows the entry for the EXTRA_CFLAGS option in the
Configuration file:

EXTRA_CFLAGS=`/local/apache/src/apaci`
Using the Apache Webdriver 5-9

Editing the Apache Web Server Configuration File
3. Add the following libraries to the EXTRA_LIBS option:
-lifxw -lifsql -lifasf -lifgen -lifos -lifgls
INFORMIXDIR/lib/esql/checkapi.o -lifglx -lifsql -lifasf
-lifgen -lifos -lifgls -lm

Separate each entry with a blank space.

In the preceding list, INFORMIXDIR refers to the full pathname of the
main Informix directory.

For example, assume that INFORMIXDIR is /disk/ifmx. The following
example shows the entry for the EXTRA_LIBS option in the Configu-
ration file:
EXTRA_LIBS=-lifxw -lifsql -lifasf -lifgen -lifos -lifgls
/disk/ifmx/lib/esql/checkapi.o -lifglx -lifsql -lifasf -lifgen
-lifos -lifgls -lm

The preceding entry must not contain any carriage returns: it must fit
on exactly one line.
5-10 IBM Informix Web DataBlade Module Administrator’s Guide

Editing Apache Web Server Source Code
4. Add a Module directive to the end of the Configuration file to
specify the location of the Apache Webdriver shared object.

There are two types of Apache Webdriver shared objects: the basic
shared object and the server-side-includes-enabled shared object.

To specify the basic shared object, add the following lines to the Con-
figuration file:
Add the Informix Webdriver module
Module informix_module \

INFORMIXDIR/extend/web.version/apache/apache_version/explode.o

Module directives must fit on a single line; for clarity, however, the
preceding entry shows the Module directive on two separate lines.

In the preceding entry, INFORMIXDIR refers to the full pathname of
the main Informix directory, version refers to the current version of
the Web DataBlade module installed on your computer, and
apache_version refers to the name of the directory that corresponds to
the version of the Apache Web server you are using.

For example, assume INFORMIXDIR is /dsk/ifx, the current version of
the Web DataBlade module installed on your computer is 4.13.UC1,
and the version of the Apache Web server you are using is 1.3.12. The
following example shows the Module entry for the basic shared
object in the Configuration file:
Add the Informix Webdriver module
Module informix_module \

/dsk/ifx/extend/web.4.13.UC1/apache/apache_1.3.12/explode.o

To specify the server-side-includes-enabled shared object, specify the
explode_ssi.o shared object instead, as shown in the following
example:
Add the Informix Webdriver module
Module informix_module \

/dsk/ifx/extend/web.4.13.UC1/apache/apache_1.3.12/explode_ssi.o

Editing Apache Web Server Source Code
If you want AppPage developers to use server-side includes in their
AppPages, you must modify two Apache Web server source code files before
you create the Apache Web server binary, as described in the following two
sections.

Tip: Make a backup copy of the two files before you modify them.
Using the Apache Webdriver 5-11

Editing Apache Web Server Source Code
Editing the mod_include.c File

The first file you must edit is called APACHEDIR/src/modules/standard/
mod_include.c, where APACHEDIR refers to the main Apache Web server
directory.

Change the mod_include.c file by removing the static declaration to the
send_shtml_file function so the Apache Web server can directly call the SSI-
enabled Apache Webdriver module.

In particular, change the following line in the mod_include.c file:

static int send_shtml_file(request_rec *r)

Change this line to:

int send_shtml_file(request_rec *r)

Editing the http_request.c File

The second file you must edit is called APACHEDIR/src/main/http_request.c,
where APACHEDIR refers to the main Apache Web server directory.

Change the http_request.c file by removing the static declaration to the
get_path_info function.

In particular, change the following line in the http_request.c file:

static int get_path_info(request_rec *r)

Change this line to:

int get_path_info(request_rec *r)
5-12 IBM Informix Web DataBlade Module Administrator’s Guide

Adding URL Prefix Information to the Apache Web Server
Adding URL Prefix Information to the Apache Web Server
The Apache Web server configuration file httpd.conf, located in the conf
directory under the main Apache Web server directory, contains mapping
information that tells the Web server to call the Apache Webdriver module
when a particular URL prefix is used in a URL.

Each Webdriver mapping in the web.cnf file has a corresponding Location
directive in the httpd.conf file. The Location directive must take the
following form:

<Location /URL_prefix>
SetHandler informix_explode
</Location>

In this directive, /URL_prefix must be exactly the same as the name of the
Webdriver mapping in the Map section of the web.cnf file.

Each time you create a new database, register the Web DataBlade module,
and install the Web DataBlade Module Administration Tool in the database,
you must add the following Location directive in the httpd.conf file:

<Location /database/admin>
SetHandler informix_explode
</Location>

In this directive, database is the name of the database in which you registered
the Web DataBlade module. Use this URL prefix to invoke the Web DataBlade
Module Administration Tool in your browser.

Remember to stop and restart the Apache Web server each time you add a
URL prefix to the httpd.conf file.

Important: If you subsequently use the Web DataBlade Module Administration Tool
to add a new Webdriver mapping, you must also add a new URL prefix to the Apache
Web Server. Be sure the URL prefix is exactly the same as the name of the new
Webdriver mapping.

For detailed information on Webdriver mappings, refer to Chapter 3,
“Configuring Webdriver.”
Using the Apache Webdriver 5-13

How It All Fits Together
How It All Fits Together
Figure 5-1 shows the relationship between the Apache httpd.conf file, the
web.cnf file, and the Webdriver configuration information in the database.

The figure shows a Webdriver mapping in the web.cnf file called /hr_app.
The name of the Location directive in the httpd.conf file is also called
/hr_app. The web.cnf file indicates that the /hr_app Webdriver mapping uses
the hr_db database and the hr_config Webdriver configuration. For more
information on the Web DataBlade Module Administration Tool and
Webdriver mappings, refer to Chapter 3, “Configuring Webdriver.”

Figure 5-1
Mapping Between Apache httpd.conf File, web.cnf, and WebConfigs Configuration Table

IDS ORDBMS

WebConfigs

web.cnf file

user hr_user

config_name hr_config
password xyz

</Map >

<Map /hr_app>
database hr_db

hr_config

Apache httpd.conf file

Configuration Table

hr_db Database

</Location>

<Location /hr_app>

SetHandler informix_explode
5-14 IBM Informix Web DataBlade Module Administrator’s Guide

Implementing User Authentication with Apache Webdriver
Implementing User Authentication with Apache
Webdriver
You can use the user authentication feature of the Apache Web server to control
user access to AppPages. User authentication refers to the process of users
verifying their identity by entering a user name and password when they
access secure AppPages.

To implement user authentication with Apache Webdriver

1. Set Webdriver variables in your Webdriver configuration to enable
the Apache Webdriver to recognize user authentication.

For detailed information on this step, refer to “Setting Webdriver
Variables” on page 5-16.

2. Enable Apache Web server user authentication by adding the
AuthType, AuthName, and require directives to the appropriate
entry in the httpd.conf file.

For detailed information about this step, refer to “Updating the
httpd.conf File to Enable User Authentication” on page 5-19.

3. Add users to authenticate against to the appropriate database table.

For detailed information on this step, refer to “Adding Users to the
MIusertable Table” on page 5-20.

4. Set the access level for each AppPage for which you want to control
access.

For detailed information on this step, refer to “Specifying AppPage
Access Levels” on page 5-21.
Using the Apache Webdriver 5-15

Setting Webdriver Variables
Setting Webdriver Variables
The first step to use the security features of the Apache Web server is to set
the Webdriver variables listed in the following table. Use the Web DataBlade
Module Administration Tool to set these Webdriver variables.

Variable Name Mandatory? Content

MIusertable Yes Name of the table that contains user access
information

MIusername Yes Name of the VARCHAR column in the user
access table (MIusertable) that contains the
name of the database user

MIuserpasswd Yes Name of the VARCHAR column of the user
access table (MIusertable) that contains the
password of the database user

MIuserlevel Yes Name of the INTEGER column of the user
access table (MIusertable) that contains the
access level of the database user

MIpagelevel Yes Name of the INTEGER column of the table
that stores AppPage that contains the access
level of the AppPage

 (1 of 2)
5-16 IBM Informix Web DataBlade Module Administrator’s Guide

Setting Webdriver Variables
For detailed information on using the Web DataBlade Module Adminis-
tration Tool, refer to Chapter 3, “Configuring Webdriver.”

Important: If MIpagelevel has not been set for your Webdriver configuration, no
user authentication check is performed.

How the Apache Webdriver Uses the Webdriver Variables

If the access level of the retrieved AppPage is less than or equal to the access
level of the authenticated user, the user can see the AppPage. The access level
of the user, obtained from the value of the MIuserlevel column of the
MIusertable table, is stored in the MI_WEBACCESSLEVEL variable.
Webdriver does not allow this variable to be overridden in the URL.
Additionally, the Web server stores the name of the remote user in the
REMOTE_USER Web server environment variable. You can access the value
of REMOTE_USER within your AppPages. Webdriver does not allow this
variable to be overridden in the URL.

MIusergroup No Name of the INTEGER column of the user
access table (MIusertable) that contains the
group access level of the user

redirect_url No URL to redirect users to if they do not have
access to the AppPage they attempt to
retrieve

auth_crypt_udr No Enables password encryption when set to ON

If password encyrption is enabled, Webdriver
encrypts the password entered by the user
and compares it to the encrypted password in
the MIusertable table. If they match, then the
user is authenticated.

If set to OFF (default value), then Webdriver
does not encrypt the password.

Refer to “Using Encrypted Passwords in the
MIusertable Table” on page 5-21 for detailed
information on using encrypted passwords.

Variable Name Mandatory? Content

 (2 of 2)
Using the Apache Webdriver 5-17

Setting Webdriver Variables
When authorization is not available or access is denied, you can redirect the
browser to another URL by setting the redirect_url variable to that URL. If
redirect_url is not set and a user attempts to access an AppPage with an
access level higher than 0, an access error is raised. You can access the error
by querying the MI_DRIVER_ERROR variable in your AppPage. For detailed
information on MI_DRIVER_ERROR, refer to the IBM Informix Web DataBlade
Module Application Developer’s Guide.

Example of Setting User Authentication Webdriver Variables

The following table shows sample values for the Webdriver variables that
enable security in an Apache Web server.

User access settings are based on the wbUsers table, described in the schema
for APB in the IBM Informix Web DataBlade Module Application Developer’s Guide.

Webdriver Variable Sample Value

MIpagelevel read_level

MIusertable wbUsers

MIusername name

MIuserpasswd password

MIuserlevel security_level

redirect_url http://domain/hr_app/errors
5-18 IBM Informix Web DataBlade Module Administrator’s Guide

Updating the httpd.conf File to Enable User Authentication
Updating the httpd.conf File to Enable User Authentication
You enable user authentication for a URL prefix specified in the Location
directive of the httpd.conf file by adding AuthType, AuthName, and require
directives.

Set the AuthType directive to Basic, set the AuthName directive to the same
URL prefix specified in the Location directive, and set the require directive to
valid-user.

For example, assume that you previously added the following Location
directive to the httpd.conf file:

<Location /secure>
SetHandler informix_explode
</Location>

If you want to enable user authentication for this URL prefix, add the
AuthType, AuthName, and require directives, as shown in the following
example:

<Location /secure>
SetHandler informix_explode
AuthType Basic
AuthName /secure
require valid-user
</Location>

The following example shows a Location directive for a guest user who is not
authorized to view secure AppPages:

<Location /guest>
SetHandler informix_explode
</Location>

In the example, the /secure URL prefix contains user authentication infor-
mation; the /guest URL prefix does not.

Any AppPage can be accessed only by authorized users with an access level
(MIuserlevel) equal to or higher than the access level for the AppPage
(MIpagelevel). Both authorized and unauthorized users can access
AppPages from the same AppPage table.

For the preceding httpd.conf file entries, an example of a guest URL is:

http://mydomain:port/guest?MIval=/pagename.html
Using the Apache Webdriver 5-19

Adding Users to the MIusertable Table
An example of a secure URL is:

http://mydomain:port/secure?MIval=/pagename.html

Customize the layout and information on the AppPages based on both the
REMOTE_USER and the MI_WEBACCESSLEVEL variables to display different
information to guest and secure users.

Adding Users to the MIusertable Table
Webdriver authenticates users that request a secure AppPage against the list
of users stored in the table specified by the MIusertable Webdriver variable.
This table contains user access information, such as the name of the user, their
password, their access level, and so on. When a user requests a secure
AppPage, Webdriver checks their inputted password against the password
in the MIusertable table, looks up the user’s access level, checks it against the
access level needed to view the AppPage, then decides whether the user is
allowed to view the AppPage.

You add users to the MIusertable table with an INSERT statement with the
DB-Access or SQL Editor tools.

In the APB schema, the table to store user access information is called
wbUsers. The following example shows how to insert a new user into this
table:

INSERT INTO wbUsers VALUES
('fred' , 'fred_password', 99, 'APB 2.0', 'AppPage', 80, 20, 't', '0');

In the example, user fred has an access level of 99. This means that Webdriver
allows user fred to view AppPages whose access level is 99 or less.

When you install APB into your database, two users are automatically
inserted into the wbUsers table: default and admin.

Refer to “Using Encrypted Passwords in the MIusertable Table” on page 5-21
for detailed information on encrypting the user password.

For a detailed description of the columns of the wbUsers table, refer to
Appendix B of the IBM Informix Web DataBlade Module Application Developer’s
Guide.
5-20 IBM Informix Web DataBlade Module Administrator’s Guide

Specifying AppPage Access Levels
Specifying AppPage Access Levels
You specify the access level of an AppPage by updating the access level
column in the table that stores the AppPage. The name of the column that
contains access level information for each AppPage is specified by the
MIpagelevel Webdriver variable.

For example, in the APB schema, the table that stores AppPages is called
wbPages. The wbPages table contains a column called read_level that
specifies the minimum access level a user must have to be able to view the
corresponding AppPage. Therefore, for the APB schema, the MIpagelevel
Webdriver variable is set to read_level.

If you want to specify a high access level for a particular AppPage, then
update the read_level column in the wbPages table for that AppPage to the
appropriate integer.

For a detailed description of the columns of the wbPages table, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Using Encrypted Passwords in the MIusertable Table
For security reasons, you might want to encrypt all the passwords stored in
the MIusertable table. This section describes:

■ How to encrypt the passwords in the MIusertable table

■ How to set the auth_crypt_udr Webdriver variable to ensure that
Webdriver recognizes encrypted passwords

■ How to update APB so it uses encrypted passwords

■ Tips on creating your own AppPage to insert and edit users in the
MIusertable table
Using the Apache Webdriver 5-21

Using Encrypted Passwords in the MIusertable Table
Encrypting Passwords

If you set the auth_crypt_udr Webdriver variable to ON, Webdriver encrypts
the password of the user being authenticated and compares it to the
password in the MIusertable table. If they match, the user is authenticated.

This means that if you set auth_crypt_udr to ON, you must be sure all the
passwords stored in the MIusertable table are encrypted as well. Use the
webpwcrypt() routine to encrypt passwords in the MIusertable table.

For example, if you are using the APB schema and you already have users in
the wbUsers table whose passwords are not encrypted, then the following
UPDATE statement encrypts the existing passwords:

UPDATE wbUsers
SET password = webpwcrypt(password, '');

To encrypt passwords as you insert new users into the wbUsers table, use an
INSERT statement similar to the following example:

INSERT INTO wbUsers VALUES
('fred2' , webpwcrypt('fred2_password',''), 99, 'APB 2.0', 'AppPage', 80,
20, 't', '0');

The preceding INSERT statement is very similar to the INSERT statement in
“Adding Users to the MIusertable Table” on page 5-20 except that it also
executes the webpwcrypt() routine on the password column.

For a detailed description of the columns of the wbUsers table, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Setting the auth_crypt_udr Webdriver Variable

Once you have encrypted all the passwords in the MIusertable table, you
must ensure that Webdriver always encrypts the password entered by a user
before Webdriver checks to see if the passwords match. By default, Webdriver
does not encrypt incoming passwords.

To specify that Webdriver encrypt incoming passwords before checking them
against the passwords stored in the MIusertable table, set the
auth_crypt_udr Webdriver variable for your Webdriver configuration to ON.
5-22 IBM Informix Web DataBlade Module Administrator’s Guide

Using the REMOTE_USER Web Browser Variable for User Authentication
Tips for Creating Your Own AppPage to Edit User Password
Information

If you create your own AppPage to insert or update a user in the
MIusertable, and you use encrypted passwords, the INSERT or UPDATE
statement contains the clear text password as part of the webpwcrypt()
routine. If you have enabled tracing with the debug_level Webdriver
variable, then this INSERT or UPDATE statement might be written to the log
file, with the clear text password visible.

To ensure that the clear text password is not written to the log file, set the
MIdriver Webdriver variable to debug_off to turn off logging of the UPDATE
or INSERT statements to the log file. You set the MIdriver Webdriver variable
as a hidden variable in an INPUT tag after creating a FORM with the attribute
REQUEST=POST.

The following section of the Edit User AppPage of APB shows an example of
how to use the MIdriver Webdriver variable to turn off logging of a single
INSERT or UPDATE statement:

<FORM METHOD=POST ACTION="<?MIVAR>$WEB_HOME<?/MIVAR>">
<INPUT TYPE=hidden NAME=MIval VALUE="/APB20/apb_edit_User.html">
<INPUT TYPE=hidden NAME=MIdriver VALUE="debug_off">

Using the REMOTE_USER Web Browser Variable for User
Authentication
An additional user authentication method is available for the Apache
Webdriver.

If the connect_as_user Webdriver variable is set to ON in your Webdriver
configuration, all database requests connect as the REMOTE_USER user
instead of the user defined in the web.cnf file for your Webdriver mapping.
The REMOTE_USER user must be added to the user access table identified by
the MIusertable variable (typically the wbUsers table) to enable
connect_as_user user authentication. The password in the user access table
is ignored since user authentication is performed when connecting to the
database.
Using the Apache Webdriver 5-23

Using Server-Side Includes in AppPages with the Apache Webdriver
Important: If you set connect_as_user to ON, the REMOTE_USER user must be a
valid operating system user with database connection privileges. Therefore, this
authentication method should be restricted to Intranet, rather than Internet,
applications.

Using Server-Side Includes in AppPages with the
Apache Webdriver
Server-side includes (also called parsed html) are special commands embedded
in an HTML page that are recognized and interpreted by the Web server; the
output of the commands is placed in the HTML page before the AppPage is
sent to the browser. Server-side includes can be used, for example, to include
a date or time stamp in the text of the HTML page.

The following procedure describes the steps you must take for the Apache
Webdriver to correctly handle AppPages that contains server-side includes.
5-24 IBM Informix Web DataBlade Module Administrator’s Guide

Using Server-Side Includes in AppPages with the Apache Webdriver
To use server-side includes in an AppPage

1. In your AppPage, use the PARSE-HTML variable-processing function
together with the MIVAR tag to indicate that your AppPage contains
server-side includes.

The PARSE-HTML variable-processing function has two options:
SHARED and DYNAMIC.

The SHARED option specifies that Webdriver send the cached App-
Page to the Web server. This option presumes that you have enabled
AppPage caching for the AppPage. The following example shows
how to specify the SHARED option:

<?MIVAR>$(PARSE-HTML,SHARED)<?/MIVAR>
Webdriver sends the cached AppPage to the Web server.

The DYNAMIC option specifies that Webdriver always send the App-
Page to the WebExplode() function for dynamic processing and then
temporarily store the AppPage in a directory that will subsequently
be read by the Web server. The following example shows how to
specify the DYNAMIC option:

<?MIVAR>$(PARSE-HTML,DYNAMIC)<?/MIVAR>
Webdriver sends the AppPage to the WebExplode function
and then temporarily stores it in a directory for the
Web server to read.

2. If you specified the SHARED option in step 1, enable AppPage caching
for the AppPage.

For detailed information on enabling AppPage caching, refer to
Chapter 9, “Improving Performance.”
Using the Apache Webdriver 5-25

Dynamically Loading the Apache Webdriver
3. If you specified the DYNAMIC option in step 1, use the Web DataBlade
Module Administration Tool to set the parse_html_directory
Webdriver variable in your Webdriver configuration. For detailed
information on using the Web DataBlade Module Administration
Tool, refer to Chapter 3, “Configuring Webdriver.”

The following table describes this Webdriver variable.

Dynamically Loading the Apache Webdriver
This section describes how to dynamically load the Apache Webdriver
shared object into the Apache httpd process at runtime. You need to do this
if you do not have the Apache source code or if you want to run the default
httpd binary that was installed at the time you installed the Apache Web
server. Otherwise, to configure your Apache Webdriver, refer to “Config-
uring the Apache Webdriver” on page 5-4.

Before You Begin
Before you can dynamically load the Apache Webdriver shared object, you
must ensure that your Apache httpd binary contains a necessary module
called mod_so.c.

As the owner of the Apache Web server, execute the following command at
the operating system prompt to list all the modules that have been linked into
your Apache httpd binary:

httpd -l

Webdriver Variable Mandatory? Description

parse_html_directory Yes Specifies the full pathname of the
directory on the Web server computer
where Webdriver temporarily stores the
AppPage to be subsequently read by the
Web server

Webdriver does not create this directory,
so be sure the directory exists before you
use server-side includes in an AppPage.
5-26 IBM Informix Web DataBlade Module Administrator’s Guide

Updating The Apache Web Server Configuration File
If the mod_so.c module is not in the list, you cannot dynamically load the
Apache Webdriver at runtime. Instead, you must rebuild your httpd binary,
as described in “Configuring the Apache Webdriver” on page 5-4.

Updating The Apache Web Server Configuration File
To dynamically load the Apache Webdriver shared object, you must update
the Apache configuration file httpd.cnf. Assuming you are using Version 4.13
of the Web DataBlade module, add the following LoadModule directive to
the httpd.conf file.

LoadModule informix_module \
$INFORMIXDIR/extend/web.4.13.UC1/apache/apache_ver/explode.so

LoadModule directives must fit on a single line; for clarity, however, the
preceding entry shows the LoadModule directive on two separate lines.

In the preceding entry, ver refers to the version of the Apache Web server.

For example, assume $INFORMIXDIR points to /disk/ifmx, and the version
of your Apache Web server is 1.3.12. The corresponding LoadModule
directive is:

LoadModule informix_module \
/disk/ifmx/extend/web.4.13.UC1/apache/apache_1.3.12/explode.so

After you have updated the httpd.conf file, restart the Apache Web server.

Be sure you set the LD_LIBRARY_PATH and MI_WEBCONFIG environment
variables either in the Web server startup script or in the environment of the
user who starts the Web server. The LD_LIBRARY_PATH environment
variable stores the location of the Informix libraries, and the
MI_WEBCONFIG environment variable stores the full pathname of the
Webdriver configuration file web.cnf.
Using the Apache Webdriver 5-27

6
Chapter
Using the ISAPI Webdriver
In This Chapter . 6-3

Overview of the ISAPI Webdriver. 6-3

Configuring the ISAPI Webdriver 6-4
Executing the webconfig.exe Utility. 6-7
Adding URL Prefix Information to the Web Server 6-8
Updating the web.cnf File 6-9
Invoking AppPages with ISAPI Webdriver 6-10

Using Session Variables with the ISAPI Webdriver 6-11

Implementing Security with the ISAPI Webdriver 6-11
Setting Webdriver Security Variables 6-12
Attaching the ISAPI Filter Library 6-14
Turning On the Security Feature of the ISAPI Webdriver 6-14
Adding Users to the MIusertable Table 6-15
Specifying AppPage Access Levels 6-16
Using Encrypted Passwords in the MIusertable Table 6-16

Encrypting Passwords 6-17
Setting the auth_crypt_udr Webdriver Variable 6-17
Tips for Creating Your Own AppPage to Edit User

Password Information 6-18
Using the REMOTE_USER Web Server Variable for

User Authentication 6-18

Executing ISAPI Functions in an AppPage. 6-19
Creating and Building the DLL 6-20
Invoking ISAPI Functions in an AppPage. 6-21

6-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter describes how to configure and use the ISAPI Webdriver. It
includes the following topics:

■ “Overview of the ISAPI Webdriver,” following

■ “Configuring the ISAPI Webdriver” on page 6-4

■ “Using Session Variables with the ISAPI Webdriver” on page 6-11

■ “Implementing Security with the ISAPI Webdriver” on page 6-11

■ “Executing ISAPI Functions in an AppPage” on page 6-19

Overview of the ISAPI Webdriver
The ISAPI Webdriver uses the Microsoft Windows NT Internet Information
Server API rather than a CGI interface to connect to the database and execute
AppPages. The ISAPI Webdriver offers the ability to:

■ Eliminate CGI process overhead.

■ Use security features built into Microsoft Windows NT. For more
information, see “Implementing Security with the ISAPI Webdriver”
on page 6-11.

The ISAPI Webdriver is a dynamic link library (DLL). Microsoft’s Internet
Information Server loads the DLL the first time a URL pointing to the ISAPI
Webdriver is encountered.

The ISAPI Webdriver is compatible with specific Microsoft Internet Infor-
mation Server versions. Check the Web DataBlade module release notes for a
list of Microsoft Internet Information Server versions that can implement the
ISAPI Webdriver.
Using the ISAPI Webdriver 6-3

Configuring the ISAPI Webdriver
Configuring the ISAPI Webdriver
The ISAPI Webdriver obtains configuration information about the Web appli-
cation environment from the web.cnf file, the Webdriver configuration
information stored in the database, the Microsoft Internet Information Server
configuration, and the filtering information from the Internet Service
Manager.

The following procedure describes the basic steps you must perform to
configure the ISAPI Webdriver. Some of the steps are described in more detail
later in this section.

Tip: This chapter uses the term “websetup” to refer to the setup.exe utility in the
directory INFORMIXDIR\extend\web.version\websetup, where INFOR-
MIXDIR is the main Informix directory and version is the current version of the Web
DataBlade module installed on your computer.

If you used the websetup utility to initially configure the Web DataBlade
module for your database, the websetup utility might have automatically
performed some of the steps in the following procedure. In particular, the
websetup tool:

■ Copies and updates the web.cnf file with the required information

■ Runs the webconfig utility to add the special Webdriver mapping to
invoke the Web DataBlade Module Administration Tool

For more information on the websetup utility, refer to Chapter 2, “Getting
Started,” and Chapter 13, “Web DataBlade Module Utilities.”
6-4 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the ISAPI Webdriver
To configure the ISAPI Webdriver

1. If you have never run the websetup utility to configure Web server
and database components, go to step 2.

If you have previously run the websetup utility to configure Web
server and database components, go to step 4.

2. Copy the sample Webdriver configuration file, called
web.cnf.example, to a directory on the Web server computer and
rename it web.cnf. Update the web.cnf file with the minimum
required information.

For detailed information on the minimum information needed to
update the web.cnf file, refer to “Updating the web.cnf File” on
page 6-9.

The web.cnf.example file is located in the directory INFORMIXDIR\
extend\web.version\install, where INFORMIXDIR refers to the main
Informix directory and version refers to the current version of the
Web DataBlade module installed on your computer.

If you already have a working web.cnf file, you do not need to per-
form step 2.

3. Run the webconfig.exe utility at the Windows command prompt to
add the special Webdriver mapping to the web.cnf file to invoke the
Web DataBlade Module Administration Tool.

For detailed information on this step, refer to “Executing the web-
config.exe Utility” on page 6-7.

4. Copy the drvisapi.dll file from the directory where the Web
DataBlade module is installed to a directory on the Web server
computer.

The drvisapi.dll file is located in the directory INFOR-
MIXDIR\extend\web.version\microsoft, where INFORMIXDIR
refers to the main Informix directory and version refers to the current
version of the Web DataBlade module installed on your computer.
Using the ISAPI Webdriver 6-5

Configuring the ISAPI Webdriver
5. Add mapping information to the Microsoft Internet Information
Server so that the Web server calls the ISAPI Webdriver when you
specify a URL prefix that maps to a Webdriver mapping. At the very
least, you must add a URL prefix to invoke the Web DataBlade
Module Administration Tool.

For detailed information on this step, refer to “Adding URL Prefix
Information to the Web Server” on page 6-8.

6. Set the Windows NT system environment variable MI_WEBCONFIG
to the full pathname of the location of the web.cnf file.

Choose Start➞ Settings➞ Control Panel➞ System and click the Envi-
ronment tab.

For example, if you copied the web.cnf file to the directory
d:\web\isapi, set the MI_WEBCONFIG variable as follows:

MI_WEBCONFIG=d:\web\isapi\web.cnf

7. Update the Windows NT system environment variable PATH to
include the directory that contains the Informix executables.

8. Restart the Windows NT computer, so that the new MI_WEBCONFIG
system environment variable becomes effective in the Internet Infor-
mation Server Service.

9. Invoke the Web DataBlade Module Administration Tool in your
browser by specifying a URL of the following form in your browser:

http://domain:port/dbname_admin/drvisapi.dll

In this URL, domain refers to the name of your Web server computer,
port refers to the port number of the Web server process, and dbname
refers to the name of your database.

In this URL, dbname_admin is the URL prefix you add to the Microsoft
Internet Information server, as described in “Adding URL Prefix
Information to the Web Server” on page 6-8.

For general information on invoking AppPages with the ISAPI Webdriver,
refer to “Invoking AppPages with ISAPI Webdriver” on page 6-10.

After you have invoked the Web DataBlade Module Administration Tool in
your browser, use it to add new Webdriver mappings and Webdriver config-
urations to invoke your own Web DataBlade module applications or existing
applications such as AppPage Builder (APB).
6-6 IBM Informix Web DataBlade Module Administrator’s Guide

Executing the webconfig.exe Utility
For more information on adding Webdriver mappings and Webdriver
configurations with the Web DataBlade Module Administration Tool, refer
to Chapter 3, “Configuring Webdriver.” For detailed information on
invoking and using APB, refer to the IBM Informix Web DataBlade Module Appli-
cation Developer’s Guide.

You can also optionally implement security with the ISAPI Webdriver. For
detailed information on this step, refer to “Implementing Security with the
ISAPI Webdriver” on page 6-11.

Executing the webconfig.exe Utility
Use the webconfig.exe utility to add a special Webdriver mapping to the
web.cnf file to invoke the Web DataBlade Module Administration Tool for
the database for which you are configuring the Web DataBlade module.

Be sure the MI_WEBCONFIG system environment variable correctly points to
the full pathname of the web.cnf file before you run this utility.

Although you can name the special Webdriver mapping to invoke the Web
DataBlade Module Administration Tool anything you want, Informix recom-
mends you name it /dbname_admin, where dbname is the name of the
database for which you are configuring the Web DataBlade Module Admin-
istration Tool.

You must specify the admin Webdriver configuration with the -n option to
the webconfig utility.

