
Informix Product Family
Informix
Version 11.70

IBM Informix TimeSeries Data User's
Guide

SC27-3567-02

���

Informix Product Family
Informix
Version 11.70

IBM Informix TimeSeries Data User's
Guide

SC27-3567-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page D-1.

This edition replaces SC27-3567-01.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . ix
About this publication . ix

Types of users . ix
Assumptions about your locale . ix

What's new in TimeSeries data for Informix, Version 11.70 . x
Example code conventions . xiv
Additional documentation . xiv
Compliance with industry standards. xiv
Syntax diagrams. xv

How to read a command-line syntax diagram . xvi
Keywords and punctuation . xvii
Identifiers and names . xvii

How to provide documentation feedback . xvii

Chapter 1. Informix TimeSeries solution . 1-1
Informix TimeSeries solution architecture . 1-3
Time series concepts . 1-4

TimeSeries data type technical overview . 1-5
Regular time series . 1-6
Irregular time series . 1-7
Calendar . 1-7
Time series data storage . 1-8

Getting started with the Informix TimeSeries solution . 1-9
Planning for creating a time series . 1-9
Planning for data storage . 1-10
Planning for loading time series data . 1-11
Planning for accessing time series data . 1-12

Hardware and software requirements . 1-12
Installing the IBM Informix TimeSeries Plug-in for Data Studio 1-13
Database requirements for time series data . 1-13
SQL restrictions for time series data . 1-13
Replication of time series data . 1-14
Time series global language support . 1-14

Sample smart meter data . 1-15
Setting up stock data examples . 1-15

Chapter 2. Data types and system tables. 2-1
CalendarPattern data type . 2-1
Calendar data type . 2-3
TimeSeries data type . 2-5
Time series return types . 2-6
CalendarPatterns table . 2-7
CalendarTable table . 2-7
TSInstanceTable table . 2-8
TSContainerTable table . 2-9

Chapter 3. Create and load a time series . 3-1
Example: Create and load a time series . 3-1

Creating a TimeSeries data type and table . 3-2
Creating regular, empty time series . 3-2
Creating the data load file . 3-3
Loading the time series data . 3-3
Accessing time series data through a virtual table . 3-4

Defining a calendar . 3-5
Predefined calendars . 3-5

© Copyright IBM Corp. 2006, 2011 iii

Create a time series column. 3-6
Creating a TimeSeries subtype . 3-6
Create the database table . 3-6

Managing containers . 3-7
Monitoring time series containers . 3-8
Configuring additional container pools . 3-9
User-defined container pool policy . 3-10

Create a time series . 3-11
Creating a time series with the TSCreate or TSCreateIrr function 3-12
Create a time series with its input function . 3-13
Create a time series with the output of a function . 3-15

Load data into an existing time series . 3-15
Loading data with the IBM Informix TimeSeries Plug-in for Data Studio 3-16
Loading data from a file into a virtual table . 3-16
Load data with BulkLoad . 3-17
Load small amounts of data with functions . 3-18

Chapter 4. Virtual tables for time series data 4-1
The structure of virtual tables . 4-2
The display of data in virtual tables . 4-3
The insertion of data through virtual tables . 4-3
Creating a time series virtual table . 4-4
TSCreateVirtualTab procedure . 4-4

Example of creating a virtual table . 4-6
TSCreateExpressionVirtualTab procedure . 4-8
The TSVTMode parameter . 4-11
Drop a virtual table . 4-19
Manage performance . 4-19
Trace functions . 4-19

The TSSetTraceFile function . 4-20
TSSetTraceLevel function . 4-20

Chapter 5. Calendar pattern routines . 5-1
The AndOp function . 5-1
The CalPattStartDate function . 5-2
The Collapse function. 5-3
The Expand function . 5-4
The NotOp function . 5-4
The OrOp function . 5-5

Chapter 6. Calendar routines . 6-1
The AndOp function . 6-1
The CalIndex function . 6-2
The CalRange function . 6-3
The CalStamp function . 6-4
The CalStartDate function . 6-5
The OrOp function . 6-5

Chapter 7. Time series SQL routines . 7-1
Time series SQL routines sorted by task. 7-1
The flags argument values . 7-5
Abs function . 7-6
Acos function . 7-6
AggregateBy function. 7-6
AggregateRange function . 7-9
Apply function . 7-11
ApplyBinaryTsOp function . 7-16
ApplyCalendar function . 7-17
ApplyOpToTsSet function . 7-19
ApplyUnaryTsOp function. 7-19

iv IBM Informix TimeSeries Data User's Guide

Asin function . 7-20
Atan function . 7-21
Atan2 function. 7-21
Binary arithmetic functions . 7-21
BulkLoad function . 7-23
Clip function . 7-26
ClipCount function . 7-29
ClipGetCount function . 7-30
Cos function . 7-31
DelClip function . 7-32
DelElem function . 7-33
DelRange function . 7-34
DelTrim function . 7-35
Divide function . 7-36
ElemIsHidden function . 7-36
ElemIsNull function . 7-36
Exp function . 7-37
FindHidden function . 7-37
GetCalendar function . 7-38
GetCalendarName function . 7-38
GetClosestElem function . 7-39
GetContainerName function . 7-40
GetElem function . 7-40
GetFirstElem function . 7-42
GetIndex function . 7-43
GetInterval function . 7-43
GetLastElem function . 7-44
GetLastNonNull function . 7-45
GetLastValid function . 7-46
GetMetaData function . 7-47
GetMetaTypeName function . 7-47
GetNelems function . 7-48
GetNextNonNull function . 7-49
GetNextValid function . 7-49
GetNthElem function . 7-50
GetOrigin function . 7-52
GetPreviousValid function . 7-53
GetStamp function . 7-54
GetThreshold function . 7-54
HideElem function . 7-55
HideRange function . 7-56
InsElem function . 7-57
InsSet function. 7-58
InstanceId function . 7-59
Intersect function . 7-59
IsRegular function . 7-61
Lag function . 7-62
Logn function . 7-62
Minus function . 7-63
Mod function . 7-63
Negate function . 7-63
NullCleanup function . 7-63
Plus function . 7-65
Positive function . 7-65
Pow function . 7-65
PutElem function . 7-65
PutElemNoDups function . 7-67
PutNthElem function . 7-68
PutSet function . 7-69
PutTimeSeries function . 7-70
RevealElem function . 7-72

Contents v

RevealRange function . 7-73
Round function . 7-74
SetContainerName function . 7-74
SetOrigin function . 7-74
Sin function . 7-75
Sqrt function . 7-75
Sum function . 7-75
Tan function . 7-76
Times function. 7-76
TimeSeriesRelease function . 7-76
Transpose function . 7-77
TSAddPrevious function . 7-80
TSCmp function . 7-81
TSColNameToList function . 7-82
TSColNumToList function . 7-83
TSContainerCreate procedure . 7-83
TSContainerDestroy procedure . 7-85
TSContainerNElems function . 7-85
TSContainerPctUsed function . 7-86
TSContainerPoolRoundRobin function . 7-87
TSContainerSetPool procedure . 7-88
TSContainerTotalPages function . 7-89
TSContainerTotalUsed function . 7-90
TSContainerUsage function . 7-91
TSCreate function. 7-92
TSCreateIrr function . 7-94
TSDecay function . 7-96
TSPrevious function . 7-97
TSRollup function . 7-98
TSRowNameToList function . 7-99
TSRowNumToList function . 7-100
TSRowToList function . 7-101
TSRunningAvg function . 7-102
TSRunningCor function . 7-103
TSRunningMed function . 7-104
TSRunningSum function . 7-105
TSRunningVar function . 7-106
TSSetToList function . 7-107
TSToXML function . 7-108
Unary arithmetic functions . 7-110
Union function . 7-111
UpdElem function . 7-113
UpdMetaData function . 7-114
UpdSet function . 7-115
WithinC and WithinR functions. 7-116

Chapter 8. Time series Java class library. 8-1
System requirements for Java programs. 8-2
Install the time series Java files . 8-2
Sample programs . 8-3
Time series Java classes . 8-3

The IfmxCalendarPattern class . 8-3
The IfmxCalendar class . 8-4
The IfmxTimeSeries class . 8-4

Get data from the database . 8-5
Create a custom type map . 8-5
The IfmxTimeSeries object . 8-7
Write TimeSeries data back to the database . 8-7

Obtain the time series Java class version . 8-8
The IfmxCalendarPattern class . 8-8
The IfmxCalendar class . 8-9

vi IBM Informix TimeSeries Data User's Guide

The IfmxTimeSeries class . 8-11
The IfmxTimeSeries class methods . 8-12

Problem solving . 8-17
Tracing with the Java class library . 8-17

Chapter 9. Time series API routines . 9-1
Differences in using functions on the server and on the client 9-1
API data structures . 9-2

The ts_timeseries structure . 9-2
The ts_tscan structure. 9-2
The ts_tsdesc structure . 9-2
The ts_tselem structure . 9-3

API routines . 9-3
The ts_begin_scan() function . 9-6
The ts_cal_index() function . 9-8
The ts_cal_pattstartdate() function . 9-8
The ts_cal_range() function . 9-9
The ts_cal_range_index() function . 9-10
The ts_cal_stamp() function . 9-11
The ts_cal_startdate() function . 9-11
The ts_close() function . 9-12
The ts_closest_elem() function . 9-12
The ts_col_cnt() function . 9-13
The ts_col_id() function. 9-14
The ts_colinfo_name() function . 9-14
The ts_colinfo_number() function . 9-15
The ts_copy() function . 9-16
The ts_create() function . 9-16
The ts_create_with_metadata() function . 9-17
The ts_current_offset() function . 9-18
The ts_current_timestamp() function . 9-19
The ts_datetime_cmp() function . 9-19
The ts_del_elem() function. 9-20
The ts_elem() function . 9-20
The TS_ELEM_HIDDEN macro . 9-21
The TS_ELEM_NULL macro . 9-22
The ts_elem_to_row() function . 9-22
The ts_end_scan() procedure . 9-23
The ts_first_elem() function . 9-23
The ts_free() procedure . 9-24
The ts_free_elem() procedure . 9-24
The ts_get_all_cols() procedure . 9-25
The ts_get_calname() function . 9-25
The ts_get_col_by_name() function . 9-26
The ts_get_col_by_number() function . 9-26
The ts_get_containername() function . 9-27
The ts_get_flags() function . 9-27
The ts_get_metadata() function . 9-28
The ts_get_origin() function . 9-28
The ts_get_stamp_fields() procedure . 9-29
The ts_get_threshold() function . 9-30
The ts_get_ts() function . 9-30
The ts_get_typeid() function . 9-31
The ts_hide_elem() function . 9-31
The ts_index() function . 9-32
The ts_ins_elem() function . 9-33
The TS_IS_INCONTAINER macro . 9-34
The TS_IS_IRREGULAR macro . 9-34
The ts_last_elem() function . 9-34
The ts_last_valid() function . 9-35
The ts_make_elem() function . 9-36

Contents vii

The ts_make_elem_with_buf() function . 9-37
The ts_make_stamp() function . 9-38
The ts_nelems() function . 9-38
The ts_next() function . 9-39
The ts_next_valid() function . 9-40
The ts_nth_elem() function. 9-41
The ts_open() function . 9-41
The ts_previous_valid() function . 9-43
The ts_put_elem() function . 9-44
The ts_put_elem_no_dups() function . 9-45
The ts_put_last_elem() function . 9-46
The ts_put_nth_elem() function . 9-46
The ts_put_ts() function. 9-47
The ts_reveal_elem() function . 9-48
The ts_row_to_elem() function . 9-48
The ts_time() function . 9-49
The ts_tstamp_difference() function . 9-49
The ts_tstamp_minus() function . 9-50
The ts_tstamp_plus() function . 9-51
The ts_update_metadata() function . 9-52
The ts_upd_elem() function . 9-52

Appendix A. The Interp function example . A-1

Appendix B. The TSIncLoad procedure example B-1

Appendix C. Accessibility . C-1
Accessibility features for IBM Informix products . C-1

Accessibility features . C-1
Keyboard navigation . C-1
Related accessibility information . C-1
IBM and accessibility . C-1

Dotted decimal syntax diagrams . C-1

Notices . D-1
Trademarks . D-3

Index . X-1

viii IBM Informix TimeSeries Data User's Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication

This publication contains information to assist you in using the time series data
types and supporting routines.

These topics discuss the organization of the publication, the intended audience,
and the associated software products that you must have to develop and use time
series.

Types of users

This publication is written for the following audience:
v Developers who write applications to access time series information stored in

IBM® Informix® databases

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
DBDATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é, è, and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

© Copyright IBM Corp. 2006, 2011 ix

What's new in TimeSeries data for Informix, Version 11.70
This publication includes information about new features and changes in existing
functions.

For a complete list of what's new in this release, see the release notes or the
information center at http://publib.boulder.ibm.com/infocenter/idshelp/v117/
topic/com.ibm.po.doc/new_features.htm.

Table 1. What's New in IBM Informix TimeSeries Data User's Guide for 11.70.xC4

Overview Reference

IBM Informix TimeSeries Plug-in for Data Studio

You can easily load data from an input file into an
Informix table with a TimeSeries column by using IBM
Informix TimeSeries Plug-in for Data Studio. You can also
use the plug-in with IBM Optim™ Developer Studio.

“Installing the IBM Informix TimeSeries Plug-in for Data
Studio” on page 1-13

“Loading data with the IBM Informix TimeSeries Plug-in
for Data Studio” on page 3-16

“Example: Create and load a time series” on page 3-1

Aggregate time series data across multiple rows

You can use a single TimeSeries function, TSRollup, to
aggregate time series values by time for multiple rows in
the table and return a time series that contains the results.
Previously, you could aggregate time series values only
for each row individually.

For example, if you have a table that contains information
about energy consumption for the meters attached to a
specific energy concentrator, you can aggregate the values
for all the meters and sum the values for specific time
intervals to get a single total for each interval. The
resulting time series represents the total energy
consumption for each time interval for that energy
concentrator.

“TSRollup function” on page 7-98

Delete a range of elements and free empty pages from a
time series

You can delete elements in a time series from a specified
time range and free any resulting empty pages by using
the DelRange function. The DelRange function is similar
to the DelTrim function; however, unlike the DelTrim
function, the DelRange function frees pages in any part
of the range of deleted elements. You can free empty
pages that have only null elements from a time series for
a specified time range or throughout the time series by
using the NullCleanup function.

“DelRange function” on page 7-34

“NullCleanup function” on page 7-63

x IBM Informix TimeSeries Data User's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.po.doc/new_features.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.po.doc/new_features.htm

Table 2. What's New in IBM Informix TimeSeries Data User's Guide for 11.70.xC3

Overview Reference

Time series storage management

Time series data that is too large to fit into a row in a
table is stored in time series containers. You do not need
to create a container before you insert data into a time
series or specify a container name when you insert data
into a time series. Containers for TimeSeries subtypes are
created automatically in the same dbspaces in which the
table that contains the subtype is stored. You can also
create custom pools of containers specific to your needs.

“Time series data storage” on page 1-8

“Managing containers” on page 3-7

Monitor time series containers

You can monitor the containers that store time series data
to obtain the following information for a specific
container or for all containers in the database:

v The number of allocated pages

v The number of pages containing time series data

v The percentage of used space

v The number of time series data elements

“Monitoring time series containers” on page 3-8

View the results of a time series expression in a virtual
table

You can create a virtual table based on the results of a
time series expression, such as the AggregateBy function.
Previously you needed to save the results of the
expression in an intermediate table and create a virtual
table based on the intermediate table.

“TSCreateExpressionVirtualTab procedure” on page 4-8

Output time series data in XML format

You can produce an XML representation of a time series
by using the new TSToXML function. You can use the
XML data to send time series information to other
applications.

“TSToXML function” on page 7-108

Time series data in the stores_demo database

You can use the new time series tables in the
stores_demo database to experiment with time series data
by running SQL queries and time series routines. The
stores_demo database has three new tables that contain
smart meter time series data.

“Sample smart meter data” on page 1-15

Predefined calendars for time series

You can use one of the seven predefined calendars when
you create a time series instead of creating your own
calendar. The calendars start at the beginning of 2011. The
calendar patterns have interval durations of one minute,
15 minutes, 30 minutes, one hour, one day, one week, and
one month.

“Predefined calendars” on page 3-5

Run the Transpose function in table expressions

You can use the Transpose function in table expressions
to return time series data in a tabular format that is easy
to read.

“Transpose function” on page 7-77

Introduction xi

Table 2. What's New in IBM Informix TimeSeries Data User's Guide for 11.70.xC3 (continued)

Overview Reference

Easier time-series data updates from virtual tables

When you update time series data from a virtual table, by
default only the primary key is used to find the row to
update. You do not need to provide accurate values for
columns that are not part of the primary key. Previously,
all columns except the TimeSeries subtype column were
used by the virtual table to identify the row to update.

When you create virtual tables, you can configure the
update behavior:

v Update the values of columns in an existing row that
are not part of the primary key. (To prevent updating a
non-primary key column, set it to NULL in the INSERT
statement.)

v Update the value of all the columns in an existing row
that are not part of the primary key. Update columns
that allow null values to NULL.

“The TSVTMode parameter” on page 4-11

Container name and TimeSeries subtype names extended
to 128 bytes

The maximum length of container names and TimeSeries
subtype names is 128 bytes. Previously, the maximum
length of the names was 18 bytes.

“TSContainerCreate procedure” on page 7-83

“Creating a TimeSeries subtype” on page 3-6

Time series tables and containers can use non-default
page sizes

You can now store time series tables and containers in
dbspaces that use non-default page sizes. Previously, all
time series tables and containers had to be stored in
dbspaces with the default page size.

“TSContainerCreate procedure” on page 7-83

“Create the database table” on page 3-6

Faster deleting of time series data

When you delete time series data, the performance is
faster than in previous releases. You can delete large
amounts of time series data in less time.

xii IBM Informix TimeSeries Data User's Guide

Table 2. What's New in IBM Informix TimeSeries Data User's Guide for 11.70.xC3 (continued)

Overview Reference

Informix TimeSeries Plug-in for OAT

The IBM Informix TimeSeries Plug-in for OpenAdmin
Tool (OAT) provides a graphical interface for reviewing
and administering the TimeSeries data type provided by
the Informix TimeSeries extension. A time series is a set
of data recorded as it varies over time.

With the TimeSeries plug-in, you can monitor the
database objects related to your time series:

v Review the TimeSeries subtypes, containers, and
calendars that are used for the time series data in a
database.

v Review the tables and indexes that contain TimeSeries
subtypes.

v Review the columns and virtual tables for tables that
contain TimeSeries subtypes.

v Monitor the percentage of the space that is used in the
containers and in the dbspaces for the containers.

You can also create and drop containers.

Table 3. What's New in IBM Informix TimeSeries Data User's Guide for 11.70.xC1

Overview Reference

Time series data types and functions are built-in and
automatically registered

You can use the data types and functions of the
TimeSeries extension (which was formerly known as the
TimeSeries DataBlade® module) without performing some
of the previously required prerequisites tasks, such as
installing or registering the TimeSeries extension.

If you are using a previous version of the IBM Informix
TimeSeries DataBlade Module, when you install Informix
11.70, the TimeSeries extension is installed and registered
automatically. You do not need to perform any actions to
upgrade the DataBlade module, nor do you need to
unload and load time series data during migration.

New editions and product names

IBM Informix Dynamic Server editions were withdrawn
and new Informix editions are available. Some products
were also renamed. The publications in the Informix
library pertain to the following products:

v IBM Informix database server, formerly known as IBM
Informix Dynamic Server (IDS)

v IBM OpenAdmin Tool (OAT) for Informix, formerly
known as OpenAdmin Tool for Informix Dynamic
Server (IDS)

v IBM Informix SQL Warehousing Tool, formerly known
as Informix Warehouse Feature

For more information about the Informix product family,
go to http://www.ibm.com/software/data/informix/.

Introduction xiii

http://www.ibm.com/software/data/informix/

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access or install the product documentation from the Quick Start CD that
is shipped with Informix products. To get the most current information, see the
Informix information centers at ibm.com®. You can access the information centers
and other Informix technical information such as technotes, white papers, and IBM
Redbooks® publications online at http://www.ibm.com/software/data/sw-
library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

xiv IBM Informix TimeSeries Data User's Guide

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 4. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

Introduction xv

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

xvi IBM Informix TimeSeries Data User's Guide

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

Introduction xvii

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xviii IBM Informix TimeSeries Data User's Guide

http://www.ibm.com/planetwide/

Chapter 1. Informix TimeSeries solution

Database administrators and applications developers use the Informix TimeSeries
solution to store and analyze time series data.

A time series is a set of time-stamped data. Types of time series data vary
enormously, for example, electricity usage that is collected from smart meters,
stock price and trading volumes, ECG recordings, seismograms, and network
performance records. The types of queries performed on time series data typically
include a time criteria and often include aggregations of data over a longer period
of time. For example, you might want to know which day of the week your
customers use the most electricity.

The Informix TimeSeries solution provides the following capabilities to store and
analyze time series data:
v Define the structure of the data
v Control when and how often data is accepted:

– Set the frequency for regularly spaced records
– Handle arbitrarily spaced records

v Control data storage:
– Specify where to store data
– Change where data is stored
– Monitor storage usage

v Load data from a file or individually
v Query data:

– Extract values for a time range
– Find null data
– Modify data
– Display data in standard relational format

v Analyze data:
– Perform statistical and arithmetic calculations
– Aggregate data over time
– Make data visible or invisible
– Find the intersection or union of data

The Informix TimeSeries solution stores time series data in a special format within
a relational database in a way that takes advantage of the benefits of both
non-relational and standard relational implementations of time series data.

The Informix TimeSeries solution is more flexible than non-relational time series
implementations because the Informix TimeSeries solution is not specific to any
industry, is easily customizable, and can combine time series data with information
in relational databases.

The Informix TimeSeries solution loads and queries time stamped data faster,
requires less storage space, and provides more analytical capability than a standard
relational table implementation. Although relational database management systems
can store time series data for standard types by storing one row per time-stamped

© Copyright IBM Corp. 2006, 2011 1-1

data entry, performance is poor and storage is inefficient. The Informix TimeSeries
solution saves disk space by not storing duplicate information from the columns
that do not contain the time-based data. The Informix TimeSeries solution loads
and queries time series data quickly because the data is stored on disk in order by
time stamp and by source.

For example, the following table shows a relational table that contains time-based
information for two sources, or customers, whose identifiers are 1000111 and
1046021.

Table 1-1. Relational table with time-based data

Customer Time Value

1000111 2011-1-1 00:00:00.00000 0.092

1000111 2011-1-1 00:15:00.00000 0.082

1000111 2011-1-1 00:30:00.00000 0.090

1000111 2011-1-1 00:45:00.00000 0.085

1046021 2011-1-1 00:00:00.00000 0.041

1046021 2011-1-1 00:15:00.00000 0.041

1046021 2011-1-1 00:30:00.00000 0.040

1046021 2011-1-1 00:45:00.00000 0.041

The following table shows a representation of the same data stored in an Informix
TimeSeries table. The information about the customer is stored once. All the
time-based information for a source is customer together in a single row.

Table 1-2. Informix TimeSeries table with time-based data

Customer Time Value

1000111 2011-1-1 00:00:00.00000 0.092

2011-1-1 00:15:00.00000 0.082

2011-1-1 00:30:00.00000 0.090

2011-1-1 00:45:00.00000 0.085

1046021 2011-1-1 00:00:00.00000 0.041

2011-1-1 00:15:00.00000 0.041

2011-1-1 00:30:00.00000 0.040

2011-1-1 00:45:00.00000 0.041

The following table summarizes the advantages of using the Informix TimeSeries
solution for time-based data over using a standard relational table.

1-2 IBM Informix TimeSeries Data User's Guide

Table 1-3. Comparison of time series data stored in a standard relational table and in an
Informix TimeSeries table

Standard relational table issue Informix TimeSeries table benefit

Storage space Stores one row for every record.
Duplicates the information in
non-time series columns. Stores
timestamps. Null data takes as
much space as actual data. The
index typically includes the time
stamp column and several other
columns.

Significant reduction in disk space
needed to store the same data. The
index size on disk is also smaller.

Stores all time series data for a
single source in the same row. No
duplicate information. Calculates
instead of stores the time stamp.
Null data does not require any
space. The index does not include
the time stamp column.

Query speed Data for a single source can be
intermixed on multiple data pages
in no particular order.

Queries that use a time criteria
require many fewer disk reads and
significantly less I/O. Data is
loaded very efficiently.

Data for a single source is stored
together in time stamp order.

Query
complexity

Queries that aggregate data or
apply an expression can be difficult
or impossible to perform with SQL.
Much of the query logic must be
provided by the application.

Less application coding and faster
queries.

Allows complex SQL queries and
analysis. Allows custom analytics
written using the TimeSeries API.

Informix TimeSeries solution architecture
The Informix TimeSeries solution consists of built-in data types and routines. You
can use other Informix tools to administer and load time series data.

The Informix database server includes the following functionality for managing
time series data:
v The TimeSeries data type and other related data types to configure the data.
v TimeSeries SQL routines to run queries on time series data.
v TimeSeries API routines and Java classes to use in your applications to

manipulate and analyze time series data.

You can use IBM Data Studio or IBM Optim Developer Studio along with the IBM
Informix TimeSeries Plug-in for Data Studio to load data from a file into an
Informix TimeSeries table.

You can use the IBM OpenAdmin Tool (OAT) for Informix along with the Informix
TimeSeries Plug-in for OAT to administer database objects that are related to a
time series.

The following illustration shows how the Informix TimeSeries solution and the
related products interact.

Chapter 1. Informix TimeSeries solution 1-3

Time series concepts
A time series as implemented by the Informix TimeSeries solution contains
information about how the data is stored in the table column and additional
information about valid data intervals and where the data is stored on disk.

