
IBM Informix
Version 4.20

IBM Informix DataBlade Developers Kit
User’s Guide

SC27-3534-00

����

IBM Informix
Version 4.20

IBM Informix DataBlade Developers Kit
User’s Guide

SC27-3534-00

����

Note:
Before using this information and the product it supports, read the information in “Notices” on page E-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . ix
In This Introduction. ix
About This Publication. ix

Types of Users . ix
Software Dependencies . x

Example Code Conventions . x
Additional Documentation. x
Compliance with Industry Standards . xi
How to Provide Documentation Feedback . xi

Chapter 1. Getting Started with DataBlade Module Development 1-1
In This Chapter . 1-1
What is a DataBlade Module? . 1-1
DataBlade Developers Kit Tools . 1-1
Preparing to Develop DataBlade Modules . 1-2

Becoming Familiar with IBM Informix Software and Documentation 1-2
Designing Your DataBlade Module . 1-3

Developing Your DataBlade Module . 1-5
Editing and Compiling DataBlade Module Code . 1-7
Debugging Your DataBlade Module . 1-7
Packaging Your DataBlade Module . 1-8

Chapter 2. Designing DataBlade Modules . 2-1
In This Chapter . 2-1
Data Model . 2-1
Data Type Design . 2-3

Object Accessibility . 2-3
Handling Large Objects . 2-4

Query Language Interface . 2-5
SQL Query Structure . 2-5
The Target List . 2-6
The Qualification . 2-7

Query Processing . 2-8
Predicate Evaluation . 2-8
Grouping . 2-12
Casts . 2-13
Access Path Selection . 2-14
Planning for Transaction Semantics . 2-15

Interoperability . 2-15
Orthogonality . 2-15
Simple, Clean Interfaces . 2-16

Chapter 3. Programming Guidelines . 3-1
In This Chapter . 3-1
Programming Language Options . 3-1

Options for Opaque Data Types . 3-2
Options for Routines . 3-5
Multilanguage DataBlade Module Issues . 3-5

C Programming Guidelines . 3-6
C++ Programming Guidelines . 3-7
Java Programming Guidelines . 3-7
DataBlade API Programming Tips . 3-8

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-1

© Copyright IBM Corp. 1996, 2010 iii

In This Chapter . 4-2
Prerequisite Tasks . 4-2
Task Overview . 4-2
Windows . 4-3
Creating a New Project . 4-4

DataBlade Module Project Name . 4-5
New Object Prefix . 4-6
Server Compatibility . 4-6
Description Locale . 4-7
Project Version Numbers. 4-7
Vendor Information . 4-7

Importing Interfaces from Another DataBlade Module . 4-7
Creating DataBlade Module Objects . 4-8

Database Object Name Lengths . 4-8
Creating Aggregates . 4-9
Creating Casts . 4-12
Defining Errors . 4-13
Defining Interfaces . 4-15
Creating Routines. 4-15
Creating Data Types . 4-22

Adding Functional Test Data . 4-36
Test Data for Opaque Type Support Routines . 4-37
Test Data for User-Defined Routines . 4-37
Test Data for Cast Support Routines . 4-37

Adding SQL Files. 4-38
Importing SQL Text from a File . 4-39
Object Dependencies. 4-39

Adding Client Files . 4-39
Generating Files . 4-40

Setting Generated File Properties . 4-42
Generating All Files . 4-43
Generating SQL Scripts . 4-43
Generating Source Files . 4-44
Generating Test Files. 4-45
Generating Installation Package Files . 4-45
Regenerating Files . 4-46
Opening the Project File in Visual C++ . 4-47

Chapter 5. Programming DataBlade Module Routines in C 5-1
In This Chapter . 5-2
Prerequisite Tasks . 5-2
C Programming Task Overview . 5-3
Source Files Generated by BladeSmith . 5-3

C Header File . 5-4
C Source Code Files . 5-4
Microsoft Visual C++ Files . 5-5
Warning File . 5-5

Using Generated Code . 5-5
Identifying the Source of Generated Code . 5-5
Comments in Generated Code . 5-6
MI_FPARAM Function Argument. 5-6
Server Connection Handle . 5-7
Tracing and Error Handling. 5-7
Utility Functions Generated by BladeSmith . 5-13

Editing Opaque Type Support Routines in opaque.c . 5-15
Text Input and Output Functions . 5-16
Binary Send and Receive Functions . 5-19
Text File Import and Export Functions . 5-20
Binary File Import and Export Functions . 5-21
The Assign and Destroy Routines . 5-22
LOhandles() Function . 5-23

iv IBM Informix DataBlade Developers Kit User’s Guide

Comparison Functions . 5-23
Mathematical Functions . 5-26
Concat() Function. 5-26
Hash() Function . 5-27

Editing Statistics Routines in statistics.c . 5-27
The Statistics Collection Function . 5-27
The Statistics Print Function . 5-28
The Statistics Minimum, Maximum, and Distribution Functions 5-28

Editing Routines in udr.c . 5-28
Most User-Defined Routines . 5-29
Cast Support Functions . 5-29
Aggregate Functions . 5-30
Selectivity Functions . 5-31
Iterator Functions. 5-32

Compiling DataBlade Module Code . 5-33
Compiling with Tracing Support. 5-33
Compiling on UNIX . 5-33
Compiling on Windows . 5-34

Chapter 6. Creating ActiveX Value Objects . 6-1
In This Chapter . 6-1
Prerequisite Tasks . 6-1
ActiveX Programming Task Overview . 6-1
Source Files Generated by BladeSmith . 6-2
Implementing ActiveX Value Objects. 6-2

The Generated Code . 6-3
Adding Project-Specific Logic to the Source Code . 6-3
Files to Edit . 6-3
ActiveX Properties . 6-4
Accessing Properties Using Visual Basic . 6-5

Compiling Client and Server Projects . 6-5
Compiling a Windows Server Project . 6-5
Compiling a Client Project . 6-6

Support Methods Reference. 6-7
Internal Object Methods . 6-7
C++ Support Library . 6-7

Chapter 7. Using ActiveX Value Objects . 7-1
In This Chapter . 7-1
Installing and Using ActiveX Value Objects . 7-1

Installing ActiveX Value Objects . 7-1
Using ActiveX Value Objects . 7-2

IRawObjectAccess Custom Interface . 7-2
ITDkValue Custom Interface . 7-3
ActiveX Custom Methods . 7-4

Chapter 8. Programming DataBlade Modules in Java 8-1
In This Chapter . 8-1
Prerequisite Tasks . 8-1
Java Programming Task Overview . 8-2
Source Files Generated by BladeSmith . 8-2

Java Source Code Files . 8-3
SQLData Interface Method Support Code . 8-3
Warning File . 8-3

Using the Generated Code . 8-4
Comments in Generated Code . 8-4
Logging and Error Handling . 8-4
BladeSmith Utility Classes . 8-4

Editing Methods . 8-5
Most User-Defined Methods . 8-5

Contents v

Iterators . 8-5
Aggregates . 8-6
Cast Support Methods . 8-7

Compiling Java DataBlade Module Code . 8-7
Debugging and Testing DataBlade Modules Written in Java 8-9

Preparing Your Environment . 8-9
Debugging a DataBlade Module . 8-10
Performing Functional Tests . 8-11

Chapter 9. Debugging and Testing DataBlade Modules on UNIX 9-1
In This Chapter . 9-1
Prerequisite Tasks . 9-1
Preparing Your Environment . 9-2
Using the Shared Object File . 9-2

Replacing a Shared Object File . 9-2
Shared Object File Ownership and Permissions . 9-3
Symbols in Shared Object Files. 9-3

Installing and Registering DataBlade Modules . 9-3
Installing a DataBlade Module . 9-3
Registering a DataBlade Module . 9-4

Debugging a DataBlade Module . 9-4
Loading the DataBlade Module . 9-5
Identifying the Server Process . 9-5
Running the Solaris Debugger . 9-6
Setting Breakpoints . 9-6

Debugging a UNIX DataBlade Module with Windows . 9-7
Performing Functional Tests . 9-7

Functional Test Overview . 9-7
Executing Functional Tests . 9-10

Chapter 10. Debugging and Testing DataBlade Modules on Windows 10-1
In This Chapter . 10-1
Prerequisite Tasks. 10-1
Preparing Your Environment . 10-2
DBDK Visual C++ Add-In and IfxQuery . 10-2

The Debug DataBlade Module Command. 10-2
Other Add-In Commands . 10-3

Debugging a DataBlade Module . 10-4
Manually Loading the Add-In . 10-5
Specifying Properties for a Project . 10-5
Setting Breakpoints . 10-6
Editing Unit Test Files . 10-6

Performing Functional Tests on DataBlade Modules . 10-6

Chapter 11. Using BladePack . 11-1
In This Chapter . 11-1
Prerequisite Tasks. 11-2
BladePack Overview . 11-2

BladePack Projects . 11-3
BladePack Online Help . 11-3
BladePack Windows . 11-3
Registry Keys for Windows . 11-6

Packaging for UNIX Installations . 11-6
Establishing Content . 11-7
Managing Components . 11-8
Customizing the Installation . 11-10
Building the Installation . 11-11
Creating Distribution Media . 11-12

Packaging for InstallShield 3.1 Installations . 11-12
Establishing Content . 11-13

vi IBM Informix DataBlade Developers Kit User’s Guide

Managing Components . 11-16
Customizing the Installation . 11-17
Building the Installation . 11-19
Creating Distribution Media . 11-20

Packaging for InstallShield 5.1 Installations . 11-20
Establishing Content . 11-21
Managing Components . 11-23
Customizing the Installation . 11-25
Building the Installation . 11-25
Creating Distribution Media . 11-26

Appendix A. Source Files Generated for DataBlade Modules A-1
C Source Code Files . A-1
ActiveX/C++ Source Code Files . A-1

Client Project Files . A-2
Client Files . A-3
Common Files . A-3
Server Project Files . A-4
Server Files . A-4

Java Source Code Files . A-4
SQL Script Files . A-5
Unit Test Files . A-5
Functional Test Files . A-6

Casting Function Tests . A-6
Opaque Data Type Support Routines Tests . A-6
User-Defined Routine Tests. A-7

Installation Packaging Files. A-8
Alphabetical List of Generated Files . A-8

Appendix B. Completing BladeSmith-Generated Code B-1
Opaque Data Type Support Routines in C . B-1
User-Defined Routines in C. B-2
Opaque Data Type Support Routines in C++ . B-2
User-Defined Routines in Java . B-4

Appendix C. Testing for an Sbspace . C-1

Appendix D. Accessibility . D-1
Accessibility features for IBM Informix . D-1

Accessibility Features . D-1
Keyboard Navigation . D-1
Related Accessibility Information. D-1
IBM and Accessibility . D-1

Notices . E-1
Trademarks . E-3

Index . X-1

Contents vii

viii IBM Informix DataBlade Developers Kit User’s Guide

Introduction

In This Introduction. ix
About This Publication. ix

Types of Users . ix
Software Dependencies . x

Example Code Conventions . x
Additional Documentation. x
Compliance with Industry Standards . xi
How to Provide Documentation Feedback . xi

In This Introduction
This introduction provides an overview of the information this publication
provides and the conventions it uses.

About This Publication
New editions and product names:

Dynamic Server editions were withdrawn and new Informix editions are available.
Some products were also renamed. The publications in the Informix library pertain
to the following products:
v IBM Informix database server, formerly known as IBM Informix Dynamic Server

(IDS)
v IBM Informix OpenAdmin Tool for Informix, formerly known as OpenAdmin

Tool for Informix Dynamic Server (IDS)
v IBM Informix SQL Warehousing Tool, formerly known as Informix Warehouse

Feature

For more information about the Informix product family, go to
http://www.ibm.com/software/data/informix/

The IBM Informix DataBlade Developers Kit User's Guide describes how to use IBM®

Informix DataBlade Developers Kit tools to develop and package DataBlade
modules. A DataBlade module extends the functionality of IBM Informix to handle
data with user-defined routines or to handle nontraditional kinds of data, such as
full text, images, video, spatial, and time series data.

This section discusses the intended audience and the associated software products
that you must have to develop and use the DataBlade module.

Types of Users
This guide is for experienced C, C++, or Java programmers who are comfortable
writing libraries to support applications. You will use this guide to develop
DataBlade modules that extend your Informix® database server.

If you are unfamiliar with DataBlade® modules, read IBM Informix DataBlade
Module Development Overview before you read this publication.

© Copyright IBM Corp. 1996, 2010 ix

Software Dependencies
Check the IBM Informix DataBlade Developers Kit release notes for software
compatibility requirements for IBM Informix and IBM Informix Client Software
Development Kit (Client SDK).

To use DBDK to develop your DataBlade module in a Windows development
environment, you need to install the following software:
v Microsoft Visual C++ 6.0
v Netscape Navigator 4.0 (or later) or Microsoft Internet Explorer 4.0 (or later)

To use BladePack to package your DataBlade module with an interactive
installation for Windows, you need an InstallShield professional license.

To use the IBM Informix DataBlade Developers Kit InfoShelf, you need one of the
following browsers:
v Netscape Navigator 4.0 or later
v Microsoft Internet Explorer 4.0 or later

For system requirements and installation instructions, see the IBM Informix Read Me
First sheet for the Informix DataBlade Developers Kit.

Example Code Conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional Documentation
Documentation about this release of IBM Informix products is available in various
formats.

x IBM Informix DataBlade Developers Kit User’s Guide

All of the product documentation (including release notes, machine notes, and
documentation notes) is available from the information center on the Web at
http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp. Alternatively,
you can access or install the product documentation from the Quick Start CD that
is shipped with the product.

Compliance with Industry Standards
IBM Informix products are compliant with various standards.

The American National Standards Institute (ANSI) and the International
Organization of Standardization (ISO) have jointly established a set of industry
standards for the Structured Query Language (SQL). IBM Informix SQL-based
products are fully compliant with SQL-92 Entry Level (published as ANSI
X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of
IBM Informix database servers comply with the SQL-92 Intermediate and Full
Level and X/Open SQL Common Applications Environment (CAE) standards.

How to Provide Documentation Feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send e-mail to docinf@us.ibm.com.
v Go to the information center at http://publib.boulder.ibm.com/infocenter/

idshelp/v117/index.jsp and open the topic that you want to comment on. Click
the feedback link at the bottom of the page, fill out the form, and submit your
feedback.

v Add comments to topics directly in the Informix information center and read
comments that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more! Find out more at http://publib.boulder.ibm.com/infocenter/idshelp/
v117/topic/com.ibm.start.doc/contributing.htm.

Feedback from all methods is monitored by those who maintain the user
documentation. The feedback methods are reserved for reporting errors and
omissions in our documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support website at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xi

http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp
mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.start.doc/contributing.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.start.doc/contributing.htm
http://www.ibm.com/planetwide/

xii IBM Informix DataBlade Developers Kit User’s Guide

Chapter 1. Getting Started with DataBlade Module
Development

In This Chapter . 1-1
What is a DataBlade Module? . 1-1
DataBlade Developers Kit Tools . 1-1
Preparing to Develop DataBlade Modules . 1-2

Becoming Familiar with IBM Informix Software and Documentation 1-2
Installing IBM Informix Software . 1-3
DataBlade Developers Kit Tutorial . 1-3
Creating a Practice DataBlade Module . 1-3

Designing Your DataBlade Module . 1-3
Writing a Functional Specification. 1-4
Programming Resources . 1-4
Writing a Design Specification . 1-4
Creating an Iterative Development Plan. 1-5

Developing Your DataBlade Module . 1-5
Editing and Compiling DataBlade Module Code . 1-7
Debugging Your DataBlade Module . 1-7
Packaging Your DataBlade Module . 1-8

In This Chapter
This chapter provides an overview of DataBlade module development and
describes the resources and tools the Informix database server provides to facilitate
development.

What is a DataBlade Module?
A DataBlade module is a software package that extends the functionality of your
Informix database server. The package includes SQL statements and supporting
code written in an external language or Informix SPL. DataBlade modules can also
contain client components. A DataBlade module enables your Informix database
server to provide the same level of support for new data types as it provides for
built-in data types.

Users access DataBlade module services in the same way they access database
server services: through SQL, SPL, and client programs linked with any of the
Informix client APIs. DataBlade modules can also use the DataBlade API or SQL
queries to access data types and routines in other DataBlade modules.

The Informix DataBlade Developers Kit aids you in developing DataBlade
modules. It provides graphical user interfaces to complete tasks, and it generates
much of the code you need for your DataBlade module.

DataBlade Developers Kit Tools
The Informix DataBlade Developers Kit provides the following graphical user
interfaces for creating and working with DataBlade modules:
v BladeSmith. A tool for organizing a DataBlade module development project.

You use BladeSmith to create a project and then define the objects (such as data
types and routines) that belong to the DataBlade module. BladeSmith generates
source files, header files, make files, functional test files, SQL scripts, messages,

© Copyright IBM Corp. 1996, 2010 1-1

and packaging files. Chapter 4, “Creating DataBlade Objects Using BladeSmith,”
on page 4-1, describes how to use this tool.

v DBDK Visual C++ Add-In and IfxQuery. Tools for debugging a DataBlade
module using Microsoft Visual C++ on Windows. The add-in automates many of
the debugging tasks and calls the IfxQuery tool to run unit tests for DataBlade
module routines. Chapter 10, “Debugging and Testing DataBlade Modules on
Windows,” on page 10-1, describes how to use these tools.

v BladePack. A tool for creating a DataBlade module package. BladePack can
create a simple directory tree containing files to be installed or an installation
that includes an interactive user interface. Chapter 11, “Using BladePack,” on
page 11-1, describes how to use this tool.

v BladeManager. A utility for registering and un-registering DataBlade modules in
Informix databases. The IBM Informix DataBlade Module Installation and
Registration Guide describes how to use this tool.

Preparing to Develop DataBlade Modules
This section suggests how to prepare for developing DataBlade modules. This
overview is intended to act as a map for information resources.

To prepare for DataBlade module development, complete these general processes:
1. If necessary, familiarize yourself with IBM Informix software and

documentation (see “Becoming Familiar with IBM Informix Software and
Documentation,” next).

2. Design your DataBlade module (see “Designing Your DataBlade Module” on
page 1-3).

After you finish your preparations, you can develop your DataBlade module and
then have it certified (see “Developing Your DataBlade Module” on page 1-5).

Becoming Familiar with IBM Informix Software and
Documentation

Familiarizing yourself with IBM Informix software and documentation is critical
for first-time DataBlade developers. However, it is important for experienced
DataBlade developers too, because IBM Informix software and documentation are
enhanced in each release.

To familiarize yourself with IBM Informix products and documentation:

1. Read IBM Informix DataBlade Module Development Overview.
This publication briefly describes the database objects you can include in your
DataBlade module and other options you have when you create a DataBlade
module.

2. Install the necessary IBM Informix software.
See “Installing IBM Informix Software” on page 1-3 for more information.

3. Learn to use IBM Informix software: at the very least, your database server, the
Setnet32 utility (client connectivity), and the DB-Access or SQL Editor utilities
(SQL querying).

4. Complete the Informix DataBlade Developers Kit Tutorial.
See “DataBlade Developers Kit Tutorial” on page 1-3 for more information.

5. Create your own practice DataBlade module.
See “Creating a Practice DataBlade Module” on page 1-3 for more information.

1-2 IBM Informix DataBlade Developers Kit User’s Guide

Some of these steps are described in the following sections.

Installing IBM Informix Software
Install and become familiar with the following IBM Informix software products:
v Your database server
v IBM Informix Client Software Development Kit (Client SDK)
v Informix DataBlade Developers Kit

In addition, if you plan to develop a DataBlade module in Java, you should
become familiar with IBM Informix Dynamic Server with J/Foundation and the
Java Development Kit (JDK). For information on the correct version and the source
of the JDK, see the release notes for your database server.

Install the latest version of the IBM Informix software for your development
environment. Although the Informix DataBlade Developers Kit is only available on
Windows, it can generate DataBlade modules for UNIX as well as Windows.

For information on currently available IBM Informix software releases, see the IBM
Informix Developer Zone site at http://www.ibm.com/software/data/developer/
informix.

DataBlade Developers Kit Tutorial
The Informix DataBlade Developers Kit Tutorial offers several exercises, each
focusing on a single aspect of DataBlade module development.

To access the exercises, start the tutorial from the Informix DataBlade Developers
Kit InfoShelf home page. You can launch the InfoShelf from the BladeSmith Help
menu or start it independently by choosing Start > Programs > Informix > DBDK
InfoShelf.

Creating a Practice DataBlade Module
To familiarize yourself with the entire development process, create a simple
practice DataBlade module containing an easily implemented object, such as a
user-defined routine that takes built-in data types as arguments. Be sure to write
the code, test it, and debug it. Completing a simple DataBlade module helps you
create a realistic estimate of the length of your development cycle.

Designing Your DataBlade Module
DataBlade modules can contain complex operations. A good design is critical to
your success.

To design your DataBlade module:

1. Read about DataBlade module SQL design concepts.
For DataBlade module SQL design issues, see Chapter 2, “Designing DataBlade
Modules,” on page 2-1.
For general information about the options you have when you extend the
server, see IBM Informix User-Defined Routines and Data Types Developer's Guide.

2. Write a functional specification.
See “Writing a Functional Specification” on page 1-4 for more information.

3. Read Informix coding guidelines.
See “Programming Resources” on page 1-4 for more information.

4. Write a design specification.
See “Writing a Design Specification” on page 1-4 for more information.

Chapter 1. Getting Started with DataBlade Module Development 1-3

5. Create an iterative development strategy.
See “Creating an Iterative Development Plan” on page 1-5 for more
information.

Some of these steps are described in the following sections.

Writing a Functional Specification
A functional specification describes the scope and functionality of your DataBlade
module, without documenting implementation details. It also documents other
issues for development, such as phases of functionality, compatibility, performance,
and platform. A good functional specification shows how your DataBlade module
solves the problem you designed it to solve.

For a sample functional specification, see the IBM Informix Developer Zone site at
http://www.ibm.com/software/data/developer/informix.

Programming Resources
For specific language options and guidelines, see Chapter 3, “Programming
Guidelines,” on page 3-1.

The following table lists the programming language options you have when
writing DataBlade module code and refers you to sources of information about
them.

Language Information Sources

C Chapter 5, “Programming DataBlade Module Routines in C,” on
page 5-1

IBM Informix DataBlade API Programmer's Guide

ActiveX/C++
(client-side
programming and
Windows server
projects only)

Chapter 6, “Creating ActiveX Value Objects,” on page 6-1

Chapter 7, “Using ActiveX Value Objects,” on page 7-1

IBM Informix DataBlade API Programmer's Guide

Java Chapter 8, “Programming DataBlade Modules in Java,” on page 8-1

J/Foundation Developer's Guide

IBM Informix JDBC Driver Programmer's Guide

Stored Procedure
Language (SPL)

IBM Informix Guide to SQL: Tutorial

For further tips on coding DataBlade modules, see the IBM Informix Developer
Zone at http://www.ibm.com/software/data/developer/informix.

Writing a Design Specification
A design specification describes the overall functionality of your DataBlade module
and documents the specific routines available to the user, the supporting database
tables used to implement the routines, error messages, and the environment used
to build the DataBlade module. A design specification also documents
implementation details that the DataBlade module customer does not need to
know, such as internal support routines.

For a sample design specification, see the IBM Informix Developer Zone at
http://www.ibm.com/software/data/developer/informix.

1-4 IBM Informix DataBlade Developers Kit User’s Guide

Creating an Iterative Development Plan
Keep the following guidelines in mind when you create an iterative development
plan:
v Plan the order in which to create objects.

Some objects can depend on others; you must create new data types before you
create the routines that operate on them. Create simple data types and routines
before complex ones. Create objects in the smallest independently testable
groups. For example, you can test opaque data type support routines without
any other objects.

v Add unit and functional test data for opaque data type support routines,
user-defined routines, and cast support routines as you create them.
Unit tests are SQL files you use to test boundary conditions while debugging
your DataBlade module on Windows. After you generate unit tests for all your
routines with BladeSmith, you add test data to them. If you later regenerate unit
tests, the changes you made are merged into the new unit test files.
Functional tests are scripts you execute to validate your DataBlade module on
UNIX after you finish debugging it. You can also run functional tests on
Windows if you use a UNIX emulator, such as MKS Toolkit. Before you generate
functional tests in BladeSmith, you must enter functional test data for all your
routines. You can add custom scripts, but if you alter existing scripts and then
regenerate them, changes you made are overwritten. See “Adding Functional
Test Data” on page 4-36 for more information.

v Include tracing when you generate code.
If you enable tracing when you generate code in BladeSmith, BladeSmith
includes enter and exit tracing for every routine. You can also add more tracing.
See “Generating Files” on page 4-40 for information on how to generate code
with tracing and “Tracing and Error Handling” on page 5-7 for information on
the generated tracing.

v Add custom error messages.
Anticipate how your customers will use your DataBlade module and create error
messages that sensibly report problems to your users. See “Defining Errors” on
page 4-13 for information on how to define error messages and “Tracing and
Error Handling” on page 5-7 for information on how to add custom error
handling to your DataBlade code.

Tip: Although you can use BladeSmith to define all of the objects in a DataBlade
project before you edit and test the code, you might find it helpful to develop
a modular plan to define and test objects one by one before you test the
project as a whole.

Developing Your DataBlade Module
Developing your DataBlade module is an iterative process that involves creating
objects in BladeSmith, generating code, editing and compiling code, and testing
and debugging code. When you identify errors, you must repeat the process to
correct errors. DataBlade development can be iterative in another way: you can
create objects in BladeSmith one by one, coding and testing each one before
creating the next. When you are finished developing your DataBlade module, you
package it for distribution.

To create your DataBlade module:

1. Create a project in BladeSmith.
See “Creating a New Project” on page 4-4 for more information.

Chapter 1. Getting Started with DataBlade Module Development 1-5

2. Define the contents of your DataBlade module in BladeSmith.
See “Creating DataBlade Module Objects” on page 4-8 for more information.

3. Generate DataBlade module code in BladeSmith.
See “Generating Files” on page 4-40 for more information.

4. Edit and compile DataBlade module code.
See “Editing and Compiling DataBlade Module Code” on page 1-7 for more
information.

5. Debug your DataBlade module code.
See “Debugging Your DataBlade Module” on page 1-7 for more information.

6. Repeat steps 2 through 5 until your DataBlade module is complete and the
code functions properly.

7. Test your DataBlade module code.
Run generated functional test scripts on UNIX or on Windows with a UNIX
emulation program. For instructions for UNIX, see “Performing Functional
Tests” on page 9-7. For instructions for Windows, see “Performing Functional
Tests on DataBlade Modules” on page 10-6.

8. If necessary, repeat steps 4 through 7 until your DataBlade module is complete
and the code functions properly.

9. Package your DataBlade module with BladePack.

The following diagram illustrates the basic steps in DataBlade module
development and lists the tools you use for Windows, UNIX, and Java.

Figure 1-1. DataBlade Module Development Cycle

1-6 IBM Informix DataBlade Developers Kit User’s Guide

Editing and Compiling DataBlade Module Code

Windows Only

If you are developing a DataBlade module in C or C++, you use Microsoft Visual
C++ 6.0 to edit and compile your source code on Windows.

End of Windows Only

UNIX Only

If you are developing a DataBlade module in C, you can use any standard UNIX
development tool and compiler to edit and compile your source code.

End of UNIX Only

If you are developing a DataBlade module in Java, you can use any standard
UNIX or Windows development tool to edit your source code. Use the JDK 1.1.x
compiler to compile it.

For more information about programming and compiling, see the following
chapters:
v Chapter 5, “Programming DataBlade Module Routines in C,” on page 5-1
v Chapter 6, “Creating ActiveX Value Objects,” on page 6-1
v Chapter 8, “Programming DataBlade Modules in Java,” on page 8-1

Debugging Your DataBlade Module
Debugging a C or C++ DataBlade module consists of the following general steps:
1. Install the DataBlade module on the database server.
2. Set breakpoints in your source code file.
3. Start and attach the debugger to the database server process.
4. Register the DataBlade module in your test database.
5. Run SQL queries (unit tests) to test the source code marked with breakpoints.

Windows Only

If you are debugging C or C++ DataBlade module source code on Windows, you
use Microsoft Visual C++, the DBDK Visual C++ Add-In, and the IfxQuery tool.
The Debug DataBlade Module command of the add-in installs the DataBlade
module on the local database server, starts the debugger and database server, and
calls IfxQuery to register the DataBlade module and run the unit tests that halt at
breakpoints in the source code. The Debug DataBlade Module command functions
only if the database server is installed on the same computer on which you are
debugging.

For more information on debugging C and C++ code on Windows, see Chapter 10,
“Debugging and Testing DataBlade Modules on Windows,” on page 10-1.

End of Windows Only

Chapter 1. Getting Started with DataBlade Module Development 1-7

Windows NT Only

UNIX Only

If you are debugging a DataBlade module on UNIX, you must install the
DataBlade module, start the database server and debugger, register the DataBlade
module with BladeManager, and use DB-Access to execute SQL statements that
halt at breakpoints in the source code.

For more information on debugging C code on UNIX, see Chapter 9, “Debugging
and Testing DataBlade Modules on UNIX,” on page 9-1.

End of UNIX Only

End of Windows NT Only

Windows NT Only

JAVA Language Support

Debugging a DataBlade module written in Java consists of the following general
steps:
1. Install the DataBlade module.
2. Start the database server process.
3. Register the DataBlade module in your test database.
4. Run SQL queries (unit tests) to test the source code marked with breakpoints.
5. Examine the Java log file for errors.

For more information on debugging Java code, see “Debugging and Testing
DataBlade Modules Written in Java” on page 8-9.

End of JAVA Language Support

End of Windows NT Only

Packaging Your DataBlade Module
With BladePack, you can create an interactive installation program for the
following environments:
v UNIX
v Windows with InstallShield 3.1
v Windows with InstallShield 5.1

You must include the generated SQL scripts and all the shared library files you
produced when you compiled your DataBlade module source code. However,
consider also including:
v Custom installation extensions
v Documentation for your DataBlade module
v Examples for your DataBlade module

1-8 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 2. Designing DataBlade Modules

In This Chapter . 2-1
Data Model . 2-1
Data Type Design . 2-3

Object Accessibility . 2-3
Handling Large Objects . 2-4

Query Language Interface . 2-5
SQL Query Structure . 2-5
The Target List . 2-6
The Qualification . 2-7

Query Processing . 2-8
Predicate Evaluation . 2-8

Expensive Routines . 2-9
User-Defined Statistics . 2-9
Aggregates . 2-11
Sorting Results . 2-12

Grouping . 2-12
Casts . 2-13
Access Path Selection . 2-14

Unordered Row Processing . 2-14
Secondary Access Methods . 2-14

Planning for Transaction Semantics . 2-15
Interoperability . 2-15

Orthogonality . 2-15
Simple, Clean Interfaces . 2-16

Naming Routines . 2-16
Taking Advantage of Polymorphism . 2-17
Limiting the Number of Arguments . 2-17
Avoiding Modal Routines . 2-17

In This Chapter
This chapter describes DataBlade module SQL design issues. For language-specific
design issues, see Chapter 3, “Programming Guidelines,” on page 3-1.

Data Model
A data model is a high-level definition of a DataBlade module: what objects it
represents and what operations on those objects it provides. Here are some issues
to keep in mind when you design a data model:
v Consider the data model independently from the applications that use it and the

user interfaces required by those applications.
v Concentrate on designing a service, rather than an application.
v Build a data model that is reusable by multiple client applications, rather than

creating one tailored to a particular client application.

For example, consider the fictitious SimpleMap DataBlade module, which stores,
manipulates, and displays maps. The data model for this DataBlade module might
specify:
v Spatial data types, such as polygons to represent counties and cities and line

segments to represent roads and rivers

© Copyright IBM Corp. 1996, 2010 2-1

v Operations performed on the spatial data types, such as search and comparison
routines that determine whether a particular city lies within a particular county
or whether two roads intersect

This data model allows you to make requests such as, “Find all the polygons in the
map that fall inside the currently visible region, where the currently visible region
is a given polygon.” The query scans the database and returns only the polygons
that meet the request criteria.

However, the display logic for the data types does not belong in this data model;
the rendering of polygons is a user-interface issue. After the desired polygons have
been retrieved from the database, the client application displays them.

The data model for a DataBlade module must be simple to understand, and the
DataBlade module must provide a rich set of services using a minimal set of
routines. This fundamental software design concept applies to DataBlade modules
in particular, because DataBlade modules are intended for use by other developers.

For example, in the SimpleMap DataBlade module, assume that users want to find
overlapping regions on a map. The DataBlade module can provide a number of
different interfaces to support the query. Two examples are as follows:
Overlaps(Polygon, Polygon)
Contains(Polygon, Polygon)

The Overlaps() routine returns TRUE if any parts of the two polygons overlap,
while the Contains() routine returns TRUE if the first polygon completely contains
the second. These two routines are simple to understand and easy to remember.

However, if the semantics of two routines are too similar, users may have difficulty
remembering which routine computes which value. For example, assume the
SimpleMap DataBlade module also provides the following Intersects() routine:
Intersects(Polygon, Polygon)

This routine returns TRUE if the boundaries of the two polygons intersect.
Intersects(a, b) is equivalent to the following statement:
Overlaps(a, b) and not (Contains(a, b) or Contains(b, a))

Intersects() and Overlaps() are confusing when both are supplied. Because
Overlaps() and Contains() together can compute intersections, it is probably best
to leave Intersects() undefined.

When you design a data model, separate the routines used by a single application
from the more general service routines. For example, perhaps you want to provide
a routine that takes a polygon as an argument and returns another polygon with a
border exactly one pixel outside the original. To display the new polygon, the two
polygons are used together to create the appearance of a polygon with a thick
border.

Such a routine is probably useful only for a particular application that displays
thick-bordered polygons; it is not useful to other applications that operate on
spatial data. Thus, it is a poor candidate for inclusion in a DataBlade module.

In summary, these are the issues to consider when you design the data model for a
DataBlade module:
v Separate the user interface from the abstract operations on data.

2-2 IBM Informix DataBlade Developers Kit User’s Guide

v Think about data types and routines that operate on them.
v Keep the design simple.
v If you are building a production DataBlade module, do not add server routines

intended to support a single application.

Data Type Design
After you have designed a data model for your DataBlade module, you can design
its specifics, such as data types to best represent your DataBlade module objects.

Your Informix database server supports a rich set of data types, known as built-in
data types. (For information on the built-in types, see the IBM Informix Guide to
SQL: Reference.) It is recommended that you use built-in types wherever possible;
however, even with built-in types, consider the following design issues:
v How accessible must the elements of each object be?
v How large is each object?

This section provides some guidelines for making these design decisions.

Object Accessibility
Users are likely to query the data of two extended types: row data types and opaque
data types. To decide which data type to use, consider how accessible the elements
of each DataBlade module object should be:
v Use row data types for any object that is a container and whose elements users

always want to access.
v Use opaque data types for indivisible objects or for objects whose representation

you want to hide from your users.

For example, say the users of the SimpleMap DataBlade module want to see and
operate directly on the street number and name, country, and postal code. You
might decide to provide the Address data type.

If you create Address as an opaque type, each member of the underlying C
structure can store a different element of the address. However, this means you
must also define accessor routines for each element.

If you create Address as a row type, your Informix database server automatically
provides direct access to each of the fields, as follows:
CREATE ROW TYPE Address

(street_number real, street_name varchar(40),
city varchar(100), country varchar(40),
postal_code varchar(20));

This allows users to write queries like the following example:
SELECT * FROM employees WHERE address.city = 'Vienna';

In contrast, because users seldom need to examine the individual points of a
polygon, you can create the Polygon type as an opaque data type. An opaque data
type provides an efficient representation that you can operate on easily with C
code. The query language interface remains simple.

When you design data types, ask yourself the following questions:
v Is the data type just a container for a collection of values that users can access

directly? If so, use a row data type.

Chapter 2. Designing DataBlade Modules 2-3

v Is the type naturally indivisible, or do you want to hide its representation from
users? If so, use an opaque data type.

v How can you represent your data to make it easy to use in SQL and to make
end-user queries simple?

Handling Large Objects
When you decide on the specific data type to represent a DataBlade module
object—or its elements—keep in mind that the maximum row size for a database
table is 32 KB. (Row size is the sum of the sizes of the columns in that row.)

Your Informix database server provides the LVARCHAR data type, which can hold
up to 32,790 KB of text data. Larger objects and binary objects are called smart
large objects, and your Informix database server provides facilities for
high-performance access to smart large objects.

A smart large object is an object that is logically stored in a table column of type
BLOB (binary large object, for binary data) or CLOB (character large object, for text
data) but is physically stored in an sbspace.

An sbspace is a logical storage area that contains one or more chunks that store
only BLOB and CLOB data. Sbspaces must be created before you can create any
smart large objects; after sbspaces are created, they are managed by your Informix
database server.

Tip: If your DataBlade module makes use of smart large objects, you can test for
the existence of a particular sbspace when your DataBlade module is being
registered in a database using BladeManager. For information, see
Appendix C, “Testing for an Sbspace,” on page C-1.

Smart large objects are “smart” because they provide the following features:
v They provide random access to their data, using an operating-system-style

interface (seek, read, write, and so on).
v They are recoverable in the event of a system crash (if the sbspace was created

with logging enabled), and they obey transaction isolation modes.
v They have no maximum size.
v You can create and store indexes in them.
v You can access and manipulate them using SQL, Informix ESQL/C, or the

DataBlade API.

Within SQL, the only comparison operator you can use for data of types BLOB and
CLOB is Equal() (=); however, you can perform additional operations using
Informix ESQL/C or the DataBlade API from your client application.

You can also use the IBM Informix Large Object Locator DataBlade Module to
handle large objects. This DataBlade module enables you to store large object data
on the client computer. The IBM Informix Large Object Locator DataBlade Module
is included with your Informix database server. You must register the module’s
routines and data types in each database in which you plan to use the module.

When you design data types, ask yourself the following questions:
v Is the object represented by 32,790 KB or less of text data? If so, use the built-in

LVARCHAR data type.

2-4 IBM Informix DataBlade Developers Kit User’s Guide

v Is the object represented by more than 32,790 KB of text data, or by binary data?
If so, use the smart large object facilities provided by your Informix database
server.

v Does it make sense to store the large object on the client computer? If so, use the
IBM Informix Large Object Locator DataBlade Module.

The following table lists large object topics and where you can find more
information on them.

For information on... See...

Using smart large objects, including examples http://www.ibm.com/software/data/developer/informix

Overview of smart large objects IBM Informix Guide to SQL: Tutorial

Creating sbspaces IBM Informix Administrator's Guide

Testing for the existence of a particular sbspace during
DataBlade module registration

Appendix C, “Testing for an Sbspace,” on page C-1

BLOB and CLOB data types IBM Informix Guide to SQL: Reference

SQL smart large object functions IBM Informix Guide to SQL: Syntax

Informix ESQL/C smart large object features IBM Informix ESQL/C Programmer's Manual

IBM Informix DataBlade API smart large object features IBM Informix DataBlade API Programmer's Guide

IBM Informix Large Object Locator DataBlade Module IBM Informix Database Extensions User's Guide

Most of these publications are accessible through the InfoShelf.

Query Language Interface
The next component in DataBlade module design is the query language interface.
Because your Informix database server is object-relational, you access it by
formulating queries in SQL. DataBlade modules extend SQL by defining new types
and new routines that are available to queries. Consider the syntax that users must
master to use a DataBlade module.

SQL Query Structure
SQL includes Data Definition Language (DDL) statements and Data Manipulation
Language (DML) statements.

DDL statements, such as CREATE, ALTER, and DROP, modify the schema of a
database. DML statements, such as SELECT, INSERT, UPDATE, and DELETE,
manipulate data in tables.

Most SQL queries use DML statements. When you design a DataBlade module,
consider DML statements in the abstract. DML statements can be in either of the
following two forms:
SELECT something FROM some table

WHERE some conditions are satisfied

UPDATE some table SET something
WHERE some conditions are satisfied

The italicized components serve different purposes in the DML query. The some
table part is called “the from list” and is not important to consider when you
design a DataBlade module. The something part is called “the target list” and
identifies the columns for retrieval or update. The target list is the target on which

Chapter 2. Designing DataBlade Modules 2-5

the query is operating. The some conditions are satisfied part of the query is called “a
qualification” because it identifies the rows that qualify to participate in the
operation.

When you develop a DataBlade module, consider where you expect a particular
routine to be used. In the following two sections, the DataBlade module routines
that typically appear in the target list and qualification are addressed.

The Target List
The target list is where simple computation occurs. Consider providing DataBlade
module routines for common computations on opaque data types. You can perform
the computation in the DataBlade module to eliminate the need to implement the
routine in the client application. You can use DataBlade module routines in the
target list to reduce the amount of data transferred from the server to the client
and thereby improve performance.

Consider the following sample query from the SimpleMap DataBlade module
discussed earlier in this chapter:
CREATE TABLE cities (name text, population integer,

boundary Polygon);

Polygon is a data type supplied by the SimpleMap DataBlade module.

To retrieve a list of all cities, their populations, and population densities, you can
submit the following query:
SELECT name, population, population / Area(boundary)

AS density FROM cities;

In this example, the Area() routine is supplied by the SimpleMap DataBlade
module. Area() returns a floating-point number that is the area of the supplied
polygon. You can invoke the built-in division operator to compute density from
population and area. This query does a simple computation in the target list, using
a mixture of DataBlade module and built-in routines.

This computation can also be done on the client. However, the client must
implement the Area() routine for polygons, and the server must ship all of the
polygons to the client. This operation is more expensive than shipping the results
of the division across the network because polygons can be quite large. Generally,
any computation that appears in the target list can also be done by the client.
Thus, place target-list routines in the DataBlade module server routines only if
there is an advantage to be gained by doing so.

If there is no advantage to running the routine on the server, leave the routine out
of the DataBlade module and allow the client application developers to implement
it in the client. If the server routine provides any of the following advantages,
include it in the DataBlade module:
v It reduces the volume of data transferred to the client.
v It simplifies application development by sharing code among clients more

effectively.
v It benefits from the parallelism and scalability enabled by your Informix

database server.

A simple DataBlade module that integrates well with existing data types is always
better than a complicated one with many predefined routines that cannot be used
in conjunction with built-in or other DataBlade module routines.

2-6 IBM Informix DataBlade Developers Kit User’s Guide

The division operator that appears in the query calls a division routine built into
your Informix database server. Built-in routines and DataBlade module routines
can be combined in queries, as shown in the previous example using division with
Area(). Routines from different DataBlade modules can be mixed to provide
additional services.

When you design a data model, consider using built-in types and types provided
by other DataBlade modules. In the previous example, you might define a new
data type, called AreaType, to represent the area of geographic objects. However,
then you must implement all the math on AreaType values yourself. By using real
numbers to represent areas, you can leverage existing math and computational
support in the database server and allow users to mix SimpleMap DataBlade
module routines with other routines.

You might define a routine that computes population density inside the
SimpleMap DataBlade module. The routine takes two parameters—a polygon and
an integer—and does the division itself. However, no real semantic power is
derived from this design. Leave special-purpose routines out of the DataBlade
module to keep the interface simple and to let developers define their own
expressions or routines to compute specific values.

The Qualification
The SQL qualification restricts the set of rows returned to the user. The qualification
filters out records that are not interesting. Only the records that pass the
qualification are evaluated in the target list. Thus, a qualification is a more
powerful tool than the target list.

A single expression in a qualification is called a predicate. A qualification can
contain multiple predicates joined by the Boolean operators AND and OR.

If a DataBlade module routine is used in a qualification, it filters the records
returned to the client. Your database server can filter by the contents of new data
types. (This capability is not available in conventional relational databases.)

Consider whether the routines you define are more likely to be used in the target
list or the qualification. Routines more commonly used in the qualification make
better use of the extensibility of your database server because they support
searches that cannot be done efficiently on conventional relational servers.

The following example shows a DataBlade module routine used in a qualification:
SELECT name, boundary FROM cities WHERE

Overlaps(boundary, '(1,1), (5,5), (7,7), (8,9)');

In this example, the Overlaps() routine is provided by the SimpleMap DataBlade
module and takes two polygon arguments: the first argument specifies the polygon
you are checking; the second specifies the polygon with which the first is
compared. Overlaps() returns TRUE if the two polygons overlap and FALSE
otherwise. This query searches the cities table for those cities that overlap the
region of interest.

The separation between routines used in the target list and those used in the
qualification is not absolute. For example, the following query finds the names and
populations of large cities:
SELECT name, population FROM cities

WHERE Area(boundary) > 500;

Chapter 2. Designing DataBlade Modules 2-7

In this example, the Area() routine appears in the qualification. In the section “The
Target List” on page 2-6, the Area() routine appeared in the target list.

Some routines are better suited to the qualification than the target list. A good
example of this distinction is the Overlaps() routine. This routine is more powerful
in the qualification. While it is possible to formulate a query like the following
example, it is not very common:
SELECT Overlaps(boundary, '(1,1), (5,5), (7,7), (8,9)')

FROM cities;

This query returns a list of yes-or-no answers for each city in the table that
overlaps the supplied constant polygon. It is more common to use the Overlaps()
routine to filter rows than to compute values returned to the user. However,
important and useful exceptions to this rule exist, as follows:
SELECT a.name, Overlaps(a.boundary, b.boundary)

FROM cities a, cities b
WHERE b.name = 'Los Angeles' AND
a.name = b.name;

This query returns a list of all cities in the table and whether they overlap Los
Angeles.

To help decide which routines to include in the DataBlade module, consider the
following questions:
v What questions do users want to ask about the contents of the new data types in

the DataBlade module?
v What routines allow them to ask those content-based questions? These routines

are used in the qualification.

Query Processing
To develop a DataBlade module, you need a general understanding of query
processing and Informix SQL. You must also understand the execution
environment inside your Informix database server—the multithreading model, the
collection of processes in which DataBlade module routines can execute, and
concurrent access to database objects, transactions, and so on. This section
describes query processing.

Predicate Evaluation
An expression in the qualification of a query is a predicate. The WHERE clause in
the following query is a predicate:
SELECT name, boundary from cities

WHERE Overlaps(boundary, '(1,1), (5,5), (7,7), (8,9)');

The database server evaluates the predicate for every row in the table and returns
the rows that satisfy the predicate to the client. Each predicate in a qualification
eliminates rows from the candidate set. After the server determines that a row does
not satisfy a predicate, it moves on to the next candidate row.

Most predicate evaluation is straightforward—values of interest are extracted from
a candidate row and evaluated against the predicate. However, there are some
cases where predicates in the qualification behave in a unique way. These cases are
described in the following sections:
v “Expensive Routines” on page 2-9, next
v “User-Defined Statistics” on page 2-9

2-8 IBM Informix DataBlade Developers Kit User’s Guide

v “Aggregates” on page 2-11
v “Sorting Results” on page 2-12

Expensive Routines
Expensive routines are routines that either take a long time or require a great deal of
disk space to run. Conventional relational database systems do not account for
expensive routines; any predicate that appears in a query is assumed to be as
expensive as any other. For example, comparing two floating-point numbers is not
more difficult than comparing two integers. For relational databases, this is the
right approach.

However, an object-relational database system must evaluate relative function
costs. Some routines are very difficult to compute or require a great deal of
intermediate space. For example, it can take many thousands of machine
instructions to determine whether two polygons overlap.

Because an object-relational database stops evaluating predicates as soon as it
determines that a row does not satisfy the criteria, the database server chooses an
optimum order to evaluate the predicates in a query. If it evaluates all the
expensive predicates first, the query runs slower than if it considers the
inexpensive predicates first.

The strategy for choosing the best order to evaluate predicates is complex and
beyond the scope of this discussion. However, the database server must evaluate
the cost of invoking user-defined routines to run queries efficiently.

Most DataBlade module routines are at least as complex as a routine that compares
floating-point numbers. For DataBlade module routines that are more expensive,
you must describe the relative expense to the Informix server.

A good formula for estimating the expense of a routine is as follows:
<lines of code> + (<number of I/Os> * 100)

For example, if a routine has 100 lines of code and performs 5 disk I/Os or SQL
queries, the cost is 100 + (5 * 100), or 600. You can enter the cost in the BladeSmith
Routine wizard (see “Cost of Routine” on page 4-21).

When you estimate the cost of executing a routine, consider the following
questions:
v Which DataBlade module routines take a long time to run?
v Which DataBlade module routines consume large amounts of memory or disk

space?
v How expensive are the DataBlade module routines relative to one another?
v How expensive are the DataBlade module routines relative to expensive routines

defined by other DataBlade modules?

User-Defined Statistics
User-defined statistics provide a way to improve performance when you compare
opaque data type values. User-defined statistics compile information about the
values in an opaque data type column that the optimizer can use when it creates a
query plan when it needs to execute routines that compare opaque data type
values.

Chapter 2. Designing DataBlade Modules 2-9

Statistics typically consist of the following types of information about the specified
column; however, you can collect more information if it is appropriate for your
opaque data type:
v Minimum value
v Maximum value
v Distribution of values

When your statistics-gathering function calculates the distribution of column
values, it can assign each value to a “bin.” Each bin contains a range of values. For
example, suppose the column values range from 1 through 10. You could have five
bins: the first bin would hold values from 1 through 2, the second bin would hold
values from over 2 through 4, and so on. The database server generates statistics
by calling your statistics-gathering function when you run the UPDATE
STATISTICS statement in medium or high mode (see the IBM Informix Guide to
SQL: Syntax).

Important: You must understand your data and how users will query it to create
meaningful statistics.

The minimum, maximum, and distribution of values can be used to compute the
selectivity of a value. The optimizer can then use the selectivity of values when it
determines query cost estimates. For example, suppose you want to join two
tables. Normally, a join compares all values in one table to all values in the other
table. However, if the optimizer knows that one of the tables has low selectivity, it
can efficiently order the joins.

Selectivity is an estimate of the percentage of rows that will be returned by a filter
in a query. Selectivity values range from 0.0 to 1.0, where 0.0 indicates a very
selective filter that passes very few rows and 1.0 indicates a filter that passes
almost all rows. The optimizer uses selectivity information to reorder expressions
in the query predicate so that filters that are expensive to call given the values of
their arguments are evaluated after filters that are inexpensive to call. Thus the
optimizer reduces the number of comparisons and improves performance. To
determine the selectivity of a routine, the database server calls the associated
selectivity routine.

For example, suppose you have an opaque data type that represents a circle and
you have created a distribution for the circle type based on the radius. Assume
that the values of the radius range from 5 to 15. If you query for all circles with a
radius of less than 4, the selectivity of the LessThan() function that handles the
circle data type is 0 because no values qualify. Consequently, the optimizer would
not execute the LessThan() function. Alternatively, if you query for all circles with
a radius of greater than 4, the selectivity of the GreaterThan() function that
handles the circle data type is 1.0 because all values qualify. Consequently, the
optimizer would execute the GreaterThan() function after all other operations in
the query predicate.

You can define selectivity routines for user-defined functions with the following
characteristics:
v Functions that compare two opaque data types
v Functions that return a Boolean value
v Functions that act as filters (called in the WHERE clause of a SELECT statement)

2-10 IBM Informix DataBlade Developers Kit User’s Guide

For example, you can define selectivity functions for the Equal(), LessThan(), and
GreaterThan() functions that are overloaded for an opaque data type. You can also
define a selectivity function for a function like Contains() that compares two
opaque data types.

To implement user-defined statistics, you must supply the following routines:
v Statistics support functions that collect statistics for opaque data types (see

“Statistics Support” on page 4-34)
v User-defined selectivity routines that use statistics to estimate the selectivity of a

routine that compares opaque data type values (see “Selectivity Functions” on
page 4-22)

After you define the routines in BladeSmith, you must add code to them to
provide the required functionality. See “Editing Statistics Routines in statistics.c” on
page 5-27 and “Selectivity Functions” on page 5-31 for instructions.

To determine whether your opaque data type needs user-defined statistics,
consider the following questions:
v Do you know enough about the data and how users will access it to write

routines that compile meaningful statistics?
v Do the routines that compare your opaque data type consume large amounts of

memory or disk space?

Aggregates
Most DataBlade module functions operate on single values and return one result
for each time they are called. Aggregates, however, are functions that are called
repeatedly, with different values, and collect their results until no more arguments
are supplied.

An example of an aggregate is the built-in AVG aggregate. This aggregate
computes the average value of all its arguments. For example, an SQL user could
issue the following query:
SELECT AVG(population) FROM cities;

The query processing engine calls the supporting function for AVG repeatedly with
population values from the cities table. After all the populations have been passed
to AVG one at a time, it returns the average population. You can extend the
aggregates that are built into the database server by overloading their operator
functions for an extended data type. For more information, see the IBM Informix
DataBlade API Programmer's Guide.

You can define new aggregates that implement user-defined functions. For
example, one common spatial operation is to compute a minimum bounding
rectangle that contains a collection of other rectangles. A user might write the
following query using a user-defined aggregate called BOUNDING:
SELECT BOUNDING(boundary) FROM cities;

The BOUNDING aggregate takes all the polygons, one at a time, from the cities
table and returns the smallest rectangle that contains them all. The query
processing engine supplies records to the aggregate for computation; the aggregate
only collects information over the arguments it is passed. For more information,
see “Creating Aggregates” on page 4-9.

Like ordinary functions, aggregates may appear anywhere in the query, including
in the target list and the qualification. Aggregates in the qualification are most

Chapter 2. Designing DataBlade Modules 2-11

useful in queries that also do grouping. See “Grouping” on page 2-12 for more
information on how aggregates work in grouping queries.

If you have a data type over which summary or statistical analyses are valuable,
consider defining an aggregate.

When you design a DataBlade module, ask yourself the following question: Is it
useful to compute a summary over values that the DataBlade module supports?

Sorting Results
SQL allows you to sort result rows when you express your queries. Sorted results
are useful when you need to see records in some particular order.

The following query sorts a list of cities and their populations in descending order
by population:
SELECT name, population FROM cities ORDER BY population desc;

If a DataBlade module defines a data type that can be sorted in a meaningful way,
you must supply a comparison routine for the type. This routine allows the user to
sort query results on that type.

In addition, you can use the results of routines that appear in the target list to sort
the results of a query. For example, the following query returns a list of cities in
descending order by population density:
SELECT name, population,

population / Area(boundary) AS density
FROM cities
ORDER BY density desc;

The density expression, on which the query results are sorted, is a complex
calculation. The expression includes a DataBlade module routine and a division
operation. Because your Informix database server allows sorting by floating-point
numbers, the preceding query requires no special sorting support from the
DataBlade module.

To determine whether to provide sorted results, ask the following questions:
v Can my DataBlade module data types be sorted?
v Will users want to sort this data type?

Grouping
SQL allows you to write queries that group results. Grouping is a powerful facility
for summarizing data, particularly in combination with aggregates such as COUNT
or SUM. The following query uses grouping and aggregates:
SELECT COUNT(name), population FROM cities GROUP BY population;

This query returns the number of cities that have the same population for each
distinct population value that appears in the table. The GROUP BY clause breaks
the set of result rows into groups with equal populations; then the target list is
evaluated for each group separately. The COUNT aggregate counts the number of
city names in the group.

Consider whether any of the types you define are candidates for grouping. In the
SimpleMap DataBlade module, for example, polygons are a poor candidate; users
seldom want to group geographic data that contains identical polygons.

2-12 IBM Informix DataBlade Developers Kit User’s Guide

You can group results using complex expressions. For example, the following
query divides cities into groups that are within 10 units of the same area and then
adds the population for the group:
SELECT Area(boundary) / 10 AS dimensions, SUM(population)

FROM cities GROUP BY dimensions;

To determine whether your DataBlade module requires support routines for
grouping, ask the following questions:
v For each type in the DataBlade module, can the values sensibly be broken into

groups that are equivalent?
v What is the meaning of each of these groups?
v Do users want to group values in that way?

Casts
If your DataBlade module defines types that are similar or comparable, consider
defining casts between the types. You can also define casts from DataBlade module
types to built-in types, and from data types in one DataBlade module to data types
in another DataBlade module.