For example, to add a special Webdriver mapping for the Web DataBlade
Module Administration Tool for the production database and the user fred,
execute the following command:

webconfig -addmap -p /production_admin -n admin -d production -u fred

The webconfig utility asks for the password for user fred and a password
key.
Using the ISAPI Webdriver 6-7

Adding URL Prefix Information to the Web Server
The resulting Map section of the web.cnf file looks something like the
following example:

<Map path=/production_admin>
database production
user fred
password 8492849034038402434324324
password_key akey
config_name admin
</Map>

For detailed information on using the webconfig utility, refer to Chapter 13,
“Web DataBlade Module Utilities.”

Adding URL Prefix Information to the Web Server
This section provides details on how to map the directory in which you put
the drvisapi.dll to the Microsoft Internet Information Server. This mapping
tells the Microsoft Internet Information Server to call the ISAPI Webdriver
when a particular URL prefix is used in a URL.

Each time you create a new database, register the Web DataBlade module,
and install the Web DataBlade Module Administration Tool in the database,
you must add a special URL prefix to the Microsoft Internet Information
Server, which invokes the Web DataBlade Module Administration Tool.
Typically, this URL prefix takes the form dbname_admin, where dbname is the
name of the database.

Important: When you subsequently use the Web DataBlade Module Administration
Tool to add a new Webdriver mapping, you must also add a new URL prefix to the
Microsoft Internet Information Server. Be sure the URL prefix is exactly the same as
the name of the new Webdriver mapping.

For detailed information on Webdriver mappings, refer to Chapter 3, “Configuring
Webdriver.”

To add mapping information to the Microsoft Internet Information Server

1. Start the Microsoft Internet Service Manager.

This launches the Microsoft Management Console.

2. Click the Internet Information Server expander button.

3. Click the expander button for the current computer connection.
6-8 IBM Informix Web DataBlade Module Administrator’s Guide

Updating the web.cnf File
4. Right-click the Default Web Site icon and select New➞ Virtual
Directory.

This launches the New Virtual Directory wizard.

5. Enter the new URL prefix in the text box of the first page of the
wizard.

The URL prefix for the Web DataBlade Module Administration Tool
is typically dbname_admin, where dbname is the name of the database
for which you are configuring the ISAPI Webdriver.

Be sure the URL prefix is the same as the name of the corresponding
Webdriver mapping.

6. Click Next.

7. Enter the full path for the directory in which the drvisapi.dll file
resides in the text box of the second page of the wizard.

8. Click Next.

9. Be sure Allow Execute Access is checked in the third page of the
wizard.

10. Click Finish to save the new virtual directory and close the New
Virtual Directory wizard.

Updating the web.cnf File
This section describes how to update the web.cnf file with the required
minimum information after you have copied it to a new location on the Web
server computer.

Edit the web.cnf file by adding or updating the following entries:

■ Update the anchorvar variable in the Global section of the web.cnf
file from WEB_HOME to WEB_HOME/drvisapi.dll, as shown in the
following example:

<Global>
.
anchorvar WEB_HOME/drvisapi.dll
.
</Global

For detailed information on the anchorvar variable, refer to
Chapter 3, “Configuring Webdriver.”
Using the ISAPI Webdriver 6-9

Invoking AppPages with ISAPI Webdriver
■ Add the correct values for INFORMIXDIR and INFORMIXSERVER in
the Setvar section of the web.cnf file. These two Informix variables
describe the main Informix directory and the name of the default
Informix database server.

For detailed information on these variables, refer to the Administra-
tor’s Guide for your database server.

Invoking AppPages with ISAPI Webdriver
The ISAPI Webdriver is invoked by specifying a URL prefix that has previ-
ously been added as mapping information to the Microsoft Internet
Information Server along with the drvisapi.dll in the URL. Parameters, such
as the Webdriver variable MIval to specify the AppPage you want to invoke,
are passed using standard query string syntax.

For example, assume that you have previously added the URL prefix
mydb_mymap to the Microsoft Internet Information Server and want to use it
to invoke the AppPage called myAppPage. The following URL invokes the
AppPage:

http;//domain:port/mydb_mymap/drvisapi.dll?MIval=myAppPage

In this URL, domain refers to the Web server computer, and port refers to the
port of the Web server service.

In your AppPages, specify a URL that uses the ISAPI Webdriver, as shown in
the following example:

<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/APB20/apb.html

In the preceding example, WEB_HOME is an anchor variable, specified by the
anchorvar variable in the Global section of the web.cnf file.

For more information on variables in the Global section of the web.cnf file,
refer to Chapter 3, “Configuring Webdriver.”

For detailed information on adding URL prefixes to the Microsoft Internet
Information Server, refer to “Adding URL Prefix Information to the Web
Server” on page 6-8. For detailed information on the MIval Webdriver
variable, refer to Chapter 3.
6-10 IBM Informix Web DataBlade Module Administrator’s Guide

Using Session Variables with the ISAPI Webdriver
Using Session Variables with the ISAPI Webdriver
When you use the ISAPI Webdriver in conjunction with session variables,
specifically if you set the session Webdriver variable to URL, you must also
attach the ISAPI filter library to the Microsoft Internet Information Server
service. The ISAPI filter library is the same file as the ISAPI Webdriver:
drvisapi.dll.

For detailed information on how to attach the ISAPI filter library, refer to
“Attaching the ISAPI Filter Library” on page 6-14.

For detailed information on session variables, how to use them in an
AppPage, and what Webdriver variables have to be set to enable session
variables, refer to the IBM Informix Web DataBlade Module Application
Developer’s Guide.

Implementing Security with the ISAPI Webdriver
This section describes how to implement Microsoft Internet Information
Server user authentication with the ISAPI Webdriver. Most of the steps are
described in later sections of this chapter.

To implement user authentication with the ISAPI Webdriver

1. Create a valid Windows NT user with ordinary user privileges.

User access to AppPages is authenticated at the system level against
this user.

2. Set the security-specific Webdriver variables for your Webdriver
configuration with the Web DataBlade Module Administration Tool.

Set the iis_nt_user and iis_nt_password Webdriver variables to the
user you created in step 1 and set the user’s password.

For detailed information on this step, refer to “Setting Webdriver
Security Variables” on page 6-12.

3. Attach the ISAPI filter library to the Microsoft Internet Information
Server service.

For detailed information on this step, refer to “Attaching the ISAPI
Filter Library” on page 6-14.
Using the ISAPI Webdriver 6-11

Setting Webdriver Security Variables
4. Turn on the security function of the ISAPI Webdriver.

For detailed information on this step, refer to “Turning On the Secu-
rity Feature of the ISAPI Webdriver” on page 6-14.

5. Add users to authenticate against to the appropriate database table.

For detailed information on this step, refer to “Adding Users to the
MIusertable Table” on page 6-15.

6. Set the access level for each AppPage for which you want to control
access.

For detailed information on this step, refer to “Specifying AppPage
Access Levels” on page 6-16.

Setting Webdriver Security Variables
Use the Web DataBlade Module Administration Tool to set the Webdriver
variables listed in the following table. For detailed information on using the
Web DataBlade Module Administration Tool, refer to Chapter 3, “Config-
uring Webdriver.”

Variable Mandatory? Content

MIusertable Yes Name of the table that contains user
access information

MIusername Yes Name of the VARCHAR column in the
user access table (MIusertable) that
contains the name of the database user

MIuserpasswd Yes Name of the VARCHAR column of the
user access table (MIusertable) that
contains the password of the database
user

MIuserlevel Yes Name of the INTEGER column of the
user access table (MIusertable) that
contains the access level of the database
user

MIpagelevel Yes Name of the INTEGER column of the
table that stores your AppPage that
contains the access level of the AppPage

 (1 of 2)
6-12 IBM Informix Web DataBlade Module Administrator’s Guide

Setting Webdriver Security Variables
After the ISAPI Webdriver security is turned on, user access to AppPages is
authenticated against the database table specified by the MIusertable
Webdriver variable. If you are using the APB schema, this table is called
wbusers. Add to the MIusertable table the user access information for users
who are allowed to view AppPages.

The wbusers table provides database-level authentication. You enter the user
and password information from this table when access to an AppPage is
interrupted by a window asking for user validation to view the AppPage.
The iis_nt_user and iis_nt_password Webdriver variables, however, refer to
the name and password of a valid Windows NT user you have previously
created specifically for system authentication. The authentication against the
Windows NT user is performed internally by the ISAPI Webdriver.

iis_nt_user Yes Name of a valid Windows NT user

iis_nt_password Yes Password of a valid Windows NT user

redirect_url No URL to redirect users to if they do not
have access to the AppPage they attempt
to retrieve

auth_crypt_udr No Enables password encryption when set
to ON

If password encyrption is enabled,
Webdriver encrypts the password
entered by the user and compares it to
the encrypted password in the
MIusertable table. If they match, then
the user is authenticated.

If set to OFF (default value), then
Webdriver does not encrypt the
password.

For detailed information on using
encrypted passwords, refer to “Using
Encrypted Passwords in the MIusertable
Table” on page 6-16.

Variable Mandatory? Content

 (2 of 2)
Using the ISAPI Webdriver 6-13

Attaching the ISAPI Filter Library
Attaching the ISAPI Filter Library
The ISAPI filter library is the same file as the ISAPI Webdriver file:
drvisapi.dll.

To attach the ISAPI Filter Library to the Microsoft Internet Information Server
service

1. Start the Microsoft Internet Service Manager.

This launches the Microsoft Management Console.

2. Click the Internet Information Server expander button.

3. Click the expander button for the current computer connection.

4. Right-click the Default Web Site icon and select Properties.

5. Select the ISAPI Filters page.

6. Click Add.

7. Add the full pathname of drvisapi.dll into the Executable text box
from the Filter Properties dialog box. Give the filter a meaningful
name.

Turning On the Security Feature of the ISAPI Webdriver
The ISAPI Webdriver module allows you to turn the security feature on and
off with the Microsoft Internet Services Manager. By default, the security
feature is turned off; this section describes how to turn the feature on.

To turn on the security feature of the ISAPI Webdriver

1. Start the Microsoft Internet Service Manager.

This launches the Microsoft Management Console.

2. Double-click the icon for the URL prefix for which you want to turn
on the security feature.

3. Right-click Properties.

4. Click the Directory Security tab.

5. Click Edit. The Authentication Methods window appears.

6. Uncheck Allow Anonymous Access and Windows NT
Challenge/Response.
6-14 IBM Informix Web DataBlade Module Administrator’s Guide

Adding Users to the MIusertable Table
7. Check Basic Authentication.

8. Click Yes on the warning window.

9. Click OK.

10. Click Apply.

11. Click OK.

Adding Users to the MIusertable Table
Webdriver authenticates users that request a secure AppPage against the list
of users stored in the table specified by the MIusertable Webdriver variable.
This table contains user access information, such as the name of the user, their
password, their access level, and so on. When a user requests a secure
AppPage, Webdriver checks their inputted password against the password
in the MIusertable table, looks up the user’s access level, checks it against the
access level needed to view the AppPage, then decides whether the user is
allowed to view the AppPage.

You add users to the MIusertable table with an INSERT statement with the
DB-Access or SQL Editor tools.

In the APB schema, the table to store user access information is called
wbUsers. The following example shows how to insert a new user into this
table:

INSERT INTO wbUsers VALUES
('fred' , 'fred_password', 99, 'APB 2.0', 'AppPage', 80, 20, 't', '0');

In the example, user fred has an access level of 99. This means that Webdriver
allows user fred to view AppPages whose access level is 99 or less.

When you install APB into your database, two users are automatically
inserted into the wbUsers table: default and admin.

For detailed information on encrypting the user password, refer to “Using
Encrypted Passwords in the MIusertable Table” on page 6-16.

For a detailed description of the columns of the wbUsers table, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.
Using the ISAPI Webdriver 6-15

Specifying AppPage Access Levels
Specifying AppPage Access Levels
You specify the access level of an AppPage by updating the access level
column in the table that stores the AppPage. The name of the column that
contains access level information for each AppPage is specified by the
MIpagelevel Webdriver variable.

For example, in the APB schema, the table that stores AppPages is called
wbPages. The wbPages table contains a column called read_level that
specifies the minimum access level a user must have to be able to view the
corresponding AppPage. Therefore, for the APB schema, the MIpagelevel
Webdriver variable is set to read_level.

If you want to specify a high access level for a particular AppPage, then
update the read_level column in the wbPages table for that AppPage to the
appropriate integer.

For a detailed description of the columns of the wbPages table, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Using Encrypted Passwords in the MIusertable Table
For security reasons, you might want to encrypt all the passwords stored in
the MIusertable table. This section describes:

■ How to encrypt the passwords in the MIusertable table

■ How to set the auth_crypt_udr Webdriver variable to ensure that
Webdriver recognizes encrypted passwords

■ How to update APB so it uses encrypted passwords

■ Tips for creating your own AppPage to insert and edit users in the
MIusertable table
6-16 IBM Informix Web DataBlade Module Administrator’s Guide

Using Encrypted Passwords in the MIusertable Table
Encrypting Passwords

If you set the auth_crypt_udr Webdriver variable to ON, Webdriver encrypts
the password of the user being authenticated and compares it to the
password in the MIusertable table. If they match, the user is authenticated.

This means that if you set auth_crypt_udr to ON, you must be sure all
passwords stored in the MIusertable table are encrypted as well. Use the
webpwcrypt() routine to encrypt passwords in the MIusertable table.

For example, if you are using the APB schema and you already have users in
the wbUsers table whose passwords are not encrypted, then the following
UPDATE statement encrypts the existing passwords:

UPDATE wbUsers
SET password = webpwcrypt(password, '');

To encrypt passwords as you insert new users into the wbUsers table, use an
INSERT statement similar to the following example:

INSERT INTO wbUsers VALUES
('fred2' , webpwcrypt('fred2_password',''), 99, 'APB 2.0', 'AppPage', 80,
20, 't', '0');

The preceding INSERT statement is very similar to the INSERT statement in
“Adding Users to the MIusertable Table” on page 6-15 except that it also
executes the webpwcrypt() routine on the password column.

For a detailed description of the columns of the wbUsers table, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Setting the auth_crypt_udr Webdriver Variable

Once you have encrypted all the passwords in the MIusertable table, you
must ensure that Webdriver always encrypts the password entered by a user
before Webdriver checks to see if the passwords match. By default Webdriver
does not encrypt incoming passwords.

To specify that Webdriver encrypt incoming passwords before checking them
against the passwords stored in the MIusertable table, set the
auth_crypt_udr Webdriver variable for your Webdriver configuration to ON.
Using the ISAPI Webdriver 6-17

Using the REMOTE_USER Web Server Variable for User Authentication
Tips for Creating Your Own AppPage to Edit User Password
Information

If you create your own AppPage to insert or update a user in the
MIusertable, and you use encrypted passwords, the INSERT or UPDATE
statement contains the clear text password as part of the webpwcrypt()
routine. If you have enabled tracing with the debug_level Webdriver
variable, then this INSERT or UPDATE statement might be written to the log
file, with the clear text password clearly visible.

To ensure that the clear text password is not written to the log file, set the
MIdriver Webdriver variable to debug_off to turn off logging of the UPDATE
or INSERT statements to the log file. You set the MIdriver Webdriver variable
as a hidden variable in an INPUT tag after creating a FORM with the attribute
REQUEST=POST.

The following section of the Edit User AppPage of APB shows an example of
how to use the MIdriver Webdriver variable to turn off logging of a single
INSERT or UPDATE statement:

<FORM METHOD=POST ACTION="<?MIVAR>$WEB_HOME<?/MIVAR>">
<INPUT TYPE=hidden NAME=MIval
VALUE="/APB20/apb_edit_User.html">
<INPUT TYPE=hidden NAME=MIdriver VALUE="debug_off">

Using the REMOTE_USER Web Server Variable for User
Authentication
An additional user authentication method is available for the ISAPI
Webdriver.

If the connect_as_user Webdriver variable is set to ON in your Webdriver
configuration, all database requests connect as the REMOTE_USER user
instead of the user defined in the web.cnf file for your Webdriver mapping.
The REMOTE_USER user must be added to the user access table identified by
the MIusertable variable (typically the wbUsers table) to enable
connect_as_user user authentication. The password in the user access table
is ignored since user authentication is performed when connecting to the
database.
6-18 IBM Informix Web DataBlade Module Administrator’s Guide

Executing ISAPI Functions in an AppPage
Important: If you set connect_as_user to ON, the REMOTE_USER user must be a
valid operating system user with database connection privileges. Therefore, this
authentication method should be restricted to Intranet, rather than Internet,
applications.

Executing ISAPI Functions in an AppPage
The ISAPI Webdriver allows you to load ISAPI-compliant code modules, or
ISAPI functions, into the Web server at runtime. When you include these ISAPI
functions as Web server extensions, you can use the ISAPI Webdriver and the
MIFUNC tag to call the ISAPI functions within an AppPage.

When the WebExplode() function encounters an MIFUNC tag in an AppPage,
it passes the name of the DLL and the function name within the DLL to the
ISAPI Webdriver. The ISAPI Webdriver then loads the DLL and calls the
specified function, with two callbacks as parameters. After the function is
executed, any value that has been modified is passed back to the WebEx-
plode() function.

To call an ISAPI function in an AppPage

1. Create and build the DLL.

For detailed information on this step, refer to “Creating and Building
the DLL,” following.

2. Copy the DLL to a directory that is included in the PATH system
environment variable.

Alternatively, you can specify the full pathname of the DLL in the
DLL attribute of the MIFUNC tag. The MIFUNC tag is described in the
next step.

3. Invoke the function in the MIFUNC tag within an AppPage.

For detailed instructions for this step, see “Invoking ISAPI Functions
in an AppPage” on page 6-21.
Using the ISAPI Webdriver 6-19

Creating and Building the DLL
Creating and Building the DLL
The ISAPI functions invoked with the MIFUNC tag must have the following
format:

void WINAPI function(char *(WINAPI *GetVar) (char *name),
BOOL (WINAPI *SetVar) (char *name, char *value))

The GetVar function takes a string that corresponds to the name in a
name/value pair and returns a pointer to the value string.

For example, the following code looks up the SYMBOL value in the specified
parameters and returns a pointer to the value. The function returns NULL if
the name was not specified in the MIFUNC tag that invoked the function.

char *stockSymbol = GetVar("SYMBOL");

The SetVar function takes name and value strings and overwrites the current
value for that name. The function returns false if the name was not specified
in the MIFUNC tag that invoked the function. The following sample code
shows how to use the SetVar function:

BOOL success = SetVar("SYMBOL", "IFMX");

The following sample function from a DLL, called GetTime, shows an
example of C code that returns the time and the number of times the GetTime
function has been called:

#include <windows.h>
#include <stdio.h>
#include <time.h>

void WINAPI function(char *(WINAPI *GetVar) (char *name),
BOOL (WINAPI *SetVar) (char *name, char *value));

int i = 0; /* Keeps track of how many times GetTime() is called */

void WINAPIGetTime(char *(WINAPI *GetVar) (char *name),
BOOL (WINAPI *SetVar) (char *name, char *value))

{
struct tm *newtime;
time_t aclock;
char buf[10];
time(&aclock); /* Get time in seconds */
newtime = localtime(&aclock); /* Convert time to struct */
 /* tm form */
SetVar("TIME", asctime(newtime));
itoa(++i, buf, 10);
SetVar("COUNT", buf);

}

6-20 IBM Informix Web DataBlade Module Administrator’s Guide

Invoking ISAPI Functions in an AppPage
Use the following compile and link command at the Windows command
prompt to build the DLL once you have finished coding it:

cl /LD stat.c /link /EXPORT:GetTime

The example generates the DLL called stat.dll in the current directory.

Invoking ISAPI Functions in an AppPage
Within the MIFUNC tag, you must include the variables to be imported and
exported (passed by reference) as name/value pairs. You specify the name of
the DLL with the DLL attribute. The FUNCTION attribute specifies the ISAPI
function in the DLL to call.

When the MIFUNC tag is executed, all AppPage processing stops until the
function has completed execution. When AppPage processing continues,
everything between the MIFUNC tags is executed using the variables that
have been modified by reference in the ISAPI function, in addition to the
variables originally supplied to the AppPage.

The following AppPage invokes the GetTime function in stat.dll. The
AppPage displays the time and the number of times that the GetTime
function has been called:

<?MIFUNC DLL=stat FUNCTION=GetTime TIME="" COUNT="">
<?MIVAR>$TIME Count = $COUNT<?/MIVAR>
<?/MIFUNC>

The sample GetTime function and stat.dll are described in the section
“Creating and Building the DLL” on page 6-20.

You can nest MIFUNC tags so that one function can execute depending on the
results of another. You can also include any number of MIFUNC tags in an
AppPage; however, you should pay attention to the order of the tags to
achieve the desired result.

For more information on using the MIFUNC Web DataBlade module tag in
AppPages, refer to the IBM Informix Web DataBlade Module Application
Developer’s Guide.
Using the ISAPI Webdriver 6-21

7
Chapter
Using the CGI Webdriver
In This Chapter . 7-3

Overview of the CGI Webdriver 7-3

Configuring the CGI Webdriver 7-4
Creating a CGI Directory for Your Web Server 7-6
Updating the web.cnf File 7-7
Executing the webconfig Utility 7-8

Invoking AppPages with the CGI Webdriver 7-9

7-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter describes how to configure and use the CGI Webdriver. It
includes the following topics:

■ “Overview of the CGI Webdriver,” following

■ “Configuring the CGI Webdriver” on page 7-4

■ “Invoking AppPages with the CGI Webdriver” on page 7-9

Overview of the CGI Webdriver
The CGI Webdriver is a CGI (Common Gateway Interface) program that
connects to a database and executes AppPages. You can use the CGI
Webdriver with any Web server, since all Web servers are able to execute CGI
programs.

It is recommended that you use the CGI Webdriver only when a Webdriver
implementation for a specific Web server is unavailable. For example, if you
use the Apache Web server, you should use the Apache Webdriver. Similarly,
if you use the Netscape Web server, you should use the NSAPI Webdriver.
Using the CGI Webdriver 7-3

Configuring the CGI Webdriver
Configuring the CGI Webdriver
The following procedure describes the basic steps you must perform to
configure the CGI Webdriver for your database. Some of the steps are
described in later sections.

If you used the websetup utility to initially configure the Web DataBlade
module for your database, the websetup utility might have automatically
performed some of the steps in the following procedure. In particular, the
websetup utility:

■ Copies and updates the web.cnf file with the required information

■ Runs the webconfig utility to add the special Webdriver mapping to
invoke the Web DataBlade Module Administration Tool

For more information on the websetup utility, refer to Chapter 2, “Getting
Started,” and Chapter 13, “Web DataBlade Module Utilities.”

To configure the CGI Webdriver for your database

1. As the owner of the Web server installation, create a directory on
your Web server to contain CGI programs.

For detailed information on this step, refer to “Creating a CGI Direc-
tory for Your Web Server” on page 7-6.

2. Copy the CGI Webdriver program to the CGI directory you created in
step 1.

The CGI Webdriver program is called webdriver and is located in the
directory INFORMIXDIR/extend/web.version/install, where INFOR-
MIXDIR refers to the directory in which the Informix database is
installed and version refers to the latest version of the Web DataBlade
module installed on your computer. On Windows NT, the CGI Web-
driver program is called webdriver.exe.
7-4 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring the CGI Webdriver
3. Copy the file web.cnf.example to the CGI directory you created in
step 1 and rename it web.cnf.

The web.cnf.example file is located in the directory INFOR-
MIXDIR/extend/web.version/install, where INFORMIXDIR refers to
the directory in which the Informix database is installed and version
refers to the latest version of the Web DataBlade module installed on
your computer.

The CGI Webdriver ignores the MI_WEBCONFIG variable that other
implementations of Webdriver use to locate the web.cnf file. Instead,
CGI Webdriver always looks for the web.cnf file in the same directory
as the CGI Webdriver program.

4. Edit the web.cnf file you just copied to the CGI directory, adding or
updating the required minimum entries.

For detailed information on this step, refer to “Updating the web.cnf
File” on page 7-6.

5. Run the webconfig utility at the operating system command prompt
to add the special Webdriver mapping to the web.cnf file used to
invoke the Web DataBlade Module Administration Tool.

For detailed information on this step, refer to “Executing the web-
config Utility” on page 7-8.

6. Invoke the Web DataBlade Module Administration Tool in your
browser by specifying a URL of the following form in your browser:

http://domain:port/dbname/admin/webdriver

In this URL, domain refers to the name of your Web server computer,
port refers to the port number of the Web server process, and dbname
refers to the name of your database.

/dbname/admin is the name of the CGI directory you added to your
Web server as described in step 1.

For general information on invoking AppPages with the CGI Webdriver, refer
to “Invoking AppPages with the CGI Webdriver” on page 7-9.

After you have invoked the Web DataBlade Module Administration Tool in
your browser, use it to add new Webdriver mappings and Webdriver config-
urations to invoke your own Web DataBlade module applications or existing
applications such as AppPage Builder (APB).
Using the CGI Webdriver 7-5

Creating a CGI Directory for Your Web Server
For more information on adding Webdriver mappings and Webdriver config-
urations with the Web DataBlade Module Administration Tool, refer to
Chapter 3, “Configuring Webdriver.” For detailed information on invoking
and using APB, refer to the IBM Informix Web DataBlade Module Application
Developer’s Guide.

Creating a CGI Directory for Your Web Server
When you create a new CGI directory for your Web server, be sure you update
the Web server configuration files so that the Web server executes the
programs in this directory instead of displaying them to the browser.

Each time you use the Web DataBlade Module Administration Tool to add a
new Webdriver mapping, you must also update your Web server configu-
ration to add a new virtual CGI directory. This virtual CGI directory can map
to a new, actual CGI directory on your computer or to an existing, actual CGI
directory.

This section describes how to create the CGI directory that corresponds to the
special Webdriver mapping used to invoke the Web DataBlade Module
Administration Tool. It is recommended that you call the CGI directory for
this special Webdriver mapping /dbname/admin, where dbname is the name
of your database.

For example, you might create a CGI directory called /hr_db/admin for the
hr_db database whose actual full pathname on the Web server computer is
/local/webserver/hr_db/admin. This CGI directory name will be used to
invoke the Web DataBlade Module Administration Tool for the hr_db
database.

When you subsequently use the Web DataBlade Module Administration Tool
to add a new Webdriver mapping, you must also add a new CGI directory to
your Web server. Be sure the name of the CGI directory is exactly the same as
the name of the new Webdriver mapping.

For example, if you create a Webdriver mapping called /hr_app, you must
create a CGI directory called /hr_app. The new CGI directory should have the
same full pathname as the CGI directory that corresponds to the special
Webdriver mapping that invokes the Web DataBlade Module Administration
Tool. In the example above, this pathname is /local/webserver/hr_db/admin.

For detailed information on Webdriver mappings, refer to Chapter 3.
7-6 IBM Informix Web DataBlade Module Administrator’s Guide

Updating the web.cnf File
Refer to your Web server documentation for detailed information on how to
create a CGI directory.

Updating the web.cnf File
This section describes how to update the web.cnf file with the required infor-
mation after you have copied it to the CGI directory.

Edit the web.cnf file by adding or updating the following entries:

■ Update the anchorvar variable in the Global section from WEB_HOME

to WEB_HOME/webdriver, as shown in the following example:
<Global>
.
anchorvar WEB_HOME/webdriver
.
</Global>

On Windows NT, specify webdriver.exe, as shown in the following
example:

<Global>
.
anchorvar WEB_HOME/webdriver.exe
.
</Global>

For detailed information on the anchorvar variable, refer to
Chapter 3, “Configuring Webdriver.”

■ Add the correct values for the Informix environment variables
INFORMIXDIR and INFORMIXSERVER in the Setvar section. These
two Informix variables describe the main Informix directory and the
name of the default Informix database server.

For detailed information on these variables, refer to the Administra-
tor’s Guide for your database server.
Using the CGI Webdriver 7-7

Executing the webconfig Utility
Executing the webconfig Utility
Use the webconfig utility to add a special Webdriver mapping to the web.cnf
file to invoke the Web DataBlade Module Administration Tool for the
database for which you are configuring the Web DataBlade module.

To execute the webconfig utility successfully, you must set the
MI_WEBCONFIG variable in your environment to point to the full pathname
of the web.cnf file.

Important: You only set the MI_WEBCONFIG variable in your environment when
you execute the webconfig utility to configure CGI Webdriver. When you use the
CGI Webdriver, CGI Webdriver ignores the MI_WEBCONFIG variable in your
environment. Instead, CGI Webdriver always looks for the web.cnf file in the same
directory as the CGI Webdriver program.

Although you can name the special Webdriver mapping to invoke the Web
DataBlade Module Administration Tool anything you want, it is recom-
mended that you name it /dbname/admin, where dbname refers to the name
of the database for which you are configuring the Web DataBlade Module
Administration Tool.

You must specify the admin Webdriver configuration with the -n option to
the webconfig utility.

For example, to add a special Webdriver mapping for the Web DataBlade
Module Administration Tool for the hr_db database and the user fred,
execute the following command:

webconfig -addmap -p /hr_db/admin -n admin -d hr_db -u fred

The webconfig utility asks for the password for user fred and a password
key.

The resulting Map section in the web.cnf file looks something like this:

<Map path=/hr_db/admin>
database hr_db
user fred
password 8492849034038402434324324
password_key akey
config_name admin
</Map>
7-8 IBM Informix Web DataBlade Module Administrator’s Guide

Invoking AppPages with the CGI Webdriver
For detailed information on using the webconfig utility, refer to “The
websetup Utility” on page 13-14.

Invoking AppPages with the CGI Webdriver
You invoke the CGI Webdriver by specifying the CGI directory on your Web
server that you created to contain the CGI Webdriver, along with the
webdriver CGI program in the URL. Parameters, such as the Webdriver
variable MIval to specify the AppPage you want to invoke, are passed using
standard query string syntax.

For the CGI Webdriver, each time you add a new Webdriver mapping with
the Web DataBlade Module Administration Tool, you must add a new CGI
directory to your Web server. The new CGI directory should map to the actual
directory on the operating system that contains the webdriver CGI program.

For example, assume you have previously added a CGI directory called
/mymap to your Web server and want to use it to invoke the AppPage called
/myAppPage.html. The following URL invokes the AppPage:

http://domain:port/mymap/webdriver?MIval=/myAppPage.html

In this URL, domain refers to the Web server computer, and port refers to the
port of the Web server service.

On Windows NT, specify the webdriver.exe CGI program, as shown in the
following example:

http://domain:port/mymap/webdriver.exe?MIval=/myAppPage.html

In your AppPages, specify a URL that uses the CGI Webdriver as shown in the
following example:

<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/APB20/apb.html

In the preceding example, WEB_HOME is an anchor variable, specified by the
anchorvar variable in the Global section of the web.cnf file.