You should understand the following concepts when you create a time series:

TimeSeries data type
The data type that defines the structure for the time series data.

Element
A set of time series data for one time stamp. For example, a value of 1.01
for the time stamp 2011-1-1 00:45:00.00000 is an element for customer 1001.

Timepoint
The time period for a single element: for example, 15 minutes. In some
industries, a timepoint is referred to as an interval.

Origin
The element in the time series that has the earliest time stamp.

Calendar
A set of valid timepoints in a time series, as specified by the calendar
pattern.

Calendar pattern
The length of the timepoint and which timepoints are valid. For example,
if you collect electricity usage information every 15 minutes, the calendar
pattern specifies that timepoints have a length of 15 minutes, and because
you want to collect information continuously, all timepoints are valid.

Container
A named portion of a dbspace that contains the time series data for a

Informix
database server

Client connectivity and
application development

Client
Application

Client
Application

Client
Application

Data loading

IBM Data Studio
Informix TimeSeries Plug-in for Data Studio

Administration

IBM OpenAdmin Tool for Informix
Informix TimeSeries Plug-in for OATTimeSeries data types

TimeSeries SQL routines
TimeSeries API routines
TimeSeries Java classes

Figure 1-1. Informix TimeSeries architecture

1-4 IBM Informix TimeSeries Data User's Guide

specific TimeSeries data type and regularity. The data is ordered by time
stamp. You can control in which containers your time series data is stored.

Regularity
Whether a time series has regularly spaced timepoints or arbitrarily spaced
timepoints.

Virtual table
Virtual tables display a view of the time series data in a relational format
without duplicating the data. You can use standard SQL statements on
virtual tables to select and insert data.

When you use a calendar and calendar pattern to specify when time series
elements are valid, you prevent the storage of null elements for times when data
cannot be valid. For example, if you want to track stock data, you would define
your calendar to accept elements for timepoints only during trading hours. Also,
you can easily find which elements are missing for valid timepoints by querying
for null elements. If you do have missing elements, in many cases, the missing
elements do not take up space on disk.

You can also aggregate information by selecting data and changing the calendar for
the results of the query. For example, if you collect electricity usage information
every 15 minutes, but you want to know the total usage per customer per day, you
can use a daily calendar to aggregate the data.

TimeSeries data type technical overview
The TimeSeries data type defines the structure for the time series data within a
single column in the database.

The TimeSeries data type is a constructor data type that groups together a
collection of ROW data type in time stamp order. A ROW data type consists of a
group of named columns. The rows in a TimeSeries data type, called elements,
each represent one or more data values for a specific time stamp. The elements are
ordered by time stamp. The time stamp column must be the first column in the
TimeSeries ROW data type and must be of type DATETIME YEAR TO
FRACTION(5). Time stamps must be unique; multiple entries in a single
TimeSeries cannot have the same time stamp.

The following illustration shows the structure of a TimeSeries data type that is
similar to the one used in the stores_demo database.

Chapter 1. Informix TimeSeries solution 1-5

The figure shows the ts_data table, which has two columns: the location_id
column that identifies the source of the time series data, and the reads column that
contains the time series data. The reads column has a data type of
TimeSeries(meter_data). The TimeSeries(meter_data) data type has two columns:
tstamp and value. The tstamp column, as the first column in a TimeSeries data
type, has a data type of DATETIME YEAR TO FRACTION(5). The value column
has a data type of DECIMAL. For each source of data, the reads column contains
multiple rows of time series data, which are ordered by time stamp. All time series
data for a particular source is located in the same row of the table.
Related concepts:
“TimeSeries data type” on page 2-5
Related tasks:
“Creating a TimeSeries subtype” on page 3-6

Regular time series
A regular time series stores data for regularly spaced timepoints. A regular time
series is appropriate for applications that record entries at predictable timepoints,
such as electricity power usage data that is recorded by smart meters every 15
minutes.

location_id reads

1000111 TimeSeries(meter_data)

1046021 TimeSeries(meter_data)

1090954 TimeSeries(meter_data)

tstamp (DATETIME YEAR TO
FRACTION(5)

value (DECIMAL)

2010-11-10 00:00:00.00000 0.092

Time series data for ID 1000111

2010-11-10 00:15:00.00000 0.082

2010-11-10 00:30:00.00000 0.090

... ...

2010-11-10 00:00:00.00000 0.041

Time series data for ID 1046021

2010-11-10 00:15:00.00000 0.041

2010-11-10 00:30:00.00000 0.040

... ...

2010-11-10 00:00:00.00000 0.026

Time series data for ID 1090954

2010-11-10 00:15:00.00000 0.035

2010-11-10 00:30:00.00000 0.062

... ...

Database table ts_data

tstamp (DATETIME YEAR TO
FRACTION(5)

value ()DECIMAL

tstamp (DATETIME YEAR TO
FRACTION(5)

value ()DECIMAL

Figure 1-2. TimeSeries data type architecture

1-6 IBM Informix TimeSeries Data User's Guide

Regular time series are stored very efficiently because, instead of storing the full
time stamp of an element, regular time series store the offset of the element. The
offset of an element is the relative position of the element to the origin of the time
series. The time stamp for an element is computed from its offset. For example,
suppose you have a calendar that has an interval duration of a day. The first
element, or origin, is 2011-01-02. The offset for the origin is 0. The offset for the
sixth element is 5. The time stamp for the sixth element is the origin plus 5 days:
2011-01-07. The following table shows the relationship between elements and
offset.

Table 1-4. Offsets for a daily time series

Day of
the
month 1 2 3 4 5 6 7

Offset 0 1 2 3 4 5

You can use TimeSeries SQL routines to convert between a time stamp and an
offset. Some TimeSeries SQL routines require offset values as arguments. For
example, you can return the 100th element in a time series with the GetNthElem
function.

In a regular time series, each interval between elements is the same length. Regular
elements persist only for the length of an interval as defined by the calendar
associated with the time series. If a value for a timepoint is missing, that element is
null. You can update null elements.
Related reference:
“Create a time series” on page 3-11

Irregular time series
An irregular time series stores data for a sequence of arbitrary timepoints. Irregular
time series are appropriate when the data arrives unpredictably, such as when the
application records every stock trade or when electricity meters record random
events such as low battery warnings or low voltage indicators.

Irregular time series store the time stamps for each element instead of storing
offsets because the interval between each element can be a different length.
Irregular elements persist until the next element by default and cannot be null. For
example, if you query for the value of a stock price at noon but the last recorded
trade was at 11:59 AM, the query returns the value of the price at 11:59 AM,
because that value is the nearest value equal to or earlier than noon. However, you
can also create a query to return null if the specified time stamp does not exactly
match the time stamp of an element. For example, if you query for the price that a
stock traded for at noon, but the stock did not have a trade at noon, the query
returns a null value.
Related reference:
“Create a time series” on page 3-11

Calendar
Every time series is associated with a calendar. A calendar defines a set of valid
times for elements in a time series. A calendar determines when and how often
entries are accepted.

Chapter 1. Informix TimeSeries solution 1-7

Each calendar has a calendar pattern of timepoints that are either valid or invalid,
with the beginning of the calendar pattern specified by the calendar pattern start
date. Data is recorded during valid intervals but not during invalid intervals. The
calendar pattern also indicates the time unit in which the interval is measured: for
example, second, minute, hour, day, or month. The interval size specified in the
calendar pattern is not necessarily the same as the size of the timepoint. For
example, you can create a calendar pattern that specifies an interval length of
minute and specifies that the pattern has one minute valid and 14 minutes invalid.
The resulting timepoint is 15 minutes long.

Suppose you want to collect data once a day Monday through Friday. The
following table illustrates when data collection is valid, or on, and invalid, or off.
The calendar pattern has an interval of a day, has a calendar start date on a
Sunday, and specifies one day off, five days on, and one day off.

Table 1-5. When data collection is on or off

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Off On On On On On Off

You can use a predefined calendar or define your own calendar. The seven
predefined calendars each have a different interval duration that ranges from one
minute to one month. All the predefined calendars start at the beginning of 2011,
but you can alter the start date. You create a calendar by inserting a row into the
CalendarTable table in the format of a Calendar data type. You can include the
calendar pattern in the calendar definition, or create a separate calendar pattern by
inserting a row into the CalendarPatterns table in the format of a CalendarPattern
data type.

You can use calendar and calendar pattern routines to manipulate calendars and
calendar patterns. For example, you can create the intersection of calendars or
calendar patterns.
Related reference:
Chapter 2, “Data types and system tables,” on page 2-1
Chapter 5, “Calendar pattern routines,” on page 5-1
Chapter 6, “Calendar routines,” on page 6-1

Time series data storage
Time series data is stored in a container unless the data remains small enough to fit
in a single row of a table. Time series containers are created automatically when
they are needed.

A container exists in a dbspace, which is a logical grouping of physical storage
(chunks). When a time series is stored in a container, the data is stored
contiguously and is retrieved with a minimum number of disk reads.

The following illustration shows the architecture of containers in the database. A
database usually contains multiple dbspaces. A dbspace can contain multiple
containers along with tables and free space. A container can contain data for one or
more sources, for example, customers. The time series data for a particular source
is stored on pages in time stamp order.

1-8 IBM Informix TimeSeries Data User's Guide

When you insert data into a time series and you do not specify a container name,
the database server checks for one or more containers that are appropriately
configured for the time series. If any matching containers exist, the container with
the most free space is assigned to the time series. If no matching containers exist,
the database server creates a matching container in each of the dbspaces in which
the table is stored. For example, if a table is not fragmented and is therefore stored
in a single dbspace, one container is created. If a table is fragmented into three
dbspaces, three containers are created. All containers that are created automatically
by the database server belong to the default container pool, called autopool. A
container pool is a group of containers.

You can store time series data in a different dbspace than the table is stored in by
creating containers and then referencing them when you insert data into the time
series. You can specify a container pool in which to store time series data by using
the TSContainerPoolRoundRobin function or create your own container pool
policy function.
Related concepts:
“Planning for data storage” on page 1-10
Related tasks:
“Managing containers” on page 3-7
“Monitoring time series containers” on page 3-8

Getting started with the Informix TimeSeries solution
Before you can create a time series, decide on the properties of the time series and
where to store the time series data. After you create a time series, you load the
data and query the data.

Planning for creating a time series
When you create a time series, you define a set of properties.

The following table lists the properties of a time series.

Table 1-6. Properties of a time series

Time series property Description How to define

Timepoint size How long a timepoint lasts. Define a calendar pattern.

When timepoints are valid The times when elements can
be accepted.

Define a calendar pattern.

Data in the time series The time stamp and the
other data that is collected
for each time stamp.

Create a TimeSeries data
type.

Database dbspaces dbspaces1 container1

Data storage
on disk

Multiple dbspaces
in the database

Data storage in dbspace1 Data pages in container1

data for
customer1

data for
customer2

data for
customer3

container 1 other tables

container 2 free space

Figure 1-3. Architecture of a container in a database

Chapter 1. Informix TimeSeries solution 1-9

Table 1-6. Properties of a time series (continued)

Time series property Description How to define

Time series table The table that contains the
TimeSeries data type
column.

Create a table with a
TimeSeries column.

Origin The earliest timestamp of
any element

Create a time series.

Regularity Whether the timepoints are
evenly spaced or arbitrarily
spaced.

Create a regular or an
irregular time series.

Metadata Optional information
included with the time series
that can be retrieved by
routines.

Create a time series with
metadata.

Related tasks:
“Defining a calendar” on page 3-5
Related reference:
“Create a time series column” on page 3-6
“Create a time series” on page 3-11

Planning for data storage
Time series data is stored in containers within dbspaces. You can use the default
containers that are created in the same dbspace as the table into which you are
loading data or you can create containers in separate dbspaces. You can estimate
how much storage space you need.

If you are loading high volumes of data, you can improve the performance of
loading the data if you use multiple dbspaces. Similarly, if you have multiple
TimeSeries columns in the same table, consider creating additional containers that
store data in different dbspaces.

Estimate the amount of storage space you need by using the following formula:

space = [primary_key + index_entry + (time_series_columns x elements)] x (table_rows) +
B-tree_size

B-tree_size
The size of the B-tree index, not including the index entries. Typically, the
B-tree index is approximately 2% of the size of the data for a regular time
series and is approximately 4% of the size of the data for an irregular time
series.

elements
The number of elements of time series data in each row. For example, the
ts_data table in stores_demo database has 8640 elements for each of the 28
rows.

index_entry
The size of an index entry, which is approximately the size of the primary
key columns plus 4 bytes.

primary_key
The size of the data types of the primary key columns and other non-time
series columns in the time series table.

1-10 IBM Informix TimeSeries Data User's Guide

table_rows
The number of rows in the time series table.

time_series_columns
The size of the data types of the columns in the TimeSeries data type. For
regular time series, do not include the size of the time stamp column. For
irregular time series, include the size of the time stamp column. The
CHAR data type requires an additional 4 bytes when it is included in a
TimeSeries data type.

The equation is a guideline. The amount of required space can be affected by other
factors, such as the small amount of overhead for the slot table and the null
bitmap for each element.

The equation might underestimate the amount of required space if the row size of
your time series data is very small. The maximum number of elements allowed on
a data page is 254. If the row size of your time series data is very small, the page
might contain the maximum number of elements but have additional space,
especially if you are not using a 2 K page size.
Related concepts:
“Time series data storage” on page 1-8
Related tasks:
“Managing containers” on page 3-7

Planning for loading time series data
When you plan to load time series data, you must choose the loading method and
where to store the data on disk.

The following table summarizes the methods of loading data that you can use,
depending on how much data you need to load and the format of the data.

Table 1-7. Data loading methods

Data to load Methods

Bulk data from a file that
is created by your data
collection application

Use IBM Data Studio and the IBM Informix TimeSeries Plug-in
for Data Studio to create a load job for a delimited file.

Create a virtual table and load data that is in standard relational
format.

Use the BulkLoad function. The file must be specifically
formatted according to the BulkLoad function requirements.

Alter or add one or more
elements to edit incorrect
data or insert missing
values

Use the InsElem function to insert an element or the PutElem
function to update an element. Use the InsSet function to insert
multiple elements or the PutSet function to update multiple
elements.

Create a virtual table and use a standard SQL INSERT
statement. You can add or update elements.

Chapter 1. Informix TimeSeries solution 1-11

Related concepts:
Chapter 4, “Virtual tables for time series data,” on page 4-1
Related tasks:
“Loading data with the IBM Informix TimeSeries Plug-in for Data Studio” on page
3-16
“Loading data from a file into a virtual table” on page 3-16
Related reference:
“Load data with BulkLoad” on page 3-17
“Load small amounts of data with functions” on page 3-18

Planning for accessing time series data
You use SQL functions, Java classes and methods, and C API routines to access
and manipulate time series data.

Call routines from within SQL statements or from within Java or C applications on
either the client or the server computer.

Use TimeSeries SQL routines to perform the following types of operations to access
or manipulate time series data:
v Manipulate individual elements or sets of elements
v Perform statistical and arithmetic calculations
v Aggregate data
v Convert between time stamps and offsets
v Extract values for a time interval
v Find or delete null elements
v Remove older data by deleting a range of elements

The Java classes and methods and API routines perform many of the same tasks
that the SQL routines do for time series data. You can use Java classes and
methods in applications written in Java. You can use the API routines in
applications written in C.

Create virtual tables to view and query time series data by using standard SQL
statements. You can display the results of TimeSeries SQL functions on time series
data in virtual tables.

You can output time series data in XML format to display in applications.
Related concepts:
Chapter 4, “Virtual tables for time series data,” on page 4-1
Related reference:
Chapter 7, “Time series SQL routines,” on page 7-1
Chapter 8, “Time series Java class library,” on page 8-1
Chapter 9, “Time series API routines,” on page 9-1
“TSToXML function” on page 7-108

Hardware and software requirements
Before you create a time series, ensure that you have the required hardware and
software, a supported operating system, and that you understand the restrictions
for SQL statements and data replication.

1-12 IBM Informix TimeSeries Data User's Guide

The Informix TimeSeries solution might not be supported on all platforms
supported by Informix database servers. See the system requirements for the
Informix TimeSeries solution at https://www.ibm.com/support/
docview.wss?rs=630&uid=swg27020937.

Installing the IBM Informix TimeSeries Plug-in for Data Studio
The IBM Informix TimeSeries Plug-in for Data Studio is included with the database
server installation. Install the TimeSeries plug-in by specifying its location from
within IBM Data Studio.

IBM Data Studio version or IBM Optim Developer Studio, version 2.2.1 or later,
must be installed and running.

To install the TimeSeries plug-in:
1. Move the plug-in file, ts_datastudio.zip, from the $INFORMIXDIR/extend/

TimeSeries.version/plugin directory to the computer where you are running
Data Studio.

2. From Data Studio, choose Help > Software Updates.
3. From the Available Software tab, click Add Site and then click Archive to

select the plug-in file.
4. Select the plug-in directory from the Available Software list and click Install.
5. After the installation is complete, restart Data Studio.
6. To verify that the plug-in is installed, select Help > About IBM Data Studio

and click Plugin Details. Look for Informix TimeSeries Loader in the Plug-in
Name column.

Related tasks:
“Loading data with the IBM Informix TimeSeries Plug-in for Data Studio” on page
3-16

Database requirements for time series data
The database in which you implement the Informix TimeSeries solution must
conform to requirements.

The database containing the time series data must meet the following
requirements:
v The database must be logged.
v The database must not be defined as an ANSI database.

SQL restrictions for time series data
Some SQL statements cannot operate on time series data.

You cannot use the following SQL statements or keywords on TimeSeries columns:
v Boolean operators (<, <=, <>, >=, or >)
v SELECT UNIQUE statement
v GROUP BY or ORDER BY clauses
v FRAGMENT BY clause
v PRIMARY KEY clause

You cannot use the MERGE statement on a table with time series data.

You cannot use the ALTER TYPE statement on the TimeSeries data type.

Chapter 1. Informix TimeSeries solution 1-13

https://www.ibm.com/support/docview.wss?rs=630&uid=swg27020937
https://www.ibm.com/support/docview.wss?rs=630&uid=swg27020937

Replication of time series data
You have limited options for replicating time series data.

You can replicate time series data only between a High-Availability Data
Replication (HDR) primary server and a read-only secondary server. Because some
time series calendar and container information is kept in memory, you must stop
replication before you can drop and then recreate your calendar or container
definitions with the same names but different definitions.

You cannot replicate time series data with the following types of servers and
utilities:
v HDR secondary servers that allow updates
v Remote stand-alone secondary servers
v Shared disk secondary servers
v Enterprise Replication
v Change Data Capture API

Time series global language support
Time series data has limited support for non-default locales.

Datetime data

The DATETIME data type used in the TimeSeries subtype must be in the default
U.S. format:
"yyyy-mo-dd hh:mm:ss:fffff"

yyyy Year, expressed in digits

mo Month of year, expressed in digits

dd Day of month, expressed in digits

hh Hour of day, expressed in digits

mm Minute of hour, expressed in digits

ss Seconds of minute, in digits

fffff Fraction of a second, in digits

Character data

Character I/O is not GLS-compliant. You can convert time series data only to
character strings that are in the default U.S. locale. You can use the BulkLoad
function only on character data that is in the default U.S. locale.

However, the following character strings can use any locale and can contain
multibyte characters:
v Character fields in a TimeSeries data type
v Column names
v Table names
v Calendar names
v Calendar pattern names
v Container names

1-14 IBM Informix TimeSeries Data User's Guide

Numeric data

Floating point data must use the default U.S. format:
v The ASCII period (.) is the decimal separator.
v The ASCII plus (+) and minus (-) signs must be used.

Decimal and money data types are GLS-compliant except that the ASCII plus (+)
and minus (-) signs must be used.

Sample smart meter data
If you want to practice querying time series data before you define and load your
time series, you can use the sample data in the stores_demo database.

The following tables in the stores_demo database contain time series data based on
electricity usage data collected by smart meters:

Customer_ts_data
Contains customer numbers and location references.

ts_data_location
Contains spatial location information.

ts_data
Contains location references and smart meter time series data.

Related concepts:

Command-line syntax (DB-Access Guide)
Related reference:

The stores_demo Database Map (SQL Reference)

Setting up stock data examples
Set up the stock data examples. Use the sample queries and sample programs to
practice handling time series data.

To install the sample database schema and to compile the sample C programs:
1. Set the following environment variables:

v MACHINE=machine

v PROD_VERSION=version

v USERFUNCDIR=$INFORMIXDIR/extend/TimeSeries.version/examples

The version is the internal TimeSeries version number, for example 5.00.UC1.
Check the installation directory for the correct version number. The machine is
the name of the operating system, as listed in the $INFORMIXDIR/incl/dbdk/
makeinc file, for example, linux.

2. Run the examples_setup.sql command from the $INFORMIXDIR/extend/
TimeSeries.version/examples directory: make -f Makefile
MY_DATABASE=dbname The dbname is the name of a database.

Sample queries and programs are located in the same examples directory. Precede
queries with the BEGIN WORK statement and follow them with the ROLLBACK
WORK statement.

Chapter 1. Informix TimeSeries solution 1-15

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dba.doc/ids_dba_015.htm#ids_dba_015
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_324.htm#ids_sqr_324

1-16 IBM Informix TimeSeries Data User's Guide

Chapter 2. Data types and system tables

Specialized data types and system tables handle time series data.

The data types for time series data are:
v CalendarPattern

v Calendar

v TimeSeries

The system tables for time series data are:
v CalendarPatterns

v CalendarTable

v TSInstanceTable

v TSContainerTable

These system tables are in the sysmaster database.

When a calendar is inserted into the CalendarTable table, it draws information
from the CalendarPatterns table. The database server refers only to CalendarTable
for calendar and calendar pattern information; changes to the CalendarPatterns
table have no effect unless CalendarTable is updated or recreated.

TSInstanceTable contains information about all time series.
Related concepts:
“Calendar” on page 1-7

CalendarPattern data type
The CalendarPattern data type defines the interval duration and the pattern of
valid and invalid intervals in a calendar pattern.

The CalendarPattern data type is an opaque data type that has the following
format:

�� �

,

{ num_intervals on } ,
off

interval ��

© Copyright IBM Corp. 2006, 2011 2-1

Table 2-1. CalendarPattern data type parameter values

Value Description

interval One of the following interval names:

v Second

v Minute

v Hour

v Day

v Week

v Month

v Year

num_intervals The number of interval units that are either valid intervals for time
series data, if followed by on, or invalid intervals for time series
data, if followed by off. The maximum number of interval units,
either on or off, in a calendar pattern is 2035. Internal calculations
take longer to perform if you use a long calendar pattern.

Usage

The information inside the curly brackets is the pattern specification. The pattern
specification has one or more elements consisting of n, the number of interval
units, and either on or off, to signify valid or invalid intervals. Elements are
separated by commas.

The calendar pattern length is how many intervals before the calendar pattern
starts over; after all timepoints in the pattern specification have been exhausted,
the pattern is repeated. For this reason, a weekly calendar pattern with daily
intervals must contain exactly seven intervals, a daily calendar pattern with hourly
intervals must contain exactly 24 intervals, and so on. When the calendar pattern
begins is specified by the calendar pattern start date.

For example, a calendar could be built around a normal five-day work week, with
the time unit in days, and Saturday and Sunday as days off. Assuming that the
calendar pattern start date is for a Sunday, the calendar pattern would be:
{ 1 off, 5 on, 1 off }, day

In the next example, the calendar is built around the same five-day work week,
with the time unit in hours:
{ 32 off, 9 on, 15 off, 9 on, 15 off, 9 on, 15 off,
9 on, 15 off, 9 on, 31 off }, hour

Both examples have a calendar pattern length of seven days, or one week.

Note: Make sure that your calendar pattern length is correct or your time series
data might not match your requirements. For example, the following pattern looks
like it should repeat every week, but the pattern repeats every six days because the
intervals add up to only six days:
{ 1 off, 4 on, 1 off }, day

You can manage exceptions to your calendar pattern by hiding elements for which
there is no data by using the HideElem function.

The calendar pattern is stored in the CalendarPatterns table and can be used or
reused in several calendars.

2-2 IBM Informix TimeSeries Data User's Guide

Calendar patterns can be combined using functions that form the Boolean AND, OR, and NOT of the
calendar patterns. The resulting calendar patterns can be stored in a calendar pattern table or used as
arguments to other functions.

You can use the calendar pattern interval with the WithinR and WithinC functions to search for data
around a specified timepoint. The WithinR function performs a relative search. Relative searches search
forward or backward from the starting timepoint, traveling the given number of intervals into the future
or past. The WithinC function performs a calibrated search. A calibrated search proceeds both forward and
backward to the interval boundaries surrounding the given starting timepoint.

Example

The following statement creates a pattern named hour that has a timepoint every hour:
INSERT INTO CalendarPatterns

VALUES(’hour’, ’{1 on} hour’);

The following statement creates a pattern named fifteen_min that has a 15 minute timepoint:
INSERT INTO CalendarPatterns

VALUES(’fifteen_min’, ’{1 on, 14 off} minute’);

Related concepts:
“Calendar data type”
“CalendarPatterns table” on page 2-7
Related tasks:
“Defining a calendar” on page 3-5
Related reference:
“GetInterval function” on page 7-43
“WithinC and WithinR functions” on page 7-116
“HideElem function” on page 7-55
Chapter 5, “Calendar pattern routines,” on page 5-1

Calendar data type
The Calendar data type controls the times at which time series data can be stored.

The Calendar data type is an opaque data type that is composed of:
v A starting time stamp
v A calendar pattern
v A calendar pattern starting time stamp

For regular time series, calendars are also used to convert the time periods of
interest to offsets of values in the vector, and vice versa.

The input format for the Calendar data type is a quoted text string.