Casting values allows the query processing engine, implicitly or explicitly, to
change the type of a value and use it as an argument to routines that require the
destination type.

In an inheritance hierarchy, casting can provide another mechanism for type
conversion. In general, subclasses can be implicitly cast to superclass types.
However, downward casts (that is, from supertype to subtype) are not
automatically supported because subclasses typically add instance variables not
present in the supertype.

Similarly, distinct types can often be cast to their source type. For example, a
distinct type called LIRA (representing the currency unit of Italy), based on the
MONEY data type, might allow casting to MONEY to allow simple math
operations on it. However, you probably do not want to cast MONEY to LIRA; if
LIRA has only the properties of MONEY, it is not a required type.

Casts can be confusing if overused. Implicit casts hide an important fact from
users—that data can be lost during type conversion. Explicit casts, which users
must specify in queries, do not have this problem.

Use casts only where necessary. Be sparing in the casts you supply to users, and be
sure you understand the circumstances under which you expect casts to be used.

To determine whether to provide casts, ask the following questions:
v Are any of the types in the DataBlade module comparable? Do they really need

to be different types? If so, is there a need to support explicit or implicit casts
between those types?

v Will users want to convert between values of one type and some other type,
either an Informix built-in type or one defined by the DataBlade module?

v Which direction should the conversion go (in the example earlier in this section,
from LIRA to MONEY, or from MONEY to LIRA)? In general, casts should only
go one way, unless you intend them to be explicit.

Chapter 2. Designing DataBlade Modules 2-13

Access Path Selection
During query processing, your database server takes a nonprocedural query and
produces a procedural plan for satisfying it; this process is called making an access
path selection. Queries are nonprocedural because they describe only the records of
interest and what operations to perform on them. They do not prescribe an
algorithm (procedure) for locating records on disk or the order in which to process
them.

Your database server evaluates a collection of possible query plans that can execute
the query correctly. The server estimates the cost of running each plan and chooses
the one with the smallest cost estimate. Cost estimates are a combination of the
number of expected disk I/Os, the expected number of records that must be
processed, and the cost of invoking each of the routines in the query on each
candidate row.

Unordered Row Processing
When you design a DataBlade module, you cannot control how queries are
executed. There is no guarantee that the routines in a query are called in any
particular order. DataBlade module routines are called during query processing to
compute answers to queries. Do not hardcode query execution strategies. For
example, an attempt to force an index scan or a sequential table scan reduces the
number of choices available to the query optimizer and results in poor
performance.

To ensure that your DataBlade module does not conflict with the query processing
engine, ask the following questions:
v Do any routines require values to be delivered in some particular order? If so,

the routines break a fundamental rule of relational database systems and must
be changed.

v Is it important for routines in a query to execute in some particular sequence?
Again, the routines must be changed.

Secondary Access Methods
A secondary access method is an index that allows queries to be evaluated more
efficiently. When you create a table in SQL, you can choose to create a B-tree index
on one or more columns in the table. The query processing engine can choose to
use the index. For example, if there is an index on the population column of the
cities table, the query processing engine has at least two choices for evaluating the
following query:
SELECT name FROM cities WHERE population > 1000000;

The query processing engine can scan the cities table sequentially, examining each
record in turn and comparing the population to one million, or it can use the
B-tree index to quickly find only those records with populations of more than one
million. When it chooses to use the B-tree index, the engine does not consider
records with smaller populations and does not read them from the disk.

The B-tree index stores the key value (for example, the population) and a pointer
to the record in the base table. The base table is the primary store, and the index is
a secondary access method.

You can define many types of indexes. For example, most text search engines use a
textual index to run searches quickly, while spatial data can be indexed in a
number of ways, including grid files and R-trees.

2-14 IBM Informix DataBlade Developers Kit User’s Guide

You can allow the creation of other indexes on your data types. For example, a
DataBlade module that defines a new type that can be sorted can allow users to
create B-tree indexes on that type. To do so, you create an operator class for the
type. An operator class is a collection of routines that allows the type to be used in
a given access method. For example, the operator class for B-trees includes the
routines LessThan(), LessThanOrEqual(), Equal(), GreaterThanOrEqual(), and
GreaterThan(). When you define those routines on a new data type, users can
create B-tree indexes on the type.

Planning for Transaction Semantics
DataBlade module code runs in SQL transactions. A transaction is a single, atomic,
independent sequence of client/server interactions. For example, inside a
transaction, a user can search a table for all the cities that overlap Los Angeles. In a
separate transaction, some other user can change the boundaries of Los Angeles, as
outlying areas are incorporated into the city. The two operations are independent
of one another. Each user is isolated from the changes made by the other until the
next transaction begins.

You must define DataBlade module code to be stateless and not based on the
assumption that any particular value persists across user transactions. For example,
a DataBlade module that does text matching might provide two services: one to
find all documents that contain a particular set of keywords and another to
highlight the matching keywords in the documents.

If a user first runs a query to find matching documents and then runs a separate
query to highlight the matches, the second operation cannot rely on any cached
results from the first. This is because some document contents might have
changed. In addition, because your database server is a multiuser system, different
users can run the same routines at the same time. There is no way to guarantee
that “saved” results belong to a particular query.

To ensure that you design systems that operate correctly in this environment, ask
the following questions:
v Are any of the routines based on an assumption that results from previous user

actions are still valid?
v Do I try to cache results for reuse?
v What happens if two users run the same routine on the same table

simultaneously?

Interoperability
The interoperability of a DataBlade module refers to how well that module works
with your Informix database server and with other DataBlade modules.

This section discusses the following interoperability issues:
v Orthogonality
v Simple, clean interfaces

Orthogonality
In an orthogonal system, such as an object-relational database, the various parts
work together in a natural, semantically logical way. For example, an orthogonal
DataBlade module provides solutions only for the problems it is intended to solve,
and it relies on the Informix server or other DataBlade modules to solve problems

Chapter 2. Designing DataBlade Modules 2-15

outside of its domain. Similarly, an orthogonal DataBlade module allows other
DataBlade modules to use its facilities in a natural, semantically logical way.

The SimpleMap DataBlade module, for example, does not implement full-text
search. It is more effective if developers who are experts in text search facilities
create DataBlade modules that satisfy this requirement. The SimpleMap DataBlade
module can then supply just geospatial functionality; it does not need to define
routines over types that it does not create.

A simple guideline for ensuring orthogonality in DataBlade module development
is, “It does a small number of things well.”

Simple, Clean Interfaces
Provide the users of your DataBlade module with a simple, clean interface by
following these guidelines where possible:
v Give your routines meaningful, “self-documenting” names.
v Take advantage of polymorphism.
v Limit the number of arguments each routine takes.
v Avoid creating modal routines.

This section discusses each of these guidelines.

Naming Routines
Whenever possible, use generally accepted names for routines using your new data
types. For example, the Overlaps() routine in the SimpleMap DataBlade module
does precisely what its name indicates. Users know what to expect when they call
it.

Because your database server supports polymorphism (see “Taking Advantage of
Polymorphism” on page 2-17), it is possible that another routine of the same name
already exists in the system. If you are concerned that your routine provides a
different service or has the same signature as another, similarly named routine
from another DataBlade module (that is, none of the arguments of your routine are
of a data type defined in your DataBlade module), consider renaming the routine
or qualifying its name with a three-character DataBlade module prefix such as
“USR”. Doing so helps avoid conflicts in the system and confusion among your
users.

Assume, for example, that you are creating the OtherMap DataBlade module with
a routine named Overlaps() that provides a different service than the Overlaps()
routine supplied by the SimpleMap DataBlade module. In addition, your
Overlaps() routine takes polygon data types not defined in the OtherMap
DataBlade module. If the three-character prefix of your DataBlade module is OTH,
then you might define your routine as follows:
OthOverlaps(Polygon, Polygon)

However, if your Overlaps() routine takes arguments of data types defined in the
OtherMap DataBlade module, you might define Overlaps() as follows:
Overlaps(OthPolygon, OthPolygon)

2-16 IBM Informix DataBlade Developers Kit User’s Guide

Taking Advantage of Polymorphism
Your database server supports polymorphism; thus, you can have multiple routines
with the same name that take different argument types. For example, a C
programmer might be tempted to create distinct names for the following routines
that return the larger of their arguments:
bigger_int(integer, integer)

bigger_real(real, real)

However, in SQL it is better to define the routines with the same name, as follows:
bigger(integer, integer)

bigger(real, real)

Limiting the Number of Arguments
To help your users remember how to use your DataBlade module routines, limit
the number of arguments they take. Re-evaluate any routines that take more than
three arguments; such routines can become unwieldy or can inadvertently become
modal (defined in the next section).

Avoiding Modal Routines
When you create DataBlade module routines, avoid including arguments that
make them modal; that is, the mode of the routine changes, depending on the third
argument. For example, there are a number of different ways to call a routine that
computes containment of spatial values. The SimpleMap DataBlade module might
implement the following routine:
Containment(polygon, polygon, integer);

This routine determines whether the first polygon contains the second polygon, or
whether the second contains the first. The caller supplies an integer argument (for
example, 1 or 0) to identify which value to compute; but the purpose of this
argument is not immediately evident to a new user of the DataBlade module.

Consider a second design for calculating containment, as follows:
Contains(polygon, polygon)
ContainedBy(polygon, polygon)

This design is an improvement: not only are the routines nonmodal, but the
routine names also clearly explain what computation is performed.

Chapter 2. Designing DataBlade Modules 2-17

2-18 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 3. Programming Guidelines

In This Chapter . 3-1
Programming Language Options . 3-1

Options for Opaque Data Types . 3-2
ActiveX Value Objects . 3-2
Mixing Languages in Server and Client Implementations 3-3
Limitations of Opaque Types for Each Language. 3-4
Embedding Opaque Data Types within Opaque Data Types 3-5

Options for Routines . 3-5
Overloading Routines in Different Languages. 3-5
Handling Opaque Data Types Implemented in a Different Language 3-5

Multilanguage DataBlade Module Issues . 3-5
C Programming Guidelines . 3-6
C++ Programming Guidelines . 3-7
Java Programming Guidelines . 3-7
DataBlade API Programming Tips . 3-8

In This Chapter
Use this chapter to help you when you write the design specification for your
DataBlade module.

Programming Language Options
This section explains the programming language options you have when you use
BladeSmith to generate source code for your DataBlade module. BladeSmith
supports the following external languages:
v C
v C++/ActiveX
v Java

The following table lists the objects that you can implement in an external
language and the languages you can use for each.

Object C C++/ActiveX Java

Cast support functions Yes No Yes

Aggregates Yes No Yes

Other user-defined routines Yes No Yes (with
restrictions)

Opaque data types routines
(server implementation)

Yes Yes (with
restrictions)

No

Value object methods
(client implementation)

No Yes No

The following subsections discuss programming language options in detail:
v “Options for Opaque Data Types” on page 3-2, next
v “Options for Routines” on page 3-5
v “Multilanguage DataBlade Module Issues” on page 3-5

© Copyright IBM Corp. 1996, 2010 3-1

Options for Opaque Data Types
Opaque data types are ultimately defined as C structures; when you create an
opaque data type with BladeSmith, the built-in data types you can choose as
members are C structures provided by the DataBlade API. However, you can
implement opaque data types as value objects in other external languages. A value
object is a self-contained binary object that provides standard interfaces to its users.
Value objects can be used in client applications.

You create client value objects in BladeSmith by specifying an optional client
implementation of your opaque data type, in addition to the mandatory server
implementation. For a complete list of options you have when you create an
opaque data type with BladeSmith, see “Opaque Data Type” on page 4-24.

When you decide what functionality and which language or languages to use for
your opaque data types, you should consider the following options:
v Whether to create client value objects in addition to opaque data types for the

database server. See “ActiveX Value Objects,” next, for more information.
v Which language to use for your opaque data types. See “Limitations of Opaque

Types for Each Language” on page 3-4 for more information.
v Whether to use different languages for the server and client implementations.

See “Mixing Languages in Server and Client Implementations” on page 3-3 for
more information.

v Whether to embed opaque data types as members of other opaque data types.
See “Embedding Opaque Data Types within Opaque Data Types” on page 3-5
for more information.

ActiveX Value Objects
You can create ActiveX value objects with DBDK. An ActiveX value object is an
object that is compliant with Microsoft Common Object Model (COM) and contains
a client-side copy of database data.

The following table summarizes the relationship between ActiveX elements and
Informix opaque data type elements.

ActiveX Element Opaque Data Type Element

ActiveX control (or ActiveX object) Opaque data type

Custom methods (dual interface) Opaque type support routines

Properties Accessor methods for the members of the data
structure that defines the opaque type

States N.A.

Events N.A.

Interfaces

(ActiveX value objects provide the
IRawObjectAccess and ITDkValue
interfaces)

N.A.

Important: Be aware that changing an object on the client will not update the
object on the database server. To update the value on the database
server, you must do so explicitly with an SQL UPDATE statement.

3-2 IBM Informix DataBlade Developers Kit User’s Guide

Mixing Languages in Server and Client Implementations
You can choose to combine languages for the server implementation and the
optional client implementations of your opaque data type: C or C++ for the server
implementation and ActiveX for the client implementation.

The following table describes some of the advantages and disadvantages you
should consider when you choose server and client implementation languages.

Option Advantage Disadvantage

Using the same server
and client
implementation
language

You have less code to
edit.

With C++, much of
the server and client
code overlaps (see
Figure 3-1).

C++ has restrictions on the functionality of
the opaque data type.

You can use C++ to implement only
opaque data types; you must use C or Java
to implement other DataBlade module
objects.

You cannot port a C++ server project from
Windows to UNIX platforms.

See “Limitations of Opaque Types for Each
Language” on page 3-4 for more
information.

Using different
languages for the server
and client
implementations

If you use C as the
server language, you
can implement
functionality that is
not available for Java
or C++.

You have more code to edit because you
have separate server and client source
code.

Figure 3-1 illustrates the advantage of choosing C++ for both the client and server
implementations: much of the same generated source code can be used to compile
each project.

Figure 3-1. Choosing C++ for Both Client and Server Projects

Chapter 3. Programming Guidelines 3-3

See “Implementing ActiveX Value Objects” on page 6-2 for more information about
the generated files.

Important: It is recommended that developers create DataBlade modules in C++
only for client projects and for server projects that use Informix on
Windows only. For the latest recommendations on C++ programming
options, check the IBM Informix Developer Zone at
http://www.ibm.com/software/data/developer/informix.

Limitations of Opaque Types for Each Language
This section discusses the limitations you have for each language when you
implement opaque data types.

Opaque Type Limitations for C: You cannot use BladeSmith to generate a client
object or its accessor methods written in C.

Opaque Type Limitations for C++/ActiveX: The following limitations apply to
using C++/ActiveX value object code:
v When you define the opaque type that you intend to encapsulate as an ActiveX

value object, BladeSmith enforces these rules:
– You must define the internal structure of the opaque type.
– The opaque type must be of a fixed size.
– The opaque type cannot contain members that are smart large objects or

variable in size.
– The opaque type can contain members that are opaque types only if they are

implemented in C++.
v You cannot import opaque types from other DataBlade modules.
v The following opaque type routine categories are not supported for either the

client or server implementations of an ActiveX value object:
– Contains large objects routines. To support smart large objects.
– Type insert and delete notification routines. To perform tasks before storing

or deleting an opaque data type on disk.
– Statistics support functions. To provide a way to improve performance when

you compare opaque data type values.
v The following opaque type routine categories have no meaning for database

clients. Thus, although you can implement these routines for the server
implementation, they are not made available to the client application developer
as ActiveX custom methods:
– Binary send and receive. To transfer the binary representation of the opaque

data type to and from the client.
– Text file import and export. To transfer the text representation of the opaque

data type to and from a flat file.
– Binary file import and export. To transfer the binary representation of the

opaque data type to and from a flat file.
– Hash. To replace the built-in hashing function to cache return values.

v The following ActiveX custom methods cannot be used in a server project:
– IsNull

– SetNullFlag

For more information on opaque data type properties, see “Opaque Data Type” on
page 4-24.

3-4 IBM Informix DataBlade Developers Kit User’s Guide

Opaque Type Limitations for Java: You cannot generate Java code for opaque
data types with Version 4.0 of DBDK.

Embedding Opaque Data Types within Opaque Data Types
You can embed an existing opaque data type as a member of another opaque data
type with BladeSmith only if both opaque data types have the same server
implementation language. You cannot mix programming languages in opaque data
types.

Options for Routines
If you choose to program your user-defined routines in C, you can choose any of
the routine options available in BladeSmith. For a description of these options, see
“Creating Routines” on page 4-15.

When you implement a routine in Java, you cannot specify the following options:
v That it has a selectivity function or is a selectivity function
v That it takes row data types or collection data types as arguments
v That it is internal
v Its stack size
v Its cost
v That it has a commutator function or is a commutator function

Tip: You can also choose to implement routines in IBM Informix Stored Procedure
Language (SPL). See “Creating Routines” on page 4-15 for more information.

Overloading Routines in Different Languages
You can overload routines to handle different data types in either C or Java. You
cannot, however, overload a routine in a different language with the same data
type. For example, you can create the following two functions:
v MyFunction(lvarchar) written in C
v MyFunction(int) written in Java

However, you cannot create the following two functions:
v MyFunction(lvarchar) written in C
v MyFunction(lvarchar) written in Java

Handling Opaque Data Types Implemented in a Different
Language
If you create a routine in C, it can handle an opaque data type implemented in
C++ without additional code.

If you create a routine in Java that handles an opaque data type implemented in C
or C++, BladeSmith generates a default implementation of the SQLData interface
for the opaque data type. See “SQLData Interface Method Support Code” on page
8-3 for more information.

Multilanguage DataBlade Module Issues
If you use more than one external programming language in your DataBlade
module, you might have more than one resulting shared library after you compile
your source code. Figure 3-2 illustrates the shared libraries you can produce from
source code generated by BladeSmith.

Chapter 3. Programming Guidelines 3-5

For C and C++ server implementation code, BladeSmith generates a combined
Visual C++ workspace file and UNIX makefile.

For Java server and client code, BladeSmith generates a single makefile that is
appropriate for all platforms.

C Programming Guidelines
To take advantage of Informix database server architecture, you must use the
DataBlade API and follow the guidelines in the IBM Informix DataBlade API
Programmer's Guide when you write user-defined routines in C.

The Informix database server uses virtual processors (VPs) to service multiple
client-application SQL requests. The database server breaks the SQL request into
distinct tasks, based on the resource that the task requires. Different VP types,
called virtual processor classes (VP classes), service different kinds of tasks.

The CPU virtual processor (CPU VP) acts as the central processor for
client-application SQL requests. When a client application establishes a connection,
the CPU VP creates the session thread for that client application. A CPU VP runs
multiple session threads to service multiple SQL client applications. Because a
session thread is the primary thread for the processing of SQL requests, any C
routines in an SQL request normally execute in the CPU VP. However, your
routine must be well-behaved by following certain guidelines to avoid loss of
performance and data.

For example, a well-behaved user-defined routine that runs in the CPU VP must
fulfill the following requirements:
v Preserve concurrency by following these rules:

– Yield the CPU VP regularly by using the mi_yield() DataBlade API function.
– Do not use blocking I/O calls.

v Be thread safe by following these rules:
– Do not use heap-memory allocation; instead use the DataBlade API

memory-management functions.
– Do not modify global or static data; instead use the MI_FPARAM structure to

preserve state information.
– Do not modify the global state of the CPU VP.

Figure 3-2. Shared Libraries for Multilanguage DataBlade Modules

3-6 IBM Informix DataBlade Developers Kit User’s Guide

v Do not use unsafe operating system calls that might impair concurrency or
allocate local resources.

Some of these restrictions are relaxed if you assign your routine to a user-defined
virtual processor. A user-defined virtual processor is a VP that you create. It runs only
those routines that you assign to it.

The IBM Informix DataBlade API Programmer's Guide describes in detail each of
these guidelines and their possible workarounds using user-defined virtual
processors.

C++ Programming Guidelines
Follow these rules and guidelines when you edit the source code for your C++
client and server projects:
v Use the following sets of methods in your code to ensure that your code is

portable between the client and server projects:
– The object methods that are made available as ActiveX custom methods; see

“Adding Project-Specific Logic to the Source Code” on page 6-3
– The internal object methods that are not made available as ActiveX custom

methods; see “Internal Object Methods” on page 6-7
– The generated C++ support library; see “C++ Support Library” on page 6-7
For additional functionality, use the DataBlade API. For information, see the IBM
Informix DataBlade API Programmer's Guide.

v In the server project, use C++ only to implement the opaque type support
routines that you intend to encapsulate as ActiveX value objects. Do not use C++
to implement any other DataBlade module objects.

v Do not use the IBM Informix Object Interface for C++ Programmer's Guide in server
code.

v Do not change the function headers or parameter lists of any of the support
routines for the opaque type.

v Do not use virtual methods or virtual base classes (either direct or inherited).
v In the server project, check for routine arguments with null values. The server

will not call a routine that has an argument with a null value.
v In the client project, if your project does not need to handle null values, you can

remove all calls to IsNull(), SetNull(), and SetNullFlag() in the generated code.
Then make sure all constructor functions call SetNotNull().

For a list of restrictions on the C++ code you can generate with BladeSmith, see
“Opaque Type Limitations for C++/ActiveX” on page 3-4.

Important: It is recommended that developers create DataBlade modules in C++
only for client projects and for server projects that use Informix on
Windows only. For the latest recommendations on C++ programming
options, check the IBM Informix Developer Zone at
http://www.ibm.com/software/data/developer/informix.

Java Programming Guidelines
You can use the following Java packages, interfaces, classes, and methods in a Java
method:
v SQLJ packages

Chapter 3. Programming Guidelines 3-7

You can use all the basic and optional Java packages that are in JDK. That is,
Java methods can use java.util.*, java.io.*, java.net.*, java.rmi.*, and so on.
However, Java methods cannot use java.awt.*, java.applet.* and other GUI
packages. For more information on these packages, see the SQLJ Part I draft.

v Informix SQLJ extensions
Certain Informix extensions to SQLJ are available to applications that need to
exploit the capabilities of the database server. The Informix extensions reside in
the com.informix.udr package.

v Java Database Connectivity (JDBC) 1.0 API
Java methods can use the JDBC 1.0 API to access the database.

v Informix JDBC extensions
Java methods can also use Informix extensions to JDBC 1.0 to access some JDBC
2.0 functionality.

When you edit your Java source code, follow the guidelines and restrictions listed
in the IBM Informix JDBC Driver Programmer's Guide and the J/Foundation
Developer's Guide.

Version 4.0 of BladeSmith does not generate Java code for opaque data types. For a
list of additional restrictions on the Java code you can generate with BladeSmith,
see “Options for Routines” on page 3-5.

Important: You must use the IBM Informix J/Foundation upgrade to IBM Informix
to enable services that use Java. For more information about
J/Foundation, see the J/Foundation Developer's Guide.

DataBlade API Programming Tips
While you program your DataBlade modules using the DataBlade API, observe
these guidelines:
v Never assume that the content of an mi_lvarchar data type is null-terminated.

The Informix database server never passes a null-terminated external
representation of an mi_lvarchar data type; however, the DataBlade API
provides functions to convert mi_lvarchar values to and from null-terminated
strings. To allocate and free memory for mi_lvarchar data types, use the mi_var
accessor functions. For more information, see the documentation on the
mi_lvarchar_to_string() function in the IBM Informix DataBlade API Programmer's
Guide.

v Pass and return values greater than 4 bytes by reference.
Opaque data types are wrapped in an mi_lvarchar data type and passed by
reference.
Write your user-defined routine code to pass arguments using a pointer. All
built-in data types are passed by reference except fixed-length, noncharacter data
types of fewer than 4 bytes. The mi_real data type (the SQL data type
SMALLFLOAT) is always passed by reference. Pass opaque data types by value
by creating them with the passedbyvalue modifier.

v Do not modify a user-defined routine argument unless it is an OUT parameter.
Arguments to C routines cannot be modified unless you specify that the
argument is an OUT parameter for a statement local variable. See IBM Informix
User-Defined Routines and Data Types Developer's Guide for more information.

v To test if an argument for a user-defined routine is null, use the
mi_fp_argisnull() function.

3-8 IBM Informix DataBlade Developers Kit User’s Guide

If you create a user-defined routine with the with (handlesnulls) modifier, your
routine must check the input parameters to determine if they are null. To check
whether arguments are null, pass the MI_FPARAM structure as the last
argument in the C routine; then check the arguments by calling the
mi_fp_argisnull() function.

v To set a return value to NULL, use the mi_fp_setreturnisnull() function.
If you intend to return a null value from a function, you must call
mi_fp_setreturnisnull() with MI_TRUE before the return statement. If you do not,
you might receive an incorrect result or memory errors.

For code examples illustrating these and other DataBlade API coding tips, see the
example DataBlade modules provided with the Informix DataBlade Developers Kit
in the %INFORMIXDIR%\dbdk\examples directory or the IBM Informix
Developer Zone at http://www.ibm.com/software/data/developer/informix.

For details on DataBlade API data types and routines, see the IBM Informix
DataBlade API Programmer's Guide.

Chapter 3. Programming Guidelines 3-9

3-10 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 4. Creating DataBlade Objects Using BladeSmith

In This Chapter . 4-2
Prerequisite Tasks . 4-2
Task Overview . 4-2
Windows . 4-3
Creating a New Project . 4-4

DataBlade Module Project Name . 4-5
New Object Prefix . 4-6
Server Compatibility . 4-6
Description Locale . 4-7
Project Version Numbers. 4-7
Vendor Information . 4-7

Importing Interfaces from Another DataBlade Module . 4-7
Creating DataBlade Module Objects . 4-8

Database Object Name Lengths . 4-8
Creating Aggregates . 4-9

Aggregate Name . 4-11
Iteration Type . 4-11
Initialization Parameter . 4-11
State Type . 4-11
Initialization Function . 4-11
Iteration Function. 4-11
Combine Function . 4-11
Final Function . 4-12

Creating Casts . 4-12
Source and Target Data Types . 4-13
Implicit and Explicit Casts . 4-13
Cast Support Functions . 4-13

Defining Errors . 4-13
SQL Error Code . 4-14
Error Locale . 4-14
SQL Error Text. 4-15

Defining Interfaces . 4-15
Creating Routines. 4-15

Routine Name . 4-18
Statement Local Variables . 4-19
Routine Arguments . 4-19
Variant Functions . 4-19
Parallelizable Routines . 4-20
C Routine Name . 4-20
Routine Behavior . 4-20
User-Defined Virtual Processor Class Name . 4-20
Stack Size . 4-21
Cost of Routine . 4-21
Related Routines . 4-21

Creating Data Types . 4-22
Collection Data Type . 4-23
Distinct Data Type . 4-24
Opaque Data Type . 4-24
Qualified Data Type . 4-34
Row Data Type . 4-35

Adding Functional Test Data . 4-36
Test Data for Opaque Type Support Routines . 4-37
Test Data for User-Defined Routines . 4-37
Test Data for Cast Support Routines . 4-37

Adding SQL Files. 4-38

© Copyright IBM Corp. 1996, 2010 4-1

Importing SQL Text from a File . 4-39
Object Dependencies. 4-39

Adding Client Files . 4-39
Generating Files . 4-40

Setting Generated File Properties . 4-42
Generating All Files . 4-43
Generating SQL Scripts . 4-43
Generating Source Files . 4-44
Generating Test Files. 4-45
Generating Installation Package Files . 4-45
Regenerating Files . 4-46

Merging Changes in Source Code and Unit Test Files 4-46
Replacing Visual C++ Project, SQL, Functional Test, and Installation Files 4-46

Opening the Project File in Visual C++ . 4-47

In This Chapter
You use BladeSmith to create DataBlade modules. BladeSmith provides a visual
presentation of the objects in a DataBlade module and allows you to add objects
and modify properties of objects. After DataBlade module objects are defined in a
BladeSmith project, use BladeSmith to generate source code files, SQL scripts,
functional tests, and installation packaging files.

BladeSmith online help contains additional topics and reference information for
BladeSmith. Use the online help for detailed descriptions of the BladeSmith user
interface.

See Appendix A, “Source Files Generated for DataBlade Modules,” on page A-1,
for a complete list of generated files.

Appendix B, “Completing BladeSmith-Generated Code,” on page B-1, provides
reference tables that list the types of objects BladeSmith generates and indicate
whether BladeSmith generates complete code or template code you must complete.

Prerequisite Tasks
Before you begin using BladeSmith, design your DataBlade module.

Write a functional specification to provide an overview of the features of your
DataBlade module and a design specification to describe in detail how you plan to
implement those features. Use your design specification as a reference when you
supply input for BladeSmith.

See “Designing Your DataBlade Module” on page 1-3 for more information.

Task Overview
After you design your DataBlade module, complete these general tasks to
implement your design with BladeSmith:
1. Create a DataBlade module project.
2. Import interfaces from other DataBlade module projects on which you want

your DataBlade module to depend.
3. Define new DataBlade module objects, in this order:

a. Data types
b. Routines, aggregates, and casts

4-2 IBM Informix DataBlade Developers Kit User’s Guide

c. Custom SQL and client files
4. Add functional test data for each opaque data type support routine,

user-defined routine, and cast support function.
5. Generate DataBlade module files.

BladeSmith uses code templates to generate much of the code for your DataBlade
module objects. However, you must add code to make your routines operate the
way you intend. After you edit the source code files, compile them; then test and
debug them.

You can modify your project file, generate files, and recompile the source code as
often as necessary until your development is complete. BladeSmith merges your
previous edits into the newly generated source code files. When your DataBlade
module is complete, use BladePack to create installation packages for each
platform you support.

Windows
The BladeSmith project window is divided into two panes. One pane, called the
project view, contains a tree representing the hierarchy of the objects in the project,
with folders for files, imported objects, and user-defined objects. The other pane,
called the item view, contains information about the object selected in the project
view.

Figure 4-1 shows a BladeSmith project window.

In the project view, expand or collapse a folder by clicking the expander button
next to the node. When you select a node in the project view, the item view
displays the node’s contents. When you select an object in the project view, the item
view displays information about the object.

Figure 4-1. BladeSmith Project Window

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-3

The information displayed in the item view depends on the type of object selected.
The View menu allows you to specify what BladeSmith displays in the item view.
You can choose Small Icons, Large Icons, List, or Details from the View menu.
When you choose the Details view, BladeSmith lists the properties of the object.

Most objects have property sheets, which allow you to view or edit their
properties. To view the property sheet for an object, right-click the object or select
the object in either view and then choose Edit > Properties. You can also choose
Edit > Update to start the wizard for the selected object.

Creating a New Project
The first step you complete in BladeSmith to create a DataBlade module is to
create a project for it. BladeSmith saves DataBlade module object definitions in a
project file with an .ibs extension. BladeSmith generates source code, SQL scripts,
functional tests, and installation package files in directories that are relative to the
project file. By default, BladeSmith creates subdirectories src, scripts, functest, and
install in the directory where you save the project file.

Important: Create a different project directory for each DataBlade module so that
BladeSmith does not overwrite any other files.

To create a new project in BladeSmith, choose Project > New and complete the
information requested by the New Project wizard; then save your project file in the
directory you created. BladeSmith creates the necessary subdirectories when you
generate files.

The following table lists the properties you must specify values for when you
create a project.

4-4 IBM Informix DataBlade Developers Kit User’s Guide

Property Default Value Description

DataBlade module name NewProject The name of the DataBlade module project.

See “DataBlade Module Project Name” on
page 4-5 for more information.

New object prefix None A three-character prefix used in naming new
objects.

See “New Object Prefix” on page 4-6 for
more information.

Server compatibility 9.4 The version of the database server with
which you want your DataBlade module to
be compatible.

See “Server Compatibility” on page 4-6 for
more information.

Description locale The locale of your
Windows
installation

The language code set for the project.

See “Description Locale” on page 4-7 for
more information.

Project version numbers
or letters

Major: 1
Minor: 0

Optional. One to four sets of numbers or
letters separated by periods to designate
version information.

See “Project Version Numbers” on page 4-7
for more information.

Project description None Optional. A description of the DataBlade
module. This information appears to the
user, if requested, in BladeManager.

Vendor information None Optional. Information about the company
developing the DataBlade module, including
company name, copyright, and contact. This
information appears to the user, if requested,
in BladeManager.

See “Vendor Information” on page 4-7 for
more information.

DataBlade Module Project Name
The project name is combined with the version numbers as a unique identifier to
use to register the DataBlade module in the database server and to create the
installation directory. The project name must follow standard directory naming
conventions.

For Informix Version 9.2 and later, the maximum length of the project name is 32
characters.

For Informix Version 9.14, the maximum length of the project name is 18
characters.

If you change the project name or version numbers, you must regenerate files in
BladeSmith.

For more information on obtaining the project name, see “Developing Your
DataBlade Module” on page 1-5.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-5

New Object Prefix
Use a three-character object prefix in the name of the new objects you create in
BladeSmith to ensure that your objects have unique names in the database when
the DataBlade module is registered.

Use your DataBlade module new object prefix to begin the names of the following
objects:
v New data types
v User-defined routines
v Aggregates
v Access methods
v Executable utilities and tools provided with the DataBlade module
v Tables, views, and other custom SQL objects included with your DataBlade

module
v User-defined virtual processors
v Trace classes
v Named memory

You do not have to use the DataBlade module new object prefix for the following
objects:
v Names of routines that operate on data types unique to your DataBlade module,

including routines that you overload to take a new data type
v Names of routines that operate on data types provided by other DataBlade

modules that you develop and maintain
v Names of routines in support libraries linked to the shared object file

Server Compatibility
When you create a new project in BladeSmith, you must specify the version of the
database server with which you want your DataBlade module to be compatible.
Different database server versions have different features; if you choose a feature
that is not available for the database server version you specified, the feature is
either disabled or BladeSmith displays a warning.

The following features are compatible only with Version 9.2 and later of Informix:
v User-defined statistics
v Long identifiers for database objects

If you specify a database server version of 9.14 and attempt to add user-defined
statistics support for an opaque data type, you receive a warning stating that
statistics support is not available with Version 9.14.

You can use DBDK to generate Java code for aggregates, cast support functions,
and user-defined routines by specifying compatibility with Version 9.2 and later of
the database server. However, you must use the IBM Informix Dynamic Server
with J/Foundation upgrade to IBM Informix to enable services that use Java. For
more information about IBM Informix Dynamic Server with J/Foundation, see the
publication J/Foundation Developer's Guide.

All other features are compatible with Version 9.14 and later versions of Informix.

4-6 IBM Informix DataBlade Developers Kit User’s Guide

Description Locale
A GLS description locale is a set of files that contain information specific to a
particular language and culture. A GLS locale provides the following information:
v The name of the code set that the application data uses
v The collation order to use for character data
v The format in which different types of data are displayed

The default locale is the locale that your Windows installation uses. For example,
Windows installations running U.S. English use the en_us.1252 locale. To change
the locale, type a new locale specification in the Description Locale field. See the
IBM Informix GLS User's Guide for more information on locales and how to access a
list of available locales.

When you generate SQL scripts, BladeSmith uses the locale information to generate
a locale-specific prepare script and locale-specific error scripts.

Project Version Numbers
The optional version information can be one to four sets of numbers or letters
separated by periods: for example, 1.2.3.4. The numbers correspond to the
categories major, minor, revision, and release. The major and minor numbers can
be up to eight characters long; the revision and release numbers can be up to six
characters long. Use a consistent versioning format for all your projects.

The version numbers are combined with the project name as a unique identifier to
register the DataBlade module in the database server and to create the installation
directory.

If you change the version numbers or project name, you must regenerate SQL files
and installation packaging files in BladeSmith.

Vendor Information
The vendor ID should be unique. All DataBlade modules with the same vendor ID
display the same information when the user requests it from BladeManager. If you
want to display different contact information for different DataBlade modules, you
must use different vendor IDs.

Importing Interfaces from Another DataBlade Module
A DataBlade module can access data types and routines provided by another
DataBlade module if you import an interface from that DataBlade module.

When you use BladeManager to register or unregister DataBlade modules in
databases, BladeManager checks dependencies between modules to ensure that all
required interfaces are available.

Important: The interface you import must not contain features that are not
available for the database server version associated with your project.

To import an interface, you must have the project file (project.ibs, where project is
the name of the DataBlade module) of the DataBlade module from which you wish
to import an interface.

To import an interface:

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-7

1. Open the project files for both DataBlade modules in BladeSmith: the one to
import into and the one to import from.

2. Click the object to import in the source project view.
3. Choose Edit > Copy.
4. Click the destination project window.
5. Choose Edit > Import > From Clipboard.

The object is added in the proper subfolder in the Imported Objects folder.

Creating DataBlade Module Objects
The following sections describe the objects that you can define in a BladeSmith
project:
v “Creating Aggregates” on page 4-9
v “Creating Casts” on page 4-12
v “Defining Errors” on page 4-13
v “Defining Interfaces” on page 4-15
v “Creating Routines” on page 4-15
v “Creating Data Types” on page 4-22

BladeSmith uses wizards to create and edit objects. To start a wizard to create or
add an object to your project, choose Edit > Insert > ObjectName. The last page of
the wizard displays the SQL that BladeSmith generates for your object, if there is
any.

If you are generating an object that can be secured, the last page of most wizards
also allows you to specify privileges. You have these privilege options:
v Grant usage privileges

All users can access the object, but only the owner can delete it. The owner of an
object is the user ID of the user that created the object in the database.

v Grant none
Only the owner can access or delete the object. Use this option only when there
is a specific need to protect a type or routine.

See the IBM Informix Guide to SQL: Tutorial for more information on privileges.

Database Object Name Lengths
The limit of the lengths of SQL database objects names varies with different
database server versions.

Informix Version 9.2 and later allows you to use long identifiers for database object
names. Most object names can have 128 characters. The following table lists the
objects whose names must be fewer than 128 characters.

Object Maximum Characters

Project 32

Error code 5

Interface 64

Opaque data type (C) 110

Opaque data type (ActiveX) 80

4-8 IBM Informix DataBlade Developers Kit User’s Guide

Client file 64

Tip: The object name fields in BladeSmith are not 128 characters wide; therefore,
you might not be able to distinguish between objects on a list if they have
similar names. You can display the full name of an object with a tooltip.
Select the object and place the cursor over it to display the tooltip.

Informix Version 9.14 limits database object names to 18 characters, except for error
codes, which are always 5 characters, and opaque data type names, which are
limited to 14 characters. The names of opaque data type support routines contain
the name of the opaque data type plus a four-character routine identifier.

Warning: BladeSmith does not prevent you from specifying long identifiers if your
database server version is 9.14; however, source code that contains long
identifiers does not compile if the database server version is earlier than
Version 9.2.

Creating Aggregates
An aggregate is a function that returns information about a set of query results.
For example, the SUM aggregate adds all the query results together and returns
the result. An aggregate is invoked in SQL as a single function but is implemented
as one or more support functions.

You can use BladeSmith to create new, user-defined aggregates that implement
user-defined routines.

Important: You cannot use the Aggregate wizard to overload built-in aggregates
for extended data types; you must use the Routine wizard to overload
each of the operators required by the built-in aggregate. For more
information on the Routine wizard, see “Creating Routines” on page
4-15. For more information on built-in aggregates, see the IBM Informix
DataBlade API Programmer's Guide.

You can define two aggregates that have the same name but operate on different
data types. An aggregate acts as a template: the aggregate support functions must
have the same names for both aggregates. If you overload an aggregate, you
cannot add, remove, or change the names of its support functions. Use your new
object prefix to begin the name of your aggregate to avoid accidentally overloading
an aggregate in another DataBlade module.

The following table describes the properties you specify when you create an
aggregate.

Property Default Value Description

Aggregate name Aggregate The name of the aggregate function. If you
are overloading an aggregate, the name can
be the name of an existing aggregate;
otherwise, the name must be unique. New
aggregate names must begin with the new
object prefix.

See “Aggregate Name” on page 4-11 for
more information.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-9

Property Default Value Description

Language C Which language to use for the aggregate
functions: C or Java.

You must set server compatibility to 9.2 or
later to generate code for Java projects.

You need the IBM Informix Dynamic Server
with J/Foundation upgrade to IBM
Informix to enable Java services.

Iteration type None The data type on which the aggregate
function operates.

See “Iteration Type” on page 4-11 for
restrictions.

Initialization parameter No Optional. Used only for aggregates whose
behavior can be changed dynamically.

See “Initialization Parameter” on page 4-11
for more information.

Return type None The data type of the result of the aggregate
function.

State type None The data type of the intermediate
aggregation state. The state type is often
POINTER.

See “State Type” on page 4-11 for more
information.

Initialization function AggregateInit The function called before the aggregation
begins. Not required if the state and
iteration data types are the same and there
is no initialization parameter.

See “Initialization Function” on page 4-11
for more information.

Iteration function AggregateIter Called once for every value that is
aggregated. By default, this function
accepts null values.

See “Iteration Function” on page 4-11 for
more information.

Combine function AggregateComb Optional. Merges results from parallel
iterations.

See “Combine Function” on page 4-11 for
more information.

Final function AggregateFinl Performs computations on the combined
state, cleans up memory, and returns the
final value.

See “Final Function” on page 4-12 for more
information.

For information on how aggregates behave, see the IBM Informix DataBlade API
Programmer's Guide.

The following sections describe properties of aggregates.

4-10 IBM Informix DataBlade Developers Kit User’s Guide

Aggregate Name
Use the new object prefix to begin the name of your new aggregate. The aggregate
name cannot be the same as another user-defined routine or aggregate unless you
are overloading an existing user-defined aggregate. For more information on the
new object prefix, see “New Object Prefix” on page 4-6.

Iteration Type
You cannot use the following data types as aggregate iteration types:
v BLOB
v CLOB
v Collection data types: SET, MULTILIST, LIST
v Unnamed row data types

Initialization Parameter
The initialization parameter is an argument in the initialization function to
customize the aggregation computation. For example, if you defined an aggregate
to return the top n values of a query, your initialization parameter can be 3 to
select the top three.

State Type
The state type holds the partial result information during the aggregation
computation. The database server never accesses the state type, so it can be any
data type or structure appropriate for the partial results. For example, if you have
an aggregate that returns the three largest values from a query result set, your state
type can be an array of three integers.

If you are overloading an existing aggregate, the state type must be different for
each aggregate.

Select the POINTER data type from the data type list to indicate that your data
type is not known to the database server.

Initialization Function
The initialization function initializes the data structures required by the rest of the
aggregation computation. For example, it can set up smart large objects or
temporary files for storing intermediate results.

The initialization function can take an optional initialization parameter to
customize the aggregate computation.

The initialization function is not required for simple binary operators that have a
state type that is the same as the iteration type.

Iteration Function
The iteration function merges a single value of the iteration type with the partial
result of the state type and returns the updated partial result.

You can specify whether the iteration function handles null values. If it does not,
any null values returned by the query are ignored. If it does handle null values,
the iteration function includes them in its computations.

Combine Function
The database server can break up the aggregation computation into several pieces
and compute them in parallel. Each piece is computed sequentially; then the

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-11

results from all pieces are combined into a single result using the combine
function. The parallel computation must give the same result as the sequential
computation.

The combine function merges partial results of the state type and returns the
updated partial result. It can also perform cleanup work by releasing resources
acquired by the initialization function.

The combine function can be the same as the iterator function if the aggregate is
derived from a simple binary operator whose result type is the same as the state
type.

Final Function
The final function converts a partial result of the state type into the result type. It
can also release resources acquired by the initialization function to clean up the
result type.

If you do not include a final function, the database server returns the final state
type. The final function is not required for aggregates derived from simple binary
operators whose result type is the same as the state type.

Creating Casts
A cast is a conversion from one data type to another. The cast accepts the source
data type as its argument and returns the target data type.

The following table describes the properties you specify when you create a cast.

Property Default Value Description

Cast from type None The source data type.

See Source and Target Data Types for more
information.

Cast to type None The target data type. The source and target data
types cannot both be built-in or qualified types.

See Source and Target Data Types for more
information.

Implicit cast Yes The kind of cast. Implicit casts are automatically
called by the database server. Explicit casts are
called by the users.

See “Implicit and Explicit Casts” on page 4-13
for more information.

Support routine Yes
typeCast

If the source and target data types do not have
the same binary representation, you must write a
routine to support the cast.

See “Cast Support Functions” on page 4-13 for
more information.

Language (if you
choose to create a
support function)

C Which language to use for the cast support
function: C or Java.

You must set server compatibility to 9.2 or later
to generate code for Java projects.

You need the J/Foundation upgrade to IBM
Informix to enable Java services.

4-12 IBM Informix DataBlade Developers Kit User’s Guide

See the IBM Informix Guide to SQL: Tutorial for general information on casts.

The following sections describe properties of casts.

Source and Target Data Types
You cannot create a cast between two built-in or qualified data types.

You also cannot create a cast that includes any of the following data types as either
the source type or target type for the cast:
v Collection data types: LIST, MULTISET, or SET
v Unnamed row types
v Smart-large-object data types: BLOB or CLOB

Implicit and Explicit Casts
You can specify whether a cast is called for implicit conversions. Implicit conversions
allow the database server to use the cast when it is not called explicitly in an SQL
statement.

For example, if you call the Plus() function with a DOLLAR argument, the
database server searches for an implicit cast from DOLLAR to a data type for
which the Plus() function is defined. If an implicit cast exists, the database server
calls the conversion function and then calls the Plus() function without error. If no
cast is specified with implicit conversion, the Plus() function call results in an error
message from the database server.

In this example, you create an implicit cast from DOLLAR to DOUBLE
PRECISION to permit the database server to execute all functions defined for
DOUBLE PRECISION on DOLLAR values. However, if you define a cast from
DOLLAR to INTEGER, you do not want that cast to be implicit, because the
conversion function truncates dollar values, resulting in inaccurate results.

See IBM Informix User-Defined Routines and Data Types Developer's Guide for more
information on implicit and explicit casts.

Cast Support Functions
If the source and target data types do not have the same binary representation, the
database server calls a cast support function to perform the conversion. If the two
types have the same binary representation, a cast support function might not be
needed. You can also create a cast support function to perform other types of
conversions, such as applying a mathematical formula. For example, you could
create a cast support function to convert temperature between Fahrenheit and
Celsius.

See IBM Informix User-Defined Routines and Data Types Developer's Guide for more
information on creating cast support functions.

Defining Errors
DataBlade module routines can print error messages and trace messages. Error
messages are printed with the mi_db_error_raise() function. Trace messages are
written to a trace file with the DBDK_TRACE macros or the gl_dprintf() macro.
See “Tracing and Error Handling” on page 5-7 for more information on tracing and
error handling.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-13

Although it is possible to hard-code messages in your routines, defining them in
BladeSmith makes them easier to edit. Also, BladeSmith generates code that uses
the IBM Informix Global Language Support (GLS) API, so messages that you create
in BladeSmith can be easily localized.

The following table lists the properties you specify when you create an error.

Property Default Value Description

SQL error code None A five-character error code. This character
string uniquely identifies the error or trace
message.

See “SQL Error Code” on page 4-14 for
more information.

Error locale The locale of your
Windows
installation

An Informix locale specification for the
message.

See “Error Locale” on page 4-14 for more
information.

Register message as error,
trace, or both?

Error Error messages are added to the syserrors
system table. Trace messages are added to
the systracemsgs system table. If you choose
Both, the message is added to both system
tables.

SQL error text None A character string that can contain
embedded parameters to be replaced with
current values at runtime.

See “SQL Error Text” on page 4-15 for more
information.

The following sections describe properties of errors.

SQL Error Code
To ensure that your error codes do not conflict with built-in error codes and those
of other DataBlade modules, consider qualifying the code with a three-character
DataBlade module prefix such as USR.

See “Developing Your DataBlade Module” on page 1-5 for information on how to
design your error codes.

Error Locale
The error locale enables the database server to select a translated error or trace
message for a localized database. The locale is specified using the format
language_country.codeset. Be sure to create messages for all of the locales in which
your DataBlade module executes.

UNIX Only

The default BladeSmith locale, en_us.8859-1, is for U.S. English using code set
8859. This is the default locale for the Informix database server on UNIX platforms.

4-14 IBM Informix DataBlade Developers Kit User’s Guide

Windows Only

The default code set for the Informix database server on Windows is 1252. Create
U.S. English messages using locale en_us.1252 for Windows database servers.

End of Windows Only

For more information on locales, see the IBM Informix GLS User's Guide.

SQL Error Text
The SQL error text is displayed with the error code in the language specified by
the message locale. To specify parameters in messages, assign each parameter a
unique name enclosed in percent characters (%). For example, an input function
could send the following message when it is unable to translate an input value:
%FUNCNAME%: Unable to decipher input '%INPUT%'.

For information about tracing and calling error messages, see the IBM Informix
DataBlade API Programmer's Guide.

Defining Interfaces
If you expect other DataBlade modules to use the functionality provided by your
DataBlade module, create an interface. DataBlade developers can include the
interface in a DataBlade module to ensure that BladeManager registers the
DataBlade module with the interface before registering the DataBlade module
dependent on the interface.

The interface you define encompasses all of your DataBlade module.

The following table lists the properties you specify when you create an interface.

Property Default Description

Interface name INewInterface The name of the interface. Must be
unique. Change the name to Iproject,
where project is the name of your
DataBlade module.

Interface description None Optional. A description of the interface
and its intended purpose.

For Informix Version 9.2 and later, the maximum length of an interface name is 64
characters.

For Informix Version 9.14, the maximum length of an interface name is 18
characters.

Creating Routines
You can define public or private user-defined routines that support your DataBlade
module. You can specify if the routine is called by SQL or is an internal routine.

Routines can be functions, which return values, or procedures, which do not return
values. Routines can be written in the C or Java programming languages or the
Informix Stored Procedure Language (SPL).

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-15

Use the New Routine wizard to:
v Overload existing routines for extended data types.

Existing routines can be built-in or user-defined. Built-in routines include
operator and other arithmetic functions, and support routines. For a list of
built-in routines you can overload, see IBM Informix User-Defined Routines and
Data Types Developer's Guide.

v Overload operators for built-in aggregates for extended data types.
Built-in aggregates include AVG, DISTINCT, MAX, MIN, RANGE, SUM, STDEV,
and VARIANCE. For a list of the operators you must overload for each built-in
aggregate, see IBM Informix User-Defined Routines and Data Types Developer's
Guide.

v Create new user-defined routines for built-in or extended data types.

The following table lists the properties you specify when you create a routine.

Property Default Value Description

Routine name prefix Routine The name of the routine. If you are
overloading a routine, the name can be
an existing routine name; otherwise, it
must be a unique name.

See “Routine Name” on page 4-18 for
more information.

Return type No return type The data type that is returned by the
routine. Functions return a value, but
procedures do not.

Statement local
variable?
(Available for
routines that return
values only)

No Whether the last argument passed to
the function is an OUT parameter for a
statement local variable, allowing the
function to return two values.

See “Statement Local Variables” on
page 4-19 for more information.

Arguments None The name, data type, and default value
of each argument passed to the
routine.

See “Routine Arguments” on page 4-19
for more information.

Language C The programming language in which
to write the routine: C, Java, or Stored
Procedure Language (SPL).

You must set server compatibility to
9.2 or later to generate code for Java
projects.

You need the J/Foundation upgrade to
IBM Informix to enable Java services.

SQL routine body
(SPL routines)

None The SPL statements that define the
routine.

See the IBM Informix Guide to SQL:
Syntax for more information on SPL.

4-16 IBM Informix DataBlade Developers Kit User’s Guide

Property Default Value Description

Does not accept null
values?
(C and Java
routines)

Yes Whether the routine accepts null
values. If a routine that does not accept
nulls is passed a null value, the
database server returns a null value
without calling the routine.

Is variant?
(C and Java
routines)

Yes Variant routines can return different
values with the same input arguments.
The database server never caches
results from variant routines.

See “Variant Functions” on page 4-19
for more information.

Is parallelizable?
(C and Java
routines)

No Parallelizable routines can be split into
subqueries and processed in parallel.

See “Parallelizable Routines” on page
4-20 for more information.

Is a DBA routine?
(C and Java
routines)

No The routine can be created or executed
only by a user with DBA permissions.

Never called from
SQL?
(C routines)

No If a routine cannot be called from SQL,
it is an internal routine that can only
be called directly by the database
server: for example, primary access
method routines.

An iterator?
(C and Java
routines)

No Iterator routines return a set of values,
one value at a time.

See the IBM Informix DataBlade API
Programmer's Guide for more
information.

C routine name
(C routines)

prefix Routine The name of the routine in the shared
object file. Must be unique.

See “C Routine Name” on page 4-20
for more information.

Shared object path
(C and Java
routines)

$INFORMIXDIR/
extend/%SYSBLDDIR%/
project.bld (C routines)
%JAVAPATH%
(Java routines)

The relative or absolute path and
filename of the shared object. The
default path and filename is
recommended.

Well behaved or
poorly behaved?
(C and Java
routines)

Well behaved Well-behaved routines can run in the
CPU virtual processors; poorly
behaved routines should run in a
user-defined virtual processor.

See “Routine Behavior” on page 4-20
for more information.

User-defined virtual
processor class
(C and Java
routines)

default_class The name of the user-defined virtual
processor class in which a poorly
behaved routine runs.

See “User-Defined Virtual Processor
Class Name” on page 4-20 for more
information.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-17

Property Default Value Description

Special stack size
requirements?
(C routines)

No Whether the routine needs an
unusually large amount of virtual
shared memory to execute.

See “Stack Size” on page 4-21 for more
information.

Cost of routine
(C routines)

0 The relative cost of the routine, for
query optimization.

See “Cost of Routine” on page 4-21 for
more information.

Negator routine? No A routine that returns the opposite
Boolean result with the same
arguments. Used for query
optimization.

See “Related Routines” on page 4-21
for more information.

Commutator
routine?
(C routines)

No A routine that returns the same
Boolean result with the arguments in
reverse order. Used for query
optimization.

See “Related Routines” on page 4-21
for more information.

Selectivity routine?
(C routines)

No A routine that estimates the percentage
of rows returned by the routine. Used
for query optimization.

See “Related Routines” on page 4-21
for more information.

The SQL that BladeSmith generates for routines uses the ALTER FUNCTION
statement to specify all but the following properties:
v Routine name
v Return type
v Statement local variable
v Arguments
v Language
v DBA routine

Using the ALTER FUNCTION statement allows BladeManager to re-register the
routine without dropping and recreating it.

The following sections describe properties of routines.

Routine Name
Specify the name of an existing routine to overload it for a new data type, or
specify a unique routine name to create a new routine.

If you are creating a selectivity routine for a user-defined routine, name the
selectivity routine RoutineSelectivity.

4-18 IBM Informix DataBlade Developers Kit User’s Guide

You can overload built-in operator and other arithmetic routine for collection, row,
and distinct data types. (You can overload most arithmetic routines for opaque
data types with the New Opaque Type wizard.) How arithmetic routines operate
on collection and row data types is determined by the code you write for them.
For example, if you overload the Plus() function for a row data type, it might
either:
v Add the values of the fields and return a row data type with the same number

of fields as the originals.
v Return a row data type with twice as many fields as the originals.

See IBM Informix User-Defined Routines and Data Types Developer's Guide for a list of
built-in routines you can overload.

Although it is not necessary, you can create new support routines for collection,
row, and distinct data types.

Statement Local Variables
If you want your function to return two values, check the statement local variable
check box. The last argument for your function is then defined as an OUT
parameter. The OUT parameter corresponds to a value the function returns
indirectly, through a pointer, to a statement local variable (SLV). The value the
function returns through the pointer is an extra value, in addition to the value it
returns explicitly.

The SLV provides a temporary name that a single statement can manipulate. An
SQL statement uses each SLV to transmit the output from a single function to other
parts of the SQL statement.

See the IBM Informix DataBlade API Programmer's Guide for more information.

Routine Arguments
A routine can accept 0 to 20 arguments.

Arguments passed to a routine have the following properties:
v Name. The name must follow SPL, C, or Java language naming conventions.
v Data type. For SPL and C, any existing data type that appears on the list; for

Java, any existing data type except row or collection data types. If you want to
use a data type that is not on the list, you must first create it in BladeSmith. For
more information on SQL data types, see IBM Informix Guide to SQL: Reference.

v Default value. Optional. The value of the argument if a value for the argument
is not specified when the routine is called.