For more information on variables in the Global section of the web.cnf file,
Webdriver variables, Webdriver mappings, and Webdriver configurations,
refer to Chapter 3, “Configuring Webdriver.”
Using the CGI Webdriver 7-9

Invoking AppPages with the CGI Webdriver
For more information about using WEB_HOME to create dynamic links
between AppPages, see the IBM Informix Web DataBlade Module Application
Developer’s Guide.
7-10 IBM Informix Web DataBlade Module Administrator’s Guide

8
Chapter
Implementing Security
In This Chapter . 8-3

Database Access Security. 8-4
Encrypting Passwords Manually 8-5
Resetting User Name/Password Combinations. 8-6

AppPage-Level Security 8-8
Configuring Simple Webdriver AppPage-Level Security 8-9
Example of Setting Simple AppPage-Level Security 8-10

Large Object Security 8-11
Setting Webdriver Variables 8-12
Background for the Example 8-13
Implementation of the Example 8-14

8-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
You can implement security in a Web DataBlade module application by
restricting access to the database, to AppPages, and to large objects.

This chapter describes how to enable security with the IBM Informix Web
DataBlade module. It includes the following topics:

■ “Database Access Security,” following

■ “AppPage-Level Security” on page 8-8

■ “Large Object Security” on page 8-11

For Web-server specific security for the NSAPI, Apache, and ISAPI
Webdrivers, refer to the following chapters:

■ Chapter 4, “Using the NSAPI Webdriver”

■ Chapter 5, “Using the Apache Webdriver”

■ Chapter 6, “Using the ISAPI Webdriver”
Implementing Security 8-3

Database Access Security
Database Access Security
You can control access to the database by specifying the user with which all
connections to the database are made. When you create a Webdriver
mapping with the Web DataBlade Module Administration Tool, you specify
the user who makes the client Webdriver connection to the database server.
The tool automatically encrypts the user’s password before it writes the
information in the Map section of the web.cnf file. For added security, you
can use your own encryption key to encrypt the password and update the
web.cnf file manually.

The database server requires that a client database connection satisfy one of
the following conditions:

■ The process is running as the user who makes the connection
request.

■ The password for the user is supplied if the process is running as
another user.

Webdriver mappings in the configuration file, typically called web.cnf,
define the database to connect to and the user to connect to the database as.
The Webdriver mappings also define the user’s password, if needed.

Important: Typically, you use the Web DataBlade Module Administration Tool to
update Webdriver mappings and do not need to update the web.cnf file manually.
The following sections, therefore, are for your information only.

For detailed information about using the Web DataBlade Module Administration
Tool and a description of Webdriver mappings, refer to Chapter 3, “Configuring
Webdriver.”

Assume that the name of the database you want to connect to with the
/hr_map Webdriver mapping is hr_db and that the owner of the database is
the webuser user. The Webdriver mapping in your web.cnf file would
contain the following definitions:

<Map path=/hr_map>
database hr_db
user webuser
config_name hr_config
</Map>
8-4 IBM Informix Web DataBlade Module Administrator’s Guide

Encrypting Passwords Manually
If the Web server has been configured to run as the webuser user, you do not
need to specify a password in the web.cnf file. However, if the Web server
runs as nobody (as is often the case), or as any user other than webuser, you
must specify a password for the webuser user. The web.cnf file would then
look like the following example:

<Map path=/hr_map>
database hr_db
user webuser
password 8492849034038402434324324
password_key webuser_key
config_name hr_config
</Map>

The Web DataBlade Module Administration Tool automatically creates an
encrypted password so that the actual password is not stored in the web.cnf
file.

Important: Webdriver does not pass either the password or the password_key
variables in the Map section of the web.cnf file to the WebExplode() function. The
values of the variables cannot be viewed in RAW mode.

Encrypting Passwords Manually
You typically do not have to update the web.cnf file with password or
password key information manually because this is automatically done for
you when you update Webdriver mappings with the Web DataBlade Module
Administration Tool.

The Web DataBlade Module Administration Tool, however, uses its own key
when it encrypts the password. If you want to use your own key to encrypt
the password, you must use the webpwcrypt utility and then update the
web.cnf file manually.

The webpwcrypt utility takes three arguments and requires you to enter the
password for the database user:

 webpwcrypt <database> <user> <key>

The database argument is the name of the database being accessed, user is the
name of the user accessing the database, and key is the user-supplied string
used in the encryption process. The utility prompts you for the user’s
password; the password is not echoed.
Implementing Security 8-5

Resetting User Name/Password Combinations
The following command encrypts the webuser password with the user-
supplied string webkey:

webpwcrypt webdb webuser webkey
Enter password for user "webuser": <enter webuserpassword>
Enter password again: <re-enter webuserpassword>

The webpwcrypt utility returns:

password c47c6e1c91d32affd138212b24277f85
password_key webkey

Copy the preceding variables and values into the web.cnf file:

<Map path=/hr_map>
database hr_db
user webuser
password c47c6e1c91d32affd138212b24277f85
password_key webkey
config_name hr_config
</Map>

Afterward, Webdriver can connect to the database without running as the
webuser user or specifying the webuserpassword password in the web.cnf
file.

Resetting User Name/Password Combinations
User name/password combinations are cached in the Web server. This can
cause problems for applications in which users change their passwords.

The auth_cache Webdriver variable allows you to reset user name/password
combinations so users can change their passwords within an application.
8-6 IBM Informix Web DataBlade Module Administrator’s Guide

Resetting User Name/Password Combinations
The auth_cache Webdriver variable allows the settings described in the
following table.

To set the auth_cache Webdriver variable for your Webdriver configuration,
use the Web DataBlade Module Administration Tool. For more information
on this tool, refer to Chapter 3, “Configuring Webdriver.”

Variable Mandatory? Description

auth_cache Yes Allows you to reset user name and password combi-
nations so users can change their passwords within in
application

You can set the auth_cache Webdriver variable to
three values: on, off, and check. The default value is
on.

If you set the variable to on, Webdriver always uses
the password value in the Web server cache. If you set
the variable to off, Webdriver always uses the
password value in the database. If you set the variable
to check, if the value in the Web server cache is
different from the Web browser value, Webdriver
updates the Web server cache with the password
value in the database.
Implementing Security 8-7

AppPage-Level Security
AppPage-Level Security
You can restrict access to AppPages by:

■ Enabling the simple AppPage security feature, described in the next
section

■ Configuring your Web server to use the user authentication feature
and configuring the appropriate Webdriver to recognize Web server
user authentication

Restricting access to AppPages with user authentication is only
available for the NSAPI, Apache, and ISAPI Webdrivers. For detailed
instructions for enabling user authentication with these Webdrivers,
refer to the corresponding Webdriver chapters. In particular refer to:

❑ “Implementing User Authentication with the NSAPI
Webdriver” on page 4-20

❑ “Implementing User Authentication with Apache Webdriver”
on page 5-15

❑ “Implementing Security with the ISAPI Webdriver” on page 6-11
8-8 IBM Informix Web DataBlade Module Administrator’s Guide

Configuring Simple Webdriver AppPage-Level Security
Configuring Simple Webdriver AppPage-Level Security
By default, all AppPages are visible to all users who are able to connect to the
database that contains the AppPages. Sometimes, however, it is desirable to
limit access to some AppPages. By configuring certain Webdriver variables,
you can perform this AppPage-level authorization.

To configure AppPage-level authorization, use the Web DataBlade Module
Administration Tool to set the Webdriver variables listed in the following
table. For detailed information on using the Web DataBlade Module Admin-
istration Tool, refer to Chapter 3.

Important: If the MIpagelevel variable is not set for your Webdriver configuration,
no security check is performed.

If the access level of the retrieved AppPage is less than or equal to the value
of the MI_WEBACCESSLEVEL variable, the user can see the AppPage.
MI_WEBACCESSLEVEL cannot be overridden in a URL.

If authorization for an AppPage is denied because the value of
MI_WEBACCESSLEVEL is less than the access level of the retrieved AppPage,
you can redirect the browser to another URL by setting the redirect_url
variable to that URL. If redirect_url is not set and a user attempts to access an
AppPage with an access level higher than the value of
MI_WEBACCESSLEVEL, an access error is raised.

Variable Mandatory? Description

MIpagelevel Yes Specifies the name of the INTEGER
column of the table that stores
AppPages that contains the access
level of the AppPage

MI_WEBACCESSLEVEL Yes Specifies the access level of all users for
a particular Webdriver configuration

redirect_url No Specifies the URL to redirect users to if
they do not have access to the AppPage
they attempt to retrieve

error_page No Set to the value of the AppPage that
contains error handling routines
Implementing Security 8-9

Example of Setting Simple AppPage-Level Security
If the error_page Webdriver variable is set, Webdriver calls the corre-
sponding AppPage and all error handling is processed on that page. If the
error_page Webdriver variable is not set, the MI_DRIVER_ERROR variable is
set and the requested page is processed. For detailed information on using
the MI_DRIVER_ERROR variable, refer to the IBM Informix Web DataBlade
Module Application Developer’s Guide.

If you are using Web server authentication, the Web server stores the name of
the remote user in the REMOTE_USER Web server environment variable. You
can access the value of REMOTE_USER within your AppPages. Webdriver
does not allow this variable to be overridden in the URL.

Example of Setting Simple AppPage-Level Security
The following table shows sample Webdriver variable settings used to enable
AppPage-level security.

The name of the column in the table that stores the AppPages is read_level.
Since MI_WEBACCESSLEVEL is set to 1, the only AppPages that can be
accessed by users are those whose read_level value is 0 or 1.

AppPages whose read_level value is greater than 1 cannot be read by users.
If users try to access these pages, they are redirected to the following URL:
http://cgi-bin/errors.

Webdriver Variable Sample Value

Mipagelevel read_level

MI_WEBACCESSLEVEL 1

redirect_url http://cgi-bin/errors
8-10 IBM Informix Web DataBlade Module Administrator’s Guide

Large Object Security
Large Object Security
As described in the IBM Informix Web DataBlade Module Application Developer’s
Guide, the simplest way to retrieve a large object stored in the wbBinaries
table into your AppPage is to use the MIval Webdriver variable to specify the
path, ID, and extension of the large object, as shown in the following example:

<IMG SRC=<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/images/flower.gif>

By default, all large objects stored in the wbBinaries table are visible to any
user who is able to connect to the database. Sometimes, however, it is
desirable to limit the access to specific large objects in this table to specific
users. This section shows how you can secure large objects by customizing
the query that Webdriver uses to retrieve the large objects from a user-
defined table rather than the wbBinaries table.
Implementing Security 8-11

Setting Webdriver Variables
Setting Webdriver Variables
To customize the query that Webdriver uses to retrieve large objects, add the
Webdriver variables described in the following table to your Webdriver
configuration using the Web DataBlade Module Administration Tool.

For detailed information on using the Web DataBlade Module Adminis-
tration Tool, refer to Chapter 3, “Configuring Webdriver.”

The following sections show an example of how to use these Webdriver
variables to secure large objects.

Variable Mandatory? Content

lo_query_string Yes Contains the SQL statement that is used to
query the database for a large object

Use standard C language variable syntax
‘%s’ to specify a parameter string.

lo_query_params Yes Specifies the variables that are substituted
for the parameters in the SQL statement
specified by the lo_query_string variable

You must use the variable name MIvalObj
to specify the name of the large object you
want to retrieve.

lo_error_zerorows No Specifies the integer error number that
Webdriver should return if the SQL
statement that Webdriver uses to retrieve
large objects, specified by the
lo_query_string variable, returned zero
rows

lo_error_sql No Specifies the integer error number that
Webdriver should return if an SQL error
occurs when Webdriver retrieves a large
object using the SQL statement specified
by the lo_query_string variable
8-12 IBM Informix Web DataBlade Module Administrator’s Guide

Background for the Example
Background for the Example
In this example, assume that the only types of large objects that your Web
DataBlade module application uses are images and that you want to store all
these images in a table called pictures. The pictures table has the following
schema:

CREATE TABLE pictures
(
 id VARCHAR(20) PRIMARY KEY,
 description VARCHAR(200),
 picture BLOB
);

Another table, authorization, specifies the users that can access each picture
in the pictures table. For every picture in the picture table, the authorization
table contains a row for every user who is allowed to view the picture. The
authorization table has the following schema:

CREATE TABLE authorization
(
 id VARCHAR(20) REFERENCES pictures (id),
 authorize VARCHAR(40)
);

Further assume that you use one of the non-CGI implementations of
Webdriver (NSAPI, ISAPI, or Apache) and take advantage of the Web server
authentication, as detailed in the chapters that describe each type of non-CGI
Webdriver.

Finally, you want to limit access of some of the images in the pictures table to
certain users, according to the value of the REMOTE_USER Web server
environment variable when the user views AppPages in a browser. This
means that when an AppPage retrieves a large object from the pictures table,
the value of the REMOTE_USER variable will be verified against the users
who are authorized to view the large object, specified in the authorization
table.
Implementing Security 8-13

Implementation of the Example
Implementation of the Example
To implement the example, you must retrieve the large objects into your
AppPage by specifying a custom SELECT statement that Webdriver runs
when it retrieves large objects rather than letting Webdriver construct its own
default query of the wbBinaries table.

Use the Web DataBlade Module Administration Tool to set the
lo_query_string and lo_query_params Webdriver variables to the values
shown in the following table.

For detailed information on using the Web DataBlade Module Adminis-
tration Tool, refer to Chapter 3. For information about using Web server
variables in your AppPages, refer to the IBM Informix Web DataBlade Module
Application Developer’s Guide.

Then, in your AppPage, use the MIvalObj variable to specify the large object
you want to retrieve. For example, the following URL that uses the /sales
URL prefix retrieves a large object called my_logo:

http://domain:port/sales?MIvalObj=my_logo

If the value of the REMOTE_USER browser variable is mary, Webdriver uses
the values of Webdriver variables passed in the URL, along with the
Webdriver variables stored in the Webdriver configuration, to internally
execute the following SELECT statement to retrieve the large object:

SELECT picture FROM pictures, authorization WHERE
 pictures.id = authorization.id AND
 pictures.id = 'my_logo' AND
 authorization.id = 'mary';

Webdriver variable Value

lo_query_string SELECT picture::lvarchar FROM pictures, authorization WHERE

pictures.id = authorization.id AND

pictures.id = '%s' AND

authorization.user = '%s';

lo_query_params MIvalObj, REMOTE_USER
8-14 IBM Informix Web DataBlade Module Administrator’s Guide

Implementation of the Example
If the preceding query returns a row, the user mary is authorized to view the
my_logo image, and Webdriver renders the image in the browser. If,
however, the query does not return a row, user mary is not authorized to view
the image, and the image is not rendered in the browser.

Use the lo_error_zerorows Webdriver variable to specify the integer that
Webdriver should return to the AppPage if the customized SELECT statement
returns no rows. Use the lo_error_sql Webdriver variable to specify the
integer that Webdriver should return to the AppPage if the query returns an
error.

For more information on retrieving large objects, refer to the IBM Informix Web
DataBlade Module Application Developer’s Guide.
Implementing Security 8-15

9
Chapter
Improving Performance
In This Chapter . 9-3

Overview of Performance 9-3

AppPage Caching 9-4
AppPages That Are Not Cached 9-4
Global Cache For Dynamic Tags and User-Defined Routine Tags. . 9-5

Compatibility with Previous Versions. 9-6
Enabling the Global Tag Cache 9-6
Clearing the Global Tag Cache 9-7
Debugging the Global Tag Cache 9-8

Using AppPage Caching 9-8
Setting AppPage Caching for a Webdriver Configuration . . . 9-9
Enabling AppPage Caching for a Particular AppPage 9-13
Disabling AppPage Caching for a Particular AppPage 9-14
Removing AppPages from the Disk Cache 9-15
Viewing the List of AppPages That Have Caching Enabled . . 9-18

Caching AppPages Retrieved with the POST Method 9-18
Using the MIFUNC Tag to Dynamically Manage AppPage

Caching from Within an AppPage 9-19
AppPage 1: Setting Up the Example 9-20
AppPage 2: Displaying Information 9-20
AppPage 3: Updating Information 9-21

Analyzing AppPage Caching 9-22
Analyzing Caching for All AppPages 9-22
Analyzing Caching for a Particular AppPage 9-23

Partial AppPage Caching. 9-25
How Partial AppPage Caching Works 9-26
Using Variables with the MIDEFERRED Tag. 9-26
Debugging Problems with Partial AppPage Caching 9-27

9-2 IBM
Large Object Caching 9-27
Setting Large Object Caching 9-28
Example of Setting Large Object Caching 9-29
Analyzing Caching Statistics for Large Objects 9-30

Using Session Variables to Improve Performance 9-31
Session Management and AppPage Caching 9-31
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter describes how to improve the performance of applications that
use the IBM Informix Web DataBlade module. It includes the following topics:

■ “Overview of Performance,” following

■ “AppPage Caching” on page 9-4

■ “Partial AppPage Caching” on page 9-25

■ “Large Object Caching” on page 9-27

■ “Using Session Variables to Improve Performance” on page 9-31

Overview of Performance
The main method of improving the performance of Web DataBlade module
applications is to enable caching of both AppPages and large objects (such as
images and video clips). Retrieving data from the disk is always much faster
than retrieving data from the database, which is why caching improves the
performance of Web applications.

When you enable AppPage caching, static AppPages are stored on the
database server computer’s disk the first time they are passed through the
WebExplode() function. In subsequent calls to the AppPage, Webdriver calls
the cached AppPage instead of requesting the AppPage from the database
and passing it through the WebExplode() function.

You can use partial AppPage caching for AppPages that include some
dynamic content. The static portion of the AppPage is cached, and only the
dynamic content is processed by the WebExplode() function.

Large object caching is similar to AppPage caching except that it is large
objects, instead of AppPages, that are cached to disk.
Improving Performance 9-3

AppPage Caching
AppPage Caching
If your application contains many static AppPages, you can improve perfor-
mance by eliminating some database requests and retrieving AppPages
directly from Webdriver's disk cache. While all AppPages are dynamically
generated by the WebExplode() function, there are different levels of
volatility for different types of AppPages:

■ Single instance. The AppPage does not change. Variables passed
into the AppPage have no effect on the content of the AppPage.

■ Multiple instances, low volatility. Different instances of the
AppPage are generated for different values of the variables passed
into the AppPage. The underlying data changes at known intervals.
For example, you might have a products table that is updated once
an hour.

■ Multiple instances, high volatility. Different instances of the
AppPage are generated for different values of the variables passed
into the AppPage. The underlying data can change at any time. For
example, a real-time data feed is updated constantly.

In all of the preceding cases, AppPage caching significantly improves perfor-
mance if the AppPage is retrieved many times before the underlying data
changes.

Important: Webdriver does not detect when the underlying data has changed. For
this reason, use the features described in “Setting AppPage Caching for a Webdriver
Configuration” on page 9-9 to force AppPages to be refreshed after a specified length
of time or to purge AppPages when necessary.

AppPages That Are Not Cached
Webdriver's implementation of AppPage caching checks all of the variables
on the AppPage and creates an instance of the AppPage for each possible set
of variable assignments for the AppPage.

AppPages with the following characteristics, however, are never cached by
Webdriver:

■ The AppPage contains the HTTPHEADER variable-processing
function.
9-4 IBM Informix Web DataBlade Module Administrator’s Guide

Global Cache For Dynamic Tags and User-Defined Routine Tags
■ The AppPage contains a session variable (a variable that is prefixed
with the session keyword) in the static or nondeferred content of the
AppPage.

For more information on creating deferred content in an AppPage,
refer to “Partial AppPage Caching” on page 9-25. For more informa-
tion on session variables, refer to the “Using Session Variables to
Improve Performance” on page 9-31.

■ The AppPage does not have caching enabled.

Important: If you have enabled both session management and AppPage caching for
your Webdriver configuration, refer to “Session Management and AppPage
Caching” on page 9-31 for detailed information on how to ensure that AppPages that
contain only static content are cached correctly.

Global Cache For Dynamic Tags and User-Defined Routine
Tags
The current version of the DataBlade module provides a global cache for
dynamic tags and user-defined routine (UDR) tags. This global cache is
shared by all sessions using the same database. In previous versions of the
DataBlade module, each session had its own cache.

The advantages of a global cache are:

■ Increased performance. Tags are loaded the first time they are used,
then subsequent sessions can use the cached tags.

■ Reduced memory usage. Only one copy of the tag is stored in the
cache rather than many copies for each session.

■ Automatic tag updates. The tag cache is updated whenever the tags
table is updated.
Improving Performance 9-5

Global Cache For Dynamic Tags and User-Defined Routine Tags
Compatibility with Previous Versions

The global tag cache is largely compatible with the previous tag caching
scheme except that:

■ The global tag cache is always kept up to date, even when the system
tables that store tag information are updated.

■ If you have implemented your own tag table, you must install
triggers on the tag table.

■ The global tag cache is not automatically updated when the system
tables that store tag information are dropped. In this case, you must
explicitly clear the cache by restarting the database server or calling
a user-defined routine, described in the sections following.

■ Since the global cache is global to the database, a tag has the same
meaning to all users of the database. This means that all users use the
same SELECT statement to fetch tags from the database.

Important: The global tag cache does not support multiple tags tables; you should
only enable it for databases that have a single tags table.

Enabling the Global Tag Cache

You enable the global tag cache using either the websetup utility or the
installGlobalTagCache utility.

If you use websetup, you are prompted for the following information:

1. The name of the table that contains the dynamic tags

2. The name of the tag table column that contains the tag names

3. The name of the tag table column that contains the tag parameter list

4. The name of the tag table column that contains the tag bodies

5. The WHERE clause used to select the row containing a particular tag

Use the variable $MI_WEBTAGSID for the target tag name.
9-6 IBM Informix Web DataBlade Module Administrator’s Guide

Global Cache For Dynamic Tags and User-Defined Routine Tags
For example, to be compatible with the APB2/DDW schema, enter the
following values for the five preceding pieces of information:

wbtags

id

parameters

object

upper(id)=upper("$MI_WEBTAGSID")

The installGlobalTagCache utility is located in the $INFORMIXDIR/extend/
web.version/install directory. The following example shows how to execute
the utility:

installGlobalTagCache db tagtbl name param body tagselect

db is the name of the database.

tagtbl is the name of the table that contains the tags.

name is the name of the tag table column that contains the tag names.

param is the name of the tag table column that contains the tag parameters.

body is the name of the tag table column that contains the tag body.

tagselect is the WHERE clause used to select the tag parameters and body.

Clearing the Global Tag Cache

To clear the global tag cache, execute the WebClearTagCache() procedure, as
shown in the following example:

execute procedure WebClearTagCache();

The procedure does not take any arguments. Execute this procedure if there
is a failure in updating the global tag cache or if you drop either of the system
tables that stores information on dynamic tags or UDR tags.
Improving Performance 9-7

Using AppPage Caching
Debugging the Global Tag Cache

To dump the contents of the global tag cache to a file, execute the routine
WebDumpTagCache(). The routine takes two arguments:

■ The name of the file on the client computer

■ An integer, either 0 or 1

If you want a full dump of the information, specify 0. If you want an
abbreviated dump of the information, specify 1.

Using AppPage Caching
If you decide you want to use AppPage caching for one or more AppPages in
your application, you must:

1. Set AppPage caching for your Webdriver configuration by setting
certain Webdriver variables.

For detailed information on this step, refer to “Setting AppPage
Caching for a Webdriver Configuration,” next.

2. Enable AppPage caching for a particular AppPage.

For detailed information on this step, refer to “Enabling AppPage
Caching for a Particular AppPage” on page 9-13.
9-8 IBM Informix Web DataBlade Module Administrator’s Guide

Using AppPage Caching
Setting AppPage Caching for a Webdriver Configuration

To set AppPage caching for your Webdriver configuration, use the Web
DataBlade Module Administration Tool to set the Webdriver variables listed
in the following table. For detailed information on using the Web DataBlade
Module Administration Tool, refer to Chapter 3, “Configuring Webdriver.”

Webdriver Variable Mandatory? Description

cache_page Yes Specifies whether AppPage caching is enabled or disabled

Set to ON to enable AppPage caching and OFF to disable AppPage
caching.

The default value is OFF.

cache_directory Yes Specifies the full pathname of the directory on the Web server
computer in which cached AppPages and large objects are placed

If this variable is not set, neither AppPages nor large objects are
cached.

cache_page_buckets No Specifies the number of subdirectories per AppPage created
under the directory specified by cache_directory

The default is one subdirectory per AppPage.

Set this variable only if you intend on caching AppPages that
might have over 1000 different versions.

cache_page_life No Specifies the length of time after which an AppPage is refreshed
from the database

Set cache_page_life in units of seconds (s or S), hours (h or H), or
days (d or D). For example, the value 5d indicates five days.

cache_admin No Specifies the name of the Cache Administration AppPage

The Cache Administration AppPage is not stored in the database,
but is an internal AppPage managed by Webdriver.

When MIval is set to this value, Webdriver invokes this AppPage
so you can add, delete, purge, or view cache entries in the
cache_directory directory.

The default value is cacheadmin.

 (1 of 2)
Improving Performance 9-9

Using AppPage Caching
To enable AppPage caching for a particular AppPage, refer to “Enabling
AppPage Caching for a Particular AppPage” on page 9-13.

When you set the cache_directory Webdriver variable to a directory in which
cached large objects and AppPages are placed, and you set cache_page to ON,
Webdriver places an AppPage for which caching has been enabled in its disk
cache the first time the AppPage is retrieved. Subsequent retrievals of that
AppPage are made from Webdriver's disk cache.

cache_admin_password No Specifies that cache administration requests are processed only if
the password entered in the Cache Administration AppPage
matches this value.

cache_page_timestamp No Specifies that Webdriver, when invoking an AppPage for which
AppPage caching has been enabled, adds timestamp information
at the bottom of the page.

The timestamp is enclosed in an HTML comment and thus is only
seen if a user views the HTML source of the AppPage in their
browser.

The default value is OFF. To enable this feature, set this Webdriver
variable to ON.

cache_page_debug No Specifies that Webdriver invokes AppPages that contain deferred
sections (delimited with the MIDEFERRED tag) without
returning an error, even if AppPage caching has not been enabled.
This Webdriver variable is used to debug problems with partial
AppPage caching.

The cache_page_debug Webdriver variable can be set to two
values: show_defer and execute_defer.

When set to show_defer and you invoke an AppPage with a
deferred section, Webdriver returns the deferred section in its
original form. If the Webdriver variable is set to execute_defer,
Webdriver executes the deferred section when you invoke the
AppPage.

For detailed information on the cache_page_debug Webdriver
variable, refer to “Debugging Problems with Partial AppPage
Caching” on page 9-27.

Webdriver Variable Mandatory? Description

 (2 of 2)
9-10 IBM Informix Web DataBlade Module Administrator’s Guide

Using AppPage Caching
Set the cache_page_life Webdriver variable to the length of time you want
AppPages to remain in the disk cache. Specify cache_page_life in units of
seconds (s or S), hours (h or H), or days (d or D). Each time an AppPage is
retrieved, if the time stamp indicates that the AppPage is older than the value
of cache_page_life, the AppPage is refreshed from the database.

If you intend to cache AppPages that might have more than 1000 different
versions, you should set the cache_page_buckets Webdriver variable to
create subdirectories under the initial AppPage directory. An AppPage might
have more than 1000 versions if you pass a large number of variables to it.

Important: If you modify the setting for cache_page_buckets, the algorithm used
to locate the different versions of the AppPage in the subdirectories changes.
Therefore, you should remove all AppPages from the subdirectories if you change the
value for cache_page_buckets. The algorithm for creating the subdirectories does
not always create them in sequential order.

Example of Setting AppPage Caching for a Webdriver Configuration

The following table shows sample settings for the AppPage caching
Webdriver variables to enable AppPage caching for a Webdriver
configuration.

AppPage caching is enabled for this configuration because the cache_page
variable is set to ON. The directory that holds the cached AppPages is
/bigdisk/AppPageCache. This directory has a maximum of 30 subdirectories
for the AppPage. A particular AppPage remains cached for a maximum of
one hour. The Cache Administration AppPage is called cacheadmin, and the
password to use this page to administer AppPage caching is topsecret.

Webdriver Variable Sample Value

cache_page ON

cache_directory /bigdisk/AppPageCache

cache_page_buckets 30

cache_page_life 1h

cache_admin cacheadmin

cache_admin_password topsecret
Improving Performance 9-11

Using AppPage Caching
Use the Web DataBlade Module Administration Tool to set these Webdriver
variables for your Web DataBlade module configuration. For more infor-
mation on setting Webdriver variables, refer to Chapter 3, “Configuring
Webdriver.”

The Cache Administration AppPage

The cache_admin Webdriver variable specifies the name of the Cache
Administration AppPage. If you do not set this Webdriver variable in your
Webdriver configuration, the name of the Cache Administration AppPage is
cacheadmin. Use the Cache Administration AppPage to enable and disable
AppPage caching for a particular AppPage, as described later on in this
section. You also use the Cache Administration AppPage to purge AppPages
from the cache, view the AppPages for which you have enabled AppPage
caching, and analyze AppPage caching statistics.

The Cache Administration AppPage is not stored in a database table, but
rather is a “virtual” AppPage dynamically created and managed by
Webdriver. However, you invoke the AppPage the same way you invoke all
other AppPages.

The following example shows how to invoke the Cache Administration
AppPage using its default name (cacheadmin):

http://domain:port/sales/?MIval=cacheadmin

In the example, domain refers to the name of your Web server computer, port
refers to the port number of your Web server process, and /sales is a URL
prefix that corresponds to a Webdriver mapping.

If you have previously set the cache_admin Webdriver variable to another
value in your Webdriver configuration, then specify that value instead of
cacheadmin.
9-12 IBM Informix Web DataBlade Module Administrator’s Guide

Using AppPage Caching
Figure 9-1 shows the Cache Administration AppPage.

The figure shows that the AppPage cache directory has been set to
/tmp/cachedir.

The following sections describe how to use the Cache Administration
AppPage to perform cache administration tasks.

Enabling AppPage Caching for a Particular AppPage

This section describes how to enable AppPage caching for a particular
AppPage.

The section is written with the assumption that you have already set the
necessary Webdriver variables to enable AppPage caching for your
Webdriver configuration, as described in “Setting AppPage Caching for a
Webdriver Configuration” on page 9-9.

Figure 9-1
Cache

Administration
AppPage

Web Browser - [Cache Administration Page]

URL: http://wombat:7777/develop/?MIval=cadmin

Directory:

AppPage:

/tmp/cachedir

Password:

Matchlist:

Action:

Check Database:

AppPage Cache:

LargeObject Cache:

Analyze Cache:

20 dbreqs 0 cache %0 hit

0 dbreqs 12 cache %100 hit

Submit

yes no

collect view cancel

enable disable purge view(all)
Improving Performance 9-13

Using AppPage Caching
To enable AppPage caching for an individual AppPage

1. Invoke in your browser the Cache Administration AppPage
identified by the cache_admin Webdriver variable.

For information on the Cache Administration AppPage and details
on how to invoke it in your browser, refer to “The Cache Adminis-
tration AppPage” on page 9-12.