�� ' startdate (start_date)
pattstart (pattern_date)

pattstart (pattern_date)

, �

� pattern (calendar_pattern)
pattname (pattern_name)

' ��

Chapter 2. Data types and system tables 2-3

Table 2-2. Calendar data type parameter values

Value Data type Description

start_date DATETIME YEAR TO
FRACTION(5)

Calendar start date.

If you do not specify a start date, the calendar
pattern start date is used.

The calendar start date does not affect the
origin of the time series. The origin of the time
series specifies the earliest date for elements in
the time series. The origin can be prior to the
calendar start date.

pattern_date DATETIME YEAR TO
FRACTION(5)

Calendar pattern start date.

If both the calendar start date and the pattern
start date are included, the pattern start date
must be the same as or later than the calendar
start data by a number of intervals that is less
than or equal to the number of interval lengths
in the pattern length.

If you do not specify a calendar pattern start
date, the calendar start date is used.

calendar_pattern CalendarPattern Calendar pattern to use.

pattern_name VARCHAR Name of calendar pattern to use from
CalendarPatterns table.

Usage

To create a calendar, insert the keywords and their values into the CalendarTable
table.

Calendars can be combined using functions that form the Boolean AND, OR, and
NOT of the calendars. The resulting calendars can be stored in the CalendarTable
table or used as arguments to other functions.

You can define both a calendar pattern starting time and a calendar starting time if
the calendar and calendar pattern starting times do not coincide. The calendar start
date and the pattern start date can be one or more intervals apart, depending on
the calendar pattern length. For example, if the calendar pattern is {1 one 14 off},
the pattern length is 15. The calendar start date and the pattern start date can be
from 0 to 15 intervals apart.

Occasionally, if you have a regular time series, you will have elements for which
there is no data. For example, if you have a daily calendar you might not obtain
data on holidays. These exceptions to your calendar are marked as null elements.
However, you can hide exceptions so that they are not included in calculations or
analysis by using the HideElem function.

Examples

The following example inserts a calendar called yearcal01 into the CalendarTable
table:

2-4 IBM Informix TimeSeries Data User's Guide

insert into CalendarTable(c_name, c_calendar)
values (’yearcal01 ’,
’pattstart(2001-01-07 00:00:00.00000),
pattname(workweek_day)’);

This calendar and its pattern starts on January 7, 2001 and it uses a pattern named
workweek_day.

The following example creates an hourly calendar with the specified pattern:
insert into CalendarTable(c_name, c_calendar)

values(’my_cal’,
’startdate(2011-01-01 00:00:00.00000),
pattstart(2011-01-02 00:00:00.00000),
pattern({24 off, 120 on, 24 off}, hour)’);

The calendar start date is 24 hours prior to the pattern start date. The pattern
length is 168 hours, or one week.
Related concepts:
“CalendarTable table” on page 2-7
“CalendarPattern data type” on page 2-1
Related tasks:
“Defining a calendar” on page 3-5
Related reference:
Chapter 6, “Calendar routines,” on page 6-1
“HideElem function” on page 7-55

TimeSeries data type
The TimeSeries data type is constructed from a row data type and is a collection
of row subtypes.

To create a TimeSeries column, first you create the TimeSeries subtype, using the
CREATE ROW TYPE statement.

�� CREATE ROW TYPE subtype_name (�

� timestamp_field DATETIME YEAR TO FRACTION(5) , �

� �

,

field_name data_type
NOT NULL

) ; ��

Table 2-3. TimeSeries data type parameter values

Value Description

field_name The name of the field in the row data type. Must be unique for the
row data type. The number of fields in a subtype is not restricted.

Must follow the Identifier syntax. For more information, see
Identifier (SQL Syntax).

Chapter 2. Data types and system tables 2-5

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqls.doc/ids_sqs_1660.htm#ids_sqs_1660

Table 2-3. TimeSeries data type parameter values (continued)

Value Description

data_type Can be any data type except the following data types:

v SERIAL, SERIAL8, or BIGSERIAL data types

v Types that have Assign or Destroy functions assigned to them,
including large object types and some user-defined types

subtype_name The name of the TimeSeries subtype. Can be a maximum of 128
bytes.

Must follow the Identifier syntax. For more information, see
Identifier (SQL Syntax).

timestamp_field The name of the field that contains the time stamp. Must be
unique for the row data type.

Must follow the Identifier syntax. For more information, see
Identifier (SQL Syntax).

After you create the TimeSeries subtype, you create the table containing the
TimeSeries column using the CREATE TABLE statement. You can also use the
CREATE DISTINCT TYPE statement to define a new data type of type TimeSeries.

A TimeSeries column can contain either regular or irregular time series; you
specify regular or irregular when you create the time series.

The maximum allowable size for a single time series element is 32704 bytes.

You cannot put an index on a column of type TimeSeries.

After loading data into a TimeSeries column, run the following commands:
update statistics high for table tsinstancetable;

update statistics high for table tsinstancetable (id);

This improves performance for any subsequent load, insert, and delete operations.
Related concepts:
“TimeSeries data type technical overview” on page 1-5
Related tasks:
“Creating a TimeSeries subtype” on page 3-6
Related reference:
“Create the database table” on page 3-6
“Create a time series” on page 3-11

Time series return types
When a routine returns a time series, calendar information is preserved and, if
possible, threshold and container information is preserved.

Some functions that return a TimeSeries subtype require that the return value be
cast to a particular time series type. For functions like Clip, WithinC, and
WithinR, the return type is always the same as the type of the argument time
series, and no cast is required.

2-6 IBM Informix TimeSeries Data User's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqls.doc/ids_sqs_1660.htm#ids_sqs_1660
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqls.doc/ids_sqs_1660.htm#ids_sqs_1660

However, for other functions, such as AggregateBy, Apply, and Union, the type of
the resulting time series is not necessarily the same as a time series argument.
These functions require that their return types be cast to particular time series
types.

If a time series returned by one of these functions cannot use the container of the
original time series and a container name is not specified, the resulting time series
is stored in a container associated with the matching TimeSeries subtype and
regularity. If no matching container exists, a new container is created.

CalendarPatterns table
The CalendarPatterns table contains information about calendar patterns.

The CalendarPatterns table contains two columns: a VARCHAR(255) column
(cp_name) and a CalendarPattern column (cp_pattern).

To insert a calendar pattern into the CalendarPatterns table, use the INSERT
statement.
Related concepts:
“CalendarPattern data type” on page 2-1
Related tasks:
“Defining a calendar” on page 3-5

CalendarTable table
The CalendarTable table maintains information about the time series calendars
used by the database.

When you create a calendar, you insert a row into the CalendarTable table.The
CalendarTable table contains seven predefined calendars that you can use instead
of creating calendars. You can change a calendar by running an UPDATE statement
on a row in the CalendarTable table.

The following table contains the columns in the CalendarTable table.

Table 2-4. The CalendarTable table

Column name Data type Description

c_version INTEGER Internal. The version of the calendar. Currently, only
version 0 is supported.

c_refcount INTEGER Internal. Counts the number of in-row time series
that reference this calendar. The c_refcount column
is maintained by the Assign and Destroy functions
on TimeSeries. Rules attached to this table allow
updates only if c_refcount is 0; this restriction
ensures that referential integrity is not violated.

c_name VARCHAR(255) The name of the calendar.

c_calendar Calendar The Calendar type for the calendar.

c_id SERIAL Internal. The serial number of the calendar.

Chapter 2. Data types and system tables 2-7

Related concepts:
“Calendar data type” on page 2-3
Related tasks:
“Defining a calendar” on page 3-5
Related reference:
“Predefined calendars” on page 3-5

TSInstanceTable table
The TSInstanceTable table contains one row for each large time series, no matter
how many times it is referenced.

Time series smaller than the threshold you specify when you create them are
stored directly in a column and do not appear in the TSInstanceTable table.

Table 2-5. The columns in the TSInstanceTable table

Column name Data type Description

id SERIAL The serial number of the time series. This is the
primary key for the table. You can use the
InstanceId function to return this number (see
“InstanceId function” on page 7-59).

cal_id INTEGER The identification of the CalendarTable row for
the time series.

flags SMALLINT Stores various flags for the time series, including
one that indicates whether the time series is
regular or irregular.

vers SMALLINT The version of the time series.

container_name VARCHAR(128,1) The name of the container of the time series.
This is a reference to the primary key of the
TSContainerTable table.

ref_count INTEGER The number of different references to the same
time series instance.

The TSInstanceTable table is managed by the database server and users do not
modify it directly, nor should they normally be required to view it. Rows in this
table are automatically inserted or deleted when large time series are created or
destroyed.

2-8 IBM Informix TimeSeries Data User's Guide

Related reference:
“TSContainerCreate procedure” on page 7-83
“TSContainerDestroy procedure” on page 7-85
“TSContainerSetPool procedure” on page 7-88

TSContainerTable table
The TSContainerTable table has one row for each container.

Table 2-6. The columns in the TSContainerTable table

Column name Date type Description

name VARCHAR(128,1) The name of the container of the time series.
This is the primary key.

Containers that are created automatically are
named autopoolnnnnnnnn, where n is a
positive integer eight digits long with leading
zeros.

subtype VARCHAR(128,1) The name of the time series subtype.

partitionDesc tsPartitionDesec_t The description of the partition that is the
container.

flags INTEGER Stores flags to indicate:

v If the container is empty and always was
empty.

v If the time series is regular or irregular.

pool VARCHAR(128,1)
DEFAULT NULL

The name of the container pool to which the
container belongs. NULL indicates that the
container does not belong to a container pool.
The default container pool is named autopool.

The TSContainerTable table is managed by the database server and users do not
modify it directly, nor should they normally be required to view it. Rows in this
table are automatically inserted or deleted when containers are created or
destroyed.

You can create or destroy containers by using the TSContainerCreate and
TSContainerDestroy procedures, which insert and delete rows in the
TSContainerTable table. For more information, see “TSContainerCreate procedure”
on page 7-83 and “TSContainerDestroy procedure” on page 7-85.

To get a list of containers in the database, run the following query:
SELECT NAME FROM TSContainerTable;

To get a list of the containers in the default container pool, run the following
query:
SELECT NAME FROM TSContainerTable
WHERE pool = ’autopool’;

Related reference:
“TSContainerCreate procedure” on page 7-83
“TSContainerDestroy procedure” on page 7-85

Chapter 2. Data types and system tables 2-9

2-10 IBM Informix TimeSeries Data User's Guide

Chapter 3. Create and load a time series

Before you can load time series data into the database, you must configure
database objects specific to your time series.

To create and load a time series:
1. Create a calendar or choose a predefined calendar.
2. Create a time series column.
3. Optional. Create additional containers and container pools.
4. Create the time series.
5. Load data into the time series.

Example: Create and load a time series
This example shows how to create a TimeSeries data type, create a time series
table, create a time series by using the TSCreate procedure, and load data into the
time series by using the IBM Informix TimeSeries Plug-in for Data Studio.

Prerequisites:
v IBM Data Studio or IBM Optim Developer Studio must be running and the

Informix TimeSeries Plug-in for Data Studio must be installed. Data Studio can
be installed on a different computer than the database server.

v The stores_demo database must exist. You create the stores_demo database by
running the dbaccessdemo command.

In this example, you create a time series that contains electricity meter readings.
Readings are taken every 15 minutes. The table and TimeSeries data type you
create are similar to the examples in the ts_data table in the stores_demo database.
The following table lists the time series properties used in this example.

Table 3-1. Time series properties used in this example

Time series property Definition

Timepoint size 15 minutes

When timepoints are valid Every 15 minutes with no invalid times

Data in the time series The following data:

v Timestamp

v A decimal value representing electricity
usage

Time series table The following columns:

v A meter ID column of type BIGINT

v A TimeSeries data type column

Origin All meter IDs have an origin of 2010-11-10
00:00:00.00000

Regularity Regular

Metadata No metadata

Amount of storage space Approximately 1 MB (8640 timepoints for
each of the 28 rows)

© Copyright IBM Corp. 2006, 2011 3-1

Table 3-1. Time series properties used in this example (continued)

Time series property Definition

Where to store the data In an automatically created container in the
same dbspace as the stores_demo database,
which is in the root dbspace by default

How to load the data The TimeSeries plug-in

How to access the data A virtual table

Creating a TimeSeries data type and table

You create a TimeSeries data type with columns for the timestamp and the
electricity usage value. Then you create a table that has primary key column for
the meter ID and a TimeSeries column.

To create the TimeSeries data type and table:
1. Create a TimeSeries subtype named my_meter_data in the stores_demo

database by running the following SQL statement:
CREATE ROW TYPE my_meter_data(

timestamp DATETIME YEAR TO FRACTION(5),
data DECIMAL(4,3)

);

The timestamp column contains the time of the meter reading and the data
column contains the reading value.

2. Create a time series table named my_ts_data by running the following SQL
statement:
CREATE TABLE IF NOT EXISTS my_ts_data (
meter_id BIGINT NOT NULL PRIMARY KEY,
raw_reads TIMESERIES(my_meter_data)
) LOCK MODE ROW;

Related tasks:
“Creating a TimeSeries subtype” on page 3-6
Related reference:
“Create the database table” on page 3-6

Creating regular, empty time series

You need to define the properties of the time series for each meter ID by loading
the meter IDs into the time series table and creating a regular, empty time series
for each meter ID. You use the meter IDs from the ts_data table in the stores_demo
database to populate the meter_id column of your my_ts_data table.

To create regular, empty time series:
1. Create an unload file named my_meter_id.unl that contains the meter IDs from

the loc_esi_id column of the ts_data table by running the following SQL
statement:
UNLOAD TO "my_meter_id.unl" SELECT loc_esi_id FROM ts_data;

2. Create a temporary table named my_tmp and load the meter IDs into it by
running the following SQL statements:

3-2 IBM Informix TimeSeries Data User's Guide

CREATE TEMP TABLE my_tmp (
id BIGINT NOT NULL PRIMARY KEY);

LOAD FROM "my_meter_id.unl" INSERT INTO my_tmp;

You use this table in the next step to create a time series for each meter ID with
one SQL statement instead of running a separate SQL statement for each meter
ID.

3. Create a regular, empty time series for each meter ID that uses the pre-defined
calendar ts_15min by running the following SQL statement, which uses the
time series input function:
INSERT INTO my_ts_data

SELECT id,
"origin(2010-11-10 00:00:00.00000),calendar(ts_15min),
threshold(0),regular,[]"

FROM my_tmp;

Because you did not specify a container name, the time series for each meter ID
is stored in a container in the same dbspace in which the table resides. The
container is created automatically and is a member of the default container
pool.

Related reference:
“Create a time series with its input function” on page 3-13

Creating the data load file

You create a time series data load file by creating a virtual table based on the
ts_data table and then unloading some of the columns.

To create the data load file:
1. Create a virtual table based on the raw_reads time series column of the ts_data

table by running the following SQL statement:
EXECUTE PROCEDURE TSCreateVirtualTab("my_vt", "ts_data", 0, "raw_reads");

You use the virtual table to create a data load file.
2. Unload the data from the tstamp and value columns from the virtual table into

a file named my_meter_data.unl by running the following SQL statement:
UNLOAD TO my_meter_data.unl

SELECT loc_esi_id, tstamp, value
FROM my_vt;

Related reference:
“TSCreateVirtualTab procedure” on page 4-4

Loading the time series data

You use the TimeSeries plug-in to load the data from the my_meter_data.unl file
into the my_ts_data table. The TimeSeries plug-in has a cheat sheet that you use to
guide you through the process of loading the data.

To load time series data:
1. If you are using Data Studio or Optim Developer Studio on a different

computer, move the $INFORMIXDIR\my_meter_data.unl file to that computer
and start Data Studio or Optim Developer Studio.

Chapter 3. Create and load a time series 3-3

2. From the main menu, choose Help > Cheat Sheets, expand the TimeSeries
Data category, choose Load time-series data, and click OK.

3. Open the TimeSeries perspective.
4. Create a project area named my_test.
5. Create a record format and define the format of the data file. Name the record

format definition my_format and save it in the my_test project directory.
Define the following record formats:
v meter_id: choose the Big Integer type and specify the | (pipe) delimiter
v timestamp: choose the Timestamp type and specify the | (pipe) delimiter
v data: choose the Numeric type and specify the | (pipe) delimiter

6. Create the Informix table definition and define the columns of the table. Name
the table definition my_table and save the definition in the my_test project
directory. Define the following table columns:
v meter_id: choose the Big Integer type and specify that it is the primary key
v raw_reads: choose the TimeSeries type

7. Define the following subcolumns for the raw_reads column and then save the
project:
v timestamp: choose the Timestamp type
v data: choose the Numeric type

8. Create a table map named my_map and map the data formats of the data file
to the columns of the Informix table and then save it in the my_test project
directory.

9. Create a connection profile to the Informix database server named my_ifx.
10. Define and start a load job. Specify the following values:

v File format file: my_format.udrf
v Table definition file: my_table.tbl
v Mapping file: my_map.tblmap
v Data file: my_meter_data.unl
v Connection profile: my_ifx

When you click OK, the load job starts and you see the status.
Related tasks:
“Loading data with the IBM Informix TimeSeries Plug-in for Data Studio” on page
3-16

Accessing time series data through a virtual table

You create a virtual table to view the time series data in relational data format.

To create a virtual table based on the time series table:

Use the TSCreateVirtualTab procedure to create a virtual table named my_vt2 that
is based on the my_ts_data table by running the following SQL statement:
EXECUTE PROCEDURE TSCreateVirtualTab("my_vt2", "my_ts_data",

"calendar(ts_15min), origin(2010-11-10 00:00:00.00000)");

You can query the virtual table using standard SQL statements. For example, the
following query returns the first value for each of the 28 meter IDs:
SELECT * FROM my_vt2 WHERE timestamp = "2010-11-10 00:00:00.00000";

3-4 IBM Informix TimeSeries Data User's Guide

Related reference:
“TSCreateVirtualTab procedure” on page 4-4

Defining a calendar
A time series definition must include a calendar. A calendar includes a calendar
pattern, which can be defined separately or within the calendar definition.You can
create a calendar or choose a predefined calendar.

To create a calendar:
1. Optional: Create a named calendar pattern by inserting a row into the

CalendarPatterns table by using the format of the CalendarPattern data type.
A named calendar pattern is useful if you plan to use the same calendar
pattern in multiple calendars.

2. Create a calendar by inserting a row into the CalendarTable table by using the
format of the Calendar data type. Include either the name of an existing
calendar pattern or a calendar pattern definition.

To use a predefined calendar, specify one when you create a time series with the
TSCreate or TSCreateIrr function. You can change a predefined calendar to meet
your needs by updating the row for the calendar in the CalendarTable table.
Related concepts:
“CalendarPattern data type” on page 2-1
“Calendar data type” on page 2-3
“CalendarPatterns table” on page 2-7
“CalendarTable table” on page 2-7
“Planning for creating a time series” on page 1-9

Predefined calendars
You can use predefined calendars when you create a time series.

Predefined calendars are stored in rows in the CalendarTable table. You can
change a predefined calendar by updating the row for the calendar in the
CalendarTable table.

If you upgrade from a previous release of the Informix TimeSeries solution or the
IBM Informix TimeSeries DataBlade Module and an existing calendar is defined
with the same name as one of the predefined calendars, the existing calendar will
not be replaced by the predefined calendar.

The following table contains the properties of predefined calendars.

Table 3-2. Predefined calendars

Calendar name Interval duration Start date and time

ts_1min Once a minute 2011-01-01 00:00:00.00000

ts_15min Once every 15 minutes 2011-01-01 00:00:00.00000

ts_30min Once every 30 minutes 2011-01-01 00:00:00.00000

ts_1hour Once an hour 2011-01-01 00:00:00.00000

ts_1day Once a day 2011-01-01 00:00:00.00000

ts_1week Once a week 2011-01-02 00:00:00.00000

Chapter 3. Create and load a time series 3-5

Table 3-2. Predefined calendars (continued)

Calendar name Interval duration Start date and time

ts_1month Once a month 2011-01-01 00:00:00.00000

Related concepts:
“CalendarTable table” on page 2-7

Create a time series column

To create a time series column:
Related concepts:
“Planning for creating a time series” on page 1-9

Creating a TimeSeries subtype
To create a column of type TimeSeries, you must first create a row subtype to
represent the data held in each element of the time series.

Subtypes for both regular and irregular time series are created in the same way.

To create the row subtype, use the SQL CREATE ROW TYPE statement and specify
that the first field has a DATETIME YEAR TO FRACTION(5) data type. The row
type must conform to the syntax of the TimeSeries data type.

Examples

The following example creates a TimeSeries subtype, called stock_bar:
create row type stock_bar(

timestamp datetime year to fraction(5),
high real,
low real,
final real,
vol real

);

The following example creates a TimeSeries subtype, called stock_trade:
create row type stock_trade(

timestamp datetime year to fraction(5),
price double precision,
vol double precision,
trade int,
broker int,
buyer int,
seller int

);

Related concepts:
“TimeSeries data type” on page 2-5
“TimeSeries data type technical overview” on page 1-5

Create the database table
After you have created the subtype, use the CREATE TABLE statement to create a
table with a column of that subtype.

You can create the table in a dbspace that uses non-default page size.

3-6 IBM Informix TimeSeries Data User's Guide

The syntax for creating a table with a TimeSeries subtype column is:
create table table_name(

col1 any_data_type,
col2 any_data_type,
...
coln TimeSeries(subtype_name)

);

Examples

The following example creates a table called daily_stocks that contains a time
series column of type TimeSeries(stock_bar):
create table daily_stocks (

stock_id int,
stock_name lvarchar,
stock_data TimeSeries(stock_bar)

);

Each row in the daily_stocks table can hold a stock_bar time series for a particular
stock.

The following example creates a table called activity_stocks that contains a time
series column of type TimeSeries(stock_trade):
create table activity_stocks(

stock_id int,
activity_data TimeSeries(stock_trade)

);

Each row in the activity_stocks table can hold a stock trade time series for a
particular stock.
Related concepts:
“TimeSeries data type” on page 2-5

Managing containers
Containers are created automatically when they are needed, in the same dbspaces
in which the table is stored. If you want to store your time series data in other
dbspaces, you can create additional containers and move them between container
pools.

To create a container, run the TSContainerCreate procedure.

To delete a container, run the TSContainerDestroy procedure.

To add a container into a container pool or move a container from one container
pool to another, run the TSContainerSetPool procedure and specify the new
container pool name. If the container pool does not exist, it is created.

To remove a container from a container pool, run the TSContainerSetPool
procedure without specifying a container pool name.

To delete a container pool, remove all the containers from it.

To view container information, query the TSContainerTable table or view the
container in the IBM OpenAdmin Tool (OAT) for Informix.

Chapter 3. Create and load a time series 3-7

Examples

Example 1: Creating a new container and adding it to the default container pool

Suppose that you have a TimeSeries subtype named smartmeter_row, you want to
store the time series data in a different dbspace than the table is in, and you do not
want to specify the container name when you insert data. The following statements
create a container called ctn_sm1 for the smartmeter_row time series and add the
container to the default container pool:
EXECUTE PROCEDURE TSContainerCreate

(’ctn_sm1’,’tsspace1’,’smartmeter_row’,0,0);
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm1’,’autopool’);

When you insert data for the smartmeter_row time series without specifying a
container name, the database server stores the data in the container named
cnt_sm1 in the dbspace named tsspace1 instead of creating a new container in the
same dbspace as the table.

Example 2: Removing a container from the default container pool

Suppose that a container was automatically created for your time series, but you
want to stop automatically inserting data into that container. After you create the
new container for the time series using the process in the first example, you can
remove the original container from the default container pool. The following
statement removes a container named ctn_sm4 from the default container pool:
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm4’);

The container ctn_sm4 still exists, but data is inserting into it only if the INSERT
statement explicitly names ctn_sm4 with the container argument.
Related concepts:
“Time series data storage” on page 1-8
“Planning for data storage” on page 1-10
Related reference:
“TSContainerCreate procedure” on page 7-83
“TSContainerDestroy procedure” on page 7-85
“TSContainerSetPool procedure” on page 7-88

Monitoring time series containers
You can view information about the size and capacity of time series containers.

If you monitor the containers over a period of time, you can predict how quickly
containers fill and how much data fits into each container.

To view specific information about a container, run one of the following functions,
specifying the container name:
v The TSContainerTotalPages function returns the number of pages allocated to

the container.
v The TSContainerTotalUsed function returns the number of pages containing

time series data.
v The TSContainerPctUsed function returns what percent of the container is full.
v The TSContainerNElems function returns the number of time series data

elements stored in the container.

3-8 IBM Informix TimeSeries Data User's Guide

If you specify NULL instead of a container name, the functions return information
about all containers in the database.

To view the number of elements, the number of pages used, and the number of
pages allocated, run the TSContainerUsage function.

Example

The following statement returns the number of pages containing time series data in
the pages column, the number of elements in the slots column, and the number of
pages allocated in the total column for the container named raw_container:
EXECUTE FUNCTION TSContainerUsage("raw_container");

pages slots total

1999 241881 2119

1 row(s) retrieved.

Because 1999 of the total 2119 pages are used, the container is close to being full.
Related concepts:
“Time series data storage” on page 1-8
Related reference:
“TSContainerUsage function” on page 7-91
“TSContainerTotalPages function” on page 7-89
“TSContainerTotalUsed function” on page 7-90
“TSContainerPctUsed function” on page 7-86
“TSContainerNElems function” on page 7-85

Configuring additional container pools
You can create a container pool to manage how time series data is inserted into
multiple containers. You can insert data into containers in round-robin order or by
using a user-defined method.

If you want to use a container pool policy other than round-robin order, you must
write the user-defined container pool policy function before you insert data into
the container pool. For more information, see “User-defined container pool policy”
on page 3-10.