Variant Functions
By default, user-defined functions are variant. Variant functions can return different
values or have varying side effects, given the same arguments. For example, a
function that returns the current date or time is a variant function. However, a
function that appears nonvariant can also have varying side effects, such as
updating a table or external file.

The cost of defining a nonvariant function as variant is low: you might experience
slightly diminished performance. However, the cost of defining a function that
exhibits variant behavior as nonvariant can be high, because a query might return
incorrect results.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-19

Most functions are not variant; marking them as nonvariant improves performance.
If the function is nonvariant, the database server might cache the return values of
expensive functions or run parallel queries. Functional indexes are only allowed on
nonvariant functions.

See the IBM Informix User-Defined Routines and Data Types Developer's Guide
publication for more information.

Parallelizable Routines
Mark a routine as parallelizable if it can be executed within a parallel database
query (PDQ) statement. PDQ statements allow the Informix database server to
distribute the executions of one query among several processors by dividing the
query into subqueries. The database server then allocates subqueries to separate
threads for parallel processing and thus improves performance. See IBM Informix
User-Defined Routines and Data Types Developer's Guide for more information about
using the parallelizable option.

Use routine parallelization if your routine is used as an expression in qualification
clauses, in GROUP BY lists, or as an overloaded comparison operator.

A routine cannot be parallelizable if it accepts row or collection data types as
arguments.

C and Java routines are parallelizable if they call only the DataBlade API routines
listed in the following categories from the IBM Informix DataBlade API Programmer's
Guide:
v Data handling, except for collection manipulation functions
v Session, thread, and transaction management
v Function execution
v Memory management
v Exception handling
v Callbacks
v Miscellaneous

See the IBM Informix DataBlade API Programmer's Guide for more information about
the routines under each category.

C Routine Name
SQL allows overloading of routine names; however, the C language does not.
Therefore, if you overload a routine, you must give it a unique C name.

Routine Behavior
A routine is well-behaved within the context of Informix database server
architecture if it:
v Yields the virtual processor on a regular basis to other threads.
v Does not use blocking operating-system calls.

If your routine violates one of these conditions, mark it as poorly behaved and
type the name of a user-defined virtual processor in the user-defined virtual
processor class field.

User-Defined Virtual Processor Class Name
The name of the grouping class for the user-defined virtual processor must be 128
alphanumeric characters or fewer, and it must be unique. The class name is case

4-20 IBM Informix DataBlade Developers Kit User’s Guide

insensitive. It is recommended that you begin the name of your virtual processor
class with your DataBlade module new object prefix.

Tip: You can create a routine that references a virtual processor class before that
class exists. However, you must create the virtual processor class and create
virtual processors in it before you register your DataBlade module in the
database.

Stack Size
You can specify stack size only for a user-defined routine written in C.

Stack space is allocated from a common region in shared memory that can be
overrun if a routine consumes more stack space than is allocated for it. To avoid
stack overrun:
v allocate sufficient stack space for all the local variables in the routine. Monitor

stack usage with the onstat utility. See the IBM Informix Administrator's Guide for
more information on the onstat utility.

v execute recursively called C routines with the mi_call() function. Pass any
arguments other than mi_integer data types by reference. See the IBM Informix
DataBlade API Programmer's Guide for more information on mi_call().

When you specify a stack size for a user-defined routine, the database server
allocates the specified amount of memory for every execution iteration of the
routine.

See the IBM Informix Administrator's Guide for more information on stacks.

Cost of Routine
You can specify cost only for user-defined routines written in C.

The relative cost of the routine is used by the query optimizer to determine the
order in which to process WHERE clauses in a SELECT statement. Expensive
routines are called after inexpensive routines. A cost of 0 indicates that the routine
costs about the same as the routines in the reference list that have a cost of 0. The
reference list shows all user-defined routines created in the project. The standard
formula for computing routine cost is:
lines_of_code + (I/O_operations x 100)

Because the optimizer compares routine costs, the actual cost is irrelevant; only the
relative cost matters. However, follow the general formula to ensure that your
routines interact with other DataBlade module routines in a predictable way.

Related Routines
If your user-defined function compares or acts as a filter for two instances of the
same data type and returns a Boolean result, you can specify related functions to
optimize the execution of the function when it is called in the WHERE clause of a
SELECT statement.

Important: Related functions must exist before you can choose them. You can
create them before you create the function they are related to, or you
can update the original routine to add related routines after you create
them.

Commutator and Negator Functions: You can specify a commutator function only
for user-defined routines written in C.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-21

The database server calls a commutator or a negator function instead of the
original function if the query optimizer determines that it is faster. A commutator
function returns the same Boolean result as the original function with the same
arguments but with the arguments in reverse order. A negator returns the opposite
Boolean result as the original function with the same arguments in the same order.

Selectivity Functions: You can specify a selectivity function only for user-defined
routines written in C.

A selectivity function estimates the percentage of rows that might be returned by
your function, given a set of arguments. Define a selectivity function if you want
to determine the cost of your function so that the query optimizer can determine
when it is most efficient to call your function. Selectivity functions determine the
cost of a function with statistics gathered about the values of the data type on
which the function operates. See “User-Defined Statistics” on page 2-9 for more
information on selectivity functions and how they process user-defined statistics.

You can create a selectivity function for your user-defined function if your function
compares or acts as a filter for two values of the following kind of data types:
v An opaque data type for which you have created user-defined statistics support

routines (see “Statistics Support” on page 4-34)
v A built-in data type

The B-tree functions Equal() and NotEqual() that are overloaded for an opaque
data type are good candidates for selectivity functions. Because the Equal() and
NotEqual() functions are created with the Opaque Type wizard, you must add
selectivity support by assigning selectivity routines on their properties pages after
you create them.

Built-in data types have built-in statistics support routines, and all qualifying
built-in functions (such as B-tree functions) have built-in selectivity functions. You
can only create selectivity functions for functions that take built-in data types if
those functions are user-defined.

A selectivity function must have the following properties:
v A name in the form of FunctionSelectivity(), where Function is the name of the

function to which it is assigned
v A double-precision return type
v Two arguments of type POINTER
v All other properties as their default values

For a description of user-defined statistics and selectivity, see “User-Defined
Statistics” on page 2-9.

Creating Data Types
You can create the extended data types described in the following sections in
BladeSmith:
v “Collection Data Type” on page 4-23, next
v “Distinct Data Type” on page 4-24
v “Opaque Data Type” on page 4-24
v “Row Data Type” on page 4-35

4-22 IBM Informix DataBlade Developers Kit User’s Guide

In addition, you must define qualified built-in data types (see “Qualified Data
Type” on page 4-34) before you can use them in a BladeSmith project.

Collection Data Type
A collection data type is a set of elements of another, single data type. Collection
elements can never be null.

You can overload existing user-defined routines and built-in routines to work on
your collection data type. You can also define custom support routines for your
collection data type. See “Creating Routines” on page 4-15 for instructions.

The following table lists the properties you specify when you create a collection
data type.

Property Default Value Description

Type None The data type that makes up the
collection.

See Valid Element Data Types for more
information.

Constructor None The type constructor: LIST, MULTISET,
or SET.

See “Type Constructors” on page 4-23
for more information.

See the IBM Informix Guide to SQL: Tutorial for general information on collection
data types.

The following sections describe properties of collection data types.

Valid Element Data Types: You can create a collection with elements of any data
type listed in your project except SERIAL, SERIAL8, and BIGSERIAL. You can
define a collection type of an existing collection or row data type. For example,
you can define a list of a set of integers in SQL:
LIST(SET(integer not null))

You can also create collections of opaque or distinct data types.

Tip: If you create a collection with an element of type BLOB or CLOB, you can
test for the existence of a particular sbspace when your DataBlade module is
being registered in a database using BladeManager. For information, see
Appendix C, “Testing for an Sbspace,” on page C-1.

Type Constructors: The type constructor determines the structure of the
collection. The following table shows the options between the type constructors.

Constructor Elements Ordered? Duplicates Allowed?

LIST Yes Yes

MULTISET No Yes

SET No No

See the IBM Informix Guide to SQL: Reference for more information about collection
type constructors.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-23

Distinct Data Type
A distinct data type has an internal and external representation identical to another
data type, but the database server treats it as a different data type. Any existing
routines on the source data type are automatically registered on the distinct data
type. However, you can define new routines that operate only on the distinct data
type.

You can define custom support routines and user-defined routines for your distinct
data type. You can also overload existing user-defined routines and built-in
routines to work on your distinct type. See “Creating Routines” on page 4-15 for
instructions.

The following table lists the properties you specify when you create a distinct data
type.

Property Default Value Description

Name prefixDistinctType The name of the distinct type. This
name must be unique.

Source type None The data type the distinct type is based
on. Can be any existing data type. The
distinct type inherits all properties of the
source type.

When you create a distinct data type, the database server creates explicit casts
between the source data type and the distinct data type; however, you can also
create implicit casts between a distinct data type and its source data type.

Tip: If you create a distinct type with a source type of BLOB, CLOB, or an opaque
data type containing BLOB or CLOB arguments, you can test for the existence
of a particular sbspace when your DataBlade module is being registered in a
database using BladeManager. For information, see Appendix C, “Testing for
an Sbspace,” on page C-1.

See the IBM Informix Guide to SQL: Reference for more information on distinct data
types.

Opaque Data Type
An opaque data type is a C structure or C++/ActiveX class. The database server
does not interpret the contents of the structure. Instead, it calls support routines
that you provide to manipulate the structure.

BladeSmith generates much of the code for the support routines. You must
complete the code and compile the source code.

The following table lists the properties you specify when you create an opaque
data type.

Property Default Value Description

Name prefixOpaqueType The name of the opaque type.

See “Opaque Data Type Name Lengths”
on page 4-26 for more information.

4-24 IBM Informix DataBlade Developers Kit User’s Guide

Property Default Value Description

Server implementation C Which language to use for database
server source code for your opaque data
type: C, C++, or Java.

You must set server compatibility to 9.2
or later to generate code for Java
projects.

You need the J/Foundation upgrade to
IBM Informix to enable Java services.

See “Server Implementation” on page
4-26 for more information.

Client implementation None Whether to generate value objects as a
client interface for your opaque data
type in ActiveX.

See “Client Implementation” on page
4-26 for more information.

Generate accessor
methods?
(ActiveX client
implementation)

None Whether to create accessor methods for
value objects; that is, whether to expose
the members of the data structure that
defines your opaque data type as
properties.

See “Accessor Methods” on page 4-27 for
more information.

Define internal
structure?
(C)

Yes Whether you enter information on the
internal members of the opaque type in
BladeSmith.

See “Definition of Internal Structure” on
page 4-27 for more information.

Fixed or variable size?
(C)

Fixed size Whether the opaque data type varies in
size.

See “Fixed or Variable Size” on page
4-27 for more information.

Total size
(if you choose not to
specify the internal
structure to BladeSmith
and choose fixed size)

None The total size of the opaque data type.
The maximum size is 32 KB. If you do
not specify a size, BladeSmith calculates
it.

Member information (if
you choose to specify
the internal structure to
BladeSmith)

None The name, data structure, and array size
of the members making up the opaque
type.

See “Member Information” on page 4-27
for more information.

Limit allocation size?
(variable-length opaque
data types)

No The maximum size allowed the opaque
data type, not to exceed 32 KB.

See “Maximum Size” on page 4-28 for
more information.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-25

Property Default Value Description

Memory alignment
(if you choose not to
specify the internal
structure to BladeSmith)

4 The alignment value for the first member
of the opaque data type.

See “Memory Alignment” on page 4-28
for more information.

Support routines Basic text
input/output

Binary send/receive
with client (C and
C++)

Text file import/export

Binary file
import/export (C and
C++)

Type compare support

The routines necessary to operate on the
internal structure of the opaque data
type and optional built-in routines.

See “Support Routines” on page 4-29 for
more information.

See IBM Informix User-Defined Routines and Data Types Developer's Guide for more
information on opaque data types.

The following sections describe the properties of opaque data types you need to
define when you create an opaque data type with BladeSmith.

Opaque Data Type Name Lengths: The limit of the opaque data type name is
determined by the version of the database server and the client implementation
language, as shown in the following table.

Language Version 9.14 Version 9.2 or later

C 14 110

C++/ActiveX 14 80

Server Implementation: The server implementation is the programming language
in which you implement your opaque data type within the database server. Each
language has restrictions on the functionality you can specify for your opaque data
type:
v C. You cannot choose a client implementation or accessor methods in C.
v C++. See “Opaque Type Limitations for C++/ActiveX” on page 3-4 for a list of

C++ restrictions.
v Java. You cannot generate Java code for opaque types with DBDK 4.0.

Client Implementation: A client implementation of your opaque data type is a
value object, which BladeSmith generates in the programming language you
specify. A value object is a client-side interface to an opaque data type and its
support routines. Client and server implementations need not be in the same
programming language.

For information on the implications of using different languages for server and
client implementations, see “Mixing Languages in Server and Client
Implementations” on page 3-3.

For more information on value objects, see “ActiveX Value Objects” on page 3-2.

4-26 IBM Informix DataBlade Developers Kit User’s Guide

Accessor Methods: If you choose to create a client implementation of your
opaque data type, you can specify whether to generate accessor methods. Choosing
this option makes the members of the opaque data type available as properties,
allowing client-side access to those values. BladeSmith generates set and get
methods for each property.

For more information on ActiveX accessor methods, see “ActiveX Properties” on
page 6-4.

Definition of Internal Structure: You can specify an undefined internal structure
for an opaque data type with a server implementation in C or Java.

The internal structure of the opaque data type is not known to the database server.
The support routines you define for the opaque data type operate on the internal
structure.

If you define the internal structure of your opaque data type to BladeSmith,
BladeSmith generates useful code for it. If you do not specify the internal structure,
BladeSmith generates code that operates as if your opaque data type is a stream of
bytes.

Fixed or Variable Size: You can specify a variable-sized structure for an opaque
data type with a server implementation in C or Java.

An opaque data type can have a fixed size that is determined by the sum of the
sizes of the data structures within the opaque data type. The maximum size is 32
KB.

Alternatively, an opaque data type can have a variable size if one of its internal
data structures does not have a fixed size. Typically, variable data structures are
smart large objects or other opaque data types. Variable-length data structures can
have a maximum size. Variable-length opaque data types are treated as bit-varying
types.

Member Information: Specify the following information about the internal
members of your opaque data type:
v Name. Must be unique within the opaque data type.
v Data structure. Select from the list, which includes any extended data types you

have defined or imported in the project and the data structures that correspond
to the programming language you choose.

v Array size. Specifies the number of components and subcomponents.

The following table maps the DataBlade API data structures listed in the Opaque
Type wizard to their external programming language equivalents.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-27

DataBlade API
Data Types

C and ESQL/C
Data Types

ActiveX
Data Types

gl_wchar_t char BSTR

mi_boolean boolean BOOL

mi_char char BSTR

mi_char1 char BSTR

mi_date int BSTR

mi_datetime dtime_t BSTR

mi_decimal dec_t BSTR

mi_double_precision double double

mi_int1 char short

mi_int8 ifx_int8_t BSTR

mi_integer int, long long

mi_interval intrvl_t BSTR

MI_LO_HANDLE ifx_lo_t

mi_money dec_t BSTR

mi_numeric dec_t BSTR

mi_real float double

mi_smallint short short

mi_string char BSTR

mi_unsigned_char1 unsigned char short

mi_unsigned_int8 ifx_int8_t BSTR

mi_unsigned_integer long

mi_unsigned_smallint uint2 short

mi_wchar uint2 BSTR

If you choose to create a variable-length opaque data type, a member is
automatically added as an mi_int1 of variable size. Change the mi_int1 data
structure to be the one you need. Be sure to list the variable-length member last.

Tip: If you create an opaque type with a member of type MI_LO_HANDLE, you
can test for the existence of a particular sbspace when your DataBlade module
is being registered in a database using BladeManager. For information, see
Appendix C, “Testing for an Sbspace,” on page C-1.

Maximum Size: If you create a variable-length opaque data type, specify the
maximum allocated length of that data type. The database server does not allow
an opaque data type to grow beyond its maximum length. If you choose to specify
a maximum length, the maximum value is 32,767 bytes. This value, however, is the
maximum size of a row in a database table. Therefore, if your opaque data type is
32,767 bytes, you cannot have any other columns in your table.

Memory Alignment: If you do not specify the internal structure of your opaque
data type in BladeSmith, you must choose the memory alignment of the first
member; your compiler aligns the other members with this value. Choose an
alignment value that corresponds to the greatest alignment requirement in the data

4-28 IBM Informix DataBlade Developers Kit User’s Guide

structure. The default alignment is 4. If you do not know the alignment of the
member with the greatest alignment, choose 8.

See IBM Informix User-Defined Routines and Data Types Developer's Guide for more
information on memory alignment.

Support Routines: You can select from the following categories of support
routines to support your opaque data type:
v “Basic Text Input and Output” on page 4-29
v “Binary Send and Receive” on page 4-29
v “Text Import and Export” on page 4-30
v “Binary File Import and Export” on page 4-31
v “Contains Large Objects” on page 4-31 (not available for C++)
v “Type Insert and Delete Notification” on page 4-31 (not available for C++)
v “Type Compare Support” on page 4-32
v “B-Tree Indexing Support” on page 4-32
v “Type Mathematic Operators” on page 4-33
v “More Mathematic Operators” on page 4-33
v “Type Concatenation Operator” on page 4-33
v “Type Hash Support” on page 4-33
v “Statistics Support” on page 4-34 (not available for C++ or Java)

These support routines are described in the following sections.

Basic Text Input and Output: This category is valid for the C and C++ languages.
BladeSmith generates this category by default.

Basic text input and output functions convert between the text representation of
the opaque data type and the internal database server format.

The text representation of an opaque data type is an mi_lvarchar value that
contains a printable representation of an instance of the data type. The text
representation enters values for the data type in SQL statements such as INSERT
and displays values in output from SQL statements such as SELECT.

The names of these functions differ for different programming languages, as listed
in the following table.

Language Function Names

SQL OpaqueIn()

OpaqueOut()

C OpaqueInput()

OpaqueOutput()

C++ FromString()

ToString()

Binary Send and Receive: This category is valid for the C and C++ languages.
BladeSmith generates this category by default.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-29

Binary send and receive functions transfer the binary representation of the opaque
data type to and from the client.

Binary send and receive functions allow the client and server to execute on
different platforms, with different data type representations. When a client
connects with a server, it sends a description of its data representation. The server
calls the binary send function to convert opaque data type values to the client
format before sending them to the client. The binary receive function converts a
value arriving from the client binary format to the server binary format.

You do not have to know the specifics about data representation on different
platforms to convert an instance of a data type. Binary send and receive functions
call DataBlade API routines for each member of the structure to convert values to
the appropriate C data type representation for the destination platform.

The names of these functions differ for different programming languages, as listed
in the following table.

Language Function Names

SQL OpaqueSend()

OpaqueRecv()

C OpaqueSend()

OpaqueReceive()

C++ Send()

Receive()

Text Import and Export: This category is valid for the C and C++. BladeSmith
generates this category by default.

Text file import and export functions transfer the text representation of the opaque
data type to and from a flat file.

Text file import and export functions enable bulk copy for opaque data types.
When you copy data from a file into a database with PLOAD or the DB-Access
LOAD command, the server calls a text file import function to convert the
incoming value to the server binary format. When data is copied out of the
database into an external file, the server calls a text file export function to convert
the value from server binary format to text file format.

You need text file import and export functions for opaque data types that include
large objects or that are exported to a disk file. On copy-out, the text file export
function creates a file on the client, writes the large object data to it, and then
sends the name of the file as the data value for storage in the copy file. The text
file import function takes the filename, opens it, and loads the large object data.
This method stores large object data independent from the copy file so that the
copy file is smaller and easier to read.

If you do not define text file import and export routines, the server calls the text
input and output routines.

The names of these functions differ for different programming languages, as listed
in the following table.

Language Function Names

4-30 IBM Informix DataBlade Developers Kit User’s Guide

SQL OpaqueImpT()

OpaqueExpT()

C OpaqueImportText()

OpaqueExportText()

C++ ImportText()

ExportText()

Java textImport()

textExport()

Binary File Import and Export: This category is valid for the C and C++ languages.
BladeSmith generates this category by default.

Binary file import and export functions transfer the binary representation of the
opaque data type to and from a flat file.

Use the binary file import and export functions for bulk copy of binary data. These
functions are the same as the text file import and export functions, except that they
operate on binary representations of the data type. The functions are called when
PLOAD executes.

The names of these functions differ for different programming languages, as listed
in the following table.

Language Function Names

SQL OpaqueImpB()

OpaqueExpB()

C OpaqueImportBinary()

OpaqueExportBinary()

C++ ImportBinary()

ExportBinary()

Contains Large Objects: This category is valid for the C language.

The LOhandles() function retrieves a list of the pointer structures for the smart
large objects embedded in the opaque data type. The database server calls the
LOhandles() function to obtain a list of large objects used by an opaque data type.
The LOhandles() function takes a pointer to an instance of the data type and
returns an array of the large object handles used by the object.

This category also includes the Assign() function and the Destroy() procedure
described in the section “Type Insert and Delete Notification,” next.

For the C language, BladeSmith prefixes the names of these functions with the
name of the data type for which they are specified: OpaqueLOhandles(),
OpaqueAssign(), and OpaqueDestroy().

Type Insert and Delete Notification: This category is valid for the C language.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-31

The Assign() function and the Destroy() procedure perform tasks before storing or
deleting an opaque data type on disk: for example, to ensure proper reference
counting on smart large objects.

You can provide Assign() and Destroy() routines for an opaque data type that
requires special processing when an instance is stored in a database or removed
from the database. The database server calls the Assign() function before it writes
a value to a table. The database server calls the Destroy() procedure before it
deletes a value from a table.

For example, opaque data types that include large objects require special handling
before they are stored on disk or removed from a table. The database server
maintains a reference count for large objects to ensure that an object is not dropped
while a row in the database references it. When a reference to a large object is
inserted into a table, the Assign() function increments the reference count. When a
reference to a large object is deleted from a table, the Destroy() procedure
decrements the reference count.

For the C language, BladeSmith prefixes the names of these functions with the
name of the data type for which they are specified: OpaqueAssign() and
OpaqueDestroy().

Type Compare Support: This category is valid for the C and C++ languages.
BladeSmith generates this category by default.

Type comparison functions Compare(), Equal() (bound to the = operator), and
NotEqual() (bound to the <> and != operators) compare two opaque data types:
for example, to support an ORDER BY clause in a query.

For the C language, BladeSmith prefixes the names of these functions with the
name of the data type for which they are specified: OpaqueCompare(),
OpaqueEqual(), and OpaqueNotEqual().

B-Tree Indexing Support: This category is valid for the C and C++.

The following B-tree strategy and support functions support using the B-tree
secondary access method to create an index on your opaque data type column:
v Compare()

v Equal() (bound to the = operator)
v LessThan() (bound to the < operator)
v GreaterThan() (bound to the > operator)
v LessThanOrEqual() (bound to the <= operator)
v GreaterThanOrEqual() (bound to the >= operator)
v NotEqual() (bound to the != and the <> operators)

Defining these routines for opaque data types allows fast B-tree index searches on
the new data types. If a query uses the operator bound to one of the functions, the
optimizer can evaluate strategies that use the index.

For the C language, BladeSmith prefixes the names of these functions with the
name of the data type for which they are specified: OpaqueCompare(),
OpaqueEqual(), OpaqueLessThan(), OpaqueGreaterThan(),
OpaqueLessThanOrEqual(), and OpaqueGreaterThanOrEqual().

4-32 IBM Informix DataBlade Developers Kit User’s Guide

R-Tree Indexing Support: Version 4.0 of BladeSmith does not generate code for
R-tree support routines.

Refer to the IBM Informix R-Tree Index User's Guide or the IBM Informix Developer
Zone at http://www.ibm.com/software/data/developer/informix for information
about creating DataBlade modules that use the R-tree secondary access method.

Type Mathematic Operators: This category is valid for the C and C++ languages.

Binary arithmetic operators Plus() (bound to the + operator), Minus() (bound to
the - operator), Times() (bound to the * operator), and Divide() (bound to the /
operator) perform operations on your opaque data type.

If you define these routines for an opaque data type, the database server can
resolve mathematical expressions in the select list or WHERE clause of a query.

For the C language, BladeSmith prefixes the names of these functions with the
name of the data type for which they are specified: OpaquePlus(), OpaqueMinus(),
OpaqueTimes(), and OpaqueDivide().

More Mathematic Operators: This category is valid for the C and C++ languages.

Unary arithmetic functions Positive() (bound to the + operator) and Negate()
(bound to the - operator) perform operations on your opaque data type.

If you define these routines for an opaque data type, your database server can
resolve mathematical expressions in the select list or WHERE clause of a query.

For the C language, BladeSmith prefixes the names of these functions with the
name of the data type for which they are specified: OpaquePositive() and
OpaqueNegate().

Type Concatenation Operator: This category is valid for the C and C++ languages.

The Concat() function (bound to the || operator) concatenates the values of two
opaque data types.

For the C language, BladeSmith prefixes the names of these functions with the
name of the data type for which it is specified: OpaqueConcat().

Type Hash Support: This category is valid for the C and C++ languages.

You should define a Hash() function for your opaque data type if the database
server cannot use the built-in hashing function to cache its return values.

Most data types are bit-hashable and can use the built-in hash routine.

Bit-hashable data types have the property that for any hash routine:

if A = B then hash(A) = hash(B)

In practice, this means that A and B have identical bit representations.

There are some data types for which two equal values have different bit
representations. For example, in one’s-complement notation, there are two distinct
representations for 0 (+0 and -0). The SQL rules for the data type VARCHAR

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-33

require that trailing blanks be ignored in equality comparisons. Thus, two
VARCHAR values with different numbers of trailing blanks will have different bit
representations, but they should still be considered equal.

For data types that are not bit-hashable, you must provide a Hash() function.

For the C language, BladeSmith prefixes the names of these functions with the
name of the data type for which it is specified: OpaqueHash().

Statistics Support: Statistics support is available with Informix Version 9.2 and
later.

This category is valid for the C language.

User-defined statistics provide a way to improve performance when you compare
opaque data type values. User-defined statistics compile information about the
values in an opaque data type column that the query optimizer can use when it
creates a query plan.

You can define statistics support functions for an opaque data type and then a
selectivity function for a routine that takes opaque data types as its arguments. See
“User-Defined Statistics” on page 2-9 for more information on user-defined
statistics.

Statistics support functions are OpaqueStatCollect(), OpaqueStatPrint(),
Opaque_SetMinValue(), Opaque_SetMaxValue(), and Opaque_SetHistogram().

Tip: Statistics support functions reside in the statistics.c source code file, instead of
in the opaque.c source code file with all other opaque data type support
routines.

Qualified Data Type
A qualified data type is a built-in data type with additional specifications that
provide information about the storage size, range of values, or precision of the
data type. For example, CHAR is a built-in data type, but CHAR(16) is a qualified
data type because you are fixing its length. You must add a qualified data type to
a BladeSmith project before you can use it as a component of an extended data
type.

When you create a qualified data type in a BladeSmith project, BladeSmith adds to
the list of data types from which you choose when creating extended data types.
Qualified data types do not need SQL or source code.

For example, to create a collection data type that stores sets of 16-byte character
strings, you must first create a CHAR(16) qualified data type. Then create the
collection data type, choosing CHAR(16) as the base data type and SET as the
constructor function. The new data type has the following SQL definition:
SET(CHAR(16) not null)

The following table lists the data types that take qualifications.

Data Type Qualification

CHARACTER, CHAR (size)

CHARACTER VARYING (size, minimum)

DATETIME largest_qualifier TO smallest_qualifier

4-34 IBM Informix DataBlade Developers Kit User’s Guide

DECIMAL, DEC (precision, scale)

INTERVAL largest_qualifier(n) TO smallest_qualifier(n)

MONEY (precision, scale)

NCHAR (size)

NVARCHAR (size, minimum)

SERIAL, SERIAL8, BIGSERIAL
(start value)

VARCHAR (size, minimum)

BladeSmith restricts your input for qualification values to valid choices.

See IBM Informix Guide to SQL: Reference for more information about qualified data
types.

Row Data Type
A row data type is a group of fields of existing data types arranged like a row in a
table. The fields of a row data type can be almost any data type that exists in your
project, including other row data types.

You can overload existing user-defined routines and built-in routines to work on
your row type. See “Creating Routines” on page 4-15 for instructions.

The following table lists the properties you specify when you create a row data
type.

Property Default Value Description

Name prefixRowType The name of the row type. Must be
unique.

To create an unnamed row type, leave
this field blank.

See Named and Unnamed Row Data
Types for more information.

Inherits from parent? No parent A row type can inherit the fields and
routines of another (parent) row type.

See “Row Data Type Inheritance” on
page 4-36 for more information.

Field information None The name, data type, and nullability of
the fields within the row type.

See “Row Data Type Fields” on page
4-36 for more information.

The following sections describe properties of row data types.

Named and Unnamed Row Data Types: You can create a named or an unnamed
row data type.

A named row data type has these general characteristics:
v Its name is unique.
v It supports inheritance from a parent row data type or to a child row data type.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-35

v It can be used as the basis of a typed table.

An unnamed row type has these general characteristics:
v It is equivalent to any other unnamed row type with the same structure. The

structure is defined by the number of fields, the data types of the fields, and the
order of the fields.

v It does not support inheritance.
v It cannot be used as the basis of a typed table.

See the IBM Informix Guide to SQL: Tutorial for more information on named and
unnamed row data types.

Row Data Type Inheritance: Named row data types can inherit from other
named row data types. A child row data type inherits its parent’s fields and can be
passed to all routines defined for the parent data type.

You can add additional fields and routines that are only valid for the child data
type.

See the IBM Informix Guide to SQL: Tutorial for more information on inheritance.

Row Data Type Fields: Fields in row data types can be any existing data type
except SERIAL, SERIAL8, and BIGSERIAL.

Tip: If you create a row data type with a field of type BLOB or CLOB, you can test
for the existence of a particular sbspace when your DataBlade module is
being registered in a database using BladeManager. For information, see
Appendix C, “Testing for an Sbspace,” on page C-1.

Adding Functional Test Data
You can perform functional tests on your DataBlade module routines using the
functional tests generated by BladeSmith. You must enter test data for functional
tests in BladeSmith. You run functional tests on UNIX, or you run them on
Windows using a UNIX-compatible toolkit, such as MKS Toolkit.

Tip: You can also generate unit tests, which run on Windows with the DBDK
Visual C++ Add-In. See “Debugging Your DataBlade Module” on page 1-7 for
more information.

You can add functional test data for opaque type support routines, user-defined
routines, and cast support functions. Using the test data you enter, BladeSmith
generates a functional test for each routine. BladeSmith creates UNIX shell scripts
and SQL scripts to create test tables in a database, populate them with your test
data, and run SQL scripts that execute the DataBlade module routines.

BladeSmith generates functional tests for an object only if you enter test data for it.
You must regenerate functional tests whenever you add test data to update the
functional test scripts.

Chapter 9, “Debugging and Testing DataBlade Modules on UNIX,” on page 9-1,
describes how to use the functional tests that BladeSmith generates.

To enter test data for an object, select the object and choose Edit > Gather Test
Data.

4-36 IBM Informix DataBlade Developers Kit User’s Guide

The following sections describe the test data you enter in BladeSmith.

Test Data for Opaque Type Support Routines
To enter test data for an opaque type support routine, select the routine and choose
Edit > Gather Test Data.

For opaque type support routines, each test data item includes the following
elements:
v An input value for the data type. This value must be in the format specified for

the text input routine.
v The expected output value for the input value. This value must be in the

format specified for the type’s text output routine.
v An error code, if the input value is not valid. Leave this entry blank when the

input value is expected to be correct.

Enter values to test the opaque type boundaries. For example, if a type does not
accept negative input values, enter test data with negative values and specify the
error code you expect to receive from the text input routine.

The data you enter for an opaque type is used to test all of the supporting routines
defined for the type. BladeSmith generates SQL scripts to test each supporting
routine, including the text input and output routines and other routines, such as
binary input and output routines and comparison routines. Add test data values
that thoroughly test each of these routines.

Test Data for User-Defined Routines
To enter test data for a routine, select the routine and choose Edit > Gather Test
Data.

The test data for user-defined routines includes the following items:
v The input parameters for the test case. Enter the input parameters in the same

format you type them in an SQL statement. Enclose text parameters in single
quotes.

v The result expected from the function, if the input parameters are valid. If you
enter invalid input parameters, leave this field blank. If the user-defined routine
is a procedure, the result field is not available because procedures do not return
values.

v An error code, if the input parameters are invalid. Leave this field blank if the
input parameters are expected to be valid.

For example, the Circle DataBlade module defines a Contains() function that takes
a Circle value and a Pnt value and returns a Boolean result. To test the Contains()
function with a Circle value of '(12,12,2)' and a Pnt value of '(12,12)', enter
the following input parameters:
'(12,12,2)','(12,12)'

Calling Contains() with these values should return a true result, which you can
enter as t. Because the input parameters are valid, you leave the Error code field
blank.

Test Data for Cast Support Routines
To enter test data for a cast support function, select the cast and choose Edit >
Gather Test Data.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-37

The test data for a cast support functions includes the following items:
v Input data, in the text input format specified for the source data type.
v Expected output data, in the text output format specified for the destination data

type.
v The error code expected if the input data is not valid. If the input data is valid,

leave this field blank.

Enter invalid input values and values that test boundary conditions for the data
type.

Adding SQL Files
BladeSmith allows you to add custom SQL commands to the scripts that describe a
DataBlade module and its objects. You can include SQL commands to create tables,
indexes, or SPL procedures your DataBlade module requires. For example, if your
DataBlade module uses smart large objects, you can include a statement to test for
the required sbspace when you register the DataBlade module. For information, see
Appendix C, “Testing for an Sbspace,” on page C-1.

Use the three-character new object prefix assigned to your project in the name of
every custom SQL object you create. The maximum size of an SQL file is 20 KB.

If you create any objects for your DataBlade module, add corresponding SQL
DROP statements so that the objects are dropped when your DataBlade module is
unregistered.

To add custom SQL, start the wizard by choosing Edit > Insert > SQL Files. Enter
SQL commands directly into the BladeSmith edit window, or import a disk file into
the BladeSmith project. When you import a file, copy the contents of the file at the
time you import, or import the file by reference so that its contents are copied
whenever you generate SQL scripts.

The following table lists the properties you specify when you include custom SQL
statements.

4-38 IBM Informix DataBlade Developers Kit User’s Guide

Property Default Value Description

Descriptive name SQLfile A descriptive name for the custom SQL
statements.

Read SQL text from file None Use to import SQL statements into the
CREATE and DROP fields or to import
by reference.

See “Importing SQL Text from a File” on
page 4-39 for more information.

Custom SQL CREATE
text

None A text field in which to type SQL
CREATE statements.

Custom SQL DROP text None A text field in which to type SQL DROP
statements.

Depends on objects None A list of objects on which the custom
SQL depends.

See “Object Dependencies” on page 4-39
for more information.

Which objects require
SQL

None A list of objects that depend on the
custom SQL.

See “Object Dependencies” on page 4-39
for more information.

The following sections describe properties of custom SQL files.

Importing SQL Text from a File
If you import SQL statements from a text file, separate the CREATE and DROP
statements with a line of 40 hyphens (-). To import a file by reference, click Browse
and select a file from the Open dialog box. If you import by reference, BladeSmith
stores the full path and filename.

Object Dependencies
You can specify whether an SQL command depends upon a DataBlade module
object or upon your SQL. These dependencies determine the sequence of SQL
commands in the generated objects.sql script. BladeSmith generates SQL in the
following sequence:
1. SQL commands to create objects upon which custom SQL commands depend
2. Custom SQL commands
3. SQL commands to create objects that depend upon custom SQL commands

The generated SQL scripts register dependencies when the DataBlade module is
registered in a database.

Adding Client Files
Client files you include in your BladeSmith project are downloaded to client
workstations after a DataBlade module is installed on a database server. Client files
include:
v Graphical user interfaces
v Documentation and help files

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-39

v Shared object files, dynamic link libraries, or header files containing DataBlade
module routines executed in the client address space

Client files are installed on the database server in platform-specific directories in
the DataBlade module installation directory. Clients use BladeManager to
download the files to their workstations.

To add a client file to your DataBlade module, choose Edit > Insert > Client Files.
Type the full path and filename in the local path field or click the browse button
(...) and select a file from the Open dialog box. This file must be accessible to both
BladeSmith and BladePack. Select the appropriate client operating system, version,
and architecture for your file. This information is used by BladeManager to install
the specific client files on the correct client computer.

For Informix Version 9.2 and later, the maximum length of a client filename is 64
characters.

For Informix Version 9.14, the maximum length of a client filename is 18
characters.

Generating Files
When you generate files, BladeSmith creates files that describe the objects you
defined in your project. The files include:
v SQL scripts that BladeManager executes to register the DataBlade module in

databases and SQL scripts that create the DataBlade module objects in user
databases

v Source files that contain basic code for the routines defined in your project
v Unit and functional test files
v Setup files that you use with BladePack to create an installation package

Generate SQL files, source files, functional test files, and installation files at any
time. See “Regenerating Files” on page 4-46 for more information on when to
regenerate. If you change any of the output directories, regenerate all files.

To generate files or change the properties of generated files, choose Generate >
DataBlade to display the Generate DataBlade dialog box, as shown in Figure 4-2.

4-40 IBM Informix DataBlade Developers Kit User’s Guide

The Generate DataBlade dialog box contains a file tree that shows categories of
generated files. Each category is represented by a node in the tree. When you click
a node, the Generate button changes to reflect the name of the category.

The directory structure of the generated files is illustrated by Figure 4-3.

Programming language subdirectories are created during generation only if you
have defined objects in those languages.

Figure 4-2. Generate DataBlade Dialog Box

Figure 4-3. Generated File Directory Structure

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-41

This section includes the following subsections that describe the tasks you can
perform using the Generate DataBlade dialog box:
v “Setting Generated File Properties” on page 4-42
v “Generating All Files” on page 4-43
v “Generating SQL Scripts” on page 4-43
v “Generating Source Files” on page 4-44
v “Generating Test Files” on page 4-45
v “Generating Installation Package Files” on page 4-45
v “Regenerating Files” on page 4-46
v “Opening the Project File in Visual C++” on page 4-47

Setting Generated File Properties
Most categories of generated files have properties that you can change. The
properties appear in the Generate DataBlade dialog box Properties grid when you
select a category in the file tree.

The following table lists the properties of the generated file categories, their default
values, categories to which they belong, and a brief description of each.

Property Default Value Category Description

Format DOS Generate
DataBlade

The format of the generated files:

v DOS: text lines end with a carriage
return/linefeed pair.

v UNIX: text lines end with a linefeed
character.

Merge True Generate
DataBlade

Whether to merge custom changes from
previous source code files into the new files
or to overwrite existing files.

See “Merging Changes in Source Code and
Unit Test Files” on page 4-46 for more
information.

Directory install

src

scripts

functest

Packaging

Source

SQL

Tests

The name of the directory that receives the
generated files from each category. The path
is relative to the directory that contains the
project file.

Logging False Source Whether to generate logging information.

Tracing False Source Whether to add tracing to your generated
source code.

See “Tracing and Error Handling” on page
5-7 for more information.

4-42 IBM Informix DataBlade Developers Kit User’s Guide

Property Default Value Category Description

MMX False C Whether to allow Intel MMX media
enhancement technology in your DataBlade
module.

If you change the value to True, BladeSmith
generates the Gen_IsMMXMachine function
to check for an Intel MMX processor. See
“The Gen_IsMMXMachine() Utility
Function” on page 5-14 for more
information.

To change a property of a generated file category:

1. Click the node of the category whose properties you want to change.
2. Click the name of the property whose value you want to edit in the Property

column of the Properties grid.
3. Edit the value by typing a new value or selecting a new value from the popup

list in the Value column.
4. Click Apply.

Generating All Files
The top-level node in the Generate DataBlade dialog box file tree is Generate
DataBlade (see Figure 4-2 on page 4-41).

To generate all the files for your DataBlade module:

1. In the Generate DataBlade dialog box, click the Generate DataBlade node.
2. Edit the properties of the generated file categories, if necessary. See “Setting

Generated File Properties” on page 4-42 for instructions.
3. Click Generate DataBlade.

The Generate DataBlade node has the following properties:
v Format. Use the Format property to specify how text lines end in the generated

files:
– DOS. Text lines end with a carriage return/linefeed pair.
– UNIX. Text lines end with a linefeed character.

v Merge. The default value is True. To merge custom changes from previous
source code and unit test files into the new files, select True. To overwrite
existing files, select False. See “Merging Changes in Source Code and Unit Test
Files” on page 4-46 for more information.

The default value for the Format property is DOS.

Generating SQL Scripts
To generate only the SQL scripts, click the SQL node in the Generate DataBlade
dialog box; then click Generate Scripts.

The property associated with the SQL node is Directory. The default directory is
scripts. You can change the name of the directory the SQL scripts are saved in, but
the path must be relative to the project directory.

The following table describes the generated SQL scripts.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-43

SQL Script Purpose

prepare.sql Contains SQL statements that describe the DataBlade module to
BladeManager.

objects.sql Contains SQL statements that update the sysbldobjects system table
with information about the DataBlade module objects that are created
in a database. BladeManager uses the information in the table to
register, unregister, and upgrade DataBlade modules.

test.sql Contains the SQL statements to create all objects in the DataBlade
module projects and a GRANT EXECUTE statement.

BladeSmith generates separate files for locale-specific objects such as error
messages. For example, the files for the default U.S. English locale are
prepare.en_us.sql and errors.en_us.1252. Only one error message file is necessary
per language. The database server automatically translates between languages. For
example, the errors.en_us.1252 file is sufficient for all en_us encodings; you do not
need additional encodings like error.en_us.8859-1.

You can add SQL statements to the generated SQL scripts by adding an SQL file
object to your project. See “Adding SQL Files” on page 4-38 for more information
about adding SQL statements to a DataBlade module.

Warning: Do not edit generated SQL scripts. Use BladeSmith to make changes;
then regenerate the scripts.

Generating Source Files
To generate only the source files for objects defined in your project, click the
Source node or one of its subordinate nodes in the Generate DataBlade dialog box
(see Figure 4-2 on page 4-41); then click Generate Source. The following table lists
the source code file generation options.

Node Code Generated

Source All source code in the coding languages you use for
your DataBlade module objects

Client Client code (ActiveX or Java)

Server Server code in the coding languages you specified when
you create objects in BladeSmith

Individual language:
ActiveX, C++, C, Java, or SPL

Source code only for the selected language

The Source node has these properties:
v Directory. The default directory is src. To change the name of the top-level

directory the source code files are saved in, specify a new directory or path. The
path must be relative to the project directory.

v Logging. The default value is False. To add logging information to your source
code files, select True.

v Tracing. The default value is False. To add tracing to your generated source
code, select True. See “Tracing and Error Handling” on page 5-7 for more
information.

The property associated with the C node under the Server node is MMX. The
MMX default value is False. You can choose whether to allow Intel MMX media

4-44 IBM Informix DataBlade Developers Kit User’s Guide

enhancement technology in your DataBlade module. To generate the
Gen_IsMMXMachine function to check for an Intel MMX processor, specify True.
See “The Gen_IsMMXMachine() Utility Function” on page 5-14 for more
information.

BladeSmith writes a header file, source files, and makefiles for Windows and UNIX
platforms. It also generates other necessary files, depending on the coding
language. For information on the source files BladeSmith generates, see “Source
Files Generated by BladeSmith” on page 5-3 and Appendix A, “Source Files
Generated for DataBlade Modules,” on page A-1.

After you generate source files, edit the source files to add your code to the routine
declarations BladeSmith generated. For a description of the contents of the
generated files and how to modify and compile the generated code, see Chapter 5,
“Programming DataBlade Module Routines in C,” on page 5-1, Chapter 6,
“Creating ActiveX Value Objects,” on page 6-1, or Chapter 8, “Programming
DataBlade Modules in Java,” on page 8-1.

Generating Test Files
To generate only the test files, click the Tests node in the Generate DataBlade
dialog box (see Figure 4-2 on page 4-41); then click Generate Tests. You can also
choose to generate only functional tests or only unit tests.

The property associated with the Tests node is Directory. The default directory is
functest. You can change the name of the directory the test files are saved in, but
the path must be relative to the project directory. The functest directory only
applies to functional tests; unit tests are generated in the src directory.

See Chapter 9, “Debugging and Testing DataBlade Modules on UNIX,” on page
9-1, for information about executing functional tests.

Generating Installation Package Files
To generate only the installation packaging files that BladePack uses to build
installation packages, click the Packaging node in the Generate DataBlade dialog
box (see Figure 4-2 on page 4-41); then click Generate Packaging.

The property associated with the Packaging node is Directory. The default
directory is install. You can change the name of the directory where the installation
files are saved, but the path must be relative to the project directory.

When you generate installation package files, BladeSmith creates a set of files that
you use with BladePack to generate installation scripts for your DataBlade module:
v project.bom. A bill of materials file.
v project.cmp. A components file.
v project.prd. A product file.
v project.str. A string file.

Important: Do not edit the generated installation package files. Instead, use
BladeSmith to regenerate the installation package files after you have
added or removed DataBlade module objects in the project file. For
details about adding files to your installation package and generating
installation packages, see Chapter 11, “Using BladePack,” on page 11-1.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-45

Regenerating Files
After you make changes in a BladeSmith project, regenerate the appropriate files.
For example, if you add a cast to a DataBlade module, you must regenerate SQL
scripts. If the cast has a support routine, you must also regenerate source files.
When a node in the generated file category tree on the Generate DataBlade dialog
box needs to be generated, it is followed by an asterisk.

BladeSmith uses two processes to regenerate files, depending on the file:
v Source code and unit test files. If merging is enabled, BladeSmith merges user

changes into the newly generated code.
v Visual C++ project, SQL, functional test, and installation files. BladeSmith

replaces existing files.

Merging Changes in Source Code and Unit Test Files
When BladeSmith finds existing source code and unit test files, it copies them to
backup files before regenerating them.

If you add SQL statements to unit test files and then regenerate them, BladeSmith
merges your code automatically.

If the Merge property of the DataBlade node in the Generate DataBlade dialog box
is True, BladeSmith copies the changes you made to your source and unit test files
into the newly generated source files. In this way, you can update your objects in
BladeSmith without losing the code you added.

In source code files, BladeSmith does not remove code for routines that no longer
exist in the project; you must manually remove such code. For example, suppose
you create an opaque data type with an Assign() function specified and generate
code; then you alter the opaque data type to no longer have an Assign() function.
When you regenerate the source code, the Assign() function code remains.

If the Merge property of the DataBlade node in the Generate DataBlade dialog box
is False, BladeSmith does not merge your previous changes into the new source
files, but existing files are backed up. You can copy changes from the backup files
into the newly generated files using a text editor.

If BladeSmith encounters problems while generating files, it displays the Generate
Code Problem dialog box. For help in resolving merging problems, click Help on
this dialog box and read the online help.

For information on how to use merging to upgrade projects created with a
previous version of the Informix DataBlade Developers Kit, see the release notes.

Replacing Visual C++ Project, SQL, Functional Test, and
Installation Files
BladeSmith does not merge changes to Visual C++ project, SQL files, functional test
files, or installation files. When you regenerate SQL files and functional test files,
BladeSmith regenerates the previous files as well as the Visual C++ project file.
When you regenerate installation files, BladeSmith deletes relevant entries in the
bill of materials file and adds them again. If you use BladePack to add files to the
package, regenerating installation files does not affect your additions.

4-46 IBM Informix DataBlade Developers Kit User’s Guide

Opening the Project File in Visual C++
After you generate your C or C++ source code, you can launch Microsoft Visual
C++ and open the project workspace file for your DataBlade module by clicking
MSDev on the Generate DataBlade dialog box.

You can also open the DataBlade module project in Visual C++ from BladeSmith at
any time by choosing Tools > MSDev or clicking the MSDev button in the toolbar.

To launch Visual C++ and open the Visual C++ workspace file:

1. With the project open in BladeSmith, choose Tools > MSDev.
If the DBDK Visual C++ Add-In toolbar does not appear, you must add it
manually. For instructions, see “Manually Loading the Add-In” on page 10-5.
A dialog box asks if you want to select a local database server.

2. Click Yes.
The add-in Properties dialog box appears. See “Specifying Properties for a
Project” on page 10-5 for more instructions on assigning a database server and
database to your project.

Chapter 4. Creating DataBlade Objects Using BladeSmith 4-47

4-48 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 5. Programming DataBlade Module Routines in C

In This Chapter . 5-2
Prerequisite Tasks . 5-2
C Programming Task Overview . 5-3
Source Files Generated by BladeSmith . 5-3

C Header File . 5-4
C Source Code Files . 5-4
Microsoft Visual C++ Files . 5-5
Warning File . 5-5

Using Generated Code . 5-5
Identifying the Source of Generated Code . 5-5
Comments in Generated Code . 5-6
MI_FPARAM Function Argument. 5-6
Server Connection Handle . 5-7
Tracing and Error Handling. 5-7

How Tracing Works . 5-8
Adding Tracing and Error Handling . 5-9
Enabling Tracing in a DataBlade Module . 5-10
Enabling Tracing in a Database Session . 5-11
Standard Error Messages . 5-13

Utility Functions Generated by BladeSmith . 5-13
The Gen_sscanf() Utility Function . 5-14
The Gen_IsMMXMachine() Utility Function . 5-14

Editing Opaque Type Support Routines in opaque.c . 5-15
Text Input and Output Functions . 5-16

The Generated Code . 5-16
Customizing the Code . 5-17
Smart Large Object Considerations . 5-18
Examples . 5-18

Binary Send and Receive Functions . 5-19
The Generated Code . 5-19
Customizing the Code . 5-19
Examples . 5-20

Text File Import and Export Functions . 5-20
The Generated Code . 5-20
Customizing the Code . 5-20
Smart Large Object Considerations . 5-21

Binary File Import and Export Functions . 5-21
The Generated Code . 5-21
Customizing the Code . 5-21
Smart Large Object Considerations . 5-21

The Assign and Destroy Routines . 5-22
The Generated Code . 5-22
Customizing the Code . 5-22
Smart Large Object Considerations . 5-22
Examples . 5-22

LOhandles() Function . 5-23
Comparison Functions . 5-23

Compare Function . 5-23
B-Tree Comparison Functions . 5-25
R-Tree Comparison Functions. 5-25

Mathematical Functions . 5-26
The Generated Code . 5-26
Completing the Code . 5-26
Example . 5-26

Concat() Function. 5-26

© Copyright IBM Corp. 1996, 2010 5-1

Hash() Function . 5-27
Editing Statistics Routines in statistics.c . 5-27

The Statistics Collection Function . 5-27
The Generated Code . 5-27
Customizing the Code . 5-27

The Statistics Print Function . 5-28
The Statistics Minimum, Maximum, and Distribution Functions 5-28

The Generated Code . 5-28
Completing the Code . 5-28
Example . 5-28

Editing Routines in udr.c . 5-28
Most User-Defined Routines . 5-29

The Generated Code . 5-29
Completing the Code . 5-29
Examples . 5-29

Cast Support Functions . 5-29
The Generated Code . 5-29
Completing the Code . 5-30
Example . 5-30

Aggregate Functions . 5-30
The Generated Code . 5-30
Completing the Code . 5-30

Selectivity Functions . 5-31
The Generated Code . 5-31
Completing the Code . 5-31
Example . 5-32

Iterator Functions. 5-32
The Generated Code . 5-32
Completing the Code . 5-32
Example . 5-33

Compiling DataBlade Module Code . 5-33
Compiling with Tracing Support. 5-33
Compiling on UNIX . 5-33

Unresolved Symbols (IDS 9.14) . 5-34
Compiling with Debug Support . 5-34

Compiling on Windows . 5-34

In This Chapter
This chapter contains information to help you edit and compile C language source
code generated by DataBlade. It includes the following sections:
v “Prerequisite Tasks,” next
v “C Programming Task Overview” on page 5-3
v “Source Files Generated by BladeSmith” on page 5-3
v “Using Generated Code” on page 5-5
v “Editing Opaque Type Support Routines in opaque.c” on page 5-15
v “Editing Statistics Routines in statistics.c” on page 5-27
v “Editing Routines in udr.c” on page 5-28
v “Compiling DataBlade Module Code” on page 5-33

Prerequisite Tasks
Before editing and compiling your DataBlade module code, complete these tasks:
1. Write functional and design specifications that comply with Informix coding

standards.
See Chapter 3, “Programming Guidelines,” on page 3-1, for more information.

5-2 IBM Informix DataBlade Developers Kit User’s Guide

2. Create your DataBlade module in BladeSmith.
See “Creating DataBlade Module Objects” on page 4-8 for instructions.

3. Generate source code and SQL files in BladeSmith.
See “Generating Files” on page 4-40 for instructions.

C Programming Task Overview
After you generate code with BladeSmith, complete these general tasks to finish
your DataBlade module code:

Windows Only

1. Open the project.dsw file in Visual C++. You can do this from within
BladeSmith. See “Opening the Project File in Visual C++” on page 4-47 for
instructions.

End of Windows Only

2. Add code to these source code files to enable your routines to function as you
intend:
v Opaque.c. Add functionality for opaque data type support routines, as

necessary. See “Editing Opaque Type Support Routines in opaque.c” on page
5-15 for instructions.

v statistics.c. Add functionality for statistics support routines, as necessary. See
“Editing Statistics Routines in statistics.c” on page 5-27 for instructions.

v udr.c. Add functionality for user-defined routines, cast support functions,
and aggregates. See “Editing Routines in udr.c” on page 5-28 for instructions.

3. Compile and link your source code files using a makefile or Visual C++
workspace file generated by BladeSmith. See “Compiling DataBlade Module
Code” on page 5-33 for instructions.

To avoid merging conflicts when you regenerate your code, add code only in areas
marked by TO DO: comments or after the generated code. If you do modify code
outside the designated areas, after you regenerate you might have two copies of
the routine: the one you modified and the one BladeSmith generated. Although
your changes remain, you must resolve conflicts in the two pieces of code.

Source Files Generated by BladeSmith
When you create new objects, BladeSmith generates the source files; some
filenames are prefixed with the name of the DataBlade module (indicated by
project). By default, BladeSmith creates the source files in the src and src\c
subdirectories of the directory that contains the BladeSmith project file. Generated
source files are listed in the following table.

Chapter 5. Programming DataBlade Module Routines in C 5-3

Filename Directory Type of File More Information

project.h src\c C header file See C Header File for more
information.

support.c

udr.c

Opaque.c

statistics.c

src\c C source code file You should edit only the udr.c,
Opaque.c, and statistics.c files.

See “C Source Code Files” on page
5-4 for more information.

project.def src\c C definition file This file lists the exported routines
declared in the source code file.

project.dsp
project.dsw

src Visual C++ files See “Microsoft Visual C++ Files”
on page 5-5 for more information.

readme.txt src\c Text file This file describes the files in the
src\c directory.

warning.txt src\c Text file This file describes potential
problems with your source code.

See “Warning File” on page 5-5 for
more information.

ProjectU.mak src Makefile Use this file for compiling on
UNIX.

See “Compiling on UNIX” on
page 5-33 for more information.

Some of these files are described in the following subsections.

C Header File
The project.h header file for the DataBlade module contains:
v definitions for error messages used in generated code.
v function prototypes for utility and tracing functions BladeSmith provides.
v DBDK_TRACE macros for the BladeSmith tracing facility.
v a type definition for the MI_LO_HANDLES structure returned by smart large

object functions.
v type definitions for opaque type structures defined in the BladeSmith project.

C Source Code Files
The support.c source code file for the DataBlade module project contains:
v #include directives for standard C and DataBlade API header files.
v utility functions called from BladeSmith-generated routines.