2. Enter the name of the AppPage for which you want to enable
AppPage caching in the AppPage text box.

3. Enter the password specified by the cache_admin_password
Webdriver variable in the Password text box.

If you have not set the cache_admin_password Webdriver variable
for your Webdriver configuration, leave the Password text box
blank.

4. Select enable from the Action group.

5. Select yes from the Check Database group if you want Webdriver to
make sure that the AppPage for which you are enabling caching
exists in the database.

If you select no, Webdriver does not verify that the AppPage actually
exists.

6. Click Submit.

Disabling AppPage Caching for a Particular AppPage

This section describes how to disable AppPage caching for an AppPage for
which caching is currently enabled.

To disable AppPage caching for an AppPage

1. Invoke in your browser the Cache Administration AppPage
identified by the cache_admin Webdriver variable.

For information on the Cache Administration AppPage and details
on how to invoke it in your browser, refer to “The Cache Adminis-
tration AppPage” on page 9-12.

2. Enter the name of the AppPage for which you want to disable
AppPage caching in the AppPage text box.
9-14 IBM Informix Web DataBlade Module Administrator’s Guide

Using AppPage Caching
3. Enter the password specified by the cache_admin_password
Webdriver variable in the Password text box.

If you have not set the cache_admin_password Webdriver variable
for your Webdriver configuration, leave the Password text box
blank.

4. Select disable from the Action group.

5. Select yes from the Check Database group if you want Webdriver to
make sure that the AppPage for which you are disabling caching
exists in the database.

If you select no, Webdriver does not verify that the AppPage actually
exists.

6. Click Submit.

Removing AppPages from the Disk Cache

This section describes two options for removing AppPages from the disk
cache:

■ Removing all versions of an AppPage

■ Removing a particular version of an AppPage

When you remove an AppPage from the disk cache, AppPage caching is still
enabled for the AppPage, and the next request for the particular AppPage
creates a new cached AppPage.

Webdriver caches AppPages based on the values of the variables passed into
the AppPage. This means that if an AppPage is invoked many times with
different values for the variables, Webdriver caches many different versions
of the AppPage in its disk cache. When you remove AppPages from the disk
cache, you can remove all versions or just a particular version, as described
in the following two sections.
Improving Performance 9-15

Using AppPage Caching
Removing All Versions of an AppPage from the Disk Cache

If you change a section of an AppPage that is common to all versions of the
cached AppPage, then you should remove all versions of the AppPage from
the disk cache so users start to invoke the newly updated AppPage.

To remove all versions of an AppPage from the disk cache

1. Invoke in your browser the Cache Administration AppPage
identified by the cache_admin Webdriver variable.

For information on the Cache Administration AppPage and details
on how to invoke it in your browser, refer to “The Cache Adminis-
tration AppPage” on page 9-12.

2. Enter the name of the AppPage for which you want remove all
versions from the disk cache in the AppPage text box.

3. Enter the password specified by the cache_admin_password
Webdriver variable in the Password text box.

If you have not set the cache_admin_password Webdriver variable
for your Webdriver configuration, leave the Password text box
blank.

4. Select purge from the Action group.

5. Click Submit.

Removing a Particular Version of an AppPage from the Disk Cache

If only a particular version of a cached AppPage has changed, you only need
to remove that version of the AppPage from the disk cache; you do not need
to remove all versions.

For example, assume you pass a product ID into an AppPage and thus the
versions of the cached AppPages are based on the product ID. If the infor-
mation for only one of the products has changed, you do not need to remove
the cached AppPages that correspond to the unchanged products.
9-16 IBM Informix Web DataBlade Module Administrator’s Guide

Using AppPage Caching
To remove a particular version of an AppPage from the disk cache

1. Invoke in your browser the Cache Administration AppPage
identified by the cache_admin Webdriver variable.

For information on the Cache Administration AppPage and details
on how to invoke it in your browser, refer to “The Cache Adminis-
tration AppPage” on page 9-12.

2. Enter the name of the AppPage for which want remove all versions
from the disk cache in the AppPage text box.

3. Enter the password specified by the cache_admin_password
Webdriver variable in the Password text box.

If you have not set the cache_admin_password Webdriver variable
for your Webdriver configuration, leave the Password text box
blank.

4. Enter the name/value pair that specifies the particular version of the
AppPage in the Matchlist text box.

For example, if you want to remove the cached version of an App-
Page identified by the name/value pair product_id=6, enter this
name value pair in the Matchlist text box.

5. Select purge from the Action group.

6. Click Submit.
Improving Performance 9-17

Caching AppPages Retrieved with the POST Method
Viewing the List of AppPages That Have Caching Enabled

This section describes how to view the list of AppPages that have AppPage
caching enabled.

To view a list of AppPages that have AppPage caching enabled

1. Invoke in your browser the Cache Administration AppPage
identified by the cache_admin Webdriver variable.

For information on the Cache Administration AppPage and details
on how to invoke it in your browser, refer to “The Cache Adminis-
tration AppPage” on page 9-12.

2. Enter the password specified by the cache_admin_password
Webdriver variable in the Password text box.

If you have not set the cache_admin_password Webdriver variable
for your Webdriver configuration, leave the Password text box
blank.

3. Select view(all) from the Action group.

4. Click Submit.

Caching AppPages Retrieved with the POST Method
By default, Webdriver never caches AppPages that are retrieved with the
POST method, even if you have explicitly enabled AppPage caching for that
AppPage.

You can, however, bypass this default behavior by setting a hidden variable
in the form, as described in the following procedure.

To cache an AppPage that is retrieved with the POST method

1. In your definition of the form that specifies the POST method, add a
hidden variable called MIdriver and set its value to allow_cache, as
shown in the following example:

<INPUT TYPE=hidden NAME=MIdriver VALUE=allow_cache>

2. Prefix all other variables in the form with the keyword defer. This
specifies that the variables are actually deferred variables.
9-18 IBM Informix Web DataBlade Module Administrator’s Guide

Using the MIFUNC Tag to Dynamically Manage AppPage Caching from Within an AppPage
3. In the AppPage that is retrieved with the POST method, be sure that
all variables passed to it from the form are referenced in a deferred
section. You specify a deferred section in an AppPage with the
MIDEFERRED tag.

If you follow this procedure, the nondeferred section of the AppPage
retrieved with the POST method can be cached.

For detailed information on specifying deferred sections in an AppPage with
the MIDEFERRED tag, refer to the IBM Informix Web DataBlade Module Appli-
cation Developer’s Guide.

Using the MIFUNC Tag to Dynamically Manage AppPage
Caching from Within an AppPage
The section “Using AppPage Caching” on page 9-8 describes how to manage
AppPage caching by using the Cache Administration AppPage. This section
provides an example, consisting of three AppPages, of using the MIFUNC
AppPage tag to manage AppPage caching dynamically from within an
AppPage.

Typically you use the MIFUNC AppPage tag to execute user-defined NSAPI or
ISAPI functions in your AppPages. However, by specifying the
INTERNAL=cache_admin attribute, you can also execute a select list of
internal Webdriver functions in your AppPages to help you manage
AppPage caching dynamically.

For a detailed description of using the INTERNAL attribute with the MIFUNC
AppPage tag and for a full list of available options, refer to the IBM Informix
Web DataBlade Module Application Developer’s Guide. The description of the
following example assumes that you are familiar with the MIFUNC
discussion in the IBM Informix Web DataBlade Module Application Developer’s
Guide.
Improving Performance 9-19

Using the MIFUNC Tag to Dynamically Manage AppPage Caching from Within an AppPage
AppPage 1: Setting Up the Example

The following /c_setup.html AppPage sets up the example:

<?MIFUNC INTERNAL=cache_admin cache_mode=enable app_page=c_displ
message=display>

<?MIVAR>$cache_admin.display,<?/MIVAR>
<?MIERROR TAG=MIVAR>$cache_admin.display, Cache Table exists<?/MIERROR>
<?MISQL SQL="create table ctesttab (ticker_symbol varchar(7),
name varchar(255), price float);">

<?/MISQL>
<?MISQL
SQL="insert into ctesttab values ('IFMX','Informix Corp',97.5);
insert into ctesttab values ('IBM','International Business Machines', 10);
insert into ctesttab values ('PSFT','Peoplesoft',12);">
<?/MISQL>Cache table created
<?/MIFUNC>

This AppPage first enables AppPage caching for the /c_displ.html AppPage
(described later on in this section), creates the ctesttab table, and inserts
sample data into the table.

AppPage 2: Displaying Information

The following /c_displ.html AppPage shows how to display information
from the ctesttab table based on the item you select from the list box:

<?MIBLOCK COND=$(XST,$symbol)>
<?MISQL SQL="select * from ctesttab where ticker_symbol='$symbol';">$1, $2,
$3<?/MISQL>
<?MIELSE>
<form method="post" action=<?MIVAR>$WEB_HOME<?/MIVAR>>
<td valign=top align=middle>
<input type="hidden" name=MIval value=/c_displ.html>
<input type="hidden" name=MIdriver value=allow_cache>
<?MIVAR NAME=symbol>IFMX<?/MIVAR>
<TD>Enter symbol to display</TD>
<TD>
<?APB2_SELECT_LIST QRY="select ticker_symbol from ctesttab;"
NAMEVAL="symbol" DEFVAL=$(REPLACE,$symbol,','')>

</TD>
</td>
<INPUT TYPE="SUBMIT" VALUE="SUBMIT">

<?MIVAR>

Update a stock
<?/MIVAR>

</form>
<?/MIBLOCK>

The AppPage calls itself when you click the Submit button.
9-20 IBM Informix Web DataBlade Module Administrator’s Guide

Using the MIFUNC Tag to Dynamically Manage AppPage Caching from Within an AppPage
Remember that the /c_setup.html AppPage enables AppPage caching for the
/c_displ.html AppPage. This means that the first time you invoke the
/c_displ.html AppPage, Webdriver retrieves the AppPage from the database.
However, subsequent times that you invoke the AppPage using the same
item from the list box, Webdriver uses the cached AppPage rather than
retrieving it from the database.

The MIdriver hidden variable in the /c_displ.html AppPage enables
AppPage caching even though it recursively retrieves itself with the POST
method. For more information on the MIdriver hidden variable, refer to
“Caching AppPages Retrieved with the POST Method” on page 9-18.

AppPage 3: Updating Information

Finally, the following /c_update.html AppPage, invoked from the
/c_displ.html AppPage, shows how to update a value in the database table:

<?MIBLOCK COND=$(AND,$(XST,$new_value),$(XST,$symbol))>
<?MISQL SQL="update ctesttab set price=$new_value where
ticker_symbol='$symbol';"><?/MISQL>
<?MIVAR NAME=match>symbol=$symbol<?/MIVAR>
<?MIFUNC INTERNAL=cache_admin cache_mode=purge matchlist=$match
message=display app_page=c_displ>

<?MIVAR>$cache_admin.display<?/MIVAR><?/MIFUNC>
<?/MIBLOCK>

<form method="post" action=<?MIVAR>$WEB_HOME<?/MIVAR>
<?MIVAR NAME=symbol>IFMX<?/MIVAR>
<TD>Enter symbol to update</TD>
<TD>
<?APB2_SELECT_LIST QRY="select ticker_symbol from ctesttab;"
NAMEVAL="symbol" DEFVAL=$(REPLACE,$symbol,','')>

</TD>

<td valign=top align=middle>
<input type="hidden" name=MIval value=/c_update.html>
new value
<input type="text" name="new_value" size=4>
</td>
<INPUT TYPE="SUBMIT" VALUE="SUBMIT">
<PRE><?MIVAR>

Display stock
<?/MIVAR>
</form>

The AppPage calls itself when you click the Submit button.
Improving Performance 9-21

Analyzing AppPage Caching
The /c_update.html AppPage first determines whether you have already
used the /c_update.html AppPage to update a row in the ctesttab table. If
you have, the AppPage uses the MIFUNC AppPage tag to purge the relevant
cached /c_displ.html AppPage instance from the disk cache. This means that
the next time you invoke the /c_displ.html AppPage by specifying the item
in the list box that you updated in the ctesttab table, Webdriver retrieves the
AppPage from the database. This is because a cached entry for the AppPage
does not exist in the cache directory because it was purged with the MIFUNC
tag. This is correct behavior since the data on a cached /c_displ.html
AppPage would be out of date, and Webdriver must go to the database to
retrieve the latest data.

Analyzing AppPage Caching
You can use the Cache Administration AppPage to analyze the effectiveness
of your AppPage caching strategy. Caching statistics compare the number of
times an AppPage has been retrieved from the database against the number
of times an AppPage has been read from the disk cache.

You can either analyze statistics for all AppPages since the Web server was
started or analyze statistics for a particular AppPage.

Analyzing Caching for All AppPages

The text box labeled AppPage Cache on the Cache Administration AppPage
displays the following three statistics (since the Web server was started):

■ dbreqs, the number of times Webdriver retrieved any AppPage from
the database

■ cache, the number of times Webdriver read any AppPage from the
disk cache

■ hit, Webdriver’s hit rate of reading AppPages from disk, displayed
as a percentage

A higher hit rate means that Webdriver is reading more AppPages from the
disk cache, which typically translates into higher performance.

The text box labeled Large Object Cache shows similar caching statistics for
cached large objects, such as images and video clips.
9-22 IBM Informix Web DataBlade Module Administrator’s Guide

Analyzing AppPage Caching
Analyzing Caching for a Particular AppPage

If you are interested in analyzing the number of times Webdriver read a
particular AppPage from disk rather than the number of times Webdriver
retrieved it from the database, then you can collect caching statistics for just
that AppPage.

Enabling Collection of Caching Statistics for an AppPage

Although you can enable the collection of caching statistics for AppPages for
which you have not currently enabled AppPage caching, the results are not
very interesting since Webdriver always retrieves these AppPage from the
database. For this reason it makes sense to only enable the collection of
caching statistics for AppPages for which you have enabled AppPage
caching.

To enable the collection of caching statistics for an AppPage

1. Invoke in your browser the Cache Administration AppPage
identified by the cache_admin Webdriver variable.

For information on the Cache Administration AppPage and details
on how to invoke it in your browser, refer to “The Cache Adminis-
tration AppPage” on page 9-12.

2. Enter the name of the AppPage for which you want to enable the
collection of caching statistics.

3. Enter the password specified by the cache_admin_password
Webdriver variable in the Password text box.

If you have not set the cache_admin_password Webdriver variable
for your Webdriver configuration, leave the Password text box
blank.

4. Select collect in the Analyze Cache group.

5. Click Submit.
Improving Performance 9-23

Analyzing AppPage Caching
Viewing Caching Statistics for an AppPage

This section describes how to view caching statistics for all AppPage for
which you have enabled the collection of caching statistics.

To view caching statistics for an AppPage

1. Invoke in your browser the Cache Administration AppPage
identified by the cache_admin Webdriver variable.

For information on the Cache Administration AppPage and details
on how to invoke it in your browser, refer to “The Cache Adminis-
tration AppPage” on page 9-12.

2. Enter the password specified by the cache_admin_password
Webdriver variable in the Password text box.

If you have not set the cache_admin_password Webdriver variable
for your Webdriver configuration, leave the Password text box
blank.

3. Select view from the Analyze Cache group.

4. Click Submit.

The following caching statistics are displayed for each AppPage for
which you have enabled the collection of statistics:

■ Cache (READ), the number of times Webdriver has read the
AppPage from the disk cache

■ Cache (WRITE), the number of times Webdriver has written the
AppPage to the disk cache

■ WebExplode(), the number of times Webdriver has retrieved the
AppPage from the database
9-24 IBM Informix Web DataBlade Module Administrator’s Guide

Partial AppPage Caching
Disabling Collection of Caching Statistics for all AppPages

You can disable the collection of caching statistics only for all AppPages
which are currently enabled to collect statistics; you cannot cancel caching
statistics for a single AppPage.

To cancel caching statistics for all AppPages

1. Invoke in your browser the Cache Administration AppPage
identified by the cache_admin Webdriver variable.

For information on the Cache Administration AppPage and details
on how to invoke it in your browser, refer to “The Cache Adminis-
tration AppPage” on page 9-12.

2. Enter the password specified by the cache_admin_password
Webdriver variable in the Password text box.

If you have not set the cache_admin_password Webdriver variable
for your Webdriver configuration, leave the Password text box
blank.

3. Select cancel from the Analyze Cache group.

4. Click Submit.

Partial AppPage Caching
Some AppPages are not good candidates for AppPage caching because,
although most of the contents of the AppPage are static, there is a small
amount of dynamic content that should not be cached. The dynamic contents
of these types of AppPages must be executed by the WebExplode() function
each time the AppPage is requested. These AppPages are good candidates
for partial AppPage caching.

To enable partial AppPage caching, first set the standard AppPage caching
Webdriver variables as described in the section “Setting AppPage Caching
for a Webdriver Configuration” on page 9-9. Then use the MIDEFERRED tag
in the AppPage to identify the dynamic content.
Improving Performance 9-25

How Partial AppPage Caching Works
An example of dynamic content is a reference to a session variable. AppPages
in which most of the content is static except for a reference to a session
variable can be partially cached as long as the reference to the session
variable is enclosed within MIDEFERRED tags.

For detailed information on using the MIDEFERRED tag, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

How Partial AppPage Caching Works
When the WebExplode() function first processes an AppPage that contains
an MIDEFERRED tag, it processes everything but the content inside the
MIDEFERRED tag and tells Webdriver that further processing of the deferred
section is needed.

When it receives this partially processed AppPage, Webdriver caches it in the
cache directory, adding the extension .def to the file to indicate it contains
deferred content. Webdriver then sends the cached page back to the WebEx-
plode() function to process just the deferred content. Subsequent requests for
the AppPage are also passed back to the WebExplode() function, although
only the deferred section is processed, not the entire AppPage.

Using Variables with the MIDEFERRED Tag
During AppPage caching, Webdriver uses variables sent to an AppPage as a
key to create the name of the file stored in the cache directory. Static
AppPages always have variables set to the same value, so the cached
AppPage is always easily found.

Variables in the dynamic content of the MIDEFERRED tag, however, can
change each time the AppPage is called. These types of variables, therefore,
should not be part of the key used to create and find files in the AppPage
cache. To specify to Webdriver that a variable should not be used in the key,
prefix the variable with the defer keyword.

Important: If you have enabled session management and your AppPage contains a
session variable (a variable that is prefixed with the session keyword) in the nonde-
ferred section of the AppPage, the AppPage is never cached. A warning is written to
the Webdriver log instead.
9-26 IBM Informix Web DataBlade Module Administrator’s Guide

Debugging Problems with Partial AppPage Caching
Debugging Problems with Partial AppPage Caching
When you are developing an AppPage that contains a deferred section, it is
often useful, for debugging purposes, to be able to invoke the AppPage in a
browser and see what Webdriver returns in the deferred section without
actually enabling AppPage caching for the AppPage. If you actually enable
caching for the AppPage while you are developing the AppPage, changes to
the AppPage are not reflected. By default, however, Webdriver returns an
error if you try to invoke an AppPage that contains a deferred section
without having previously enabled AppPage caching for the AppPage.

To work around this behavior, set the cache_page_debug Webdriver variable
in your Webdriver configuration. The Webdriver variable can be set to two
values: show_defer and execute_defer.

Set the cache_page_debug Webdriver variable to show_defer if you want
Webdriver to return the AppPage with the deferred section in its original
form. This means that in the returned AppPage, the WebExplode() function
has not executed the section of the AppPage between the MIDEFERRED tags.

Set the cache_page_debug Webdriver variable to execute_defer if you
want the WebExplode() function to execute the section between the
MIDEFERRED tags. In other words, you want to see the AppPage as if
AppPage caching has been enabled for the AppPage.

Large Object Caching
If your application contains many static large objects, you can improve
performance by eliminating some database requests and retrieving large
objects directly from the disk cache for Webdriver. When you enable caching,
Webdriver creates a disk copy of the large object the first time it is retrieved
from the database. Subsequent requests for that large object retrieve the large
object from the disk cache. Since large objects cannot be updated (a large
object must be deleted and reinserted, and therefore has a new large object
handle), it is not possible to retrieve stale objects.
Improving Performance 9-27

Setting Large Object Caching
Setting Large Object Caching
To set large object caching, use the Web DataBlade Module Administration
Tool to set the Webdriver variables listed in the following table.

For detailed information on using the Web DataBlade Module Adminis-
tration Tool, refer to Chapter 3, “Configuring Webdriver.”

When you set the cache_directory Webdriver variable, Webdriver places a
large object in its disk cache the first time the large object is retrieved. Subse-
quent retrievals of that large object are made from Webdriver’s disk cache.

Depending on the setting for the cache_buckets Webdriver variable, one or
more subdirectories of cache_directory are created automatically for each
database for which large objects are cached. The default number of subdirec-
tories for cached large objects is one for each database.

If you expect many large objects to be cached, you can create more than one
subdirectory per database under the cache_directory directory by specifying
a higher number for cache_buckets. The subdirectories created are named
database_name0, database_name1, and so on. There is no limit to the
number of large objects that can be placed in these subdirectories, other than
any operating system limitations.

Webdriver Variable Mandatory? Description

cache_directory Yes Specifies the directory on the Web server
computer in which cached large objects
are placed. If not set, large objects are not
cached.

cache_buckets No Specifies the number of subdirectories per
database created under the directory
specified by cache_directory. The default
is one subdirectory per database.

cache_maxsize No Specifies the maximum size in bytes of
large objects to be cached. The default is
64 KB.
9-28 IBM Informix Web DataBlade Module Administrator’s Guide

Example of Setting Large Object Caching
Important: If you modify the setting for cache_buckets, the algorithm used to locate
large objects in the database subdirectories changes. Therefore, you should remove all
large objects from the subdirectories if you change the value for cache_buckets. The
algorithm for creating the database subdirectories does not always create them in
sequential order.

Webdriver names a cached large object using a compressed version of the
large object handle. For example, an image stored in Webdriver’s disk cache
might be named as follows:

/bigdisk/LOcache/webdb0/na6b7c8d9m2m2l14k2g9q1p686f626a65637
44g18l4m1ft48h9bde74ga2b9dia2begeg

Example of Setting Large Object Caching
The following table shows an example of enabling large object caching with
sample Webdriver variable settings.

Large object caching is enabled for this configuration because the
cache_directory Webdriver variable is set to a value, /bigdisk/LOCache.
This is the directory that holds the cached large objects. The directory has a
maximum of 30 subdirectories for the database. The maximum size of large
objects that can be stored in the large object cache, specified by the
cache_maxsize Webdriver variable, is 1 MB.

Use the Web DataBlade Module Administration Tool to set these Webdriver
variables for your Web DataBlade module configuration. For more infor-
mation on setting Webdriver variables, refer to Chapter 3, “Configuring
Webdriver.”

Webdriver Variable Sample Value

cache_directory /bigdisk/LOCache

cache_buckets 30

cache_maxsize 1024000
Improving Performance 9-29

Analyzing Caching Statistics for Large Objects
Analyzing Caching Statistics for Large Objects
You can use the Cache Administration AppPage to analyze the effectiveness
of your large object caching strategy. Caching statistics compare the number
of times a large object has been retrieved from the database against the
number of times a large object has been read from the disk cache.

Refer to “The Cache Administration AppPage” on page 9-12 for instructions
on how to invoke the Cache Administration AppPage in your browser.

The text box labeled LargeObject Cache on the Cache Administration
AppPage displays the following three statistics since the Web server was
started:

■ dbreqs, the number of times Webdriver retrieved any large object
from the database

■ cache, the number of times Webdriver read any large object from the
disk cache

■ hit, Webdriver’s hit rate of reading large objects from disk, displayed
as a percentage

A higher hit rate means that Webdriver is reading more large objects from the
disk cache, which typically translates into higher performance.
9-30 IBM Informix Web DataBlade Module Administrator’s Guide

Using Session Variables to Improve Performance
Using Session Variables to Improve Performance
You can improve the performance of your application by using session
variables. Session variables are variables that can be accessed on any
AppPage without having to explicitly pass them to an AppPage. Session
variables can reduce the number of database queries and thereby improve
the overall performance of your application.

For example, a shopping cart application could use session variables to
improve performance. Assume that an AppPage initially uses the MISQL tag
to retrieve product information from a database table. A user of the appli-
cation might then choose one of the products to buy and add it to their
shopping cart. The application stores the product, as well as all the relevant
information about the product, in session variables. The user might not
immediately buy the product, but continue shopping, and thereby invoke
more AppPages. Once the user wants to buy the product, the application
does not need to retrieve the product information from the database once
again, since all the relevant information is stored in the session variables.

For detailed information on how to enable session management and how to
use session variables, refer to the IBM Informix Web DataBlade Module Appli-
cation Developer’s Guide.

Session Management and AppPage Caching
This section describes an additional application development step you must
perform to ensure that AppPages are cached correctly if you have enabled
both session management and AppPage caching. In cached AppPages that
also use session management, you must replace every instance of the
WEB_HOME anchor variable with the system dynamic tag of the same name,
WEB_HOME.

As described in the section “AppPages That Are Not Cached” on page 9-4,
AppPages that reference a session variable in a static, nondeferred section are
never cached.

AppPages in which most of the content is static except for a reference to a
session variable can be partially cached as long as the reference to the session
variable is enclosed within MIDEFERRED tags. Refer to “Partial AppPage
Caching” on page 9-25 for information on partial AppPage caching.
Improving Performance 9-31

Session Management and AppPage Caching
If your AppPages contain only static content or the reference to the session
variable occurs in a deferred section of the AppPage delimited by the
MIDEFERRED tags, then the AppPage can be cached. However, you must
replace every instance of the WEB_HOME anchor variable with the system
dynamic tag of the same name, WEB_HOME.

For example, assume you use the ANCHOR tag to invoke APB in an AppPage
in the following way:

<A HREF=<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/APB20/apb.html>APB

To ensure that the AppPage is cached when appropriate, replace
<?MIVAR>$WEB_HOME<?/MIVAR> with the WEB_HOME system dynamic tag,
as shown in the following example:

<A HREF=<?WEB_HOME>?MIval=/APB20/apb.html>APB
9-32 IBM Informix Web DataBlade Module Administrator’s Guide

10
Chapter
Globalizing Your Web
DataBlade Module Application
In This Chapter . 10-3

Overview of Globalization 10-3

Using Locale Variables 10-4

AppPage Builder and Globalization 10-5

WebURLDecode() and WebURLEncode() Functions 10-5

10-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
The following sections describe multibyte support:

■ “Overview of Globalization,” following

■ “Using Locale Variables” on page 10-3

■ “AppPage Builder and Globalization” on page 10-5

■ “WebURLDecode() and WebURLEncode() Functions” on page 10-5

Overview of Globalization
While most Western languages require one byte per alphabetic character,
many other languages are represented by more complicated characters,
requiring more than one byte. These are called multibyte character sets.
Support of multibyte character sets, as well as single-byte character sets, is
known as multibyte support.

The IBM Informix Web DataBlade module includes support for multibyte
character sets, which contain more than 256 characters. This support enables
you to write and execute AppPages and database content in a multibyte
format, where a single character might take more than one byte of storage
space.
Globalizing Your Web DataBlade Module Application 10-3

Using Locale Variables
Using Locale Variables
When a database application runs in a client/server environment, the client
application and database server might reside on different computers. These
computers might have different language support. To ensure that these parts
of the database application communicate locale information, you must set
the CLIENT_LOCALE and DB_LOCALE Informix environment variables.

Locale variables identify the language, territory, and code set. The default
locale variables are set to English.

To set the CLIENT_LOCALE or DB_LOCALE Informix environment variable,
add a line to Setvar section of the web.cnf file. The following example shows
how to specify Shift JIS or EUC as the client locale:

<Setvar>
CLIENT_LOCALE ja_jp.sjis-s
</Setvar>

<Setvar>
CLIENT_LOCALE ja_jp.ujis
</Setvar>

The DB_LOCALE Informix environment variables must be set to specify a
nondefault locale. By setting the DB_LOCALE variable, any database you
create with your Web application will have the corresponding database
locale. Be sure that the database locale is compatible with the client locale.

For more information on the CLIENT_LOCALE and DB_LOCALE Informix
environment variables, see the IBM Informix Guide to GLS Functionality.
10-4 IBM Informix Web DataBlade Module Administrator’s Guide

AppPage Builder and Globalization
AppPage Builder and Globalization
Your browser needs to know when a code set is being used. For the AppPage
Builder (APB) application, use the MI_WEBENCODE user-defined variable for
your Webdriver configuration to supply this information. The variable is
then embedded in the APB_HEADER and APB_ERROR user dynamic tags. The
following example shows how the MI_WEBENCODE variable appears within
these dynamic tags.

<?MIVAR COND=$(XST,$MI_WEBENCODE)>$(URLDECODE,$MI_WEBENCODE)<?/MIVAR>

To set the MI_WEBENCODE user-defined variable, use the Web DataBlade
Module Administration Tool. Specify as its value the same code set used in
the CLIENT_LOCALE Informix environment variable.

The MI_WEBENCODE user-defined variable does not appear on the Web
DataBlade Module Administration Tool variables list. You must manually
add this variable. See “Invoking and Using the Web DataBlade Module
Administration Tool” on page 3-29 for information about setting variables
with the Web DataBlade Module Administration Tool.

WebURLDecode() and WebURLEncode() Functions
The WebURLDecode() function returns HTML with hexadecimal values
replaced with nonalphanumeric ASCII characters and plus signs (+)
replaced with spaces.

The WebURLEncode() function returns HTML with nonalphabetic ASCII
characters replaced with their hexadecimal values and spaces replaced with
a plus sign (+).

Output from the WebURLDecode() and WebURLEncode() functions varies
depending on the code set used in the CLIENT_LOCALE Informix
environment variable, as follows:

■ WebURLDecode(). This function expects the URL-encoded string
passed as the argument to consist of the characters encoded in
CLIENT_LOCALE variable.
Globalizing Your Web DataBlade Module Application 10-5

WebURLDecode() and WebURLEncode() Functions
■ WebURLEncode(). This function expects the characters in the
CLIENT_LOCALE variable and URL-encodes them.

For more information on the WebURLDecode() and WebURLEncode()
functions, see the IBM Informix Web DataBlade Module Application Developer’s
Guide.
10-6 IBM Informix Web DataBlade Module Administrator’s Guide

11
Chapter
Deploying Web DataBlade
Module Applications
In This Chapter . 11-3

Overview of Deployment 11-3

Moving Applications from Development to Production 11-4
Moving Each Type of Data Separately 11-4
Moving Data All at Once 11-5
Accessing the New Production Database 11-6

Creating New Webdriver Mappings 11-6
Updating Existing Webdriver Mappings 11-7

Using a Web Server on a Different Computer 11-8

11-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter provides information about moving your Web DataBlade
module application from a development environment to a production
environment. It includes the following topics:

■ “Overview of Deployment,” following

■ “Moving Applications from Development to Production” on
page 11-4

■ “Using a Web Server on a Different Computer” on page 11-8

Overview of Deployment
Once you have finished developing and testing your Web DataBlade module
application, you are ready to deploy it and use it in a production
environment. Deployment of a Web DataBlade module application typically
includes the following tasks:

■ Moving the Web DataBlade module application from a development
database to a production database

■ Using a production Web server on a different computer from the
computer on which the Informix database server is installed

The following two sections describe the issues you should be aware of when
you perform the two tasks.
Deploying Web DataBlade Module Applications 11-3

Moving Applications from Development to Production
Moving Applications from Development to
Production
Web DataBlade module applications are typically made up of AppPages
stored in one or more tables, Web DataBlade module information stored in
system tables, and application data stored in one or more user tables.