To create a container pool and store data into containers by using a container pool
policy:
1. Create containers by running the TSContainerCreate procedure.
2. Add each container to the container pool by using the TSContainerSetPool

procedure.
3. Insert data into the time series by including the TSContainerPoolRoundRobin

function with the container pool name or by including your user-defined
container pool policy function in the container argument.

Example

This example uses a TimeSeries subtype named smartmeter_row that is in a
column named rawreadings, which is in a table named smartmeters. Suppose you
want to store the data for the time series in three containers, in a container pool
you created.

Chapter 3. Create and load a time series 3-9

The following statements create three containers for the TimeSeries subtype
smartmeter_row:
EXECUTE PROCEDURE TSContainerCreate

(’ctn_sm0’,’tsspace0’,’smartmeter_row’,0,0);
EXECUTE PROCEDURE TSContainerCreate

(’ctn_sm1’,’tsspace1’,’smartmeter_row’,0,0);
EXECUTE PROCEDURE TSContainerCreate

(’ctn_sm2’,’tsspace2’,’smartmeter_row’,0,0);

The following statements add the containers to a container pool named readings:
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm0’,’readings’);
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm1’,’readings’);
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm2’,’readings’);

The following statement inserts time series data into the column rawreadings. The
TSContainerPoolRoundRobin function that specifies the container pool named
readings is used instead of a container name in the container argument.
INSERT INTO smartmeters(meter_id,rawreadings)

VALUES(’met00001’,’origin(2006-01-01 00:00:00.00000),
calendar(smartmeter),regular,threshold(0),
container(TSContainerPoolRoundRobin(readings)),

[(33070,-13.00,100.00,9.98e+34),
(19347,-4.00,100.00,1.007e+35),
(17782,-18.00,100.00,9.83e+34)]’);

During the running of the INSERT statement, the TSContainerPoolRoundRobin
function runs with the following values:
TSContainerPoolRoundRobin(’smartmeters’,’rawreadings’,

’smartmeter_row’,0,’readings’)

The TSContainerPoolRoundRobin function sorts the container names
alphabetically, returns the container name ctn_sm0 to the INSERT statement, and
the data is stored in the ctn_sm0 container. The TSContainerPoolRoundRobin
function specifies to store the data from the next INSERT statement in the
container named ctn_sm1 and the data from the third INSERT statement in the
container named ctn_sm2. For the fourth INSERT statement, the
TSContainerPoolRoundRobin function returns to the beginning of the container
list and specifies to store the data in the container named ctn_sm0, and so on.
Related reference:
“TSContainerCreate procedure” on page 7-83
“TSContainerPoolRoundRobin function” on page 7-87
“TSContainerSetPool procedure” on page 7-88
“User-defined container pool policy”

User-defined container pool policy
You can create a policy for inserting data into containers within a container pool.

The user-defined container policy you create must have one of the following
function signatures.

Syntax
PolicyName(

table_name lvarchar,
column_name lvarchar,
subtype lvarchar,
irregular integer,
user_data lvarchar

3-10 IBM Informix TimeSeries Data User's Guide

returns lvarchar;

PolicyName(
table_name lvarchar,
column_name lvarchar,
subtype lvarchar,
irregular integer,

returns lvarchar;

PolicyName
The name of the user-defined function.

table_name
The table into which the time series data is being inserted.

column_name
The name of the time series column into which data is being inserted.

subtype
The name of the TimeSeries subtype.

irregular
Whether the time series is regular (0) or irregular (1).

user_data
Optional argument for the name of the container pool.

Description

Write a container pool policy function to select containers in which to insert time
series data. For example, the TSContainerPoolRoundRobin function inserts data
into containers in a round-robin order. You can write a policy function to insert
data into the container with the most free space or by using other criteria. You can
either specify the name of the container pool with the user_data argument or
include code for choosing the appropriate container pool in the policy function.
The container pool must exist before you can insert data into it, and at least one
container within the container pool must be configured for the same TimeSeries
subtype as used by the data being inserted. Include the policy function in the
container argument of an INSERT statement. The policy function returns container
names to the INSERT statement in the order specified by the function.

Returns

The container name in which to store the time series value.
Related tasks:
“Configuring additional container pools” on page 3-9
Related reference:
“TSContainerPoolRoundRobin function” on page 7-87

Create a time series
There are several ways to create an instance of a time series, depending on
whether there is existing data to load and, if so, the format of that data.

There are several ways to create an instance of a time series, depending on
whether there is existing data to load and, if so, the format of that data. The
following table lists the options for creating and populating a time series.

Chapter 3. Create and load a time series 3-11

Task Function

Create an empty time series v TSCreate (regular time series)

v TSCreateIrr (irregular time series)

Create an empty time series with metadata v TSCreate with the metadata argument (regular
time series)

v TSCreateIrr with the metadata argument
(irregular time series)

Create and populate a time series v TSCreate with the set_ts argument (regular
time series)

v TSCreateIrr with the set_ts argument
(irregular time series)

v The implicit input function

v The output of a function

Create and populate a time series with
metadata

v TSCreate with the set_ts and metadata
arguments (regular time series)

v TSCreateIrr with the set_ts and metadata
arguments (irregular time series)

Populate an existing time series v BulkLoad

v Other functions, such as PutElem

Related concepts:
“TimeSeries data type” on page 2-5
“Regular time series” on page 1-6
“Irregular time series” on page 1-7
“Planning for creating a time series” on page 1-9

Creating a time series with the TSCreate or TSCreateIrr
function

You can create an empty time series or insert data simultaneously.

The TSCreate and TSCreateIrr functions create a time series based on the calendar
name, the origin time stamp, the threshold, the flags, the number of elements, and
the container name.

To create a time series:

Run the TSCreate function for regular time series or TSCreateIrr function for
irregular time series. If you want to insert data into your time series when you
create it, include the data in the set_data argument.

Examples

Example 1: Create an empty time series

The following example uses the TSCreate function to create an empty time series:
insert into daily_stocks values(

901,’IBM’, TSCreate(’daycal’,
’2011-01-03 00:00:00.00000’,20,0,0, NULL));

Example 2: Create a time series with data

3-12 IBM Informix TimeSeries Data User's Guide

For example, suppose a table called activity_load_tab has a column called set_data
of type SET(stock_trade). The following statement creates a time series and inserts
it into the activity_stocks table:
insert into activity_stocks

select 1234,
TSCreateIrr(’daycal’,

’2011-01-03 00:00:00.00000’::datetime year to fraction(5),
20, 0, NULL,
set_data)::timeseries(stock_trade)

from activity_load_tab;

Related reference:
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94

Creating a time series with metadata
You can create an empty or populated time series that also contains user-defined
metadata. A time series column includes a header that holds information about the
time series and can also contain user-defined metadata.

User-defined metadata allows the time series to be self-describing. The metadata
can be information usually contained in additional columns in the table, such as
the name of a stock, or the type of the time series. The advantage of keeping this
type of information in the time series is that, when using an API routine, it is
easier to retrieve the metadata than to pass additional columns to the routine.
Metadata is stored in a distinct type based on the TimeSeriesMeta data type. The
TimeSeriesMeta data type is an opaque data type of variable length, up to a
maximum length of 512 bytes. The routines that accept the TimeSeriesMeta data
type also accept its distinct type. The distinct type requires support functions, such
as input, output, send, receive, and so on.

To create a time series with metadata:
1. Create a distinct data type based on the TimeSeriesMeta data type with the

following SQL statement. Substitute MyMetaData with a name you choose.
create distinct type MyMetaData as TimeSeriesMeta

2. Create support functions for your metadata data type. For information on
creating support functions, see the IBM Informix User-Defined Routines and Data
Types Developer's Guide.

3. Run the TSCreate or TSCreateIrr function with the metadata argument.

After you have created a time series with metadata, you can add, change, remove,
and retrieve the metadata. You can also retrieve the name of your metadata type.
Related reference:
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94
“UpdMetaData function” on page 7-114
“GetMetaData function” on page 7-47

Create a time series with its input function
You can use the time series input function to create a time series with the INSERT
statement.

The syntax for using INSERT to create a time series and insert data is:

Chapter 3. Create and load a time series 3-13

insert into table_name values(
’col1_value’,
’col2_value’,
...,
’parameter_input_string’

);

The parameter_input_string value contains the time series information. All data
types have an associated input function that is automatically invoked when ASCII
data is inserted into the column. In the case of the TimeSeries data type, the input
has several pieces of data embedded in the text. This information is used to convey
the name of the calendar, the time stamp of the origin, the threshold, the container,
and the initial time series data. The format for the parameter input string is:
paramname(value), paramname(value), ..., [data_element, ...]

The values are specific to the parameters, and each has a different format. The
following table indicates the value associated with each parameter.

Table 3-3. Parameters for inserting data into a time series

Parameter name Required Value

calendar Yes Name of the calendar to use. There is no default
name.

container No Name of the container to use. The default is no
container; the time series must fit in the database
row or never be assigned to a table. If the time
series exceeds the threshold size, you must set a
container.

datafile No Name of the input file to use. The format is the
same as for the BulkLoad function. If the data file
is present, no “bracketed” data is permitted.
Default is NULL.

irregular Yes (for
irregular)

No value, just the string irregular. This parameter
must be included for an irregular time series but
cannot be included for a regular time series.

metadata No The metadata to be added to the time series. Can
be NULL. If metadata is supplied, then the metadata
type must also be supplied.

metatype No The data type of the metadata.

origin No Time stamp of the origin of the time series. The
default origin is the calendar start date.

regular No No value, just the string regular. This parameter is
optional for a regular time series but cannot be
included for an irregular time series.

threshold No Number of elements above which data is placed in
a container rather than in the row. Default is 20. An
in-row time series should not be larger than 1500
bytes.

If a parameter is not present in the input string, its default value is used.

If you did not specify a data file, then you can supply the data to be placed in the
time series (the data element), surrounded by square brackets, after the parameters:
[(value, value, value, ...)@timestamp, (...), ...]

3-14 IBM Informix TimeSeries Data User's Guide

Elements consist of data values, each separated by a comma. The data values in
each element correspond to the columns in the TimeSeries subtype, not including
the initial time stamp column. Each element is surrounded by parentheses and
followed by an @ symbol and a time stamp. The time stamp is optional for regular
time series but mandatory for irregular time series. Null data values or elements
are indicated with the word NULL. If no data elements are present, the function
creates an empty time series.

Example 1: Create a regular time series

Following example shows an INSERT statement for a regular time series created in
the table daily_stocks:
insert into daily_stocks values (1234, ’informix’,

’regular, calendar(daycal),
[(350, 310, 340, 1999), (362, 320, 350, 2500)]’);

This INSERT statement creates a regular time series that starts at the date and time
of day specified by the calendar called daycal. The first two elements in the time
series are populated with the bracketed data. Since the threshold parameter is not
specified, its default value is used. Therefore, if more than 20 elements are placed
in the time series, the database server attempts to move the data to a container, but
because there is no container specified, an error is raised.

Example 2: Create an irregular time series

The following example shows an INSERT statement for an irregular time series
created in the table activity_stocks:
insert into activity_stocks values (

600, ’irregular, container(ctnr_stock), origin(2005-10-06 00:00:00.00000),
calendar(daycal), [(6.25,1000,1,7,2,1)@2005-10-06 12:58:09.12345, (6.50, 2000,
1,8,3,1)@2005-10-06 12:58:09.23456]’);

The INSERT statement creates an irregular time series that starts on 06 October
2005, at the time of day specified by the calendar called daycal. Two rows of data
are inserted with the specified time stamps.

Create a time series with the output of a function
Many functions return a time series.

The container for a time series that is created by the output of a function is often
implicitly determined. For example, if part of a time series is extracted using the
Clip function and the result is stored in the database, the container for the original
time series is used for the new time series.

If a time series returned by one of these functions cannot use the container of the
original time series and a container name is not specified, the resulting time series
is stored in a container associated with the matching TimeSeries subtype and
regularity. If no matching container exists, a new container is created.

Load data into an existing time series
After you create a time series, you can use one of several methods to load data
into the time series.

Choose the data loading method according to the amount of data and the format
of the data.

Chapter 3. Create and load a time series 3-15

Loading data with the IBM Informix TimeSeries Plug-in for
Data Studio

Use the IBM Informix TimeSeries Plug-in for Data Studio to load data from a file
into a time series.

You must have the following prerequisites before you load data:
v IBM Data Studio or IBM Optim Developer Studio with the Informix TimeSeries

Plug-in for Data Studio installed.
v An existing table with a TimeSeries column.
v Primary key values in your table and a time series defined for each row. If your

primary key has a data type of CHAR(n), and each value is not n bytes long,
you must pad the values to be n bytes long or change the data type to
VARCHAR(20).

v A file of time-based data that you want to load into the database.
v Connectivity information for the Informix database server that contains the time

series table.

The TimeSeries plug-in includes a cheat sheet that provides detailed instructions
for loading data.

To create load job for time series data in Data Studio:

Choose Help > Cheat Sheets, expand the TimeSeries Data category, choose Load
time-series data, and click OK. Follow the instructions in the cheat sheet to
perform the remaining steps.

You can reuse the file format definition, the table definition, the mapping
definition, and the connection profile that you created in subsequent load jobs. If
you change your table definition, you must update the corresponding mapping as
well.
Related concepts:
“Planning for loading time series data” on page 1-11
Related tasks:
“Installing the IBM Informix TimeSeries Plug-in for Data Studio” on page 1-13

Loading data from a file into a virtual table
Data that you insert into a virtual table is written to the underlying base table.
Therefore, you can use the virtual table to load your data that is in a relational
format in a file into a TimeSeries column. Often it is easier to format your raw
data to load a virtual table than to load a TimeSeries column directly, especially if
you must perform incremental loading.

You can load data from a virtual table that was created by the TSCreateVirtualTab
procedure. You cannot load data from a virtual table was created by the
TSCreateExpressionVirtualTab procedure.

To load relational data through a virtual table:
1. Create a virtual table that is based on a time series table.
2. Put your input data in a single file.
3. Format the data according to the standard IBM Informix load file format.

3-16 IBM Informix TimeSeries Data User's Guide

4. Use any of the Informix load utilities: pload, onpload, dbload, or the load
command in DB-Access, to load the file into the virtual table.

See the IBM Informix Administrator's Guide for information about Informix load file
formats and load utilities.
Related concepts:
“Planning for loading time series data” on page 1-11
Chapter 4, “Virtual tables for time series data,” on page 4-1
Related reference:
“TSCreateVirtualTab procedure” on page 4-4

Load data with BulkLoad
You can load data into an existing time series with the BulkLoad function. This
function takes an existing time series and a file name as arguments. The file name
is for a file on the client that contains row type data to be loaded into the time
series.

The syntax for using BulkLoad with the UPDATE statement and the SET clause is:
update table_name

set TimeSeries_col=BulkLoad(TimeSeries_col, ’filename’)
where col1=’value’;

The TimeSeries_col parameter is the name of the column containing the row type.
The filename parameter is the name of the data file. The WHERE clause specifies
which row in the table to update.
Related concepts:
“Planning for loading time series data” on page 1-11

Data file formats for BulkLoad

Two data formats are supported for the file loaded by BulkLoad:
v Using type constructors
v Using tabs

Each line of the client file must have all the data for one element.

The type constructor format follows the row type convention: comma-separated
columns surrounded by parentheses and preceded by the ROW type constructor.
The first two lines of a typical file look like this:
row(2011-01-03 00:00:00.00000, 1.1, 2.2)
row(2011-01-04 00:00:00.00000, 10.1, 20.2)

If you include collections in a column within the row data type, use a type
constructor (SET, MULTISET, or LIST) and curly braces surrounding the collection
values. A row including a set of rows has this format:
row(timestamp, set{row(value, value), row(value, value)}, value)

The tab format separates the values by tabs. It is only recommended for
single-level rows that do not contain collections or row data types. The first two
lines of a typical file in this format look like this:
2011-01-03 00:00:00.00000 1.1 2.2
2011-01-04 00:00:00.00000 10.1 20.2

Chapter 3. Create and load a time series 3-17

The spaces between entries represent a tab.

In both formats, NULL indicates a null entry.

The first file format is also produced when you use the onload utility. This utility
copies the contents of a table into a client file or a client file into a table. When
copying a file into a table, the time series is created and then the data is written
into the new time series. See the IBM Informix Performance Guide for more
information about onload.

Example: Load data with BulkLoad

The following example uses BulkLoad in the SET clause of an UPDATE statement
to populate the existing time series in the daily_stocks table:
insert into daily_stocks values

(999, ’IBM’, TSCreate (’daycal’,
’2011-01-03 00:00:00.00000’,20,0,0, NULL));

update daily_stocks
set stock_data=BulkLoad(stock_data,’sam.dat’)
where stock_name=’IBM’;

Load small amounts of data with functions
You can load individual elements or sets of elements by using TimeSeries
functions.

Use any of the following functions to load data into a time series:

PutElem
Updates a time series with a single element.

PutSet Updates a time series with a set of elements.

InsElem
Inserts an element into a time series.

InsSet Inserts every element of a given set into a time series.

These functions add or update an element or set of elements to the time series.
They must be used in an SQL UPDATE statement with the SET clause:
update table_name

set TimeSeries_col=FunctionName(TimeSeries_type, data)
where col1=’value’;

The TimeSeries_col argument is the name of the column in which the time series is
located. The FunctionName argument is the name of the function. The data
argument is in the row type data element format (see “Create a time series with its
input function” on page 3-13). The WHERE clause specifies which row in the table
to update.

The following example appends an element to a time series using PutElem:
update daily_stocks
set stock_data = PutElem(stock_data,

row(NULL::datetime year to fraction(5),
2.3, 3.4, 5.6, 67)::stock_bar)
where stock_name = ’IBM’;

You can also use more complicated expressions to load a time series. For examples,
see “Binary arithmetic functions” on page 7-21.

3-18 IBM Informix TimeSeries Data User's Guide

Related concepts:
“Planning for loading time series data” on page 1-11

Chapter 3. Create and load a time series 3-19

3-20 IBM Informix TimeSeries Data User's Guide

Chapter 4. Virtual tables for time series data

A virtual table provides a relational view of your time series data.

Virtual tables are useful for viewing time series data in a simple format. An SQL
SELECT statement against a virtual table returns data in ordinary data type format,
rather than in the TimeSeries data type format. Many of the operations that
TimeSeries SQL functions and API routines perform can be done using SQL
statements against a virtual table. Some SQL queries are easier to write for the
virtual table than for an underlying time series table, especially SQL queries with
qualifications on a TimeSeries column.

The virtual table is not a real table stored in the database. The data is not
duplicated. At any given moment, data visible in the virtual table is the same as
the content in the base table. You cannot create an index on a time series virtual
table.

The performance of queries on virtual tables versus using TimeSeries functions is
similar in most cases. For example, the Clip function is faster applied through a
virtual table than directly on a time series. However, it is faster to run the Apply
or the Transpose routines on a time series than to run them through a virtual table
by using the TSCreateExpressionVirtualTab procedure.

Some operations are difficult or impossible in one interface but are easily
accomplished in the other. For example, finding the average value of one of the
fields in a time series over a period of time is easier with a query against a virtual
table than by using TimeSeries functions. The following query against a virtual
table finds the average stock price over a year:
select avg(vol) from daily_stocks_no_ts
where stock_name = ’IBM’
and timestamp between datetime(2010-1-1) year to day
and datetime(2010-12-31) year to day;

However, aggregating from one calendar to another is easier using the
AggregateBy routine.

Selecting the nth element in a regular time series is easy using the GetNthElem
routine but quite difficult using a virtual table.

You can insert data into a virtual table that is based on a time series table, which
automatically updates the underlying base table. You can use SELECT and INSERT
statements with time series virtual tables. You cannot use UPDATE or DELETE
statements, but you can update a time series element in the base table by inserting
a new element for the same time point into the virtual table.

You can create a virtual table based on an expression that is performed on a time
series table.

You can create a virtual table based on only one TimeSeries column at a time. If
the base table has multiple TimeSeries columns, you can create a virtual table for
each of them.

© Copyright IBM Corp. 2006, 2011 4-1

Related concepts:
“Planning for accessing time series data” on page 1-12
“Planning for loading time series data” on page 1-11
Related tasks:
“Loading data from a file into a virtual table” on page 3-16

The structure of virtual tables
A virtual table that is based on a time series has the same schema as the base table,
except for the TimeSeries column. The TimeSeries column is replaced with the
columns of the TimeSeries subtype. A virtual table based on an expression on a
time series displays the TimeSeries subtype that is the result of the expression,
instead of the subtype from the base table.

For example, the table ts_data contains a TimeSeries column called raw_reads that
contains a row type with tstamp and value columns. The following table displays
part of the ts_data table. The actual time stamp values are shown for clarity,
although the time stamp values are calculated instead of stored in regular time
series.

Table 4-1. Data in a table with a TimeSeries column

loc_esi_id measure_unit direction raw_reads

4727354321000111 KWH P (2010-11-10 00:00:00.00000, 0.092),
(2010-11-10 00:15:00.00000, 0.084), ...

4727354321046021 KWH P (2010-11-10 00:00:00.00000, 0.041),
(2010-11-10 00:15:00.00000, 0.041), ...

4727354321090954 KWH P (2010-11-10 00:00:00.00000, 0.026),
(2010-11-10 00:15:00.00000, 0.035), ...

The virtual table that is based on the ts_data table converts the raw_reads column
elements into individual columns. The following table displays part of the virtual
table that is based on the ts_data table.

Table 4-2. Data in a virtual table based on a time series

loc_esi_id measure_unit direction tstamp value

4727354321000111 KWH P 2010-11-10 00:00:00.00000 0.092

4727354321000111 KWH P 2010-11-10 00:15:00.00000 0.084

. . .

4727354321046021 KWH P 2010-11-10 00:00:00.00000 0.041

4727354321046021 KWH P 2010-11-10 00:15:00.00000 0.041

. . .

4727354321090954 KWH P 2010-11-10 00:00:00.00000 0.026

4727354321090954 KWH P 2010-11-10 00:15:00.00000 0.035

When you create a virtual table that is based on the results of an expression that is
performed on a time series, you specify the TimeSeries subtype appropriate for
containing the results of the expression. The virtual table is based on the specified
TimeSeries data type and the other columns from the base table.

4-2 IBM Informix TimeSeries Data User's Guide

The display of data in virtual tables
When you create virtual tables based on time series, you can customize how time
series data is shown in the virtual tables and in the results of queries on the virtual
tables.

Null elements in a time series are not included in the virtual table. If a base table
has a null element at a specific timepoint, the virtual table has no entry for that
timepoint. You can specify that null elements appear in the virtual table.

Hidden elements are not included in the virtual table. A hidden element is marked
as invisible in the base table. You can specify if hidden elements appear as null
values in the virtual table, or if their values are visible in the virtual table.

When you select data from a virtual table by timestamps, the rows whose
timestamps are closest to being equal to or earlier than the timestamps specified in
the query are returned. If the time series is irregular, the returned rows show the
same timestamps as specified in the query, regardless if the actual timestamps are
the same. You can specify that when you select data from a virtual table by
timestamps, only rows whose timestamps are exactly equal to the timestamps
specified in the query are returned.

You control the display of data by setting the TSVTMode parameter in the
TSCreateVirtualTab procedure or the TSCreateExpressionVirtualTab procedure.
Related concepts:
“The TSVTMode parameter” on page 4-11
Related reference:
“TSCreateVirtualTab procedure” on page 4-4
“TSCreateExpressionVirtualTab procedure” on page 4-8

The insertion of data through virtual tables
You can insert data into a virtual table that is based on a time series table. You can
control whether to allow a new time series, duplicate elements for the same
timepoints, which columns in the base table can be updated, and how flexible the
INSERT statement can be.

You can add an additional time series element to an existing time series through a
virtual table. You can specify to be able to add a time series element into an
existing row that does not have any time series data, or to add a new row to the
base table.

When you insert an element that has the same timepoint as an existing element,
the original element is replaced. You can specify to allow multiple elements with
the same timepoint.

If the base table has a primary key, the primary key is used to find the row to
update and updates to the base table do not require accurate values for columns
that are not part of the primary key. If the base table does not have a primary key,
all columns in the table except the TimeSeries column are used to identify the row
to be updated and updates to the base table require accurate values for every
column in the base table other than the TimeSeries column. You can only update
the values in the TimeSeries column. You can specify the rules for the INSERT
statement and which columns can be updated:

Chapter 4. Virtual tables for time series data 4-3

v You can update only the TimeSeries column, but you can specify NULL as the
values for non-primary key columns

v You can update the TimeSeries column and all other non-primary key columns
that do not have null values in the INSERT statement.

v You can update the TimeSeries column and all other non-primary key columns.
You can set columns that do not have NOT NULL constraints to null values.

v You can update the TimeSeries column and all other non-primary key columns
that have NOT NULL constraints. You can specify null values for columns that
have NOT NULL constraints.

You can control data insertion by setting the NewTimeSeries parameter and the
TSVTMode parameter in the TSCreateVirtualTab procedure.
Related concepts:
“The TSVTMode parameter” on page 4-11
Related reference:
“TSCreateVirtualTab procedure”

Creating a time series virtual table
You can create a virtual table based on a time series or based on the results of an
expression on a time series.

You can update or insert data through a virtual table that is based on a time series.
You cannot update or insert data through a virtual table that is based on an
expression on a time series.

To create a virtual table based on a table that contains a TimeSeries column, run
the TSCreateVirtualTab procedure.

To create a virtual table based on the results of an expression that is performed on
a time series, run the TSCreateExpressionVirtualTab procedure.
Related reference:
“TSCreateVirtualTab procedure”
“TSCreateExpressionVirtualTab procedure” on page 4-8

TSCreateVirtualTab procedure
The TSCreateVirtualTab procedure creates a virtual table based on a table
containing a TimeSeries column.