The udr.c source code file for the DataBlade module project contains function
declarations for user-defined C routines, cast support routines, and aggregates in
the BladeSmith project.

Each opaque data type has a source code file, Opaque.c, where Opaque is the
name of the opaque data type. The Opaque.c source code files contain function
definitions for opaque type support routines specified in the DataBlade module
project.

5-4 IBM Informix DataBlade Developers Kit User’s Guide

The statistics.c source code file for the DataBlade module project contains
user-defined statistics support routines for each opaque data type with statistics
support.

Microsoft Visual C++ Files
The project.dsp file is the Visual C++ project file that contains the project
information for both C and C++/ActiveX code: for example, a list of the source
code files. For more information about C++/ActiveX code, see Chapter 6, “Creating
ActiveX Value Objects,” on page 6-1.

The project.dsw file is the Visual C++ workspace file that contains workspace
information and refers to the project file for project information. You open the
project.dsw file to edit and compile your source code.

For more information on compiling using the project.dsw file, see “Compiling on
Windows” on page 5-34.

Warning File
The warning.txt file includes the following types of warnings about your source
code:
v Unfinished code. The file lists the routines to which you need to add code.
v User-defined statistics. If you included statistics-support functions for an

opaque data type, a warning states that user-defined statistics are only available
for Informix Version 9.2 and later.

v Long identifiers. If you created any objects with long identifiers, a warning
states that long identifiers are only available for Informix Version 9.2 and later.

v The mi_selfuncarg data type. If you included the mi_selfuncarg data type in an
extended data type, a warning states that the data type is deprecated for
Informix Version 9.2 and later.

The warning.txt file might contain other warnings, as appropriate for your source
code.

Using Generated Code
This section contains the following subsections:
v “Identifying the Source of Generated Code,” next
v “Comments in Generated Code” on page 5-6
v “MI_FPARAM Function Argument” on page 5-6
v “Server Connection Handle” on page 5-7
v “Tracing and Error Handling” on page 5-7
v “Utility Functions Generated by BladeSmith” on page 5-13

Identifying the Source of Generated Code
When BladeSmith generates source code for your DataBlade module, it uses
routines and data structures from various libraries.

The following table lists common prefixes for data types and routines appearing in
generated DataBlade module code and lists their sources and where they are
documented.

Chapter 5. Programming DataBlade Module Routines in C 5-5

Prefix Library More Information

mi_ DataBlade API Almost all DataBlade API routines and data types
have the mi_ prefix. See the IBM Informix
DataBlade API Programmer's Guide for more
information.

Gen_ BladeSmith All variable names and routine names not
explicitly named in the project have the Gen_
prefix. See “Utility Functions Generated by
BladeSmith” on page 5-13 for more information
on utility functions.

DBDK_TRACE_ BladeSmith BladeSmith uses four macros for error handling
and tracing in generated code. See “Tracing and
Error Handling” on page 5-7 for more
information.

gl_ DataBlade API The gl_dprintf() and gl_tprintf() functions are
used for internationalized tracing. See the IBM
Informix DataBlade API Programmer's Guide for
more information.

ifx_gl_ GLS API All GLS API routines have the ifx_gl_ prefix. See
the IBM Informix GLS User's Guide for more
information.

ifx_ ESQL/C In code generated by BladeSmith, this prefix
indicates routines and data types from ESQL/C.
See the IBM Informix ESQL/C Programmer's
Manual for more information.

Comments in Generated Code
BladeSmith adds comments to the code it generates. Each routine begins with a
prologue that describes the purpose of the routine, its arguments, and its return
value. Comments throughout the code describe variable declarations and the
results of generated C statements and routine calls.

In comments at the beginning and end of each generated routine, BladeSmith
stores information it uses when regenerating source code. The prologue includes a
routine ID. A comment at the end of the routine contains a calculated checksum.

Warning: Do not modify either of these comments; BladeSmith uses them to
merge your edits into the regenerated code.

BladeSmith adds a Gen_ prefix to all variable names and routine names you did
not create or explicitly define in BladeSmith: for example, utility functions and the
Gen_Con connection argument.

MI_FPARAM Function Argument
BladeSmith adds an extra argument to all routines it generates: a pointer to an
MI_FPARAM structure. However, with the exception of iterator functions and
user-defined functions that allow null arguments, the generated code does not
manipulate the values stored in MI_FPARAM structures. The MI_FPARAM
argument is included for your convenience. If you want to use the MI_FPARAM
structure, you must add code to all noniterator routines.

Typically, you only need to use the MI_FPARAM structure for the following tasks:
v Check for NULL arguments or return values

5-6 IBM Informix DataBlade Developers Kit User’s Guide

v Set arguments or return values to NULL

v Get data type information about arguments or return values
v Manage iterative calls to a function

To manipulate the values in an MI_FPARAM structure, you must use its DataBlade
API accessor functions. Do not access MI_FPARAM structure members directly,
because the structure might change between versions of the DataBlade API.

In addition to references for each of the MI_FPARAM accessor functions, the IBM
Informix DataBlade API Programmer's Guide includes a chapter that describes the
information stored in the MI_FPARAM structure and tells you how to get values
from or store values in the structure and how to use the structure for creating
iterative functions.

For an explanation of how generated code uses the MI_FPARAM structure in an
iterator function, see “Iterator Functions” on page 5-32. The ExmAmortize()
function in the example Business DataBlade module uses the MI_FPARAM
structure in an iterative function.

Server Connection Handle
BladeSmith calls mi_open() at the beginning of many of the routines it generates.
The mi_open() call obtains a database server connection handle, which is a
required argument in many DataBlade API calls. If your routine does not need a
connection handle, remove the mi_open() and mi_close() functions that
BladeSmith adds to your code.

Tip: If the only DataBlade API call your routine makes is to mi_db_error_raise(),
you do not need a connection handle. You can pass a null value to
mi_db_error_raise().

For routines running in the database server address space, except the large object
DataBlade API routines, the connection handle enables client and database server
routines to use the same DataBlade API routines.

When mi_open() is called at the beginning of a generated routine, mi_close() is
called to release the handle immediately before the routine returns.

Tracing and Error Handling
BladeSmith adds tracing and error handling code throughout the generated source
code if the tracing option is set to True when you generate source code in
BladeSmith.

A generated utility function, Gen_Trace(), processes all tracing and error handling.
Your routines must not call Gen_Trace() directly. To perform tracing and error
handling tasks, use the DBDK_TRACE macros defined in the generated header
file.

This section describes:
v How to use the supplied DBDK_TRACE macros to add tracing and error

handling to your generated code (see “Adding Tracing and Error Handling” on
page 5-9)

v How to enable tracing and use the generated TraceSet_project procedure (see
“Enabling Tracing in a DataBlade Module” on page 5-10 and “Enabling Tracing
in a Database Session” on page 5-11)

Chapter 5. Programming DataBlade Module Routines in C 5-7

v The standard Informix-supplied error messages (see “Standard Error Messages”
on page 5-13)

How Tracing Works
Tracing is the process of writing status messages for routines to a file. Use tracing
for debugging; tracing can generate a high volume of output, which is not
appropriate for production databases.

By default, tracing is disabled whenever you start a new database session.

Each tracing message has a tracing level associated with it. When you enable
tracing, you set a threshold for tracing levels. Messages with a trace level less than
or equal to the threshold are written to the trace file.

Tracing messages are written to a trace file, which is created with a default name
and location, or with a name and location you specify. If you remove the trace file
while tracing is enabled, it is automatically re-created. The default name and
location of the trace file is tmp/session_id.trc, where session_id is the four-digit
identifier of the current database server session. To obtain your current session ID,
use the onstat -g ses command.

Messages are written to the trace file only if you:
v Generate source code with tracing. See “Generating Source Files” on page 4-44

for instructions.
v Compile the DataBlade module. See “Compiling DataBlade Module Code” on

page 5-33 for instructions.
v Enable tracing in your DataBlade module by adding a trace class to the

systraceclasses system catalog and creating the TraceSet_project() procedure. See
“Enabling Tracing in a DataBlade Module” on page 5-10 for more information.

v Enable tracing for a database session by setting a threshold and optionally
specifying a trace file with the TraceSet_project() procedure. See “Enabling
Tracing in a Database Session” on page 5-11 for instructions.

Trace messages include the name of the executing routine, the source filename, and
the line number of the call to Gen_Trace() with the embedded parameters
%FUNCTION%, %FILENAME%, and %LINENO%. For example, the following
example is a portion of a log file resulting from calling the “enter routine” and
“exit routine” macros, DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT(), for
the Distance() function:
===
Tracing session: 12 on 3/4/1998

10:55:32 Entering function Distance (Circle.c)

10:55:32 Successfully exiting Distance (Circle.c)

Important: If you want to include parameters other than %FUNCTION%,
%FILENAME%, and %LINENO% in a message, you must call the
gl_dprintf() function for trace messages or the mi_db_error_raise()
function for error messages. For an example of calling these functions,
see the Gen_Trace() function in the generated source code. See the IBM
Informix DataBlade API Programmer's Guide for more information on
using these functions.

5-8 IBM Informix DataBlade Developers Kit User’s Guide

Adding Tracing and Error Handling
To add tracing and error handling to the generated source code, edit the generated
source code file and insert DBDK_TRACE macro calls.

The following table describes the tracing and error handling macros.

Macro Action (if tracing is enabled)

DBDK_TRACE_MSG() Prints a message in the trace file.

DBDK_TRACE_ERROR() Prints a message in the trace file and raises an
error by calling mi_db_error_raise().

DBDK_TRACE_ENTER() Prints a message in the trace file upon entering a
routine.

DBDK_TRACE_EXIT() Prints a message in the trace file upon exiting a
routine.

The macros are described in the following sections. See “Setting a Trace Output
File and a Trace Threshold” on page 5-12 for information on the name and location
of the trace message file.

The DBDK_TRACE_MSG() and DBDK_TRACE_ERROR() Macros: When
tracing is enabled, use the DBDK_TRACE_MSG() and DBDK_TRACE_ERROR()
macros to write messages to the trace message file. The DBDK_TRACE_ERROR()
macro also raises an error.

If tracing is not enabled, no messages are written to the trace message file;
DBDK_TRACE_ERROR() still raises an error.

The syntax for the DBDK_TRACE_MSG() and DBDK_TRACE_ERROR() macros
is as follows:
DBDK_TRACE_MSG(caller, mesgNo, level);
DBDK_TRACE_ERROR(caller, mesgNo, level);

caller The name of the C routine to which you are adding the macro.

mesgNo The number for an error or trace message in the syserrors or
systraceclasses system catalog. Use numbers for messages defined
in the BladeSmith project or messages BladeManager installs with
all DataBlade modules.

See “Defining Errors” on page 4-13 for instructions on creating
error and trace messages with BladeSmith.

The standard error messages are listed in “Standard Error
Messages” on page 5-13.

level An integer that determines the trace level for the message. If level
is less than or equal to the tracing threshold, then the message is
printed in the trace file. For example, the trace level for the
DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() macros is
20.

See “Setting a Trace Output File and a Trace Threshold” on page
5-12 for more information.

For example, if you have a function called ExmAmortize() and a trace message
number UE001 with a trace level of 20, use the following code fragment to add
tracing to the ExmAmortize() function:

Chapter 5. Programming DataBlade Module Routines in C 5-9

DBDK_TRACE_MSG("ExmAmortize", "UE001", 20);

The DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() Macros: If you have
tracing enabled and the trace threshold set to 20 or above, the
DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() macros write messages to
the trace file when the called routine is entered and exited, respectively.
BladeSmith automatically adds these macros to generated code for every routine.

The syntax for the DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() macros
is as follows:
DBDK_TRACE_ENTER(caller);
DBDK_TRACE_EXIT(caller);

The caller parameter specifies the name of the C routine to which you are adding
the macro.

For example, if you have a routine called ExmAmortize(), the following code
fragment sends a message to the message file when the ExmAmortize() routine is
entered:
DBDK_TRACE_ENTER("ExmAmortize");

Enabling Tracing in a DataBlade Module
After you generate code with tracing and compile your code, enable tracing in
your DataBlade module.

To enable tracing in your DataBlade module:

1. Create a trace class.
2. Create the TraceSet_project() procedure.

These steps are described in the following sections.

Creating a Trace Class: Tracing classes are categories of tracing that can be
activated independently, allowing you to tune your tracing output to suspected
problem areas.

To enable tracing in a database, you must insert the DataBlade trace class as a
record in the systraceclasses system catalog.

The tracing generated by BladeSmith provides a single trace class, with the same
name as your DataBlade project.

This example creates a trace class for the Business DataBlade module:
insert into informix.systraceclasses(name)

values('Business');

You can create your own tracing classes for customized tracing. See the IBM
Informix DataBlade API Programmer's Guide for more information.

Creating the TraceSet_project Procedure: The TraceSet_project() procedure
(where project is the name of your DataBlade module project) sets the tracing
output file and the trace threshold for a database server session by calling the
DataBlade API functions mi_tracefile_set() and mi_tracelevel_set().

The TraceSet_project() procedure is included in generated source code by
BladeSmith when you choose to generate code with tracing in the Generate
DataBlade dialog box. Although the TraceSet_project() procedure is included in the

5-10 IBM Informix DataBlade Developers Kit User’s Guide

generated C code, the SQL statements to create it in the database are not included
in the generated SQL scripts. This omission prevents end-users from accessing the
TraceSet_project() procedure from SQL statements.

After you install and register your DataBlade module in the database, create the
TraceSet_project() procedure using the following SQL statement:
CREATE PROCEDURE TraceSet_project(LVARCHAR, INT)
WITH(NOT VARIANT)
EXTERNAL NAME "/$INFORMIXDIR/extend/project/project.bld(TraceSet_project)"
LANGUAGE C
END PROCEDURE;

project is the name of your DataBlade module.

Tip: The comments for the TraceSet_project() procedure in your source code show
the exact syntax to create the procedure for your DataBlade module.

The syntax for using the TraceSet_project() procedure is as follows:
EXECUTE PROCEDURE TraceSet_project(

"traceFile",
traceThreshold

);

traceFile The path and filename of the trace output file for the current
database server session, surrounded by quotation marks. If you do
not specify a filename, the default file, /tmp/session_ID.trc, is
created. If you specify a filename and then execute
TraceSet_project() again during the same session without
specifying a filename, the filename is not changed.

See “Setting a Trace Output File and a Trace Threshold” on page
5-12 for and example.

traceThreshold The trace threshold for the current database server session. There
are three possible values:

0 Tracing is disabled.

> 0 Tracing is enabled and the threshold is set to that number.

< 0 The tracing threshold is not changed.

See “Setting a Trace Output File and a Trace Threshold” on page
5-12 for an example.

Enabling Tracing in a Database Session
After you enable tracing in your DataBlade module, enable tracing for the database
session. By default, when you start a database server session, tracing is disabled.

To enable tracing in your Database session:

1. Set the appropriate locale environment variables.
2. Register tracing routines in the database with the EnableTracing.sh shell script.
3. Set the trace output file and the trace threshold for the current session.

These steps are described in the following sections.

Setting Your Locale: The system only displays and writes messages to your
session that match the locale specified in the session environment variables.

Chapter 5. Programming DataBlade Module Routines in C 5-11

Therefore, to see your trace messages, you must set the SERVER_LOCALE
environment variable to the same locale you used when you created your
messages in BladeSmith.

Tip: To determine the locale for your trace message, look at its properties in
BladeSmith; click the message in the project view, under the Errors folder, and
choose Edit > Properties. See “Error Locale” on page 4-14 for more
information.

Registering Tracing Routines: To register the tracing routines for a particular
DataBlade module in a database, specify the following syntax from the UNIX
command line or MKS Korn Shell:
EnableTracing.sh database DataBlade [Project]

In this command, database is the name of the database in which you want to
register the routines and DataBlade is the name of the DataBlade module that
contains the tracing routines. The square brackets [] indicate that Project name is an
optional argument. Specify a path for Project if you have moved your DataBlade
module from its default directory. When you specify Project, specify only the part
of the path that follows %INFORMIXDIR%/extend/.

After you have registered the tracing routines in the database, set the output trace
file and tracing level as shown in “Setting a Trace Output File and a Trace
Threshold” on page 5-12. The filename and trace level settings must be reset if you
change DB-Access sessions or restart the server.

To unregister the tracing routines for a particular DataBlade module in a database,
specify the following syntax from the UNIX command line or MKS Korn Shell:
DisableTracing.sh database DataBlade [Project]

In this command, database is the name of the database in which you want to
register the routines and DataBlade is the name of the DataBlade module that
contains the tracing routines. The square brackets [] indicate that Project name is an
optional argument. Specify a path for Project if you have moved your DataBlade
module from its default directory. When you specify Project, specify only the part
of the path that follows %INFORMIXDIR%/extend/.

Important: Disable tracing in production DataBlade modules because tracing can
substantially decrease performance, and output trace files can use
considerable space.

Setting a Trace Output File and a Trace Threshold: To set the trace output file
and the trace threshold, use the TraceSet_project() procedure. The
DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() macros provided by
BladeSmith use the trace level 20.

The following example sets the filename to Business.trc in the /tmp directory and
sets the threshold to 20:
EXECUTE PROCEDURE TraceSet_Business("/tmp/Business.trc", 20);

To change the trace output file without altering the trace threshold, specify the
trace threshold as -1. To change the trace threshold without altering the trace
output file, do not put a filename between the quotation marks.

5-12 IBM Informix DataBlade Developers Kit User’s Guide

Standard Error Messages
BladeSmith uses a standard set of messages in the code that it generates. These
messages are shared by all DataBlade modules created with BladeSmith and cannot
be changed. BladeManager adds the error messages to the syserrors system catalog
and the systracemsgs system catalog when a DataBlade module is registered in a
database.

The messages have the same text and error numbers in the two system tables,
except that messages in the systracemsgs system table include the text
“(%FILENAME%, %LINENO%)” after the %FUNCTION% parameter to ensure that
the source filename and line number appear in the trace file.

The following table lists the standard U.S. English DataBlade module error
messages.

Error Number Message Text

UGEN1 Connection has failed in %FUNCTION%.

UGEN2 Memory allocation has failed in %FUNCTION%.

UGEN3 Error creating large object from client file in %FUNCTION%.

UGEN4 Large object handle is invalid in %FUNCTION%.

UGEN5 Error creating large object from client file in %FUNCTION%.

UGEN6 Error saving large object to client file in %FUNCTION%.

UGEN7 Double-quoted string expected in %FUNCTION%.

UGEN8 Interval format conversion has failed in %FUNCTION%.

UGEN9 Input string is not terminated with double-quote in
%FUNCTION%.

UGENA Input string is too long in %FUNCTION%.

UGENB Input data format error in %FUNCTION%.

UGENC Output LO file creation has failed in %FUNCTION%.

UGEND Entering function %FUNCTION%.

UGENE Successfully exiting function %FUNCTION%.

UGENF The collection could not be created in %FUNCTION%.

UGENG Insertion into the collection has failed in %FUNCTION%.

UGENH Invalid iterator state used in %FUNCTION%.

The generated header file defines constants ERRORMSG1 through ERRORMSG17
for these error numbers.

You can define additional messages used in your DataBlade module. Define them
in the BladeSmith project to ensure that they are loaded into the database when
your DataBlade module is registered. See “Developing Your DataBlade Module” on
page 1-5 for information about reserving error codes for your DataBlade module.

Utility Functions Generated by BladeSmith
BladeSmith generates support functions that it calls from other generated code.
These functions include:

Chapter 5. Programming DataBlade Module Routines in C 5-13

v Gen_IsMMXMachine(). This function determines whether the database server is
running on a computer with an Intel MMX processor. This function is only
generated if you specify that you want MMX-enabled functions when you
generate source code. See “The Gen_IsMMXMachine() Utility Function” on page
5-14 for more information.

v Gen_LoadLOFromFile(). When an opaque type includes a large object handle,
BladeSmith includes this function to retrieve the large object data from a disk
file.

v Gen_nstrwords(). This function counts the number of values (each separated by
a blank space) in a formatted string. This function is called from input and
import functions to retrieve values from variable-length opaque types.

v Gen_sscanf(). This function is called from input and import functions to convert
text data to the C structure for an opaque type. See “The Gen_sscanf() Utility
Function” on page 5-14 for more information.

v Gen_StoreLOToFile(). When an opaque type includes a large object handle,
BladeSmith includes this function to write large object data to a disk file.

v Gen_Trace(). This function processes trace messages and errors. This function is
generally invoked by the macros DBDK_TRACE_ENTER(),
DBDK_TRACE_EXIT(), DBDK_TRACE_MSG(), and DBDK_TRACE_ERROR().
See “Tracing and Error Handling” on page 5-7 for more information.

Most of the generated utility functions are called by code that BladeSmith
generates, and you typically do not use them in your code. The Gen_sscanf()
utility function, however, can be useful in your input/output functions. You can
use the Gen_IsMMXMachine() function if you use Intel MMX instructions in your
code.

The Gen_sscanf() Utility Function
The Gen_sscanf() utility function scans one value from an input string and stores
it at a given address. Gen_sscanf() returns a pointer that points just past the value
it scanned from the input string.

Gen_sscanf() takes the following arguments:

Gen_Con The database connection handle

Gen_Caller The name of the calling function

Gen_InData A pointer to the text to be scanned

Gen_InDataLen An integer containing the length of the text (mi_lvarchar strings
are not null-terminated)

Gen_Width An integer containing the maximum data length for text data

Gen_Format A string containing a sscanf() format string for the structure
member to be scanned

Gen_Result A pointer to the member in the structure where Gen_sscanf()
stores the scanned value

The generated input and import functions call Gen_sscanf() once for each structure
member. Gen_sscanf() requires an input string in the current locale and uses the
IBM Informix GLS routines to scan the string.

The Gen_IsMMXMachine() Utility Function
The Gen_IsMMXMachine() utility function can be used when you include Intel
MMX media enhancement technology in your DataBlade module. The function

5-14 IBM Informix DataBlade Developers Kit User’s Guide

tests the processor in the database server computer to determine if it has MMX
technology support. If MMX technology support is found, Gen_IsMMXMachine()
returns 1.

If the database server machine does not have MMX technology support, or if the
FORCE_NO_MMX environment variable is set in the database server
environment, Gen_IsMMXMachine() returns 0. On UNIX machines,
Gen_IsMMXMachine() always returns 0.

To execute MMX instructions when possible and to execute portable C code on
computers that do not have MMX technology support, call Gen_IsMMXMachine()
in an IF statement.

Gen_IsMMXMachine() declares a static INT flag, MMXType. It first looks for the
FORCE_NO_MMX environment variable, which must be set in the environment
before the database server is started.

If FORCE_NO_MMX is found, the function sets MMXType to 0 without testing
the CPU. If FORCE_NO_MMX is not found, the function tests the processor and
sets the MMXType variable to 1 if MMX technology support is found or 0 if not.
After the value of MMXType is set, Gen_IsMMXMachine() returns its value
immediately, so that tests are performed once after the DataBlade module object
file is loaded.

Editing Opaque Type Support Routines in opaque.c
BladeSmith DataBlade generates code for opaque type support routines, as
described in the following subsections:
v “Text Input and Output Functions” on page 5-16, next
v “Binary Send and Receive Functions” on page 5-19
v “Text File Import and Export Functions” on page 5-20
v “Binary File Import and Export Functions” on page 5-21
v “The Assign and Destroy Routines” on page 5-22
v “LOhandles() Function” on page 5-23
v “Comparison Functions” on page 5-23
v “Mathematical Functions” on page 5-26

The following subsections describe the code BladeSmith generates for each routine
and modifications you might need to make to the generated code.

Each of the generated support routines contains an MI_FPARAM argument.
BladeSmith includes the MI_FPARAM argument in generated code for your
convenience; you can add code to use it. The generated code, however, does not
use the MI_FPARAM argument. See “MI_FPARAM Function Argument” on page
5-6 for more information.

Important: To avoid merging conflicts when you regenerate your code, add code
only in areas marked by TO DO: comments or after the generated code.
If you do modify code outside the designated areas, after you
regenerate you might have two copies of the routine: the one you
modified, and the one BladeSmith generated. Although your changes
remain, you must resolve the conflicts in the two pieces of code.

Chapter 5. Programming DataBlade Module Routines in C 5-15

Text Input and Output Functions
The text input function converts from the textual representation of an opaque data
type to the internal format. The C name of the text input function for each opaque
data type is OpaqueInput().

The text output function converts from the internal format of an opaque data type
and the textual representation. The C name of the text output function for each
opaque data type is OpaqueOutput().

BladeSmith generates complete C code for these functions.

The Generated Code
The generated code for the text input and output functions uses a default text
representation: a string containing all members of the structure, delimited with
spaces. Strings are enclosed in single quotation marks ('). Large objects are
represented as external filenames enclosed in quotation marks. The input function
calls the sscanf() C library function. Use character representations for these types
that sscanf() recognizes.

For example, the Circle DataBlade module defines a Pnt data type with two
mi_double_precision members, x and y. The Circ.h header file contains the
following structure definition:
typedef struct
{

mi_double_precision x;
mi_double_precision y;

}
Pnt;

The default text representation for the Pnt data type is as follows:
'x y'

x and y are character strings that sscanf() can convert to double-precision values.
For example, the following statement inserts a Pnt value into a table, using the
default text representation:
insert into mytable (col1) values ('12.3 66.9');

Text Input Function: The text input function has two arguments: an mi_lvarchar
pointer, which points to the text that is to be converted, and an unused
MI_FPARAM pointer.

The text input function returns a pointer to a filled-in C structure for the Pnt data
type. The contents of this structure are written to the database table. The function
allocates memory for the opaque type it returns, as follows:

/* Allocate memory room to build the UDT in. */
Gen_RetVal = (Pnt *)mi_alloc(sizeof(Pnt));
if(Gen_RetVal == 0)
{

/*
** Memory allocation has failed so issue
** the following message and quit.
**
** "Memory allocation has failed in PntInput."
*/
mi_db_error_raise(Gen_Con, MI_SQL, ERRORMESG2,

"FUNCTION%s", "PntInput", (char *)NULL);

The database server frees the allocated memory.

5-16 IBM Informix DataBlade Developers Kit User’s Guide

Next, the function scans the text string, obtaining a value for one structure member
at a time, as follows:

/* Get the data value for Gen_OutData->x. */
Gen_InData = Gen_sscanf(Gen_Con, "PntInput", Gen_InData,

mi_get_varlen(Gen_param1), 0,
"%lf %n",
(char *)&Gen_OutData->x);

/* Get the data value for Gen_OutData->y. */
Gen_InData = Gen_sscanf(Gen_Con, "PntInput", Gen_InData,

mi_get_varlen(Gen_param1), 0,
"%lf %n",
(char *)&Gen_OutData->y);

This code calls the Gen_sscanf() utility function, which BladeSmith adds to each
generated C source file.

Finally, the text input function returns a pointer to the completed C structure, as
follows:

/* Return the UDT value. */
return Gen_RetVal;

Text Output Function: The text output function takes a pointer to the opaque
type structure and an MI_FPARAM pointer and returns a text representation of the
data type in an mi_lvarchar value. BladeSmith operates under the assumption that
the text representation is a string containing character representations of all of the
structure members delimited with spaces. The function encloses strings and
filenames for large objects in double quotation marks.

The generated text output function computes the maximum length of the string it
returns and calls mi_new_var() to allocate an mi_lvarchar argument, Gen_RetVal.
The database server frees the allocated memory later.

The function calls the C standard library function sprintf() once for each structure
member to write the value and a space in the data area pointed to by the
Gen_OutData argument. The following code shows the sprintf() calls from the
generated PntOutput() function in the Circle DataBlade module:

/* Format the value for Gen_InData->x. */
sprintf(Gen_OutData, "%lf ", Gen_InData->x);
Gen_OutData += strlen(Gen_OutData);

/* Format the value for Gen_InData->y. */
sprintf(Gen_OutData, "%lf", Gen_InData->y);
Gen_OutData += strlen(Gen_OutData);

Between calls to sprintf(), the function resets Gen_OutData to point to the end of
the string.

Customizing the Code
To use an input text format different from the default format, or if the C structure
contains data types that BladeSmith cannot scan with Gen_sscanf(), you must
modify the generated text input function code.

If you want an input text format that is different than the default, replace the
generated code with your own. For example, you can choose to delimit values
with commas instead of spaces. Your code might be able to call the Gen_sscanf()
function, or you might need to write your own scanning function.

Chapter 5. Programming DataBlade Module Routines in C 5-17

In the Circle DataBlade module, the text representation of the Pnt data type is
changed from the default format, ‘x y’, to a new format: ‘(x, y).’

To support the new format, Gen_sscanf() calls in the PntInput() function are
modified to include the parentheses and comma in the format string, as shown in
the following code:

/* Get the data value for Gen_OutData->x. */
Gen_InData = Gen_sscanf(Gen_Con, "PntInput", Gen_InData,

mi_get_varlen(Gen_param1), 0,
"(%lf %n,",
(char *)&Gen_OutData->x);

/* Get the data value for Gen_OutData->y. */
Gen_InData = Gen_sscanf(Gen_Con, "PntInput", Gen_InData,

mi_get_varlen(Gen_param1), 0,
"%lf %n)",
(char *)&Gen_OutData->y);

If you change the text input function to support a text format different from the
default, also change the text output function. The string returned by the text input
function should be a valid string for the text output function.

For example, to support the new text representation for the Pnt data type, the
parentheses and comma are added to the sprintf() calls in the PntOutput()
function, as follows:

/* Format the value for Gen_InData->x. */
sprintf(Gen_OutData, "(%lf,", Gen_InData->x);
Gen_OutData += strlen(Gen_OutData);

/* Format the value for Gen_InData->y. */
sprintf(Gen_OutData, "%lf)", Gen_InData->y);
Gen_OutData += strlen(Gen_OutData);

Smart Large Object Considerations
Large objects are represented as external filenames enclosed in quotation marks.

Examples
The following example DataBlade modules contain text input and output
functions:
v Strings DataBlade module. The text input and output functions for the

CompressStr opaque data type call user-defined routines to compress and
uncompress a string, use the MI_FPARAM argument, and pass a smart large
object handle.

v Circle DataBlade module. The text input and output functions for the Pnt
opaque data type show a modified text representation.

v Shapes DataBlade module. The text input and output functions for the
MyShape opaque data type contain code for each of the three specific cases of
MyShape: MyBox, MyCircle, and MyPoint. The text input and output functions
for the MyBox, MyCircle, and MyPoint data types call the text input and output
functions for MyShape.

v FuzzyMatch DataBlade module. The text input function for the ColorType
opaque data type converts the textual name of a color to a three-integer value by
looking up the value in a map file.

v UDTExporter DataBlade module. The text input and output functions for the
ComplexNumber opaque data type process an integer array.

v MMXImage DataBlade module. The text input and output functions process the
variable-length Image opaque data type using MMX technology.

5-18 IBM Informix DataBlade Developers Kit User’s Guide

Binary Send and Receive Functions
The binary send function converts opaque data type values to the client format
before sending them to the client. The C name of the binary send function for each
opaque data type is OpaqueSend().

The binary receive function converts opaque data type values from the client
format before sending them to the database server. The C name of the binary
receive function for each opaque data type is OpaqueReceive().

BladeSmith generates complete C code for these functions.

The Generated Code
The binary send and receive functions adjust data types for differing byte order
and alignment requirements on the client and server computers. The functions call
the appropriate mi_put and mi_get DataBlade API accessor functions to transform
individual members of the opaque type structure.

The binary send function takes the opaque data type as its argument and returns a
pointer to an mi_sendrecv type, which contains the opaque type structure, and an
unused MI_FPARAM pointer. The mi_sendrecv type is the client form of the
opaque data type. The binary receive function takes an mi_sendrecv type as its
argument and returns the opaque data type. If the opaque data type is variable
length, then the binary send function takes an mi_bitvarying type as its argument,
and the binary receive function returns an mi_bitvarying type.

The binary send function calls mi_put DataBlade API accessor functions to store
the client representation of the data type in the structure to be returned to the
database server. The binary receive function calls mi_get DataBlade API accessor
functions to retrieve values for each structure member from the input received
from the client.

The following code, taken from the Circle DataBlade module CircSend() function,
calls mi_put_double_precision() to store values from an input Circ data type
(addressed by the Gen_InData argument) to an output Circ data type (addressed
by the Gen_OutData argument):

/* Prepare the value for Gen_OutData->center.x. */
mi_put_double_precision((mi_unsigned_char1 *)&Gen_OutData->center.x, &Gen_InData->center.x);

/* Prepare the value for Gen_OutData->center.y. */
mi_put_double_precision((mi_unsigned_char1 *)&Gen_OutData->center.y, &Gen_InData->center.y);

/* Prepare the value for Gen_OutData->radius. */
mi_put_double_precision((mi_unsigned_char1 *)&Gen_OutData->radius, &Gen_InData->radius);

The corresponding code for the CircReceive() function is identical, except it uses
mi_get_double_precision() instead of mi_put_double_precision().

Customizing the Code
In general, you do not need to modify the generated binary send and receive
functions. If you do add code to one of the functions, you must make
corresponding changes to the other function. You can alter the binary send and
receive functions to encrypt data in the mi_sendrecv type before sending data to
the client and decrypt data from the mi_sendrecv type before receiving data into
the database.

Chapter 5. Programming DataBlade Module Routines in C 5-19

Examples
The following example DataBlade module use the binary send and receive
functions without modification:
v UDTExporter DataBlade module
v Matrix DataBlade module
v Circle DataBlade module
v MMXImage DataBlade module

Text File Import and Export Functions
The text file import function transfers a flat file to the text representation of the
opaque data type. The C name of the text file import function for each opaque
data type is OpaqueImportText().

The text file export function transfers the text representation of the opaque data
type to a flat file. The C name of the text file export function for each opaque data
type is OpaqueExportText().

BladeSmith generates complete C code for these functions.

The Generated Code
The database server calls the text file import function with a pointer to an
mi_impexp type containing the input text, which it retrieves from an external file,
and an unused MI_FPARAM pointer. The text file import function converts the text
to an instance of the opaque type and returns a pointer to it.

The text file import function allocates memory for the opaque structure that it
returns and then calls Gen_sscanf() for each member of the structure, storing the
scanned values in the allocated memory.

The database server calls the text file export function with a pointer to an instance
of the opaque type and an unused MI_FPARAM pointer. The text file export
function converts the opaque type value to a text value stored in an mi_lvarchar
variable that it allocates. The generated code works the same way as the text
output function.

The text file export function computes the maximum length of the text value it can
return by adding the maximum lengths for each structure member. Then it calls
mi_new_var() to allocate an mi_impexp argument large enough to hold the largest
possible text value.

To create the output text, the function calls sprintf() once for each member of the
opaque type structure, concatenating a text representation of the value to the string
in the mi_impexp variable. Each value is followed by a space.

The default text file export function uses the same text representation as the input
and import functions. This format allows database users to enter values for the
opaque type and enables opaque types to be displayed. For bulk copy operations,
however, a user-readable format is not necessary.

Customizing the Code
The default format for imported text is the same as for the text input function: a
string containing each structure member, delimited with spaces. If you use a
different text representation for your data type, you can modify the format strings
in the Gen_sscanf() calls.

5-20 IBM Informix DataBlade Developers Kit User’s Guide

To conserve space in the external file or to match the representation required by
some another application that uses the export file, you can use a different text
representation for bulk copy. When you modify the text representation that the text
file export function uses for copy-out operations, make corresponding
modifications in the text file import function.

Smart Large Object Considerations
If the data type contains the smart large object handle data type
MI_LO_HANDLE, the input contains the large object filename in double quotation
marks. The text file import function calls Gen_LoadLOFromFile() to retrieve the
smart large object data from the external file. The text file export function calls
Gen_StoreLOToFile() to save the smart large object in an external file.

Binary File Import and Export Functions
The binary file import function transfers the binary representation of the opaque
data type to a flat file. The C name of the binary file import function for each
opaque data type is OpaqueImportBinary().

The binary file export function transfers the binary representation of the opaque
data type from a flat file. The C name of the binary file export function for each
opaque data type is OpaqueExportBinary().

BladeSmith generates complete C code for these functions.

The Generated Code
The Informix database server calls the binary file import function with an
mi_impexpbin pointer containing the binary representation of an opaque type
value, read from an external file. The function also receives an unused
MI_FPARAM pointer.

The binary file import function translates the binary data in the mi_impexpbin
structure into an instance of the opaque type and returns a pointer to the C
structure containing the opaque data type. The BladeSmith-generated code
allocates memory for the return structure and then calls DataBlade API mi_get
functions to retrieve a value for each member of the structure.

The Informix database server calls the binary file export function with a pointer to
a C structure, which contains an instance of the opaque type, and an unused
MI_FPARAM pointer. The function translates the opaque type value into a binary
image and returns it in an mi_impexpbin structure. The Informix database server
writes the returned binary value into external files.

The binary file export function calls mi_new_var() to allocate an mi_bitvarying
variable and then calls an mi_put function for each element of the opaque
structure to store the value.

Customizing the Code
You should not modify the generated code for the binary file import and export
functions.

Smart Large Object Considerations
If the opaque type includes large objects, the binary file import function calls
Gen_LoadLOFromFile() to read the large object data from a file. The binary file
export function calls Gen_StoreLOToFile() to save the smart large object in an
external file.

Chapter 5. Programming DataBlade Module Routines in C 5-21

The Assign and Destroy Routines
The Assign() function performs tasks before saving an opaque data type to disk.
The C name for each opaque data type is OpaqueAssign().

The Destroy() procedure performs tasks before saving an opaque data type to disk.
The C name for each opaque data type is OpaqueDestroy().

BladeSmith generates complete C code for Assign() and Destroy() routines that
manage large object reference counts. For other types of special processing, you
must add code to the generated code.

Important: If you use text input and output functions for smart large objects, you
must define Assign() and Destroy() routines to prevent runtime errors
from the database server.

The Generated Code
The Informix database server calls the Assign() function with a pointer to an
instance of an opaque type and a pointer to an MI_FPARAM structure that is not
used by the generated code. The function returns a pointer to the opaque type to
the database server. Usually, the pointer returned by the Assign() function is the
same one the Informix database server passed to it. If the Assign() function alters
the input opaque type in any way and returns a pointer to it, the database server
stores the modified value in the database.

The Informix database server calls the Destroy() procedure before removing an
opaque type from the database. It passes the Destroy() procedure a pointer to the
opaque type value that is about to be removed from the database and an unused
MI_FPARAM pointer. The procedure returns no value.

Customizing the Code
If your opaque data type does not contain a smart large object, you must add code
to perform the required task.

Smart Large Object Considerations
If your opaque data type contains a smart large object, then the generated Assign()
function manages smart large object reference counts. It calls mi_lo_validate() to
determine if a valid large object exists and mi_lo_increfcount() to increment the
reference count for the large object.

The Destroy() procedure calls mi_lo_validate() for each large object. For valid large
objects, it calls mi_lo_decrefcount() to decrement the reference count for the large
object.

Examples
The following example DataBlade modules use Assign() and Destroy() routines for
smart large object processing:
v Strings DataBlade module
v MMXImage DataBlade module

The MultiRep DataBlade module uses the Assign() function to determine whether
to put the multi-representational opaque type in the database table or in a smart
large object, depending on its size. The Destroy() procedure removes the reference
counts to smart large objects, but has not effect on in-row data.

5-22 IBM Informix DataBlade Developers Kit User’s Guide

The Creating Distinct Types and Casts exercise in the tutorial uses the Assign()
function for the FTemp (representing Fahrenheit degrees) and CTemp (representing
Celsius degrees) distinct data types to prevent a user from entering a temperature
value below absolute zero.

LOhandles() Function
The Informix database server calls the LOhandles() function to retrieve the smart
large object handles or list of smart large object handles used by an opaque type.
The LOhandles() function receives a pointer to the opaque type and a pointer to
an MI_FPARAM structure.

The LOhandles() function returns a pointer to an mi_bitvarying variable
containing an MI_LO_HANDLES structure. BladeSmith defines
MI_LO_HANDLES in the generated header file; it is not part of the DataBlade
API. The structure holds a list of MI_LO_HANDLE structures. It has the following
definition:
/* This data structure returned by LOhandles. */
typedef struct
{

mi_integer nlos; /* Number of large object handles. */
MI_LO_HANDLE los[1]; /* Valid large object handles. */

} MI_LO_HANDLES;

The LOhandles() function calls the mi_lo_validate() function for each large object
in the opaque type structure, accumulating a count of valid large objects. If there
are no valid large objects in the opaque type, the LOhandles() function returns 0 to
its caller.

If the opaque type contains valid large objects, the LOhandles() function performs
the following tasks:
1. Allocates an mi_bitvarying variable to hold the MI_LO_HANDLES structure
2. Copies valid large object handles into the los array in the MI_LO_HANDLES

structure
3. Sets the MI_LO_HANDLES nlos member to the number of large objects in the

array
4. Returns a pointer to the MI_LO_HANDLES structure

Comparison Functions
The Informix database server calls DataBlade module comparison functions to
compare two opaque type values. For example, database users can compare
opaque values in SQL statements. If you want to support B-tree or R-tree indexes
on an opaque type, you must provide an additional set of comparison functions.

Compare Function
The Compare() function compares two opaque types and returns an integer
indicating the result of the comparison. The C name for each opaque data type is
OpaqueCompare().

BladeSmith generates the complete C code for this function.

The Generated Code: The generated code compares the members of an opaque
type C structure to the members in the other opaque type, in the order defined in
the structure. This algorithm might not be the appropriate way to compare your
data; if it is not, you must customize the code as described in the next section.

Chapter 5. Programming DataBlade Module Routines in C 5-23

The Compare() function returns:
v -1 if the values of two corresponding members are not equal and the value of

the first is less than the value of the second.
v 0 if the value of all members of the two opaque data types are equivalent.
v +1 if the values of two corresponding members are not equal and the value of

the first is greater than the value of the second.

For example, the Circle DataBlade module defines a Pnt data type as follows:
typedef struct
{

mi_double_precision x;
mi_double_precision y;

}
Pnt;

The Compare() function generated for the Pnt type first compares the two values
of x. If the two values of x are not equal, Compare() stops and returns the result of
the comparison. If the two values of x are equal, Compare() proceeds to compare
the two values of y.

For data types such as mi_boolean, which cannot be compared for relative
magnitude, the Compare() function returns +1 if the values differ. If all structure
members are equal, it returns 0.

Customizing the Code: The algorithm used to generate the Compare() function
cannot evaluate the semantic content of an opaque type. Therefore, for many
opaque types, replace the generated code with more appropriate code.

For example, the Circ.h file of the Circle DataBlade module defines the Circ data
type as follows:
typedef struct
{

Pnt center;
mi_double_precision radius;

}
Circ;

The Pnt member has two mi_double_precision members: x and y. The generated
code for Compare() compares the three mi_double_precision values individually:
first x, then y, and then radius. However, if the size of your circles is more
important than their origins, you could remove the code that compares the x and y
members to base the comparison on the length of the radius only.

If you want to use B-tree indexing, the Compare() function is the B-tree support
function. Therefore, you should analyze how you want to index your opaque data
types when modifying Compare().

Smart Large Object Considerations: The generated Compare() function does not
compare the values of the smart large objects; it compares the smart large object
handles. If the smart large object handles are the same, then both handles refer to
the same object. You can customize the code to compare the actual values of the
smart large objects.

Examples: The following example DataBlade modules implement the Compare()
function to compare opaque data types member by member:
v Matrix DataBlade module

5-24 IBM Informix DataBlade Developers Kit User’s Guide

v Circle DataBlade module

The Shapes DataBlade module uses Compare() to perform a bitwise comparison on
its Circle and Box data types.

B-Tree Comparison Functions
The Informix database server calls the following comparison operators when
constructing B-tree indexes for opaque data types:
v Equal() (=)
v LessThan() (<)
v LessThanOrEqual() (<=)
v GreaterThan() (>)
v GreaterThanOrEqual() (>=)
v NotEqual() (!= and <>)

The C names of each of these functions are prefixed by the name of the opaque
data type for which they are defined.

Important: The Equal() function is required if you use Visual Basic to develop a
DataBlade module.

BladeSmith generates the complete C code for these functions.

The Generated Code: For these functions, BladeSmith generates code that calls
the Compare() function described in “Compare Function” on page 5-23. For
example, the Matrix2dEqual() function generated for the Matrix2d type calls the
Matrix2dCompare() function, as follows:
/* Call Compare to perform the comparison. */

return (mi_boolean)(0 != Matrix2dCompare(Gen_param1, Gen_param2, Gen_fparam));

Customizing the Code: You should not modify these functions. You can, however,
modify the Compare() function that these functions call.

Smart Large Object Considerations: Because these functions call the Compare()
function, they only evaluate the smart large object handles. You must customize
the Compare() function to evaluate the actual contents of smart large objects.

Examples: The following example DataBlade modules contain some of the B-tree
comparison functions:
v Matrix DataBlade module
v Circle DataBlade module
v Shapes DataBlade module

R-Tree Comparison Functions
Version 4.0 of BladeSmith does not generate code for R-tree comparison functions.

Refer to the IBM Informix R-Tree Index User's Guide or the IBM Informix Online
Documentation site for information about creating DataBlade modules that use the
R-tree secondary access method.

Chapter 5. Programming DataBlade Module Routines in C 5-25

Mathematical Functions
If you choose to generate mathematical functions, BladeSmith generates the
following mathematical functions that take two opaque data type arguments,
return an opaque data type, and are bound to operators:
v Plus() (+)
v Minus() (-)
v Times() (*)
v Divide() (/)

BladeSmith generates the following mathematical functions that take one opaque
data type argument, return an opaque data type, and are bound to operators:
v Positive() (+)
v Negate() (-)

The C name of each of these functions is prefixed by the name of the opaque data
type for which they are defined.

BladeSmith generates only template code for these mathematical functions.

The Generated Code
These functions have an unused MI_FPARAM argument and one or two opaque
data type arguments, and they return a pointer to the resulting opaque type
structure.

In the generated code, the return value is set to 0. You must add code to perform
the required operation.

Completing the Code
To complete the code for these mathematical functions, you must:
v Add your declarations, if necessary.
v Remove the call to mi_db_error_raise(), which raises an error stating that the

routine is not implemented.
v Compute the return value and store it in the Gen_RetVal argument.

The database server frees the allocated memory when it has finished processing
the result.

See IBM Informix User-Defined Routines and Data Types Developer's Guide for more
information on these functions.

Example
The Matrix DataBlade module contains some of the mathematical functions.

Concat() Function
The Concat() function concatenates the values of its two opaque data type
arguments and returns the result. It is bound to the || operator.

The C name of this function is prefaced by the name of the opaque data type:
OpaqueConcat().

BladeSmith generates only a template for this function. You must add code to
perform the required operation.

5-26 IBM Informix DataBlade Developers Kit User’s Guide

Hash() Function
The database server uses the Hash() function when evaluating the Equal() function
for two opaque data types that do not have identical bit representations.

The C name of this function is prefaced by the name of the opaque data type:
OpaqueHash().

BladeSmith generates only a template for this function. You must add code to
perform the necessary operation.

Editing Statistics Routines in statistics.c
If you selected statistics support routines when creating an opaque data type (see
“Statistics Support” on page 4-34), BladeSmith generates code for the following
statistics support routines for your opaque data type in the statistics.c source code
file:
v “The Statistics Collection Function,” next
v “The Statistics Print Function” on page 5-28
v “The Statistics Minimum, Maximum, and Distribution Functions” on page 5-28

To implement user-defined statistics, you must also create selectivity routines to
calculate the selectivity of routines that compare your opaque data type. Selectivity
routines call the statistics support functions. For a description of user-defined
statistics, see “User-Defined Statistics” on page 2-9.

Important: To avoid merging conflicts when you regenerate your code, add code
only in areas marked by TO DO: comments or after the generated code.
If you do modify code outside the designated areas, after you
regenerate you might have two copies of the routine: the one you
modified and the one BladeSmith generated. Although your changes
remain, you must resolve the conflicts in the two pieces of code.

The Statistics Collection Function
The OpaqueStatCollect() function collects statistics (minimum value, maximum
value, and distribution information) for the Opaque opaque data type when a user
executes the UPDATE STATISTICS statement in medium or high mode. For more
information on the UPDATE STATISTICS statement, see the IBM Informix Guide to
SQL: Syntax.

The Generated Code
The OpaqueStatCollect() function calls the Opaque_SetMinValue(),
Opaque_SetMaxValue(), and Opaque_SetHistogram() functions.

BladeSmith generates complete code for the OpaqueStatCollect() function. The
OpaqueStatCollect() function is an iterator that processes each row in a table. It
compiles statistical information by calling the Opaque_SetMinValue(),
Opaque_SetMaxValue(), and Opaque_SetHistogram() functions. The
OpaqueStatCollect() function stores statistical information in a
multirepresentational type.

Customizing the Code
You must understand your data and how users will query it to create meaningful
statistics. BladeSmith generates statistics code under the assumption that the
minimum, maximum, and distribution of values are appropriate for your opaque

Chapter 5. Programming DataBlade Module Routines in C 5-27

data type; however, they might not be. In that case, you must rewrite the
OpaqueStatCollect() function to call other functions that you provide.

The Statistics Print Function
The OpaqueStatPrint() function prints formatted statistics for the Opaque data
type. You can view statistics information with the dbschema utility.

BladeSmith generates complete code for the OpaqueStatPrint() function; however,
you can alter it to customize the information it prints.

The Statistics Minimum, Maximum, and Distribution Functions
The Opaque_SetMinValue() function computes the minimum value of the Opaque
data type.

The Opaque_SetMaxValue() function computes the maximum value of the
Opaque data type.

The Opaque_SetHistogram() function computes the distribution of the values of
the Opaque data type.

The Generated Code
BladeSmith generates only function stubs for the Opaque_SetMinValue(),
Opaque_SetMaxValue(), and Opaque_SetHistogram() functions.

Completing the Code
To complete the code for the statistics support functions, you must add code to
compute the minimum, maximum, and distribution of the values of your opaque
data type.

When the database server computes the minimum, maximum, and distribution of
values for built-in data types, it uses the standard ASCII sequence to order the
values. However, opaque data types can be much more complicated. For example,
suppose you have a box opaque data type that contains values for its height and
its width. You might decide that area of the box is an appropriate measure for
determining the minimum and maximum values. The distribution, however, can be
more complicated. If the area of the boxes varies, then area might be the
appropriate way to assign boxes to bins. If the areas of your boxes are all very
similar, but the heights and widths vary, then height or width might be the best
distribution criteria.

Example
The Box DataBlade module has an example of statistics support routines.

Editing Routines in udr.c
BladeSmith DataBlade generates code for the following types of routines in the
udr.c source code file:
v “Most User-Defined Routines” on page 5-29, next
v “Cast Support Functions” on page 5-29
v “Aggregate Functions” on page 5-30
v “Selectivity Functions” on page 5-31
v “Iterator Functions” on page 5-32

5-28 IBM Informix DataBlade Developers Kit User’s Guide

Important: Avoid code merge problems by modifying code only in the sections
marked with a TO DO: note. If you do modify code outside the
designated areas, after you regenerate you may have two copies of the
routine: the one you modified and the one BladeSmith generated.
Although your changes remain, you must resolve the conflicts in the
two pieces of code.

Most User-Defined Routines
BladeSmith generates only minimal code for most routines you create with the
Routine wizard.

The Generated Code
BladeSmith generates only templates for most user-defined routines.

The generated routine declares the routine, its return type, and arguments. In
addition to the arguments you specified when creating the routine, these functions
also have an MI_FPARAM argument. Only generated routines that allow null
values have code that uses the MI_FPARAM argument. The generated code in
these routines uses MI_FPARAM to set the return value of the routine to NULL.

Completing the Code
To complete the code for most user-defined routines, you must:
v Add your declarations, if necessary.
v Remove the call to mi_db_error_raise(), which raises an error stating that the

routine is not implemented.
v Compute the return value and store it in the Gen_RetVal argument.
v Remove the call to mi_fp_setreturnisnull() that sets the return value of your

routine to NULL, if necessary.

For more information on programming routines, see the IBM Informix DataBlade
API Programmer's Guide.

Examples
The following example DataBlade modules have user-defined routines:
v Business DataBlade module. Provides mathematical functions for calculating

loans.
v Circle DataBlade module. Provides distance and containment functions that

operate on opaque data types.
v FuzzyMatch DataBlade module. Provides functions for handling row data types

and comparing opaque data types.
v Parts Explosion DataBlade module and DataBladeAPI DataBlade module.

Provide functions for handling and returning collection data types.
v Strings DataBlade module. Provides character-string manipulation functions.

The Mercury DataBlade module exercise in the tutorial provides examples of cast
support functions.

Cast Support Functions
If you specified a cast support function when you created a cast, BladeSmith
generates the cast support function in the udr.c file.

The Generated Code
BladeSmith generates only templates for cast support functions.

Chapter 5. Programming DataBlade Module Routines in C 5-29

The generated function declares the routine, its return type, and arguments. In
addition to the arguments you specified when creating the function, these
functions also have an MI_FPARAM argument, which is not used by the generated
code.

Completing the Code
To complete the code for cast support functions, you must:
v Add your declarations, if necessary.
v Remove the call to mi_db_error_raise(), which raises an error stating that the

routine is not implemented.
v Convert one data type to the other.
v Store the return value in the Gen_RetVal argument.

In a cast support function, you might convert from one binary representation to
another, if the data types involved in the cast have differing binary representations.
Alternatively, you might perform a calculation to convert one data type to another.

Example
The Creating Distinct Types and Casts exercise in the tutorial uses cast support
functions.

Aggregate Functions
If you created a user-defined aggregate with the Aggregate wizard, BladeSmith
generates aggregate functions in the udr.c source code file.

The Generated Code
BladeSmith generates only templates for aggregate functions.

The generated function declares the function, its return type, and arguments. In
addition to the arguments you specified when creating the function, these
functions also have an MI_FPARAM argument. Only generated functions that
allow null values have code that uses the MI_FPARAM argument. The generated
code in these functions use the MI_FPARAM to set the return value of the function
to NULL.

Completing the Code
To complete the code for aggregate functions, you must:
v Add your declarations, if necessary.
v Remove the call to mi_db_error_raise(), which raises an error stating that the

routine is not implemented.
v Compute the return value and store it in the Gen_RetVal argument.
v Remove the call to mi_fp_setreturnisnull() that sets the return value of your

routine to NULL, if necessary.

For more information on programming aggregate functions, see the IBM Informix
DataBlade API Programmer's Guide.

The Initialization Function: If you selected an initialization function,
AggregateInit(), you must add code to it to initialize the state type required by the
aggregate computation. You can set up smart large objects or temporary files for
storing intermediate results as the state type. The AggregateInit() function returns
the state type.

5-30 IBM Informix DataBlade Developers Kit User’s Guide

The first argument of the AggregateInit() function is a dummy argument whose
value is always NULL. The second argument is an optional initialization parameter
to customize aggregate computation. The initialization parameter cannot be a lone
host variable reference.

The Iteration Function: You must add code to the iteration function,
AggregateIter(), to perform the aggregate computations.

The AggregateIter() function should not maintain additional states in its
MI_FPARAM argument because the MI_FPARAM argument is not shared among
the aggregate functions. However, you can use the MI_FPARAM argument to hold
information that does not affect the aggregate result.

Tip: Although the iteration function is called by the database server multiple times
to calculate the aggregation, it is not implemented as an iterator function that
returns a set of results.

The Combine Function: If you selected a combine function, AggregateComb(),
you must add code to it to merge one partial result with another and return the
updated state type.

The Final Function: If you selected a final function, AggregateFinl(), you must
add code to convert the state type to the result type.

You can also add code to the AggregateFinl() function to release resources
acquired by the initialization function. However, the AggregateFinl() function must
not free the state type.

Selectivity Functions
If you create a user-defined function and mark it as a selectivity function for
another function (see “Selectivity Functions” on page 4-22), BladeSmith generates
the selectivity function in the udr.c source code file.

For a description of selectivity and user-defined statistics, see “User-Defined
Statistics” on page 2-9.

The Generated Code
BladeSmith generates only templates for selectivity functions.