You can either move each type of data separately from the development
database to the production database, or you can move the entire contents of
the development database to the production database.

Moving Each Type of Data Separately
When you move each type of data separately, you control what data exists in
the production database at any one time. If you move all the data in the
database, you might move temporary tables you created during devel-
opment, out-of-date data, and other data you probably do not want to
include in your production database. Moving each type of data separately,
however, is more complex because you must execute a separate command for
each table.

Before you begin moving data, be sure you register the Web DataBlade
module and install the Web DataBlade Module Administration Tool in the
production database.

You should probably not install AppPage Builder (APB) in the production
database, since APB is typically used only during development and can pose
a security risk if present in a production database.

You might need to move the following three types of data from a devel-
opment database to a production database:

■ The AppPages and large objects that make up your Web application

If you used APB to create your Web application, AppPages are stored
in the wbPages table and large objects are stored in the wbBinaries
table.

If you added a new extension type to the wbExtensions table, and
then created additional tables to store objects with the new exten-
sion, be sure you move the data in these new tables as well.
11-4 IBM Informix Web DataBlade Module Administrator’s Guide

Moving Data All at Once
■ The contents of the wbExtensions table

For detailed information about the schema of the wbExtensions
table, refer to the IBM Informix Web DataBlade Module Application Devel-
oper’s Guide.

■ Web DataBlade module data stored in the following system tables:

❑ WebConfigs

❑ WebCMImages

❑ WebEnvVariables

❑ WebTags or wbTags, whichever you use to store your dynamic
tags

❑ WebUdrs

For detailed information about the schemas of these system tables,
refer to Appendix A, “Web DataBlade Module System Tables.”

■ Application data stored in user tables

Use the standard SQL statements UNLOAD and RELOAD to move the
different types of data from your development database to your production
database.

For more information on the UNLOAD and RELOAD statements, refer to the
IBM Informix Guide to SQL: Syntax.

Moving Data All at Once
To move the entire contents of the development database to the production
database, you need execute only one command: onpload. However, all data
is moved, including temporary or out-of-date data.

The onpload utility is part of the High-Performance Loader (HPL) feature of
the Informix database server. The HPL allows you to efficiently unload and
reload large quantities of data to or from an Informix database. For more
information on using the HPL, refer to the Guide to the High-Performance Loader
for your database server.
Deploying Web DataBlade Module Applications 11-5

Accessing the New Production Database
Accessing the New Production Database
Once you have moved all the relevant data from the development database
to the production database, you are ready to access the Web DataBlade
module application that now resides in the production database. You can
either create new Webdriver mappings to access the production database or
update the old Webdriver mappings. These methods are described in the
next two sections.

Creating New Webdriver Mappings

This section describes how to create new Webdriver mappings to access the
production database.

To create new Webdriver mappings

1. Configure the Web DataBlade Module Administration Tool for the
production database.

For detailed information on how to do this, refer to the section “Set-
ting Up the Web DataBlade Module Administration Tool” on
page 3-22.

2. Use the Web DataBlade Module Administration Tool to add
Webdriver mappings.

The tool should automatically bring up the Webdriver configura-
tions that were moved from the development database to the
production database.

For detailed information on adding Webdriver mappings, refer to
“Adding a New Webdriver Mapping” on page 3-45.

3. Add corresponding URL prefix information to your Web server. Be
sure the URL prefix is the same as the name of the Webdriver
mapping.

For details on how to perform this step for the NSAPI, Apache, and
ISAPI implementations of Webdriver, refer to Chapter 4, “Using the
NSAPI Webdriver,” Chapter 5, “Using the Apache Webdriver,” and
Chapter 6, “Using the ISAPI Webdriver,” respectively.
11-6 IBM Informix Web DataBlade Module Administrator’s Guide

Accessing the New Production Database
Updating Existing Webdriver Mappings

This section describes how to update the old Webdriver mappings to access
the production database.

To update old Webdriver mappings

1. Locate the Webdriver configuration file, typically called web.cnf.
The MI_WEBCONFIG environment variable, usually set in the Web
server startup files, points to this file.

2. For each Webdriver mapping you want to change, update the value
of the database variable in the Map section of the web.cnf file from
the development database to the production database.

3. Restart your Web server.

4. Invoke the Web DataBlade module application in the production
database using the same URL prefix in your browser that you used to
invoke the application in the development database.

If you want Webdriver to connect to the production database as a different
user than is currently assigned to the Webdriver mapping, use the Web
DataBlade Module Administration Tool to change the user name and
password for the Webdriver mapping. For detailed information on using the
tool, refer to “Invoking and Using the Web DataBlade Module Adminis-
tration Tool” on page 3-29.
Deploying Web DataBlade Module Applications 11-7

Using a Web Server on a Different Computer
Using a Web Server on a Different Computer
While you are developing a Web DataBlade module application, the Web
server is typically on the same computer as the Informix database server.
However, when you deploy the application to a production environment,
you might want to use an existing production Web server that resides on a
different computer from the one on which the Informix database server is
installed. This section describes what you need to do so that the Web
DataBlade module application continues to work correctly in this type of
production environment.

A particular Web server can point to only one version of the Web DataBlade
module. This means that if you want to register two different versions of the
Web DataBlade module into two different databases in the same Informix
database server, each database must be accessed by different Web servers.

Important: You can register only one version of the Web DataBlade module in a
particular database.

To deploy a Web DataBlade module application on a computer different from the
computer on which the Web server resides

1. Install IBM Informix Connect or IBM Informix Client Software
Developer’s Kit on the Web server machine.

IBM Informix Connect consists of the runtime versions of Informix
client products. IBM Informix Client Software Developer’s Kit con-
sists of the development versions of the client products.

For detailed information on installing either product, refer to the
IBM Informix Client Products Installation Guide for the platform on
which your Web server is installed.

2. Set up the network connection between the Web server computer
and the computer on which the Informix database server is installed
by updating the sqlhosts file on the Web server computer.

For detailed information on setting up a network connection, refer to
the Administrator’s Guide for your database server.

3. Move the Webdriver configuration file, typically called web.cnf, to
the Web server computer.

4. Set the MI_WEBCONFIG environment variable to point to the full
pathname of the web.cnf file.
11-8 IBM Informix Web DataBlade Module Administrator’s Guide

Using a Web Server on a Different Computer
5. If you are using the CGI Webdriver, move the executable to the
directory on the Web server computer set up to contain CGI
programs.

You should also put the web.cnf file in the same directory.

6. If you are using the NSAPI, the Apache, or the ISAPI Webdriver, for
instructions on how to set up the particular Webdriver on the
computer that runs the Web server, refer to Chapter 4, Chapter 5, or
Chapter 6, respectively.
Deploying Web DataBlade Module Applications 11-9

12
Chapter
Debugging and Troubleshooting
In This Chapter . 12-3

Enabling Webdriver Tracing. 12-3
Possible Trace Settings for the debug_level Webdriver Variable . . 12-4
Example of Setting the debug_level Webdriver Variable 12-5

Using the Webdriver Diagnostic Page 12-6

Errors While Retrieving Pages from the DataBase 12-6

Executing SQL Statements Greater Than 32 KB 12-8

12-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
This chapter describes how to enable Webdriver tracing to troubleshoot your
Web DataBlade module applications. For more information on debugging
applications during the development stage, refer to the IBM Informix Web
DataBlade Module Application Developer’s Guide.

Enabling Webdriver Tracing
To enable Webdriver tracing for all Webdriver configurations defined for a
Web DataBlade module installation, set the debug_file and debug_level
Webdriver variables in the Global section of the web.cnf file. For information
on updating the web.cnf file, refer to “The Webdriver Configuration File
(web.cnf)” on page 3-9.

The following table describes each variable.

You can also set the debug_level Webdriver variable for a particular
Webdriver configuration using the Web DataBlade Module Administration
Tool. The value of the debug_level Webdriver variable, if set for your
Webdriver configuration, overrides the value of the variable in the web.cnf
file.

Variable Description

debug_level Enables Webdriver tracing to the log file specified by the
debug_file variable

Refer to the table on page 12-4 for a full list of possible values for
this variable.

debug_file Specifies the full pathname of the log file to which Webdriver
messages are written
Debugging and Troubleshooting 12-3

Possible Trace Settings for the debug_level Webdriver Variable
For detailed information on using the Web DataBlade Module Adminis-
tration Tool to set Webdriver variables, refer to Chapter 3, “Configuring
Webdriver.”

Possible Trace Settings for the debug_level Webdriver
Variable
The following table lists the possible trace settings for the debug_level
Webdriver variable.

Trace Value Information Displayed

1 Logs all pblocks (NSAPI only). Pblocks contain the name/value
pairs passed from the Web browser to the Netscape Web server

2 Logs callbacks including errors

4 Logs Webdriver query requests to the database server, such as calls
to the WebExplode() function or authorization requests

8 Logs large object requests

16 Logs AppPage headers

32 Logs large object headers

64 Logs client file upload information

128 Logs information as AppPages are added and retrieved from the
disk cache

256 Logs request variables

512 Logs information similar to the information logged by the NSAPI
driver (CGI only)

1024 Logs connection pool information

2048 Logs session management information, such as persistent
variables being updated and new sessions being created

4096 Logs parameters sent to the WebExplode() function in a decoded
format

 (1 of 2)
12-4 IBM Informix Web DataBlade Module Administrator’s Guide

Example of Setting the debug_level Webdriver Variable
The trace value is additive; therefore, you can turn on multiple settings
simultaneously. When you enable tracing, the information is written to the
trace file specified by the debug_file variable in the Global section of the
web.cnf file. If the trace file does not exist, it is created. If the trace file exists,
new messages are appended to it.

Example of Setting the debug_level Webdriver Variable
The following example shows a Global section of a web.cnf file:

<Global>
dbconnmax 10
anchorvar WEB_HOME
debug_file /disk1/webdriver.log
debug_level 4
maxcharsize 2
</Global>

In the example, Webdriver tracing messages are written to the file
/disk1/webdriver.log. The only type of Webdriver messages written to this
file are query requests to the database server, such as calls to the WebEx-
plode() function or authorization requests.

8192 Logs parameters sent to the WebExplode() function in an encoded
format

16384 Time stamps each request of Webdriver

32768 Logs callback messages

Trace Value Information Displayed

 (2 of 2)
Debugging and Troubleshooting 12-5

Using the Webdriver Diagnostic Page
Using the Webdriver Diagnostic Page
The information in this section applies only when you use the Netscape
NSAPI Webdriver. Your browser shows the same information that would be
sent to the Webdriver log had you set the debug_level to 1024, as shown in
“Enabling Webdriver Tracing” on page 12-3.

Webdriver provides a virtual diagnostic web page that gives information
about connections between Webdriver and the database. To use the
diagnostic web page, set the internal_diags variable for your configuration
in the webconfigs table using the Web DataBlade Module Administration
Tool. The value that you set it to can be any short string that makes sense to
you. You are essentially naming a prefix for a dynamic page. For example:

 set internal_diags diag

Then in your url, request your_full_url_path/diagCP to see connection pool
information. For example, your_full_url_path could be one of the examples
below:

http://host.domain/$WEB_HOME

http://host.domain/database-name

Errors While Retrieving Pages from the DataBase
There are some problems that may occur when Webdriver connects to
WebExplode() and retrieves an exploded page from the database. This
section discusses some of these problems, likely diagnoses, and their
solutions or workarounds.
12-6 IBM Informix Web DataBlade Module Administrator’s Guide

Errors While Retrieving Pages from the DataBase
Symptom Possible Diagnosis Solution

When the browser requests a
page, it immediately displays
Error 25588. This occurs inter-
mittently during busy times
and may succeed when you
retry.

The dbconnmax Webdriver variable was not set;
it defaults to 16 and all connections were
occupied.

Increase
dbconnmax. This
variable is set in
Global section of the
web.cnf file.

When the browser requests a
page, after normal wait time, a
popup window appears saying
“Document contains no data.”

The browser is requesting a URL with the http
protocol (the URL begins with http://) and the
web server is serving https (or vice versa).

Correct the URL.

The browser returns error 404
“Not found,” when specifying
a URL beginning with
$WEB_HOME.

In your web server configuration, the URL
mapping for Webdriver is not set up correctly.
You may have put the mapping in the wrong
place in the file. For example, when you use the
Netscape server, it is an error to put the
NameTrans entry for $WEB_HOME after the
document root entry in obj.conf.

Put the URL
mapping for
Webdriver in the
correct place.
Debugging and Troubleshooting 12-7

Executing SQL Statements Greater Than 32 KB
Executing SQL Statements Greater Than 32 KB
By default, the database server returns an error if you try to execute an SQL
statement larger than 32 KB within an MISQL AppPage tag. An example of
an SQL statement that could be larger than 32 KB is an INSERT statement that
inserts a large AppPage into a table.

To work around this problem, use the PREPARE attribute to specify the name
of a variable that contains the large chunk of text (such as the entire AppPage
that is going to be inserted) and then put a question mark (?) in the SQL
statement to show where this text should be substituted once the SQL
statement is actually executed. For more information about the PREPARE
attribute, see the chapter called “Using Tags in AppPages” in the IBM Informix
Web DataBlade Module Application Developer’s Guide.

For example, assume you store movie descriptions in a table with the
following schema:

CREATE TABLE movies
(
 id INTEGER,
 name VARCHAR(30),
 description LVARCHAR
);

The following AppPage snippet shows how to use the MIVAR AppPage tag
to first store text data in a variable called the_text and then use the PREPARE
attribute of the MISQL tag to insert the text into the table. (For simplicity, the
sample text is short; in reality you should only use the PREPARE attribute for
text that is larger than 32 KB.)

<?MIVAR NAME=the_text>The movie was great. <?/MIVAR>
<?MISQL PREPARE=the_text

SQL="insert into movies values (1, 'Casablanca', ?);"><?/MISQL>

To use more than one placeholder in the SQL statement, use a vector variable
to store the text, as in:

<?MIVAR NAME=the_text[1]>Citizen Kane<?/MIVAR>
<?MIVAR NAME=the_text[2]>A movie classic.<?/MIVAR>
<?MISQL PREPARE=the_text

SQL="insert into movies values (1, ?, ?);"><?/MISQL>

Important: You should use the PREPARE attribute of the MISQL AppPage tag only
for SQL statements that are larger than 32KB, since use of the attribute might cause
the SQL statement to execute more slowly.
12-8 IBM Informix Web DataBlade Module Administrator’s Guide

13
Chapter
Web DataBlade Module Utilities
In This Chapter . 13-3

The cm_schema_create Utility 13-3

The cm_schema_load Utility 13-5

The createAPB20_DDW20schema Utility 13-6

The loadAPB20application Utility. 13-7

The webconfig Utility 13-8

The webpwcrypt Utility 13-13

The websetup Utility 13-14

13-2 IBM
 Informix Web DataBlade Module Administrator’s Guide

In This Chapter
Web DataBlade module utilities are programs that you run at the operating
system level that perform a specific task. This chapter describes the following
Web DataBlade module utilities:

■ The cm_schema_create utility

■ The cm_schema_load utility

■ The createAPB20_DDW20schema utility

■ The loadAPB20application utility

■ The webconfig utility

■ The webpwcrypt utility

■ The websetup utility

The cm_schema_create Utility
The cm_schema_create utility creates the system tables that make up the Web
DataBlade Module Administration Tool.

In particular, the cm_schema_create utility creates the following four tables:

■ WebCMPages. Stores the Web DataBlade Module Administration
Tool AppPages.

■ WebConfigs. Stores all Webdriver configurations.

■ WebEnvVariables. Stores all the Webdriver variables that can be
included in a Webdriver configuration.

■ WebCMImages. Stores the graphics used in the Web DataBlade
Module Administration Tool.
Web DataBlade Module Utilities 13-3

The cm_schema_create Utility
Important: You typically do not run the cm_schema_create utility manually
because the websetup utility, used to initially configure the Web DataBlade module
for your database, calls it automatically. The description of the cm_schema_create
utility is provided in case you need to manually install the Web DataBlade Module
Administration Tool in your database.

The cm_schema_create utility is located in the directory
INFORMIXDIR/extend/web.version/admtool, where INFORMIXDIR refers to
the main Informix directory and version refers to the current version of the
Web DataBlade module installed on your computer.

Usage
To use the cm_schema_create utility, execute the following command at the
operating system prompt:

cm_schema_create database sbspace

The database argument is the name of the database for which you want to
create Web DataBlade Module Administration Tool system tables. The
sbspace argument is the name of an sbspace.

For example, to create the Web DataBlade Module Administration Tool
system tables in a database called my_db, using the sbspace sbsp1, execute
the following command at the operating system prompt:

cm_schema_create my_db sbsp1

You must have previously created the sbspace with the onspaces command.
The Web DataBlade Module Administration Tool uses the sbspace to store
the object column of the WebCMPages table, which is of data type HTML.

Typically, the owner of the database or the informix user executes the
cm_schema_create utility.

After you execute the cm_schema_create utility to create the Web DataBlade
Module Administration Tool system tables, execute the cm_schema_load
utility to load data into the system tables. For detailed information on using
the cm_schema_load utility, refer to “The cm_schema_load Utility” on
page 13-5.
13-4 IBM Informix Web DataBlade Module Administrator’s Guide

The cm_schema_load Utility
The cm_schema_load Utility
The cm_schema_load utility loads data into the Web DataBlade Module
Administration Tool system tables created by the cm_schema_create utility.
In particular, the cm_schema_load utility loads:

■ The Web DataBlade Module Administration Tool AppPages into the
WebCMPages system table

■ The admin, apb, and ddw default Webdriver configurations into the
WebConfigs system table

■ All the Webdriver variables that can be included in a Webdriver
configuration, along with their default and possible values, into the
WebEnvVariables system table

■ The Web DataBlade Module Administration Tool images into the
WebCMImages system table

Important: You typically do not run the cm_schema_load utility manually because
the websetup utility, used to initially configure the Web DataBlade module for your
database, calls it automatically. The description of the cm_schema_load utility is
provided in case you need to manually install the Web DataBlade Module Adminis-
tration Tool in your database.

The cm_schema_load utility is located in the directory INFOR-
MIXDIR/extend/web.version/admtool, where INFORMIXDIR refers to the
main Informix directory and version refers to the current version of the Web
DataBlade module installed on your computer.

Usage
To use the cm_schema_load utility, execute the following command at the
operating system prompt:

cm_schema_load database

The database argument is the name of the database into which you want to
load the Web DataBlade Module Administration Tool data.
Web DataBlade Module Utilities 13-5

The createAPB20_DDW20schema Utility
For example, to load the Web DataBlade Module Administration Tool data
into a database called my_db, execute the following command at the
operating system prompt:

cm_schema_load my_db

Typically, the owner of the database or the informix user executes the
cm_schema_load utility.

You must have previously run the cm_schema_create utility to create the
Web DataBlade Module Administration Tool system tables before you run
the cm_schema_load utility. For detailed information on using the
cm_schema_create utility, refer to “The cm_schema_create Utility” on
page 13-3.

The createAPB20_DDW20schema Utility
The createAPB20_DDW20schema utility creates the system tables that make
up the AppPage Builder (APB) application.

The createAPB20_DDW20schema utility is located in the directory
INFORMIXDIR/extend/web.version/apb2, where INFORMIXDIR refers to the
main Informix directory and version refers to the current version of the Web
DataBlade module installed on your computer.

Important: You typically do not run the createAPB20_DDW20schema utility
manually, because the websetup utility, used to initially install the Web DataBlade
module for your database, calls it automatically if you choose at that time to install
APB. The description of the createAPB20_DDW20schema utility is provided in
case you need to manually install APB in your database.
13-6 IBM Informix Web DataBlade Module Administrator’s Guide

The loadAPB20application Utility
Usage
To use the createAPB20_DDW20schema utility, execute the following
command at the operating system prompt:

createAPB20_DDW20schema database sbspace

The database argument is the name of the database for which you want to
create the APB system tables. The sbspace argument is the name of an sbspace.

For example, to create the APB system tables in a database called my_db,
using the sbspace sbsp1, execute the following command:

createAPB20_DDW20schema my_db sbsp1

You must have previously created the sbspace with the onspaces command.
APB uses the sbspace to store HTML and BLOB columns, such as the object
column in both the wbPages and wbBinaries tables.

Typically, the owner of the database or the informix user executes the
createAPB20_DDW20schema utility.

After you execute the createAPB20_DDW20schema utility to create the APB
system tables, execute the loadAPB20application utility to load data into the
system tables. For detailed information on using the loadAPB20application
utility, refer to “The loadAPB20application Utility,” following.

The loadAPB20application Utility
The loadAPB20application utility loads data into the APB system tables.

The loadAPB20application utility is located in the directory
INFORMIXDIR/extend/web.version/apb2, where INFORMIXDIR refers to the
main Informix directory and version refers to the current version of the Web
DataBlade module installed on your computer.

Important: You typically do not run the loadAPB20application utility manually,
because the websetup utility, used to initially configure the Web DataBlade module
for your database, calls it automatically if you choose at that time to install APB. The
description of the loadAPB20application utility is provided in case you need to
manually install APB in your database.
Web DataBlade Module Utilities 13-7

The webconfig Utility
Usage
To use the loadAPB20application utility, execute the following command at
the operating system prompt:

loadAPB20application database

The database argument is the name of the database into which you want to
load the APB data.

Typically, the owner of the database or the informix user executes the
loadAPB20application utility.

For example, to load the APB data into a database called my_db, execute the
following command:

loadAPB20application my_db

You must have previously run the createAPB20_DDW20schema utility to
create the APB system tables before you run the loadAPB20application
utility. For detailed information on using the createAPB20_DDW20schema
utility, refer to “The createAPB20_DDW20schema Utility” on page 13-6.

The webconfig Utility
Use the webconfig utility to add new Webdriver mappings to the web.cnf file
and convert web.cnf files created before Version 4.0 of the Web DataBlade
module into current web.cnf files.

You typically use the webconfig utility to add a special Webdriver mapping
to the web.cnf file used to invoke the Web DataBlade Module Administration
Tool. You add subsequent Webdriver mappings with the Web DataBlade
Module Administration Tool; you do not add them with the webconfig
utility.
13-8 IBM Informix Web DataBlade Module Administrator’s Guide

The webconfig Utility
You can also use the webconfig utility to convert web.cnf files created before
Version 4.0 of the Web DataBlade module into current web.cnf files and
Webdriver configurations. In versions of the Web DataBlade module earlier
than 4.0, the web.cnf file contained definitions for all Webdriver variables.
The web.cnf file in Version 4.0 and later of the Web DataBlade module
contains only the Webdriver variables needed to connect to the database; all
other Webdriver variables are stored in the database in Webdriver configura-
tions. The webconfig utility can migrate the information from old web.cnf
files to new web.cnf files and Webdriver configurations.

The webconfig utility is located in the directory INFORMIXDIR/extend/
web.version/utils, where INFORMIXDIR refers to the main Informix directory
and version refers to the current version of the Web DataBlade module
installed on your computer.

For detailed information on Webdriver mappings, Webdriver configurations,
Webdriver variables, and the web.cnf file, refer to Chapter 3, “Configuring
Webdriver.”

Usage
You must set the MI_WEBCONFIG environment variable to the full pathname
of the web.cnf file before you run the webconfig utility. For example, if the
web.cnf file is located in the /local1/webserver directory, then the following
UNIX C shell command sets the MI_WEBCONFIG variable:

setenv MI_WEBCONFIG /local1/webserver/web.cnf

You must execute the webconfig utility as the user who starts the Web server
processes. Similarly, the owner of the web.cnf file should be the user who
starts the Web server processes. If you choose to run the Web server processes
as the user nobody, the root user should run the webconfig utility.

You must restart the Web server after you run the webconfig utility or update
the web.cnf file manually. The Web server reads the web.cnf file only once
and then caches the information. Therefore, if you have updated the web.cnf
file, either by running the webconfig utility or by editing the file manually,
you must restart the Web server so it will reread the file.
Web DataBlade Module Utilities 13-9

The webconfig Utility
You can use the following options with the webconfig utility.

Option Description

-addmap Adds a new Webdriver mapping to the web.cnf file

Typically, you use this option only to add a special
Webdriver mapping that is used to invoke the Web
DataBlade Module Administration Tool.

-convert Converts a web.cnf file created before Version 4.0 of the
Web DataBlade module into a current web.cnf file

It also creates a new Webdriver configuration that will
contain the Webdriver variables defined in the old web.cnf
file.

-secure Enables security for the Web DataBlade Module Adminis-
tration Tool by adding the config_password and
config_user Global variables to the web.cnf file

-p <mapping_name> Specifies the name of the new Webdriver mapping

Typically, you use this option only to add the Webdriver
mapping that is used to invoke the Web DataBlade Module
Administration Tool. The full name of this special
Webdriver mapping should be /dbname/admin, where
dbname is the name of the database for which you are
adding the Webdriver mapping.

-n <config_name> Specifies the name of the Webdriver configuration that the
new Webdriver mapping will use

If you are adding the special Webdriver mapping that is
used to invoke the Web DataBlade Module Administration
Tool, you should specify -n admin for this option.

When you use this option in conjunction with the -convert
option, config_name refers to the name of the new
Webdriver configuration that is created to contain the
Webdriver variables that were specified in the old web.cnf
file.

-d <database> Specifies the name of the database for which you are
adding a new Webdriver mapping

 (1 of 2)
13-10 IBM Informix Web DataBlade Module Administrator’s Guide

The webconfig Utility
-u <user> Specifies the user that will be used for all connections to the
database with the new Webdriver mapping.

The webconfig utility prompts you for the user’s
password. The utility encrypts the password before it adds
it to the web.cnf file.

-s <server_name> Specifies the name of an Informix database server that the
new Webdriver mapping will use, if different from the
Informix server specified by the INFORMIXSERVER
environment variable in the Setvar section of the web.cnf
file

-f <old_web.cnf_file> Specifies the full pathname of the web.cnf file created
before Version 4.0 of the Web DataBlade module

Always use this option in conjunction with the -convert
option to convert old web.cnf files into new web.cnf files.

-verify Checks the web.cnf file

If you specify the -verify option with the -p
<mapping_name> option, only the specified Webdriver
mapping is checked. If you specify the -verify option on its
own, all Webdriver mappings are checked.

The -verify option checks whether:

■ The syntax of the Webdriver mapping in the web.cnf file
is correct.

■ A connection to the database can be made.

■ The WebConfigs system table exists in the database and
that it contains an entry for the appropriate Webdriver
configuration.

-o <output_file> Writes the output to the file called output_file

Use the -o option together with the -addmap option to
create a temporary file with a Map entry when you are
unable to write directly to the web.cnf file due to lack of
necessary permissions.

-i <input_file> Copies the contents of the input_file file to the web.cnf file

You typically use the -i option to update the web.cnf file as
the owner of the web.cnf file after another user has used
the -o option to create a temporary file with a Map entry.

Option Description

 (2 of 2)
Web DataBlade Module Utilities 13-11

The webconfig Utility
The following section provides examples of using the options described in
the preceding table.

Examples
The following example shows how to add the special Webdriver mapping
that invokes the Web DataBlade Module Administration Tool for the hr_db
database:

webconfig -addmap -p /hr_db/admin -n admin -d hr_db -u hr_user

The webconfig utility prompts you for the password of the hr_user user.

The following example shows how to convert the web.cnf file created before
Version 4.0 of the Web DataBlade module and currently located in the
/oldfiles directory into a new web.cnf file. The utility also creates a new
Webdriver configuration called new_config that contains the Webdriver
variables originally defined in the old web.cnf file. It also creates a new
Webdriver mapping called /newmap.

webconfig -convert -p /newmap -n new_config -f /oldfiles/web.cnf

This example does not specify the options -d or -u because the old web.cnf
file contains the name of the database and the name of the user with which
the connection to the database should be made.

The following example shows how to check the syntax of the /newmap
Webdriver mapping in the web.cnf file, whether a connection to the database
defined for the Webdriver mapping can be made, and whether the Webdriver
configuration defined for the Webdriver mapping exists in the WebConfigs
table:

webconfig -verify -p /newmap
13-12 IBM Informix Web DataBlade Module Administrator’s Guide

The webpwcrypt Utility
The webpwcrypt Utility
The webpwcrypt utility encrypts a user’s password.

When you create a new Webdriver mapping with the Web DataBlade Module
Administration Tool, you specify the name of a database and the user with
which the connection to the database is made. The Web DataBlade Module
Administration Tool then writes the name of the database and the user’s
name to the web.cnf file, as well as the user’s encrypted password. The Web
DataBlade Module Administration Tool automatically encrypts the
password using its own encryption key.

If, however, you want to use your own encryption key, you must use the
webpwcrypt utility to create the encrypted password and update the
web.cnf file manually.

The webpwcrypt utility is located in the directory INFORMIXDIR/extend/
web.version/utils, where INFORMIXDIR refers to the main Informix directory
and version refers to the current version of the Web DataBlade module
installed on your computer.

Usage
To use the webpwcrypt utility, execute the following command at the
operating system prompt:

webpwcrypt database user key

The arguments are described in the following table.

The utility prompts you twice for the user’s password and returns it in
encrypted form.

Argument Description

database Name of the database being accessed

user Name of the user accessing the database

key User-supplied key used in the encryption process (can be any string)
Web DataBlade Module Utilities 13-13

The websetup Utility
Example
The following example shows how to run the webpwcrypt utility to encrypt
the password of the webuser user using the user-supplied key webkey for the
webdb database:

webpwcrypt webdb webuser webkey

The utility prompts you for the password of the webuser user. In the
example, the password is webuserpassword:

Enter password for user "webuser": <enter webuserpassword>
Enter password again: <re-enter webuserpassword>

The webpwcrypt utility returns:

password c47c6e1c91d32affd138212b24277f85
password_key webkey

The websetup Utility
The websetup utility configures the Web DataBlade module for your
database server.

You execute the websetup utility once to configure your Web server to use
the Web DataBlade module and once for each database that uses the Web
DataBlade module.

The websetup utility asks you questions such as whether you want to
configure database components, Web components, or both types of compo-
nents. The websetup utility configures the Web DataBlade module for your
database based on your answers.
13-14 IBM Informix Web DataBlade Module Administrator’s Guide

The websetup Utility
The websetup utility defines two types of components as follows:

■ Database components. If you choose to configure database compo-
nents, the websetup utility installs the Web DataBlade Module
Administration Tool and APB in your database and updates the
web.cnf file with the relevant information.