Syntax
TSCreateVirtualTab(VirtualTableName lvarchar,

BaseTableName lvarchar,
NewTimeSeries lvarchar,
TSVTMode integer default 0,
TSColName lvarchar default NULL);

VirtualTableName
The name of the new virtual table.

BaseTableName
The name of the base table.

NewTimeSeries (optional)
The definition of the new time series to create.

4-4 IBM Informix TimeSeries Data User's Guide

TSVTMode (optional)
Sets the virtual table mode, as described in “The TSVTMode parameter” on
page 4-11.

TSColName (optional)
For base tables that have more than one TimeSeries column, specifies the
name of the TimeSeries column to be used to create the virtual table. The
default value for the TSColName parameter is NULL, in which case the base
table must have only one TimeSeries column.

Usage

Use the TSCreateVirtualTab procedure to create a virtual table based on a table
that contains a time series. Because the column names in the TimeSeries row type
are used as the column names in the resulting virtual table, you must ensure that
these column names do not conflict with the names of other columns in the base
table. The total length of a row in the virtual table (non-time-series and TimeSeries
columns combined) must not exceed 32 KB.

You can configure the time series virtual table to allow updating data in the base
table through the virtual table. If you specify any of the optional parameters, you
must include them in the order shown in the syntax, but you can use any one of
them without using the others. For example, you can specify the TSColName
parameter without including the NewTimeSeries and the TSVTMode parameters.

The NewTimeSeries parameter

The NewTimeSeries parameter specifies whether the virtual table allows elements to
be inserted into a time series that does not yet exist in the base table either because
the row does not exist or because the row does not yet have a time series element.
To allow inserts if a time series does not yet exist, use the NewTimeSeries parameter
to specify the time series input string. To prohibit inserts if a time series does not
yet exist, omit the NewTimeSeries parameter when you create the virtual table.

The following table describes the results of attempting to update the base table for
different goals.

Table 4-3. Behavior of updates to the base table

Goal Result

Need to use the
NewTimeSeries
parameter?

Add a time series element into
an existing row that does not
have any time series data. For
example, add the first meter
reading for a specific meter.

A new time series is inserted in
the existing row.

Yes

Chapter 4. Virtual tables for time series data 4-5

Table 4-3. Behavior of updates to the base table (continued)

Goal Result

Need to use the
NewTimeSeries
parameter?

Add an additional time series
element to an existing time
series. For example, add a new
meter reading for a meter that
has previous readings.

If the timepoint is not the same as
an existing element, the new
element is inserted to the time
series. If the timepoint is the same
as an existing element, the
existing element is updated with
the new value.

If the TSVTMode parameter
includes the value 1, multiple
elements for the same timepoint
can coexist, therefore the new
element is inserted and the
existing element is also retained.

No

Add a new row. For example,
add a row for a new meter ID.

A new row is inserted into the
base table.

Yes

If you do not include the NewTimeSeries parameter and attempt to insert a time
series element into an existing row that does not have any time series elements or
into a new row, you receive an error.

Example

The following example creates a virtual table called daily_stocks_virt based on the
table daily_stocks. Because this example specifies a value for the NewTimeSeries
parameter, the virtual table daily_stocks_virt allows inserts if a time series does
not exist for an element in the underlying base table. If you perform such an
insert, the database server creates a new empty time series that uses the calendar
daycal and has an origin of January 3, 2011.
execute procedure TSCreateVirtualTab(’daily_stocks_virt’,

’daily_stocks’, ’calendar(daycal),
origin(2011-01-03 00:00:00.00000)’);

Related concepts:
“The display of data in virtual tables” on page 4-3
“The insertion of data through virtual tables” on page 4-3
Related tasks:
“Creating a time series virtual table” on page 4-4
“Loading data from a file into a virtual table” on page 3-16

Example of creating a virtual table
This example shows how to create a virtual table on a table that contains time
series data and the difference between querying the base table and the virtual
table.

To improve clarity, these examples use values t1 through t6 to indicate DATETIME
values, rather than showing complete DATETIME strings.

Query the base table

The base table, daily_stocks, was created with the following statements:

4-6 IBM Informix TimeSeries Data User's Guide

create row type stock_bar(
timestamp datetime year to fraction(5),
high real,
low real,
final real,
vol real

);

create table daily_stocks (
stock_id int,
stock_name lvarchar,
stock_data TimeSeries(stock_bar)

);

The daily_stocks base table contains the following data.

stock_id stock_name stock_data

900 AA01 (t1, 7.25, 6.75, 7, 1000000), (t2, 7.5, 6.875, 7.125, 1500000), ...

901 IBM (t1, 97, 94.25, 95, 2000000), (t2, 97, 95.5, 96, 3000000), ...

905 FNM (t1, 49.25, 47.75, 48, 2500000), (t2, 48.75, 48, 48.25, 3000000), ...

To query on the stock_data column, you must use time series functions. For
example, the following query uses the Apply function to obtain the closing price:
select stock_id,
Apply(’$final’, stock_data)::TimeSeries(one_real)
from daily_stocks;

In this query, one_real is a row type created to hold the results of the query and is
created with this statement:
create row type one_real(

timestamp datetime year to fraction(5),
result real);

To obtain price and volume information within a specific time range, you use a
query like this:
select stock_id, Clip(stock_data, t1, t2) from daily_stocks;

Create the virtual table

The following statement uses the TSCreateVirtualTab function to create a virtual
table, called daily_stocks_no_ts, based on daily_stocks:
execute procedure
TSCreateVirtualTab(’daily_stocks_no_ts’, ’daily_stocks’);

Because the statement does not specify the NewTimeSeries parameter,
daily_stocks_no_ts does not allow inserts of elements that do not have a
corresponding time series in daily_stocks.

Also, the statement omits the TSVTMode parameter, so TSVTMode assumes its
default value of 0. Therefore, if you insert data into daily_stocks_no_ts, the
database server uses PutElemNoDups to add an element to the underlying time
series in daily_stocks.

The virtual table, daily_stocks_no_ts looks like this.

Chapter 4. Virtual tables for time series data 4-7

Table 4-4. The daily_stocks_no_ts virtual table

stock_id stock_name timestamp* high low final vol

900 AA01 t1 7.25 6.75 7 1000000

900 AA01 t2 7.5 6.875 7.125 1500000

...

901 IBM t1 97 94.25 95 2000000

901 IBM t2 97 95.5 96 3000000

...

905 FNM t1 49.25 47.75 48 2500000

905 FNM t2 48.75 48 48.25 3000000

...

* In this column, t1 and t2 are DATETIME values.

Query the virtual table

Certain SQL queries are much easier to write for a virtual table than for a base
table. For example, the query to obtain the closing price now looks like this:
select stock_id, final from daily_stocks_no_ts;

And the query to obtain price and volume within a specific time range looks like
this:
select * from daily_stocks_no_ts
where timestamp between t1 and t5;

Some tasks that are complex for time series functions to accomplish, such as use of
the ORDER BY clause, are now simple:
select * from daily_stocks_no_ts
where timestamp between t1 and t5
order by volume;

Inserting data into the virtual table is also simple. To add a new element to the
IBM stock, use the following query:
insert into daily_stock_no_ts
values(’IBM’, t6, 55, 53, 54, 2000000);

The element (t6, 55, 53, 54, 2000000) is added to daily_stocks.

TSCreateExpressionVirtualTab procedure
The TSCreateExpressionVirtualTab procedure creates a virtual table based on the
results of an expression that was performed on a table containing a TimeSeries
column. The resulting virtual table is read-only.

Syntax
TSCreateExpressionVirtualTab

(VirtualTableName lvarchar,
BaseTableName lvarchar,
expression lvarchar,
subtype lvarchar,
TSVTMode integer default 0,
TSColName lvarchar default NULL);

4-8 IBM Informix TimeSeries Data User's Guide

VirtualTableName
The name of the new virtual table.

BaseTableName
The name of the base table.

expression
The expression to be evaluated on time series data.

subtype
The name of the TimeSeries subtype for the values that are the results of
the expression.

TSVTMode (optional)
Sets the virtual table mode, as described in “The TSVTMode parameter” on
page 4-11.

TSColName (optional)
For base tables that have more than one TimeSeries column, specifies the
name of the TimeSeries column to be used to create the virtual table. The
default value for the TSColName parameter is NULL, in which case the base
table must have only one TimeSeries column.

Usage

Use the TSCreateExpressionVirtualTab procedure to create a virtual table based
on a time series that results from an expression that is performed on time series
data each time a query, such as a SELECT statement, is performed. You specify the
name of the TimeSeries subtype in the virtual table with the subtype parameter.

The total length of a row in the virtual table (non-time-series and TimeSeries
columns combined) must not exceed 32 KB.

If you specify either of the optional parameters, you must include them in the
order shown in the syntax, but you can use either one without the other. For
example, you can specify the TSColName parameter without including the
TSVTMode parameter.

The virtual table is read-only. You cannot run INSERT, UPDATE, or DELETE
statements on a virtual table that is based on an expression. When you query the
virtual table, the WHERE clause in the SELECT statement cannot have any
predicates based on the columns in the virtual table that are derived from the
resulting TimeSeries subtype.

In the expression, you can use time series SQL routines and other SQL statements
to manipulate the data, for example, the AggregateBy function and the Apply
function.

You can use the following variables in the expression:
v $ts_column_name: If the base table has multiple TimeSeries columns, instead of

specifying the name of the TimeSeries column in the expression, you can use
the $ts_column_name variable to substitute the value of the TScolName parameter
in the TSCreateExpressionVirtualTab procedure. Because the column name is a
variable, you can use the same expression for each of the TimeSeries columns in
the table.

v $ts_begin_time: Instead of specifying a DATETIME value, you can use this
variable and specify the beginning time point of the time series in the WHERE

Chapter 4. Virtual tables for time series data 4-9

clause of the SELECT statement when you query the virtual table. If the WHERE
clause does not contain the beginning timepoint, the first timepoint in the time
series is used.

v $ts_end_time: Instead of specifying a DATETIME value, you can use this
variable and specify the ending time point of the time series in the WHERE
clause of the SELECT statement when you query the virtual table. If the WHERE
clause does not contain the ending timepoint, the last timepoint in the time
series is used.

Examples

The following examples use a table named smartmeters that contains a column
named meter_id and a TimeSeries column named readings. The TimeSeries
subtype has the columns t and energy.

Example 1: Find the daily maximum and minimum values

The following statement creates a virtual table named
smartmeters_vti_agg_max_min based on a time series that contains the maximum
and minimum energy readings per day:
EXECUTE PROCEDURE TSCreateExpressionVirtualTab(

’smartmeters_vti_agg_max_min’, ’smartmeters’,
’AggregateBy("max($energy),min($energy)",

"smartmeter_daily", readings, 0)’,
’tworeal_row’);

The following query shows the daily maximum and minimum of the energy
reading between 2011-0-01 and 2011-01-02:
SELECT * FROM smartmeters_vti_agg_max_min
WHERE t >= ’2011-01-01 00:00:00.00000’::datetime year to fraction(5)

AND t <= ’2011-01-02 23:59:59.99999’::datetime year to fraction(5);

meter_id t value1 value2

met00000 2011-01-01 00:00:00.00000 37.00000000000 9.000000000000
met00000 2011-01-02 00:00:00.00000 34.00000000000 8.000000000000
met00001 2011-01-01 00:00:00.00000 36.00000000000 9.000000000000
met00001 2011-01-02 00:00:00.00000 36.00000000000 10.00000000000
met00002 2011-01-01 00:00:00.00000 34.00000000000 9.000000000000
met00002 2011-01-02 00:00:00.00000 36.00000000000 10.00000000000

6 row(s) retrieved.

Example 2: Find the daily maximum of a running average

The following statement creates a virtual table named smartmeters_vti_daily_max
that contains the daily maximum of the running average of the energy readings:
EXECUTE PROCEDURE TSCreateExpressionVirtualTab(

’smartmeters_vti_daily_max’, ’smartmeters’,
’AggregateBy("max($value)","smartmeter_daily",

Apply("TSRunningAvg($energy, 4)",
$ts_begin_time, $ts_end_time,
$ts_col_name)

::TimeSeries(onereal_row), 0)’,
’onereal_row’, 0, ’readings’);

4-10 IBM Informix TimeSeries Data User's Guide

The $ts_col_name parameter is replaced by the column name specified by the
TSCreateExpressionVirtualTab procedure, in this case, readings. The
$ts_begin_time and $ts_end_time parameters are replaced when the virtual table
is queried.

The following query shows the maximum daily average energy readings for two
days:
SELECT * FROM smartmeters_vti_daily_max
WHERE t >= ’2011-01-01 00:00:00.00000’::datetime year to fraction(5)

AND t <= ’2011-01-02 23:59:59.99999’::datetime year to fraction(5);

meter_id t value

met00000 2011-01-01 00:00:00.00000 30.25000000000
met00000 2011-01-02 00:00:00.00000 29.50000000000
met00001 2011-01-01 00:00:00.00000 29.75000000000
met00001 2011-01-02 00:00:00.00000 31.00000000000
met00002 2011-01-01 00:00:00.00000 31.25000000000
met00002 2011-01-02 00:00:00.00000 28.75000000000

6 row(s) retrieved.

Related concepts:
“The display of data in virtual tables” on page 4-3
Related tasks:
“Creating a time series virtual table” on page 4-4

The TSVTMode parameter
The TSVTMode parameter configures the behavior and display of the virtual table.

You use the TSVTMode parameter with the TSCreateVirtualTab procedure to
control:
v How data is updated in the base table when you perform an insert in the virtual

table
v Whether NULL time series elements appear in a virtual table
v Whether updates to existing rows in the base table require accurate values for

columns that are not part of the primary key
v Whether existing values in columns other than the TimeSeries column or the

primary key columns can be updated.
v Whether NULL values can be used in the INSERT statement for columns other

than the primary key columns.
v Whether hidden time series elements appear in a virtual table
v Whether data selected by time stamp exactly matches the specified timestamps

or includes the last rows that are equal to or earlier than the specified
timestamps.

You use the TSVTMode parameter with the TSCreateExpressionVirtualTab
procedure to control:
v Whether NULL time series elements appear in a virtual table
v Whether hidden time series elements appear in a virtual table
v Whether data selected by time stamp exactly matches the specified timestamps

or includes the last rows that are equal to or earlier than the specified
timestamps.

Chapter 4. Virtual tables for time series data 4-11

The default value of the TSVTMode parameter sets the behavior of the virtual table.
Each of the other values of the TSVTMode parameter reverses one aspect of the
default behavior. You can set the TSVTMode parameter to a combination of the
values. For example, if you set the TSVTMode parameter to 514 (512 + 2), both null
and hidden elements appear in the virtual table. You can specify values for the
TSVTMode parameter as either decimal numbers, as shown in the table, or as
hexadecimal numbers.

Table 4-5. Settings for the TSVTMode parameter

Flag Value Description

TS_VTI_PUT_ELEM_NO_DUPS 0 Default. The virtual table has the following behavior:

v Multiple elements for the same timepoint are not
allowed. Updates to the underlying time series
update existing elements for the same timepoint.
Uses the PutElemNoDups function.

v Null elements are not included in the virtual table.

v If the base table has a primary key, the primary key
is used to find the row to update and updates to the
base table do not require accurate values for
columns that are not part of the primary key. If the
base table does not have a primary key, all columns
in the table except the TimeSeries column are used
to identify the row to be updated and updates to
the base table require accurate values for every
column in the base table other than the TimeSeries
column. NOT NULL constraints are included in the
virtual table for the primary key columns and other
columns that have NOT NULL constraints in the
base table.

v For updates to existing rows, only the TimeSeries
column can be updated.

v Hidden elements are not included in the virtual
table.

v When selecting data from a virtual table by
timestamps, the rows whose timestamps are closest
to being equal to or earlier than the timestamps
specified in the query are returned. If the time series
is irregular, the returned rows show the same
timestamps as specified in the query, regardless if
the actual timestamps are the same.

TS_VTI_PUT_ELEM 1 Multiple elements for the same timepoint are allowed.
Updates to the underlying time series insert elements
even if elements already exist for the timepoints. Uses
the PutElem function.

TS_VTI_SHOW_NULLS 2 Null elements appear in the virtual table. Hidden
elements appear as null elements, unless the value 512
is also set.

TS_VTI_DISABLE_NOT_NULL_CONSTRAINT 16 For existing rows, you can specify NULL values for
columns that are not part of the primary key,
regardless if those columns have NOT NULL
constraints in the base table. NOT NULL constraints
are not included in the virtual table, but are enforced
in the base table.

For new rows, you can specify null values for columns
that are not part of the primary key and do not have
NOT NULL constraints.

4-12 IBM Informix TimeSeries Data User's Guide

Table 4-5. Settings for the TSVTMode parameter (continued)

Flag Value Description

TS_VTI_UPDATE_NONKEY_NOT_NULLS 32 This setting is valid only if the base table has a
primary key.

You can update the value of columns in an existing
row that are not part of the primary key. You can
specify NULL for non-primary key columns that you
do not want to update. All columns that have
non-NULL values in the INSERT statement are
updated in the base table, except the primary key
columns.

TS_VTI_UPDATE_NONKEY_INCLUDE_NULLS 64 This setting is valid only if the base table has a
primary key.

You can update the value of all the columns in an
existing row that are not part of the primary key,
including using null values for columns that allow
null values. Columns that are not part of the primary
key are updated to the value included in the INSERT
statement. Columns that allow null values can be set
to NULL.

TS_VTI_SCAN_HIDDEN 512 Hidden elements appear in the virtual table.

TS_VTI_SCAN_DISCREET 1024 When selecting data from a virtual table by
timestamps, only rows whose timestamps are exactly
equal to the timestamps specified in the query are
returned.

Update columns in the base table

When you create a virtual table with the TSCreateVirtualTab procedure, you can
update the data in the base table from the virtual table.

The following table describes how to control updating columns in the base table,
assuming that the base table has a primary key. Whether the NewTimeSeries
parameter is specified also affects the behavior of inserting data into the base table.
For information on the effect of the NewTimeSeries parameter, see
“TSCreateVirtualTab procedure” on page 4-4.

Table 4-6. TSVTMode parameter settings that affect which columns are updated in the base
table

Columns to update
TSVTMode parameter
setting

Update only the TimeSeries column. You must specify valid,
but not necessarily accurate, values for non-primary key
columns.

0

Update only the TimeSeries column. You can specify NULL
as the values for non-primary key columns

16

Update the TimeSeries column and all other non-primary
key columns that do not have null values in the INSERT
statement.

32

Update the TimeSeries column and all other non-primary
key columns. You can set columns that do not have NOT
NULL constraints to null values.

64, 64 + 16

Chapter 4. Virtual tables for time series data 4-13

Table 4-6. TSVTMode parameter settings that affect which columns are updated in the base
table (continued)

Columns to update
TSVTMode parameter
setting

Update the TimeSeries column and all other non-primary
key columns that have NOT NULL constraints. You can
specify null values for columns that have NOT NULL
constraints.

32 + 16

The following examples illustrate some of the settings for the TSVTMode
parameter. The examples use a base table with columns for the account number,
the meter identifier, the time series data, the meter owner, and the meter address.
The account number and meter identifier columns are the primary key. The
TimeSeries column contains columns for the time stamp, energy, and temperature.
The owner column has a NOT NULL constraint. Each of the virtual tables created
in the examples have the following initial one row that represents one times series
element:
acct_no 6546
meter_id 234
t 2011-01-01 00:00:00.00000
energy 33070
temperature -13.0000000000
owner John
address 5 Nowhere Place

1 row(s) retrieved.

Example 1: Setting the TSVTMode parameter to 0

The following statement creates a virtual table named smartmeters_vti_nn with the
TSVTMode parameter set to 0:
EXECUTE PROCEDURE TSCreateVirtualTab(’smartmeters_vti_nn’,

’smartmeters’, ’origin(2011-01-01 00:00:00.00000),
calendar(ts_15min), regular,threshold(20), container()’, 0);

The following statement inserts a new row into the virtual table and a new
element in the time series in the base table:
INSERT INTO smartmeters_vti_nn(acct_no,meter_id,t,energy,temperature,owner,address)
VALUES(6546, 234,

’2011-01-01 00:45:00.00000’::datetime year to fraction(5),
3234, -12.00,
’Ignored_value’, ’Ignored_value’);

1 row(s) inserted.

The values of the primary key columns match the original row. The values of the
owner and address columns are ignored; they are not used to identify the row that
must be updated and those values are not updated in the base table. After the
INSERT statement, the virtual table contains two rows, and each contains the
original values of the owner and address columns:
SELECT * FROM smartmeters_vti_nn;

acct_no 6546
meter_id 234
t 2011-01-01 00:00:00.00000
energy 33070
temperature -13.0000000000
owner John

4-14 IBM Informix TimeSeries Data User's Guide

address 5 Nowhere Place

acct_no 6546
meter_id 234
t 2011-01-01 00:45:00.00000
energy 3234
temperature -12.0000000000
owner John
address 5 Nowhere Place

2 row(s) retrieved.

Example 2: Setting the TSVTMode parameter to 32

The following statement creates a virtual table named smartmeters_vti_nn_nk_nn
with the TSVTMode parameter set to 32:
EXECUTE PROCEDURE TSCreateVirtualTab(’smartmeters_vti_nn_nk_nn’,

’smartmeters’, ’origin(2011-01-01 00:00:00.00000),
calendar(ts_15min), regular,threshold(20), container()’, 32);

The following statement inserts a new row into the virtual table and a new
element in the time series in the base table:
INSERT INTO smartmeters_vti_nn_nk_nn(acct_no,meter_id,t,energy,

temperature,owner,address)
VALUES(6546, 234,

’2011-01-01 00:45:00.00000’::datetime year to fraction(5),
3234, -12.00,
’Jim’, NULL);

1 row(s) inserted.

The value of the owner column is updated to Jim. The value of the address
column is not changed, because null values are ignored. The virtual table now
contains two rows, each of which have the new value for the owner column and
the existing value for the address column:
SELECT * FROM smartmeters_vti_nn_nk_nn;

acct_no 6546
meter_id 234
t 2011-01-01 00:00:00.00000
energy 33070
temperature -13.0000000000
owner Jim
address 5 Nowhere Place

acct_no 6546
meter_id 234
t 2011-01-01 00:45:00.00000
energy 3234
temperature -12.0000000000
owner Jim
address 5 Nowhere Place

2 row(s) retrieved.

Example 3: Setting the TSVTMode parameter to 64

The following statement creates a virtual table named smartmeters_vti_nn_nk_in
with the TSVTMode parameter set to 64:
EXECUTE PROCEDURE TSCreateVirtualTab(’smartmeters_vti_nn_nk_in’,

’smartmeters’, ’origin(2011-01-01 00:00:00.00000),
calendar(ts_15min), regular,threshold(20), container()’, 64);

Chapter 4. Virtual tables for time series data 4-15

The following statement inserts a new row into the virtual table and a new
element in the time series in the base table:
INSERT INTO smartmeters_vti_nn_nk_in(acct_no,meter_id,t,energy,

temperature,owner,address)
VALUES(6546, 234,

’2011-01-01 00:45:00.00000’::datetime year to fraction(5),
3234, -12.00,
’Jim’, NULL);

1 row(s) inserted.

The value of the owner column is updated to Jim. The value of the address
column is updated to a null value. The virtual table now contains two rows, each
of which have the new value for the owner column and a null value for the
address column:
SELECT * FROM smartmeters_vti_nn_nk_in;

acct_no 6546
meter_id 234
t 2011-01-01 00:00:00.00000
energy 33070
temperature -13.0000000000
owner Jim
address

acct_no 6546
meter_id 234
t 2011-01-01 00:45:00.00000
energy 3234
temperature -12.0000000000
owner Jim
address

2 row(s) retrieved.

Duplicate timepoints

By default, the database server uses the PutElemNoDups function to add an
element to the underlying time series. If an element already exists at the same
timepoint, the existing element is updated. You can perform bulk updates of the
underlying time series without producing duplicate elements for the same
timepoints.

When the TSVTMode parameter includes the value 1, the database server uses the
PutElem function to add an element to the underlying time series. The PutElem
function handles updates to existing data in an underlying irregular time series
differently than does the PutElemNoDups function.

Null and hidden elements

The TSVTMode parameter includes options to display null or hidden time series
elements in the virtual table. By default, if a base table has a null element at a
specific timepoint, the virtual table has no entries for that timepoint. You can use
the TSVTMode parameter to display null elements as a row of null values, plus the
timestamp column and any non-time-series columns from the base table.

If the TSVTMode parameter includes the value 2, null time series elements appear
as null values in the virtual table. Hidden elements also appear as null values. If
the TSVTMode parameter does not include the value 2, null time series elements do
not appear in the virtual table.

4-16 IBM Informix TimeSeries Data User's Guide

If the TSVTMode parameter includes the value 512, hidden time series elements
appear in the virtual table; otherwise, they do not.

The following statements create four virtual tables that are all based on the same
base table, named inst, which contains the TimeSeries column named bars. Each
of the tables uses a different value for the TSVTMode parameter. The inst_vt0 table
does not show null or hidden elements. The inst_vt2 table shows null elements.
The inst_vt512 table shows hidden elements. The inst_vt514 table shows null and
hidden elements.
execute procedure TSCreateVirtualTab(’inst_vt0’, ’inst’, 0);
execute procedure TSCreateVirtualTab(’inst_vt2’, ’inst’, 2);
execute procedure TSCreateVirtualTab(’inst_vt512’, ’inst’, 512);
execute procedure TSCreateVirtualTab(’inst_vt514’, ’inst’, 514);

The following statement hides one element by using the HideElem function:
update inst set bars = HideElem(bars,

datetime(2011-01-18) year to day) where code = ’AA’;
1 row(s) updated.