The generated code declares the function, its return type, and arguments. In
addition to the arguments you specified when you created the function,
BladeSmith also generates an MI_FPARAM argument, which is not used by the
generated code.

Completing the Code
You must add code to the selectivity function to call the statistics support functions
and calculate the selectivity of the associated function for a given set of arguments.
For built-in data types, call the built-in statistics functions, such as StatCollect().
For opaque data types, call the statistics support functions in the statistics.c file,
such as OpaqueStatCollect(). For more information on statistics support functions
for opaque data types, see “Editing Statistics Routines in statistics.c” on page 5-27.

For example, if you have a selectivity function on an OpaqueEqual() function that
is overloaded for an opaque data types, the code for the selectivity function,
OpaqueEqualSelectivity(), might perform the following tasks:

Chapter 5. Programming DataBlade Module Routines in C 5-31

v Determine if either of the arguments has a null value. If so, the selectivity of the
OpaqueEqual() function is 0.

v Determine if either of the arguments is greater than the maximum or minimum
value of your opaque data type. If so, the selectivity of the OpaqueEqual()
function is 0.

v Determine where in the distribution one of the arguments falls. Because you
know how many values are in each bin, from the location in the distribution you
can estimate how many values are less than the argument. The selectivity of the
OpaqueEqual() function is then the number of values less than the argument
divided by the total number of values.

For more information on coding selectivity functions, see the IBM Informix
DataBlade API Programmer's Guide.

Example
The Box DataBlade module has selectivity functions.

Iterator Functions
If you create an iterator function that returns a set one row at a time, BladeSmith
adds code to process the set. The Informix database server calls iterator functions
repeatedly to process all of the return values.

The Generated Code
In addition to the arguments you specified when creating it, an iterator function
contains an MI_FPARAM argument. The Informix database server uses an
MI_FPARAM structure to control iteration over the set. The generated code
includes a C switch statement with different cases to process the set. The switch
statement uses the mi_fp_request() function to obtain the request flag from the
MI_FPARAM structure. The Informix database server sets this flag to one of the
following values before calling the function:
v SET_INIT. The initial call to the iterator function. The iterator function allocates

and initializes memory for state information. The memory allocated must use
the mi_alloc(size, PER_COMMAND) function to be available in subsequent calls.

v SET_RETONE. The iterator function is called with this request flag once for each
value in the set.
For each value in the set, the function places the address of the next value in the
set in the Gen_RetVal argument and returns Gen_RetVal.
When there are no more values to return, the iterator function must call the
mi_fp_setisdone() function to signal the Informix database server that all of the
set values have been returned, as follows:
mi_fp_setisdone(Gen_fparam, MI_TRUE);

On this call, the iterator function returns a null pointer.
v SET_END. The request flag the Informix database server sets after all values in the

set have been returned. The iterator function frees allocated memory and
releases any other resources it has obtained.

In the generated code, each of these sections has a TO DO: note. To avoid code
merging problems, make changes only where indicated.

Completing the Code
To complete the iterator code, you must:
v Add information declarations.
v Initialize the iterator function.

5-32 IBM Informix DataBlade Developers Kit User’s Guide

v Allocate private state information.
v Compute the value of the iteration.
v Call mi_fp_setisdone() when the iteration is complete.
v Free private resources.

For more information on programming iterator functions, see the IBM Informix
DataBlade API Programmer's Guide.

Example
The LoanAmortization() function in the Business DataBlade module is an iterator
function.

Compiling DataBlade Module Code
This section describes how to compile DataBlade module code.

BladeSmith generates makefiles for UNIX and Visual C++ project files for
Windows. When you compile the generated C source code, you produce a shared
object file or dynamic link library, called project.bld, in the source code directory
src\OS-platform, where OS-platform is the name of the operating system and
platform on which you are compiling. For example, src\WinNT-i386 holds the
shared object file compiled on a Windows NT computer.

Important: When you generate code in BladeSmith, set the Format property of the
DataBlade folder to the correct file format for your operating system
(UNIX or DOS). The default is DOS. See “Generating Source Files” on
page 4-44 for more information.

Compiling with Tracing Support
By default, DataBlade modules are compiled without tracing support.

To compile with tracing, you must have generated source code in BladeSmith with
tracing. BladeSmith adds the DBDK_TRACE macros and the TraceSet_project
procedure to your code if the Tracing property of the Source folder is set to True
in BladeSmith’s Generate DataBlade dialog box. See “Generating Source Files” on
page 4-44 for more information.

After you compile with tracing, you must enable tracing for the DataBlade module
after you register it in a database. See “Enabling Tracing in a DataBlade Module”
on page 5-10 for instructions. You must also enable tracing in the database session.
See “Enabling Tracing in a Database Session” on page 5-11 for instructions.

Compiling on UNIX
On UNIX platforms, you use the generic ProjectU.mak makefile. This makefile
includes platform-specific makefiles as files named makeinc.platform. To specify
the UNIX platform, set the TARGET environment variable to the path and
filename of the include file for your platform. Platform-specific files are located in
the directory $INFORMIXDIR/incl/dbdk.

The makefile requires the INFORMIXDIR environment variable to be set to the
Informix database server installation directory. The BINDIR variable in the
makefile determines where the shared object file or dynamic link library is written.

Chapter 5. Programming DataBlade Module Routines in C 5-33

BladeSmith creates server, all, and clean targets in the makefile. The server target
builds the shared object file. The clean target deletes the shared object file or
dynamic link library. The default all target is equivalent to the server target.

Important: Generate code in BladeSmith with the Format property set to UNIX. If
you generate code for a UNIX DataBlade module with the DOS file
format, you must convert the files to UNIX format before compiling.

To compile and link your DataBlade module shared object file:

1. Copy the generated src/c directory and all of its contents to your UNIX
machine.

2. To compile and link shared objects on a Sun Solaris 2.5 computer using the
SPARC compiler, execute the following command at the C shell:
setenv TARGET $INFORMIXDIR/incl/dbdk/makeinc.solaris
make -f ProjectU.mak

The project.bld file is created in the src/solaris-sparc directory.

Important: For compiling information specific to your operating system, see your
machine notes.

Unresolved Symbols (IDS 9.14)
When you link on UNIX, the system displays a list of unresolved symbols. This list
can contain these types of unresolved symbols:
v Symbols that are later resolved by the database server when it loads the

DataBlade module shared object. This is expected behavior.
v Symbols that are misspelled; you must fix these. Check the list carefully for

misspellings, including incorrect case.
v Symbols that are not yet coded.
v Symbols that are not found in a private library.

Compiling with Debug Support
To debug your DataBlade module while it executes in a database server process,
you must build the shared object file with debugging symbols. You can either
modify the makefile and add the required compiler flags to the CFLAGS variable,
or set the COPTS variable on the make command line.

On Solaris, the following commands build shared object files with debugging
symbols from the C shell:
setenv TARGET $INFORMIXDIR/incl/dbdk/makeinc.solaris
make -f ProjectU.mak COPTS="-g -xs"

Compiling on Windows
On Windows, you use the project.dsw file generated by BladeSmith to build your
DataBlade module with Visual C++ 6.0.

The compiled DataBlade module links to sapi.lib. This library resolves the mi_ and
ifx_ symbols that the database server uses internally.

To compile and link a dynamic link library using Visual C++:

1. Open the project.dsw in Visual C++.
2. Choose Build > Set Active Configuration.

5-34 IBM Informix DataBlade Developers Kit User’s Guide

3. Select a version of the project in the Set Active Project Configuration dialog
box:
v Release. This version is suitable for release and does not contain debugging

support.
v Debug. This version contains support for debugging.

4. Click OK.
5. Choose Build > Rebuild All to compile.

Visual C++ creates both a WinNT-i386 and a Debug directory under the src\c
directory to hold the release version and the debug version, respectively, of the
dynamic link library.

Important: Do not link the client DataBlade API library in %INFORMIXDIR%\
lib\dmi into the DataBlade module; that library resolves client services
instead of database server services.

Visual C++ also performs the following tasks on the computer on which the
Informix database server resides:
1. Creates a project.0 directory under the directory where your database server is

installed (%INFORMIXDIR%\extend)
2. Copies the project.bld file and the SQL scripts to that directory
3. Marks the project.bld file as read-only

See Chapter 10, “Debugging and Testing DataBlade Modules on Windows,” on
page 10-1, for instructions on using the DBDK Visual C++ Add-In to edit, compile,
and debug a DataBlade module on Windows.

Chapter 5. Programming DataBlade Module Routines in C 5-35

5-36 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 6. Creating ActiveX Value Objects

In This Chapter . 6-1
Prerequisite Tasks . 6-1
ActiveX Programming Task Overview . 6-1
Source Files Generated by BladeSmith . 6-2
Implementing ActiveX Value Objects. 6-2

The Generated Code . 6-3
Adding Project-Specific Logic to the Source Code . 6-3
Files to Edit . 6-3
ActiveX Properties . 6-4
Accessing Properties Using Visual Basic . 6-5

Compiling Client and Server Projects . 6-5
Compiling a Windows Server Project . 6-5
Compiling a Client Project . 6-6

Support Methods Reference. 6-7
Internal Object Methods . 6-7
C++ Support Library . 6-7

DkInStream . 6-8
DkOutStream . 6-10
Memory Management Routines . 6-12

In This Chapter
This chapter describes how to use the Informix DataBlade Developers Kit to create
ActiveX value objects.

This chapter discusses using C++ to implement opaque type support routines.
These routines provide the underlying logic for the custom methods of the ActiveX
value objects you create with BladeSmith. You cannot use C++ to implement any
other DataBlade module objects.

Prerequisite Tasks
Before you edit and compile your DataBlade module code, complete these tasks:
1. Write functional and design specifications that comply with Informix coding

standards.
See Chapter 3, “Programming Guidelines,” on page 3-1, for more information.

2. Create your DataBlade module in BladeSmith.
See “Creating DataBlade Module Objects” on page 4-8 for instructions.

3. Generate source code and SQL files in BladeSmith.
See “Generating Files” on page 4-40 for instructions.

ActiveX Programming Task Overview
After you generate code with BladeSmith, complete these general tasks to finish
your DataBlade module code:
1. Add code to these source code files to enable your routines to function as you

intend:
v OpaqueCommon.cpp. Contains the logic for the opaque type routines that

are implemented both as ActiveX custom methods and server project
routines.

© Copyright IBM Corp. 1996, 2010 6-1

v OpaqueCommon.h. Contains the logic for the IsNull() and SetNullFlag()
custom methods.

v OpaqueServer.cpp. Contains the logic for the opaque type routines that are
implemented only for the server project.

See “Implementing ActiveX Value Objects” on page 6-2 for instructions.
2. Compile your source code files using the generated makefiles. See “Compiling

Client and Server Projects” on page 6-5 for instructions.

To avoid merging conflicts when you regenerate your code, add code only in areas
marked by Developer: comments or after the generated code. If you do modify
code outside the designated areas, you might have two copies of the routine after
you regenerate: the one you modified and the one BladeSmith generated. Although
your changes remain, you must resolve conflicts in the two pieces of code.

Important: In addition to adding logic to the opaque support routines, you can
add your own functions to the C++ classes in the OpaqueCommon,
OpaqueClient, and OpaqueServer .cpp and .h files. Do not modify
any of the other generated source files.

Source Files Generated by BladeSmith
This section provides an overview of the code that BladeSmith generates for client
and server projects. For a complete list of generated files, see Appendix A, “Source
Files Generated for DataBlade Modules,” on page A-1.

BladeSmith generates the following source code for each client and server project:
v Makefiles, project files, header files, definitions files, and so on, for both the

client project and the server project
v A support library for use by the client and server projects

BladeSmith generates the following source code for each ActiveX value object:
v Interfaces to the object for use by the client application developer
v C++ common code that provides the internal logic for both the client and server

projects
v Server project opaque type support routines not available as ActiveX custom

methods and other code for use by the Informix database server

Implementing ActiveX Value Objects
To implement the client and server projects of an ActiveX value object, you add
project-specific logic to particular C++ source files generated by BladeSmith.

This section contains the following subsections:
v “The Generated Code” on page 6-3, next
v “Adding Project-Specific Logic to the Source Code” on page 6-3
v “Files to Edit” on page 6-3
v “ActiveX Properties” on page 6-4
v “Accessing Properties Using Visual Basic” on page 6-5

6-2 IBM Informix DataBlade Developers Kit User’s Guide

The Generated Code
The contents of the generated C++ source code differ from generated C source
code (described in Chapter 5, “Programming DataBlade Module Routines in C,” on
page 5-1) in the following ways:
v Comments. BladeSmith includes comments to the developer regarding which

sections must or may be modified; for more information, see “Adding
Project-Specific Logic to the Source Code” on page 6-3.

v MI_FPARAM argument. This is not included in C++ code; it is a C language
argument.

v Server connection handle. This handle is not needed for C++ code.
v Tracing. BladeSmith does not insert tracing logic into the generated C++ code.

However, you can use the DataBlade API tracing macros in your server code; see
“Tracing and Error Handling” on page 5-7 for instructions.

v Error handling. BladeSmith inserts the DkErrorRaise() method into the
generated routines to which you must add project-specific logic, naming the
routine that has not been implemented and the file in which it resides (see
Adding Project-Specific Logic to the Source Code). You can add DkErrorRaise()
to other areas of the generated code and to your project-specific logic as
appropriate. For information on the DkErrorRaise() object method, see “Internal
Object Methods” on page 6-7.

v Utility functions. BladeSmith generates a C++ support library for each client
and server project and uses the routines and methods of the library in its
generated code. For information on this support library, see “C++ Support
Library” on page 6-7.

Adding Project-Specific Logic to the Source Code
For each routine in each support routine category that you specify for a particular
opaque type, BladeSmith generates one of the following functions:
v The function definition and a function body that contains only a call to

DkErrorRaise(). These routines are indicated by the comment Developer: TO DO.
You must supply project-specific internal logic to these routines.
BladeSmith inserts the DkErrorRaise() method into these routines, naming the
routine that has not been implemented and the file in which it resides. When
you supply the logic to these routines, you can remove the call to
DkErrorRaise() or modify it to return an error more appropriate to the added
logic. (For information on the DkErrorRaise() object method, see “Internal Object
Methods” on page 6-7.)

v The function definition and a default function body. These routines are
indicated by the comment Developer: Make changes in this section if
necessary.
You can keep the default logic, or you can replace or modify it as appropriate
for your project.

Files to Edit
The following table lists each opaque type routine (by category and name), the
source file where it is defined, and whether adding project-specific logic to that
routine is required or optional.

For information on the usual behavior of the ActiveX custom methods (those
defined in the OpaqueCommon.cpp and OpaqueCommon.h files), see Chapter 7,

Chapter 6. Creating ActiveX Value Objects 6-3

“Using ActiveX Value Objects,” on page 7-1. For information on the default
behavior of the server project routines, see “Editing Opaque Type Support
Routines in opaque.c” on page 5-15.

Routine Category
Opaque Type Routine/
ActiveX Custom Method Source File

Add Logic?
(Optional/
Required)

Basic Text Input/Output FromString()

ToString()

OpaqueCommon.cpp Optional

Optional

Binary Send/Receive With Client Send()

Receive()

OpaqueServer.cpp Optional

Optional

Text File Import/Export ImportText()

ExportText()

OpaqueServer.cpp Optional

Optional

Binary File Import/Export ImportBinary()

ExportBinary()

OpaqueServer.cpp Optional

Optional

Type Compare Support Compare()

Equal()*

NotEqual()

OpaqueCommon.cpp Optional

Optional

Optional

B-Tree Indexing Support Equal()*

GreaterThan()

GreaterThanOrEqual()

LessThan()

LessThanOrEqual()

OpaqueCommon.cpp Optional

Optional

Optional

Optional

Optional

Type Mathematic Operators Plus()

Minus()

Times()

Divide()

OpaqueCommon.cpp Required

Required

Required

Required

More Mathematic Operators Positive()

Negate()

OpaqueCommon.cpp Required

Required

Type Concatenation Operator Concat() OpaqueCommon.cpp Required

Type Hash Support Hash() OpaqueServer.cpp Required

N.A. IsNull()

SetNullFlag()

OpaqueCommon.h Optional

* Only one Equal() routine generated, even if you specify all three categories that include it.

ActiveX Properties
If you choose to generate access methods in the BladeSmith New Opaque Type
wizard, BladeSmith generates code to make the members of the data structure
available as ActiveX properties so the client application developer can access those
values.

6-4 IBM Informix DataBlade Developers Kit User’s Guide

If a member of an opaque type is an array, the following additional properties are
made available:
v One-dimensional noncharacter array. A read-only property named NameDim is

created to indicate the array dimension, and the property Name takes a
one-based index as a parameter and returns the requested element.

v Two-dimensional noncharacter array. Properties named NameDim1 and
NameDim2 are created, and the property Name takes a one-dimensional
character array. Returns a string of type BSTR.

v Two-dimensional character array. Treated the same as a one-dimensional
noncharacter array: NameDim indicates the dimension; the property Name takes
a one-based index and returns the element.

Accessing Properties Using Visual Basic
This section describes how you can get and set ActiveX properties if you are using
Visual Basic as your development environment.

For an ActiveX value object based on the opaque type named Opaque, with a
non-array data structure member named x, you can get the corresponding property
as follows:
member_value = Opaque.x

You can set the property as follows:
Opaque.x = member_value

If a data structure member is an array, you can get the property as follows:
count = Opaque.xDim

You can set or put the property as follows:
member_value = Opaque.x(i)

Compiling Client and Server Projects
Among the code files that BladeSmith generates are the following makefiles and
project files:
v ProjectU.mak. A UNIX makefile for UNIX servers generated in the src directory
v Project.dsw. A Visual C++ workspace file for both C and C++ server code

generated in the src directory
v ProjectX.dsp. A Visual C++ project file for Windows clients generated in the

src\ActiveX directory

When you compile a server project, a Project.bld file is created. When you compile
a client project, a ProjectX.dll file is created.

This section describes how to compile both a server project and a client project.

Compiling a Windows Server Project
For Windows server projects, BladeSmith generates a Project.dsw file in the src
directory to use with Microsoft Visual C++ 6.0.

To compile a server project, the INFORMIXDIR environment variable must be set
to the Informix server installation directory.

Chapter 6. Creating ActiveX Value Objects 6-5

Because BladeSmith does not generate tracing routines in the source code, projects
are not built with tracing support. If you have added DataBlade API tracing
routines to your code, you must add the instruction to compile with tracing
support to your makefile or project file. For more information, see “Tracing and
Error Handling” on page 5-7.

To compile a Windows server project:

1. If necessary, open your project.dsw file in the src directory in Visual C++.
2. Choose Build > Set Active Configuration.
3. Select a version of the project in the Set Active Project Configuration dialog

box:
v Release. This version is suitable for release and does not contain debugging

support.
v Debug. This version contains support for debugging.

4. Click OK.
5. Choose Build > Rebuild All to compile.

Visual C++ creates both a WinNT-i386 and a Debug directory under the
src\ActiveX directory to hold the release version and the debug version,
respectively, of the dynamic link library.

Compiling a Client Project
For Windows client projects, BladeSmith generates a ProjectX.dsp file in the
src\ActiveX directory to use with Visual C++ 6.0 or later.

The general process for compiling a client project is:
1. Set the include and library file directories in Microsoft Developer Studio.
2. Compile the ProjectX.dsp file.

To set the include files and library file directories:

1. In Microsoft Developer Studio Visual C++, choose Tools > Options.
2. Click the Directories tab in the Options dialog box.
3. Select Include files from the Show directories for list box.
4. If the following directories are not on the list, add them:
v \informix\incl\c++

v \informix\incl\dmi

v \informix\incl\esql

5. Select Library files in the Show directories for list box.
6. If the following directories are not on the list, add them:
v \informix\lib

v \informix\lib\c++

v \informix\lib\dmi

7. Click OK to exit the Options dialog box.

To compile a Windows client project:

1. In Microsoft Developer Studio Visual C++, choose File > Open and open
ProjectX.dsp.

2. Choose Build > Set Active Configuration.

6-6 IBM Informix DataBlade Developers Kit User’s Guide

3. Select a version of the project in the Set Active Project Configuration dialog
box:
v Release. This version is suitable for release and does not contain debugging

support.
v Debug. This version contains support for debugging.

4. Click OK.
5. Choose Build > Rebuild All to compile.

Visual C++ creates both a WinNT-i386 and a Debug directory under the
src\ActiveX directory to hold the release version and the debug version,
respectively, of the dynamic link library.

Support Methods Reference
This section describes the internal object and support library methods that you can
use when you add project-specific logic to your client and server projects. Use
these methods (and the methods made available as ActiveX custom methods; see
“Files to Edit” on page 6-3) to ensure that your code is portable between client and
server projects.

Internal Object Methods
For each ActiveX value object that you implement, a set of internal methods is
created. Although these methods are not made available to the client application
developer as ActiveX custom methods, you can use them when you add
project-specific logic to your client and server projects.

These are the internal object methods, where Opaque is the name of the opaque
type that defines the current object.

Method Description

static OpaqueCommon * CreateNew() Creates an instance of the current object. The object name is
OpaqueServer if called by server code or OpaqueClient if called
by client code.

void DkErrorRaise(MI_CONNECTION *conn,
mi_integer msg_type, char *msg, ...)

Maps to mi_db_error_raise on the server and raises an error on
the client; for details, see the IBM Informix DataBlade API
Programmer's Guide.

OpaqueStruct * GetData() Returns a pointer to the data structure representing the current
object.

mi_boolean IsDirty() Returns mi_true if the current object has been modified or
mi_false if it has not.

OpaqueStruct * RawCopy() Allocates a C data structure and fills it with a copy of the raw
data of the current object.

void SetClean() Flags the current object as having not been modified.

void SetData(const OpaqueStruct *value) Fills the current object with the data supplied by the input data
structure.

void SetDirty() Flags the current object as having been modified.

void SetNotNull() A protected method that sets the current object to not null.

C++ Support Library
When you use BladeSmith to generate source code for your ActiveX value objects,
the following C++ support library files are generated:

Chapter 6. Creating ActiveX Value Objects 6-7

v DkClient.cpp

v DkIntf.h

v DkIntf_i.c

v DkIntfImpl.h

v StdDbdk.cpp

v StdDbdk.h

These files are used to compile both the client project and the server project; they
are automatically included in the appropriate source files.

The C++ support library contains these classes and routines:
v DkInStream class (text input parser)
v DkOutStream class (text output parser)
v Memory management routines

There are two types of delimiters you must be aware of when using the
DkInStream and DkOutStream classes: string delimiters and field delimiters.

String delimiters are a pair of single-byte characters that indicate the beginning and
ending of a string. By default, the string delimiters are the open and close quote
characters (" "), but you can specify other characters by using the
SetStringDelimiters() method.

Important: If you set the DkInStream class string delimiters to a different pair
than the DkOutStream string delimiters, then these text parser classes
cannot exchange strings.

Field delimiters indicate the beginning and ending of a field. By default, space
characters are always field delimiters. In addition, you can specify a multibyte
string to also be a field delimiter, using the SetFieldDelimiters() method.

A string can contain multiple fields and their delimiters. However, a field cannot
contain a string.

For example, if the default string and field delimiters are in use and given the
characters "Date: 4 28 97", then there is one string, Date: 4 28 97, and four
fields: Date:, 4, 28, and 97.

To include a string-delimiter character in a string, precede it with a backslash
character (\). For example, to read the string Date: "4 28 97", specify the string as
follows: "Date: \"4 28 97\"".

The rest of this section provides reference information for the text parsing classes
and memory management routines.

DkInStream
The DkInStream class provides methods that read an input text stream and
populate an instance of the object (an opaque type if invoked by server code or an
ActiveX value object if invoked by client code). This class has a built-in cursor that
tracks how much of the input stream has been read.

All of the read methods return an mi_boolean value: mi_true if the read is
successful or mi_false if it is not. In addition, all read methods except ReadChar,
ReadGLWChar, and ReadWChar skip field and string delimiters before reading.

6-8 IBM Informix DataBlade Developers Kit User’s Guide

The gl_wchar data type is configurable, but it is a 4-byte character by default. For
more information on this data type, see the discussion of the IBM Informix GLS
API in the IBM Informix GLS User's Guide.

The DkInStream class provides the following methods.

Method Description

DkInStream(mi_lvarchar* inputString)DkInStream(const
char* inputString)

Reads inputString, which can be a multibyte string.

char* CurString() Returns a pointer to the string at the current cursor
position.

mi_boolean Match(char* str) Returns mi_true if the exact sequence of characters
specified in str is found in the input string.

This method is the opposite of
DkOutStream.WriteLiteral.

mi_boolean operator+=(size_t skip) Returns mi_true if the number of characters specified in
skip is successfully skipped.

mi_boolean operator-=(size_t rew) Returns mi_true if the number of characters specified in
rew is successfully “rewound” (skipped backwards).

mi_boolean ReadBoolean(mi_boolean* value) Returns mi_true if one of the following values is
successfully read: TRUE, True, true, FALSE, False, false.

mi_boolean ReadChar(mi_char* value) Returns mi_true if a value of type mi_char is successfully
read. Field and string delimiters are not skipped before
reading.

mi_boolean ReadDate(mi_date* value) Returns mi_true if a date value is successfully read. If the
date value contains spaces or field delimiters, enclose it in
string delimiters.

mi_boolean ReadDateTime(mi_datetime* value) Returns mi_true if a date-time value is successfully read.
If the date-time value contains spaces or field delimiters,
enclose it in string delimiters.

mi_boolean ReadDecimal(mi_decimal* value) Returns mi_true if a decimal or numeric value is
successfully read.

mi_boolean ReadDoublePrecision(
mi_double_precision* value)

Returns mi_true if a double-precision value is successfully
read.

mi_boolean ReadGLWChar(gl_wchar_t* value) Returns mi_true if a value of type gl_wchar (a 4-byte
character, by default) is successfully read. Field and string
delimiters are not skipped before reading.

mi_boolean ReadGLWString(gl_wchar_t* value, size_t
length)

Returns mi_true if a string of gl_wchar values, size
length, is successfully read. If the string is longer than
length, it is truncated and not null-terminated. To include
a string-delimiter character in the string, precede it with
the backslash character (\).

mi_boolean ReadInt1(mi_int1* value) Returns mi_true if a 1-byte integer value is successfully
read.

mi_boolean ReadInt8(mi_int8* value) Returns mi_true if an 8-byte integer value is successfully
read.

mi_boolean ReadInteger(mi_integer* value) Returns mi_true if a 4-byte integer value is successfully
read.

mi_boolean ReadInterval(mi_interval* value) Returns mi_true if an interval value is successfully read.

mi_boolean ReadMoney(mi_money* value) Returns mi_true if a money value is successfully read.

mi_boolean ReadReal(mi_real* value) Returns mi_true if a real value is successfully read.

Chapter 6. Creating ActiveX Value Objects 6-9

Method Description

mi_boolean ReadSmallInt(mi_smallint* value) Returns mi_true if a 2-byte integer value is successfully
read.

mi_boolean ReadString(const mi_string* value, size_t
length)

Returns mi_true if a string of mi_string values, size
length, is successfully read. If the string is longer than
length, it is truncated and not null-terminated. To include
a string-delimiter character in the string, precede it with
the backslash character (\).

mi_boolean ReadUChar1(mi_unsigned_char1* value) Returns mi_true if a 1-byte unsigned integer value is
successfully read. (Integer is correct; the data type is
misnamed.)

mi_boolean ReadUInt8(mi_unsigned_int8* value) Returns mi_true if an 8-byte unsigned integer value is
successfully read.

mi_boolean ReadUInteger(mi_unsigned_integer* value) Returns mi_true if a 4-byte unsigned integer value is
successfully read.

mi_boolean ReadUSmallInt(mi_unsigned_smallint*
value)

Returns mi_true if a 2-byte unsigned integer value is
successfully read.

mi_boolean ReadWChar(mi_wchar* value) Returns mi_true if a 2-byte character is successfully read.
Field and string delimiters are not skipped before
reading.

mi_boolean ReadWString(mi_wchar* value, size_t
length)

Returns mi_true if a string of mi_wchar values, size
length, is successfully read. If the string is longer than
length, it is truncated and not null-terminated. To include
a string-delimiter character in the string, precede it with
the backslash character (\).

void SetFieldDelimiters(const char* delim) By default, the space character is a field delimiter; this
method adds delim as another delimiter. delim can be a
multibyte string, but it cannot be longer than
DK_MAXDELIMBYTES (default value of 20).

void SetStringDelimiters(char begin, char end) Sets string delimiters to two, single-byte characters (begin
and end). Default values are the open-quote character (“)
and the close-quote character (”).

void Skip(char* delim) Skips only the sequence of characters specified by delim.

void SkipBlanks() Skips all space characters.

void SkipDelimiters() Skips the characters specified by delim in the
SetFieldDelimiters method and space characters.

DkOutStream
The DkOutStream class provides methods that write an object (an opaque type if
invoked by server code or an ActiveX value object if invoked by client code) to an
output stream. All of the write methods append to the output string; they do not
overwrite the existing contents of the string.

The gl_wchar data type is configurable, but it is a 4-byte character by default. For
more information on this data type, see the discussion of the IBM Informix GLS
API in the IBM Informix GLS User's Guide.

The DkOutStream class provides the following methods.

Method Description

DkOutStream(size_t initial=50, size_t increment=50) Creates an output string of size initial, allocating
additional memory in chunks of size increment.

6-10 IBM Informix DataBlade Developers Kit User’s Guide

Method Description

mi_lvarchar* CreateLvarChar() Returns a pointer to a new mi_lvarchar that holds a copy
of the output string.

const char* GetBuffer() Returns a pointer to the internal buffer that contains the
output string.

void SetStringDelimiters(char begin, char end) Sets string delimiters to two single-byte characters (begin
and end). Default values are the open-quote character (“)
and the close-quote character (”).

void WriteBoolean(mi_boolean value) Writes a Boolean value of true or false to the output
string.

void WriteChar(mi_char value) Writes a value of mi_char to the output string.

void WriteDate(mi_date value) Writes a date value to the output string.

void WriteDateTime(const mi_datetime& value) Writes a datetime value to the output string.

void WriteDecimal(const mi_decimal& value) Writes a decimal or numeric value to the output string.

void WriteDoublePrecision(mi_double_precision value) Writes a double-precision value to the output string.

void WriteGLWChar(gl_wchar_t value) Writes a value of type gl_wchar (a 4-byte character, by
default) to the output string.

void WriteGLWString(const gl_wchar_t* value, size_t
length)

Writes a string of gl_wchar values, size length, to the
output string. This method precedes string-delimiter
characters with backslash characters (\).

void WriteInt1(mi_int1 value) Writes a 1-byte integer value to the output string.

void WriteInt8(const mi_int8& value) Writes an 8-byte integer value to the output string.

void WriteInteger(mi_integer value) Writes a 4-byte integer value to the output string.

void WriteInterval(const mi_interval& value) Writes an interval value to the output string.

void WriteLiteral(const char* string) Writes the specified string to the output string. Delimiter
characters are written as is; they are neither skipped nor
preceded by backslash characters.

This method is the opposite of DkInStream.Match.

void WriteMoney(const mi_money& value) Writes a money value to the output string.

void WriteReal(mi_real value) Writes a real value to the output string.

void WriteSmallInt(mi_smallint value) Writes a 2-byte integer value to the output string.

void WriteString(const mi_string* value, size_t length) Writes a string of mi_string values, size length, to the
output string. This method precedes string-delimiter
characters with backslash characters (\).

void WriteUChar1(mi_unsigned_char1 value) Writes a 1-byte unsigned integer to the output string.
(Integer is correct; the data type is misnamed.)

void WriteUInt8(const mi_unsigned_int8& value) Writes an 8-byte unsigned integer to the output string.

void WriteUInteger(mi_unsigned_integer value) Writes a 4-byte unsigned integer to the output string.

void WriteUSmallInt(mi_unsigned_smallint value) Writes a 2-byte unsigned integer to the output string.

void WriteWChar(mi_wchar value) Writes a 2-byte character to the output string.

void WriteWString(const mi_wchar* value, size_t
length)

Writes a string of mi_wchar values, size length, to the
output string. This method precedes string-delimiter
characters with backslash characters (\).

Chapter 6. Creating ActiveX Value Objects 6-11

Memory Management Routines
These routines do not form a class. They are provided for server-project use only. It
is recommended that you use the new and delete operators. Use malloc and free
only if you must; for example, if you call into a C file.

Routine Description

void * ::operator new(size_t size) Calls mi_alloc on the server side.

void ::operator delete(void *ptr) Deletes the memory allocated with the new
operator.

void * malloc(size_t size) Calls mi_alloc on the server side.

void free(void *memblock) Frees the memory allocated with the malloc
routine.

6-12 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 7. Using ActiveX Value Objects

In This Chapter . 7-1
Installing and Using ActiveX Value Objects . 7-1

Installing ActiveX Value Objects . 7-1
Using ActiveX Value Objects . 7-2

IRawObjectAccess Custom Interface . 7-2
ITDkValue Custom Interface . 7-3
ActiveX Custom Methods . 7-4

In This Chapter
This chapter provides information for client application developers who are using
ActiveX value objects. It includes the following sections:
v “Installing and Using ActiveX Value Objects,” next
v “IRawObjectAccess Custom Interface” on page 7-2, for those using the IBM

Informix ESQL/C or the Microsoft ODBC client APIs
v “ITDkValue Custom Interface” on page 7-3, for those using the IBM Informix

C++ Interface client API
v “ActiveX Custom Methods” on page 7-4, for all users

The standard ISupportErrorInfo interface is also supported for ActiveX value
objects.

Installing and Using ActiveX Value Objects
This section provides some guidelines on installing and using ActiveX value
objects.

Installing ActiveX Value Objects
Use BladeManager to install the ProjectS.bld file on your Informix server
computer and the ProjectX.dll file on your Windows client computer. For
instructions, see the IBM Informix DataBlade Module Installation and Registration
Guide.

The ActiveX project you install might also include the following files in the
installation package to assist you in locating the CLSID (class identifier) and IID
(interface identifier) information for the ActiveX value objects.

File Contains

DkIntf_i.c Interface identifiers (IIDs) for the ActiveX value object custom
interfaces (IRawObjectAccess and ITDkValue; described in this
chapter)

DkIntf.h IID declarations for DkIntf_i.c

ProjectX_i.c Class identifiers (CLSIDs) for the ActiveX value objects provided
by the project named Project

ProjectX.h CLSID declarations for ProjectX_i.c

If you are using Visual Basic, you must create a reference to the newly installed
ActiveX project to start working with it.

© Copyright IBM Corp. 1996, 2010 7-1

To create a reference to an ActiveX project:

1. In Microsoft Developer Studio, choose Project > References.
The Project References dialog box appears.

2. Check the check box for the project you are installing. The project is listed in
the following format:
ProjectX 1.0 Type Library

3. Click OK.

Using ActiveX Value Objects
Follow the Microsoft guidelines on how to invoke COM and automation objects.

If you are using the IBM Informix ESQL/C client API, it is recommended that you
write the application in C++ and place only the SQL-specific code in the .ec files
through embedded C code.

If you are using Visual Basic, you must cast the Informix lvarchar data type to
char before you can work with ActiveX value objects.

Important: As you use ActiveX value objects, keep in mind that object persistence
between server and client objects is not supported. In other words,
although you can modify an ActiveX value object, an associated
modification does not occur to the database data represented by that
object unless you issue an SQL query.

IRawObjectAccess Custom Interface
The IRawObjectAccess custom interface is provided for users of the IBM Informix
ESQL/C API and the Microsoft ODBC API. IRawObjectAccess enables you to
instantiate an ActiveX value object with raw data or to extract raw data from an
existing value object.

If you are using the IBM Informix ESQL/C API or the Microsoft ODBC API and a
query of the database server results in an ActiveX value object, you get the raw
data of the object. You can use this data and the methods of the IRawObjectAccess
interface to instantiate the ActiveX value object and access its custom methods.

To instantiate the ActiveX value object and access its custom methods:

1. Call CoCreateInstance() with a CLSID of CLSID_OPAQUE and an IID of
IID_RawObjectAccess to create an empty ActiveX value object.

2. Pass the raw object data to the SetDataC() method to fill the ActiveX value
object.

3. Use QueryInterface() to get the IID for the IDispatch interface (IID_IDispatch).
4. Use IDispatch::Invoke() to access the custom methods of the ActiveX value

object.

The IRawObjectAccess interface provides the following methods.

7-2 IBM Informix DataBlade Developers Kit User’s Guide

Method Description

void * GetDataC() Returns a pointer to OpaqueStruct, the C data structure
that defines the opaque type that is encapsulated as an
ActiveX value object.

SetDataC(void *struct) Sets OpaqueStruct to the values specified by struct.

void * GetDataCpp() Returns a pointer to OpaqueClient, the C++ object that
represents the ActiveX value object.

SetDataCpp(void * struct) Sets OpaqueClient (returned by GetDataCpp) to the
values specified by struct.

ITDkValue Custom Interface
The ITDkValue custom interface is provided for the users of the IBM Informix
C++ Interface. ITDkValue is a C++ class factory; when a query of the database
server results in an ActiveX value object, an ITDkValue object is returned to you.

The ITDkValue object is an Object Interface for C++ ITValue object; thus, the
ITDkValue interface provides the same methods as the ITValue interface. You can
use this interface, or you can use the QueryInterface() routine to get the IDispatch
interface of the object to access its custom methods.

In addition, a global function is provided that returns an ITValue object. It has the
following syntax, where Opaque is the current object and ITMVDesc is an Object
Interface for C++ descriptor structure:
ITValue * OpaqueMakeValue(ITMVDesc *description)

For information on using the Object Interface for C++, see the IBM Informix Object
Interface for C++ Programmer's Guide.

The ITDkValue interface provides the following methods.

Chapter 7. Using ActiveX Value Objects 7-3

Method Description

ITBool CompatibleType(ITValue *object) Returns TRUE if the specified object is of the
same type as the current object.

ITBool Equal(ITValue *object) Returns TRUE if the specified object is equal
to the current object.

ITBool FromPrintable(const ITString
&printable)

Sets the value of the current object, using a
string equivalent to the one returned by the
input function of the object.

ITBool IsNull() Returns TRUE if the current object has a null
value.

ITBool IsUpdated() Returns TRUE if the current object has been
updated since it was created.

ITBool LessThan(ITValue *object) Returns TRUE if the current object is less
than the specified objects and the objects are
comparable.

const ITString &Printable() Returns the value of the current object in a
string equivalent to the one returned by the
output function of the object.

ITBool SameType(ITValue *object) Returns TRUE if the specified object is of the
same type as the current object.

ITBool SetNull() Sets the current object to a null value.

const ITTypeInfo &TypeOf() Returns the type information for the current
object.

ActiveX Custom Methods
This section is an alphabetic reference to all possible ActiveX custom methods for
an ActiveX value object. It provides information on the usual behavior of each
method.

ActiveX value objects (and the projects that provide them) can differ greatly. Thus,
the set of custom methods made available to you can differ from object to object,
or they can have different behaviors from what is described here (although the
function headers and parameter lists of the methods do not vary).

These methods provide dual interfaces. Thus, you can either call them directly or
by using IDispatch::Invoke.

Many of the methods compare the current ActiveX value object, named Opaque, to
another object of the same type. All of the custom methods return HRESULT, with a
value of S_OK (success) or E_FAIL (failure).

Method Description

HRESULT Compare(
[in] IOpaque *other,
[out, retval] int *relationship)

Compares the current object to another object of the same
type, returning:

v 0 if the objects are equal.

v -1 if the current object is less than the other object.

v 1 if the current object is greater than the other object.

HRESULT Concat([in] IOpaque * other) Concatenates another object of the same type to the
current object. This method is usually implemented for
string objects.

7-4 IBM Informix DataBlade Developers Kit User’s Guide

Method Description

HRESULT Contains([in] IOpaque *other, [out, retval]
BOOL *result)

Returns TRUE if the current object contains another object
of the same type or FALSE if it does not.

HRESULT Divide([in] IOpaque *other, [out, retval]
IOpaque **new)

Returns a new object representing the division of the
current object by another object of the same type.

HRESULT Equal([in] IOpaque *other, [out, retval]
BOOL *result)

Returns TRUE if the current object is equal to another
object of the same type or FALSE if it is not.

HRESULT FromString([in] BSTR string) Converts a character string to a new instance of the
current object.

HRESULT GreaterThan(
[in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is greater than another
object of the same type or FALSE if it is not.

HRESULT GreaterThanOrEqual
([in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is greater than another
object of the same type or FALSE if it is not.

HRESULT Inter([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the points in common
between the current object and another object of the same
type.

HRESULT IsNull(
[out, retval] BOOL *result)

Returns TRUE if the current object is has a null value or
FALSE if it does not.

HRESULT LessThan(
[in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is less than another
object of the same type or FALSE if it is not.

HRESULT LessThanOrEqual(
[in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is less than or equal to
another object of the same type or FALSE if it is not.

HRESULT Minus([in] IOpaque *other, [out, retval]
IOpaque **new)

Returns a new object representing the current object
minus another object of the same type.

HRESULT Negate() Usually negates the current object: makes a positive object
negative or a negative object positive.

HRESULT NotEqual(
[in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is not equal to another
object of the same type or FALSE if it is.

HRESULT Overlap([in] IOpaque *other, [out, retval]
BOOL *result)

Returns TRUE if the current object has any points in
common with another object of the same type or FALSE if
it does not.

HRESULT Plus([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the current object plus
another object of the same type.

HRESULT Positive() Usually makes a negative object positive; a positive object
remains positive.

HRESULT SetNullFlag() Sets the current object to a null value.

HRESULT Size(
[out, retval] double *size)

Returns the size of the current object, in
implementor-defined units.

HRESULT Times([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the current object times
another object of the same type.

HRESULT ToString(
[out, retval] BSTR *string)

Converts the current object to a character string.

HRESULT Union([in] IOpaque *other, [out, retval]
IOpaque **new)

Returns a new object representing the union of the
current object and another object of the same type. This
method is usually implemented for objects that represent
areas.

Chapter 7. Using ActiveX Value Objects 7-5

Method Description

HRESULT Within([in] IOpaque *other, [out, retval]
BOOL *result)

Returns TRUE if the current object is within the other
object or FALSE if it is not.

7-6 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 8. Programming DataBlade Modules in Java

In This Chapter . 8-1
Prerequisite Tasks . 8-1
Java Programming Task Overview . 8-2
Source Files Generated by BladeSmith . 8-2

Java Source Code Files . 8-3
SQLData Interface Method Support Code . 8-3
Warning File . 8-3

Using the Generated Code . 8-4
Comments in Generated Code . 8-4
Logging and Error Handling . 8-4
BladeSmith Utility Classes . 8-4

Editing Methods . 8-5
Most User-Defined Methods . 8-5

The Generated Code . 8-5
Completing the Code . 8-5
Example . 8-5

Iterators . 8-5
The Generated Code . 8-6
Completing the Code . 8-6

Aggregates . 8-6
The Generated Code . 8-6
Completing the Code . 8-6

Cast Support Methods . 8-7
The Generated Code . 8-7
Completing the Code . 8-7

Compiling Java DataBlade Module Code . 8-7
Debugging and Testing DataBlade Modules Written in Java 8-9

Preparing Your Environment . 8-9
Debugging a DataBlade Module . 8-10

Installing a DataBlade Module . 8-10
Registering a DataBlade Module . 8-10
Replacing a DataBlade Module JAR File . 8-11

Performing Functional Tests . 8-11

In This Chapter
This chapter contains information to help you edit and compile Java language
source code generated by BladeSmith.

Prerequisite Tasks
Before you edit and compile your DataBlade module code, complete these tasks:
1. Write functional and design specifications that comply with Informix coding

standards.
See Chapter 3, “Programming Guidelines,” on page 3-1, for more information.

2. Create your DataBlade module in BladeSmith.
See “Creating DataBlade Module Objects” on page 4-8 for instructions.

3. Generate source code and SQL files in BladeSmith.
See “Generating Files” on page 4-40 for instructions.

© Copyright IBM Corp. 1996, 2010 8-1

Important: You must use the IBM Informix Dynamic Server with J/Foundation
upgrade to IBM Informix to enable services that use Java. For more
information about J/Foundation, see the J/Foundation Developer's Guide.

Java Programming Task Overview
After you generate code with BladeSmith, complete these general tasks to finish
your DataBlade module code:
1. Add code to the ProjectUDRs.java source code file to enable your routines to

function as you intend. See “Editing Methods” on page 8-5 for instructions.
2. Compile your source code files using the generated makefile. See “Compiling

Java DataBlade Module Code” on page 8-7 for instructions.
3. Debug your source code files using the Java log file. See “Debugging and

Testing DataBlade Modules Written in Java” on page 8-9.
4. Execute functional tests. See “Performing Functional Tests” on page 8-11.

For a list of the Java packages, interfaces, classes, and methods you can use in Java
projects, see J/Foundation Developer's Guide.

To avoid merging conflicts when you regenerate your code, add code only in areas
marked by TO DO: comments or after the generated code. If you do modify code
outside the designated areas, after you regenerate you might have two copies of
the routine: the one you modified and the one BladeSmith generated. Although
your changes remain, you must resolve conflicts in the two pieces of code.

Source Files Generated by BladeSmith
When you create new objects, BladeSmith generates the source files; some
filenames are prefixed with the name of the DataBlade module (indicated by
project). By default, BladeSmith creates the source files in the src and src\java
subdirectories of the directory that contains the BladeSmith project file. Generated
source files are listed in the following table.

Filename Directory Type of File More Information

ProjectUDRs.java src\java Java source
code file

See “Java Source Code Files”
on page 8-3.

IfmxInStream.java src\java Java source
code file

See “BladeSmith Utility
Classes” on page 8-4.

IfmxOutStream.java src\java Java source
code file

See “BladeSmith Utility
Classes” on page 8-4.

IfmxLog.java src\java Java source
code file

See “BladeSmith Utility
Classes” on page 8-4.

IfmxTrace.java src\java Java source
code file

See “BladeSmith Utility
Classes” on page 8-4.

DBDKInputException.java src\java Java source
code file

See “BladeSmith Utility
Classes” on page 8-4.

DBDKOutputException.java src\java Java source
code file

See “BladeSmith Utility
Classes” on page 8-4.

Opaque.java src\java Java source
code file

See “SQLData Interface
Method Support Code” on
page 8-3.

8-2 IBM Informix DataBlade Developers Kit User’s Guide

Filename Directory Type of File More Information

readme.txt src\java Text file This file describes the files in
the src\java directory.

warning.txt src\java Text file This file describes potential
problems with your source
code.

See “Warning File” on page
8-3 for more information.

Project_Java.mak src\java Makefile Use this file for compiling on
both UNIX and Windows.

See “Compiling Java
DataBlade Module Code” on
page 8-7 for more
information.

Some of these files are described in the following subsections.

Java Source Code Files
BladeSmith generates a ProjectUDRs.java source code file that contains method
declarations for all user-defined Java routines, cast support routines, and
aggregates you defined with BladeSmith. You must edit this file to add the
functionality you require. See “Editing Methods” on page 8-5 for more information.

BladeSmith generates the following utility class files that contain utility methods
called by BladeSmith-generated routines:
v IfmxInStream.java

v IfmxOutStream.java

v DBDKInputException.java

v DBDKOutputException.java

v IfmxLog.java

v IfmxTrace.java

For more information on utility classes, see “BladeSmith Utility Classes” on page
8-4.

SQLData Interface Method Support Code
If you define a user-defined routine, aggregate, or cast support method that
handles an opaque data type implemented in C or C++, BladeSmith generates the
SQLData interface methods readSQL() and writeSQL() to translate objects from
and to their internal server representation.

BladeSmith generates complete code for these methods in a file named
Opaque.java, where Opaque is the name of the C or C++ opaque data type. You
should not modify these methods.

Warning File
The warning.txt file includes the following types of warnings about your source
code:
v Unfinished code. The file lists the routines to which you need to add code.

Chapter 8. Programming DataBlade Modules in Java 8-3

v Other. The warning.txt file might contain other warnings, as appropriate for
your source code.

Using the Generated Code
This section contains the following subsections:
v “Comments in Generated Code,” next
v “Logging and Error Handling” on page 8-4
v “BladeSmith Utility Classes” on page 8-4

Comments in Generated Code
BladeSmith adds comments to the code it generates. Each routine begins with a
prologue that describes the purpose of the routine, its arguments, and its return
value. Comments throughout the code describe variable declarations and the
results of generated Java statements and routine calls.

In comments at the beginning and end of each generated routine, BladeSmith
stores information it uses when regenerating source code. The prologue includes a
routine ID. A comment at the end of the routine contains a calculated checksum.

Warning: Do not modify either of these comments; BladeSmith uses them to
merge your edits into the regenerated code.

Logging and Error Handling
BladeSmith adds logging and error handling code throughout the generated source
code.

You can add additional logging calls using the Log() method from the IfmxLog
class. The Log() method calls the standard Java I/O package methods
system.out.println() and system.err.println(). For more information on these
methods, see the IBM Informix JDBC Driver Programmer's Guide.

If the Java value object is used on the client, the Log() method writes the logging
messages to the standard output. If the Java value object is used on the server, the
Log() method writes the logging messages to the Java log file.

The Java log file is distinct from the main database server log file, online.log. The
Java log file contains all logging and tracing messages specific to Java methods.

The Java log file is specified by the JVPLOGFILE configuration parameter, which is
set in the ONCONFIG file. By default, the Java log file is at the following location:
/usr/informix/jvp.log

You can change the location of the Java log file by setting the JVPLOGFILE
configuration parameter; see J/Foundation Developer's Guide.

You can use the Java log entries when you debug a Java method; see “Debugging a
DataBlade Module” on page 8-10.

BladeSmith Utility Classes
BladeSmith generates the following utility classes whose methods are included in
other generated code:

8-4 IBM Informix DataBlade Developers Kit User’s Guide

v IfmxInStream and IfmxOutStream. Provide read and write methods to convert
Java value objects between a string and the internal server format. These
methods perform similar tasks to the Gen_sscanf() utility function.

v DBDKInputException and DBDKOutputException. Provide exception-handling
methods that are called when an exception occurs during the input or output of
a Java value object to or from the database server.

v IfmxLog. Provides logging methods that are included throughout the source
code generated by BladeSmith. For more information on using logging, see
“Logging and Error Handling” on page 8-4.

v IfmxTrace. Not currently used.

Editing Methods
BladeSmith generates code for the following types of methods:
v “Most User-Defined Methods,” next
v “Iterators” on page 8-5
v “Aggregates” on page 8-6
v “Cast Support Methods” on page 8-7

This code is generated in the in the ProjectUDRs.java file.

Important: To avoid code merge problems, modify only code in the sections
marked with a TO DO: note. If you do modify code outside the
designated areas, after you regenerate, you might have two copies of
the routine: the one you modified and the one BladeSmith generated.
Although your changes remain, you must resolve the conflicts in the
two pieces of code.

Most User-Defined Methods
BladeSmith generates only minimal code for most methods you create with the
Routine wizard.

The Generated Code
BladeSmith only generates templates for most user-defined methods.

The generated method declares the routine, its return type, and arguments.

Completing the Code
To complete the code for most user-defined methods, you must:
v add your declarations, if necessary.
v remove the call to Log(), which raises an error stating that the method is not

implemented.
v compute the return value and store it in the Gen_RetVal argument.

For more information on programming routines, see J/Foundation Developer's Guide.

Example
The example JavaCircle DataBlade module has user-defined methods.

Iterators
If you create an iterator method that returns a set one row at a time, BladeSmith
adds code to process the set. The Informix database server calls iterator methods
repeatedly to process all of the return values.

Chapter 8. Programming DataBlade Modules in Java 8-5

The Generated Code
In addition to the arguments you specified when you created it, an iterator
function contains an MI_FPARAM argument. The Informix database server use an
MI_FPARAM structure to control iteration over the set. The generated code
includes a Java else statement with different cases to process the set. The else
statement uses the getIterationState() method to obtain the request flag from the
UDREnv object. The Informix database server sets this flag to one of the following
values before it calls the method:
v UDR_SET_INIT. The initial call to the iterator method. The iterator method

allocates and initializes memory for state information.
v UDR_SET_RETONE. The iterator method is called with this request flag once for

each value in the set.
For each value in the set, the method places the address of the next value in the
set in the Gen_RetVal argument and returns Gen_RetVal.
When there are no more values to return, the iterator method must call the
setSetIterationIsDone() function to signal the Informix database server that all
of the set values have been returned.

v UDR_SET_END. The request flag the Informix database server sets after all values
in the set have been returned. The iterator method frees allocated memory and
releases any other resources it has obtained.

In the generated code, each of these sections has a TO DO: note. To avoid code
merging problems, make changes only where indicated.

Completing the Code
To complete the iterator code, you must:
v Add information declarations.
v Initialize the iterator function.
v Allocate private state information.
v Compute the value of the iteration.
v Call setSetIterationIsDone() when the iteration is complete.
v Free private resources.

For more information on programming iterator methods, see J/Foundation
Developer's Guide.

Aggregates
If you created a user-defined aggregate with the Aggregate wizard, BladeSmith
generates aggregate methods in the ProjectUDRs.java source code file.

The Generated Code
BladeSmith only generates templates for aggregate methods.

The generated method declares the method, its return type, and arguments.

Completing the Code
To complete the code for aggregate methods, you must:
v Add your declarations, if necessary.
v Remove the call to Log(), which raises an error stating that the routine is not

implemented.
v Compute the return value and store it in the Gen_RetVal argument.

8-6 IBM Informix DataBlade Developers Kit User’s Guide

For more information on programming aggregate methods, see J/Foundation
Developer's Guide.

The Initialization Method: If you selected an initialization method,
AggregateInit(), you must add code to it to initialize the state type required by the
aggregate computation. The AggregateInit() method returns the state type.

The first argument of the AggregateInit() method is a dummy argument whose
value is always NULL. The second argument is an optional initialization parameter
to customize aggregate computation. The initialization parameter cannot be a lone
host variable reference.

The Iteration Method: You must add code to the iteration method,
AggregateIter(), to perform the aggregate computations.

Tip: Although the iteration method is called by the database server multiple times
to calculate the aggregation, it is not implemented as an iterator method that
returns a set of results.

The Combine Method: If you selected a combine method, AggregateComb(), you
must add code to it to merge one partial result with another and return the
updated state type.

The Final Function: If you selected a final method, AggregateFinl(), you must
add code to convert the state type to the result type.

You can also add code to the AggregateFinl() method to release resources acquired
by the initialization method. However, the AggregateFinl() method must not free
the state type.

Cast Support Methods
If you specified a cast support method when you created a cast, BladeSmith
generates the cast support method in the ProjectUDRs.java file.

The Generated Code
BladeSmith generates only templates for cast support methods.

The generated method declares the routine, its return type, and arguments.

Completing the Code
To complete the code for cast support methods, you must:
v Add your declarations, if necessary.
v Remove the call to Log(), which raises an error stating that the routine is not

implemented.
v Convert one data type to the other.
v Store the return value in the Gen_RetVal argument.

In a cast support method, you might convert from one binary representation to
another, if the data types involved in the cast have differing binary representations.
Alternatively, you might perform a calculation to convert one data type to another.

Compiling Java DataBlade Module Code
BladeSmith generates the Project_Java.mak makefile in the src\java directory. Use
this makefile to compile Java code from the command line on UNIX and Windows.

Chapter 8. Programming DataBlade Modules in Java 8-7

When you compile, the makefile produces a JAR file, Project.jar, in the source code
directory src/java. This file is appropriate for the server and client
implementations.

The makefile requires that you set the following environment variables before you
compile:
v INFORMIXDIR. Set to the Informix database server installation directory.
v CLASSPATH. Set to the Java Developers Kit, the Java in the server JAR file, and

the IBM Informix JDBC Driver locations:
.:$(JDKPATH):${INFORMIXDIR}/extend/krakatoa/krakatoa.jar:
${INFORMIXDIR}/extend/krakatoa/jdbc.jar

Windows NT Only

UNIX Only

v TARGET. Set to the path and filename of the include file for your platform.
Platform-specific files are located in the directory INFORMIXDIR/incl/dbdk.