■ Web components. If you choose to configure Web components, the
websetup utility creates the web.cnf file, moves it to its permanent
location, and updates it with the relevant information. If you are
going to use the NSAPI Webdriver, the websetup utility updates the
Netscape obj.conf file with Informix-specific information.

Although you can configure the two types of components separately,
Informix recommends that you configure both at the same time in the same
websetup session.

The websetup utility is located in the directory INFORMIXDIR/extend/
web.version/install, where INFORMIXDIR refers to the main Informix
directory and version refers to the current version of the Web DataBlade
module installed on your computer.

Usage
To use the websetup utility, execute the following command at the operating
system prompt:

websetup

If the same user owns both the Web server and the database, run the
websetup utility as that user.

If different users own the Web server and database, run the websetup utility
as the root user. The websetup utility will then have full permission to
execute its various tasks as the appropriate user: the owner of the Web server
or the owner of the database.

If, however, you are unable to become the root user on your computer, you
must run the websetup utility twice: first as the Web server owner to
configure the Web server components and second as the database owner to
configure the database components.
Web DataBlade Module Utilities 13-15

A
Appendix
Web DataBlade Module
System Tables
This appendix describes the following Web DataBlade module
system tables that are created when you register the DataBlade
module in your database:

■ WebTags

■ WebUdrs

This appendix also describes the following Web DataBlade
Module Administration Tool system tables that are created
when you install the tool in your database:

■ WebConfigs

■ WebCMPages

■ WebCMImages

■ WebEnvVariables

The AppPage Builder (APB) system tables are described in the
IBM Informix Web DataBlade Module Application Developer’s Guide.

WebTags
The WebTags system table stores both system and user-defined
dynamic tag definitions. You add and update user-defined
dynamic tags with AppPage Builder (APB). Once you add a new
tag to the WebTags system table, you can invoke the tag in any
AppPage.

The WebTags system table is created when you register the Web
DataBlade module in your database.

WebUdrs
For detailed information on user-defined dynamic tags, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

The following table describes the columns of the WebTags system table.

WebUdrs
The WebUdrs system table stores information about UDR tags.

You add and update UDR tags with AppPage Builder (APB).

The WebUdrs system table is created when you register the Web DataBlade
module in your database.

For detailed information on how to use UDR tags in an AppPage, refer to the
IBM Informix Web DataBlade Module Application Developer’s Guide.

Column Name Data Type Description

ID VARCHAR(40)
NOT NULL

Unique identifier for the dynamic tag

parameters VARCHAR(250) Ampersand-separated list of parameters to the dynamic tag

class VARCHAR(40) Class of dynamic tag

For example, you can have beginning, expert, or any other class
name. System dynamic tags have the class name system, and cannot
be modified in APB. The default class is user.

description VARCHAR(250) Description of the dynamic tag

content HTML NOT
NULL

Body of the dynamic tag
A-2 IBM Informix Web DataBlade Module Administrator’s Guide

WebUdrs
The following table describes the columns of the WebUdrs system table.

Column Name Data Type Description

ID VARCHAR(40) Unique identifier of the routine

Specify this identifier when you invoke the routine in an AppPage
with the tag <?udrname...>.

The value in this column does not have to match the corresponding
value in the sysprocedures system table.

parameters VARCHAR(250) Ampersand-separated list of parameters to the routine

Assign a default value to a parameter by specifying the parameter
and its value as a name/value pair, for example: param1=value1.

A parameter that does not need a default value is specified by the
parameter followed by an equal sign (=) with no value following, for
example: param=.

class VARCHAR(40) Class of the routine

For example, you can specify beginning, expert, or any other class
name.

If you specify the class name system, you cannot use AppPage
Builder to delete the routine from the WebUdrs system table.

description VARCHAR(250) Description of the routine

procid INTEGER Unique identifier of the routine as specified in the procid column of
the sysprocedures system table

The value in the procid column of the WebUdrs system table must
exactly match the corresponding value in the procid column in the
sysprocedures system table for the specified routine.

 (1 of 2)
Web DataBlade Module System Tables A-3

WebConfigs
The primary key of the WebUdrs system table is the id column.

WebConfigs
The WebConfigs system table is part of the Web DataBlade Module Admin-
istration Tool schema. It stores the Webdriver configurations, along with the
Webdriver variables defined for each configuration, that exist in the database.

The table has one row for each Webdriver variable in each Webdriver config-
uration. Therefore, the primary key of the table is composed of two columns:
the Webdriver configuration column and the Webdriver variable column.

The WebConfigs system table is created when you install the Web DataBlade
Module Administration Tool in your database.

For detailed information on Webdriver configurations, Webdriver variables,
and the Web DataBlade Module Administration Tool, refer to Chapter 3,
“Configuring Webdriver.”

procname VARCHAR(128) Unique name of the routine as specified in the procname column of
the sysprocedures system table

The value in the procname column of the WebUdrs system table
must exactly match the corresponding value in the procname
column in the sysprocedures system table for the specified routine.

numargs INTEGER Number of arguments of the routine

The value in the numargs column of the WebUdrs system table
must exactly match the corresponding value in the numargs column
in the sysprocedures system table for the specified routine.

paramtypes LVARCHAR Comma-delimited string that specifies the data type of each
argument

The number of delimited data types must match the number of
arguments specified by the numargs column.

An example is html,html,integer

Column Name Data Type Description

 (2 of 2)
A-4 IBM Informix Web DataBlade Module Administrator’s Guide

WebConfigs
The following table describes the columns of the WebConfigs system table.

The primary key of the WebConfigs system table, defined by the constraint
called pk_webconfigs, includes two columns: config_name and
variable_name.

Column Name Data Type Description

config_name VARCHAR(80)
NOT NULL

The name of the Webdriver configuration

Webdriver configurations map to virtual paths on the Web server.
The web.cnf file defines the mappings between the Web server
virtual paths and the Webdriver configurations stored in this system
table.

variable_name VARCHAR(80)
NOT NULL

A Webdriver variable that makes up the Webdriver configuration
specified by the config_name column

The value of this column must also be a value of the variable_name
column of the WebEnvVariables system table.

overwrite CHAR(1) NOT
NULL

Specifies whether the Webdriver variable can be overwritten in the
URL used to call an AppPage

This column can be set to Y or N.

value VARCHAR(255) The value of the Webdriver variable

This value must be one of the values listed in the possible_values
column of the WebEnvVariables system table.

disable CHAR(1) Specifies whether the Webdriver variable is enabled or disabled

This column can be set to Y or N.

time_stamp DATETIME
YEAR TO
SECOND

Indicates when the value of the Webdriver variable was last updated

You can use this column to see when the description of a Webdriver
variable was last updated.
Web DataBlade Module System Tables A-5

WebCMPages
WebCMPages
The WebCMPages system table is part of the Web DataBlade Module
Administration Tool schema. It stores all the AppPages that make up the Web
DataBlade Module Administration Tool.

The WebCMPages system table is created when you install the Web
DataBlade Module Administration Tool in your database.

For detailed information on the Web DataBlade Module Administration Tool,
refer to Chapter 3.

The following table describes the columns of the WebCMPages system table.

The primary key of the WebCMPages system table, defined by the constraint
called pk_webcmpages, is the ID column.

Column Name Data Type Description

ID VARCHAR(40)
NOT NULL

Unique ID of the AppPage

The Webdriver variable MIval is set to this value in the URL to call
the AppPage.

description VARCHAR(40)
NOT NULL

Description of the AppPage

read_level INTEGER Specifies the authorization level of the AppPage

Used with AppPage-level security.

object HTML The AppPage itself

time_stamp DATETIME
YEAR TO
SECOND

Indicates when the AppPage was last updated
A-6 IBM Informix Web DataBlade Module Administrator’s Guide

WebCMImages
WebCMImages
The WebCMImages system table is part of the Web DataBlade Module
Administration Tool schema. It stores the images used in the Web DataBlade
Module Administration Tool.

The WebCMImages system table is created when you install the Web
DataBlade Module Administration Tool in your database.

For detailed information on the Web DataBlade Module Administration Tool,
refer to Chapter 3, “Configuring Webdriver.”

The following table describes the columns of the WebCMImages system
table.

The primary key of the WebCMPages system table is the ID column.

WebEnvVariables
The WebEnvVariables system table is part of the Web DataBlade Module
Administration Tool schema. It stores all the Webdriver variables provided
by the Web DataBlade module that can be included in a Webdriver
configuration.

The WebEnvVariables system table is created as part of the installation of the
Web DataBlade Module Administration Tool in your database.

Column Name Data Type Description

ID VARCHAR(40)
NOT NULL

Unique ID of the image

description VARCHAR(250) Description of the image

height INTEGER Height of the image

width INTEGER Width of the image

object BLOB The image itself
Web DataBlade Module System Tables A-7

WebEnvVariables
For detailed information on Webdriver configurations, Webdriver variables,
and the Web DataBlade Module Administration Tool, refer to Chapter 3,
“Configuring Webdriver.”

The following table describes the columns of the WebEnvVariables system
table.

The primary key of the WebEnvVariables system table, defined by the
pk_webenvvariables constraint, is the variable_name column.

Column Name Data Type Description

variable_name VARCHAR(80)
NOT NULL

The name of the Webdriver variable

Examples of Webdriver variables include cache_page and
redirect_url.

data_type CHAR(1) NOT
NULL

The data type of the Webdriver variable

This column can be set to character (C), numeric (N), or time (T).

If set to C, the value of the Webdriver variable must be a character
string. If set to N, the value of the variable must be numeric. If set
to T, the value of the variable must be a time unit in seconds (s or
S), hours (h or H), or days (d or D).

default_value VARCHAR(255) The default value of the Webdriver variable

When you add a Webdriver variable to a Webdriver configuration,
this is the default value of the variable.

possible_values VARCHAR(255) The comma-separated list of possible values of a Webdriver
variable

When you add a Webdriver variable to a Webdriver configuration,
the Web DataBlade Module Administration Tool uses this column
to validate the value you assign the variable.

time_stamp DATETIME
YEAR TO
SECOND

Indicates when the definition of the Webdriver variable was last
updated
A-8 IBM Informix Web DataBlade Module Administrator’s Guide

B
Appendix
Web DataBlade Module
Variables
This appendix provides the full list of Webdriver and WebEx-
plode() variables. The appendix is organized into the following
sections:

■ “Webdriver Variables Stored in the web.cnf File” on
page B-2

■ “Webdriver Variables Stored in the Database” on
page B-5

■ “WebExplode() Variables” on page B-27

Use the Web DataBlade Module Administration Tool to set the
Webdriver and WebExplode() variables that are stored in the
database as part of your Webdriver configuration.

Many Webdriver variable names changed in Version 4.0 of the
Web DataBlade module. This appendix also provides, where
applicable, the old name of the Webdriver variable.

For detailed information about using the Web DataBlade
Module Administration Tool, refer to Chapter 3, “Configuring
Webdriver.”

Webdriver Variables Stored in the web.cnf File
Webdriver Variables Stored in the web.cnf File
This section describes the Webdriver variables that are stored in the Global,
Setvar, and Map sections of the web.cnf file.

The Global Section of the web.cnf File
The following table lists all the variables you can set in the Global section of
the web.cnf file

Variable Mandatory? Description

dbconnmax No Specifies the maximum number of connections to the database. The
default value is 16

anchorvar Yes Specifies the name of the anchor variable used when an AppPage calls
another AppPage

This variable is mandatory. For the NSAPI and Apache Webdrivers,
anchorvar should always be set to WEB_HOME, with a trailing forward
slash (/). For the ISAPI Webdriver, the variable should be set to
WEB_HOME/drvisapi.dll. For the CGI Webdriver, the variable should
be set to WEB_HOME/webdriver.

Since anchorvar is always set to WEB_HOME, you can always use
WEB_HOME as an anchor variable in any AppPage.

driverdir No Specifies the directory that Webdriver uses to internally coordinate its
interaction with the Web server

The default value of this variable is /tmp.

This variable is only used by the Apache and CGI implementations of
Webdriver.

debug_file No Specifies the full pathname of the log file to which Webdriver
messages are written

debug_level No Enables Webdriver tracing to the log file specified by the debug_file
variable

You can override the value of the debug_level variable in the Global
section of the web.cnf file by setting it in your Webdriver configu-
ration using the Web DataBlade Module Administration Tool.

 (1 of 2)
B-2 IBM Informix Web DataBlade Module Administrator’s Guide

The Global Section of the web.cnf File
maxcharsize No When set to a value greater than 1, each character sent to the WebEx-
plode() function is URL-encoded.

If this variable is not set, Webdriver URL-encodes only special
characters (such as &) before sending it to the WebExplode() function.

It is recommended that you set this variable to a value greater than 1
only if you are using a multibyte character set. This is because you
might see a degradation in performance if Webdriver is forced to
URL-encode every character before sending it to the WebExplode()
function.

You can override the value of this variable for your Webdriver
mapping by adding it as a Webdriver variable to the appropriate
Webdriver configuration.

config_user No The name of the user who is allowed to use the Web DataBlade
Module Administration Tool

Add this variable to the web.cnf file only with the webconfig utility.

config_password No The password of the config_user user

Add this variable to the web.cnf file only with the webconfig utility.

dbconntimeout No Sets the maximum time (in seconds) that a Webdriver connection to
the database is allowed to be idle

Webdriver automatically closes any database connections that have
been idle for longer than the value of dbconntimeout.

The following sample shows how to set dbconntimeout to 120
seconds:

<GLOBAL>
debug_file /tmp/driver.log
debug_level -1
dbconntimeout 120
dbconnmax 128
anchorvar WEB_HOME/
</GLOBAL>

If no database request is made on a connection for 2 minutes, then
Webdriver closes the connection.

Variable Mandatory? Description

 (2 of 2)
Web DataBlade Module Variables B-3

The Setvar Section of the web.cnf File
The Setvar Section of the web.cnf File
You set Informix environment variables in the Setvar section of the web.cnf
file.

The following Informix environment variables are discussed in the
IBM Informix Web DataBlade Module Administrator’s Guide:

■ INFORMIXSERVER

■ INFORMIXDIR

For a complete list of the Informix environment variables you can set in the
Setvar section of the web.cnf file, refer to IBM Informix Guide to SQL: Reference.

Important: Do not set the Informix environment variables DBDATE and
DBCENTURY in your web.cnf file. Their settings will be ignored. Instead, set them
in your environment before you register the DataBlade module in your database.

The Map Section of the web.cnf File
The following table lists all the variables that can be included in the Map
section of the web.cnf file.

Map Variable Mandatory? Description

database Yes The name of the database to which Webdriver connects when a URL
prefix specifies this Webdriver mapping

user Yes The name of the user who connects to the database specified by the
database variable

password Yes The encrypted password of the user specified by the user variable

password_key Yes The key that Webdriver uses to decrypt the password specified by the
password variable

 (1 of 2)
B-4 IBM Informix Web DataBlade Module Administrator’s Guide

Webdriver Variables Stored in the Database
Webdriver Variables Stored in the Database
This section describes the Webdriver variables that are stored in the database
as part of a Webdriver configuration. These include both schema-related
Webdriver variables and feature-related Webdriver variables.

Managing Webdriver Connections to the Database
To modify the behavior of Webdriver connections to the database for specific
Webdriver configurations, use the Web DataBlade Module Administration
Tool to set the Webdriver variables described in the following table.

server No The Informix database server to use when making the connection to
the database

If this variable is not set, the connection is made using the INFOR-
MIXSERVER database server.

config_name Yes The name of the Webdriver configuration to use

The Webdriver configuration is stored in the WebConfigs system
table in the database specified by the database variable.

config_security No When set to ON, security is enabled for this Webdriver mapping, which
means that only the user specified by the config_user variable in the
Global section of the web.cnf file can use this Webdriver mapping.

The config_security variable should appear only in Webdriver
mappings used to invoke the Web DataBlade Module Administration
Tool.

Map Variable Mandatory? Description

 (2 of 2)
Web DataBlade Module Variables B-5

Managing Webdriver Connections to the Database
Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

connection_life MI_WEBRECONNECT No Specifies the life of a connection, or in
other words, the maximum number of
requests (an integer value) that
Webdriver makes to the database before
the connection is shut down and
reestablished

The default value is 100.

You should set this Webdriver variable
to another value only under the
guidance of Technical Support.

connection_wait MI_WEBDBCONNWAIT No Specifies the amount of time, in milli-
seconds, that Webdriver yields and
waits to establish a connection if
Webdriver was unable to make the
initial connection due to the maximum
number of database connections having
already been reached

The maximum number of Webdriver
connections to the database server is
specified by the dbconnmax Webdriver
variable in the Global section of the
web.cnf file.

 (1 of 4)
B-6 IBM Informix Web DataBlade Module Administrator’s Guide

Managing Webdriver Connections to the Database
connect_as_user MI_USER_REMOTE No When set to ON, specifies that Webdriver
should establish the connection to the
database as the user specified by the
REMOTE_USER Web browser variable
and not as the user specified in the Map
section of the web.cnf file

By default, if this Webdriver variable is
not set, Webdriver always establishes
connections to the database as the user
specified by the user Webdriver variable
in the appropriate Map section of the
web.cnf file.

This Webdriver variable applies only to
the NSAPI, ISAPI, and Apache imple-
mentation of Webdriver. In addition,
you can only use this Webdriver variable
if you have enabled user authentication
for the corresponding Web server.

connect_user_max MI_USER_DBCONNMAX No Specifies the maximum number of
connections that Webdriver establishes
as the user specified by the
REMOTE_USER Web browser variable

The default value of this Webdriver
variable is 1.

The connect_user_max Webdriver
variable can only be set in conjunction
with the connect_as_user Webdriver
variable.

This Webdriver variable applies only to
the NSAPI, ISAPI, and Apache imple-
mentation of Webdriver. In addition,
you can only use this Webdriver variable
if you have enabled user authentication
for the corresponding Web server.

query_timeout MI_WEBQRYTIMEOUT No Specifies the maximum number of
seconds that Webdriver allows a query
to run before Webdriver interrupts the
query

Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

 (2 of 4)
Web DataBlade Module Variables B-7

Managing Webdriver Connections to the Database
keepalive MI_WEBKEEPALIVE No Specifies the interval in seconds at which
Webdriver checks the Web browser
connection

If the browser is no longer connected
because a STOP or CANCEL signal has
been sent by the browser, the running
query is interrupted, and the Web server
is freed to execute the next query
request.

This variable applies only to the NSAPI,
ISAPI, and Apache implementation of
Webdriver.

init_sql MI_WEBINITIALSQL No Specifies that Webdriver should send
initial SQL statements to the database
server when Webdriver makes a
connection to the database

Set this Webdriver variable to one or
more SQL statements, separated by
semicolons and terminated by a carriage
return. Do not include quotes.

For example, if you want to set the
isolation level of the connection to the
database to dirty read, set the init_sql
Webdriver variable to the value SET
ISOLATION TO DIRTY READ;

Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

 (3 of 4)
B-8 IBM Informix Web DataBlade Module Administrator’s Guide

Managing Webdriver Connections to the Database
max_html_size MI_WEBMAXHTMLSIZE No Specifies the largest AppPage, in bytes,
that Webdriver sends to the browser.
AppPages larger than this size are not
sent to the browser

The default value for this Webdriver
variable is 128 KB. The maximum value
is 232 KB.

maxcharsize New in Version 4.0 No When set to a value greater than 1, each
character sent to the WebExplode()
function is URL-encoded.

If this variable is not set, Webdriver
URL-encodes only special characters
(such as &) before sending it to the
WebExplode() function.

It is recommended that you set this
variable to a value greater than 1 only if
you are using a multibyte character set.
This is because you might see a degra-
dation in performance if Webdriver is
forced to URL-encode every character
before sending it to the WebExplode()
function.

You can specify the maxcharsize
variable in the Global section of the
web.cnf file if you want to specify
globally that characters should be URL-
encoded. By adding the variable to a
Webdriver configuration, however, you
can control this behavior for a single
Webdriver configuration and not for the
whole database server.

Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

 (4 of 4)
Web DataBlade Module Variables B-9

Using Server-Side Includes in AppPages with the Apache or NSAPI Webdriver
Using Server-Side Includes in AppPages with the Apache or
NSAPI Webdriver
To use server-side includes in your AppPages with the DYNAMIC option to the
PARSE-HTML variable-processing function, you must use the Web DataBlade
Module Administration Tool to set the Webdriver variable described in the
following table.

Webdriver Variable Mandatory? Description

parse_html_directory Yes Specifies the full pathname of the
directory on the Web server computer
where Webdriver temporarily stores the
AppPage to be subsequently read by the
Web server

Webdriver does not create this directory,
so be sure the directory exists before you
use server-side includes in an AppPage.
B-10 IBM Informix Web DataBlade Module Administrator’s Guide

Resetting User Name/Password Combinations
Resetting User Name/Password Combinations
To reset user name/password combinations so users can change their
passwords within a Web application, use the Web DataBlade Module Admin-
istration Tool to set the Webdriver variable listed in the following table.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

auth_cache MI_WEBAUTHCACHE Yes Allows you to reset user name and
password combinations so users can
change their passwords within an
application

You can set the auth_cache Webdriver
variable to three values: on, off, and
check. The default value is on.

If you set the variable to on, Webdriver
always uses the password value in the
Web server cache. If you set the variable
to off, Webdriver always uses the
password value in the database. If you
set the variable to check, if the value in
the Web server cache is different from
the Web browser value, Webdriver
updates the Web server cache with the
password value in the database.
Web DataBlade Module Variables B-11

Enabling NSAPI, ISAPI, and Apache Security
Enabling NSAPI, ISAPI, and Apache Security
To use the security features of the Netscape Web server, Microsoft Internet
Information Server, or Apache Web Server, use the Web DataBlade Module
Administration Tool to set the Webdriver variables listed in the following
table.

Variable Name
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

MIusertable Same Yes Name of the table that contains user
access information

MIusername Same Yes Name of the VARCHAR column in the
user access table (MIusertable) that
contains the name of the database user

MIuserpasswd Same Yes Name of the VARCHAR column of the
user access table (MIusertable) that
contains the password of the database
user

MIuserlevel Same Yes Name of the INTEGER column of the
user access table (MIusertable) that
contains the access level of the
database user

MIpagelevel Same Yes Name of the INTEGER column of the
table that stores your AppPage that
contains the access level of the
AppPage

MIusergroup Same No Name of the INTEGER column of the
user access table (MIusertable) that
contains the group access level of the
user

iis_nt_user MI_WEBNTUSER Yes (ISAPI Webdriver only) Name of a
valid Windows NT user

 (1 of 2)
B-12 IBM Informix Web DataBlade Module Administrator’s Guide

Enabling NSAPI, ISAPI, and Apache Security
iis_nt_password MI_WEBNTPASSWORD Yes (ISAPI Webdriver only) Password of a
valid Windows NT user

redirect_url MI_WEBREDIRECT No URL to redirect users to if they do not
have access to the AppPage they
attempt to retrieve

auth_crypt_udr New in Version 4.0 No Enables password encryption when set
to ON

If password encryption is enabled,
Webdriver encrypts the password
entered by the user and compares it to
the encrypted password in the
MIusertable table. If they match, then
the user is authenticated.

If set to OFF (default value), then
Webdriver does not encrypt the
password.

Variable Name
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

 (2 of 2)
Web DataBlade Module Variables B-13

Enabling Basic AppPage-Level Security
Enabling Basic AppPage-Level Security
To configure AppPage-level authorization, use the Web DataBlade Module
Administration Tool to set the Webdriver variables listed in the following
table.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

MIpagelevel Same Yes Specifies the name of the
INTEGER column of the table
that stores AppPages that
contains the access level of the
AppPage

MI_WEBACCESSLEVEL Same Yes Specifies the access level of all
users for a particular
Webdriver configuration

redirect_url MI_WEBREDIRECT No Specifies the URL to redirect
users to if they do not have
access to the AppPage they
attempt to retrieve

error_page MI_WEBERRORPAGE No Set to the value of the AppPage
that contains error handling
routines
B-14 IBM Informix Web DataBlade Module Administrator’s Guide

Customizing the Query to Retrieve Large Objects
Customizing the Query to Retrieve Large Objects
To customize the query that Webdriver uses to retrieve large objects, add the
Webdriver variables described in the following table to your Webdriver
configuration using the Web DataBlade Module Administration Tool.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

lo_query_string MI_WEBLOQUERY Yes Contains the SQL statement that is
used to query the database for a
large object

Use standard C language variable
syntax ‘%s’ to specify a parameter
string.

lo_query_params MI_WEBLOPARAMS Yes Specifies the variables that are
substituted for the parameters in the
SQL statement specified by the
lo_query_string variable

You must use the variable name
MIvalObj to specify the name of the
large object you want to retrieve.

lo_error_zerorows MI_WEBLOZEROROWS No Specifies the integer error number
that Webdriver should return if the
SQL statement that Webdriver uses
to retrieve large objects, specified by
the lo_query_string variable,
returned zero rows

lo_error_sql MI_WEBLOSQLERROR No Specifies the integer error number
that Webdriver should return if an
SQL error occurs when Webdriver
retrieves a large object using the SQL
statement specified by the
lo_query_string variable.
Web DataBlade Module Variables B-15

Enabling AppPage Caching
Enabling AppPage Caching
To set AppPage caching for your Webdriver configuration, use the Web
DataBlade Module Administration Tool to set the Webdriver variables listed
in the following table.

Webdriver Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Description

cache_page MI_WEBCACHEPAGE Yes Specifies whether AppPage
caching is enabled or disabled

Set to ON to enable AppPage
caching and OFF to disable
AppPage caching.

The default value is OFF.

cache_directory MI_WEBCACHEDIR Yes Specifies the full pathname of
the directory on the Web server
computer in which cached
AppPages and large objects are
placed

If this variable is not set, neither
AppPages nor large objects are
cached.

cache_page_buckets New in Version 4.0 No Specifies the number of subdi-
rectories per AppPage created
under the directory specified
by cache_directory

The default is one subdirectory
per AppPage.

Set this variable only if you
intend on caching AppPages
that might have over 1000
different versions.

 (1 of 4)
B-16 IBM Informix Web DataBlade Module Administrator’s Guide

Enabling AppPage Caching
cache_page_life MI_WEBPAGELIFE No Specifies the length of time
after which an AppPage is
refreshed from the database

Set cache_page_life in units of
seconds (s or S), hours (h or H),
or days (d or D). For example,
the value 5d indicates five days.

cache_admin MI_WEBCACHEADMIN No Specifies the name of the Cache
Administration AppPage

The Cache Administration
AppPage is not stored in the
database, but is an internal
AppPage managed by
Webdriver.

When MIval is set to this value,
Webdriver invokes this
AppPage so you can add,
delete, purge, or view cache
entries in the cache_directory
directory.

The default value is
cacheadmin.

Webdriver Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Description

 (2 of 4)
Web DataBlade Module Variables B-17

Enabling AppPage Caching
cache_admin_password MI_WEBCACHEPASSWORD No Specifies that cache adminis-
tration requests are processed
only if the password entered in
the Cache Administration
AppPage matches this value

cache_page_timestamp New in Version 4.0 No Specifies that Webdriver, when
invoking an AppPage for
which AppPage caching has
been enabled, adds time-stamp
information at the bottom of
the page

The time stamp is enclosed in
an HTML comment and thus is
only seen if a user views the
HTML source of the AppPage
in their browser.

The default value is OFF. To
enable this feature, set this
Webdriver variable to ON.

Webdriver Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Description

 (3 of 4)
B-18 IBM Informix Web DataBlade Module Administrator’s Guide

Enabling AppPage Caching
cache_page_debug New in Version 4.0 No Specifies that Webdriver
invokes AppPages that contain
deferred sections (delimited
with the MIDEFERRED tag)
without returning an error,
even if AppPage caching has
not been enabled

This Webdriver variable is used
to debug problems with partial
AppPage caching.

The cache_page_debug
Webdriver variable can be set
to two values: show_defer and
execute_defer.

When set to show_defer and
you invoke an AppPage with a
deferred section, Webdriver
returns the deferred section in
its original form. If the
Webdriver variable is set to
execute_defer, Webdriver
executes the deferred section
when you invoke the AppPage.

Webdriver Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Description

 (4 of 4)
Web DataBlade Module Variables B-19

Enabling Large Object Caching
Enabling Large Object Caching
To set large object caching, use the Web DataBlade Module Administration
Tool to set the Webdriver variables listed in the following table.

Enabling Webdriver Tracing
The following table describes each variable for enabling Webdriver tracing.

Webdriver Variable
Name of Variable in
Version 3.3 and Previous Mandatory? Description

cache_directory MI_WEBCACHEDIR Yes Specifies the directory on the Web server
computer in which cached large objects are
placed

If not set, large objects are not cached.

cache_buckets MI_WEBCACHESUB No Specifies the number of subdirectories per
database created under the directory
specified by cache_directory

The default is one subdirectory per
database.

cache_maxsize MI_WEBCACHEMAXLO No Specifies the maximum size in bytes of
large objects to be cached

The default is 64 KB.

Variable
Name of Variable in
Versions 3.3 and Previous Description

debug_level MI_WEBDRVLEVEL Enables Webdriver tracing to the log file specified by the
debug_file variable

debug_file New in Version 4.0 Specifies the full pathname of the log file to which Webdriver
messages are written
B-20 IBM Informix Web DataBlade Module Administrator’s Guide

Enabling Use of Session Variables in AppPages
Enabling Use of Session Variables in AppPages
To enable the use of session variables in your AppPages, use the Web
DataBlade Module Administration Tool to set the following Webdriver
variables.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

session MI_WEBSESSION Yes This variable allows you to select the
method for binding a session ID to the
browser. This variable can have values
of url, cookie, or auto. If set to url,
then the session ID is bound to any
dynamic anchor variable contained
within the page. Typically, this variable
would be $WEB_HOME. If set to
cookie, the session ID is tracked with
a variable sent back to the browser as a
cookie. If you select auto, Webdriver
automatically determines which
method is best to use.

session_home MI_WEBSESSIONHOME Yes, if using
auto or url

This variable identifies which configu-
ration file variable is used by your
application to anchor HREF tags. For
example, if your application uses
WEB_HOME as its anchor,
WEB_HOME is the value set for this
variable. If multiple values are
required for this variable, they should
be separated by commas.

 (1 of 2)
Web DataBlade Module Variables B-21

Enabling Use of Session Variables in AppPages
session_location MI_WEBSESSIONLOC Yes This variable describes how the
persistent state is handled. If the
session code is going to run within the
same process, this variable needs to
refer to the full path of the directory to
create session state files. This directory
must be created and owned by the
same user that owns the Web server. If
the code is going to run as a separate
process, the variable needs to refer to a
port and IP address in the form
port@ip-address.

session_buckets MI_WEBSESSIONSUB No This variable is used to define the
number of subdirectories that are
available to hash the session data if the
site is exceptionally large. It is only
required if session management is
being controlled within the same
process. The default is 100.

session_life MI_WEBSESSIONLIFE No This variable is used to define the
amount of time a session is allowed to
continue. It measures time from the last
update to the session stack (if a session
stack exists) or time from session
creation. Granularity is in seconds
(default), hours (h) or days (d) and uses
the same syntax as cache_page_life.
For more information about AppPage
caching, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

 (2 of 2)
B-22 IBM Informix Web DataBlade Module Administrator’s Guide

Handling Errors with the MI_DRIVER_ERROR Variable
Handling Errors with the MI_DRIVER_ERROR Variable
Set the following Webdriver variables with the Web DataBlade Module
Administration Tool to modify the error messages seen by the browser as
different types of errors are encountered.

Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Content

show_exceptions MI_WEBSHOWEXCEPTIONS No Set to on or off

When on, Webdriver displays the
database exception returned by the
WebExplode() function. When off,
Webdriver displays the HTTP/1.0
500 Server error message.
Default is off.

redirect_url MI_WEBREDIRECT No Set to the URL to redirect users to if
they do not have access to the
AppPage they attempt to retrieve

error_page MI_WEBERRORPAGE No Set to the value of the AppPage that
contains error handling routines
Web DataBlade Module Variables B-23

Displaying Database Errors in a Browser
Displaying Database Errors in a Browser
To display database errors in your browser, instead of the generic HTTP/1.0
500 Server error error, use the Web DataBlade Module Administration
Tool to set the following Webdriver variable for your Webdriver
configuration.

Managing Cookies
Use the Web DataBlade Module Administration Tool to set the following
Webdriver variable to specify the cookies that Webdriver recognizes.

Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Content

show_exceptions MI_WEBSHOWEXCEPTIONS No Use the Web DataBlade Module
Administration Tool to set the
show_exceptions variable to on or
off. When on, Webdriver displays
the database exception returned by
WebExplode(). When off,
Webdriver displays the HTTP/1.0
500 Server error message. Default
is off.

Variable

Name of Variable in
Versions 3.3 and
Previous Mandatory? Description

accept_cookie MI_WEBACCEPTCKI No Use the Web DataBlade Module Administration
Tool to set the accept_cookie Webdriver variable
to the name of cookies that your Web DataBlade
module application uses. All other cookies are
ignored by Webdriver. Multiple cookie names
are separated by commas.

If you do not use this variable, Webdriver
assumes all cookies in the browser are part of the
Web application.
B-24 IBM Informix Web DataBlade Module Administrator’s Guide

Uploading Client Files
Uploading Client Files
Use the Web DataBlade Module Administration Tool to set the following
Webdriver variable to upload client files.

Passing Image Map Coordinates
Set the MImap variable to enable image map coordinates to be passed to
AppPages.

Two-Pass Query Processing
Use the Web DataBlade Module Administration Tool to set the following
Webdriver variable to specify that Webdriver execute a query in two parts.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

upload_directory MI_WEBUPLOADDIR No Directory on the Web server machine in
which uploaded files are placed

Default is /tmp.

Variable Mandatory? Content

MImap Yes Set to on or off

When on, the URL is treated as an
image map, and the values are
passed as x- and y-coordinates.
Default is off.

Variable Mandatory? Description

MIqry2pass No Specifies a query to be executed in two parts

MIqry2pass selects an object and then executes a
function. Used only in a URL. Default is set to OFF.
Web DataBlade Module Variables B-25

Using RAW Mode with Webdriver
Using RAW Mode with Webdriver
To enable RAW mode, use the Web DataBlade Module Administration Tool to
set the following Webdriver variable in your Webdriver configuration.

Caching Information in the wbExtensions Table
Use the Web DataBlade Module Administration Tool to set the extensions
Webdriver variable to control whether Webdriver caches the information
contained in the wbExtensions table.

When you are developing AppPages (and possibly adding new extension
types to the wbExtensions table) you do not want Webdriver to cache this
information, but instead to retrieve it each time it is needed, in case the infor-
mation has changed.

After you deploy your application to a production environment, improve
performance by caching the information in the wbExtensions table. To
enable extension information caching, set the extensions Webdriver variable
to cache.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

raw_password MI_RAWPASSWORD Yes Password to enable RAW mode

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

extensions MI_WEBEXTENSIONS No Default setting is nocache. Set to cache to
enable caching.
B-26 IBM Informix Web DataBlade Module Administrator’s Guide

Using the New AppPage Builder or Data Director for Web
Using the New AppPage Builder or Data Director for Web
If you use the version of AppPage Builder included in Version 4.12.UC1, or
later, of the IBM Informix Web DataBlade module, or you use Data Director for
Web, to develop AppPages, you must set the schema_version Webdriver
variable to the value wb. This Webdriver variable is automatically included in
the apb2 and ddw Webdriver configurations when you install the Web
DataBlade Module Administration Tool in your database.

If you use Version 3.32 or earlier of AppPage Builder to develop AppPages,
you should not include the schema_version variable in your Webdriver
configuration.

WebExplode() Variables
This section describes the WebExplode() variables. These variables are stored
in the database as part of a Webdriver configuration.

Enabling WebExplode() Tracing
Use the Web DataBlade Module Administration Tool to set the following
variables for your Webdriver configuration to enable logging of WebEx-
plode() function trace information.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

schema_version MI_WEBSCHEMADEF No Set to wb if you are using Version 4.12.UC1
or later of the IBM Informix Web DataBlade
module or Data Director for Web.

Variable Mandatory? Content

MI_WEBEXPLEVEL Yes Enables WebExplode() function
tracing

MI_WEBEXPLOG No File to which WebExplode()
messages are written
Web DataBlade Module Variables B-27

Managing Dynamic Tags
Managing Dynamic Tags
Use the Web DataBlade Module Administration Tool to set the following
dynamic tag WebExplode() variables.

Variable Mandatory? Description

MI_WEBTAGSTABLE No Specifies the database table that the WebExplode() function
searches for the body of a dynamic tag

This variable can be set to the following two values: webTags or
wbTags. The default value if this variable is not set is webTags.

You must set the MI_WEBTAGSTABLE variable to wbTags in
your Webdriver configuration if you developed your Web appli-
cation using the APB application included in Version 4.0 or later
of the Web DataBlade module or Version 2.0 of Data Director for
Web.

MI_WEBTAGSSQL No Specifies a user-defined SELECT statement that the WebEx-
plode() function runs to retrieve the body of a dynamic tag

It is recommended that you never set the MI_WEBTAGSSQL
variable in your Webdriver configuration. The variable should
only be set for Web applications that were developed with
Version 1.1 or earlier of Data Director for Web.

The MI_WEBTAGSTABLE variable takes precedence over the
MI_WEBTAGSSQL variable. This means that if you have both
variables set in your Webdriver configuration, the WebExplode()
function searches for the dynamic tag in the table specified by the
MI_WEBTAGSTABLE variable.

MI_WEBTAGSCACHE No Specifies whether the WebExplode() function should cache
dynamic tags or not

This variable should be set to on to turn on caching or off to turn
off caching.

The default value is on.

It is recommended that you turn off dynamic tag caching when
you are developing your AppPages to ensure that you always see
the latest version of the dynamic tag and not the cached version.
When you deploy your application to a production environment,
however, you should turn on dynamic tag caching to increase the
performance of your Web application.
B-28 IBM Informix Web DataBlade Module Administrator’s Guide

Limiting Loop Processing With the MIBLOCK Tag
Limiting Loop Processing With the MIBLOCK Tag
Use the Web DataBlade Module Administration Tool to set the
MI_LOOP_MAX variable for your Webdriver configuration to set the
maximum number of loops executed when you use the FOR, FOREACH, and
WHILE attributes of the MIBLOCK AppPage tag. During loop processing, if
the maximum number of loops is reached, the WebExplode() function raises
an exception and stops loop processing.

For example, assume you have set MI_LOOP_MAX to 100 in your
Webdriver configuration and you execute the following AppPage:

<?MIBLOCK WHILE=1>
We are in an infinite loop
<?/MIBLOCK>

Although logically the previous MIBLOCK statement results in an infinite
loop, processing stops as soon as 100 loops have been executed, and you
receive an error in your AppPage.

Variable Mandatory? Content

MI_LOOP_MAX No Limits the number of loops
executed when you use the FOR,
FOREACH, and WHILE attributes
of the MIBLOCK AppPage tag
Web DataBlade Module Variables B-29

Limiting The Number Of Times an AppPage Can Call Itself Recursively
Limiting The Number Of Times an AppPage Can Call Itself
Recursively
Use the MI_WEBEXPLODE_DEPTH variable to set the maximum number
of times an AppPage can call itself recursively. You recursively call an
AppPage by explicitly executing the WebExplode() function on the AppPage
with the MISQL tag.

Use the Web DataBlade Module Administration Tool to set the
MI_WEBEXPLODE_DEPTH variable for your Webdriver configuration.

For example, assume you invoke the following AppPage called
/recurse.html, passing it the name/value pair $DEPTH=10:

<?MIVAR NAME=DEPTH>$(-,$DEPTH,1)<?/MIVAR>
<?MIVAR>DEPTH : $DEPTH<?/MIVAR>

<?MISQL SQL="select WebExplode(object, 'DEPTH=$DEPTH') from wbpages
where id = 'recurse' and path = '/' and extension = 'html'";> $1

<?/MISQL>

This AppPage calls itself recursively. If the MI_WEBEXPLODE_DEPTH
variable has not been set, then the AppPage calls itself recursively until all
database server resources have been used. If, however, you set
MI_WEBEXPLODE_DEPTH to 100, the AppPage calls itself 100 times, and
then stops.

Variable Mandatory? Content

MI_WEBEXPLODE_DEPTH No Limits the number of times an
AppPage can call itself recursively.
B-30 IBM Informix Web DataBlade Module Administrator’s Guide

C
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Ave
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
C-2 IBM Informix Web DataBlade Module Administrator’s Guide

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices C-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix ;
C-ISAM ; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack ; SystemBuilderTM; U2TM;
UniData ; UniVerse ; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
C-4 IBM Informix Web DataBlade Module Administrator’s Guide

Glossary
Glossary
anchor variable Variable in an AppPage whose value is based on the URL prefix
used to invoke the AppPage. You do not set the anchor variable
in your AppPage; rather, Webdriver automatically generates the
value. You can use anchor variables to link one or more App-
Pages in the same Web application.

WEB_HOME is the Web DataBlade module anchor variable.

Apache
Webdriver

The implementation of Webdriver that uses the Apache API to
connect to databases and execute AppPages.

See also Webdriver.

AppPage An HTML page that includes AppPage tags and functions that
dynamically execute SQL statements to query the database and
format the results.

AppPage Builder
(APB)

A development tool packaged with the Web DataBlade module
that allows you to create and update AppPages. APB is itself a
Web DataBlade module application made up of linked App-
Pages.

AppPage tags Tags that are provided with the Web DataBlade module and are
processed by the WebExplode() function. The tags identify ele-
ments of an HTML page and specify the structure and formatting
for that page.

CGI Webdriver The implementation of Webdriver that uses a CGI program to
connect to databases and execute AppPages.

See also Webdriver.

code set A set of unique bit patterns that are mapped to the characters contained in a
specific natural language, which include the alphabet, digits, punctuation,
and diacritical marks. There can be more than one code set for a language: for
example, the code sets for the English language include ASCII, ISO8895-1,
and Microsoft 1252. You specify the code set that your database server uses
when you set the GLS locale.

See also multibyte code set, Global Language Support (GLS), locale.

deployment Moving a Web application from a development environment to a production
environment.

directive An entry in a Web server’s configuration file, that identifies the steps in the
Web server’s request-response processes that handle HTTP transactions.
Examples of directives in Netscape’s obj.conf file are NameTrans and Ser-
vice.

dynamic tag An HTML tag that allows multiple AppPages to share AppPage segments.
For example, a TITLE dynamic tag might contain a standard title AppPage
segment common to all the AppPages that make up a particular Web appli-
cation. Each AppPage then uses the same TITLE dynamic tag for its title.

See also system dynamic tag, user-defined dynamic tag.

Global Language
Support (GLS)

An application environment that allows Informix application-programming
interfaces (APIs) and database servers to handle different languages, cultural
conventions, and code sets. Developers use the GLS libraries to manage all
string, currency, date, and time data types in their code. Using GLS, you can
add support for a new language, character set, and encoding by editing
resource files, without access to the original source code, and without
rebuilding the DataBlade module or client software.

INFORMIXDIR The Informix environment variable that specifies the directory in which
Informix products are installed.

INFORMIX-
SERVER

The Informix environment variable that specifies the name of the Informix
database server to which you want to connect.

ISAPI Webdriver The implementation of Webdriver that uses the Microsoft Windows NT Inter-
net Information Server API to connect to databases and execute AppPages.

See also Webdriver.
2 IBM Informix Web DataBlade Module Administrator’s Guide

large object A data object that exceeds 255 bytes in length. A large object is logically
stored in a table column but physically stored independently of the column,
because of its size. Large objects can contain non-ASCII data.

locale A set of files that define the native-language behavior of the program at run-
time. The rules are usually based on the linguistic customs of the region or
the territory. The locale can be set through an environment variable that dic-
tates output formats for numbers, currency symbols, date, and time as well
as collation order for character strings and regular expressions.

See also Global Language Support (GLS).

MI_DRIVER
_ERROR

A variable, accessible in AppPages, that contains a description of a Web-
driver error. By querying the contents of this variable, an error-handling
AppPage can determine the exact error that occurred and take appropriate
action.

MI_WEBCONFIG An Web DataBlade module environment variable that contains the full path-
name of the web.cnf file. This variable is used by the NSAPI, ISAPI, and
Apache implementations of Webdriver to locate the file when they create
connections to an Informix database server.

multibyte code
set

A code set that is made up of both single-byte and multibyte characters.
Examples of multibyte code sets are EUC and Shift JIS.

See also code set.

multirepresenta-
tional data type

A data type whose storage location varies depending on the size of the data.

The Web DataBlade module HTML data type is an example of a multirepre-
sentational data type. The first 7500 bytes of the HTML object are stored in the
row; any portion of the HTML object that exceeds 7500 bytes is stored as a
smart large object.

NSAPI Webdriver The implementation of Webdriver that uses the Netscape API to connect to
databases and execute AppPages.

See also Webdriver.

ONCONFIG file The file that contains parameters for configuring the Informix database
server. An example of a parameter in the ONCONFIG file is SBSPACENAME.
Glossary 3

processing
variable

A variable in an AppPage that contains processing information about the
execution of an SQL statement, such as the number of rows or columns
returned from a SELECT statement. An AppPage accesses processing vari-
ables after an MISQL tag executes its SQL statement.

RAW mode A way to display an AppPage stored in the database without expanding the
AppPage tags. You can also display the variables in an AppPage and identify
where variable assignments are made. RAW mode is useful for debugging.

sbspace A logical storage area that contains one or more chunks that store only smart
large object data.

server-side
includes

A mechanism for including dynamic text in AppPages. Server-side includes
are special command codes that are recognized and interpreted by the Web
server; their output is placed in the AppPage before the AppPage is sent to
the browser. Server-side includes can be used, for example, to include a date
or time stamp in the text of the AppPage.

smart large
object

A large object that:

■ Is stored in an sbspace, a logical storage area that contains one or more
chunks

■ Has read, write, and seek properties similar to a UNIX file

■ Is recoverable

■ Obeys transaction isolation modes

■ Can be retrieved in segments by an application

Smart large objects include CLOB and BLOB data types.

sqlhosts file An Informix file that contains information that lets a client application locate
and connect to an Informix database server anywhere on a network.

system dynamic
tag

Dynamic tags provided by the Web DataBlade module that allow you to
reuse existing HTML to simplify the construction and maintenance of Web
applications. Examples of system dynamic tags are CHECKBOXLIST, RADI-
OLIST, and SELECTLIST.

See also dynamic tag, user-defined dynamic tag.

UDR tag See user-defined routine tag.
4 IBM Informix Web DataBlade Module Administrator’s Guide

user-defined
routine tag

Tag in an AppPage that directly executes an existing user-defined routine and
places the output of the execution of the routine within the AppPage.

URL prefix Part of a URL that client applications send to the Web server to invoke HTML
pages, execute CGI programs (such as the CGI Webdriver,) call Web server
plug-ins (such as the NSAPI, Apache, or ISAPI Webdriver,) and so on. The Web
server interprets the URL prefix to perform the appropriate action depending
on how you have configured your Web server.

user-defined
dynamic tag

A dynamic tag you create to reuse existing HTML to simplify the construction
and maintenance of Web applications.

See also dynamic tag, system dynamic tag.

variable
expression

An expression in an AppPage that starts with a $ character followed by a
variable-processing function and two or more variables within parentheses.
For example, the variable expression $(+,$NUMA,$NUMB) adds the two vari-
ables $NUMA and $NUMB.

See also variable-processing function.

variable-
processing
function

An AppPage function used in a variable expression to evaluate or manipu-
late variables. For example, the variable-processing function “+” in the vari-
able expression $(+,$NUMA,$NUMB) adds the two variables $NUMA and
$NUMB.

See also variable expression.

variable vector A set of variables with the same name that are passed into the AppPage using
check boxes or the MULTIPLE attribute of selection lists.

virtual processor One of the multithreaded processes that make up the Informix database
server and are similar to the hardware processors in the computer. For exam-
ple, in the Web DataBlade module, you must add a WEB virtual processor to
use the MIEXEC tag in an AppPage.

walking window Two or more linked AppPages in which each AppPage displays a subset of
the entire set of rows returned from a SELECT statement. You can navigate
through the set of returned rows by clicking buttons on the AppPages.

web.cnf file The default name of the Webdriver configuration file that describes the con-
nection between the Web server and the Informix database server.
Glossary 5

Web DataBlade
Module
Administration
Tool

A Web DataBlade module application used to add, update, or delete Web-
driver mappings and Webdriver configurations for the database to which
you are connected.

Webdriver A client application that connects to an Informix database, at the request of a
Web server, and retrieves AppPages from a table. Webdriver passes the
retrieved AppPage to the WebExplode() function and returns the resulting
HTML to the Web server.

See also Apache Webdriver, CGI Webdriver, ISAPI Webdriver, NSAPI Webdriver.

Webdriver
configuration

The name given to a set of Webdriver variables and user-defined variables
associated with a particular Web DataBlade module application. Webdriver
configurations are stored in the WebCMConfigs system table in the database.

Webdriver
configuration file

See web.cnf file.

Webdriver
mapping

The name given to the set of Webdriver variables in a single Map section of
the web.cnf file that Webdriver uses to connect to a particular database. Web-
driver mappings have the same name as the corresponding URL prefixes
defined for a Web server and the Web DataBlade module application stored
in a database.

See also URL prefix.

Webdriver
variable

A variable that Webdriver uses to connect to a database and to obtain infor-
mation about a Web DataBlade module application. There are two types of
Webdriver variables: those that reside in the web.cnf file (collectively known
as Webdriver mappings) and those that reside in the database (collectively
known as Webdriver configurations).

See also Webdriver mapping, Webdriver configuration.

WebExplode()
function

An Informix database server function that builds dynamic HTML pages
based on data stored in a database. The WebExplode() function parses App-
Pages that contain AppPage tags and dynamically builds and executes the
SQL statements embedded in the tags. The WebExplode() function returns
the HTML page to the client application, usually Webdriver.
6 IBM Informix Web DataBlade Module Administrator’s Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
Numerics
9.2x server 1-8

A
admin Webdriver

configuration 3-6, 3-26, 3-27,
3-40, 4-8, 5-8, 6-7, 7-8

Anchor variable,
WEB_HOME 3-11, 6-10, 7-9, B-2

anchorvar Webdriver
variable 3-11, 6-9, 7-7, B-2

Apache Web server 5-3
Apache Web server configuration

files
apaci 5-5
Configuration 5-6
httpd.conf 5-7, 5-13, 5-19

Apache Webdriver
adding URL prefix information

to 5-13
apaci, Apache Web server

configuration file 5-5
configuring 5-4
creating new httpd binary for 5-6
description of 5-3
diagram of 5-14
editing Apache Web Server

Configuration file for 5-9
editing Apache Web server source

code for 5-11
enabling Apache Web server user

authentication with 5-15
executing webconfig utility

for 5-8

implementing security with 5-15,
5-16

setting MI_WEBCONFIG for 3-18
setting Webdriver variables to

enable user
authentication 5-16

specifying AppPage access levels
with 5-21

using server-side includes
with 5-24

when to use 5-3
apaci, Apache Web server

configuration file 5-5
APB tables

wbBinaries 8-11, 11-4, 13-7
wbPages 4-25, 5-21, 6-16, 11-4,

13-7
wbTags 11-5
wbUsers 4-25, 5-20, 6-15
webUsers 4-22, 4-28, 5-18, 5-23,

6-13, 6-18
apb Webdriver configuration 3-6,

3-26, 3-40
apb2 Webdriver configuration 3-6,

3-26, 3-39
AppPage Builder (APB) B-27

apb Webdriver configuration
for 3-26, 3-40

apb2 Webdriver configuration
for 3-26, 3-39

description of 1-10
installing in your database 2-9,

2-11, 2-18, 13-15
using webUsers table of 4-22,

5-18
utility to create schema 13-6
utility to load data 13-7

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
when not to install 11-4
AppPage caching

administering 9-12
analyzing 9-22
and session variables 9-31
AppPages that are not cached 9-4
Cache Adminstration

AppPage 9-12
caching AppPages retrieved with

POST method 9-18
collecting statistics on 9-23
description of 9-4
disabling 9-14
disabling statistics for 9-25
dynamically managing with the

MIFUNC AppPage tag 9-19
enabling 9-9, 9-11
enabling for particular

AppPage 9-13
example of setting for a

Webdriver configuration 9-11
removing an AppPage from disk

cache 9-15
setting for a Webdriver

configuration 9-9
viewing list of cached

AppPages 9-18
viewing statistics 9-24
Webdriver variables to

enable 9-9, B-16
with MIDEFERRED AppPage

tag 9-25
AppPage tags

discussion of 1-5, 1-9
MIDEFERRED 9-10, 9-25, B-19
MIEXEC 2-9, 2-19
MIFUNC 4-15, 4-17, 6-19, 9-19
MISQL 1-5

AppPage-level security
configuring 8-9, 8-10, B-14
description of 8-8
Webdriver variables to

enable 8-9, B-14
AppPages

and WebExplode() function 1-4,
1-5

caching of to improve
performance 9-4 to 9-26

calling recursively B-30

description of 1-3
executing ISAPI functions in 6-19
executing NSAPI functions

in 4-15
globalizing 10-3
in architecture diagram 1-6
invoking with CGI Webdriver 7-9
invoking with ISAPI

Webdriver 6-10
securing with Apache

Webdriver 5-16
securing with ISAPI

Webdriver 6-11
securing with NSAPI

Webdriver B-12
securing, general 8-8
specifying access levels of 4-25
specifying in a URL 3-8
specifying largest 3-21, B-9
using MIEXEC tag in 2-9, 2-11,

2-19
using tags and attributes in 1-5
where they are stored 3-8

AuthTrans directive 4-13, 4-23
auth_cache Webdriver

variable 8-7, B-11
auth_crypt_udr Webdriver

variable 4-21, 4-26, 5-17, 5-22,
6-13, 6-17, B-13

B
Boldface type Intro-6

C
cache_admin Webdriver

variable 9-9, B-17
cache_admin_password Webdriver

variable 9-10, B-18
cache_buckets Webdriver

variable 9-28, B-20
cache_directory Webdriver

variable 9-9, 9-28, B-16, B-20
cache_maxsize Webdriver

variable 9-28, B-20
cache_page Webdriver

variable 9-9, B-16

cache_page_buckets Webdriver
variable 9-9, B-16

cache_page_debug Webdriver
variable 9-10, 9-27, B-19

cache_page_life Webdriver
variable 9-9, B-17

cache_page_timestamp Webdriver
variable 9-10, B-18

Caching 9-3 to 9-32, B-26
AppPage. See AppPage caching.
large object. See Large object

caching.
partial AppPage. See Partial

AppPage caching.
CGI Webdriver

configuring 7-4
creating CGI directory for 7-6
description of 7-3
invoking AppPages with 7-9
setting MI_WEBCONFIG for 3-18
when to use 7-3

CLIENT_LOCALE environment
variable 10-4

cm_schema_create utility 3-26, 13-3
cm_schema_load utility 3-26, 13-5
Comment icons Intro-8
Common Gateway Interface

(CGI) 1-3
Computer

database server 2-13
web server 2-15

Configuration, Apache
configuration file 5-6

Configure Database Components
Only option 2-14

Configure Web Server Components
Only option 2-15

Configure, Apache configuration
program 5-6

Configuring database
components 2-13

Configuring Web server
components 2-15

config_name Webdriver
variable 3-15, B-5

config_password Webdriver
variable 3-12, 3-28, B-3

config_security Webdriver
variable 3-15, B-5
2 IBM Informix Web DataBlade Module Administrator’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
config_user Webdriver
variable 3-12, 3-28, B-3

Connections to the database
managing 3-19
specifying maximum 3-11, B-2

connection_life Webdriver
variable 3-19, B-6

connection_wait Webdriver
variable 3-19, B-6

connect_as_user Webdriver
variable 3-20, B-7

connect_user_max Webdriver
variable 3-20, B-7

createAPB20_DDW20schema
utility 13-6, 13-8

D
Data Director for Web 1-10, 3-39,

B-27
Database server computer 2-13
database Webdriver variable 3-15,

B-4
DBCENTURY environment

variable 2-5
dbconnmax Webdriver

variable 3-11, 4-29, B-2
dbconntimeout Webdriver

variable B-3
DBDATE environment variable 2-5
DB_LOCALE environment

variable 10-4
ddw Webdriver configuration 3-6,

3-26, 3-39
Debugging Webdriver 3-11, 3-12,

4-29, 12-3, B-2, B-20
debug_file Webdriver

variable 3-11, 12-3, B-2, B-20
debug_level Webdriver

variable 3-12, 4-29, 12-3, B-2,
B-20

debug_log Webdriver variable 4-29
Default locale Intro-5
Dependencies, software Intro-5
Deploying Web

applications 11-3 to 11-9
Directives

AuthTrans 4-13, 4-23

ErrorLog 4-31
Init 4-9
Location 5-13
NameTrans 4-10, 4-23
Object 4-11, 4-12
PathCheck 4-13

Documentation notes Intro-12
Downgrading to a 9.2x server 1-9
driverdir Webdriver variable 3-11,

B-2
drvisapi.dll file 6-5, 6-8, 6-10, 6-11
Dynamic tags

caching 9-5

E
Encrypting passwords 4-21, 4-26,

5-21, 6-13, 6-16, 8-5, 13-13, B-13
Enterprise replication (ER) 1-8
Environment variables

CLIENT_LOCALE 10-4
DBCENTURY 2-5
DBDATE 2-5
DB_LOCALE 10-4
INFORMIXDIR 3-5, 3-13, 4-6, 5-5,

6-10, 7-7
INFORMIXSERVER 3-5, 3-13,

3-15, 4-6, 5-5, 6-10, 7-7, B-5
LD_LIBRARY_PATH 4-7, 5-7
MI_WEBCONFIG 3-5, 3-18, 3-27,

3-28, 4-7, 5-7, 6-6, 6-7, 7-5, 7-8
en_us.8859-1 locale Intro-5
Error processing with

MI_DRIVER_ERROR 4-22, 5-18
ErrorLog directive 4-31
error_page Webdriver variable 8-9,

B-14, B-23
Executing large SQL

statements 12-8
extensions Webdriver

variable B-26

F
Feature-related Webdriver

variables 3-6

Functions
WebExplode() 1-4, 1-5, 1-6, 3-12,

3-21, 4-12, 4-15, 4-28, 6-19, 9-3,
B-3, B-9

WebURLDecode() 10-5
WebURLEncode() 10-5

G
Global cache 9-5
Global Language Support

(GLS) Intro-5
Global section of the web.cnf

file 3-11, 3-28

H
httpd.conf file 5-7, 5-13, 5-19
HTTPHEADER variable-

processing function 9-4

I
Icons

Important Intro-8
Tip Intro-8
Warning Intro-8

iis_nt_password Webdriver
variable 6-13, B-13

iis_nt_user Webdriver
variable 6-13, B-12

Image maps 4-29
Important paragraphs, icon

for Intro-8
Informix Client Software

Developer’s Kit 2-4, 11-8
Informix Connect 2-4, 11-8
Informix Data Director for

Web 1-10, 3-39
INFORMIXDIR environment

variable 3-5, 3-13, 4-6, 5-5, 6-10,
7-7

INFORMIXSERVER environment
variable 3-5, 3-13, 3-15, 4-6, 5-5,
6-10, 7-7, B-5

informix_auth NSAPI
function 4-13
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
informix_explode NSAPI
function 4-12

Init directive 4-9
init_sql Webdriver variable 3-21,

B-8
installGlobalTagCache utility 9-6
Interrupting a query 3-20, B-7
ISAPI functions

creating and building 6-20
invoking in AppPages 6-19, 6-21

ISAPI Webdriver
adding URL prefix information

to 6-8
attaching ISAPI filter library

to 6-14
configuring 6-4
creating and building ISAPI

functions for 6-20
description of 6-3
executing ISAPI functions in

AppPages with 6-19
executing websetup.exe for 6-7
implementing security with 6-11
invoking AppPages with 6-10
invoking ISAPI functions in

AppPages with 6-21
setting MI_WEBCONFIG for 3-18
specifying AppPage access

levels 6-16
turning on security feature

in 6-14
using with session variables 6-11
when to use 6-3

ISO 8859-1 code set Intro-5

K
keepalive Webdriver variable 3-20,

B-8

L
Large object caching 9-27 to 9-30
Large object security 8-13
LD_LIBRARY_PATH environment

variable 4-7, 5-7
loadAPB20application utility 13-7
Locale Intro-5

Location directive 5-13
lo_error_sql Webdriver

variable 8-12, B-15
lo_error_zerorows Webdriver

variable 8-12, B-15
lo_query_params Webdriver

variable 8-12, B-15
lo_query_string Webdriver

variable 8-12, B-15

M
magnus.conf file 4-31
Managing connections to the

database 3-19
Map section of the web.cnf

file 3-13, 3-27
maxcharsize Webdriver

variable 3-12, 3-21, B-3, B-9
max_html_size Webdriver

variable 3-21, 4-28, B-9
MIBLOCK tag

limiting looping B-29
MIcol Webdriver variable 3-6, 3-40
Microsoft Windows NT Internet