The following query shows that the inst_vt0 table does not contain the hidden
element for 2011-01-18:
select * from inst_vt0
where code = ’AA’
and t between datetime(2011-01-14) year to day
and datetime(2011-01-19) year to day
order by t;

code AA
t 2011-01-14 00:00:00.00000
high 69.25000000000
low 68.37500000000
final 68.62500000000
vol 462.0000000000

code AA
t 2011-01-19 00:00:00.00000
high 69.62500000000
low 69.12500000000
final 69.62500000000
vol 96.69999700000
2 row(s) retrieved.

The following query shows that the inst_vt2 table contains null elements:
select * from inst_vt2
where code = ’AA’
and t between datetime(2011-01-14) year to day
and datetime(2011-01-19) year to day
order by t;

code AA
t 2011-01-14 00:00:00.00000
high 69.25000000000
low 68.37500000000
final 68.62500000000
vol 462.0000000000

code AA
t 2011-01-17 00:00:00.00000
high
low
final
vol

Chapter 4. Virtual tables for time series data 4-17

code AA
t 2011-01-18 00:00:00.00000
high
low
final
vol

code AA
t 2011-01-19 00:00:00.00000
high 69.62500000000
low 69.12500000000
final 69.62500000000
vol 96.69999700000
4 row(s) retrieved.

The following query shows that the inst_vt512 table does contain the hidden
element:
select * from inst_vt512
where code = ’AA’
and t between datetime(2011-01-14) year to day
and datetime(2011-01-19) year to day
order by t;

code AA
t 2011-01-14 00:00:00.00000
high 69.25000000000
low 68.37500000000
final 68.62500000000
vol 462.0000000000

code AA
t 2011-01-18 00:00:00.00000
high 69.75000000000
low 68.75000000000
final 69.62500000000
vol 281.2000100000

code AA
t 2011-01-19 00:00:00.00000
high 69.62500000000
low 69.12500000000
final 69.62500000000
vol 96.69999700000
3 row(s) retrieved.

The following query shows that the inst_vt514 table does contain the hidden
element and the null element:
select * from inst_vt514
where code = ’AA’
and t between datetime(2011-01-14) year to day
and datetime(2011-01-19) year to day
order by t;

code AA
t 2011-01-14 00:00:00.00000
high 69.25000000000
low 68.37500000000
final 68.62500000000
vol 462.0000000000

code AA
t 2011-01-17 00:00:00.00000
high
low

4-18 IBM Informix TimeSeries Data User's Guide

final
vol

code AA
t 2011-01-18 00:00:00.00000
high 69.75000000000
low 68.75000000000
final 69.62500000000
vol 281.2000100000

code AA
t 2011-01-19 00:00:00.00000
high 69.62500000000
low 69.12500000000
final 69.62500000000
vol 96.6999970000
4 row(s) retrieved.

Related concepts:
“The display of data in virtual tables” on page 4-3
“The insertion of data through virtual tables” on page 4-3
Related reference:
“PutElemNoDups function” on page 7-67
“PutElem function” on page 7-65

Drop a virtual table

You use the DROP statement to destroy a virtual table in the same way as you
destroy any other database table. When you drop a virtual table, the underlying
base table is unaffected.

Manage performance

You can enhance the performance of your virtual tables by performing the
following tasks:
v Create an index on the key column of the base table. If the table has more than

one column in the key, create a composite index consisting of all key columns.
v Run UPDATE STATISTICS on the base table and on its key columns:

update statistics high for table daily_stocks;

update statistics high for table daily_stocks (stock_id);

You should run UPDATE STATISTICS after any load or delete operation; you
might want to make these commands part of your routine database
maintenance.

Trace functions

Trace functions are available to help you debug your work with virtual tables.

Restriction: You should not use these trace functions unless you are working with
an IBM Informix Technical Support or Engineering professional.

The functions are:

TSSetTraceFile
Allows you to specify a file to which the trace information is appended.

Chapter 4. Virtual tables for time series data 4-19

TSSetTraceLevel
Sets the level of tracing to perform: in effect, turns tracing either on or off.

The TSSetTraceFile function

The TSSetTraceFile function specifies a file to which trace information is
appended.

Syntax
TSSetTraceFile(traceFileName lvarchar)
returns integer;

traceFileName
The full path and name of the file to which trace information is appended.

Description

The file you specify using TSSetTraceFile overrides any current trace file. The file
is located on the server computer. The default trace file is /tmp/
session_number.trc.

TSSetTraceFile calls the mi_set_trace_file() DataBlade API function. For more
information about mi_set_trace_file(), see the IBM Informix DataBlade API
Programmer's Guide.

Returns

Returns 0 on success, -1 on failure.

Example

The following example sets the file /tmp/test1.trc to receive trace information:
execute function TSSetTraceFile(’/tmp/test1.trc’);

TSSetTraceLevel function
The TSSetTraceLevel function sets the trace level of a trace class.

Syntax
TSSetTraceLevel(traceLevelSpec lvarchar)
returns integer;

traceLevelSpec
A character string specifying the trace level for a specific trace class. The
format is TS_VTI_DEBUG traceLevel.

Description

TSSetTraceLevel sets the trace level of a trace class. The trace level determines
what information is recorded for a given trace class. The trace class for virtual
table information is TS_VTI_DEBUG. The level to enable tracing for the
TS_VTI_DEBUG trace class is 1001. You must set the tracing level to 1001 or
greater to enable tracing. By default, the trace level is below 1001.

TSSetTraceLevel calls the mi_set_trace_level() DataBlade API function. For more
information about mi_set_trace_level(), see the IBM Informix DataBlade API
Programmer's Guide.

4-20 IBM Informix TimeSeries Data User's Guide

Returns

Returns 0 on success, -1 on failure.

Example

The following example turns tracing on:
execute function TSSetTraceLevel(’TS_VTI_DEBUG 1001’);

Chapter 4. Virtual tables for time series data 4-21

4-22 IBM Informix TimeSeries Data User's Guide

Chapter 5. Calendar pattern routines

You can use calendar pattern routines to manipulate calendar patterns.

Calendar pattern routines can perform the following types of operations:
v Create the intersection of calendar patterns
v Create the union of calendar patterns
v Alter a calendar pattern

Calendar and calendar pattern routines can be useful when comparing time series
that are based on different calendars. For example, to compare peak time business
usage of a computer network across multiple countries requires accounting for
different sets of public holidays in each country. An efficient way to handle this is
to define a calendar for each country and then create the calendar intersections to
perform business-day comparisons.

Calendar pattern routines can be run in SQL statements or sent from an
application using the DataBlade API function mi_exec.
Related concepts:
“Calendar” on page 1-7
“CalendarPattern data type” on page 2-1

The AndOp function

The AndOp function returns the intersection of two calendar patterns.

Syntax
AndOp (cal_patt1 CalendarPattern,

cal_patt2 CalendarPattern)
returns CalendarPattern;

cal_patt1
The first calendar pattern.

cal_patt2
The second calendar pattern.

Description

This function returns a calendar pattern that has every interval on that was on in
both calendar patterns; the rest of the intervals are off. If the given patterns do not
have the same interval unit, the pattern with the larger interval unit is expanded to
match the other.

Returns

A calendar pattern that is the result of two others combined by the AND operator.

© Copyright IBM Corp. 2006, 2011 5-1

Example

The first AndOp statement returns the intersection of two daily calendar patterns,
and the second AndOp statement returns the intersection of one hourly and one
daily calendar pattern:
select * from CalendarPatterns

where cp_name = ’workweek_day’;

cp_name workweek_day
cp_pattern {1 off,5 on,1 off},day

select * from CalendarPatterns
where cp_name = ’fourday_day’;

cp_name fourday_day
cp_pattern {1 off,4 on,2 off},day

select * from CalendarPatterns
where cp_name = ’workweek_hour’;

cp_name workweek_hour
cp_pattern {32 off,9 on,15 off,9 on,15 off,9 on,15 off, 9

on,15 off,9 on,31 off},hour

select AndOp(p1.cp_pattern, p2.cp_pattern)
from CalendarPatterns p1, CalendarPatterns p2

where p1.cp_name = ’workweek_day’
and p2.cp_name = ’fourday_day’;

(expression) {1 off,4 on,2 off},day

select AndOp(p1.cp_pattern, p2.cp_pattern)
from CalendarPatterns p1, CalendarPatterns p2

where p1.cp_name = ’workweek_hour’
and p2.cp_name = ’fourday_day’;

(expression) {32 off,9 on,15 off,9 on,15 off,9 on,15 off,9
on,55 off},hour

Related reference:
“The AndOp function” on page 6-1

The CalPattStartDate function

The CalPattStartDate function takes a calendar name and returns a DATETIME
containing the start date of the pattern for that calendar.

Syntax
CalPattStartDate(calname lvarchar)
returns datetime year to fraction(5);

calname
The name of the source calendar.

Description

The equivalent API function is ts_cal_pattstartdate().

Returns

The start date of the pattern for the given calendar.

5-2 IBM Informix TimeSeries Data User's Guide

Example

The following example returns the start dates of the calendar patterns for each
calendar in the CalendarTable table:
select c_name, CalPattStartDate(c_name) from CalendarTable;

Related reference:
“The CalStartDate function” on page 6-5
“The ts_cal_pattstartdate() function” on page 9-8

The Collapse function

The Collapse function collapses the given calendar pattern into destination units,
which must have a larger interval unit than that of the given calendar pattern.

Syntax
Collapse (cal_patt CalendarPattern,

interval lvarchar)
returns CalendarPattern;

cal_patt
The calendar pattern to be collapsed.

interval
The destination time interval: minute, hour, day, week, month, or year.

Description

If any part of a destination unit is on, the whole unit is considered on.

Returns

The collapsed calendar pattern.

Example

The following statements convert an hourly calendar pattern into a daily calendar
pattern:
select * from CalendarPatterns

where cp_name = ’workweek_hour’;

cp_name workweek_hour
cp_pattern {32 off,9 on,15 off,9 on,15 off,9 on,15 off,9

on,15 off,9 on,31 off},hour

select Collapse(cp_pattern, ’day’)
from CalendarPatterns

where cp_name = ’workweek_hour’;

(expression) {1 off,5 on,1 off},day

Chapter 5. Calendar pattern routines 5-3

Related reference:
“The Expand function”

The Expand function

The Expand function expands the given calendar pattern into the destination units,
which must have a smaller interval unit than that of the given calendar pattern.

Syntax
Expand (cal_patt CalendarPattern,

interval lvarchar)
returns CalendarPattern;

cal_patt
The calendar pattern to expand.

interval
The destination time interval: second, minute, hour, day, week, or month.

Description

When a month is expanded, it is assumed to have 30 days.

Returns

The expanded calendar pattern.

Example

The following statements convert a daily calendar pattern into an hourly calendar
pattern:
select * from CalendarPatterns

where cp_name = ’workweek_day’;

cp_name workweek_day
cp_pattern {1 off,5 on,1 off},day

select Expand(cp_pattern, ’hour’)
from CalendarPatterns

where cp_name = ’workweek_day’;

(expression) {24 off,120 on,24 off},hour

Related reference:
“The Collapse function” on page 5-3

The NotOp function

The NotOp function turns all on intervals off and all off intervals on in the given
calendar pattern.

Syntax
NotOp (cal_patt CalendarPattern)
returns CalendarPattern;

cal_patt
The calendar pattern to convert.

5-4 IBM Informix TimeSeries Data User's Guide

Returns

The inverted calendar pattern.

Example

The following statement converts the workweek_day calendar:
select * from CalendarPatterns

where cp_name = ’workweek_day’;

cp_name workweek_day
cp_pattern {1 off,5 on,1 off},day

select NotOp(cp_pattern)
from CalendarPatterns

where cp_name = ’workweek_day’;

(expression) {1 on,5 off,1 on}, day

The OrOp function

The OrOp function returns the union of the two calendar patterns.

Syntax
OrOp (cal_patt1 CalendarPattern,

cal_patt2 CalendarPattern)
returns CalendarPattern;

cal_patt1
The first calendar pattern.

cal_patt2
The second calendar pattern.

Description

This function returns a calendar pattern that has every interval on that was on in
either of the calendar patterns; the rest of the intervals are off. If the two patterns
have different sizes of interval units, the resultant pattern has the smaller of the
two intervals.

Returns

A calendar pattern that is the result of two others combined with the OR operator.

Example

The first OrOp statement in the example returns the union of two daily calendar
patterns. The second OrOp statement returns the union of one hourly and one
daily calendar pattern:
select * from CalendarPatterns

where cp_name = ’workweek_day’;

cp_name workweek_day
cp_pattern {1 off,5 on,1 off},day

select * from CalendarPatterns
where cp_name = ’fourday_day’;

Chapter 5. Calendar pattern routines 5-5

cp_name fourday_day
cp_pattern {1 off,4 on,2 off},day

select * from CalendarPatterns
where cp_name = ’workweek_hour’;

cp_name workweek_hour
cp_pattern {32 off,9 on,15 off,9 on,15 off,9 on,15 off, 9

on,15 off,9 on,31 off},hour

select OrOp(p1.cp_pattern, p2.cp_pattern)
from CalendarPatterns p1, CalendarPatterns p2

where p1.cp_name = ’workweek_day’
and p2.cp_name = ’fourday_day’;

(expression) {1 off,5 on,1 off},day

(expression) {24 off,96 on,8 off,9 on,31 off},hour

Related reference:
“The OrOp function” on page 6-5

5-6 IBM Informix TimeSeries Data User's Guide

Chapter 6. Calendar routines

You can use calendar routines to manipulate calendars.

Calendar routines can perform the following types of operations:
v Create the intersection of calendars
v Create the union of calendars
v Return information about the calendar

Calendar routines can be useful when comparing time series that are based on
different calendars. For example, to compare peak time business usage of a
computer network across multiple countries requires accounting for different sets
of public holidays in each country. An efficient way to handle this is to define a
calendar for each country and then create the calendar intersections to perform
business-day comparisons.

Calendar routines can be run in SQL statements or sent from an application using
the DataBlade API function mi_exec.
Related concepts:
“Calendar” on page 1-7
“Calendar data type” on page 2-3

The AndOp function

The AndOp function returns the intersection of the two calendars.

Syntax
AndOp (cal1 Calendar,

cal2 Calendar)
returns Calendar;

cal1 The first calendar.

cal2 The second calendar.

Description

This function returns a calendar that has every interval on that was on in both
calendars; the rest of the intervals are off. The resultant calendar takes the later of
the two start dates and the later of the two pattern start dates.

If the two calendars have different size interval units, the resultant calendar has
the smaller of the two intervals.

Returns

A calendar that is the result of two other calendars combined with the AND
operator.

© Copyright IBM Corp. 2006, 2011 6-1

Example

The following AndOp statement returns the intersection of an hourly calendar
with a daily calendar having a different start date:
select c_calendar from CalendarTable

where c_name = ’hourcal’;

c_calendar startdate(2011-01-01 00:00:00), pattstart(2011-
01-02 00:00:00), pattern({32 off,9 on,15 off,9
on,15 off,9 on,15 off,9 on,15 off, 9 on,31
off},hour)

select c_calendar from CalendarTable
where c_name = ’daycal’;

c_calendar startdate(2011-04-01 00:00:00), pattstart(2011-
04-03 00:00:00), pattern({1 off,5 on,1 off},day)

select AndOp(c1.c_calendar, c2.c_calendar)
from CalendarTable c1, CalendarTable c2
where c1.c_name = ’daycal’ and c2.c_name = ’hourcal’;

(expression)

startdate(2011-04-01 00:00:00), pattstart(2011-04-03
00:00:00), pattern({32 off,9 on,15 off,9 on,15 off,9 on,15
off,9 on,15 off, 9 on ,31 off},hour)

Related reference:
“The AndOp function” on page 5-1
“The OrOp function” on page 6-5

The CalIndex function

The CalIndex function returns the number of valid intervals in a calendar between
two given time stamps.

Syntax
CalIndex(cal_name lvarchar,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5))

returns integer;

cal_name
The name of the calendar.

begin_stamp
The begin point of the range. Must not be earlier than the calendar start
date.

end_stamp
The end point of the range.

Description

The equivalent API function is ts_cal_index().

Returns

The number of valid intervals in the given calendar between the two time stamps.

6-2 IBM Informix TimeSeries Data User's Guide

Example

The following query returns the number of intervals in the calendar daycal
between 2011-01-03 and 2011-01-05:
select CalIndex(’daycal’,

’2011-01-03 00:00:00.00000’,
’2011-01-05 00:00:00.00000’)

from systables
where tabid = 1;

Related reference:
“The ts_cal_range() function” on page 9-9
“The ts_cal_range_index() function” on page 9-10
“The ts_cal_stamp() function” on page 9-11
“GetIndex function” on page 7-43
“GetStamp function” on page 7-54

The CalRange function

The CalRange function returns a set of valid time stamps within a range.

Syntax
CalRange(cal_name lvarchar,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5))

returns list(datetime year to fraction(5));

CalRange(cal_name lvarchar,
begin_stamp datetime year to fraction(5),
num_stamps integer)

returns list(datetime year to fraction(5));

cal_name
The name of the calendar.

begin_stamp
The begin point of the range. Must be no earlier than the first time stamp
in the calendar.

end_stamp
The end point of the range.

num_stamps
The number of time stamps to return.

Description

The first syntax specifies the range as between two given time stamps. The second
syntax specifies the number of valid time stamps to return after a given time
stamp.

The equivalent API function is ts_cal_range().

Returns

A list of time stamps.

Chapter 6. Calendar routines 6-3

Example

The following query returns a list of all the time stamps between 2011-01-03 and
2011-01-05 in the calendar daycal:
execute function CalRange(’daycal’,

’2011-01-03 00:00:00.00000’,
’2011-01-05 00:00:00.00000’::datetime year

to fraction(5));

The following query returns a list of the two time stamps following 2011-01-03 in
the calendar daycal:
execute function CalRange(’daycal’,

’2011-01-03 00:00:00.00000’, 2);

Related reference:
“The ts_cal_range() function” on page 9-9
“The ts_cal_range_index() function” on page 9-10
“The ts_cal_stamp() function” on page 9-11
“GetIndex function” on page 7-43
“GetStamp function” on page 7-54

The CalStamp function

The CalStamp function returns the time stamp at a given number of calendar
intervals after a given time stamp.

Syntax
CalStamp(cal_name lvarchar,

tstamp datetime year to fraction(5),
num_stamps integer)

returns datetime year to fraction(5);

cal_name
The name of the calendar.

tstamp The input time stamp.

num_stamps
The number of calendar intervals after the input time stamp. Cannot be
negative.

Description

The equivalent API function is ts_cal_stamp().

Returns

The time stamp representing the given offset.

Example

The following example returns the time stamp that is two intervals after
2011-01-03:
execute function CalStamp(’daycal’,

’2011-01-03 00:00:00.00000’, 2);

6-4 IBM Informix TimeSeries Data User's Guide

Related reference:
“The ts_cal_range() function” on page 9-9
“The ts_cal_range_index() function” on page 9-10
“The ts_cal_stamp() function” on page 9-11

The CalStartDate function

The CalStartDate function takes a calendar name and returns a DATETIME value
containing the start date of that calendar.

Syntax
CalStartDate(cal_name lvarchar)
returns datetime year to fraction(5);

cal_name
The name of the calendar.

Description

The equivalent API function is ts_cal_startdate().

Returns

The start date of the given calendar.

Example

The following example returns the start dates of all the calendars in the
CalendarTable table:
select c_name, CalStartDate(c_name) from CalendarTable;

Related reference:
“The CalPattStartDate function” on page 5-2
“The ts_cal_startdate() function” on page 9-11

The OrOp function

The OrOp function returns the union of the two calendars.

Syntax
OrOp (cal1 Calendar,

cal2 Calendar)
returns Calendar;

cal1 The first calendar to be combined.

cal2 The second calendar to be combined.

Description

This function returns a calendar that has every interval on that was on in either
calendar; the rest of the intervals are off. The resultant calendar takes the earlier of
the two start dates and the two pattern start dates.

If the two calendars have different sizes of interval units, the resultant calendar has
the smaller of the two intervals.

Chapter 6. Calendar routines 6-5

Returns

A calendar that is the result of two others combined with the OR operator.

Example

The following OrOp function returns the union of an hourly calendar with a daily
calendar having a different start date:
select c_calendar from CalendarTable

where c_name = ’hourcal’;

c_calendar startdate(2011-01-01 00:00:00), pattstart(2011-
01-02 00:00:00), pattern({32 off,9 on,15 off,9
on,15 off,9 on,15 off,9 on,15 off, 9 on,31
off},hour)

select c_calendar from CalendarTable
where c_name = ’daycal’;

c_calendar startdate(2011-04-01 00:00:00), pattstart(2011-
04-03 00:00:00), pattern({1 off,5 on,1 off},day)

select OrOp(c1.c_calendar, c2.c_calendar)
from CalendarTable c1, CalendarTable c2
where c1.c_name = ’daycal’ and c2.c_name = ’hourcal’;

(expression)
startdate(2011-01-01 00:00:00), pattstart(2011-01-02
00:00:00), pattern({24 off,120 on,24 off},hour)

Related reference:
“The OrOp function” on page 5-5
“The AndOp function” on page 6-1

6-6 IBM Informix TimeSeries Data User's Guide

Chapter 7. Time series SQL routines

Time series SQL routines create instances of a particular time series type, and then
add data to or change data in the time series type. SQL routines are also provided
to examine, analyze, manipulate, and aggregate the data within a time series.

The several data types and tables used throughout the examples in this chapter are
listed in the following table.

Type/Table Description

stock_bar Type containing timestamp(DATETIME), high, low, final, and
vol columns

daily_stocks Table containing stock_id, stock_name, and stock_data columns
stock_trade Type containing timestamp(DATETIME), price, vol, trade,

broker, buyer, and seller columns
activity_stocks Table containing stock_id and activity_data columns

For more information about these data types and tables, see “Creating a TimeSeries
subtype” on page 3-6 and “Create the database table” on page 3-6.

The schema for these examples is in the $INFORMIXDIR/TimeSeries.version/
examples directory.
Related concepts:
“Planning for accessing time series data” on page 1-12

Time series SQL routines sorted by task
Time series SQL routines are sorted into logical areas based on the type of task.

Table 7-1. Time series SQL routines by task type

Task type Description Routine name

Get information from
a time series

Get the origin GetOrigin

Get the interval GetInterval

Get the calendar GetCalendar

Get the calendar name GetCalendarName

Get the container name GetContainerName

Get user-defined metadata GetMetaData

Get the metadata type GetMetaTypeName

Determine whether a time series is regular IsRegular

Get the instance ID if the time series is stored in a
container

InstanceId

Convert between a
time stamp and an
offset

Return the offset, given the time stamp GetIndex

Return the time stamp, given the offset GetStamp

Count the number of
elements

Return the number of elements GetNelems

Get the number of elements between two time stamps ClipGetCount

© Copyright IBM Corp. 2006, 2011 7-1

Table 7-1. Time series SQL routines by task type (continued)

Task type Description Routine name

Select individual
elements

Get the element associated with a given time stamp GetElem

Get the element at or before a time stamp GetLastValid

Get the element after a time stamp GetNextValid

Get the element before a time stamp GetPreviousValid

Get the element at a specified position GetNthElem

Get the first element GetFirstElem

Get the last element GetLastElem

Get the last non-null element GetLastNonNull

Get the next non-null element GetNextNonNull

Modify elements or a
set of elements

Add or update a single element PutElem

Add or update a single element PutElemNoDups

Add or update a single element at a given offset PutNthElem (regular only)

Add or update an entire set PutSet

Delete an element at a given timepoint DelElem

Delete all elements in a specified time range DelClip

Delete all elements in a specified time range and free
space in any part of a time series

DelRange

Delete all elements in a specified time range and free
space at the end of a time series

DelTrim

Insert an element InsElem

Insert a set InsSet

Free empty pages in a specified time range or throughout
the time series

NullCleanup

Update an element UpdElem

Update a set UpdSet

Put every element of one time series into another time
series

PutTimeSeries

Modify metadata Update user-defined metadata UpdMetaData

Make elements visible
or invisible to a scan

Make an element invisible HideElem

Make a range of elements invisible HideRange

Make an element visible RevealElem

Make a range of elements visible RevealRange

Check for null or
hidden elements

Determine if an element is hidden. ElemIsHidden

Determine if an element is null. ElemIsNull

Extract and use part
of a time series

Extract a period between two time stamps or
corresponding to a set of values and run an expression or
function on every entry

Apply

Extract data between two timepoints Clip

Clip a certain number of elements ClipCount

Output values in XML format TStoXML

Extract a period that includes a given time WithinC

Extract a period starting or ending at a given time WithinR

7-2 IBM Informix TimeSeries Data User's Guide

Table 7-1. Time series SQL routines by task type (continued)

Task type Description Routine name

Apply a new calendar
to a time series

Apply a calendar ApplyCalendar

Create and load a
time series

Load data from a client file BulkLoad

Create a regular empty time series, a regular populated
time series, or a regular time series with metadata

TSCreate

Create an irregular empty time series, an irregular
populated time series, or an irregular time series with
metadata

TSCreateIrr

Find the intersection
or union of time series

Build the intersection of multiple time series and
optionally clip the result

Intersect

Build the union of multiple time series and optionally clip
the result

Union

Iterator functions Convert time series data to tabular form Transpose

Aggregate functions Return a list (collection of rows) containing all elements in
a time series

TSSetToList

Return a list of one column in the time series TSColNameToList

Return a list of one column in the time series TSColNumToList

Return a list containing the columns of the time series
plus non-time-series columns

TSRowToList

Return a list containing one column of the time series plus
non-time-series columns

TSRowNameToList

Return a list containing one column of the time series plus
non-time-series columns

TSRowNumToList

Used within the
Apply function to
perform statistical
calculations on a time
series

Perform a sum over a time series type Sum

Sum SMALLFLOAT or DOUBLE PRECISION values TSAddPrevious

Compute the decay function TSDecay

Compute a running average over a specified number of
values

TSRunningAvg

Compute a running correlation between two time series
over a specified number of values

TsRunningCor

Compute a running median over a specified number of
values

TsRunningMed

Compute a running sum over a specified number of
values

TSRunningSum

Compute a running variance over a specified number of
values

TSRunningVar

Compare SMALLFLOAT or DOUBLE PRECISION values TSCmp

Return a previously saved value TSPrevious

Chapter 7. Time series SQL routines 7-3

Table 7-1. Time series SQL routines by task type (continued)

Task type Description Routine name

Perform an arithmetic
operation on one or
two time series

Add two time series together Plus

Subtract one time series from another Minus

Multiply one time series by another Times

Divide one time series by another Divide

Raise the first argument to the power of the second Pow

Get the absolute value Abs

Exponentiate the time series Exp

Get the natural logarithm of a time series Logn

Get the modulus or remainder of a division of one time
series by another

Mod

Negate a time series Negate

Return the argument and the argument is bound to the
unary + operator

Positive

Round the time series to the nearest whole number Round

Get the square root of the time series Sqrt

Get the cosine of the time series Cos

Get the sine of the time series Sin

Get the tangent of the time series Tan

Get the arc cosine of the time series Acos

Get the arc sine of the time series Asin

Get the arc tangent of the time series Atan

Get the arc tangent for two time series Atan2

Perform an arithmetic
operation on one or
two time series
(continued)

Apply a binary function to a pair of time series, or to a
time series and a compatible row type or number

ApplyBinaryTsOp

Apply a unary function to a time series ApplyUnaryTsOp

Apply another function to a set of time series ApplyOpToTsSet

Aggregate time series
values

Aggregate values in a time series from a single row AggregateBy

Aggregate values in a time series from a single row over a
specified time range

AggregateRange

Aggregate time series values across multiple rows TSRollup

Create a time series
that lags

Create a time series that lags the source time series by a
given offset

Lag (regular only)

Reset the origin Reset the origin SetOrigin

Manage containers Create a container TSContainerCreate

Destroy a container TSContainerDestroy

Set the container name SetContainerName

Specify the container pool for inserting data into a time
series

TSContainerPoolRoundRobin

Add a container into a container pool or remove a
container from a container pool

TSContainerSetPool

7-4 IBM Informix TimeSeries Data User's Guide

Table 7-1. Time series SQL routines by task type (continued)

Task type Description Routine name

Monitor containers Return the number of elements in one or all containers TSContainerNElems

Return the percentage of space used in one or all
containers

TSContainerPctUsed

Return the total number of pages allocated to one or all
containers

TSContainerTotalPages

Return the number of pages used by one or all containers TSContainerTotalUsed

Return the number of elements, the number of pages
used, and the total number of pages allocated for one or
all containers

TSContainerUsage

The following routines are only used with regular time series:
v Lag

v PutNthElem

v TSCreate

The TSCreateIrr function is used only with irregular time series.