End of UNIX Only

End of Windows NT Only

The BINDIR variable in the makefile determines where the JAR files are written.

BladeSmith creates server, all, and clean targets in the makefile. The server target
builds the JAR files. The clean target deletes the JAR files. The default all target is
equivalent to the server target.

Important: When you generate code in BladeSmith, set the Format property of the
DataBlade node to the correct file format for your operating system
(UNIX or DOS). The default is DOS. See “Generating Source Files” on
page 4-44 for more information.

Use the Project_Java.mak makefile with the JDK 1.1.x compiler.

To compile and link your DataBlade module JAR files:

1. If you are compiling on a different computer than the one on which DBDK is
installed, copy the generated src/java directory with its contents to the target
directory.

2. Execute the appropriate command at the UNIX C shell or the MS-DOS prompt:

UNIX Only
make -f Project_Java.mak

End of UNIX Only

Windows NT Only
nmake -fProject_Java.mak

End of Windows NT Only

8-8 IBM Informix DataBlade Developers Kit User’s Guide

Project is the name of the DataBlade module project. The Project.jar files are
created in the src/java directory.

Debugging and Testing DataBlade Modules Written in Java
This section describes debugging and performing functional tests on DataBlade
module routines written in Java.

This section contains the following subsections:
v “Preparing Your Environment,” next
v “Debugging a DataBlade Module” on page 8-10
v “Performing Functional Tests” on page 8-11

Preparing Your Environment
Before you can debug or test your DataBlade module, you must configure your
Informix database server.

Windows NT Only

UNIX Only

For information on the environment variables you must set to debug and test on
UNIX, see “Preparing Your Environment” on page 9-2.

End of UNIX Only

End of Windows NT Only

Windows Only

For information on the environment variables you must set to debug and test on
Windows, see “Preparing Your Environment” on page 10-2.

End of Windows Only

In addition, you must complete the following tasks to use Java with the database
server:
v Create an sbspace to hold the Java JAR files.
v Create the JVP properties file.
v Add or modify the Java configuration parameters in the ONCONFIG file.

Windows NT Only

UNIX Only

v Install symbolic links to the Java VM libraries.

End of UNIX Only

End of Windows NT Only

For instructions on how to complete these tasks, see J/Foundation Developer's Guide.

Chapter 8. Programming DataBlade Modules in Java 8-9

Debugging a DataBlade Module
Debugging a DataBlade module is usually an iterative process, repeated several
times until the code is completely debugged. The debugging process has the
following general steps:
1. Compile the JAR file (if necessary).
2. Install the DataBlade module shared object and SQL scripts in the

$INFORMIXDIR/extend/project directory.
See “Installing a DataBlade Module” on page 8-10 for more information.

3. Start your database server while logged on as the informix user.
See the IBM Informix Administrator's Guide for more information.

4. Register the DataBlade module using BladeManager (if necessary).
See the “Registering a DataBlade Module” on page 8-10 for more information.

5. If you are replacing an existing JAR file, shut down and restart the database
server.
See “Replacing a DataBlade Module JAR File” on page 8-11 for more
information.

6. Execute a query that calls the method using an SQL query tool such as
DB-Access or SQL Editor.
See the IBM Informix DB–Access User's Guide for more information.

7. Examine the Java log file for errors.
See “Logging and Error Handling” on page 8-4 for more information.

8. Edit the source code (if necessary).
9. Repeat the procedure, as necessary.

Installing a DataBlade Module
To install a DataBlade module for debugging, create a project directory and copy
the necessary files to it. Create the project directory under $INFORMIXDIR/
extend. The name of the project directory is what BladeManager uses as the
DataBlade module name.

A good project naming strategy is to combine the project name and version
numbers you entered in the New Project wizard in BladeSmith. For example, the
Circle project, Version 1.0, can be in $INFORMIXDIR/extend/Circle.1.0. IBM
Informix DataBlade modules also include a string indicating the build platform
and minor release: for example, 1.0.UC1.TC2, where UC1 is the first UNIX major
release, and TC2 is the second Windows minor release.

To copy the necessary files to the project directory, use one of these methods:
v Use BladePack to create an installation directory for your DataBlade module and

then copy that directory into the module subdirectory under
$INFORMIXDIR/extend. For instructions, see Chapter 11, “Using BladePack,”
on page 11-1.

v Copy the project.jar file and the contents of the scripts directory into the project
directory.

For installation tips and solutions to common problems, see the IBM Informix
Developer Zone at http://www.ibm.com/software/data/developer/informix.

Registering a DataBlade Module
You need to register your DataBlade module the first time you install it and
subsequently if you change the definition of any of your DataBlade module objects

8-10 IBM Informix DataBlade Developers Kit User’s Guide

in BladeSmith and generate new SQL files. You do not have to reregister your
DataBlade module when you only replace its JAR file.

Important: You must have a default sbspace defined in your database server to
hold your DataBlade module JAR files. If you do not, BladeManager
does not register your Java DataBlade module.

See the IBM Informix DataBlade Module Installation and Registration Guide for more
information on registering DataBlade modules.

Replacing a DataBlade Module JAR File
When a DataBlade module is loaded onto an Informix database server, the
database server stores it in the database server memory map. Therefore, if you
overwrite a JAR file while it is loaded in the database server, you must stop and
restart the database server to unload the old JAR file and load the new one.

Warning: If you do not stop and restart the database server after you replace a
DataBlade module JAR file, the database server might fail when you call
a DataBlade module routine.

To unload a module without restarting the Informix database server, you must
drop all objects in the module, using the SQL DROP statement. After all objects in
the module have been dropped and all instances of the methods have finished
executing, the symbol references to the DataBlade module JAR file are invalidated,
and a message is recorded in the log file.

After the module is unloaded, replace the JAR file and load it into the database.

Performing Functional Tests
When you generate functional tests, BladeSmith creates a set of files that include
shell scripts and SQL scripts for testing opaque data type support routines,
user-defined routines, and cast support functions.

Windows NT Only

UNIX Only

For instructions on how to execute functional tests on UNIX, see “Performing
Functional Tests” on page 9-7.

End of UNIX Only

End of Windows NT Only

Windows Only

For instructions on how to execute functional tests on Windows, see “Performing
Functional Tests on DataBlade Modules” on page 10-6.

End of Windows Only

Chapter 8. Programming DataBlade Modules in Java 8-11

8-12 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 9. Debugging and Testing DataBlade Modules on
UNIX

In This Chapter . 9-1
Prerequisite Tasks . 9-1
Preparing Your Environment . 9-2
Using the Shared Object File . 9-2

Replacing a Shared Object File . 9-2
Shared Object File Ownership and Permissions . 9-3
Symbols in Shared Object Files. 9-3

Installing and Registering DataBlade Modules . 9-3
Installing a DataBlade Module . 9-3
Registering a DataBlade Module . 9-4

Debugging a DataBlade Module . 9-4
Loading the DataBlade Module . 9-5
Identifying the Server Process . 9-5
Running the Solaris Debugger . 9-6
Setting Breakpoints . 9-6

Debugging a UNIX DataBlade Module with Windows . 9-7
Performing Functional Tests . 9-7

Functional Test Overview . 9-7
Contents of the Functional Test Directory . 9-8
Adding Custom Test Files . 9-9

Executing Functional Tests . 9-10
Using the Functional Test Scripts . 9-10
Initializing Reference Files . 9-10

In This Chapter
This chapter describes how to debug and perform functional tests for DataBlade
modules written in C for Informix on UNIX.

See “Debugging and Testing DataBlade Modules Written in Java” on page 8-9 for
instructions on debugging DataBlade modules written in Java.

Prerequisite Tasks
Before you debug or run functional tests on your DataBlade module code, you
must complete these tasks:
1. Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-8 for instructions.
2. Add functional test data for your DataBlade module routines in BladeSmith.

See “Adding Functional Test Data” on page 4-36 for instructions.
3. Generate source, SQL, and test files in BladeSmith.

See “Generating Files” on page 4-40 for instructions.
4. Complete your source code.

For instructions on completing C code, see Chapter 5, “Programming DataBlade
Module Routines in C,” on page 5-1.
For instructions on completing C++ and ActiveX code, see Chapter 6, “Creating
ActiveX Value Objects,” on page 6-1.

5. Build your DataBlade module dynamic link library.

© Copyright IBM Corp. 1996, 2010 9-1

For instructions on compiling C DataBlade modules, see “Compiling on
Windows” on page 5-34.
For instructions on compiling C++ and ActiveX DataBlade modules, see
“Compiling Client and Server Projects” on page 6-5.

Preparing Your Environment
Test and debug your DataBlade module in a nonproduction Informix database
server environment because debugging interferes with the operation of the
database server.

To successfully test and debug your DataBlade module, set your environment so
you can access your Informix database server installation and build your
DataBlade module shared object.

To run your Informix database server, check that these environment variables are
set properly: INFORMIXDIR, PATH, LD_LIBRARY_PATH, ONCONFIG, and
INFORMIXSERVER. See the IBM Informix Administrator's Guide for more
information on configuring your Informix database server.

When testing your DataBlade module, set the TESTDB environment variable to
the name of your test database.

To recompile your DataBlade module shared object file during debugging, also set
the TARGET environment variable. See “Compiling on UNIX” on page 5-33 for
more information on the TARGET environment variable.

Using the Shared Object File
A DataBlade module exists in the Informix database server as a shared object. The
shared object file is loaded into the database server the first time one of its routines
is executed after the database server is started. The shared object file is unloaded
every time the database server is stopped.

Replacing a Shared Object File
When a DataBlade module is loaded onto an Informix database server, the
database server stores it in the database server memory map. Therefore, if you
overwrite a shared object file while it is loaded in the database server, you must
stop and restart the database server to unload the old shared object file and load
the new one.

Warning: If you do not stop and restart the database server after replacing a
shared object, the database server might fail when you call a DataBlade
module routine.

To unload a module without restarting the Informix database server, you must
drop all objects in the module, using the SQL DROP statement. After all objects in
the module have been dropped and all instances of the routines have finished
executing, the symbol references to the DataBlade module shared object are
invalidated, and a message is recorded in the log file.

After the module is unloaded, replace the shared object file and load it into the
database.

9-2 IBM Informix DataBlade Developers Kit User’s Guide

Shared Object File Ownership and Permissions
Shared object files must be owned by the user ID that runs the Informix database
server. In a production installation, the Informix database server runs as user
informix, and shared object files are owned by user informix.

The Informix database server loads a shared object file only if it is marked as
read-only. The project.bld file is marked as read-only by the makefile BladeSmith
generates.

Important: If you receive a -9793 error when you try to execute a routine in the
shared object file, your shared object file is not marked as read-only.

Symbols in Shared Object Files
Undefined symbols in a shared object file are resolved in the database server when
the file is loaded. If a symbol is missing, the load fails on the first execution of the
user-defined routine, and a message is written in the server log file.

You cannot resolve undefined symbols in a shared object file using definitions in
another shared object file.

A symbol defined in a shared object file on the database server behaves in one of
two ways:
v If the symbol referenced in the shared object file is in the same source file that

references it, the debugger accesses the symbol in the shared object file.
v If the shared object file includes more than one source file and there is a

cross-file symbol reference, the symbol is resolved in the database server. These
symbols are listed as unresolved when you link the shared object file.

Important: Although most of the unresolved symbols listed when you link the
DataBlade module shared object file are resolved when the database
server loads the shared object, check for mistyped symbols; these are
not resolved.

Installing and Registering DataBlade Modules
Installing a DataBlade module places the module’s files in a subdirectory of the
$INFORMIXDIR/extend directory; registering a DataBlade module adds the
module to a database. You must install and register before you can test or debug a
DataBlade module.

Installing a DataBlade Module
See “Replacing a Shared Object File” on page 9-2 for important information about
updating an existing DataBlade module shared object file.

To install a DataBlade module for testing and debugging, create a project directory
and copy the necessary files to it. Create the project directory under
$INFORMIXDIR/extend. The name of the project directory is what BladeManager
uses as the DataBlade module name.

A good project naming strategy is to combine the project name and version
numbers you entered in the New Project wizard in BladeSmith. For example, the
Circle project, Version 1.0, can be in $INFORMIXDIR/extend/Circle.1.0. IBM
Informix DataBlade modules also include a string indicating the build platform

Chapter 9. Debugging and Testing DataBlade Modules on UNIX 9-3

and minor release: for example, 1.0.UC1.TC2, where UC1 is the first UNIX major
release, and TC2 is the second Windows minor release.

To copy the necessary files to the project directory, use one of these methods:
v Use BladePack to create an installation directory for your DataBlade module and

then copy that directory into the module subdirectory under
$INFORMIXDIR/extend. For instructions, see Chapter 11, “Using BladePack,”
on page 11-1.

v Copy the project.bld file and the contents of the scripts directory into the project
directory.

For installation tips and solutions to common problems, see the IBM Informix
Developer Zone at http://www.ibm.com/software/data/developer/informix.

Registering a DataBlade Module
You need to register your DataBlade module the first time you install it and if you
change the definition of any of your DataBlade module objects in BladeSmith and
generate new SQL files. You do not have to reregister your DataBlade module
when you only replace its shared object file.

See the IBM Informix DataBlade Module Installation and Registration Guide for more
information on registering DataBlade modules.

Debugging a DataBlade Module
Debugging a DataBlade module is usually an iterative process, repeated many
times until the code is completely debugged. The debugging process has the
following general steps:
1. Build the shared object file with debugging support while logged on as user

informix (if necessary).
To debug a DataBlade module, compile the shared object file with the -g
compiler option so that debugging symbols are available to the debugger. See
“Compiling DataBlade Module Code” on page 5-33 for information about
compiling with debugging support.

2. Install the DataBlade module shared object and SQL scripts in the
$INFORMIXDIR/extend/project directory.
See “Installing a DataBlade Module” on page 9-3 for more information.

3. Start your database server with the oninit command, while logged on as the
informix user.
See the IBM Informix Administrator's Guide for more information.

4. Register the DataBlade module, using BladeManager (if necessary).
See “Registering a DataBlade Module” on page 9-4 for more information.

5. If you are replacing an existing shared object, shut down and restart the
database server with the onmode -yuk and oninit commands.
See “Replacing a Shared Object File” on page 9-2 for more information.

6. Load the DataBlade module by calling one of its routines.
See “Loading the DataBlade Module” on page 9-5 for instructions.

7. Log on as user root in a new window to run the debugger.
8. Obtain the database server process ID for the root session.

See “Identifying the Server Process” on page 9-5 for instructions.
9. Run the debugger and attach to the database server process.

9-4 IBM Informix DataBlade Developers Kit User’s Guide

See “Running the Solaris Debugger” on page 9-6 for instructions.
10. Set any appropriate breakpoints.

See “Setting Breakpoints” on page 9-6 for more information.
11. Issue SQL statements to call your DataBlade module routines from the

informix session.
See the IBM Informix DB–Access User's Guide for more information.

12. Edit the source code (if necessary).
13. Repeat the procedure, as necessary.

The following sections describe some of these steps.

Loading the DataBlade Module
Before you can attach to the database server process with the debugger, load your
DataBlade module shared object file into the database server address space. With
the shared object file loaded, set breakpoints on the routine entry points and
examine local storage provided by the routines.

To load the DataBlade module into the database server address space, execute one
of its routines. One technique is to call the routine with an impossible condition, as
follows:
SELECT routine_name(column_name) FROM table_name
WHERE 1=0;

routine_name is the name of your routine, column_name is the name of a column in
the table, and table_name is the name of the table. This statement loads your
DataBlade module shared object file without executing the routine.

Identifying the Server Process
To debug a routine, you must identify the virtual processor in which that routine
runs. By default, routines are assigned to the CPU virtual processor class.
However, when you create a routine in BladeSmith, you can specify if it is poorly
behaved and assign it to a user-defined virtual processor class.

To identify the virtual processor class assigned to a routine, look at the property
page for the routine in BladeSmith. If the class field is blank, then the routine runs
in the CPU VP. See “C Programming Guidelines” on page 3-6 for more information
on user-defined virtual processors.

Important: If you have more than one instance of a virtual processor in a CPU or
user-defined virtual processor class, threads can migrate between
virtual processors, making debugging difficult. To simplify debugging,
configure your database server so that there is only one instance each
of the CPU VP or user-defined VP used by the routines in your
DataBlade module.

To find the process ID (PID) of the CPU or user-defined virtual processor that you
want to debug, execute the onstat command, as follows:
onstat -g glo

The last section of the output of this onstat command is similar to the following
example.

Chapter 9. Debugging and Testing DataBlade Modules on UNIX 9-5

Typically, the PID circled in the sample output is the one you need. In this
example, there are no user-defined virtual processor classes; all the DataBlade
routines are marked as well behaved and run in the single instance of the CPU VP.

Running the Solaris Debugger
To debug your DataBlade module, use a debugger that can attach to the active
database server process and access the symbol tables of dynamically loaded shared
object files. On Solaris, the dbx utility meets these criteria, as does debugger.

Before beginning debugging, enter the following commands to disable signal
handlers in the debugger:
ignore SIGUSR1
ignore SIGUSR2

Tip: You can put these instructions in the .dbxinit file. Then put the file in the
$INFORMIXDIR/bin directory. However, then you must always start dbx
from that directory.

To start dbx, enter the following command at the shell prompt:
dbx - PID

PID is the process ID of the CPU VP or user-defined VP.

This command starts dbx on the database server virtual process without starting a
new instance of the virtual processor.

When the debugger starts, it lists the loaded shared object libraries. If your
DataBlade module shared object file is not on the list, load it by calling one of its
routines in the database server. See “Loading the DataBlade Module” on page 9-5
for instructions.

You can set breakpoints, examine the stack, resume execution, or carry out any
other normal dbx command. See the online dbx publication page for more
information about available dbx commands.

Setting Breakpoints
You can set breakpoints in any routine with an entry point known to dbx.

Informix database server software is compiled with debugging support turned off,
so local storage and line number information is not available for database server
routines. However, after you compile the DataBlade module for debugging, you
can see line number information and local storage for your functions.

Figure 9-1. Sample onstat Command Output

9-6 IBM Informix DataBlade Developers Kit User’s Guide

When you enter a command in the client that calls one of your DataBlade module
routines, the debugger stops in the routine. Then you can follow the steps of your
routine. Because your DataBlade module is compiled with debugging support, you
can view the local variables and stack for your routines.

Debugging a UNIX DataBlade Module with Windows
Debug a UNIX DataBlade module from your Windows computer by logging into a
UNIX computer from your Windows computer and running the debugger in a
telnet session or an X window emulation program.

Performing Functional Tests
When you generate functional tests, BladeSmith creates a set of files that include
shell scripts and SQL scripts for testing opaque data type support routines,
user-defined routines, and cast support functions. By default, these files are created
in the functest subdirectory of the directory containing the BladeSmith project file.

Functional tests are generated only for the DataBlade module objects for which
you enter test data in your BladeSmith project. See “Adding Functional Test Data”
on page 4-36 for information about entering test data.

Functional testing is typically an iterative process, repeated many times until the
code passes all the tests. The testing process has the following general steps:
1. Build the shared object file while logged on as user informix.

See “Compiling on UNIX” on page 5-33 for instructions.
2. Install the DataBlade module shared object, SQL scripts, and test scripts in the

$INFORMIXDIR/extend/project directory.
See “Installing a DataBlade Module” on page 9-3 for more information.

3. Log on as the informix user and start your database server with the oninit
command.
See the IBM Informix Administrator's Guide for more information.

4. Create a test database.
See the IBM Informix DB–Access User's Guide for more information.

5. Register the DataBlade module, using BladeManager.
See “Registering a DataBlade Module” on page 9-4 for more information.

6. If you are replacing an existing shared object, shut down and restart the
database server with the onmode -k and oninit commands.
See “Replacing a Shared Object File” on page 9-2 for more information.

7. Execute the functional tests.
See “Executing Functional Tests” on page 9-10 for instructions.

8. Edit the source code (if necessary).
9. Regenerate the tests in BladeSmith (if necessary).

10. Repeat the procedure, as necessary.

Functional Test Overview
Functional tests include SQL scripts and shell scripts that execute the SQL scripts
and determine the results. The shell scripts build test tables in a database, run the
SQL test scripts, and then drop the test tables from the database.

Chapter 9. Debugging and Testing DataBlade Modules on UNIX 9-7

You can create custom shell scripts to run additional tests or initialization scripts.
The generated scripts include calls to your custom scripts.

Shell scripts execute SQL scripts using DB-Access. The results from the SQL
statements are saved in .log files. When you first run functional tests, you must
inspect the .log files and, if the results are correct, use the shell scripts to copy
them to .req files.

When you execute functional tests after saving .req files, the shell script uses the
UNIX diff command to compare the .log files to the .req files. The script prints the
following messages:
v “test passed” message if the .log and .req files match
v “test failed” message if the files do not match
v “status unknown” message when a .req file does not yet exist

Important: There are minor formatting differences between the UNIX and
Windows versions of DB-Access that can cause tests to indicate failure
incorrectly.

Contents of the Functional Test Directory
The functional test directory, functest, includes the following subdirectories:
v data. Contains .dat files for each opaque type, user-defined routine, and cast for

which you entered test data. The name of the data file is objectname.dat, where
objectname is either the name of the opaque type or the name of the C routine
associated with a user-defined routine or cast.

v opaque. Contains a subdirectory for each opaque type for which you entered
test data. The subdirectory contains functional tests for the support routines
defined for the opaque type.

v udr. Contains a subdirectory containing functional tests for each user-defined
routine for which you entered test data.

v cast. Contains a subdirectory containing functional tests for each cast for which
you entered test data.

The functest directory contains a master shell script, main.sh, for executing all of
the functional tests generated for the DataBlade module. Each subdirectory in the
udr, opaque, and cast directories also contains a main.sh script to execute only the
functional tests in that subdirectory.

The subdirectories in the udr, opaque, and cast directories contain various SQL
scripts. Each subdirectory has a setup.sql script and a cleanup.sql script. The
setup.sql script creates test tables and initializes them with test data. The
cleanup.sql script drops all of the test tables from the database.

BladeSmith creates the following SQL test scripts for the object being tested:
v call_pos.sql, for user-defined routines
v call_neg.sql, for negative tests of user-defined routines
v cast.sql, for casts
v Additional scripts for opaque types to test the support routines defined for the

type, as described in the following table

Script Names Support Routines Tested

textio_pos.sql Text input/output functions for an opaque type; uses only
valid test data.

9-8 IBM Informix DataBlade Developers Kit User’s Guide

Script Names Support Routines Tested

textio_neg.sql Text input/output functions for an opaque type; uses test data
with invalid input data.

binio.sql Binary file input/output functions; uses the valid input data for
the opaque type.

textexp.sql Text file import/export functions for opaque types; uses the
UNLOAD and LOAD SQL statements.

binexp.sql Binary file import/export functions for an opaque type; uses
nested calls to the binary file import/export functions. The
result of the nested calls should be equivalent to the text input
format for the type.

notify.sql The Assign/Destroy routines; inserts and deletes values in a
new test table.

compare.sql The Compare function for an opaque type.

equal.sql The Equal function for an opaque type.

notequal.sql The NotEqual function for an opaque type.

btree.sql

lessthan.sql

lessthanorequal.sql

greaterthan.sql

greaterthanorequal.sql

B-tree support functions for an opaque type.

plus.sql

minus.sql

times.sql

divide.sql

Standard math operators for an opaque type.

positive.sql

negative.sql

The Positive and Negate functions for an opaque type.

concat.sql The concatenation operator; calls the Concat function for an
opaque data type with two instances of the type.

hash.sql The Hash support function with a SELECT...GROUP BY SQL
query.

A script is generated only when the support routines it tests are defined.

Adding Custom Test Files
You can add other tests or initialization scripts to your test suite by adding your
own scripts in the subdirectories of the functest directory and editing the sample
user.sh shell script that BladeSmith generates. For example, you can add SQL
scripts to create a test database, create special test tables in it, and execute custom
tests against those tables.

Chapter 9. Debugging and Testing DataBlade Modules on UNIX 9-9

Executing Functional Tests
To execute functional scripts, use the main.sh script. Execute a command in all test
directories by executing the main.sh command in the top-level test directory. You
can execute tests for a specific DataBlade module object by executing main.sh in
that object’s test directory.

The first time you execute the tests, initialize the reference files. See “Initializing
Reference Files” on page 9-10 for instructions.

The TESTDB environment variable must be set to the name of the test database.

Using the Functional Test Scripts
The main.sh script is a Bourne shell script that accepts one of five possible
command line parameters, as described in the following table.

Command Description

main.sh build Runs user.sh with a “build” target.

Runs the setup.sql script.

main.sh clean Deletes .log files.

Runs user.sh with a “clean” target.

Executes clean.sql in the database.

main.sh run Uses DB-Access to run each SQL script generated by BladeSmith,
saving the output in a .log file.

If a .req file exists, calls diff to determine the test result. It prints a
message telling whether the test passed or failed.

After all BladeSmith-generated tests are run, executes user.sh with a
“run” target.

main.sh save Copies all .log files to .req files, overwriting existing .req files.

main.sh all Performs the “build,” “run,” and “clean” actions. Use this shortcut
after the .req files have been saved.

Initializing Reference Files
The first time you run tests, execute the “build” and “run” targets, as follows:
main.sh build
main.sh run

These two steps prepare the database, run the test scripts, and generate .log files.
The results of all tests are unknown (no reference file).

Check the results in each .log file to determine if the test returned the correct
result. The expected result (which was entered with the test data in BladeSmith) is
shown in a comment.

If the results are incorrect, you might need to fix the DataBlade module C code. In
other cases, the test data can be incorrect.

When the tests return correct results, create reference files by executing the “save”
target, as follows:
main.sh save

9-10 IBM Informix DataBlade Developers Kit User’s Guide

After reference files have been saved, use the “all” shortcut target to build and run
the tests and clean up the database and test directory.

Chapter 9. Debugging and Testing DataBlade Modules on UNIX 9-11

9-12 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 10. Debugging and Testing DataBlade Modules on
Windows

In This Chapter . 10-1
Prerequisite Tasks. 10-1
Preparing Your Environment . 10-2
DBDK Visual C++ Add-In and IfxQuery . 10-2

The Debug DataBlade Module Command. 10-2
Other Add-In Commands . 10-3

Debugging a DataBlade Module . 10-4
Manually Loading the Add-In . 10-5
Specifying Properties for a Project . 10-5
Setting Breakpoints . 10-6
Editing Unit Test Files . 10-6

Performing Functional Tests on DataBlade Modules . 10-6

In This Chapter
This chapter describes how to debug and perform functional tests for DataBlade
modules written in C and C++ for Informix on Windows.

See “Debugging and Testing DataBlade Modules Written in Java” on page 8-9 for
instructions on debugging DataBlade modules written in Java.

Prerequisite Tasks
Before you run tests or debug your DataBlade module code, you must complete
these tasks:
1. Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-8 for instructions.
2. Optionally add functional test data for your DataBlade module routines in

BladeSmith.
See “Adding Functional Test Data” on page 4-36 for instructions.

3. Generate source, SQL, and test code in BladeSmith.
See “Generating Files” on page 4-40 for instructions.

4. Complete your source code.
For instructions on completing C code, see Chapter 5, “Programming DataBlade
Module Routines in C,” on page 5-1.
For instructions on completing C++ and ActiveX code, see Chapter 6, “Creating
ActiveX Value Objects,” on page 6-1.

5. Build your DataBlade module dynamic link library.
For instructions on compiling C DataBlade modules, see “Compiling on
Windows” on page 5-34.
For instructions on compiling C++ and ActiveX DataBlade modules, see
“Compiling Client and Server Projects” on page 6-5.

© Copyright IBM Corp. 1996, 2010 10-1

Preparing Your Environment
Test and debug your DataBlade module in a nonproduction Informix database
server environment because debugging interferes with the operation of the
database server.

To use the debugging features of the DBDK Visual C++ Add-In, you must have a
local database server.

Before you begin testing and debugging your DataBlade module, verify that your
database server is running properly. Use the Setnet32 utility to complete the Server
Information page and create a default database server. Create a database with SQL
Editor; if the command succeeds, your server is properly configured and the
DBDK Visual C++ Add-In should work properly.

See the IBM Informix Administrator's Guide for more information on configuring
your Informix database server.

DBDK Visual C++ Add-In and IfxQuery
The DBDK Visual C++ Add-In is a toolbar that appears in Microsoft Visual C++
after you install DBDK. The add-in aids you in debugging DataBlade modules in
the following ways:
v If you are using a local database server for debugging, the add-in automates

tasks from compiling through reaching the first breakpoint in your source code.
In this case, you must have your database server on the same computer as the
Informix DataBlade Developers Kit you used to develop your DataBlade
module.

v If you are using a remote database server, the add-in automates the following
tasks:
– Installing the DataBlade module project file
– Installing the DataBlade module SQL scripts
– Registering the DataBlade module

The add-in toolbar contains seven buttons. To see the name of each command,
position the mouse pointer over the button. Figure 10-1 shows the add-in toolbar.

The primary add-in command is the Debug DataBlade Module command; it
completes all the tasks necessary to bring your DataBlade module to the first
debugging breakpoint. When you use the Debug DataBlade Module command to
start debugging, the IfxQuery tool is launched from within Visual C++ when an
SQL unit test file is the active window.

The Debug DataBlade Module Command
If you have a DataBlade module project open in Visual C++ and click the Debug
DataBlade Module button, the Debug DataBlade Module command performs the
following steps:

Figure 10-1. DBDK Visual C++ Add-In

10-2 IBM Informix DataBlade Developers Kit User’s Guide

1. Checks if the DataBlade module needs to be compiled and compiles it, if
necessary.

2. If necessary, creates a new directory for the DataBlade module under the
%INFORMIXDIR%\extend directory.

3. Installs the DataBlade module dynamic link library and SQL scripts in the
%INFORMIXDIR%\extend\project.0 directory.

4. If necessary, shuts down the database server.
5. Starts Visual C++ debugger with the database server attached.

Important: The database server typically runs as a Windows service; you can start
and stop it using the Services dialog box in the Control Panel.
However, when the add-in starts the database server attached to the
debugger, it does not run as a service and the Services dialog box does
not show it running. If you attempt to start or stop the database server
using the Services dialog box while it is attached to the debugger, you
receive an error.

If the active window when you execute the Debug DataBlade Module command
is an SQL file, the Debug DataBlade Module command launches IfxQuery, which
performs the following additional tasks:
1. If necessary, creates the database you specified in the Configure DBDK Visual

C++ Add-In dialog box
2. Connects to the database for the project
3. Registers the DataBlade module
4. If necessary, initializes the newly created database using the Setup.sql file
5. Executes the SQL statements from the active unit test SQL file until the first

breakpoint is reached
6. After you pass the breakpoint, executes the next SQL statement until the next

breakpoint is reached
7. After you pass all breakpoints and the routine returns, writes the results of the

SQL statements to an HTML file
8. Launches the default HTML browser for your computer
9. Displays the SQL results in the HTML browser

10. Shuts down

If the active window when you execute the Debug DataBlade Module command
is not an SQL file, you can execute SQL queries using another SQL query tool, such
as SQL Editor. However, you must first explicitly register the DataBlade module by
clicking the add-in Register DataBlade Module button or by using BladeManager
(see the IBM Informix DataBlade Module Installation and Registration Guide for
instructions). In addition, the database you specified in the Configure DBDK Visual
C++ Add-In dialog box must exist.

Other Add-In Commands
The following table lists the other add-in command buttons, in addition to the
Debug DataBlade Module command, and the tasks they complete.

Chapter 10. Debugging and Testing DataBlade Modules on Windows 10-3

Task Button

Copy the project.bld file to the local or remote
database server

Upload DataBlade Module

Copy the DataBlade module SQL scripts to the
local or remote database server

Upload DataBlade SQL Scripts

Register the DataBlade module on the local or
remote database server

Register DataBlade Module

Shut down and restart the local database
server

Stops and restarts IDS on the local host

Launch the add-in help page, which is part of
the DBDK InfoShelf

Launch InfoShelf

Change the database server or database for a
project

Configure DBDK Visual C++ Add-In dialog
box

Important: Before you can run the Register DataBlade Module command, you
must install the DataBlade module by using the Upload DataBlade
Module and Upload DataBlade SQL Scripts commands, and the
database you specified in the Configure DBDK Visual C++ Add-In
dialog box must exist.

Debugging a DataBlade Module
Debugging a DataBlade module is usually an iterative process, repeated many
times until the code is completely debugged. The “Creating a Simple User-Define
Routine” exercise in the DBDK InfoShelf tutorial guides you through this process.

The debugging process on a local database server has the following general steps:
1. Open the project.dsw file in Visual C++. You can do this in BladeSmith by

clicking the MSDev button on the Generate DataBlade dialog box or by
choosing Tools > MSDev.
The DBDK Visual C++ Add-In toolbar should be present in the Visual C++
program if you installed DBDK after you installed Visual C++. If it is not
present, you must add it manually before you continue with the next step. See
“Manually Loading the Add-In” on page 10-5 for instructions.

2. The DBDK Visual C++ Add-In prompts you to configure the session for your
new DataBlade project. Click Yes to select a local server.

3. Specify the project database server, database, and, optionally, the SQL script to
initialize your database.
See “Specifying Properties for a Project” on page 10-5 for more information.

4. Set appropriate breakpoints in one of the source code files.
See “Setting Breakpoints” on page 10-6 for instructions.

5. Open the appropriate unit test file in Visual C++ and edit it to add
appropriate SQL.
See “Editing Unit Test Files” on page 10-6 for more information.

6. Click the Debug DataBlade Module button.
7. If you need to specify an executable file for the debugging session, the

Executable For Debug Session dialog box will prompt you to do so. Use the
browse button to select %INFORMIXDIR%\bin\oninit.exe.

8. If a dialog box appears, warning that oninit.exe does not have debugging
information, click OK to begin debugging.

10-4 IBM Informix DataBlade Developers Kit User’s Guide

The debugger runs until the first breakpoint.
9. To resume debugging, choose Debug > Go from the Visual C++ menu bar.

When you pass all breakpoints and all routines return, IfxQuery displays the
SQL results in your default browser.

10. If necessary, edit and compile the source code.
11. Repeat the procedure, as necessary.

The following sections describe some of these steps.

Important: If you attempt to start or stop the database server with the Services
dialog box of the Control Panel during debugging, you receive an
error. When the add-in starts the database server attached to the
debugger, the database server does not run as a Windows service. To
stop the database server, shut down the debugger.

Manually Loading the Add-In
The DBDK Visual C++ Add-In toolbar should be present in the Visual C++
program if you installed DBDK after you installed Visual C++. If it is not present,
you must add it manually.

To manually load the Visual C++ Add-In:

1. Close your project.dsw file.
2. Choose Tools > Customize.
3. On the Add-Ins and Macro Files page of the Customize dialog box, check the

box for DBDKAddIn.1.
If the box for DBDKAddIn.1 is already checked, uncheck it, close the
Customize dialog box, and then repeat Steps 2 and 3.

4. Click Close.
5. Open your project.dsw file.

Specifying Properties for a Project
To debug a project, each DataBlade module project must have an associated
database server and database.

When you first open a DataBlade module project in Visual C++, the Configure
DBDK Visual C++ dialog box appears, prompting you to choose a database server
and database. If you choose a local database server, you can use any of the add-in
commands. If you choose a remote database server, you can use only the Upload
DataBlade Module, Upload DataBlade SQL Scripts, and Register DataBlade
Module commands.

You can choose an existing database from the DBDK Database list or, if you are
using a local database server, type in a new database name. IfxQuery creates the
database you specify if it does not exist when you run the Debug DataBlade
Module command. If the database server you specified is a remote server, you
must choose an existing database name.

You can also specify an SQL file to initialize your test database for the project in
the Initialize Database File field. You can use the generated Setup.sql file in the
src directory as your initialization file after you add SQL statements to it. See
“Editing Unit Test Files” on page 10-6 for a description of the Setup.sql file.

Chapter 10. Debugging and Testing DataBlade Modules on Windows 10-5

You can change the properties of a project at any time by clicking Configure
DBDK Visual C++ Add-In button and completing the corresponding dialog box.

Setting Breakpoints
Before you start the debugger, set breakpoints in your source code.

To set breakpoints with Visual C++:

1. Open a source code file. You can do this by double-clicking a routine under the
Globals node in the Class view.

2. Right-click the line of code for which you want to set a breakpoint.
3. Choose Insert > Breakpoint.

Editing Unit Test Files
Before you start debugging, edit the unit test files to add the SQL statements
necessary to debug your DataBlade module.

When you generate unit tests for a DataBlade module, BladeSmith generates the
files listed in the following table in the src\tests directory.

Test Name Purpose

Setup.sql Optionally initializes the database. You can add SQL statements to
create and populate the tables necessary for your debugging tests.

If you specify this file as your initialization file in the Configure
DBDK Visual C++ Add-In dialog box, IfxQuery automatically runs
this file after it creates a new database.

Routine.sql Tests the user-defined routine. You can add SQL statements or
modify the sample data for the routine. Use this file if you are
debugging udr.c.

IfxQuery runs this file if you click Debug DataBlade Module with
this file in the active window.

Opaque.sql Tests the support routines for each opaque data type. You can add
SQL statements or modify the sample data for each support
routine. Use this file if you are debugging Opaque.c or
OpaqueServer.cpp.

IfxQuery runs this file if you click Debug DataBlade Module with
this file in the active window.

Cleanup.sql Optionally deletes and drops tables and data in your test database.

IfxQuery runs this file if you click Debug DataBlade Module with
this file in the active window.

When you edit unit test files, add SQL statements in the areas marked with TEST
comments. This ensures that your statements are merged when you regenerate unit
tests with BladeSmith.

Performing Functional Tests on DataBlade Modules
When you have completed the code for your DataBlade module and finished
debugging it, you should run functional tests to validate it.

When you generate functional tests, BladeSmith creates a set of files that include
shell scripts and SQL scripts for testing extended data types, user-defined routines,

10-6 IBM Informix DataBlade Developers Kit User’s Guide

and casts. By default, these files are created in the functest subdirectory of the
directory containing the BladeSmith project file.

Functional tests are generated only for the DataBlade module objects for which
you enter test data in your BladeSmith project. See “Adding Functional Test Data”
on page 4-36 for information about entering test data.

The test scripts are created to run in a UNIX shell. Therefore, you must install a
UNIX-compatible toolkit on your Windows computer: for example, MKS Toolkit.
For information about functional tests, see “Functional Test Overview” on page 9-7.

Although functional tests are meant to be executed after development of the
DataBlade module is complete, functional testing can be an iterative process,
repeated several times until the code passes all the tests. The testing process has
the following general steps:
1. In Visual C++, build the project.bld file.

See “Compiling on Windows” on page 5-34 for instructions.
2. Create a project directory under the %INFORMIXDIR%\extend directory for

your database server.
3. Install your DataBlade module. To do this, run the Upload DataBlade Module

and Upload SQL Scripts commands on the add-in or manually copy the
necessary files (see “Installing a DataBlade Module” on page 9-3 for
instructions).

4. Register your DataBlade module. To do this, run the Register DataBlade
Module command on the add-in or use BladeManager (see the “Registering a
DataBlade Module” on page 9-4 for instructions).

5. Execute the functional tests from a UNIX shell using MKS Toolkit.
See “Executing Functional Tests” on page 9-10 for instructions.

6. Regenerate functional tests in BladeSmith if you change any of your test data. If
you change the definition of any of your DataBlade module objects, regenerate
source code and functional tests in BladeSmith.

7. Edit the source code (if necessary).
8. Repeat the procedure, as necessary.

Chapter 10. Debugging and Testing DataBlade Modules on Windows 10-7

10-8 IBM Informix DataBlade Developers Kit User’s Guide

Chapter 11. Using BladePack

In This Chapter . 11-1
Prerequisite Tasks. 11-2
BladePack Overview . 11-2

BladePack Projects . 11-3
BladePack Online Help . 11-3
BladePack Windows . 11-3

Project View . 11-4
Item View . 11-5

Registry Keys for Windows . 11-6
Packaging for UNIX Installations . 11-6

Establishing Content . 11-7
Files and Directories to Be Installed or Deleted . 11-7

Managing Components . 11-8
Component Properties . 11-9
Assigning to Components . 11-10

Customizing the Installation . 11-10
Building the Installation . 11-11

Installation Type . 11-11
Creating Distribution Media . 11-12

Packaging for InstallShield 3.1 Installations . 11-12
Establishing Content . 11-13

Files and Directories to Be Installed or Deleted . 11-13
Registry Changes . 11-15

Managing Components . 11-16
Component Properties . 11-17
Assigning to Components . 11-17

Customizing the Installation . 11-17
Adding Custom Extensions . 11-18

Building the Installation . 11-19
Installation Type . 11-19
Installation Screen Display Text . 11-20

Creating Distribution Media . 11-20
Packaging for InstallShield 5.1 Installations . 11-20

Establishing Content . 11-21
Files and Directories to Be Installed . 11-21
Registry Changes . 11-23

Managing Components . 11-23
Component Properties . 11-24
Assigning to Components . 11-24

Customizing the Installation . 11-25
Building the Installation . 11-25

Installation Type . 11-25
Installation Screen Display Text . 11-26

Creating Distribution Media . 11-26

In This Chapter
Refer to the online help for detailed descriptions of the BladePack user interface
and screen elements.

BladePack creates installation packages for DataBlade modules and other software
products. BladePack provides a visual representation of an installation package,
allowing you to add files to the installation package and to customize the

© Copyright IBM Corp. 1996, 2010 11-1

installation in a variety of ways. When the installation package is defined and
customizations are completed, BladePack creates the installation package in a build
area.

Prerequisite Tasks
Before you package your DataBlade module code, complete these tasks:
v Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-8 for instructions.
v Generate source, SQL, and packaging files in BladeSmith.

See “Generating Files” on page 4-40 for instructions.
v Complete your source code.

See Chapter 5, “Programming DataBlade Module Routines in C,” on page 5-1, or
Chapter 6, “Creating ActiveX Value Objects,” on page 6-1, for instructions.

v Build your DataBlade module shared object or dynamic link library.
See “Compiling DataBlade Module Code” on page 5-33 or “Compiling a
Windows Server Project” on page 6-5 for instructions.

BladePack Overview
BladePack produces installation packages for installing products on UNIX and
Microsoft Windows platforms. BladePack can create a simple directory tree
containing files to be installed or an installation that includes an interactive user
interface.

On UNIX platforms, an interactive installation includes install and uninstall shell
scripts. On Windows, an interactive installation includes the Setup program
created with InstallShield and, for InstallShield 3.1, the Uninstall program.

Important: You must have an InstallShield Professional 3.1 or 5.1 license to create
an InstallShield installation for Windows. You specify the directory and
version of InstallShield while you install the Informix DataBlade
Developers Kit.

The files in an installation package can be divided into separate components,
subcomponents, and shared components. You must define at least one component
for an installation package. You can designate the components to include in typical,
compact, or custom installations. You can also allow users to customize their
installation by choosing the components they want to install.

For example, in addition to the required shared object file and SQL scripts, a
DataBlade module can include example files and online help files. You can place
these additional files into separate components that are included in a typical
installation but excluded from a compact installation.

This section contains the following subsections:
v “BladePack Projects” on page 11-3, next
v “BladePack Online Help” on page 11-3
v “BladePack Windows” on page 11-3
v “Registry Keys for Windows” on page 11-6

11-2 IBM Informix DataBlade Developers Kit User’s Guide

BladePack Projects
BladePack organizes information into projects. Each project is controlled by a
product file (project.prd), which contains entries for the component file
(project.cmp), bill of materials file (project.bom), and string file (project.str). If you
are packaging a DataBlade module created by BladeSmith, the Generate Packaging
option creates these files in the install directory. The following table describes
these files.

Package File Description

project.bom A bill of materials file. This file contains an entry for each file to be
installed. The entry includes the path to the source file and the
path where the file will be installed.

project.cmp Lists the main components and subcomponents in the installation
package.

project.prd The main product file that you open with BladePack. This file lists
other files that define the installation package. Initially, this file
contains entries for the .bom, .cmp, and .str files. Add README
files using BladePack.

project.str Defines character strings used in the installation.

Important: Do not edit the generated installation package files.
Instead, use BladeSmith to update the installation
package files after you have added or removed
DataBlade module objects in the project file.

When you build an installation package, you can include several BladePack
projects. For example, you can include DataBlade modules that facilitate similar
financial calculations into a single installation package.

If you include standard items in each of your installations, create a separate project
for these items and include this project in every installation. For example, you can
put registry changes required by all DataBlade modules in a standard project file.
Include these changes in a component that is always installed.

BladePack Online Help
BladePack online help provides overview and detailed reference information for
BladePack.

The “About BladePack” section contains topics that provide an overview of
BladePack and installation packages.

The “BladePack Interface” section describes BladePack menus, project view pages,
item view pages, dialog boxes, and the Build Installation wizard.

The “BladePack Procedures” section contains instructions for working with
projects, establishing the content of the installation package, organizing
components, and setting up the installation package interface.

BladePack Windows
The BladePack project window is divided into two panes. The project view pane
displays the overall structure of the installation package. The project view contains
tabbed views of the contents of the installation package arranged in hierarchical
trees.

Chapter 11. Using BladePack 11-3

The item view pane contains detailed information about the object selected in the
project view. You use the project view to add objects to the installation package
and to organize the structure of the installation package. You use the item view to
enter details about objects in the installation package. Figure 11-1 shows a
BladePack project window.

Project View
The project view has three tabbed pages: Files/Directories, Components, and
Customization.

Each page in the project view presents a hierarchical tree of the contents of the
package. To expand or collapse a folder, click the expander button next to the
folder or double-click the folder.

Important: The options you have for your installation package vary according to
whether you are building a package for a UNIX installation, an
InstallShield 3.1 installation for Windows, or an InstallShield 5.1
installation for Windows. To determine which options are valid for
your installation package, see the appropriate section on packaging.

Files/Directories Page: When you click the Files/Directories tab in the project
view, BladePack displays files and directories to install and files and directories to
remove. BladePack also displays registry changes for Windows installations.

Figure 11-1. BladePack Project Window

11-4 IBM Informix DataBlade Developers Kit User’s Guide

The Files to Install, Files to Delete, Directories to Install, and Directories to
Delete folders are organized as trees that match the directories on the target
computer for the installation.

The Registry Changes folder contains entries for the Windows registry.

Components Page: The Components page displays the component organization
of the installation package. An installation package can have components,
subcomponents, and shared components. You can create a component,
subcomponent, or shared component and then drag files and directories into it.
Subcomponents and shared components are subordinate to components. Shared
components are useful for files that are included in more than one component.

You can organize the installation package into components to make it possible for
the customer who installs the package to select portions of the DataBlade module
in the Select Components to Install screen. For example, if your DataBlade
module includes examples, you can create a component of the DataBlade module
called Examples and then create subcomponents for each example. Then customers
can choose which examples to install with the DataBlade module. Shared
components do not appear in the Select Components to Install screen; they are
installed if the component to which they belong is installed.

However, you can also ship your DataBlade module as a single component that
contains all of the files. You do not have to organize your installation package into
subcomponents and shared components.

Customization Page: The Customization page displays information that can be
customized for the installation package.

The Custom DLL Routine, Custom DLL Dialog, and Custom Program folders
contain custom routines, dialog boxes, and executable programs for InstallShield
installations on Windows platforms and executable programs to run from within
interactive installations on Windows or UNIX platforms. You control when routines
execute by specifying the execution sequence.

Tip: To add dialog boxes and routines to your installation package, create them
using Microsoft Visual C++ and then add them to a dynamic link library
(DLL). For examples, see the directory %INFORMIXDIR%\dbdk\setup\
example.

The Readme Files folder contains files that you want to place unpacked on the
first diskette of an InstallShield installation.

The Support Files folder contains a list of files that are available during the
installation but are not installed with the product.

Item View
The item view displays one or more tabbed pages, depending on the object you
select in the project view.

If you select a folder in the project view, the first tab in the item view contains a
list of the folder contents.

If you select an object, such as a file, in the project view, the first tab in the item
view displays details about the object. The information displayed and the names of

Chapter 11. Using BladePack 11-5

the tabs depend on the type of object you are viewing. Some objects have other
tabs, containing supporting information for that object.

Much of the information in the item view is editable. For example, if you add a
component, you type its name in the name field that appears in the item view.
Editable fields have a white background. Fields that cannot be edited have a gray
background.

Registry Keys for Windows
When you install the Informix DataBlade Developers Kit, one of the installation
screens allows you to specify InstallShield support, if you have InstallShield
installed on your computer. The version and directory of InstallShield you choose
on that screen determines the value of the following registry keys:
v AlwaysUseInstallShield5. Sets the version:

– 0 indicates that you have InstallShield 3.1 or that you do not have
InstallShield 5.1 on your computer.

– 1 indicates that you have InstallShield 5.1 on your computer.
v IShieldDir. Sets the directory.

You can reset the version and directory of InstallShield by editing these registry
keys in the registry.

The AlwaysUseInstallShield5 key is in the following registry directory:

hkey_local_machine\software\Informix\BladePack

The IShieldDir key is in the following registry directory:

hkey_current_user\Environment

Packaging for UNIX Installations
To package your DataBlade module, you add content to a BladePack project, assign
components, customize the installation procedure, and build the package.

Important: You cannot use all BladePack options when you create an installation
package for UNIX. You can only use the options mentioned in this
section.

For information on packaging DataBlade modules for InstallShield 3.1, see
“Packaging for InstallShield 3.1 Installations” on page 11-12. For information on
packaging DataBlade modules for InstallShield 5.1, see “Packaging for InstallShield
5.1 Installations” on page 11-20.

To build an installation package with BladePack:

1. Open a project file in one of the following ways:
v To open the project.prd file for a project created with BladeSmith, choose

Project > Open or launch BladePack from the BladeSmith Tools menu while
the project is open.

v For other projects, BladePack, choose Project > New to create a new
BladePack project.

2. Define the content of your product, including files, directories, and registry
changes.

11-6 IBM Informix DataBlade Developers Kit User’s Guide

3. Define and assign installation components.
4. Define optional customizations.
5. Build the installation package.
6. Transfer files from the build area to installation media.

Establishing Content
You can add these objects to your product in BladePack:
v Files and directories to install

For a DataBlade module, the minimum you need is the project.bld or project.jar
file and the SQL script files. These files are automatically added to the Files to
Install folder when you open a project.prd file.
In addition, consider adding documentation, help, applications, and other files to
support your DataBlade module.

v Files and directories to delete
If you are packaging an upgrade, you might need to specify files or directories
to delete in the old installation.

To add a file or directory:

1. Choose Edit > Insert > object, where object is File to Install, File to Delete,
Directory to Install, or Directory to Delete.
The object appears on the Files/Directories page.

2. Specify the properties of the object on the Details and other pages in the item
view.

The following sections describe the properties of the objects on the
Files/Directories page.

Files and Directories to Be Installed or Deleted
The following table lists properties you define when you add files and directories
to install or delete.

Property Description

Local name The local name of the file or directory to be
installed or deleted. Choose Browse to select a file
from the Open dialog box.

You can have multiple operating system-specific
files to install. See “Local Paths for Files for
Multiple Operating Systems” on page 11-8 for more
information.

Target directory For files and directories to install only.

The directory in which the file or directory is
installed.

See “Specifying a Target Directory” on page 11-8
for more information.

Target operating system The operating system on which to install the file or
directory.

Component The component, subcomponent, or shared
component to which the file or directory is
assigned.

Chapter 11. Using BladePack 11-7

See “Assigning to Components” on page 11-10 for
more information on assigning to components.

File copy options For files and directories to install only.

Options for copying files, including whether the
file is installed only if it has the same or later date
or version than the existing file. The default is
None.

Local Paths for Files for Multiple Operating Systems: If you have files that are
operating-system-specific, put them in a directory structure that is the same except
for one directory, which is named for the operating system. When you add the file
to your BladePack project, replace the directory named for the operating system
with %OS%.

For example, if you compile your C or C++ DataBlade module on Sun Solaris and
Windows, you have two project.bld files, one in each of these directories:
v project/src/c/Solaris-sparc

v project\src\c\WinNT-i386

Add the project/src/c/Solaris-sparc/project.bld file to the Files to Install folder and
then replace Solaris-sparc with %OS%. When you build the BladePack project for
Sun Solaris and Windows, BladePack adds the appropriate project.bld file to each
project.

For a Java DataBlade module, you have only one version of the project.jar file,
which is in the project/src/java directory.

Specifying a Target Directory: For UNIX, the only option in the list for the
Directory on target machine field is __home. This is the directory the installer
chooses during the installation process. By default this directory is
$INFORMIXDIR.

For the DataBlade module files (project.bld or project.jar and the SQL scripts), you
should specify the extend/project directory as the target directory under the
$INFORMIXDIR directory.

Managing Components
BladePack allows you to organize your product installation package into three
layers: component, subcomponent, and shared component. To see the component
hierarchy for your product, click the Components tab in the project view.

Organizing an installation package into a component structure allows you to define
Typical, Compact, and Custom installations. You specify whether each component
or subcomponent is included in the Typical and Compact installations, and
whether it is initially selected when users choose the Custom installation.

Use a shared component for those portions of your product that are shared by
more than one component. A shared component is always installed with the
subcomponent with which it is associated.

During a Custom installation, users can choose to install any components or
subcomponents. When you mark a component Custom, the component is initially
selected. The user can choose to include or exclude any components, except shared
components, from the installation.

11-8 IBM Informix DataBlade Developers Kit User’s Guide

In most cases, the component level is sufficient to create Typical, Compact, and
Custom installation options. For example, suppose you have created the following
components (and no subcomponents) in your installation package and marked
them as shown:
v DataBlade module. Typical, Compact, Custom.
v Help. Typical.
v Examples. Typical.
v Debugging Support. Custom.

In this scheme, users install the DataBlade module, help files, and examples if they
choose the Typical installation. If they choose the Compact installation, they install
the DataBlade module only. If they choose the Custom installation, the DataBlade
module and debugging support are preselected. They can choose to add help and
examples.

To create a component:

1. Choose Edit > Insert > Component.
2. Complete the properties on the Component Details page in the item view.

To create a subcomponent:

1. Select the component to which you want the subcomponent to be subordinate.
2. Choose Edit > Insert > Subcomponent.
3. Complete the properties on the Component Details page in the item view.

To create and copy a shared component:

1. Select the subcomponent to which you want the shared component to be
subordinate.

2. Choose Edit > Insert > Shared Component.
3. With the shared component still selected, choose Edit > Copy.
4. Select another component to which you want to add the shared component.
5. Choose Edit > Paste.

Component Properties
The following table lists the properties of components and subcomponents you
define when you create them.

Property Description

Name The name of the component or subcomponent that appears in the
left column on the Select Installation Components screen during a
custom installation

Description The description of the component or subcomponent that appears in
the right column when the item is selected on the Select
Installation Components screen during a custom installation

Inclusion What type of install the component or subcomponent is included
in:
v Compact
v Typical
v Custom

Shared components have one property: an identifier that is assigned by BladePack.
You can edit the identifier; it can be an alphanumeric string up to 128 characters.

Chapter 11. Using BladePack 11-9

Make sure it is unique among shared components. If you change an identifier, be
sure to update it for every instance of that shared component.

Assigning to Components
You must assign every item on the Files/Directories and Customization pages to a
component, subcomponent, or shared component. If you try to build the project
with unassigned items, the build fails and you receive an error message telling you
which item is not assigned to a component.

Initially, all files and directories that appear on the Files/Directories page are listed
under the Unassigned Files and Directories folder on the Components page.
Custom extensions are not shown on the Components page.

To assign an item to a component, use one of these methods:
v On the Components page, drag an item out of the Unassigned Files and

Directories folder into the folder of the correct component. This process is not
valid for custom extensions.

v On the Details page for the item in the item view, select a component from the
Install when customer selects this component list. You must have already
defined the component.

Customizing the Installation
Custom extensions for the installation program are optional. Your customization
options depend on your operating system.

For UNIX installation packages, you can add custom programs to call from the
installation program and README files.