Information Server 6-3
MIDEFERRED AppPage tag 9-10,

9-25, B-19
MIdriver hidden variable 9-18, 9-21
MIEXEC AppPage tag 2-9, 2-11,

2-19
MIFUNC AppPage tag 4-15, 4-17,

6-19, 9-19
MImap variable B-25
MInam Webdriver variable 3-6,

3-40
MIpagelevel Webdriver

variable 4-21, 4-24, 4-25, 5-16,
5-21, 6-12, 6-16, 8-9, B-12, B-14

MIqry2pass Webdriver
variable 3-7

MISQL AppPage tag 1-5
MItab Webdriver variable 3-6, 3-40
MIusergroup Webdriver

variable 4-21, 5-17, B-12
MIuserlevel Webdriver

variable 4-21, 4-24, 5-16, 6-12,
B-12

MIusername Webdriver
variable 4-21, 5-16, 6-12, B-12

MIuserpasswd Webdriver
variable 4-21, 5-16, 6-12, B-12

MIusertable Webdriver
variable 4-21, 4-24, 5-16, 5-20,
6-12, 6-15, B-12

MIval Webdriver variable 3-7, 3-8,
3-39, 6-10, 7-9

MIvalObj Webdriver variable 8-14
MIWEBTAGSSQL B-28
MI_DRIVER_ERROR

variable 4-22, 5-18
MI_LOOP_MAX WebExplode()

variable B-29
MI_RAWPASSWORD Webdriver

variable B-26
MI_USER_DBCONNMAX

Webdriver variable B-7
MI_USER_REMOTE Webdriver

variable B-7
MI_WEBACCEPTCKI Webdriver

variable B-24
MI_WEBACCESSLEVEL

Webdriver variable 3-7, 4-22,
4-24, 5-17, 8-9, B-14

MI_WEBAUTHCACHE Webdriver
variable B-11

MI_WEBCACHEADMIN
Webdriver variable B-17

MI_WEBCACHEDIR Webdriver
variable B-16, B-20

MI_WEBCACHEMAXLO
Webdriver variable B-20

MI_WEBCACHEPAGE Webdriver
variable B-16

MI_WEBCACHEPASSWORD
Webdriver variable B-18

MI_WEBCACHESUB Webdriver
variable B-20

MI_WEBCONFIG environment
variable 2-15, 3-5, 3-18, 3-27,
3-28, 4-7, 5-7, 6-6, 6-7, 7-5, 7-8

MI_WEBDBCONNWAIT
Webdriver variable B-6

MI_WEBDRVLEVEL Webdriver
variable B-20

MI_WEBENCODE user-defined
variable 10-5
4 IBM Informix Web DataBlade Module Administrator’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
MI_WEBERRORPAGE Webdriver
variable B-14, B-23

MI_WEBEXPLODE_DEPTH
WebExplode() variable B-30

MI_WEBEXTENSIONS Webdriver
variable B-26

MI_WEBGROUPLEVELWebdriver
variable 3-7

MI_WEBINITIALSQL Webdriver
variable B-8

MI_WEBKEEPALIVE Webdriver
variable B-8

MI_WEBLOPARAMS Webdriver
variable B-15

MI_WEBLOQUERY Webdriver
variable B-15

MI_WEBLOSQLERROR Webdriver
variable B-15

MI_WEBLOZEROROWS
Webdriver variable B-15

MI_WEBMAXHTMLSIZE
Webdriver variable B-9

MI_WEBNTPASSWORD
Webdriver variable B-13

MI_WEBNTUSER Webdriver
variable B-12

MI_WEBPAGELIFE Webdriver
variable B-17

MI_WEBQRYTIMEOUT
Webdriver variable B-7

MI_WEBRECONNECT Webdriver
variable B-6

MI_WEBREDIRECT Webdriver
variable B-13, B-14, B-23

MI_WEBSCHEMADEF Webdriver
variable B-27

MI_WEBSESSION Webdriver
variable B-21

MI_WEBSESSIONHOME
Webdriver variable B-21

MI_WEBSESSIONLIFE Webdriver
variable B-22

MI_WEBSESSIONLOC Webdriver
variable B-22

MI_WEBSESSIONSUB Webdriver
variable B-22

MI_WEBSHOWEXCEPTIONS
Webdriver variable B-23, B-24

MI_WEBTAGSCACHE B-28

MI_WEBTAGSCACHE Webdriver
variable 3-39

MI_WEBTAGSTABLE B-28
MI_WEBTAGSTABLE Webdriver

variable 3-39
MI_WEBUPLOADDIR Webdriver

variable B-25
Multibyte character sets 3-12, 3-21,

10-3, B-3, B-9

N
NameTrans directive 4-10, 4-23
Netscape Administration

server 4-8, 4-10, 4-11
Netscape configuration files

magnus.conf 4-31
obj.conf 4-5, 4-8, 4-9, 4-10, 4-12,

4-15
Netscape Web server 4-4
NSAPI functions

creating 4-16
executing in AppPages 4-15, 4-17
informix_auth 4-13
informix_explode 4-12

NSAPI Webdriver
adding Init directives to obj.conf

file for 4-9
adding Object directives to

obj.conf file for 4-12, 4-23
adding URL prefix information

to 4-10
administering 4-29
configuring 4-5
description of 4-4
diagram of 4-14
enabling Netscape Web server

user authentication 4-23
executing NSAPI functions in

AppPages with 4-15
implementing security with 4-20
logging error messages for 4-31
monitoring database connection

pool for 4-29
passing image map coordinates

with 4-29
performance of 4-29
setting MI_WEBCONFIG for 3-18

specifying AppPage access levels
with 4-25

specifying maximum size of
buffers for 4-28

using server-side includes
with 4-18

when to use 4-4

O
Object directive 4-11, 4-12
obj.conf file 4-5, 4-8, 4-9, 4-10, 4-12,

4-15
ONCONFIG file 2-5, 2-9, 2-11, 2-19
onpload utility 11-5
onspaces utility 2-5, 13-7
onstat utility 2-19

P
PARSE-HTML variable-processing

function 4-18, 5-25
parse_html_directory Webdriver

variable 4-19, 5-26, B-10
Partial AppPage

caching 9-25 to 9-27
password Webdriver variable 3-15,

8-5, B-4
password_key Webdriver

variable 3-15, 8-5, B-4
PathCheck directive 4-13
Performance improvements

AppPage caching 9-4
large object caching 9-27
overview of 9-3

Perl programs 2-14
Perl, executing programs in

AppPages 2-9, 2-11, 2-19
Permissions of web.cnf file 3-10
POST method 9-18
PREPARE attribute

of MISQL tag 12-8
Program groups, Windows NT

Documentation notes Intro-12
Release notes Intro-12
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Q
query_timeout Webdriver

variable 3-20, B-7

R
Recursive calls B-30
redirect_url Webdriver

variable 4-21, 5-17, 6-13, 8-9,
B-13, B-14, B-23

Release notes, program
item Intro-12

RELOAD SQL command 11-5
REMOTE_USER Web browser

variable 3-20, 4-22, 4-24, 5-17,
8-10, 8-13, B-7

Replication, of data 1-8
revert93to92.sql script 1-9

S
Sbspace, creating 2-5
schema_version Webdriver

variable 3-39, B-27
Security

adding users to the MIusertable
table 4-24, 5-20, 6-15

AppPage-level 8-8
database access 8-4
encrypting passwords 4-26, 5-21,

6-13, 6-16, 8-5
example of setting AppPage-

level 8-10
implementing with Apache

Webdriver 5-15, 5-16
implementing with ISAPI

Webdriver 6-11
implementing with NSAPI

Webdriver 4-20
large object 8-11
of Web DataBlade Module

Administration Tool 3-12, B-3
setting timeout for passwords

for 8-6
setting Webdriver variables to

enable user
authentication 4-20, 5-16

specifying AppPage access
levels 4-25, 5-21, 6-16

Sending initial SQL statements to
the database server 3-21, B-8

server Webdriver variable 3-15, B-5
Server-side includes

discussion of 3-22
using with Apache

Webdriver 5-6, 5-11, 5-24
using with NSAPI Webdriver 4-4,

4-18
services, UNIX file 2-5
Session Variables

session B-21
session_buckets B-22
session_home B-21
session_life B-22
session_location B-22

Session variables
and AppPage caching 9-31
and WEB_HOME 9-32
discussion of 9-31

Setvar section of the web.cnf
file 3-13

SGML tags 1-5
show_exceptions Webdriver

variable 3-39, B-23
Software dependencies Intro-5
Specifying largest AppPage 3-21,

B-9
Specifying URL-encoded

characters 3-21, B-9
sqlhosts file 2-5, 11-8
System requirements Intro-5
System tables

wbextensions 3-6, 3-8, 3-40, 11-4
WebCMImages 3-24, 11-5, 13-3,

A-7
WebCMPages 3-24, 3-26, 13-3,

A-6
WebConfigs 3-4, 3-15, 3-24, 11-5,

13-3, A-4, B-5
WebEnvVariables 3-24, 3-26,

11-5, 13-3, A-7
WebTags 11-5, A-1
WebUdrs 11-5, A-2

T
Tag cache 9-5
Tags, SGML 1-5
temp_map option 2-14
Tip icons Intro-8
Tracing Webdriver errors 3-11,

3-12, 4-29, 12-3, B-2

U
UDR tags

caching 9-5
UNLOAD SQL command 11-5
Upgrading from a 9.2x server 1-8
URL prefixes

adding to Apache Web
server 5-13

adding to Microsoft Web
server 6-8

adding to Netscape Web
server 4-10

adding to Web server,
general 3-25, 3-45, 3-47

description of 3-5
relation of to web.cnf file 3-13
using to invoke AppPages 3-23

user Webdriver variable 3-15, B-4
Utilities

cm_schema_create 3-26, 13-3
cm_schema_load 3-26, 13-5
createAPB20_DDW20schema 13-

6, 13-8
loadAPB20application 13-7
onpload 11-5
onspaces 13-7
onstat 2-19
webconfig 3-12, 3-25, 3-27, 3-28,

4-6, 4-8, 5-6, 5-8, 6-4, 6-7, 7-5,
13-8, 13-9, 13-10, 13-12, B-3

webpwcrypt 8-5, 13-13
websetup 2-6, 2-9, 2-18, 3-9, 3-24,

3-29, 4-5, 5-5, 6-7, 7-4, 13-14
6 IBM Informix Web DataBlade Module Administrator’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
V
Variable-processing functions

HTTPHEADER 9-4
PARSE-HTML 4-18, 5-25

Variables
error_page B-23
MI_LOOP_MAX B-29
MI_WEBEXPLEVEL B-27
MI_WEBEXPLOG B-27
raw_password B-26
redirect_url B-23
show_exceptions B-23, B-24

Virtual processor, WEB 2-9, 2-11,
2-19

VPCLASS parameter of
ONCONFIG file 2-19

W
Warning icons Intro-8
wbBinaries APB table 8-11, 11-4,

13-7
wbextensions system table 3-6, 3-8,

3-40, 11-4
wbExtensions table B-26
wbPages APB table 4-25, 5-21, 6-16,

11-4, 13-7
wbTags APB table 11-5
wbUsers APB table 4-25, 5-20, 6-15
Web browser variables

REMOTE_USER 3-20, 5-17, 8-10,
8-13, B-7

using in AppPages 8-14
Web DataBlade module

AppPage tags 1-9
architecture of 1-4, 1-6
components of 1-4
configuring additional databases

to use 2-17
configuring for your database

server 2-6
description of 1-3
dynamic tags 1-9
features of 1-9
implementing security for 8-3
installing 2-4
overview of configuration 2-4

performance of 9-3
preconfiguration tasks 2-4
registering 2-6, 2-17
system tables. See System tables.
tags 1-5
virtual processors of 2-19

Web DataBlade Module
Administration Tool 2-13

adding Webdriver configuration
with 3-39

adding Webdriver mappings
with 3-45

adding Webdriver variables
with 3-35

changing the value of Webdriver
variables with 3-34

configuring for your
database 3-24

creating Webdriver mappings
with 3-46

default Webdriver configurations
of 3-6

deleting Webdriver mappings
with 3-48

deleting Webdriver variables
with 3-38

description of 1-10, 3-9, 3-22
invoking 2-10, 2-12, 2-18, 3-29,

4-7, 5-7, 6-6, 7-5
main AppPage of 3-30
overwriting Webdriver variables

with 3-7
securing 3-12, 3-28, B-3
system tables of 3-24
URL prefix used to invoke 3-14
user allowed to use 3-12, B-3
utility to create schema 13-3
utility to load schema 13-5
viewing Webdriver mappings

with 3-43
Web server 2-6, 3-4, 4-4, 5-3, 6-3, 7-3
Web server computer 2-15
WEB virtual processor 2-9, 2-11,

2-14, 2-19
WebBundle.tar file 2-14, 2-15
WebClearTagCache()

procedure 9-7
WebCMImages system table 3-24,

11-5, 13-3, A-7

WebCMPages system table 3-24,
3-26, 13-3, A-6

webconfig utility 2-14, 2-16
adding config_user Webdriver

variable with 3-12, B-3
description of 13-8
example of using 13-12
executing with Apache

Webdriver 5-6, 5-8
executing with CGI

Webdriver 7-5, 7-8
executing with ISAPI

Webdriver 6-4, 6-7
executing with NSAPI

Webdriver 4-6, 4-8
how to use 13-9
options of 13-10
securing Web DataBlade Module

Administration Tool
with 3-28

using to configure Web DataBlade
Module Administration
Tool 3-25, 3-27

WebConfigs system table 3-4, 3-15,
3-24, 11-5, 13-3, A-4, B-5

Webdriver
configuration file (web.cnf) 3-9,

3-19
configurations 3-4
coordinating interaction with

Web server 3-11, B-2
database connected to 3-15, B-4
debugging 3-11, 4-29, 12-3, B-2,

B-20
description of 1-4, 1-10
implementations of 1-4
managing connections to the

database 3-19
tracing errors with 3-11, 3-12,

12-3, B-2
URL encoding characters 3-12,

3-21, B-3, B-9
use of term in guide 1-5
variables of 3-4
variables used by 3-4
See also NSAPI Webdriver,

Apache Webdriver, ISAPI
Webdriver, CGI Webdriver.
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Webdriver configuration file. See
web.cnf file.

Webdriver configurations
adding 3-39
adding Webdriver variables

to 3-35
admin, type of 3-6, 3-26, 3-27,

3-40, 4-8, 5-8, 6-7, 7-8
apb2, type of 3-6, 3-26, 3-39
apb, type of 3-6, 3-26, 3-40
changing value of Webdriver

variables in 3-34
ddw, type of 3-6, 3-26, 3-39
deleting Webdriver variables

from 3-38
description of 3-5, 3-23
how used by Webdriver 3-4

Webdriver mappings
adding 3-45, 4-8
creating 3-46
database access security 8-4
deleting 3-48
description of 3-5, 3-13, 3-23
recommended naming of 3-14
to invoke Web DataBlade Module

Administration Tool 3-25,
3-27

viewing 3-43
Webdriver variables

anchorvar 3-11, 6-9, 7-7, B-2
associated with Webdriver

configurating 3-31
auth_cache 8-7, B-11
auth_crypt_udr 4-21, 4-26, 5-17,

5-22, 6-13, 6-17, B-13
cache_admin 9-9, B-17
cache_admin_password 9-10,

B-18
cache_buckets 9-28, B-20
cache_directory 9-9, 9-28, B-16,

B-20
cache_maxsize 9-28, B-20
cache_page 9-9, B-16
cache_page_buckets 9-9, B-16
cache_page_debug 9-10, 9-27,

B-19
cache_page_life 9-9, B-17
cache_page_timestamp 9-10,

B-18

config_name 3-15, B-5
config_password 3-12, 3-28, B-3
config_security 3-15, B-5
config_user 3-12, 3-28, B-3
connection_life 3-19, B-6
connection_wait 3-19, B-6
connect_as_user 3-20, B-7
connect_user_max 3-20, B-7
database 3-15, B-4
dbconnmax 3-11, 4-29, B-2
dbconntimeout B-3
debug_file 3-11, 12-3, B-2, B-20
debug_level 3-12, 4-29, 12-3, B-2,

B-20
debug_log 4-29
disabling 3-23, 3-31
driverdir 3-11, B-2
error_page 8-9, B-14, B-23
extensions B-26
feature-related 3-6
iis_nt_password 6-13, B-13
iis_nt_user 6-13, B-12
in the database 3-5
in web.cnf file 3-9
init_sql 3-21, B-8
keepalive 3-20, B-8
lo_error_sql 8-12, B-15
lo_error_zerorows 8-12, B-15
lo_query_params 8-12, B-15
lo_query_string 8-12, B-15
maxcharsize 3-12, 3-21, B-3, B-9
max_html_size 3-21, 4-28, B-9
MIcol 3-6, 3-40
MInam 3-6, 3-40
MIpagelevel 4-21, 4-24, 4-25, 5-16,

5-21, 6-12, 6-16, 8-9, B-12, B-14
MIqry2pass 3-7
MItab 3-6, 3-40
MIusergroup 4-21, 5-17, B-12
MIuserlevel 4-21, 4-24, 5-16, 6-12,

B-12
MIusername 4-21, 5-16, 6-12, B-12
MIuserpasswd 4-21, 5-16, 6-12,

B-12
MIusertable 4-21, 4-24, 5-16, 5-20,

6-12, 6-15, B-12
MIval 3-7, 3-8, 3-39, 6-10, 7-9
MIvalObj 8-14
MI_RAWPASSWORD B-26

MI_USER_DBCONNMAX B-7
MI_USER_REMOTE B-7
MI_WEBACCEPTCKI B-24
MI_WEBACCESSLEVEL 3-7,

4-22, 4-24, 5-17, 8-9, B-14
MI_WEBAUTHCACHE B-11
MI_WEBCACHEADMIN B-17
MI_WEBCACHEDIR B-16, B-20
MI_WEBCACHEMAXLO B-20
MI_WEBCACHEPAGE B-16
MI_WEBCACHEPASSWORD B-

18
MI_WEBCACHESUB B-20
MI_WEBDBCONNWAIT B-6
MI_WEBDRVLEVEL B-20
MI_WEBERRORPAGE B-14, B-23
MI_WEBEXTENSIONS B-26
MI_WEBGROUPLEVEL 3-7
MI_WEBINITIALSQL B-8
MI_WEBKEEPALIVE B-8
MI_WEBLOPARAMS B-15
MI_WEBLOQUERY B-15
MI_WEBLOSQLERROR B-15
MI_WEBLOZEROROWS B-15
MI_WEBMAXHTMLSIZE B-9
MI_WEBNTPASSWORD B-13
MI_WEBNTUSER B-12
MI_WEBPAGELIFE B-17
MI_WEBQRYTIMEOUT B-7
MI_WEBRECONNECT B-6
MI_WEBREDIRECT B-13, B-14,

B-23
MI_WEBSCHEMADEF B-27
MI_WEBSESSION B-21
MI_WEBSESSIONHOME B-21
MI_WEBSESSIONLIFE B-22
MI_WEBSESSIONLOC B-22
MI_WEBSESSIONSUB B-22
MI_WEBSHOWEXCEPTIONS B-

23, B-24
MI_WEBTAGSCACHE 3-39
MI_WEBTAGSTABLE 3-39
MI_WEBUPLOADDIR B-25
overwriting 3-7, 3-31
parse_html_directory 4-19, 5-26,

B-10
password 3-15, 8-5, B-4
password_key 8-5
query_timeout 3-20, B-7
8 IBM Informix Web DataBlade Module Administrator’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
redirect_url 4-21, 5-17, 6-13, 8-9,
B-13, B-14, B-23

residing in the web.cnf file 3-5
schema_version 3-39, B-27
server 3-15, B-5
show_exceptions 3-39, B-23
types of 3-4
user 3-15, B-4
user-defined 3-7

WebDumpTagCache() routine 9-8
WebEnvVariables system

table 3-24, 3-26, 11-5, 13-3, A-7
WebExplode() function

and AppPage caching 9-3
description of 1-4, 1-5
executing MIFUNC tag 4-15, 6-19
interraction with Webdriver 1-6
NSAPI function equivalent 4-12
setting buffer size for 4-28
URL-encoding characters 3-12,

3-21, B-3, B-9
WebExplode() variables

MI_LOOP_MAX B-29
MI_WEBEXPLODE_DEPTH B-3

0
webpwcrypt utility 8-5, 13-13
websetup utility 2-14, 2-15, 9-6

and Apache Webdriver 5-5
and CGI Webdriver 7-4
and ISAPI Webdriver 6-7
and NSAPI Webdriver 4-5
description of 2-6, 13-14
executing 2-9, 2-18
how to use 13-15
installing Web DataBlade Module

Administration Tool with 3-9,
3-22, 3-24, 3-29

specifying database components
for 13-15

specifying Web components
for 13-15

who should run 2-7
WebTags system table 11-5, A-1
WebUdrs system table 11-5, A-2
WebURLDecode() function 10-5
WebURLEncode() function 10-5
webUsers APB table 4-22, 4-28,

5-18, 5-23, 6-13, 6-18

web.cnf file
and Apache Webdriver 5-4
and CGI Webdriver 7-4
and ISAPI Webdriver 6-4
and NSAPI Webdriver 4-6
database access security in 8-4
description of 3-9 to 3-17
example of 3-16
format of 3-10
Global section of 3-11, 3-28
how Web server locates 3-5, 3-18
Map section of 3-13, 3-27
permissions of 3-10
setting LOCALE variables in 10-4
Setvar section of 3-13
updating for CGI Webdriver 7-7
updating for ISAPI

Webdriver 6-9
used by Webdriver 3-4
Webdriver variables in 3-5

web.cnf.example file 2-13
WEB_HOME anchor variable 3-11,

6-10, 7-9, B-2
Index 9

	Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale

	Documentation Conventions
	Typographical Conventions
	Case-Sensitive Text
	Case-Insensitive Text

	Icon Conventions
	Comment Icons
	Platform Icons

	Screen-Illustration Conventions

	Additional Documentation
	Printed Documentation
	Online Documentation
	Release Notes and Documentation Notes

	IBM Welcomes Your Comments

	Overview of the Web DataBlade Module
	In This Chapter
	What Is the Web DataBlade Module?
	Product Architecture
	Webdriver
	The WebExplode() Function
	Tags and Attributes
	Architecture Diagram

	Enterprise Replication
	Converting from a 9.2x Server
	Reverting to a 9.2x Server

	Product Features

	Getting Started
	In This Chapter
	Overview of Web DataBlade Module Configuration
	Preconfiguration Tasks
	Configuring the Web DataBlade Module for Your Database Server
	Who Should Run the websetup Utility?
	Configuring the Web DataBlade Module: Servers on Same Computer
	Configuring the Web DataBlade Module: Servers on Different Computers
	Configuring Database Components
	Configuring Web Server Components

	Configuring Additional Databases
	Adding and Starting the WEB Virtual Processor

	Configuring Webdriver
	In This Chapter
	Overview of Webdriver
	Webdriver Variables
	Webdriver Variables in the web.cnf File
	Webdriver Variables in the Database

	How Webdriver Locates AppPages
	The Web DataBlade Module Administration Tool

	The Webdriver Configuration File (web.cnf)
	File Permissions of the web.cnf File
	Format of the web.cnf File
	Global Section of the web.cnf File
	Setvar Section of the web.cnf File
	Map Section of the web.cnf File

	Example of the web.cnf File
	Variables in the Global Section
	Variables in the Setvar Section
	Variables in the Map Section

	Setting the MI_WEBCONFIG Environment Variable
	Managing Webdriver Connections to the Database
	Using Server-Side Includes in AppPages
	Setting Up the Web DataBlade Module Administration Tool
	Webdriver Mappings
	Webdriver Configurations
	Installing the Administration Tool in Your Database
	Creating and Loading the Tool’s Schema
	Executing the webconfig Utility

	Securing the Web DataBlade Module Administration Tool

	Invoking and Using the Web DataBlade Module Administration Tool
	Viewing Existing Webdriver Configurations
	Editing an Existing Webdriver Configuration
	Changing the Current Value of a Webdriver or User-Defined Variable
	Adding a New Webdriver or User-Defined Variable
	Deleting a Webdriver or User-Defined Variable

	Adding a New Webdriver Configuration
	Deleting an Existing Webdriver Configuration
	Viewing Existing Webdriver Mappings
	Editing an Existing Webdriver Mapping
	Adding a New Webdriver Mapping
	Creating the Webdriver Mapping
	Adding a URL Prefix to Your Web Server

	Deleting an Existing Webdriver Mapping

	Using the NSAPI Webdriver
	In This Chapter
	Overview of the NSAPI Webdriver
	Configuring the NSAPI Webdriver
	Executing the webconfig Utility
	Adding Init Directives to the obj.conf File
	Adding URL Prefix Information to the obj.conf File
	Adding the Initial admin URL Prefix
	Adding Subsequent URL Prefixes

	Adding Object Directives to the obj.conf File
	How It All Fits Together

	Executing NSAPI Functions in AppPages
	Creating NSAPI Functions
	Invoking NSAPI Functions in an AppPage

	Using Server-Side Includes in AppPages with the NSAPI Webdriver
	Implementing User Authentication with the NSAPI Webdriver
	Setting Webdriver Variables to Enable User Authentication
	How the NSAPI Webdriver Uses the Webdriver Variables
	Example of Setting User Authentication Webdriver Variables

	Updating the obj.conf File to Enable User Authentication
	Adding Users to the MIusertable Table
	Specifying AppPage Access Levels
	Using Encrypted Passwords in the MIusertable Table
	Encrypting Passwords
	Setting the auth_crypt_udr Webdriver Variable
	Tips for Creating Your Own AppPage to Edit User Password Information

	Using the REMOTE_USER Web Browser Variable for User Authentication

	Additional NSAPI Webdriver Information
	WebExplode() Buffer Size with NSAPI Webdriver
	Passing Image Map Coordinates with the NSAPI Webdriver

	Administering the NSAPI Webdriver
	NSAPI Webdriver Performance
	Error Logging with NSAPI Webdriver

	Using the Apache Webdriver
	In This Chapter
	Overview of the Apache Webdriver
	Configuring the Apache Webdriver
	Executing the webconfig Utility
	Editing the Apache Web Server Configuration File
	Editing Apache Web Server Source Code
	Editing the mod_include.c File
	Editing the http_request.c File

	Adding URL Prefix Information to the Apache Web Server
	How It All Fits Together

	Implementing User Authentication with Apache Webdriver
	Setting Webdriver Variables
	How the Apache Webdriver Uses the Webdriver Variables
	Example of Setting User Authentication Webdriver Variables

	Updating the httpd.conf File to Enable User Authentication
	Adding Users to the MIusertable Table
	Specifying AppPage Access Levels
	Using Encrypted Passwords in the MIusertable Table
	Encrypting Passwords
	Setting the auth_crypt_udr Webdriver Variable
	Tips for Creating Your Own AppPage to Edit User Password Information

	Using the REMOTE_USER Web Browser Variable for User Authentication

	Using Server-Side Includes in AppPages with the Apache Webdriver
	Dynamically Loading the Apache Webdriver
	Before You Begin
	Updating The Apache Web Server Configuration File

	Using the ISAPI Webdriver
	In This Chapter
	Overview of the ISAPI Webdriver
	Configuring the ISAPI Webdriver
	Executing the webconfig.exe Utility
	Adding URL Prefix Information to the Web Server
	Updating the web.cnf File
	Invoking AppPages with ISAPI Webdriver

	Using Session Variables with the ISAPI Webdriver
	Implementing Security with the ISAPI Webdriver
	Setting Webdriver Security Variables
	Attaching the ISAPI Filter Library
	Turning On the Security Feature of the ISAPI Webdriver
	Adding Users to the MIusertable Table
	Specifying AppPage Access Levels
	Using Encrypted Passwords in the MIusertable Table
	Encrypting Passwords
	Setting the auth_crypt_udr Webdriver Variable
	Tips for Creating Your Own AppPage to Edit User Password Information

	Using the REMOTE_USER Web Server Variable for User Authentication

	Executing ISAPI Functions in an AppPage
	Creating and Building the DLL
	Invoking ISAPI Functions in an AppPage

	Using the CGI Webdriver
	In This Chapter
	Overview of the CGI Webdriver
	Configuring the CGI Webdriver
	Creating a CGI Directory for Your Web Server
	Updating the web.cnf File
	Executing the webconfig Utility

	Invoking AppPages with the CGI Webdriver

	Implementing Security
	In This Chapter
	Database Access Security
	Encrypting Passwords Manually
	Resetting User Name/Password Combinations

	AppPage-Level Security
	Configuring Simple Webdriver AppPage-Level Security
	Example of Setting Simple AppPage-Level Security

	Large Object Security
	Setting Webdriver Variables
	Background for the Example
	Implementation of the Example

	Improving Performance
	In This Chapter
	Overview of Performance
	AppPage Caching
	AppPages That Are Not Cached
	Global Cache For Dynamic Tags and User-Defined Routine Tags
	Compatibility with Previous Versions
	Enabling the Global Tag Cache
	Clearing the Global Tag Cache
	Debugging the Global Tag Cache

	Using AppPage Caching
	Setting AppPage Caching for a Webdriver Configuration
	Enabling AppPage Caching for a Particular AppPage
	Disabling AppPage Caching for a Particular AppPage
	Removing AppPages from the Disk Cache
	Viewing the List of AppPages That Have Caching Enabled

	Caching AppPages Retrieved with the POST Method
	Using the MIFUNC Tag to Dynamically Manage AppPage Caching from Within an AppPage
	AppPage 1: Setting Up the Example
	AppPage 2: Displaying Information
	AppPage 3: Updating Information

	Analyzing AppPage Caching
	Analyzing Caching for All AppPages
	Analyzing Caching for a Particular AppPage

	Partial AppPage Caching
	How Partial AppPage Caching Works
	Using Variables with the MIDEFERRED Tag
	Debugging Problems with Partial AppPage Caching

	Large Object Caching
	Setting Large Object Caching
	Example of Setting Large Object Caching
	Analyzing Caching Statistics for Large Objects

	Using Session Variables to Improve Performance
	Session Management and AppPage Caching

	Globalizing Your Web DataBlade Module Application
	In This Chapter
	Overview of Globalization
	Using Locale Variables
	AppPage Builder and Globalization
	WebURLDecode() and WebURLEncode() Functions

	Deploying Web DataBlade Module Applications
	In This Chapter
	Overview of Deployment
	Moving Applications from Development to Production
	Moving Each Type of Data Separately
	Moving Data All at Once
	Accessing the New Production Database
	Creating New Webdriver Mappings
	Updating Existing Webdriver Mappings

	Using a Web Server on a Different Computer

	Debugging and Troubleshooting
	In This Chapter
	Enabling Webdriver Tracing
	Possible Trace Settings for the debug_level Webdriver Variable
	Example of Setting the debug_level Webdriver Variable

	Using the Webdriver Diagnostic Page
	Errors While Retrieving Pages from the DataBase
	Executing SQL Statements Greater Than 32 KB

	Web DataBlade Module Utilities
	In This Chapter
	The cm_schema_create Utility
	The cm_schema_load Utility
	The createAPB20_DDW20schema Utility
	The loadAPB20application Utility
	The webconfig Utility
	The webpwcrypt Utility
	The websetup Utility

	Web DataBlade Module System Tables
	Web DataBlade Module Variables
	Notices
	Glossary
	Index