The flags argument values

Many of the time series SQL functions provide a flags argument to determine how
the function handles null values and hidden elements. These values are described
here.

Some functions have specific settings of the flags argument that are relevant only to
that function. In these cases, the flags argument values are documented with the
function.

The value of the flags argument is the sum of the desired flag values from the
following table.

Flag Value Meaning

TSOPEN_RDWRITE 0 (Default) Indicates that the time series can
be read and written to.

TSOPEN_READ_HIDDEN 1 Indicates that hidden elements should be
treated as if they are not hidden.

TSOPEN_WRITE_HIDDEN 2 Allows hidden elements to be written to
without first revealing them. The element
remains hidden afterward.

TSOPEN_WRITE_AND_HIDE 4 Causes any elements written to a time
series also to be marked as hidden.

TSWRITE_AND_REVEAL 8 Reveals any hidden element written to.

TSOPEN_NO_NULLS 32 Affects the way elements are returned that
have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if
an element has not been allocated it is
returned as NULL. If TSOPEN_NO_NULLS
is set, an element that has each column set
to NULL is returned instead.

Chapter 7. Time series SQL routines 7-5

These flags can be used in any combination except the following four:
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_REVEAL
v TSOPEN_WRITE_AND_REVEAL and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN, and TSOPEN_WRITE_AND_HIDE, and

TSOPEN_WRITE_AND_REVEAL

The TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_REVEAL, and
TSOPEN_WRITE_AND_HIDE flags cannot be used with
TSOPEN_READ_HIDDEN.

Abs function
The Abs function returns the absolute value of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Acos, Asin, Atan, Cos, Exp, Logn, Negate, Positive, Round, Sin, Sqrt and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

Acos function
The Acos function returns the arc cosine of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Asin, Atan, Cos, Exp, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

AggregateBy function
The AggregateBy function aggregates the values in a time series using a new time
interval that you specify by providing a calendar.

This function can be used to convert a time series with a small interval to a time
series with a larger interval: for instance, to produce a weekly time series from a
daily time series.

If you supply the optional start and end DATETIME parameters, just that part of
the time series is aggregated to the new time interval.

Syntax
AggregateBy(agg_express lvarchar,

cal_name lvarchar,
ts TimeSeries
flags integer default 0
start datetime year to fraction(5) default NULL,
end datetime year to fraction(5) default NULL

)
returns TimeSeries;

agg_express
A comma-separated list of these SQL aggregate operators: MIN, MAX,
MEDIAN, SUM, AVG, FIRST, LAST, or Nth.

7-6 IBM Informix TimeSeries Data User's Guide

cal_name
The name of a calendar that defines the aggregation period.

ts The time series to be aggregated.

flags (optional)
Determines how data points in off periods of calendars are handled during
aggregation. See “The flags argument values” on page 7-8.

start (optional)
The date and time at which to start aggregation.

end (optional)
The date and time at which to end aggregation.

Description

The AggregateBy function converts the input time series to a regular time series
with a calendar given by the cal_name argument. The agg_express expressions
operate on a column of the input time series, specified as $colname or $colnumber:
for example, $high or $1. The resulting time series has a time stamp column plus
one column for each expression in the list.

An error is raised if the MIN, MAX, MEDIAN, SUM, or AVG expression is used on
a non-numeric column.

The Nth expression returns the value of a column for the specified aggregation
period, using the following syntax:
Nth($col, n)

$col The name or number of a column within a TimeSeries row.

n A positive or negative number indicating the position of the TimeSeries
row within the aggregation period. Positive values of n begin at the first
row in the aggregation period; therefore, Nth($col, 1) is equivalent to
FIRST($col). Negative values of n begin with the last row in the
aggregation period; therefore, Nth($col, -1) is equivalent to LAST($col).

If an aggregation period does not have a value for the nth row, then the
Nth function returns a null value for that period. The Nth function is more
efficient for positive values of the n argument than for negative values.

An aggregation time period is denoted by the start date and time of the period.

The origin of the aggregated output time series is the first period on or before the
origin of the input time series. Each output period is the aggregation of all input
periods from the start of the output period up to, but not including, the start of the
next output period.

For instance, suppose you want to aggregate a daily time series that starts on
Tuesday, Jan. 4, 2011, to a weekly time series. The input calendar, named “days,”
starts at 12:00 a.m., and the output calendar, named “weeks,” starts at 12:00 a.m.,
on Monday.

The first output time is 00:00 Jan. 3, 2011; it is the aggregation of all input values
from the input origin, Jan. 4, 2011, to 23:59:59.99999 Jan. 9, 2011. The second output
time is 00:00 Jan. 10, 2011; it is the aggregation of all input values from 00:00 Jan
10, 2011 to 23:59:59.99999 Jan. 16, 2011.

Chapter 7. Time series SQL routines 7-7

Normally, AggregateBy is used to aggregate from a fine-grained regular time series
to a coarser-grained one. However, the following scenarios are also supported:
v Converting from a regular time series to a time series with a calendar of the

same granularity. In this case, AggregateBy shifts the times back to
accommodate differences in the calendar start times: for example, 00:00 from
8:00. Elements can be removed or null elements added to accommodate
differences in the on/off pattern.

v Converting from a regular time series to one with a calendar of finer granularity.
In this case, AggregateBy replicates values.

v The input time series is irregular. Because the granularity of an irregular time
series does not depend on the granularity of the calendar, this case is treated like
aggregation from a fine-grained time series to a coarser-grained one. This type of
aggregation always produces a regular time series.

The flags argument values

The flags argument determines how data points in the off periods of calendars are
handled during aggregation and how hidden elements are managed. It can have
the following values.

0 (Default) Data in off periods is aggregated with the next output period.

1 Data in off periods is aggregated with the previous output period.

2 Indicates that the scan should run with the TS_SCAN_HIDDEN flag set
(hidden elements are returned).

4 Indicates that the scan should run with the TS_SCAN_SKIP_HIDDEN flag
set (hidden elements are not returned).

For example, consider an input time series that has a daily calendar with no off
days: it has data from weekdays and weekends. If you aggregate this data by a
business-day calendar (5 days on, 2 days off, starting on a Monday), a flags
argument of 0 causes weekend data to be aggregated with the next Monday's data,
and a flags argument of 1 causes weekend data to be aggregated with the previous
Friday's data.

For another example, consider a quarterly calendar defined as:
’startdate(2010-1-1 00:00:00.00000), pattstart(2010-1-1 00:00:00.00000),
pattern({1 on, 2 off}, month’

If you aggregate this calendar with either a flags argument of 0 or no flags
argument, all input points up to, but not including, 2010-2-1 00:00:00.00000 are
aggregated into the first output element. All points from 2010-2-1 00:00:00.00000 up
to, but not including, 2010-5-1 00:00:00.00000 are aggregated into the second output
element, and so on.

If the flags argument is 1, all input points up to but not including 2010- 4-1
00:00:00.00000 are aggregated into the first output element. All points from 2010-4-1
00:00:00.00000 up to, but not including, 2010-7-1 00:00:00.00000 are aggregated into
the second output element, and so on. The AggregateBy clause might look like
this:
AggregateBy(’max($high)’, ’quarterlycal’, ts, 1);

7-8 IBM Informix TimeSeries Data User's Guide

Returns

The aggregated time series, which is always regular, if you are aggregating to a
new time interval.

Example

The following query aggregates the daily_stocks time series to a weekly time
series:
insert into daily_stocks(stock_id, stock_name, stock_data)

select stock_id, stock_name,
AggregateBy(’max($high), min($low),last($final),sum($vol)’,
’weekcal’, stock_data)::TimeSeries(stock_bar)
from daily_stocks;

The following query clause selects the second price from each week:
AggregateBy(’Nth($price, 2)’, ’weekly’, ts)

This query clause selects the second to the last price from each week:
AggregateBy(’Nth($price, -2)’, ’weekly’, ts)

Related reference:
“AggregateRange function”
“Apply function” on page 7-11
“PutTimeSeries function” on page 7-70
“TSRollup function” on page 7-98

AggregateRange function
The AggregateRange function produces an aggregate over each element for a time
range specified by start and end DATETIME parameters.

Syntax
AggregateRange(agg_express lvarchar,

ts TimeSeries
flags integer default 0
start datetime year to fraction(5) default NULL,
end datetime year to fraction(5) default NULL

)
returns row;

agg_express
A comma-separated list of these SQL aggregate operators: MIN, MAX,
MEDIAN, SUM, AVG, FIRST, LAST, or Nth.

ts The time series to be aggregated.

flags (optional)
See “The flags argument values” on page 7-10.

You cannot use a flags argument value of 1 with this function.

start (optional)
The date and time at which to start aggregation.

end (optional)
The date and time at which to end aggregation.

Chapter 7. Time series SQL routines 7-9

Description

The AggegateRange function converts the input section of a time series to a row of
aggregate values. The agg_express expressions operate on a column of the input
time series, specified as $colname or $colnumber: for example, $high, or $1.

An error is raised if the MIN, MAX, MEDIAN, SUM, or AVG expression is used on
a non-numeric column.

The Nth expression returns the value of a column for the specified aggregation
period, using the following syntax:

Nth($col, n)

$col The name or number of a column within a TimeSeries row.

n A positive or negative number indicating the position of the TimeSeries
row within the aggregation period. Positive values of n begin at the first
row in the aggregation period; therefore, Nth($col, 1) is equivalent to
FIRST($col). Negative values of n begin with the last row in the
aggregation period; therefore, Nth($col, -1) is equivalent to LAST($col).

If an aggregation period does not have a value for the nth row, then the
Nth function returns a null value for that period. The Nth function is more
efficient for positive values of the n argument than for negative values.

An aggregation time period is denoted by the start date and time of the period.

The flags argument values

The flags argument determines how data points in the off periods of calendars are
handled during aggregation and how hidden elements are managed. It can have
the following values.

0 (default)
Data in off periods is aggregated with the next output period.

2 Indicates that the scan should run with the TS_SCAN_HIDDEN flag set
(hidden elements are returned).

4 Indicates that the scan should run with the TS_SCAN_SKIP_HIDDEN flag
set (hidden elements are not returned).

Returns

A single element (row).

Example

The following example produces an average of the values in the column high of
the time series called stock_data. First, the example creates the row type, elemval,
as a cast for the result.
create row type elemval (tstamp datetime year to fraction(5),

high double precision);

select
AggregateRange(’avg($high)’, stock_data)::elemval

from daily_stocks;

7-10 IBM Informix TimeSeries Data User's Guide

Related reference:
“AggregateBy function” on page 7-6
“Apply function”

Apply function
The Apply function queries one or more time series and applies a user-specified
SQL expression or function to the selected time series elements.

Syntax
Apply(sql_express lvarchar,

ts TimeSeries, ...)
returns TimeSeries;

Apply(sql_express lvarchar,
multiset_ts multiset(TimeSeries))

returns TimeSeries;

Apply(sql_express lvarchar,
filter lvarchar,
ts TimeSeries, ...)

returns TimeSeries;

Apply(sql_express lvarchar,
filter lvarchar,
multiset_ts multiset(TimeSeries))

returns TimeSeries;

Apply(sql_express lvarchar,
begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
ts TimeSeries, ...)

returns TimeSeries with (handlesnulls);

Apply(sql_express lvarchar,
begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
multiset_ts multiset(TimeSeries))

returns TimeSeries with (handlesnulls);

Apply(sql_express lvarchar,
filter lvarchar,
begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
ts TimeSeries, ...)

returns TimeSeries with (handlesnulls);

Apply(sql_express lvarchar,
filter lvarchar,
begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
multiset_ts multiset(TimeSeries))

returns TimeSeries with (handlesnulls);

sql_express
The SQL expression or function to evaluate.

filter The filter expression used to select time series elements.

begin_stamp
The begin point of the range. See “Clip function” on page 7-26 for more
detail about range specifications.

Chapter 7. Time series SQL routines 7-11

end_stamp
The end point of the range. See “Clip function” on page 7-26 for more
detail about range specifications.

ts The first ts argument is the first series, the second ts argument is the
second series, and so on. This function can take up to eight ts arguments.
The order of the arguments must correspond to the desired order in the
SQL expression or function. There is no limit to the number of $
parameters in the expression.

multiset_ts
A multiset of time series.

Description

This function runs a user-specified SQL expression on the given time series and
produces a new time series containing the result of the expression at each
qualifying element of the input time series.

You can qualify the elements from the input time series by specifying a time
period to clip and by using a filter expression.

The sql_express argument is a comma-separated list of expressions to run for each
selected element. There is no limit to the number of expressions you can run. The
results of the expressions must match the corresponding columns of the result time
series minus the first time stamp column. Do not specify the first time stamp as
the first expression; the first time stamp is generated for each expression result.

The parameters to the expression can be an input element or any column of an
input time series. You should use $, followed by the position of a given time series
on the input time series list to represent its data element, plus a dot, then the
number of the column. Both the position number and column number are
zero-based.

For example, $0 means the element of the first input time series, $0.0 represents its
time stamp column, and $0.1 is the column following the time stamp column.
Another way to refer to a column is to use the column name directly, instead of
the column number. Suppose the second time series has a column called high then
you can use $1.high to refer to it. If the high column is the second column in the
element, $1.high is equivalent to $1.1.

If Apply has only one time series argument, you can refer to the column name
without the time series position part; hence, $0.high is the same as $high. Notice
that $0 always means the whole element of the first time series. It does not mean
the first column of the time series, even if there is only one time series argument.

If you use a function as your expression, then it must take the subtype of each
input time series in that order as its arguments and return a row type that
corresponds to the subtype of the result time series of Apply. In most cases, it is
faster to evaluate a function than to evaluate a generic expression. If performance
is critical, you should implement the calculation to be performed in a function and
use the function syntax. See “Example” on page 7-14 for how to achieve this.

The following examples show valid expressions for Apply to apply. Assume two
argument time series with the same subtype daybar(t DATETIME YEAR TO
FRACTION(5), high REAL, low REAL, close REAL, vol REAL). The expression
could be any of:

7-12 IBM Informix TimeSeries Data User's Guide

v "$0.high + $1.high)/2, ($0.low + $1.low)/2"

v "($0.1 + $1.1)/2, ($0.2 + $1.2)/2"

v "$0.high, $1.high"

v "avghigh"

The signature of avghigh is:
"avghigh(arg1 daybar, arg2 daybar) returns (one_real)"

The syntax for the filter argument is similar to the previous expression, except that
it must evaluate to a single-column Boolean result. Only those elements that
evaluate to TRUE are selected.
"$0.vol > $1.vol and $0.close > ($0.high - $0.low)/2"

Apply with the multiset_ts argument assigns parameter numbers by fetching
TimeSeries values from the set and processing them in the order in which they are
returned by the set management code. Since sets are unordered, parameters might
not be assigned numbers predictably. Apply with the multiset_ts argument is useful
only if you can guarantee that the TimeSeries values are returned in a fixed order.
There are two ways to guarantee this:
v Write a C function that creates the set and use the function as the multiset_ts

argument to Apply. The C function can return the TimeSeries values in any
order you want.

v Use ORDER BY in the multiset_ts expression

Apply with the multiset_ts argument evaluates the expression once for every
timepoint in the resulting union of time series values. When all the data in the
clipped period has been exhausted, Apply returns the resulting series.

Apply uses the optional clip time range to restrict the data to a particular time
period. If the beginning timepoint is NULL, then Apply uses the earliest valid
timepoint of all the input time series. If the ending timepoint is NULL, then Apply
uses the latest valid timepoint of all the input time series. When the optional clip
time range is not used, it is equivalent to both the beginning and ending
timepoints being NULL: Apply considers all elements.

If both the clip time range and filter expression are given, then clipping is done
before filtering.

If you use a string literal or NULL for the clip time range, you should cast to
DATETIME YEAR TO FRACTION(5) on at least the beginning timepoint to avoid
ambiguity in function resolution.

When more than one input time series is specified, a union of all input time series
is performed to produce the source of data to be filtered and evaluated by Apply.
Hence, Apply acts as a union function, with extra filtering and manipulation of
union results. For details on how the Union function works, see “Union function”
on page 7-111.

Returns

A new time series with the results of evaluating the expression on every selected
element from the source time series.

Chapter 7. Time series SQL routines 7-13

Example

The following example uses Apply without a filter argument and without a
clipped range:
select Apply(’$high-$low’,

datetime(2011-01-01) year to day,
datetime(2011-01-06) year to day,
stock_data)::TimeSeries(one_real)

from daily_stocks
where stock_name = ’IBM’;

The following example shows Apply without a filter and with a clipped range:
select Apply(

’($0.high+$1.high)/2, ($0.low+$1.low)/2, ($0.final+$1.final)/2,
($0.vol+$1.vol)/2’,

datetime(2011-01-04) year to day,
datetime(2011-01-05) year to day,
t1.stock_data, t2.stock_data)
::TimeSeries(stock_bar)

from daily_stocks t1, daily_stocks t2
where t1.stock_name = ’IBM’ and t2.stock_name = ’HWP’;

The following example shows Apply with a filter and without a clip range. The
resulting time series contains the closing price of the days that the trading range is
more than 10% of the low:
create function ts_sum(a stock_bar)

returns one_real;
return row(null::datetime year to fraction(5),
(a.high + a.low + a.final + a.vol))::one_real;

end function;

select Apply(’ts_sum’,
’2011-01-03 00:00:00.00000’::datetime year

to fraction(5),
’2011-01-03 00:00:00.00000’::datetime year

to fraction(5),
stock_data)::TimeSeries(one_real)
from daily_stocks

where stock_id = 901;

The following example uses a function as the expression to evaluate to boost
performance. The first step is to compile the following C function into
applyfunc.so:
/* begin applyfunc.c */
#include "mi.h"
MI_ROW *
high_low_diff(MI_ROW *row, MI_FPARAM *fp)
{

MI_ROW_DESC *rowdesc;
MI_ROW *result;
void *values[2];
mi_boolean nulls[2];
mi_real *high, *low;
mi_real r;
mi_integer len;
MI_CONNECTION *conn;
mi_integer rc;

nulls[0] = MI_TRUE;
nulls[1] = MI_FALSE;
conn = mi_open(NULL,NULL,NULL);
if ((rc = mi_value(row, 1, (MI_DATUM *) &high,

&len)) == MI_ERROR)

7-14 IBM Informix TimeSeries Data User's Guide

mi_db_error_raise(conn, MI_EXCEPTION,
"ts_test_float_sql: corrupted argument row");

if (rc == MI_NULL_VALUE)
goto retisnull;

if ((rc = mi_value(row, 2, (MI_DATUM *) &low,
&len)) == MI_ERROR)

mi_db_error_raise(conn, MI_EXCEPTION,
"ts_test_float_sql: corrupted argument row");

if (rc == MI_NULL_VALUE)
goto retisnull;

r = *high - *low;
values[1] = (void *) &r;
rowdesc = mi_row_desc_create(mi_typestring_to_id(conn,

"one_real"));
result = mi_row_create(conn, rowdesc, (MI_DATUM *)

values, nulls);
mi_close(conn);
return (result);

retisnull:
mi_fp_setreturnisnull(fp, 0, MI_TRUE);
return (MI_ROW *) NULL;

}
/* end of applyfunc.c */

Then create the following SQL function:
create function HighLowDiff(arg stock_bar) returns one_real
external name ’/tmp/applyfunc.bld(high_low_diff)’
language C;

select stock_name, Apply(’HighLowDiff’,
stock_data)::TimeSeries(one_real)

from daily_stocks;

The following query is equivalent to the previous query, but it does not have the
performance advantages of using a function as the expression to evaluate:
select stock_name, Apply(’$high - $low’,

stock_data)::TimeSeries(one_real)
from daily_stocks;

Chapter 7. Time series SQL routines 7-15

Related reference:
“AggregateBy function” on page 7-6
“AggregateRange function” on page 7-9
“Clip function” on page 7-26
“ClipCount function” on page 7-29
“ClipGetCount function” on page 7-30
“Intersect function” on page 7-59
“TSAddPrevious function” on page 7-80
“TSCmp function” on page 7-81
“TSDecay function” on page 7-96
“TSPrevious function” on page 7-97
“TSRunningAvg function” on page 7-102
“TSRunningSum function” on page 7-105
“Union function” on page 7-111
“Binary arithmetic functions” on page 7-21
“SetOrigin function” on page 7-74
“TSRunningCor function” on page 7-103
“TSRunningMed function” on page 7-104
“TSRunningVar function” on page 7-106
“Unary arithmetic functions” on page 7-110

ApplyBinaryTsOp function
The ApplyBinaryTsOp function applies a binary arithmetic function to a pair of
time series or to a time series and a compatible row type or number.

Syntax
ApplyBinaryTsOp(func_name lvarchar,

ts TimeSeries,
ts TimeSeries)

returns TimeSeries;

ApplyBinaryTsOp(func_name lvarchar,
number_or_row scalar|row,
ts TimeSeries)

returns TimeSeries;

ApplyBinaryTsOp(func_name lvarchar,
ts TimeSeries,
number_or_row scalar|row)

returns TimeSeries;

func_name
The name of a binary arithmetic function.

ts The time series to use in the operation. The second and third arguments
can be a time series, a row type, or a number. At least one of the two must
be a time series.

number_or_row
A number or a row type to use in the operation. The second and third
arguments can be a time series, a row type, or a number. The second two
arguments must be compatible under the function. See “Binary arithmetic
functions” on page 7-21 for a description of the compatibility requirements.

7-16 IBM Informix TimeSeries Data User's Guide

Description

These functions operate in an analogous fashion to the arithmetic functions that
have been overloaded to operate on time series. See the description of these
functions in “Binary arithmetic functions” on page 7-21 for more information. For
example, Plus(ts1, ts2) is equivalent to ApplyBinaryTsOp(‘Plus', ts1, ts2).

Returns

A time series of the same type as the first time series argument, which can result in
a loss of precision. The return type can be explicitly cast to a compatible time
series type with more precision to avoid this problem. See “Binary arithmetic
functions” on page 7-21 for more information.

Example

The following example uses ApplyBinaryTSOp to implement the Plus function:
create row type simple_series(stock_id int, data TimeSeries(one_real));
create table daily_high of type simple_series;
insert into daily_high

select stock_id,
Apply(’$0.high’,

NULL::datetime year to fraction(5),
NULL::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;
create table daily_low of type simple_series;
insert into daily_low

select stock_id,
Apply(’$0.low’,

NULL::datetime year to fraction(5),
NULL::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;
create table daily_avg of type simple_series;
insert into daily_avg

select l.stock_id, ApplyBinaryTSOp("plus", l.data, h.data)/2
from daily_low l, daily_high h
where l.stock_id = h.stock_id;

You can receive the same results by substituting (l.data + h.data) for
ApplyBinaryTSOp('plus', 1.data, h.data).
Related reference:
“ApplyOpToTsSet function” on page 7-19
“Binary arithmetic functions” on page 7-21

ApplyCalendar function
The ApplyCalendar function applies a new calendar to a time series.