In addition to adding the custom programs in their respective folders, you must
also add the file containing the custom extension to the Support Files folder.
However, if you have more than one program in a file, you need only add that file
to the Support Files folder once.

To add a custom program:

1. Choose Edit > Insert > Custom Program.
2. Complete the Details page in the item view.
3. Choose Edit > Insert > Support File.
4. Type the path and filename of the file containing the custom routine, dialog

box, or program or click Browse to select the file from the Open dialog box.

The following table lists the properties of custom programs you specify when you
add them to your installation project.

Property Description

Name The filename of the program. Type the name or
click Browse to select the file in the Open dialog
box.

ID or command line arguments
The command line arguments you want to use for
the program during the installation process.

Target operating system The operating system on which the custom
extension runs.

11-10 IBM Informix DataBlade Developers Kit User’s Guide

Component The component, subcomponent, or shared
component to which the file or directory is
assigned.

See “Assigning to Components” on page 11-10 for
more information on assigning to components.

When to run When the custom extension is executed during the
installation procedure:
v Before the installation program begins
v Before the project files are copied
v After the project files are copied
v Before the installation program exits

To add a README file:

1. Choose Edit > Insert > Readme File.
2. Type the path and filename or click Browse to select the file from the Open

dialog box.

Building the Installation
When the content and organization of your installation package are complete,
build and test it.

To build, choose Build > Build Installation. The Build Installation wizard is
launched and prompts you for the following information:
v Installation type: interactive or file tree

See “Installation Type,” next, for more information.
v Platform for which to build the installation package

Choose one from the list. Build a separate package for every platform.
v The target directory in which to build the installation

This can be any directory. By default it is the project/install directory.
v List of BladePack project.prd files to include in the installation package

You can bundle more than one project in a single installation.

Warning: If the combined length of the path and filename of any file is longer
than 255 characters, the build fails. This is due to a Windows limitation.
To solve this problem, you can select a shorter staging directory.

Installation Type
BladePack creates a directory structure in the target directory and copies files into
the tree. When you build an interactive installation for a UNIX platform,
BladePack includes install and uninstall shell scripts.

When you build a file tree installation, BladePack creates the file tree specified in
the project in the target directory. A file tree build is useful for debugging the
BladePack project.

After you successfully build an interactive installation, the target directory contains
the subdirectories described in the following table.

Directory Description

cdrom Contains an image of the installation package that can be

Chapter 11. Using BladePack 11-11

transferred to distribution media. DataBlade module developers
can rename this directory to the name of the DataBlade module
before creating a .tar file.

This directory contains an install shell script and other files that
the install script uses during installation.

support Contains copies of files to support the installation, such as project
files. Its contents are not distributed with your installation package.

folder_tree Contains a directory tree containing the contents of all of the
directories to be included in the installation package. The contents
of this directory are not distributed with your installation package.

tree The root of a directory tree containing files to be included in the
installation package. The tree directory can be used to debug
problems in the installation package.

The contents of this directory are not distributed with your
installation package.

Creating Distribution Media
To ensure that customers can install DataBlade modules and other IBM Informix
products using common instructions, the product you distribute must conform to
the IBM Informix DataBlade module installation standard. BladePack creates an
interactive installation that ensures a consistent user interface.

Important: If you create a UNIX .tar file, rename the cdrom directory to the name
of your product before you copy the directory to media or the release
area. For example, for the Circle DataBlade module, rename the cdrom
directory to circle. (Do not include the version number in the directory
name.)

Copy the renamed directory and its contents to the media or into the archive file.
This makes it possible to distribute multiple products with their own installations
on a CD-ROM or tape.

For example, to install the Circle DataBlade module from CD-ROM, the installer
mounts the CD-ROM, changes to the circle subdirectory, and executes the install
script.

To install the Circle DataBlade module from a file named circle3.6.tar, retrieved
through a local network or the Internet, the installer extracts the file into a
temporary directory, changes to the circle subdirectory, and executes install. When
the installation has finished, the circle subdirectory can be removed.

Tip: BladePack does not compress .tar files. If you want to distribute your
DataBlade module as a compressed file, you must compress it yourself.

Packaging for InstallShield 3.1 Installations
To package your DataBlade module, you add content to a BladePack project, assign
components, customize the installation procedure, and build the package.

For information on packaging DataBlade modules for UNIX, see “Packaging for
UNIX Installations” on page 11-6. For information on packaging DataBlade
modules for InstallShield 5.1, see “Packaging for InstallShield 5.1 Installations” on
page 11-20.

11-12 IBM Informix DataBlade Developers Kit User’s Guide

To build an installation package with BladePack:

1. Open a project file:
v For DataBlade modules created using BladeSmith, open the project.prd file

by choosing Project > Open or launch BladePack from the BladeSmith Tools
menu while the project is open.

v For other products, create a new BladePack project by choosing Project >
New.

2. Define the content of your product, including files, directories, and registry
changes.

3. Define and assign installation components.
4. Define optional customizations.
5. Build the installation package.
6. Transfer files from the build area to installation media.

Establishing Content
You can add these objects to your product in BladePack:
v Files and directories to install

For a DataBlade module, you need the project.bld or project.jar file and the
SQL script files. If you have an ActiveX client project, you also need the
project.dll file. These files are automatically added to the Files to Install folder
when you open a project.prd file.
In addition, consider adding documentation, help, applications, and other files to
support your DataBlade module.
If you have an ActiveX client implementation, consider including CLSID (class
identifier) and IID (interface identifier) information by including C++ client
support library files (see “Support Library Files” on page A-2) in the installation
package.

v Files and directories to delete
If you are packaging an upgrade, you might need to specify files or directories
to delete in the old installation.

v Registry changes
You might have to specify registry changes for your DataBlade module.

To add a file or directory or a change to the registry:

1. Choose Edit > Insert > object, where object is File to Install, File to Delete,
Directory to Install, Directory to Delete, or Change to Registry.
The object appears on the Files/Directories page.

2. Specify the properties of the object on the Details and other pages in the item
view.

The following sections describe the properties of the objects on the
Files/Directories page.

Files and Directories to Be Installed or Deleted
The following table lists properties you define when you add files and directories
to install or delete.

Property Description

Local name The local name of the file or directory to be
installed or deleted. Choose Browse to select a file
from the Open dialog box.

Chapter 11. Using BladePack 11-13

You can have multiple operating-system-specific
files to install. See “Local Paths for Files for
Multiple Operating Systems” on page 11-14 for
more information.

Target directory For files and directories to install only.

The directory in which the file or directory is
installed.

See “Specifying a Target Directory” on page 11-15
for more information.

Target operating system The operating system on which to install the file or
directory.

Component The component, subcomponent, or shared
component to which the file or directory is
assigned.

See “Assigning to Components” on page 11-17 for
more information on assigning to components.

File copy options For files and directories to install only.

Options for copying files, including whether the
DLL is installed only if it has the same or later date
or version than the existing DLL. The default is
None.

File sharing options For files and directories to install only.

Whether and how a file can be shared. The default
is None.

See “File Sharing Options” on page 11-15 for more
information.

Icon options For files to install only.

Whether the file has an associated icon and
information about that icon. The icon appears in
the program group. Icons are typically used for
applications, read me files, or help files; DataBlade
modules do not require icons. The default is no
icon.

Local Paths for Files for Multiple Operating Systems: If you have files that are
operating-system-specific, put them in a directory structure that is the same except
for one directory, which is named for the operating system. When you add the file
to your BladePack project, replace the directory named for the operating system
with %OS%.

For example, if you compile your C or C++ DataBlade module on Sun Solaris and
Windows, you have two project.bld files, one in each of these directories:
v project/src/c/Solaris-sparc

v project\src\c\WinNT-i386

Add the project\src\c\WinNT-i386\project.bld file to the Files to Install folder
and then replace WinNT-i386 with %OS%. When you build the BladePack project for
Sun Solaris and Windows, BladePack adds the appropriate project.bld file to each
project.

11-14 IBM Informix DataBlade Developers Kit User’s Guide

For a Java DataBlade module, you have only one version of the project.jar file,
which is in the project/src/java directory.

Specifying a Target Directory: You have the following options in the list for the
Directory on target machine field:
v __home. The directory the installer chooses during the installation process. By

default this directory is $INFORMIXDIR.
v __system. The Windows system directory.
v __windows. The Windows directory.

The target directory for the DataBlade module files (project.bld and the SQL
scripts) should be the extend\project directory under the $INFORMIXDIR
directory.

File Sharing Options: For files in the Files to Install folder, choose one of these
file sharing options from the Copy Options page:
v File is system shared DLL. Indicates that the file can be used by more than one

program on the target computer. The file is marked to prevent it from being
removed in an uninstallation process.

v File may be in use on target system. Indicates that the file can be in use when
the program is installed. If the file exists on the target computer and is in use
during the installation process, the installation continues, but the computer must
be rebooted before the program is run. In this case, the installation program
displays the Setup Complete, Reboot Required screen.

v None. Default. Indicates that your files are not shared and cannot be in use
during the installation process. In this case, the installation program displays the
Setup Complete screen without a prompt to reboot the computer.

Registry Changes
You can add entries to the Windows registry for the initialization and configuration
of your DataBlade module and its associated programs.

Refer to your Microsoft Developer Studio documentation for information about the
registry.

To add registry changes:

1. Choose Edit > Insert > Change to Registry.
2. Complete the Registry Changes Details page in the item view.

The following table lists the properties you define when adding registry changes.

Property Description

Registry hive The standard primary registry keys under which you want to add
a key:
v HKEY_CLASSES_ROOT
v HKEY_CURRENT_USER
v HKEY_LOCAL_MACHINE

Registry path The key you want to add, expressed as a path.

Key name The name of the key.

Key value The value of the key.

Chapter 11. Using BladePack 11-15

Component The component, subcomponent, or shared component to which the
file or directory is assigned.

See “Assigning to Components” on page 11-17 for more
information on assigning to components.

Managing Components
BladePack allows you to organize your product installation package into three
layers: component, subcomponent, and shared component. To see the component
hierarchy for your product, click the Components tab in the project view.

Organizing an installation package into a component structure allows you to define
Typical, Compact, and Custom installations. You specify whether each component
or subcomponent is included in the Typical and Compact installations, and
whether it is initially selected when users choose the Custom installation.

Use a shared component for those portions of your product that are shared by
more than one component. A shared component is always installed with the
subcomponent with which it is associated.

During a Custom installation, users can choose to install any components or
subcomponents. When you mark a component Custom, the component is initially
selected. The user can choose to include or exclude any components, except shared
components, from the installation.

In most cases, the component level is sufficient to create Typical, Compact, and
Custom installation options. For example, suppose you have created the following
components (and no subcomponents) in your installation package and marked
them as shown:
v DataBlade module. Typical, Compact, Custom.
v Help. Typical.
v Examples. Typical.
v Debugging Support. Custom.

In this scheme, users install the DataBlade module, help files, and examples if they
choose the Typical installation. If they choose the Compact installation, they install
the DataBlade module only. If they choose the Custom installation, the DataBlade
module and debugging support are preselected. They can choose to add help and
examples.

To create a component:

1. Choose Edit > Insert > Component.
2. Complete the properties on the Component Details page in the item view.

To create a subcomponent:

1. Select the component to which you want the subcomponent to be subordinate.
2. Choose Edit > Insert > Subcomponent.
3. Complete the properties on the Component Details page in the item view.

To create and copy a shared component:

1. Select the subcomponent to which you want the shared component to be
subordinate.

2. Choose Edit > Insert > Shared Component.

11-16 IBM Informix DataBlade Developers Kit User’s Guide

3. With the shared component still selected, choose Edit > Copy.
4. Select another component to which you want to add the shared component.
5. Choose Edit > Paste.

Component Properties
The following table lists the properties of components and subcomponents you
define when you create them.

Property Description

Name The name of the component or subcomponent that appears in the
left column on the Select Installation Components screen during a
custom installation

Description The description of the component or subcomponent that appears in
the right column when the item is selected on the Select
Installation Components screen during a custom installation

Inclusion What type of install the component or subcomponent is included
in:
v Compact
v Typical
v Custom

Shared components have one property: an identifier that is assigned by BladePack.
You can edit the identifier; it can be an alphanumeric string up to 128 characters.
Make sure it is unique among shared components. If you change an identifier, be
sure to update it for every instance of that shared component.

Assigning to Components
You must assign every item on the Files/Directories and Customization pages to a
component, subcomponent, or shared component. If you try to build the project
with unassigned items, the build fails and you receive an error message telling you
which item is not assigned to a component.

Initially, all files and directories that appear on the Files/Directories page are listed
under the Unassigned Files and Directories folder on the Components page.
Custom extensions are not shown on the Components page.

To assign an item to a component, use one of these methods:
v On the Components page, drag an item out of the Unassigned Files and

Directories folder into the folder of the correct component. This process is not
valid for custom extensions.

v On the Details page for the item in the item view, select a component from the
Install when customer selects this component list. You must have already
defined the component.

Customizing the Installation
Custom extensions for the installation program are optional. For InstallShield 3.1
installation packages, you can add these custom extensions:
v Routines to call from the installation program
v InstallShield dialog boxes
v Programs to call from the installation program
v README files for the installation program

Chapter 11. Using BladePack 11-17

Adding Custom Extensions
In addition to adding the custom routines, dialog boxes, and programs in their
respective folders, you must also add the file containing the custom extension to
the Support Files folder. However, if you have more than one routine, dialog box,
or program in a file, you need only add that file to the Support Files folder once.

To add a custom routine, dialog box, or program:

1. Choose Edit > Insert > Item, where Item is Custom DLL Routine, Custom
DLL Dialog, or Custom Program.

2. Complete the Details page in the item view.
3. Choose Edit > Insert > Support File.
4. Type the path and filename of the file containing the custom routine, dialog

box, or program or click Browse to select the file from the Open dialog box.

To add a README file:

1. Choose Edit > Insert > Readme File.
2. Type the path and filename or click Browse to select the file from the Open

dialog box.

The following table lists the properties of custom routines, dialog boxes, and
programs you specify when you add them to your installation project.

Property Description

Name The filename of the routine, dialog box, or
program. Type the name or click Browse to select
the file in the Open dialog box.

ID or command line arguments
For a custom routine, the ID string is an identifier
you can use to determine which routine to call if
you have more than one routine in a single DLL.

For a custom dialog box, the resource ID that you
specified when creating it in Microsoft Developer
Studio.

For a custom program, the command-line
arguments you want to use for the program during
the installation process.

Target operating system The operating system on which the custom
extension runs.

Component The component, subcomponent, or shared
component to which the file or directory is
assigned.

See “Assigning to Components” on page 11-17 for
more information on assigning to components.

When to run When the custom extension is executed during the
installation procedure:
v Before the installation program begins
v Before the project files are copied
v After the project files are copied
v Before the installation program exits

11-18 IBM Informix DataBlade Developers Kit User’s Guide

Building the Installation
When the content and organization of your installation package are complete,
build and test it.

To build, choose Build > Build Installation. The Build Installation wizard is
launched and prompts you for the following information:
v Installation type: interactive or file tree

See “Installation Type” on page 11-19 for more information.
v Platform for which to build the installation package

Choose one from the list. Build a separate package for every platform.
v Installation screen text

See “Installation Screen Display Text” on page 11-20 for more information.
v The target directory in which to build the installation

This can be any directory. By default it is the project\install directory.
v List of BladePack project.prd files to include in the installation package

You can bundle more than one project in a single installation.

Warning: If the combined length of the path and filename of any file is longer
than 255 characters, the build fails. This is due to a Windows limitation.
To solve this problem, you can select a shorter staging directory.

Installation Type
BladePack creates a directory structure in the target directory and copies files into
the tree. When you build an interactive installation package for Windows,
BladePack calls InstallShield to process the files and create CD-ROM and diskette
images.

When you build a file tree installation, BladePack creates the file tree specified in
the project in the target directory. A file tree build is useful for debugging the
BladePack project.

After you successfully build an interactive installation, the target directory contains
the subdirectories described in the following table.

Directory Description

tree The root of a directory tree containing files to be
included in the installation package. The tree
directory can be used to debug problems in the
installation package.

This directory is compressed into a single archive
called files.z in the cdrom directory.

cdrom Contains an image of the installation package that
can be transferred to distribution media. DataBlade
module developers can rename this directory to the
name of the DataBlade module before creating a
.tar file.

This directory contains Setup.exe and other files
that support an InstallShield installation.

disk1, disk2...diskn Contain files needed for an InstallShield
installation, with files split to fit on 1.4 MB

Chapter 11. Using BladePack 11-19

diskettes. The disk1 directory contains Setup.exe
and the files required to begin a diskette
installation.

support Contains copies of files to support the installation,
such as project files, .dll files, and bitmap images.
Its contents are not distributed with your
installation package.

folder_tree Contains a directory tree containing the contents of
all of the directories to be included in the
installation package. The contents of this directory
are not distributed with your installation package.

Installation Screen Display Text
BladePack provides default text strings for the InstallShield installation wizard
screens for Windows. You can override some of these text strings. For example, in
the Select Installation Type wizard, you can change the text that appears next to
the words Typical, Compact, and Custom to provide your own definitions for these
three types of installations. When you save a BladePack project, BladePack saves
any new string definitions in the appropriate string files.

Creating Distribution Media
To ensure that customers can install DataBlade modules and other IBM Informix
products using common instructions, the product you distribute must conform to
the IBM Informix DataBlade module installation standard. BladePack creates an
interactive installation that ensures a consistent user interface.

To install a product from diskettes on a Windows platform, the installer executes
the Setup.exe program on the first diskette. To create diskettes, copy the contents
of the disk1 ... diskn directories to formatted 1.4 MB diskettes.

To create all other types of media, use the cdrom directory in the build area.

To distribute multiple products with their own installations on a CD-ROM or tape,
rename the cdrom directory to the name of the DataBlade module before you copy
the directory and its contents to the media or into the archive file.

For example, to install the Circle DataBlade module from CD-ROM, the installer
mounts the CD-ROM, changes to the circle subdirectory, and executes Setup.

Important: Put the Setup.exe program in a short path. If the combined length of
the path and filename of any file is longer than 255 characters, the
program will not execute. This is due to a Windows limitation.

Packaging for InstallShield 5.1 Installations
To package your DataBlade module, you add content to a BladePack project, assign
components, customize the installation procedure, and build the package.

Important: You cannot use all BladePack options when you create an installation
package for InstallShield 5.1. You can only use the options mentioned
in this section.

11-20 IBM Informix DataBlade Developers Kit User’s Guide

For information on packaging DataBlade modules for UNIX, see “Packaging for
UNIX Installations” on page 11-6. For information on packaging DataBlade
modules for InstallShield 3.1, see “Packaging for InstallShield 3.1 Installations” on
page 11-12.

To build an installation package with BladePack:

1. Open a project file:
v For DataBlade modules created using BladeSmith, open the project.prd file

by choosing Project > Open or launch BladePack from the BladeSmith Tools
menu while the project is open.

v For other products, create a new BladePack project by choosing Project >
New.

2. Define the content of your product, including files, directories, and registry
changes.

3. Define and assign installation components.
4. Define optional customizations.
5. Build the installation package.
6. Transfer files from the build area to installation media.

Establishing Content
You can add these objects to your product in BladePack:
v Files and directories to install

For a DataBlade module, you need the project.bld or project.jar file and the
SQL script files. If you have an ActiveX client project, you also need the
project.dll file. These files are automatically added to the Files to Install folder
when you open a project.prd file.
In addition, consider adding documentation, help, applications, and other files to
support your DataBlade module.
If you have an ActiveX client implementation, consider including CLSID (class
identifier) and IID (interface identifier) information by including C++ client
support library files (see “Support Library Files” on page A-2) in the installation
package.

v Registry changes
You might have to specify registry changes for your DataBlade module.

To add a file or directory or a change to the registry:

1. Choose Edit > Insert > object, where object is File to Install, Directory to
Install, or Change to Registry.
The object appears on the Files/Directories page.

2. Specify the properties of the object on the Details and other pages in the item
view.

The following sections describe the properties of the objects on the
Files/Directories page.

Files and Directories to Be Installed
The following table lists properties you define when you add files and directories
to install.

Property Description

Chapter 11. Using BladePack 11-21

Local name The local name of the file or directory to be
installed. Choose Browse to select a file from the
Open dialog box.

You can have multiple operating-system-specific
files to install. See “Local Paths for Files for
Multiple Operating Systems” on page 11-22 for
more information.

Target directory The directory in which the file or directory is
installed.

See “Specifying a Target Directory” on page 11-22
for more information.

Target operating system The operating system on which to install the file or
directory.

Component The component, subcomponent, or shared
component to which the file or directory is
assigned.

See “Assigning to Components” on page 11-24 for
more information on assigning to components.

Icon options Whether the file has an associated icon and
information about that icon. The icon appears in
the program group. Icons are typically used for
applications, README files, or help files;
DataBlade modules do not require icons. The
default is no icon.

InstallShield 5.1 does not support deleting files and directories, file copy options,
or file sharing options.

Local Paths for Files for Multiple Operating Systems: If you have files that are
operating-system-specific, put them in a directory structure that is the same except
for one directory, which is named for the operating system. When you add the file
to your BladePack project, replace the directory named for the operating system
with %OS%.

For example, if you compile your C or C++ DataBlade module on Sun Solaris and
Windows, you have two project.bld files, one in each of these directories:
v project/src/c/Solaris-sparc

v project\src\c\WinNT-i386

Add the project\src\c\WinNT-i386\project.bld file to the Files to Install folder,
then replace WinNT-i386 with %OS%. When you build the BladePack project for Sun
Solaris and Windows, BladePack adds the appropriate project.bld file to each
project.

For a Java DataBlade module, you have only one version of the project.jar file,
which is in the project/src/java directory.

Specifying a Target Directory: You have the following options in the list for the
Directory on target machine field:
v __home. The directory the installer chooses during the installation process. By

default this directory is $INFORMIXDIR.
v __system. The Windows system directory.

11-22 IBM Informix DataBlade Developers Kit User’s Guide

v __windows. The Windows directory.

The target directory for the DataBlade module files (project.bld and the SQL
scripts) should be the extend/project directory under the $INFORMIXDIR
directory.

For InstallShield 5.1, BladePack puts files that are installed in different directories
into different subcomponents; user files are put in the main component, while
system files are put in a subcomponent.

Registry Changes
You can add entries to the Windows registry for the initialization and configuration
of your DataBlade module and its associated programs.

Refer to your Microsoft Developer Studio documentation for information about the
registry.

To add registry changes:

1. Choose Edit > Insert > Change to Registry.
2. Complete the Registry Changes Details page in the item view.

The following table lists the properties you define when you add registry changes.

Property Description

Registry hive The standard primary registry keys under which you want to add
a key:
v HKEY_CLASSES_ROOT
v HKEY_CURRENT_USER
v HKEY_LOCAL_MACHINE

Registry path The key you want to add, expressed as a path.

Key name The name of the key.

Key value The value of the key.

Component The component, subcomponent, or shared component to which the
file or directory is assigned.

See “Assigning to Components” on page 11-24 for more
information on assigning to components.

Managing Components
BladePack allows you to organize your product installation package into three
layers: component, subcomponent, and shared component. To see the component
hierarchy for your product, click the Components tab in the project view.

Organizing an installation package into a component structure allows you to define
Typical, Compact, and Custom installations. You specify whether each component
or subcomponent is included in the Typical and Compact installations, and
whether it is initially selected when users choose the Custom installation.

During a Custom installation, users can choose to install any components or
subcomponents. When you mark a component Custom, the component is initially
selected. The user can choose to include or exclude any components, except shared
components, from the installation.

Chapter 11. Using BladePack 11-23

In most cases, the component level is sufficient to create Typical, Compact, and
Custom installation options. For example, suppose you have created the following
components (and no subcomponents) in your installation package, and marked
them as shown:
v DataBlade module. Typical, Compact, Custom.
v Help. Typical.
v Examples. Typical.
v Debugging Support. Custom.

In this scheme, users install the DataBlade module, help files, and examples if they
choose the Typical installation. If they choose the Compact installation, they install
the DataBlade module only. If they choose the Custom installation, the DataBlade
module and debugging support are preselected. They can choose to add help and
examples.

To create a component:

1. Choose Edit > Insert > Component.
2. Complete the properties on the Component Details page in the item view.

To create a subcomponent:

1. Select the component to which you want the subcomponent to be subordinate.
2. Choose Edit > Insert > Subcomponent.
3. Complete the properties on the Component Details page in the item view.

Component Properties
The following table lists the properties of components and subcomponents you
define when you create them.

Property Description

Name The name of the component or subcomponent that appears in the
left column on the Select Installation Components screen during a
custom installation

Description The description of the component or subcomponent that appears in
the right column when the item is selected on the Select
Installation Components screen during a custom installation

Inclusion What type of install the component or subcomponent is included
in:
v Compact
v Typical
v Custom

Assigning to Components
You must assign every item on the Files/Directories and Customization pages to a
component, subcomponent, or shared component. If you try to build the project
with unassigned items, the build fails and you receive an error message telling you
which item is not assigned to a component.

Initially, all files and directories that appear on the Files/Directories page are listed
under the Unassigned Files and Directories folder on the Components page.
Custom extensions are not shown on the Components page.

To assign an item to a component, use one of these methods:

11-24 IBM Informix DataBlade Developers Kit User’s Guide

v On the Components page, drag an item out of the Unassigned Files and
Directories folder into the folder of the correct component. This process is not
valid for custom extensions.

v On the Details page for the item in the item view, select a component from the
Install when customer selects this component list. You must have already
defined the component.

Customizing the Installation
Custom extensions for the installation program are optional.

For InstallShield 5.1 installation packages, you can add README files for the
installation program. However, after you export your project to InstallShield 5.1,
you can add custom extensions to your project using the InstallShield 5.1 project
wizard.

To add a README file:

1. Choose Edit > Insert > Readme File.
2. Type the path and filename or click Browse to select the file from the Open

dialog box.

Building the Installation
When the content and organization of your installation package are complete,
build and test it.

To build, choose Build > Build Installation. The Build Installation wizard is
launched and prompts you for the following information:
v Installation type: interactive or file tree

See “Installation Type” on page 11-25 for more information.
v Platform for which to build the installation package

Choose one from the list. Build a separate package for every platform.
v Installation screen text

See “Installation Screen Display Text” on page 11-26 for more information.
v The target directory in which to build the installation

This can be any directory. By default it is the project\install directory.
v List of BladePack project.prd files to include in the installation package

You can bundle more than one project in a single installation.

Warning: If the combined length of the path and filename of any file is longer
than 255 characters, the build fails. This is due to a Windows limitation.
To solve this problem, you can shorten the names of your components
and subcomponents or select a shorter staging directory.

Installation Type
BladePack creates a directory structure in the target directory and copies files into
the tree. When you build an interactive installation package for Windows,
BladePack calls InstallShield to process the files and create CD-ROM and diskette
images.

When you build a file tree installation, BladePack creates the file tree specified in
the project in the target directory. A file tree build is useful for debugging the
BladePack project.

Chapter 11. Using BladePack 11-25

When you build the installation package with BladePack, you specify a staging
directory to hold the installation files. By default, the staging directory is the
project\install\InstallShield5.1\project directory. In addition to putting the
Setup.exe file in the staging directory, BladePack also puts it in the
project\install\cdrom directory.

BladePack creates the InstallShield 5.1 project file, project.ipr, in the staging
directory. To open the project file in InstallShield 5.1, double-click it.

After you successfully build an interactive installation, the staging directory
contains the subdirectories described in the following table.

Directory Description

cdrom Contains an image of the installation package that
can be transferred to distribution media. DataBlade
module developers can rename this directory to the
name of the DataBlade module before creating a
.tar file.

This directory contains Setup.exe and other files
that support an InstallShield installation.

Component Definitions Contains the component definitions. The
Default.cdf file contains the component-to-
subcomponent relationships.

File Groups Contains all files to be installed. The
component.fgl file describes which files are in
which components and subcomponents.

Media Contains directories for each media configuration
you specify. The Default.mda file describes where
to build the media files.

Registry Entries Contains the Default.rge file, which describes the
registry entries created in the installation process.
Registry entries are associated with components.

Script Files Contains custom setup files and the setup.rul
custom setup script.

Setup Files Not currently used by BladePack.

Shell Objects Contains icons registered during installation.

String Tables\0009-English Contains custom installation screen strings in the
value.shl file.

Text Substitutions Not currently used by BladePack.

Installation Screen Display Text
BladePack provides default text strings for the InstallShield installation wizard
screens for Windows. You can override some of these text strings. For example, in
the Select Installation Type wizard, you can change the text that appears next to
the words Typical, Compact, and Custom to provide your own definitions for
these three types of installations. When you save a BladePack project, BladePack
saves any new string definitions in the appropriate string files.

Creating Distribution Media
To ensure that customers can install DataBlade modules and other IBM Informix
products using common instructions, the product you distribute must conform to

11-26 IBM Informix DataBlade Developers Kit User’s Guide

the IBM Informix DataBlade module installation standard. BladePack creates an
interactive installation that ensures a consistent user interface.

To distribute multiple products with their own installations on a CD-ROM or tape,
rename the cdrom directory to the name of the DataBlade module before you copy
the directory and its contents to the media or into the archive file.

For example, to install the Circle DataBlade module from CD-ROM, the installer
mounts the CD-ROM, changes to the circle subdirectory, and executes the setup
program.

Important: Put the Setup.exe program in a short path. Due to a Windows
limitation, if the path for Setup.exe is too long, it fails to execute.

Chapter 11. Using BladePack 11-27

11-28 IBM Informix DataBlade Developers Kit User’s Guide

Appendix A. Source Files Generated for DataBlade Modules

You can use the tables in this appendix to find a brief description of the following
types of files BladeSmith generates for your DataBlade project:
v “C Source Code Files,” next
v “ActiveX/C++ Source Code Files” on page A-1
v “Java Source Code Files” on page A-4
v “SQL Script Files” on page A-5
v “Unit Test Files” on page A-5
v “Functional Test Files” on page A-6

You can find these same descriptions in a comprehensive table that is ordered
alphabetically; see “Alphabetical List of Generated Files” on page A-8.

C Source Code Files
BladeSmith generates Visual C++ project and workspace files and a UNIX makefile
into the \project\src directory.

Project.dsp Visual C++ project file

Project.dsw Visual C++ workspace file

ProjectU.mak Combination C and C++ makefile for use from the UNIX
command line

BladeSmith generates the following C source files into the project\src\C directory.
You can modify only the Opaque.c, udr.c, and statistics.c files.

Opaque.c Source code file generated for each opaque type; the file contains
the support functions for that opaque type.

Project.def Definitions file listing all exported C routines; for use by Visual
C++ 6.0 or later.

Project.h Header file that contains project definitions, including the C data
structures that define your opaque types.

readme.txt Text file providing short descriptions of the files in this directory.

statistics.c Source code file that contains statistics support functions.

support.c Source code file that contains utility functions and #include
directives for header files.

udr.c Source code file that contains user-defined routines, cast support
functions, and aggregates.

warning.txt Text file providing warnings about potential source code problems.

ActiveX/C++ Source Code Files
BladeSmith generates Visual C++ project and workspace files and a UNIX makefile
into the \project\src directory.

Project.dsp Visual C++ project file

Project.dsw Visual C++ workspace file

© Copyright IBM Corp. 1996, 2010 A-1

ProjectU.mak Combination C and C++ makefile for use from the UNIX
command line

The following sections provide a brief description of the ActiveX/C++ source files
that BladeSmith generates into the project\src\ActiveX directory:
v “Client Project Files,” next
v “Client Files” on page A-3
v “Common Files” on page A-3
v “Server Project Files” on page A-4
v “Server Files” on page A-4

This appendix lists the files generated for an ActiveX value object project called
Project that consists of a single ActiveX value object with an underlying opaque
type called Opaque.

Important: In addition to adding logic to the opaque support routines (see
“Adding Project-Specific Logic to the Source Code” on page 6-3), you
can add your own functions to the C++ classes in the
OpaqueCommon, OpaqueClient, and OpaqueServer .cpp and .h files.
Do not modify any other of the generated source files.

Client Project Files
For each project, BladeSmith generates client-specific support library files and
project files.

Support Library Files
For each project, BladeSmith generates the following client-specific support library
files. Do not modify these files.

DkClient.cpp Client-specific support library functions

DkIntf.h Support library header file that defines the ActiveX value object
custom interfaces (IRawObjectAccess and ITDkValue)

DkIntf_i.c Support library file that contains IIDs (interface identifiers) for
interfaces defined in DkIntf.h

DkIntfImpl.h Support library C++ template implementations for custom
interfaces defined in DkIntf.h

Project Files
For each project named Project, BladeSmith generates the following client project
files. Do not modify these files.

ProjectX.cpp Object map entry, DLL entry points, and so on

ProjectX.def Definitions file

ProjectX.idl IDL file that Visual C++ uses to generate
ProjectX.h and ProjectX.tlb

ProjectX.rc Resource file

ProjectXps.def Generated by ATL

ProjectXps.mk Generated by ATL

Resource.h Header file that contains definitions, including
IDR_OPAQUE

A-2 IBM Informix DataBlade Developers Kit User’s Guide

StdAfx.cpp For precompiled header

StdAfx.h Standard header file

Client Files
For each opaque type/ActiveX value object named Opaque, BladeSmith generates
the following client files. Only the OpaqueClient.cpp and OpaqueClient.h files
can be modified.

Opaque.cpp C++ file that contains the methods for the ActiveX
value object, that call into the C++ class
(OpaqueClient.cpp).

Opaque.h Header file that contains the ActiveX value object
definition.

Opaque.rgs Instructions for registering the ActiveX value object
on the client computer.

OpaqueClient.cpp C++ class file that contains placeholders (function
definitions and null bodies) for the methods for
OpaqueClient. This file can be modified.

OpaqueClient.h Header file that contains the OpaqueClient class
definition. This file can be modified.

Common Files
For each project, BladeSmith generates support library files and object files that are
used to compile both the client project and the server project.

Support Library Files
For each project, BladeSmith generates the following support library files, which
are used by both the client project and the server project. Do not modify these
files.

StdDbdk.cpp Support library file that provides the server and,
with the DkClient.cpp file (see “Client Project
Files” on page A-2), the client library functions

StdDbdk.h Support library header file for client and server;
contains class and function definitions

Object Files
For each opaque type/ActiveX value object named Opaque, BladeSmith generates
the following files, which are used by both the client project and the server project.
Do not modify the OpaqueStruct.h file.

OpaqueCommon.cpp C++ file that contains the logic for all ActiveX
custom methods and their server-project
equivalents. This file can be modified.

OpaqueCommon.h Header file that contains the OpaqueCommon
class definition. This file can be modified.

OpaqueStruct.h C header file that contains the OpaqueStruct
definition (the C structure representing the opaque
type)

Appendix A. Source Files Generated for DataBlade Modules A-3

Server Project Files
For each project named Project, the following server project files are generated. Do
not modify these files.

ProjectWrap.cpp C++ file that contains the interfaces to the
server-side support routines

ProjectWrap.h Header file for the server-side interfaces

Server Files
For each opaque type/ActiveX value object named Opaque, BladeSmith generates
the following server files. You can modify these files.

OpaqueServer.cpp C++ class file that contains placeholders (function
definitions and null bodies) for the methods for
OpaqueServer. This file can be modified.

OpaqueServer.h Header file that contains the OpaqueServer class
definition. This file can be modified.

Java Source Code Files
BladeSmith generates the following source files in the project\src\java directory.

DBDKInputException.java Utility class file that provides exception-handling
methods that are called when an exception occurs
during input of a Java value object to or from the
database server.

DBDKOutputException.java Utility class file that provides exception-handling
methods that are called when an exception occurs
during output of a Java value object to or from the
database server.

IfmxInStream.java Utility class file that provides read methods to
convert Java value objects between a string and the
internal server format.

IfmxLog.java Utility class file that provides logging methods that
are included throughout the source code generated
by BladeSmith.

IfmxOutStream.java Utility class file that provides write methods to
convert Java value objects between the internal
server format and a string.

IfmxTrace.java Not currently used.

Opaque.java Provides SQLData read and write methods to
support opaque types written in C or C++.

Project_Java.mak Use this file for compiling on either UNIX or
Windows.

ProjectUDRs.java Contains method declarations for all user-defined
Java routines, cast support routines, and aggregates
in the BladeSmith project. You must edit this file to
add the functionality you require.

readme.txt This file describes the files in the src\java
directory.

A-4 IBM Informix DataBlade Developers Kit User’s Guide

warning.txt This file describes potential problems with your
source code.

SQL Script Files
BladeSmith generates the following SQL scripts in the project\scripts directory.

errors.locale Contains locale-specific error messages. For
example, the file for the default U.S. English locale
is errors.en_us.1252. This file is only generated if
you define new error messages for your DataBlade
module.

objects.sql Contains SQL statements that update the
sysbldobjects system table with information about
the DataBlade module objects that are created in a
database. BladeManager uses the information in
the table to register, unregister, and upgrade
DataBlade modules.

prepare.locale.sql Contains SQL statements for locale-specific objects.
For example, the file for the default U.S. English
locale is prepare.en_us.sql.

prepare.sql Contains SQL statements that describe the
DataBlade module to BladeManager.

Unit Test Files
When you generate unit tests for a DataBlade module, BladeSmith generates the
files listed in the following table in the src\tests directory.

Setup.sql Optionally initializes the database. You can add SQL statements to
create and populate the tables necessary for your debugging tests.

If you specify this file as your initialization file in the Properties
dialog box, IfxQuery automatically runs this file after it creates a
new database.

Routine.sql Tests the user-defined routine. You can add SQL statements or
modify the sample data for the routine. Use this file if you are
debugging udr.c.

IfxQuery runs this file if you click Debug DataBlade Module with
this file in the active window.

Opaque.sql Tests the support routines for each opaque data type. You can add
SQL statements or modify the sample data for each support
routine. Use this file if you are debugging Opaque.c or
OpaqueServer.cpp.

IfxQuery runs this file if you click Debug DataBlade Module with
this file in the active window.

Cleanup.sql Optionally deletes and drops tables and data in your test database.

IfxQuery runs this file if you click Debug DataBlade Module with
this file in the active window.

Appendix A. Source Files Generated for DataBlade Modules A-5

Functional Test Files
The functional test directory, project\functest, includes the following
subdirectories:
v cast. Contains a subdirectory that contains functional tests for each cast for

which you entered test data.
v data. Contains .dat files for each opaque type, user-defined routine, and cast for

which you entered test data. The name of the data file is objectname.dat, where
objectname is either the name of the opaque type or the name of the C routine
associated with a user-defined routine or cast.

v opaque. Contains a subdirectory for each opaque type for which you entered
test data. The subdirectory contains functional tests for the support routines
defined for the opaque type.

v udr. Contains a subdirectory that contains functional tests for each user-defined
routine for which you entered test data.

The project\functest directory contains a master shell script, main.sh, for
executing all of the functional tests generated for the DataBlade module. Each
subdirectory in the udr, opaque, and cast directories also contains a main.sh script
to execute only the functional tests in that subdirectory.

Casting Function Tests
BladeSmith generates the following files in the project\functest\cast\castfunction
directory for every cast function for which you entered test data.

cast.sql Tests for castfunction.

cleanup.sql Drops all of the test tables from the database.

main.sh Executes the tests in this directory (.sh indicates this is a shell
script).

setup.sql Creates test tables and initializes them with test data.

Opaque Data Type Support Routines Tests
BladeSmith generates the following files in the project\functest\opaque\opaque
directory for every support routine for which you entered test data.

binexp.sql Tests binary file import/export functions for an
opaque type; uses nested calls to the binary file
import/export functions. The result of the nested
calls should be equivalent to the text input format
for the type.

binio.sql Tests binary file input/output functions; uses the
valid input data for the opaque type.

btree.sql Tests the B-tree index support routine.

cleanup.sql Drops all of the test tables from the database.

compare.sql Tests the SQL Compare function.

concat.sql Tests the concatenation operator; calls the SQL
Concat function for an opaque data type with two
instances of the type.

contains.sql Tests the SQL Contains function.

divide.sql Tests the SQL Divide function.

A-6 IBM Informix DataBlade Developers Kit User’s Guide

equal.sql Tests the SQL Equal function.

greaterthan.sql Tests the SQL GreaterThan function.

greaterthanorequal.sql Tests the SQL GreaterThanOrEqual function.

hash.sql Tests the SQL Hash support function with a
SELECT...GROUP BY SQL query.

inter.sql Tests the SQL Inter function.

lessthan.sql Tests the SQL LessThan function.

lessthanorequal.sql Tests the SQL LessThanOrEqual function.

main.sh Executes the tests in this directory (.sh indicates
this is a shell script).

minus.sql Tests the SQL Minus function.

negative.sql Tests the SQL Negative function.

notequal.sql Tests the SQL NotEqual function.

notify.sql Tests the SQL Assign and Destroy routines; inserts
and deletes values in a new test table.

overlap.sql Tests the SQL Overlap function.

plus.sql Tests the SQL Plus function.

positive.sql Tests the SQL Positive function.

setup.sql Creates test tables and initializes them with test
data.

size.sql Tests the SQL Size function.

textexp.sql Tests text file import/export functions; uses the
UNLOAD and LOAD SQL statements.

textio_neg.sql Tests text input/output functions; uses test data
with invalid input data.

textio_pos.sql Tests text input/output functions; uses only valid
test data.

times.sql Tests the SQL Times function.

union.sql Tests the SQL Union function.

within.sql Tests the SQL Within function.

User-Defined Routine Tests
BladeSmith generates the following files in the project\functest\udr\routine
directory for every user-defined routine for which you entered test data.

call_neg.sql Negative tests for routine.

call_pos.sql Positive tests for routine.

cleanup.sql Drops the test tables from the database.

main.sh Executes the tests in this directory (.sh indicates this is a shell
script).

setup.sql Creates test tables and initializes them with test data.

Appendix A. Source Files Generated for DataBlade Modules A-7

Installation Packaging Files
BladeSmith generates the following installation packaging files that you can
modify with BladePack in the project\install directory.

project.bom A bill of materials file. This file contains an entry for each file to be
installed. The entry includes the path to the source file and the
path where the file will be installed.

project.cmp Lists the main components and subcomponents in the installation
package.

project.prd The main product file that you open with BladePack. This file lists
other files that define the installation package. Initially, this file
contains entries for the .bom, .cmp, and .str files. Add README
files using BladePack.

project.str Defines character strings used in the installation.

Alphabetical List of Generated Files
The following table provides an alphabetical list of the files generated by the
Informix DataBlade Developers Kit.

Filename Directory Description

binexp.sql project\functest\opaque\opaque Tests binary file import/export
functions for an opaque type; uses
nested calls to the binary file
import/export functions. The result of
the nested calls should be equivalent to
the text input format for the type.

binio.sql project\functest\opaque\opaque Tests binary file input/output
functions; uses the valid input data for
the opaque type.

btree.sql project\functest\opaque\opaque Tests the B-tree index support routine.

call_neg.sql project\functest\udr\routine Negative tests for routine.

call_pos.sql project\functest\udr\routine Positive tests for routine.

cast.sql project\functest\cast\castfunction Tests for castfunction.

cleanup.sql project\functest\opaque\opaque Drops the test tables from the database.

cleanup.sql project\src\tests Unit test script file. Optionally deletes
and drops tables and data in your test
database.

IfxQuery runs this file if you click
Debug DataBlade Module with this
file in the active window.

cleanup.sql project\functest\cast\castfunction Drops the test tables from the database.

cleanup.sql project\functest\udr\routine Drops the test tables from the database.

compare.sql project\functest\opaque\opaque Tests the SQL Compare function.

concat.sql project\functest\opaque\opaque Tests the concatenation operator; calls
the SQL Concat function for an opaque
data type with two instances of the
type.

contains.sql project\functest\opaque\opaque Tests the SQL Contains function.

A-8 IBM Informix DataBlade Developers Kit User’s Guide

Filename Directory Description

DBDKInputException.java project\src\java Utility class file that provides
exception-handling methods that are
called when an exception occurs during
input of a Java value object to or from
the database server.

DBDKOutputException.java project\src\java Utility class file that provides
exception-handling methods that are
called when an exception occurs during
output of a Java value object to or from
the database server.

divide.sql project\functest\opaque\opaque Tests the SQL Divide function.

DkClient.cpp project\src\ActiveX Client-specific support library
functions.

DkIntf.h project\src\ActiveX Client-specific support library header
file that defines the ActiveX value
object custom interfaces
(IRawObjectAccess and ITDkValue).

DkIntf_i.c project\src\ActiveX Client-specific support library file that
contains IIDs (interface identifiers) for
interfaces defined in DkIntf.h

DkIntfImpl.h project\src\ActiveX Client-specific support library C++
template implementations for custom
interfaces defined in DkIntf.h.

equal.sql project\functest\opaque\opaque Tests the SQL Equal function.

errors.locale project\scripts Locale-specific error messages file.

greaterthan.sql project\functest\opaque\opaque Tests the SQL GreaterThan function.

greaterthanorequal.sql project\functest\opaque\opaque Tests the SQL GreaterThanOrEqual
function.

hash.sql project\functest\opaque\opaque Tests the SQL Hash support function
with a SELECT...GROUP BY SQL query.

IfmxInStream.java project\src\java Utility class file that provides read
methods to convert Java value objects
between a string and the internal
server format.

IfmxLog.java project\src\java Utility class file that provides logging
methods that are included throughout
the source code generated by
BladeSmith.

IfmxOutStream.java project\src\java Utility class file that provides write
methods to convert Java value objects
between the internal server format and
a string.

IfmxTrace.java project\src\java Not currently used.

inter.sql project\functest\opaque\opaque Tests the SQL Inter function.

lessthan.sql project\functest\opaque\opaque Tests the SQL LessThan function.

lessthanorequal.sql project\functest\opaque\opaque Tests the SQL LessThanOrEqual
function.

main.sh project\functest Executes the all of the tests generated
for the DataBlade module (.sh indicates
this is a shell script).

Appendix A. Source Files Generated for DataBlade Modules A-9

Filename Directory Description

main.sh project\functest\cast\castfunction Executes the tests in this directory (.sh
indicates this is a shell script).

main.sh project\functest\opaque\opaque Executes the tests in this directory (.sh
indicates this is a shell script).

main.sh project\functest\udr\routine Executes the tests in this directory (.sh
indicates this is a shell script).

minus.sql project\functest\opaque\opaque Tests the SQL Minus function.

negative.sql project\functest\opaque\opaque Tests the SQL Negative function.

notequal.sql project\functest\opaque\opaque Tests the SQL NotEqual function.

notify.sql project\functest\opaque\opaque Tests the SQL Assign and Destroy
routines; inserts and deletes values in a
new test table.

object.sql project\scripts SQL script file that contains the SQL
statements to create DataBlade module
objects in the database.

Opaque.c project\src\C A C file is generated for each opaque
type; it contains the support functions
for that opaque type.

Opaque.cpp project\src\ActiveX Client C++ file that contains the
methods for the ActiveX value object
that call into the C++ class
(OpaqueClient.cpp).

Opaque.h project\src\ActiveX Client header file that contains the
ActiveX value object definition.

Opaque.java project\src\java Provides SQLData read and write
methods to support opaque types
written in C or C++.

Opaque.rgs project\src\ActiveX Client file with instructions for
registering the ActiveX value object on
the client computer.

Opaque.sql project\src\tests Unit test script file. Tests the support
routines for each opaque data type.
You can add SQL statements or modify
the sample data for each support
routine. Use this file if you are
debugging Opaque.c or
OpaqueServer.cpp.

IfxQuery runs this file if you click
Debug DataBlade Module with this
file in the active window.

Opaque_proxy.java project\src\java Contains value object proxy methods
for the value object named Opaque. Do
not edit this file.

OpaqueClient.cpp project\src\ActiveX Client C++ class file that contains
placeholders (function definitions and
null bodies) for the methods for
OpaqueClient. This file can be
modified.

OpaqueClient.h project\src\ActiveX Client header file that contains the
OpaqueClient class definition. This file
can be modified.

A-10 IBM Informix DataBlade Developers Kit User’s Guide

Filename Directory Description

OpaqueCommon.cpp project\src\ActiveX C++ file that contains the logic for all
ActiveX custom methods and their
server-project equivalents. This file can
be modified.

OpaqueCommon.h project\src\ActiveX Server and client header file that
contains the OpaqueCommon class
definition. This file can be modified.

OpaqueServer.cpp project\src\ActiveX Server-side C++ class file that contains
placeholders (function definitions and
null bodies) for the methods for
OpaqueServer. This file can be
modified.

OpaqueServer.h project\src\ActiveX Server-side header file that contains the
OpaqueServer class definition. This file
can be modified.

OpaqueStruct.h project\src\ActiveX Server and client C header file that
contains the OpaqueStruct definition
(the C structure representing the
opaque type).

overlap.sql project\functest\opaque\opaque Tests the SQL Overlap function.

plus.sql project\functest\opaque\opaque Tests the SQL Plus function.

positive.sql project\functest\opaque\opaque Tests the SQL Positive function.

prepare.sql project\scripts SQL script file that contains SQL
statements that describe the DataBlade
module to BladeManager.

Project.bom project\install A bill of materials file that contains an
entry for each file to be installed.

Project.cmp project\install Component file listing main
components and subcomponents in the
installation package.

Project.def project\src\C Definitions file listing all exported C
routines; for use by Microsoft
Developer Studio Visual C++ 4.2 or
above.

Project.dsp project\src Visual C++ project file.

Project.dsw project\src Visual C++ workspace file.

Project.h project\src\C Header file that contains project
definitions, including the C data
structures that define your opaque
types.

Project.ibs project BladeSmith project file.

Project.prd project\install BladePack product file listing the other
files that define the installation
package.

Project.str project\install Character string file for interactive
installations.

Project_Java.mak project\src\java Use this file for compiling on either
UNIX and Windows.

ProjectU.mak project\src Combination C and C++ makefile for
use from the UNIX command line.

Appendix A. Source Files Generated for DataBlade Modules A-11

Filename Directory Description

ProjectUDRs.java project\src\java Contains method declarations for all
user-defined Java routines, cast support
routines, and aggregates in the
BladeSmith project. You must edit this
file to add the functionality you
require.

ProjectWrap.cpp project\src\ActiveX C++ file that contains the interfaces to
the server-side support routines.

ProjectWrap.h project\src\ActiveX Header file for the server-side
interfaces.

ProjectX.cpp project\src\ActiveX Client project file with object map
entry, DLL entry points, and so on.

ProjectX.def project\src\ActiveX Client project definitions file.

ProjectX.dsp project\src\ActiveX Client project Microsoft Developer
Studio Visual C++ 5.0 ATL project file.

ProjectX.idl project\src\ActiveX Client project IDL file that Visual C++
5.0 uses to generate ProjectX.h and
ProjectX.tlb.

ProjectX.mak project\src\ActiveX Client project Windows makefile for
scripts or for command-line users.

ProjectX.rc project\src\ActiveX Client project resource file.

ProjectXps.def project\src\ActiveX Client project file generated by ATL.

ProjectXps.mk project\src\ActiveX Client project file generated by ATL.

readme.txt project\src\C Describes the files in this directory.

readme.txt project\src\java Describes the files in the src\java
directory.

Resource.h project\src\ActiveX Client project header file that contains
definitions, including IDR_OPAQUE.

Routine.sql project\src\tests Unit test script file. Tests the
user-defined routine. You can add SQL
statements or modify the sample data
for the routine. Use these file if you are
debugging udr.c.

IfxQuery runs this file if you click
Debug DataBlade Module with this
file in the active window.

setup.sql project\functest\cast\castfunction Creates test tables and initializes them
with test data.

setup.sql project\functest\opaque\opaque Creates test tables and initializes them
with test data.

A-12 IBM Informix DataBlade Developers Kit User’s Guide

Filename Directory Description

setup.sql project\src\tests Unit test script file. Optionally
initializes the database. You can add
SQL statements to create and populate
the tables necessary for your
debugging tests.

If you specify this file as your
initialization file in the Properties
dialog box, IfxQuery automatically
runs this file after it creates a new
database.

setup.sql project\functest\udr\routine Creates test tables and initializes them
with test data.

size.sql project\functest\opaque\opaque Tests the SQL Size function.

StdAfx.cpp project\src\ActiveX Client project file for precompiled
header.

StdAfx.h project\src\ActiveX Client project standard header file.

StdDbdk.cpp project\src\ActiveX Support library file that provides the
server and, with the DkClient.cpp file
(see “Client Project Files” on page A-2),
the client library functions.

StdDbdk.h project\src\ActiveX Support library header file for client
and server; contains class and function
definitions.

support.c project\src\C C file that contains utility functions
and #include directives for header files.

textexp.sql project\functest\opaque\opaque Tests text file import/export functions;
uses the UNLOAD and LOAD SQL
statements.

textio_neg.sql project\functest\opaque\opaque Tests text input/output functions; uses
test data with invalid input data.

textio_pos.sql project\functest\opaque\opaque Tests text input/output functions; uses
only valid test data.

times.sql project\functest\opaque\opaque Tests the SQL Times function.

udr.c project\src\C C file that contains user-defined
routines, cast support routines, and
aggregates.

union.sql project\functest\opaque\opaque Tests the SQL Union function.

warning.txt project\src\c Describes potential problems with your
source code.

warning.txt project\src\java Describes potential problems with your
source code.

within.sql project\functest\opaque\opaque Tests the SQL Within function.

Appendix A. Source Files Generated for DataBlade Modules A-13

A-14 IBM Informix DataBlade Developers Kit User’s Guide

Appendix B. Completing BladeSmith-Generated Code

This appendix provides tables that list the types of objects BladeSmith generates,
indicate whether BladeSmith generates complete code or template code you must
complete, and provide a reference to the instructions in this guide for completing
the code.

Opaque Data Type Support Routines in C
The following table lists the opaque data type support routines BladeSmith
generates for C language DataBlade module projects and provides a reference to
the sections in this guide that explain how to complete or customize code for each
type of object.

Opaque Support Routine
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

Text input/output Yes Yes See “Text Input and Output Functions” on
page 5-16.

Binary send/receive Yes Yes See “Binary Send and Receive Functions” on
page 5-19.

Text file import/export Yes See “Text File Import and Export Functions”
on page 5-20.

Binary file import/export Yes No See “Binary File Import and Export
Functions” on page 5-21.

Assign/destroy Yes Yes See “The Assign and Destroy Routines” on
page 5-22.

LOhandles() See “LOhandles() Function” on page 5-23.

Compare() Yes Yes See “Compare Function” on page 5-23.

B-tree comparison functions:

v Equal()

v LessThan()

v LessThanOrEqual()

v GreaterThan()

v GreaterThanOrEqual()

v NotEqual()

Yes No See “B-Tree Comparison Functions” on page
5-25.

R-tree comparison functions No No See “R-Tree Comparison Functions” on page
5-25.

Mathematic functions:

v Plus()

v Minus()

v Times()

v Divide()

v Positive()

v Negate()

No Yes See “Mathematical Functions” on page 5-26.

Concat() No Yes See “Concat() Function” on page 5-26.

Hash() No Yes See “Hash() Function” on page 5-27.

© Copyright IBM Corp. 1996, 2010 B-1

Opaque Support Routine
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

OpaqueStatCollect() Yes Yes See “The Statistics Collection Function” on
page 5-27.

OpaqueStatPrint() Yes Yes See “The Statistics Print Function” on page
5-28.

Opaque_SetMinValue() No Yes See “The Statistics Minimum, Maximum, and
Distribution Functions” on page 5-28.

Opaque_SetMaxValue() No Yes See “The Statistics Minimum, Maximum, and
Distribution Functions” on page 5-28.

Opaque_SetHistogram() No Yes See “The Statistics Minimum, Maximum, and
Distribution Functions” on page 5-28.

User-Defined Routines in C
The following table provides references to sections in this guide that explain how
to complete or customize code for C language user-defined routines that
BladeSmith generates.

C Object
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

User-defined routines (general) No Yes See “Most User-Defined Routines” on page
5-29.

Cast support functions No Yes See “Cast Support Functions” on page 5-29.

Aggregate functions:

v AggregateInit()

v AggregateIter()

v AggregateComb()

v AggregateFinl()

No Yes See “Aggregate Functions” on page 5-30.

Selectivity functions No Yes See “Selectivity Functions” on page 5-31.

Iterator functions No Yes See “Iterator Functions” on page 5-32.

Opaque Data Type Support Routines in C++
The following table lists the opaque data type support routines BladeSmith
generates for C++/ActiveX DataBlade module projects and provides a reference to
the sections in this guide that explain how to complete or customize code for each
type of object.

C++ Method
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

Binary send/receive Yes Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

B-2 IBM Informix DataBlade Developers Kit User’s Guide

C++ Method
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

Binary file import/export Yes Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

Text input/output:

v FromString()

v ToString()

Yes Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

Text import/export:

v TextImport()

v TextExport()

Yes Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

Type compare:

v Compare()

v Equal()

v NotEqual()

Yes Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

B-tree comparison methods:

v Equal()

v LessThan()

v LessThanOrEqual()

v GreaterThan()

v GreaterThanOrEqual()

v NotEqual()

Yes No See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

R-tree comparison methods No No See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

Mathematic methods:

v Plus()

v Minus()

v Times()

v Divide()

v Positive()

v Negate()

No Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

Appendix B. Completing BladeSmith-Generated Code B-3

C++ Method
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

Concat() No Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

Hash() No Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

IsNull() Yes Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

SetNullFlag() Yes Yes See “Implementing ActiveX Value Objects” on
page 6-2 for an overview of the programming
tasks.

See “Support Methods Reference” on page 6-7
for a description of the internal object and
support library methods that you can use.

User-Defined Routines in Java
The following table provides references to sections in this guide that explain how
to complete or customize code for Java language user-defined routines that
BladeSmith generates.

Java Method
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

User-defined methods (general) No Yes See “Most User-Defined Methods” on page
8-5.

Cast support methods No Yes See “Cast Support Methods” on page 8-7.

Aggregate methods:

v AggregateInit()

v AggregateIter()

v AggregateComb()

v AggregateFinl()

No Yes See “Aggregates” on page 8-6.

Iterators No Yes See “Iterators” on page 8-5.

B-4 IBM Informix DataBlade Developers Kit User’s Guide

Appendix C. Testing for an Sbspace

If your DataBlade module contains data types that contain smart large object data
(BLOB and CLOB data types), an sbspace to store the smart large object must exist
for each database in which users register the DataBlade module. If the required
sbspace does not exist, registration fails.

You can test for the existence of a particular sbspace when BladeManager prepares
your DataBlade module for registration by using the following procedure. If you
test for the sbspace and it does not exist, registration fails and BladeManager
writes an error message to the registration log. If you do not test for the sbspace
and it does not exist, registration fails with an obscure error message.

To implement a test for a particular sbspace, use BladeSmith to add a custom SQL
statement to your DataBlade module that executes the SYSBldTstSBSpace()
function. This is the syntax of the EXECUTE FUNCTION statement that executes
SYSBldTstSBSpace():
EXECUTE FUNCTION SYSBldTstSBSpace("opt_name");

opt_name is the name of the required sbspace. To indicate the default sbspace,
replace "opt_name" with " ".

To add this user-defined routine to your registration script:

1. In BladeSmith, define the DataBlade module object that has a data type of
BLOB or CLOB.
For example, create an opaque type called BigType that has a member of type
BLOB.
See “Creating Data Types” on page 4-22 for instructions.

2. Choose Edit > Insert > SQL File.
The New SQL File wizard appears.

3. In the Descriptive name for SQL text box, type a name for the SQL file. For
example, type SbspaceTest.

4. In the Custom SQL create text text box, type the following statement:
EXECUTE FUNCTION SYSBldTstSBSpace("opt_name");

1. Click Next.
2. To specify which data types in your DataBlade module contain smart large

objects, click the appropriate objects in the These objects require this SQL box.
For example, click BigType.
For more information on dependencies, see “Object Dependencies” on page
4-39.

3. Click Finish.

When BladeManager prepares the DataBlade module for registration, the database
server executes the SYSBldTstSBSpace() function before the SQL statement to
create the BigType data type. If the sbspace specified in SYSBldTstSBSpace()
exists, the database server creates the dependent data type (BigType). If the
sbspace does not exist, the database server writes an error to a BladeManager log
file.

© Copyright IBM Corp. 1996, 2010 C-1

For more information on BladeManager, see the IBM Informix DataBlade Module
Installation and Registration Guide.

C-2 IBM Informix DataBlade Developers Kit User’s Guide

Appendix D. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility Features
The following list includes the major accessibility features in IBM Informix. These
features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The IBM Informix Information Center and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all
features using the keyboard instead of the mouse.

Keyboard Navigation
This product uses standard Microsoft Windows navigation keys.

Related Accessibility Information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software. The syntax
diagrams in our publications are available in dotted decimal format.

You can view the publications for IBM Informix in Adobe Portable Document
Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1996, 2010 D-1

http://www.ibm.com/able

D-2 IBM Informix DataBlade Developers Kit User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2010 E-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

E-2 IBM Informix DataBlade Developers Kit User’s Guide

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All
rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices E-3

http://www.ibm.com/legal/copytrade.shtml

E-4 IBM Informix DataBlade Developers Kit User’s Guide

Index

Special characters
-9793 error 9-3
.bld file, build file 5-33, 6-5, 7-1
.bom file, bill of materials 11-3, A-8
.cmp file, components file 11-3, A-8
.dll file, dynamic link library file 6-5, 7-1
.prd file, product file 11-3, A-8

A
Access methods 2-14
Access path selection 2-14
Accessibility D-1

keyboard D-1
shortcut keys D-1

Accessor methods, for client implementations of an opaque
type 4-27

ActiveX value objects
accessing custom methods of 7-2
client application developer, use by 7-1, 8-1
client implementation for opaque types 3-3
compiling 6-5, 6-7
completing the code for 6-1, 6-3
creating 6-1, 7-1
definition of 3-2
guidelines, programming 3-7
implementing 6-2, 6-4
installing 7-1
instantiating 7-2
list of custom methods for 7-4
list of generated files for A-2, A-4
list of internal methods for 6-7
programming guidelines for 3-7
properties of 6-4, 6-5
referencing in Visual Basic 7-1
restrictions for 3-4, 3-7, 6-1
server implementation for opaque types 3-3
source code generated for 6-2
support methods for 6-7, 7-1
types of generated files for 6-2
Visual C++ project file for 5-5

Aggregates
completing generated C code for 5-30
completing generated Java code for 8-6
defining with BladeSmith 4-9, 4-12
in SQL design 2-12
understanding C source code for 5-4
when to use 2-11

AlwaysUseInstallShield5 registry key 11-6
APIs, client 7-1, 8-1
Arguments for generating user-defined routines 4-19
Arithmetic operators 4-33
Arrays as ActiveX properties 6-5
Assign/destroy routines

completing C code for 5-22
when to use 4-31

B
B-tree access method 2-14

B-tree indexing support routines
completing generated C code for 5-25
completing generated C++ code for 6-4
when to use 4-32

Basic text input/output routines
completing generated C code for 5-16
completing generated C++ code for 6-4
when to use 4-29

Bill of materials file (.bom) 11-3, A-8
Binary arithmetic operators 4-33
Binary file import/export routines

completing generated C code for 5-21
completing generated C++ code for 6-4
generated code for 4-31

Binary send/receive routines
completing generated C code for 5-19, 5-20
completing generated C++ code for 6-4
when to use 4-29

binexp.sql file, contents of A-6
binio.sql file, contents of A-6
Bit-hashable data types 4-33
BladeManager 1-2, 7-1, C-1
BladePack

and InstallShield 3.1 11-12, 11-20
and InstallShield 5.1 11-20, 11-27
and UNIX 11-6, 11-12
distribution media, creating 11-12
item view 11-4, 11-5
on-line help 11-3
overview of 1-2
prerequisite tasks 11-2
project view 11-3, 11-4
registry changes 11-15, 11-23
windows 11-3

BladeSmith
adding client files with 4-39
adding custom SQL statements with 4-38
creating DataBlade module objects with 4-8, 4-36
creating interfaces with 4-15
defining aggregates with 4-9, 4-12
defining casts with 4-12, 4-13
defining data types with 4-22, 4-36
defining errors with 4-13, 4-15
defining tracing with 4-13, 4-15
defining user-defined routines with 4-15, 4-22
description locale 4-7
generated files 4-40, 4-46, 6-2, A-1, B-1
identifying tracing macros from 5-6
identifying utility functions from 5-6
item view 4-4
locale, default for 4-14
overview of 1-1
project properties 4-4
project view 4-3
projects, creating 4-4
setting privilege for objects with 4-8
test scripts 9-8, A-6
utility functions generated by 5-13
windows 4-3

BLOB data type
specifying an sbspace for C-1

© Copyright IBM Corp. 1996, 2010 X-1

BLOB data type (continued)
when to use 2-4

Breakpoints
setting on UNIX 9-6
setting on Windows 10-6

btree.sql file, contents of A-6
Build file (.bld) 5-33, 6-5, 7-1
Building an installation with BladePack 11-11, 11-19, 11-25
Building.

See Compiling.

C
C code

and multilanguage DataBlade modules 3-5
comments in 5-6
compiling in Visual C++ 5-33
compiling on UNIX 5-33
completing for user-defined routines B-2
completing for user-defined routines for 5-28, 5-33
completing opaque data type support routines for 5-15,

5-27, B-1
completing statistics support routines for 5-27, 5-28
DataBlade API tips 3-8
definition files 5-4, A-1
developing, overview 5-3
editing 5-2, 5-33
error handling for 5-7
for opaque types, client implementation 3-3
for opaque types, server implementation 3-3
generated files 5-3, A-1
header files 5-4, A-1, A-3
limitations for opaque types 3-4
makefiles 5-4
MI_FPARAM structure in 5-6
MMX support in 4-44
overloading routines 3-5
programming guidelines 3-6
README files A-1
server connection handle 5-7
source files 5-3, 5-4, A-1
tools for editing and compiling 1-7
tracing in 5-7
utility functions generated 5-13
Visual C++ project file for 5-5
warning.txt file, contents of 5-5

C++ code
and multilanguage DataBlade modules 3-5
class files A-3, A-4
comments in 6-3
common files 6-1, A-3
compiling 6-5
completing for opaque data type support routines B-2
files to edit 6-3
for opaque types, client implementation 3-3
for opaque types, server implementation 3-3
generated files for 6-2, A-2, A-4
header files 6-8, A-2, A-3, A-4
programming guidelines 3-7
restrictions for 3-4, 3-7, 4-26, 6-1
server implementation for opaque types 3-3
source files A-3, A-4
support library 6-7, 7-1, A-2, A-3
tools for editing and compiling 1-7
Visual C++ project file for 5-5

C++ Interface API, using with ActiveX value objects 7-3
call_neg.sql file, contents of A-7

call_pos.sql file, contents of A-7
cast.sql file, contents of A-6
Casts

adding test data for 4-38
completing C code for 5-29
completing Java code for 8-7
defining with BladeSmith 4-12, 4-13
test scripts for 9-8, A-6
when to use 2-13

Classes
creating trace 5-10
DkInStream 6-8, 6-10
DkOutStream 6-10, 6-11

cleanup.sql file, contents of 10-6, A-6
Client APIs, for use with ActiveX value objects 7-1, 8-1
Client files

adding with BladeSmith 4-39
generated A-2, A-3
to add 7-1, 11-13, 11-21

Client implementation of an opaque type 4-26
Client projects 6-6
CLOB data type

specifying an sbspace for C-1
when to use 2-4

CLSID information 7-1, 11-13, 11-21
Collection data types, defining in BladeSmith 4-23
COM (Common Object Model) 3-2
Combine function, for an aggregate 4-11
Comments

in C language code 5-6
in C++ language code 6-3
in Java language code 8-4

Common files for ActiveX value objects 6-1, A-3
Commutator functions, when to use 4-22
compare.sql file, contents of A-6
Comparison routines

completing C code for 5-23, 5-25
completing C++ code for 6-4, 7-4, B-3
when to use 4-32

CompatibleType method 7-4
Compiling

See also Makefiles.
ActiveX value objects 6-5, 6-7
debugging support when 5-34
debugging symbols when 5-34
Java code 8-7
on UNIX 5-33
shared object files 5-34
tools for 1-7
using generated makefiles 5-33, 6-5

Completing code, reference tables B-1, C-1
Components file (.cmp) 11-3, A-8
Components to install, setting with BladePack 11-23
Concat method/routine 6-4, 7-4
concat.sql file, contents of A-6
Concatenation operators 4-33
Constructors 4-2
Contains method/routine 7-5
contains.sql file, contents of A-6
Converting data types with casts 4-12
Cost estimates

for query plans 2-14
for routines 2-9, 4-21

Counting number of values in a string 5-14
CPU virtual processor (CPU VP) 3-6
CreateLvarChar method 6-11
CreateNew method 6-7

X-2 IBM Informix DataBlade Developers Kit User’s Guide

Creating DataBlade module objects 4-8, 4-36
CurString method 6-9
Custom extensions for BladePack 11-17
Custom methods

accessing 7-2
list of 7-4

D
Data models, guidelines for 2-1, 2-3
Data types

casts between 2-13, 4-13
collection 4-23
converting with casts 4-12
defining with BladeSmith 4-22, 4-36
designing 2-3, 2-5
gl_wchar 6-9, 6-10
mi_lvarchar 3-8
POINTER 4-11
qualified 4-34
row 4-35, 4-36
when to use 2-3
when to use BLOB 2-4
when to use CLOB 2-4
when to use LVARCHAR 2-4
when to use opaque 2-3

Database object names 4-8
Database server compatibility

setting for DataBlade modules 4-6
DataBlade API

identifying routines and data types from 5-6
tips for using 3-8

DataBlade module objects
adding test data for 4-36
aggregates 4-9, 4-12
casts 4-12, 4-13
creating 4-8, 4-36
data types 4-22, 4-36
errors 4-13, 4-15
generating files for 4-40, 4-46
interfaces 4-15
specifying properties for 4-16
user-defined routines 4-15, 4-22

DataBlade modules
data models for 2-1, 2-3
debugging.

See Debugging DataBlade modules.
defined 1-1
designing SQL for 2-1, 2-17
importing interfaces from 4-7
installing on UNIX 9-3
interoperability of 2-15, 2-17
loading the shared object file 9-5
multilanguage 3-5
packaging 1-8
query language interface to 2-5, 2-8
registering C-1

DB-Access 1-6
DBA routine, marking as 4-17
DBDK_TRACE_ENTER() macro 5-10
DBDK_TRACE_ERROR() macro 5-9
DBDK_TRACE_EXIT() macro 5-10
DBDK_TRACE_MSG() macro 5-9
DBDKInputException file, contents of 8-5
DBDKInputException.java file, contents of A-4
DBDKOutputException file, contents of 8-5
DBDKOutputException.java file, contents of A-4

dbx utility 9-6
DDL statements 2-5
Debug DataBlade Module command 10-2
debugger utility 9-6
Debugging DataBlade modules

compiling shared object file for 5-34
for Java 8-9, 8-11
for UNIX 9-1, 9-7
for UNIX, using Windows 9-7
for Windows 10-1, 10-6
overview of 1-7

Debugging utilities for UNIX 9-6
Definition files 5-4, A-2
delete operator 6-12
Delimiters 6-8
Dependencies for custom SQL 4-39
Description locale for a project 4-7
Designing DataBlade modules

data models for 2-1, 2-3
data types for 2-3, 2-5
design specification for 1-4
functional specification for 1-4
programming language options for 1-4
query language interface for 2-5, 2-8

Designing SQL for DataBlade modules 2-1, 2-17
Developing DataBlade modules, overview 1-2
Development plan for DataBlade modules, guidelines for 1-5
Directories, generated file property 4-42
Disability D-1
Distinct data types, defining in BladeSmith 4-24
Distribution media, creating for

InstallShield 3.1 installations 11-12
InstallShield 5.1 installations 11-20
UNIX installations 11-26

Divide method/routine 6-4, 7-5
divide.sql file, contents of A-6
DkClient.cpp file, contents of 6-8, A-2
DkErrorRaise method 6-3, 6-7
DkInStream class 6-8, 6-10
DkInStream method 6-9
DkIntf_i.c file, contents of 6-8, 7-1, A-2
DkIntf.h file, contents of 6-8, 7-1, A-2
DkIntfImpl.h file, contents of 6-8, A-2
DkOutStream class 6-10, 6-11
DkOutStream method 6-10
DML statements 2-5
Documentation

tutorial 1-3

E
Editing code

C code 5-2, 5-33
Java 8-2, 8-7
list of files to complete B-1, C-1
tools for 1-7

Embedding opaque data types 3-5
Environment variables

INFORMIXDIR 6-5, 9-2
INFORMIXSERVER 9-2
LD_LIBRARY_PATH 9-2
ONCONFIG 9-2
PATH 9-2
TARGET 5-33, 9-2
TESTDB 9-2

Equal method/routine 6-4, 7-4, 7-5, B-3
equal.sql file, contents of A-7

Index X-3

Errors
-9793 error 9-3
adding 5-9
and DBDK_TRACE_ERROR() macro 5-9
defining in BladeSmith 4-13, 4-15
handling for Java code 8-4
in C language generated code 5-7
raising 5-9
standard messages 5-13

ESQL/C
ActiveX value objects, using with 7-2
identifying routines and data types from 5-6

Estimating
the cost of queries 2-14
the cost of routines 2-9

Expensive routines 2-9
Explicit casts 4-13
ExportBinary routine 6-4
ExportText routine 6-4

F
Field delimiters 6-8
Files

.bld file, build file 5-33, 6-5, 7-1, 10-7, 11-7, 11-13, 11-21

.bom file, bill of materials 11-3, A-8

.cmp file, components file 11-3, A-8

.dll file, dynamic link library file 6-5, 7-1

.prd file, product file 11-3, A-8
BladePack 11-7, 11-13, 11-21
C header 5-4
C++ class A-3, A-4
common files for ActiveX value objects 6-1, A-3
definitions 5-4, A-1, A-2
directory structure for generated 4-41
DkClient.cpp 6-8, A-2
DkIntf_i.c 6-8, 7-1, A-2
DkIntf.h 6-8, 7-1, A-2
DkIntfImpl.h 6-8, A-2
functional test directory 9-8, A-6
generated source 4-44, 5-3, 6-2, 8-2, A-2, A-4
generated Visual C++ project 5-5
header A-2, A-3, A-4
header, C A-1
header, C++ 6-8, A-2, A-3
IDL (interface definition language) A-2
installation package 4-45, 7-1, 11-13, 11-21, A-8
Java makefiles 8-3
Java source code 8-2
list of generated A-1, B-1
makefiles 5-4, 5-33, 6-5
merging changes to generated files 4-46
readme 5-4, 8-3, A-1
reference, initializing for testing 9-10
regenerating 4-46
registration A-3
resource A-2
Resource.h A-2
sapi.lib 5-34
shared object 9-2
source code 5-3, 5-4, 8-2, A-1, A-3
SQL script A-5
StdAfx.cpp A-3
StdAfx.h A-3
StdDbdk.cpp 6-8, A-3
StdDbdk.h 6-8, A-3
support.c 5-4, A-1

Files (continued)
trace file location 5-8
udr.c 5-4, A-1
unit test files A-5

Final function, for an aggregate 4-12
Fixed size opaque data types 4-27
Format, generated file property 4-42
free routine 6-12
FromPrintable method 7-4
FromString method/routine 6-4, 7-5
Functional specification, role of 1-4
Functional tests

custom, adding 9-9
directory containing 9-8
executing 9-10
generated files for 4-45
initializing reference files for 9-10
list of files for A-6
overview of 9-7

G
Gen_IsMMXMachine() utility function 5-14
Gen_LoadLOFromFile() utility function 5-14, 5-21
Gen_nstrwords() utility function 5-14
Gen_sscanf() utility function 5-14, 5-17
Gen_StoreLOToFile() utility function 5-14
Gen_Trace() utility function 5-8, 5-14
Generate DataBlade dialog box 4-40
Generated files

C code, described 5-3, A-1
C++ code, described A-2, A-4
directories saved in A-1, A-2
Java code, described 8-2
packaging 11-3

Generating files
with BladeSmith 4-40, 4-46

GetBuffer method 6-11
GetData method 6-7
GetDataC method 7-3
GetDataCpp method 7-3
getIterationState() method 8-6
gl_dprintf() function 5-8
gl_wchar data type 6-9, 6-10
GLS feature

identifying routines from API 5-6
locale 4-7, 4-14

GreaterThan method/routine 6-4, 7-5
greaterthan.sql file, contents of A-7
GreaterThanOrEqual method/routine 6-4, 7-5
greaterthanorequal.sql file, contents of A-7
Grouping SQL results 2-12

H
Handling null values 3-7
Hash routines 4-33, 6-4
hash.sql file, contents of A-7
Header files

C code 5-4
C++ code 6-8, A-2, A-3

I
IBM Informix

connection handle to 5-7

X-4 IBM Informix DataBlade Developers Kit User’s Guide

IBM Informix (continued)
preparing the environment for 9-2
process ID in 9-5
query processing in 2-8, 2-15
shared object files for 9-2
shutting down on UNIX 9-4
tracing, enabling 5-11

IBM Informix Dynamic Server
starting on UNIX 9-4

IDispatch interface 7-3, 7-4
IDL (interface definitions language) files A-2
IfmxInStream.java file, contents of 8-5, A-4
IfmxLog.java file, contents of 8-5, A-4
IfmxOutStream file, contents of 8-5
IfmxOutStream.java file, contents of A-4
IfmxTrace.java file, contents of 8-5, A-4
IfxQuery tool

description of 1-2, 1-6
for debugging 10-3

IID information 7-1, 11-13, 11-21
Implementing ActiveX value objects 6-2, 6-4
Implicit casts 4-13
ImportBinary routine 6-4
Importing

interfaces 4-7
SQL statements 4-39

ImportText routine 6-4
informix user

owner of shared object files 9-3
Informix-Admin group 6-5
INFORMIXDIR environment variable 6-5, 9-2
INFORMIXSERVER environment variable 9-2
Inheritance, row data type 4-36
Initialization of an aggregate 4-11
Installation packages

building with BladePack for InstallShield 3.1 11-6
building with BladePack for InstallShield 5.1 11-21
building with BladePack for UNIX 11-13
customizing screen display text 11-20, 11-26
directories 11-3
files 4-45, A-8
including ActiveX value objects 7-1

Installing DataBlade modules on UNIX 9-3
InstallShield 3.1 installations 11-12, 11-20
InstallShield 5.1 installations 11-20, 11-27
Instantiating ActiveX value objects 7-2
Intel MMX technology support 4-43, 4-44, 5-14
Inter method/routine 7-5
inter.sql file, contents of A-7
Interfaces

defining in BladeSmith 4-15
design guidelines for 2-16
IDispatch 7-3
importing from other DataBlade modules 4-7
IRawObjectAccess 7-2
ITDkValue 7-3

Internal routines 4-17
Internal structure of opaque data types 6-4
Internationalization, error messages 4-14
Interoperability of DataBlade modules 2-15, 2-17
IRawObjectAccess custom interface 7-2
IsDirty method 6-7
IShieldDir registry key 11-6
IsNull method 6-4, 7-4, 7-5
IsUpdated method 7-4
ITDkValue custom interface 7-3
Iteration, aggregate 4-10, 4-11

Iterator routines
completing C code for 5-32
completing Java code for 8-5
when to use 4-17

ITMVDesc structure 7-3
ITValue interface 7-3

J
JAR file, when to replace 8-11
Java code

and multilanguage DataBlade modules 3-5
client implementation for opaque types 3-3
comments in 8-4
compiling 8-7
completing 8-2, 8-7, B-4
debugging 8-9, 8-11
error handling 8-4
generated files 8-2
language restrictions for client implementation of an

opaque type 4-26
language restrictions for server implementation of an

opaque type 4-26
limitations for 3-5
logging 8-4
makefile 8-3
overloading routines 3-5
performing functional tests 8-11
programming guidelines 3-7
server implementation for opaque types 3-3
source files 8-2
testing 8-9, 8-11
tools for editing and compiling 1-7
utility classes 8-4

Java Database Connectivity (JDBC) 3-7, 3-8
Java Development Kit 1-3
JDBC extensions 3-8
JDK 1-6

L
Large Object Locator DataBlade module, handling large objects

with 2-4
Large objects

bulk copy support routines 4-30
defined 2-4, C-1
loading from a file 5-14
LOhandles function 5-23
writing to a file 5-14

LD_LIBRARY_PATH environment variable 9-2
LessThan method/routine 6-4, 7-4, 7-5
lessthan.sql file, contents of A-7
LessThanOrEqual method/routine 6-4, 7-5
lessthanorequal.sql file, contents of A-7
Level, for tracing 5-9
Library

C++ support 6-7, 7-1, A-2, A-3
sapi.lib file 5-34

LIST, type constructor 4-23
Loading

shared object in the server address space 9-5
Visual C++ Add-In 10-5

Locales
setting for tracing 5-11
SQL scripts 4-44, A-5

Index X-5

Logging
Java code 8-4
specifying file property for 4-42

LOhandles() function 5-23
when to use 4-31

LVARCHAR data type, when to use 2-4

M
main.sh script 9-10, A-6, A-7
make command 5-34
Makefiles 5-4, 5-5, 5-33, 6-5, 8-3

See Compiling.
malloc routine 6-12
Match method 6-9
Mathematic functions

completing C++ code for 6-4
when to use 4-33

Mathematical functions
completing C code for 5-26

Maximum size of opaque data types 4-28
Members of opaque data types 4-27, 6-4
Memory

alignment of opaque data types 4-28
allocating in generated code 5-16
management routines 6-12

Merging
changes to source code files 4-46
generated file property 4-42

Methods
See also Routines.
accessing custom 7-2
ActiveX internal 6-7
C++ support 6-7, 7-1
Compare 6-4, 7-4, B-3
CompatibleType 7-4
Concat 6-4, 7-4
Contains 7-5
CreateLvarChar 6-11
CreateNew 6-7
CurString 6-9
custom, for ActiveX value objects 7-4
Divide 6-4, 7-5
DkErrorRaise 6-3, 6-7
DkInStream 6-9
DkOutStream 6-10
Equal 6-4, 7-4, 7-5
FromPrintable 7-4
FromString 6-4, 7-5
GetBuffer 6-11
GetData 6-7
GetDataC 7-3
GetDataCpp 7-3
GreaterThan 6-4, 7-5
GreaterThanOrEqual 6-4, 7-5
Inter 7-5
IsDirty 6-7
IsNull 6-4, 7-4, 7-5
IsUpdated 7-4
LessThan 6-4, 7-4, 7-5
LessThanOrEqual 6-4, 7-5
Match 6-9
Minus 6-4, 7-5
Negate 6-4, 7-5
NotEqual 6-4, 7-5, B-3
Overlap 7-5
Plus 6-4, 7-5

Methods (continued)
Positive 6-4, 7-5
Printable 7-4
RawCopy 6-7
ReadBoolean 6-9
ReadChar 6-9
ReadDate 6-9
ReadDateTime 6-9
ReadDecimal 6-9
ReadDoublePrecision 6-9
ReadGLWChar 6-9
ReadGLWString 6-9
ReadInt1 6-9
ReadInt8 6-9
ReadInteger 6-9
ReadInterval 6-9
ReadMoney 6-9
ReadReal 6-9
ReadSmallInt 6-10
ReadString 6-10
ReadUChar1 6-10
ReadUInt8 6-10
ReadUInteger 6-10
ReadWChar 6-10
ReadWString 6-10
Rewind operator 6-9
routine 6-4, B-3
SameType 7-4
SetClean 6-7
SetData 6-7
SetDataC 7-3
SetDataCpp 7-3
SetDirty 6-7
SetFieldDelimiters 6-10
SetNotNull 6-7
SetNull 7-4
SetNullFlag 6-4, 7-5
SetStringDelimiters 6-10, 6-11
Size 7-5
Skip 6-10
Skip operator 6-9
SkipBlanks 6-10
SkipDelimiters 6-10
Times 6-4, 7-5
ToString 6-4, 7-5
TypeOf 7-4
Union 7-5
Within 7-6
WriteBoolean 6-11
WriteChar 6-11
WriteDate 6-11
WriteDateTime 6-11
WriteDecimal 6-11
WriteDoublePrecision 6-11
WriteGLWChar 6-11
WriteGLWString 6-11
WriteInt1 6-11
WriteInt8 6-11
WriteInteger 6-11
WriteInterval 6-11
WriteLiteral 6-11
WriteMoney 6-11
WriteReal 6-11
WriteSmallInt 6-11
WriteString 6-11
WriteUChar1 6-11
WriteUInt8 6-11

X-6 IBM Informix DataBlade Developers Kit User’s Guide

Methods (continued)
WriteUInteger 6-11
WriteUSmallInt 6-11
WriteWChar 6-11
WriteWString 6-11

mi_alloc() function 6-12
mi_bitvarying pointer 5-21
mi_close() function 5-7
mi_db_error_raise() function 5-8, 6-7
mi_fp_request() function 5-32
MI_FPARAM

structure 5-6
mi_get_double_precision() function 5-19
mi_impexp data type 5-20
mi_lo_decrefcount() function 5-22
MI_LO_HANDLES structure 5-23
mi_lo_increfcount() function 5-22
mi_lo_validate() function 5-22, 5-23
mi_lvarchar data type 3-8
mi_new_var() function 5-17, 5-20
mi_open() function 5-7
mi_put_double_precision() function 5-19
mi_sendrecv data type 5-19
mi_tracefile_set() function 5-10
mi_tracelevel_set() function 5-10
Microsoft

COM 3-2
Developer Studio.

See Visual C++.
ODBC API, using with ActiveX value objects 7-2

Minus method/routine 6-4, 7-5
minus.sql file, contents of A-7
MKS Toolkit 1-6
MMX.

See Intel MMX technology support.
Modal routines 2-17
More Mathematic Operators 6-4
MSDev button 4-47
Multilanguage DataBlade modules 3-5
MULTISET, type constructor 4-23

N
Named row data types 4-35
Naming

interfaces 4-15
opaque data types 4-26
routines 2-16
user-defined routines 4-18
user-defined virtual processors 4-20

Negate method/routine 6-4, 7-5
negative.sql file, contents of A-7
Negator functions

when to use 4-22
new operator 6-12
Nonvariant functions, when to specify 4-20
NotEqual method/routine 6-4, 7-5, B-3
notequal.sql file, contents of A-7
notify.sql file, contents of A-7
Null values, handling 3-7
Number of arguments in routines 2-17

O
Object Interface for C++ 3-7

Object names
aggregates 4-11
lengths 4-8

Object persistence 3-2, 7-2
objects.sql generated script 4-44, A-5
On-line help

BladePack 11-3
BladeSmith 4-46

ONCONFIG environment variable 9-2
Opaque data types

bit-hashable 4-33
customizing support routines for 5-15, 5-27
defining with BladeSmith 4-24, 4-34
external representation of 5-16
fixed size 3-4
implemented in a different language 3-5
internal structure of 3-4, 6-4
members 4-27, 6-4
name lengths 4-26
programming language limitations 3-4
programming language options for 3-2, 3-5
routines for ActiveX custom methods 3-4
rules for ActiveX use 3-4
sizes of 4-27, 4-28
support routines for 4-29, 4-34, 6-3
test data, adding for 4-37
test scripts for 9-8, A-6
when to use 2-3

Operator class, when to create 2-15
Optimizing user-defined routines 4-21
Orthogonality 2-15
OUT parameter 4-19
Overlap method/routine 7-5
overlap.sql file, contents of A-7
Overloading

routines in different languages 3-5
user-defined routines 4-18

P
Packaging DataBlade modules

InstallShield 3.1 11-12, 11-20
InstallShield 5.1 11-20, 11-27
overview of 1-8
UNIX 11-6, 11-12

Parallel database queries 4-20
Parallelizable routines

when to specify 4-20
Parameters in error messages 4-15
PATH environment variable 9-2
Permissions for shared object files 9-3
Persistence 3-2, 7-2
Plus method/routine 6-4, 7-5
plus.sql file, contents of A-7
Pnt user-defined data type 5-16
POINTER data type 4-11
Polymorphism 2-17
Positive method/routine 6-4, 7-5
positive.sql file, contents of A-7
Predicate, in SQL statement 2-7, 2-8
prepare.sql generated script 4-44, A-5
Printable method 7-4
Privileges, setting for objects 4-8
Process ID, for virtual processors 9-5
Processing rows 2-14
Programming guidelines

ActiveX value objects 3-7

Index X-7

Programming guidelines (continued)
C code 3-6
C++ code 3-7
DataBlade API tips 3-8
Java code 3-7

Programming language options
development tools for 1-6
for opaque data types 3-2, 3-5
for opaque types, client implementation 3-3
for opaque types, server implementation 3-3
for routines 3-5
list of 1-4, 3-1

Project names 4-5
Projects

client 6-6
creating in BladeSmith 4-4
properties of in BladeSmith 4-4
server 6-5
version numbers 4-7

Properties
for ActiveX value objects 6-4, 6-5
for aggregates 4-9
for casts 4-12
for collection data types 4-23
for custom SQL statements 4-38
for distinct data types 4-24
for errors 4-14
for generated files 4-42
for interfaces 4-15
for opaque data types 4-24
for row data types 4-35
for trace messages 4-14
for user-defined routines 4-16
specifying when debugging 10-5

Property sheet 4-4

Q
Qualification in SQL statement 2-7
Qualified data types, defining with BladeSmith 4-34
Query language interface 2-5, 2-8
Query optimizer

strategies using B-trees 4-32
when to use 2-14

Query plans 2-14
Query processing 2-8, 2-15
QueryInterface routine 7-3

R
R-tree access method 2-14
RawCopy method 6-7
ReadBoolean method 6-9
ReadChar method 6-9
ReadDate method 6-9
ReadDateTime method 6-9
ReadDecimal method 6-9
ReadDoublePrecision method 6-9
ReadGLWChar method 6-9
ReadGLWString method 6-9
Reading an input string 5-14, 6-8
ReadInt1 method 6-9
ReadInt8 method 6-9
ReadInteger method 6-9
ReadInterval method 6-9

README files
for C code 5-4
for Java code 8-3

readme.txt file, contents of A-4
ReadMoney method 6-9
ReadReal method 6-9
ReadSmallInt method 6-10
ReadString method 6-10
ReadUChar1 method 6-10
ReadUInt8 method 6-10
ReadUInteger method 6-10
ReadUSmallInt method 6-10
ReadWChar method 6-10
ReadWString method 6-10
Receive routine 6-4
Reference files, initializing for testing 9-10
Referencing ActiveX value objects 7-1
Regenerating files 4-46
Registration A-3, C-1
Registry keys 11-6, 11-15
Resource.h file, contents of A-2
Return types

for aggregates 4-10
for user-defined routines 4-16

Rewind operator 6-9
Routines

See also Methods.
See also User-defined routines.
Compare 6-4, B-3
Concat 6-4
defining with BladeSmith 4-15, 4-22
delete operator 6-12
Divide 6-4
Equal 6-4, B-3
ExportBinary 6-4
ExportText 6-4
free 6-12
FromString 6-4
GreaterThan 6-4
GreaterThanOrEqual 6-4
Hash 6-4
ImportBinary 6-4
ImportText 6-4
LessThan 6-4
LessThanOrEqual 6-4
LOhandles() 5-23
malloc 6-12
memory management 6-12
Minus 6-4
Negate 6-4
new operator 6-12
NotEqual 6-4, B-3
Plus 6-4
Positive 6-4
QueryInterface 7-3
Receive 6-4
Send 6-4
SYSBldTstSBSpace C-1
table of properties you can specify with BladeSmith 4-16
Times 6-4
ToString 6-4

Row data types
defining with BladeSmith 4-35, 4-36
when to use 2-3

Row processing 2-14

X-8 IBM Informix DataBlade Developers Kit User’s Guide

S
SameType method 7-4
sapi.lib library file 5-34
sbspaces

testing for C-1
when to create 2-4

Scanning an input string 5-14, 6-8
scripts directory

contents 4-43
Secondary access methods, when to use 2-14
Selectivity routines

completing C code for 5-31
when to use 2-10, 4-22

Send routines 6-4
Server compatibility 4-6
Server implementation of an opaque type 4-26
Server projects

generated files 6-5, A-4
Windows 6-5

SET, type constructor 4-23
SetClean method 6-7
SetData method 6-7
SetDataC method 7-3
SetDataCpp method 7-3
SetDirty method 6-7
SetFieldDelimiters method 6-10
SetNotNull method 6-7
SetNull method 7-4
SetNullFlag method 6-4, 7-5
SetStringDelimiters method 6-10, 6-11
Setting breakpoints

for debugging on UNIX 9-6
for debugging on Windows 10-6

setup.sql
casting function test file A-6
opaque type test file A-6, A-7
UDR test file A-7
unit test file 10-6, A-5

Shared object files
compiling 5-34
compiling with debugging support 5-34
loading into server address space 9-5
ownership of 9-3
path, designating in BladeSmith 4-17
permissions on 9-3
replacing 9-2
unresolved symbols in 9-3
using 9-2

Shortcut keys
keyboard D-1

Shutting down the server on UNIX 9-4
Signal handlers, disabling on UNIX 9-6
Size method/routine 7-5
size.sql file, contents of A-7
Skip backwards operator 6-9
Skip method 6-10
Skip operator 6-9
SkipBlanks method 6-10
SkipDelimiters method 6-10
Smart large objects.

See Large objects.
Sorting SQL results 2-12
Source code files.

See Files.
Source type, for distinct data type 4-24
SPL, in user-defined routines 4-16
sprintf() function 5-17

SQL
custom statements 4-38, 4-39, 4-44
errors 4-15
generating 4-43
grouping 2-12
importing custom statements from a file 4-39
predicate 2-7, 2-8
privileges, setting 4-8
script files A-5
sorting rows 2-12
target list 2-6
test scripts 9-8, A-6
transaction semantics 2-15
user-defined routines in a WHERE clause 2-7

SQL Query tool 1-6
SQLJ extensions 3-8
SQLJ packages 3-7
sscanf() function 5-16
Stack size, specifying for UDRs 4-21
Starting the debugger on UNIX 9-6
Starting the server on UNIX 9-4
State type, for an aggregate 4-11
Statement Local Variables 4-19
Statistics support routines

completing C code for 5-27, 5-28
generating code for 4-34

StdAfx.cpp file, contents of A-3
StdAfx.h file, contents of A-3
StdDbdk.cpp file, contents of 6-8, A-3
StdDbdk.h file, contents of 6-8, A-3
Stored Procedure Languages 4-2
Strings

.str file, strings file 11-3, A-8
counting number of values in 5-14
delimiters 6-8
reading 5-14, 6-8
writing 6-10

Support library, C++ 6-7, 7-1, A-2, A-3
Support methods 6-7, 7-1
Support routines 4-29, 4-34
support.c file, contents of 5-4, A-1
Symbols

unresolved when compiling on UNIX 5-34
sysbldobjects system table 4-44, A-5
SYSBldTstSBSpace routine C-1
syserrors system catalog 5-9, 5-13
systraceclasses system catalog 5-9, 5-10
systracemsgs system catalog 5-13

T
TARGET environment variable 5-33, 9-2
Target list 2-6
test.sql generated script 4-44
TESTDB environment variable 9-2
Testing DataBlade modules

adding test data 4-36
custom tests, adding 9-9
directory 9-8
executing scripts 9-10
functional test overview 9-7
initializing reference files 9-10
Java 8-9, 8-11
on UNIX

installing 9-3
overview of tasks 9-7
preparing the environment 9-2

Index X-9

Testing DataBlade modules (continued)
on UNIX (continued)

prerequisite tasks 9-1
shared object files 9-2

on Windows
overview of tasks 10-6
preparing the environment 10-2
prerequisite tasks 10-1

SQL scripts 9-8, A-6
unit test files 10-6, A-5

Text file import/export routines
completing C code for 5-20, 5-21
completing C++ code for 6-4
when to use 4-30

Text input/output routines
completing C code for 5-16
completing C++ code for 6-4

textexp.sql file, contents of A-7
textio_neg.sql file, contents of A-7
textio_pos.sql file, contents of A-7
Thread-safe code 3-6
Times method/routine 6-4, 7-5
times.sql file, contents of A-7
ToString method/routine 6-4, 7-5
TraceSet_project procedure 5-10
Tracing

adding 5-9
classes, creating 5-10
compiling with support for 5-33
conditions for 5-8
DBDK_TRACE_ENTER() macro 5-10
DBDK_TRACE_EXIT() macro 5-10
DBDK_TRACE_MSG() macro, using 5-9
default trace file location 5-8
defining messages in BladeSmith 4-13, 4-15
embedded parameters 5-8
enabling 5-10, 5-11
generated file property 4-42
in C language generated code 5-7
level for 5-9
locale, setting 5-11
output file, setting 5-12
threshold, setting 5-12
TraceSet_project procedure, creating 5-10

Transaction semantics 2-15
Tutorial for DBDK 1-3
Type compare support routines

completing C code 5-23, 5-25
completing C++ code for 6-4, B-3
when to use 4-32

Type concatenation operator 6-4
Type constructors 4-23
Type hash support routines

in generated C++ code 6-4
when to use 4-33

Type mathematic operators
completing C++ code for 6-4
when to use 4-33

Type mathematical operators
completing C code for 5-26

TypeOf method 7-4

U
udr.c file, contents of 5-4, A-1
Unary arithmetic functions 4-33
Union method/routine 7-5

union.sql file, contents of A-7
Unit test files

editing 10-6
list of A-5

UNIX
compiling C code on 5-33
dbx utility 9-6
debugger utility 9-6
installing DataBlade modules 9-3
makefiles 5-4, 5-33, A-1, A-2
shared object files 9-2
unresolved symbols when compiling 5-34

UNIX installations
building with BladePack 11-6, 11-12

Unnamed row data types 4-35
Unordered row processing 2-14
Unresolved symbols

in shared object files 9-3
on UNIX 5-34

User-defined routines
completing C code for 5-28, 5-33
completing Java code for 8-5
defining with BladeSmith 4-15, 4-22
functions declarations in C source code 5-4
functions declarations in Java source code 8-3, A-4
implemented in server or client 2-6
modal 2-17
naming 2-16
number of arguments 2-17
overloading 3-5, 4-18
programming language options for 3-5
table of properties you can specify with BladeSmith 4-16
test data, adding for 4-37
test scripts for 9-8, A-7
used in SQL statements 2-6
using MI_FPARAM structure 5-6
when to design 2-8

User-defined statistics and selectivity 2-9, 2-11
User-defined virtual processors

See also Virtual processors.
assigning routines to 4-20
class name 4-20
discussion of 3-7

Utility classes for Java 8-4
Utility functions

Gen_IsMMXMachine() 5-14
Gen_LoadLOFromFile() 5-14, 5-21
Gen_nstrwords() 5-14
Gen_sscanf() 5-14, 5-17
Gen_StoreLOToFile() 5-14
Gen_Trace() 5-8, 5-14

V
Variable-size opaque data types 4-27
Variant functions

when to specify 4-19
Vendor ID 4-7
Version numbers, for a project 4-7
Virtual base classes 3-7
Virtual methods 3-7
Virtual processors 3-6

See also User-defined virtual processors.
identifying for debugging 9-5
process ID 9-5

Visual C++
breakpoints, setting 10-6

X-10 IBM Informix DataBlade Developers Kit User’s Guide

Visual C++ (continued)
compiling with 6-5
generated files 5-5
launching 4-47

Visual C++ Add-In
commands reference 10-3
for debugging 10-2
loading 10-5
overview of 1-2

W
warning.txt file, contents of 5-5, A-5
Windows

compiling projects with Visual C++ 6-5
debugging UNIX DataBlade modules on 9-7
server projects on 6-5

Within method/routine 7-6
within.sql file, contents of A-7
WriteBoolean method 6-11
WriteChar method 6-11
WriteDate method 6-11
WriteDateTime method 6-11
WriteDecimal method 6-11
WriteDoublePrecision method 6-11
WriteGLWChar method 6-11
WriteGLWString method 6-11
WriteInt1 method 6-11
WriteInt8 method 6-11
WriteInteger method 6-11
WriteInterval method 6-11
WriteLiteral method 6-11
WriteMoney method 6-11
WriteReal method 6-11
WriteSmallInt method 6-11
WriteString method 6-11
WriteUChar1 method 6-11
WriteUInt8 method 6-11
WriteUInteger method 6-11
WriteUSmallInt method 6-11
WriteWChar method 6-11
WriteWString method 6-11
Writing an output string 6-10

Index X-11

X-12 IBM Informix DataBlade Developers Kit User’s Guide

����

Printed in USA

SC27-3534-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

In
fo

rm
ix

Ve
rs

io
n

4.
20

IB
M

In
fo

rm
ix

Da
ta

Bl
ad

e
De

ve
lo

pe
rs

Ki
tU

se
r’s

Gu
id

e
�
�

�

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies

	Example Code Conventions
	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Chapter 1. Getting Started with DataBlade Module Development
	In This Chapter
	What is a DataBlade Module?
	DataBlade Developers Kit Tools
	Preparing to Develop DataBlade Modules
	Becoming Familiar with IBM Informix Software and Documentation
	Installing IBM Informix Software
	DataBlade Developers Kit Tutorial
	Creating a Practice DataBlade Module

	Designing Your DataBlade Module
	Writing a Functional Specification
	Programming Resources
	Writing a Design Specification
	Creating an Iterative Development Plan

	Developing Your DataBlade Module
	Editing and Compiling DataBlade Module Code
	Debugging Your DataBlade Module
	Packaging Your DataBlade Module

	Chapter 2. Designing DataBlade Modules
	In This Chapter
	Data Model
	Data Type Design
	Object Accessibility
	Handling Large Objects

	Query Language Interface
	SQL Query Structure
	The Target List
	The Qualification

	Query Processing
	Predicate Evaluation
	Expensive Routines
	User-Defined Statistics
	Aggregates
	Sorting Results

	Grouping
	Casts
	Access Path Selection
	Unordered Row Processing
	Secondary Access Methods

	Planning for Transaction Semantics

	Interoperability
	Orthogonality
	Simple, Clean Interfaces
	Naming Routines
	Taking Advantage of Polymorphism
	Limiting the Number of Arguments
	Avoiding Modal Routines

	Chapter 3. Programming Guidelines
	In This Chapter
	Programming Language Options
	Options for Opaque Data Types
	ActiveX Value Objects
	Mixing Languages in Server and Client Implementations
	Limitations of Opaque Types for Each Language
	Embedding Opaque Data Types within Opaque Data Types

	Options for Routines
	Overloading Routines in Different Languages
	Handling Opaque Data Types Implemented in a Different Language

	Multilanguage DataBlade Module Issues

	C Programming Guidelines
	C++ Programming Guidelines
	Java Programming Guidelines
	DataBlade API Programming Tips

	Chapter 4. Creating DataBlade Objects Using BladeSmith
	In This Chapter
	Prerequisite Tasks
	Task Overview
	Windows
	Creating a New Project
	DataBlade Module Project Name
	New Object Prefix
	Server Compatibility
	Description Locale
	Project Version Numbers
	Vendor Information

	Importing Interfaces from Another DataBlade Module
	Creating DataBlade Module Objects
	Database Object Name Lengths
	Creating Aggregates
	Aggregate Name
	Iteration Type
	Initialization Parameter
	State Type
	Initialization Function
	Iteration Function
	Combine Function
	Final Function

	Creating Casts
	Source and Target Data Types
	Implicit and Explicit Casts
	Cast Support Functions

	Defining Errors
	SQL Error Code
	Error Locale
	SQL Error Text

	Defining Interfaces
	Creating Routines
	Routine Name
	Statement Local Variables
	Routine Arguments
	Variant Functions
	Parallelizable Routines
	C Routine Name
	Routine Behavior
	User-Defined Virtual Processor Class Name
	Stack Size
	Cost of Routine
	Related Routines

	Creating Data Types
	Collection Data Type
	Distinct Data Type
	Opaque Data Type
	Qualified Data Type
	Row Data Type

	Adding Functional Test Data
	Test Data for Opaque Type Support Routines
	Test Data for User-Defined Routines
	Test Data for Cast Support Routines

	Adding SQL Files
	Importing SQL Text from a File
	Object Dependencies

	Adding Client Files
	Generating Files
	Setting Generated File Properties
	Generating All Files
	Generating SQL Scripts
	Generating Source Files
	Generating Test Files
	Generating Installation Package Files
	Regenerating Files
	Merging Changes in Source Code and Unit Test Files
	Replacing Visual C++ Project, SQL, Functional Test, and Installation Files

	Opening the Project File in Visual C++

	Chapter 5. Programming DataBlade Module Routines in C
	In This Chapter
	Prerequisite Tasks
	C Programming Task Overview
	Source Files Generated by BladeSmith
	C Header File
	C Source Code Files
	Microsoft Visual C++ Files
	Warning File

	Using Generated Code
	Identifying the Source of Generated Code
	Comments in Generated Code
	MI_FPARAM Function Argument
	Server Connection Handle
	Tracing and Error Handling
	How Tracing Works
	Adding Tracing and Error Handling
	Enabling Tracing in a DataBlade Module
	Enabling Tracing in a Database Session
	Standard Error Messages

	Utility Functions Generated by BladeSmith
	The Gen_sscanf() Utility Function
	The Gen_IsMMXMachine() Utility Function

	Editing Opaque Type Support Routines in opaque.c
	Text Input and Output Functions
	The Generated Code
	Customizing the Code
	Smart Large Object Considerations
	Examples

	Binary Send and Receive Functions
	The Generated Code
	Customizing the Code
	Examples

	Text File Import and Export Functions
	The Generated Code
	Customizing the Code
	Smart Large Object Considerations

	Binary File Import and Export Functions
	The Generated Code
	Customizing the Code
	Smart Large Object Considerations

	The Assign and Destroy Routines
	The Generated Code
	Customizing the Code
	Smart Large Object Considerations
	Examples

	LOhandles() Function
	Comparison Functions
	Compare Function
	B-Tree Comparison Functions
	R-Tree Comparison Functions

	Mathematical Functions
	The Generated Code
	Completing the Code
	Example

	Concat() Function
	Hash() Function

	Editing Statistics Routines in statistics.c
	The Statistics Collection Function
	The Generated Code
	Customizing the Code

	The Statistics Print Function
	The Statistics Minimum, Maximum, and Distribution Functions
	The Generated Code
	Completing the Code
	Example

	Editing Routines in udr.c
	Most User-Defined Routines
	The Generated Code
	Completing the Code
	Examples

	Cast Support Functions
	The Generated Code
	Completing the Code
	Example

	Aggregate Functions
	The Generated Code
	Completing the Code

	Selectivity Functions
	The Generated Code
	Completing the Code
	Example

	Iterator Functions
	The Generated Code
	Completing the Code
	Example

	Compiling DataBlade Module Code
	Compiling with Tracing Support
	Compiling on UNIX
	Unresolved Symbols (IDS 9.14)
	Compiling with Debug Support

	Compiling on Windows

	Chapter 6. Creating ActiveX Value Objects
	In This Chapter
	Prerequisite Tasks
	ActiveX Programming Task Overview
	Source Files Generated by BladeSmith
	Implementing ActiveX Value Objects
	The Generated Code
	Adding Project-Specific Logic to the Source Code
	Files to Edit
	ActiveX Properties
	Accessing Properties Using Visual Basic

	Compiling Client and Server Projects
	Compiling a Windows Server Project
	Compiling a Client Project

	Support Methods Reference
	Internal Object Methods
	C++ Support Library
	DkInStream
	DkOutStream
	Memory Management Routines

	Chapter 7. Using ActiveX Value Objects
	In This Chapter
	Installing and Using ActiveX Value Objects
	Installing ActiveX Value Objects
	Using ActiveX Value Objects

	IRawObjectAccess Custom Interface
	ITDkValue Custom Interface
	ActiveX Custom Methods

	Chapter 8. Programming DataBlade Modules in Java
	In This Chapter
	Prerequisite Tasks
	Java Programming Task Overview
	Source Files Generated by BladeSmith
	Java Source Code Files
	SQLData Interface Method Support Code
	Warning File

	Using the Generated Code
	Comments in Generated Code
	Logging and Error Handling
	BladeSmith Utility Classes

	Editing Methods
	Most User-Defined Methods
	The Generated Code
	Completing the Code
	Example

	Iterators
	The Generated Code
	Completing the Code

	Aggregates
	The Generated Code
	Completing the Code

	Cast Support Methods
	The Generated Code
	Completing the Code

	Compiling Java DataBlade Module Code
	Debugging and Testing DataBlade Modules Written in Java
	Preparing Your Environment
	Debugging a DataBlade Module
	Installing a DataBlade Module
	Registering a DataBlade Module
	Replacing a DataBlade Module JAR File

	Performing Functional Tests

	Chapter 9. Debugging and Testing DataBlade Modules on UNIX
	In This Chapter
	Prerequisite Tasks
	Preparing Your Environment
	Using the Shared Object File
	Replacing a Shared Object File
	Shared Object File Ownership and Permissions
	Symbols in Shared Object Files

	Installing and Registering DataBlade Modules
	Installing a DataBlade Module
	Registering a DataBlade Module

	Debugging a DataBlade Module
	Loading the DataBlade Module
	Identifying the Server Process
	Running the Solaris Debugger
	Setting Breakpoints

	Debugging a UNIX DataBlade Module with Windows
	Performing Functional Tests
	Functional Test Overview
	Contents of the Functional Test Directory
	Adding Custom Test Files

	Executing Functional Tests
	Using the Functional Test Scripts
	Initializing Reference Files

	Chapter 10. Debugging and Testing DataBlade Modules on Windows
	In This Chapter
	Prerequisite Tasks
	Preparing Your Environment
	DBDK Visual C++ Add-In and IfxQuery
	The Debug DataBlade Module Command
	Other Add-In Commands

	Debugging a DataBlade Module
	Manually Loading the Add-In
	Specifying Properties for a Project
	Setting Breakpoints
	Editing Unit Test Files

	Performing Functional Tests on DataBlade Modules

	Chapter 11. Using BladePack
	In This Chapter
	Prerequisite Tasks
	BladePack Overview
	BladePack Projects
	BladePack Online Help
	BladePack Windows
	Project View
	Item View

	Registry Keys for Windows

	Packaging for UNIX Installations
	Establishing Content
	Files and Directories to Be Installed or Deleted

	Managing Components
	Component Properties
	Assigning to Components

	Customizing the Installation
	Building the Installation
	Installation Type

	Creating Distribution Media

	Packaging for InstallShield 3.1 Installations
	Establishing Content
	Files and Directories to Be Installed or Deleted
	Registry Changes

	Managing Components
	Component Properties
	Assigning to Components

	Customizing the Installation
	Adding Custom Extensions

	Building the Installation
	Installation Type
	Installation Screen Display Text

	Creating Distribution Media

	Packaging for InstallShield 5.1 Installations
	Establishing Content
	Files and Directories to Be Installed
	Registry Changes

	Managing Components
	Component Properties
	Assigning to Components

	Customizing the Installation
	Building the Installation
	Installation Type
	Installation Screen Display Text

	Creating Distribution Media

	Appendix A. Source Files Generated for DataBlade Modules
	C Source Code Files
	ActiveX/C++ Source Code Files
	Client Project Files
	Support Library Files
	Project Files

	Client Files
	Common Files
	Support Library Files
	Object Files

	Server Project Files
	Server Files

	Java Source Code Files
	SQL Script Files
	Unit Test Files
	Functional Test Files
	Casting Function Tests
	Opaque Data Type Support Routines Tests
	User-Defined Routine Tests

	Installation Packaging Files
	Alphabetical List of Generated Files

	Appendix B. Completing BladeSmith-Generated Code
	Opaque Data Type Support Routines in C
	User-Defined Routines in C
	Opaque Data Type Support Routines in C++
	User-Defined Routines in Java

	Appendix C. Testing for an Sbspace
	Appendix D. Accessibility
	Accessibility features for IBM Informix
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