Syntax
ApplyCalendar (ts TimeSeries,

cal_name lvarchar,
flags integer default 0)

returns TimeSeries;

ts The given time series from which specific timepoints will be projected.

cal_name
The name of the calendar to apply.

Chapter 7. Time series SQL routines 7-17

flags Valid values for the flags argument are described later in this topic.

Description

If the calendar specified by the argument has an interval smaller than the calendar
attached to the original time series, and the original time series is regular, then the
resulting time series has a higher frequency and can therefore have more elements
than the original time series. For example, applying an hourly calendar with eight
valid timepoints per day to a daily time series converts each daily entry in the new
time series into eight hourly entries.

The flags argument values

When opening the source time series, your setting of the flags argument is
combined (using the AND operator) with the TSOPEN_READ_HIDDEN value. The
returned time series is opened with your setting of the flags argument combined
(using the AND operator) with TSOPEN_WRITE_AND_HIDE,
TSOPEN_WRITE_AND_REVEAL, and TSOPEN_WRITE_HIDDEN.

The value of flags is the sum of the desired flag values from the following table.

Flag Value Meaning

TSOPEN_RDWRITE 0 (Default) Indicates that the time series can
be read and written to.

TSOPEN_READ_HIDDEN 1 Indicates that hidden elements should be
treated as if they are not hidden.

TSOPEN_WRITE_HIDDEN 2 Allows hidden elements to be written to
without first revealing them. The element
remains hidden afterward.

TSOPEN_WRITE_AND_HIDE 4 Causes any elements written to a time
series also to be marked as hidden.

TSWRITE_AND_REVEAL 8 Reveals any hidden element that is written
to.

TSOPEN_NO_NULLS 32 Affects the way elements are returned that
have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if
an element has not been allocated it is
returned as NULL. If TSOPEN_NO_NULLS
is set, an element that has each column set
to NULL is returned.

These flags can be used in any combination except the following four:
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_REVEAL
v TSOPEN_WRITE_AND_REVEAL and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_HIDE, and

TSOPEN_WRITE_AND_REVEAL

The TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_REVEAL, and
TSOPEN_WRITE_AND_HIDE flags cannot be used with
TSOPEN_READ_HIDDEN.

7-18 IBM Informix TimeSeries Data User's Guide

Returns

A new time series that uses the named calendar and includes entries from the
original time series on active timepoints in the new calendar.

Example

Assuming fourdaycal is a calendar that contains four-day workweeks, the
following query returns a time series of a given stock's data for each of the four
working days:
select ApplyCalendar(stock_data,’fourdaycal’)

from daily_stocks
where stock_name = ’IBM’;

ApplyOpToTsSet function
The ApplyOpToTsSet function applies a binary arithmetic function to a set of time
series.

Syntax
ApplyOpToTsSet(func_name lvarchar,

multiset_ts multiset(TimeSeries))
returns TimeSeries;

func_name
The name of a binary function. See “Binary arithmetic functions” on page
7-21 for more information.

multiset_ts
A multiset of time series that are compatible with the function. All the time
series in the multiset must have the same type.

Description

All the time series must have the same type. If the multiset is empty, then
ApplyOpToTsSet returns NULL. If the multiset contains only one time series, then
ApplyOpToTsSet returns a copy of that time series. If the multiset contains exactly
two time series, ts1 and ts2, then ApplyOpToTsSet returns
ApplyBinaryTsOp(func_name, ts1, ts2). If the multiset contains three time series,
ts1, ts2, and ts3, then ApplyOpToTsSet returns ApplyBinaryTsOp(func_name,
ApplyBinaryTsOp(func_name, ts1, ts2), ts3), and so on.

Returns

A time series of the same type as the time series in the multiset. The calendar of
the resulting time series is the union of the calendars of the input time series. The
resulting time series is regular if all the input times series are regular and irregular
if any of the inputs are irregular.
Related reference:
“ApplyBinaryTsOp function” on page 7-16
“Binary arithmetic functions” on page 7-21

ApplyUnaryTsOp function
The ApplyUnaryTsOp function applies a unary arithmetic function to a time
series.

Chapter 7. Time series SQL routines 7-19

Syntax
ApplyUnaryTsOp(func_name lvarchar,

ts TimeSeries)
returns TimeSeries;

func_name
The name of the unary arithmetic function.

ts The time series to act on.

Description

This function operates in an analogous fashion to the unary arithmetic functions
that have been overloaded to operate on time series. See the description of these
functions in the section “Unary arithmetic functions” on page 7-110 for more
information. For example, Logn(ts1) is equivalent to ApplyUnaryTsOp(‘Logn', ts1).

Returns

A time series of the same type as the supplied time series.

Example

The following example uses ApplyUnaryTSOp with the Logn function:
create row type simple_series(stock_id int, data TimeSeries(one_real));
create table daily_high of type simple_series;
insert into daily_high

select stock_id,
Apply(’$0.high’,

NULL::datetime year to fraction(5),
NULL::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;
create table daily_low of type simple_series;
insert into daily_low

select stock_id,
Apply(’$0.low’,

NULL::datetime year to fraction(5),
NULL::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;
create table daily_avg of type simple_series;
insert into daily_avg

select l.stock_id, ApplyBinaryTSOp("plus", l.data, h.data)/2
from daily_low l, daily_high h
where l.stock_id = h.stock_id;

create table log_high of type simple_series;
insert into log_high

select stock_id, ApplyUnaryTsOp("logn",
data) from daily_avg;

Related reference:
“Unary arithmetic functions” on page 7-110

Asin function
The Asin function returns the arc sine of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Atan, Cos, Exp, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.

7-20 IBM Informix TimeSeries Data User's Guide

Related reference:
“Unary arithmetic functions” on page 7-110

Atan function
The Atan function returns the arc tangent of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Asin, Cos, Exp, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

Atan2 function
The Atan2 function returns the arc tangent of corresponding elements from two
time series.

It is one of the binary arithmetic functions that work on time series. The others are
Divide, Minus, Mod, Plus, Pow, and Times.
Related reference:
“Binary arithmetic functions”

Binary arithmetic functions
The standard binary arithmetic functions Atan2, Plus, Minus, Times, Divide, Mod,
and Pow are extended to operate on time series. The normal operator aliasing
applies; the Plus, Minus, Times, and Divide functions can also be denoted by the
infix operators “+”, “-”, “*”, and “/”, respectively.

Syntax
Function(ts TimeSeries,

ts TimeSeries)
returns TimeSeries;

Function(number_or_row scalar|row,
ts TimeSeries)

returns TimeSeries;

Function(ts TimeSeries,
number_or_row scalar|row)

returns TimeSeries;

ts The source time series. One of the two arguments must be a time series for
this variant of the functions. The two inputs must be compatible under the
function.

number_or_row
A scalar number or a row type. The two inputs must be compatible under
the function.

Description

In the first format, both arguments are time series. The result is a time series that
starts at the later of the starting times of the inputs. The end point of the result is
the later of the two input end points if both inputs are irregular. The result end

Chapter 7. Time series SQL routines 7-21

point is the earlier of the input regular time series end points if one or more of the
inputs is a regular time series. The result time series has one time point for each
input time point in the interval.

The element at time t in the resulting time series is formed from the last elements
at or before time t in the two input time series. Normally the function is applied
column by column to the input columns, except for the time stamp, to produce the
output element. In this case, the two input row types must have the same number
of columns, and the corresponding columns must be compatible under the
function.

However, if there is a variant of the function that operates directly on the row
types of the two input time series, then that variant is used. Then the input row
types can have different numbers of columns and the columns might be
incompatible. The time stamp of the resulting element is ignored; the element
placed in the resulting time series has the later of the time stamps of the input
elements.

The resulting calendar is the union of the calendars of the input time series. If the
input calendars are the same, then the resulting calendar is the same as the input
calendar. Otherwise, a new calendar is made. The name of the resulting calendar is
a string containing the names of the calendars of the input time series, separated
by a vertical line (|). For example, if two time series are joined, and mycal and
yourcal are the names of their corresponding calendars, the resulting calendar is
named mycal|yourcal.

The resulting time series is regular if both the input time series are regular and
irregular if either of the inputs is irregular.

One of the inputs can be a scalar number or a row type. In this case, the resulting
time series has the same calendar, sequence of time stamps, and regularity as the
input time series. If one of the inputs is a scalar number, then the function is
applied to the scalar number and to each non-time stamp column of each element
of the input time series.

If an input is a row type, then that row type must be compatible with the time
series row type. The function is applied to the input row type and each element of
the input time series. It is applied column by column or directly to the two row
types, depending on whether there is a variant of the function that handles the
row types directly.

Returns

The same type of time series as the first time series input, unless they are cast. If a
function is cast, then it returns the type of time series to which it is cast.

For example, suppose that time series tsi has type TimeSeries(ci), and that time
series tsr has type TimeSeries(cr), where ci is a row type with INTEGER columns
and cr is a row type with SMALLFLOAT columns. Then Plus(tsi, tsr) has type
TimeSeries(ci); the fractional parts of the resulting numbers are discarded. This is
generally not the desired effect. Plus(tsi, tsr)::TimeSeries(cr) has type
TimeSeries(cr) and does not discard the fractional parts of the resulting numbers.

7-22 IBM Informix TimeSeries Data User's Guide

Example

The following query produces time series of daily average stock prices (actually,
the average of the daily high and low). For convenience, the example starts by
projecting the highs and lows into separate time series:
create row type price(timestamp datetime year to fraction(5),

val real);
create row type simple_series(stock_id int, data

TimeSeries(price));
create table daily_high of type simple_series;

insert into daily_high
select stock_id,

Apply(’$high’,
’2011-01-03 00:00:00.00000’
::datetime year to fraction(5),
’2011-01-10 00:00:00.00000’
::datetime year to fraction(5),
stock_data)::TimeSeries(price)

from daily_stocks;

create table daily_low of type simple_series;

insert into daily_low
select stock_id,

Apply(’$low’,
’2011-01-03 00:00:00.00000’
::datetime year to fraction(5),
’2011-01-10 00:00:00.00000’
::datetime year to fraction(5),
stock_data)::TimeSeries(price)

from daily_stocks;

create table daily_avg of type simple_series;

insert into daily_avg
select l.stock_id, (l.data + h.data)/2

from daily_low l, daily_high h
where l.stock_id = h.stock_id;

Related reference:
“ApplyBinaryTsOp function” on page 7-16
“ApplyOpToTsSet function” on page 7-19
“Atan2 function” on page 7-21
“Apply function” on page 7-11
“Unary arithmetic functions” on page 7-110
“Divide function” on page 7-36
“Minus function” on page 7-63
“Mod function” on page 7-63
“Plus function” on page 7-65
“Pow function” on page 7-65
“Times function” on page 7-76

BulkLoad function
The BulkLoad function loads data from a client file into an existing time series.

Chapter 7. Time series SQL routines 7-23

Syntax
BulkLoad (ts TimeSeries,

filename lvarchar,
flags integer default 0)

returns TimeSeries;

ts The time series in which to load data.

filename
The path and file name of the file to load.

flags Valid values for the flags parameter are described later in this topic.

Description

The file is located on the client and can be an absolute or relative path name.

Two data formats are supported for the file loaded by BulkLoad:
v Using type constructors
v Using tabs

Each line of the client file must have all the data for one element.

The type constructor format follows the row type convention: comma-separated
columns surrounded by parentheses and preceded by the ROW type constructor.
The first two lines of a typical file look like this:
row(2011-01-03 00:00:00.00000, 1.1, 2.2)
row(2011-01-04 00:00:00.00000, 10.1, 20.2)

If you include collections in a column within the row data type, use a type
constructor (SET, MULTISET, or LIST) and curly braces surrounding the collection
values. A row including a set of rows has this format:
row(timestamp, set{row(value, value), row(value, value)}, value)

The tab format is to separate the values by tabs. It is only recommended for
single-level rows that do not contain collections or row data types. The first two
lines of a typical file in this format look like this:
2011-01-03 00:00:00.00000 1.1 2.2
2011-01-04 00:00:00.00000 10.1 20.2

The spaces between entries represent a tab.

In both formats, the word NULL indicates a null entry.

When BulkLoad encounters data with duplicate time stamps in a regular time
series, the old values are replaced by the new values. In an irregular time series,
when BulkLoad encounters data with duplicate time stamps, the following
algorithm is used to determine where to place the data belonging to the duplicate
time stamp:
1. Round the time stamp up to the next second.
2. Search backwards for the first element less than the new time stamp.
3. Insert the new data at this time stamp plus 10 microseconds.

This is the same algorithm as used by the PutElem function, described in
“PutElem function” on page 7-65.

7-24 IBM Informix TimeSeries Data User's Guide

The flags argument values

The value of the flags argument is the sum of the desired flag values from the
following table.

Flag Value Meaning

TSOPEN_RDWRITE 0 (Default) Indicates that the time series can
be read and written to.

TSOPEN_READ_HIDDEN 1 Indicates that hidden elements should be
treated as if they are not hidden.

TSOPEN_WRITE_HIDDEN 2 Allows hidden elements to be written to
without first revealing them. The element
remains hidden afterward.

TSOPEN_WRITE_AND_HIDE 4 Causes any elements written to a time
series also to be marked as hidden.

TSWRITE_AND_REVEAL 8 Reveals any hidden element written to.

TSOPEN_NO_NULLS 32 Affects the way elements are returned that
have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if
an element has not been allocated it is
returned as NULL. If TSOPEN_NO_NULLS
is set, instead an element is returned that
has each column set to NULL.

TS_PUTELEM_NO_DUPS 64 Determines whether the BulkLoad function
adds elements using the PutElem function
(default) or the PutElemNodups function
(see “PutElem function” on page 7-65 and
“PutElemNoDups function” on page 7-67).
If this flag is set, the BulkLoad function
uses PutElemNoDups.

These flags can be used in any combination except the following four:
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_REVEAL
v TSOPEN_WRITE_AND_REVEAL and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN, and TSOPEN_WRITE_AND_HIDE, and

TSOPEN_WRITE_AND_REVEAL

The TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_REVEAL, and
TSOPEN_WRITE_AND_HIDE flags cannot be used with
TSOPEN_READ_HIDDEN.

Returns

A time series containing the new data.

Example

The following example adds data from the sam.dat file to the stock_data time
series:
update daily_stocks
set stock_data = BulkLoad(stock_data, ’sam.dat’)

where stock_name = ’IBM’;

Chapter 7. Time series SQL routines 7-25

Clip function
The Clip function extracts data between two timepoints in a time series and
returns a new time series containing that data. This allows you to extract periods
of interest from a large time series and to store or operate on them separately from
the large series.

Syntax
Clip(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

Clip(ts TimeSeries,
begin_stamp datetime year to fraction(5),
end_offset integer,
flags integer default 0)

returns TimeSeries;

Clip(ts TimeSeries,
begin_offset integer,
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

Clip(ts TimeSeries,
begin_offset integer,
end_offset integer,
flags integer default 0)

returns TimeSeries;

ts The time series to clip.

begin_stamp
The begin point of the range. Can be NULL.

end_stamp
The end point of the range. Can be NULL.

begin_offset
The begin offset of the range (regular time series only).

end_offset
The end offset of the range (regular time series only).

flags (optional)
A flag specifying how to determine the resulting time series origin and
whether to copy hidden elements to the resulting time series. See “The
flags argument values” on page 7-27.

Description

The Clip functions all take a time series, a begin point, and an end point for the
range.

For regular time series, the begin and end points can be either integers or time
stamps. If the begin point is an integer, it is the absolute offset of an entry in the
time series. If it is a time stamp, the Clip function uses the time series' calendar to
find the offset that corresponds to the time stamp. If there is no entry in the time
series exactly at the requested time stamp, Clip uses the calendar's time stamp that
immediately follows the given time stamp as the begin point of the range.

7-26 IBM Informix TimeSeries Data User's Guide

The end point is used in the same way as the begin point, except that it specifies
the end of the range, rather than its beginning. The begin and end points can be
NULL, in which case the beginning or end of the time series is used.

For irregular time series, only time stamps are permitted for the begin and end
points.

Data at the beginning and ending offsets is included in the resulting time series.

The flags argument values

The flags argument is an optional parameter that determines:
v The resulting time series origin
v Whether to copy hidden elements to the resulting time series and if the elements

should be hidden or revealed in the new time series

If the flags argument is not set (has the default value of 0), then the origin of the
resulting time series is the later of the begin_offset argument and the origin of the
input time series. If the flag is set to 1, then the origin of the resulting time series
is set to the earlier of the begin_offset argument and the origin of the input time
series. In this case, timepoints before the origin of the time series are set to NULL.

When you clip a range that contains hidden elements, by default, hidden elements
are not copied to the resulting time series. The flags argument allows you to
include hidden elements in the result. You can also mark the elements as hidden or
revealed in the resulting time series.

To extract data into a new time series, include hidden elements in that time range,
and keep the elements hidden in the resulting time series, set the flags argument to
2:
Clip(ts, begin, end, 2)

In this example, ts is the time series you are clipping, and begin and end are the
timepoints marking the range to extract.

To extract data into a new time series, include hidden elements in that time range,
and reveal the hidden elements in the resulting time series, set the flags argument
to 6:
Clip(ts, begin, end, 6)

In this example, ts is the time series you are clipping, and begin and end are the
timepoints marking the range to extract.

You can use the flags argument for handling hidden elements in conjunction with
the option for determining the origin of the resulting time series. For example, if
you set the flags argument to 3, the Clip function includes hidden elements in the
resulting time series, the elements are marked as hidden, and the origin of the
resulting time series is the earlier of the begin_offset you specify for the Clip
function and the input time series origin:
Clip(ts, begin, end, 3)

Chapter 7. Time series SQL routines 7-27

Returns

A new time series containing only data from the requested range. The new series
has the same calendar as the original, but it can have a different origin and
number of entries.

Example

The results of the Clip function are slightly different for regular and irregular time
series.

Example 1: Regular time series

The following query extracts data from a time series and creates a table containing
a given stock's data for a single week:
create table week_1_analysis (stock_id int, stock_data

TimeSeries(stock_bar));
insert into week_1_analysis

select stock_id,
Clip(stock_data,

’2011-01-03 00:00:00.00000’
::datetime year to fraction(5),
’2011-01-07 00:00:00.00000’
::datetime year to fraction(5))

from daily_stocks
where stock_name = ’IBM’;

The following query displays the first six entries for a given stock in a time series:
select Clip(stock_data, 0, 5)
from daily_stocks
where stock_name = ’IBM’;

Example 2: Irregular time series

An irregular time series has the following values:
2005-12-17 10:23:00.00000 26.46
2006-01-03 13:19:00.00000 27.30
2006-01-04 13:19:00.00000 28.67
2006-01-09 13:19:00.00000 30.56

The following statement extracts data from a time series over a five day period:
EXECUTE FUNCTION Transpose ((

select Clip(
tsdata,
"2006-01-01 00:00:00.00000"::datetime year to fraction (5),
"2006-01-05 00:00:00.00000"::datetime year to fraction (5),
0)

from ts_tab
where station_id = 228820)) ;

The resulting irregular time series is this:
2006-01-01 00:00:00.00000 26.46
2006-01-03 13:19:00.00000 27.30
2006-01-04 13:19:00.00000 28.67

The first value has the beginning date of the clip and the value of the first original
value. Because the time series is irregular, a value persists until the next element.
Therefore, the value of 26.46 is still valid on 2006-01-01.

7-28 IBM Informix TimeSeries Data User's Guide

Related reference:
“Apply function” on page 7-11
“ClipCount function”
“ClipGetCount function” on page 7-30
“GetElem function” on page 7-40
“GetLastValid function” on page 7-46
“GetNthElem function” on page 7-50
“WithinC and WithinR functions” on page 7-116
“DelClip function” on page 7-32
“DelTrim function” on page 7-35
“SetOrigin function” on page 7-74

ClipCount function
The ClipCount function is a variation of Clip in which the first integer argument
is interpreted as a count of entries to clip. If the count is positive, ClipCount
begins with the first element at or after the time stamp and clips the next count
entries. If the count is negative, ClipCount begins with the first element at or
before the time stamp and clips the previous count entries.

Syntax
ClipCount(ts TimeSeries,

begin_stamp datetime year to fraction(5),
num_stamps integer,
flags integer default 0)

returns TimeSeries;

ts The time series to clip.

begin_stamp
The begin point of the range. Can be NULL.

num_stamps
The number of elements to be included in the resultant time series.

flags (optional)
A flag specifying how to determine the resulting time series origin and
whether to copy hidden elements to the resulting time series. See “The
flags argument values.”

Description

Begin points before the time series origin are permitted. Negative counts with such
time stamps result in time series with no elements. Begin points before the
calendar origin are not permitted.

If there is no entry in the calendar exactly at the requested time stamp, ClipCount
uses the calendar's first valid time stamp that immediately follows the given time
stamp as the begin point of the range. If the begin point is NULL, the origin of the
time series is used.

The flags argument values

The flags argument is an optional parameter that works in the same way as the
flags argument of the Clip function. See “The flags argument values” on page 7-27
for a description.

Chapter 7. Time series SQL routines 7-29

Returns

A new time series containing only data from the requested range. The new series
has the same calendar as the original, but it can have a different origin and
number of entries.

Example

The following example clips the first 30 elements at or after March 14, 2011, at 9:30
a.m. for the stock with ID 600, and it returns the entire resulting time series:
select ClipCount(activity_data,

’2011-01-01 09:30:00.00000’, 30)
from activity_stocks
where stock_id = 600;

The following example clips the previous 60 elements at or before August 22, 2011,
at 12:00 midnight for the stock with ID 600:
select ClipCount(activity_data,

’2011-08-22 00:00:00.00000’, -60)
from activity_stocks
where stock_id = 600;

Related reference:
“Apply function” on page 7-11
“Clip function” on page 7-26
“ClipCount function” on page 7-29
“ClipGetCount function”
“GetElem function” on page 7-40
“GetLastValid function” on page 7-46
“GetNthElem function” on page 7-50

ClipGetCount function
The ClipGetCount function returns the number of elements in the current time
series that occur in the period delimited by the time stamps.

Syntax
ClipGetCount(ts TimeSeries,

begin_stamp datetime year to fraction(5) default NULL,
end_stamp datetime year to fraction(5) default NULL,
flags integer default 0)

returns integer;

ts The source time series.

begin_stamp
The begin point of the range. Can be NULL.

end_stamp
The end point of the range. Can be NULL.

flags Valid values for the flags argument are described later in this topic.

Description

For an irregular time series, deleted elements are not counted. For a regular time
series, only entries that are non-null are counted, so ClipGetCount might return a
different value than GetNelems.

7-30 IBM Informix TimeSeries Data User's Guide

If the begin point is NULL, the time series origin is used. If the end point is NULL,
the end of the time series is used.

See “Clip function” on page 7-26 for more information about the begin and end
points of the range.

The flags argument values

The flags argument determines how a scan should work on the returned set. If you
set the flags argument to 0 (the default), null and hidden elements are not part of
the count. If the flags argument has a value of 512 (0x200) (the TS_SCAN_HIDDEN
bit is set), all non-null elements are counted whether they are hidden or not.

Flag Value Meaning

TSOPEN_RDWRITE 0 (Default) Hidden elements are not included in
the count.

TS_SCAN_HIDDEN 512 Hidden elements marked by HideElem are
included in the count (see “HideElem
function” on page 7-55).

Returns

The number of elements in the given time series that occur in the period delimited
by the time stamps.

Example

The following statement returns the number of elements between 10:30 a.m. on
March 14, 2011, and midnight on March 19, 2011, inclusive:
select ClipGetCount(activity_data,

’2011-03-14 10:30:00.00000’,’2011-03-19 00:00:00.00000’)
from activity_stocks
where stock_id = 600;

Related reference:
“Apply function” on page 7-11
“Clip function” on page 7-26
“ClipCount function” on page 7-29
“GetIndex function” on page 7-43
“GetNelems function” on page 7-48
“GetNthElem function” on page 7-50
“GetStamp function” on page 7-54
“The ts_nelems() function” on page 9-38

Cos function
The Cos function returns the cosine of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Asin, Atan, Exp, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.

Chapter 7. Time series SQL routines 7-31

Related reference:
“Unary arithmetic functions” on page 7-110

DelClip function
The DelClip function deletes all elements in the specified time range, including the
delimiting timepoints. The DelClip function differs from the DelTrim function in
its handling of deletions from the end of a regular time series. DelTrim shortens
the time series and reclaims space, whereas DelClip replaces elements with null
values.

Syntax
DelClip(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5)
flags integer default 0

)
returns TimeSeries;

ts The time series to act on.

begin_stamp
The begin point of the range.

end_stamp
The end point of the range.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default value is 0.

Description

You can use DelClip to delete hidden elements.

If the begin or end point of the range falls before the origin of the time series or
after the last element in the time series, an error is raised.

When DelClip operates on a regular time series, it replaces elements with null
elements; it never changes the number of elements in a regular time series.

Returns

A time series with all elements in the range between the specified timepoints
deleted.

Example

The following example removes all elements on a given day:
update activity_stocks
set activity_data = DelClip(activity_data,

’2011-01-05 00:00:00.00000’
::datetime year to fraction(5),

’2011-01-06 00:00:00.00000’
::datetime year to fraction(5))

where stock_id = 600;

7-32 IBM Informix TimeSeries Data User's Guide

Related reference:
“Clip function” on page 7-26
“DelElem function”
“DelTrim function” on page 7-35
“HideElem function” on page 7-55
“InsSet function” on page 7-58
“PutSet function” on page 7-69
“UpdSet function” on page 7-115

DelElem function
The DelElem function deletes the element at a given timepoint.

Syntax
DelElem(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

tstamp The time stamp of the element to be deleted.

flags Valid values for the flags parameter are described in “The flags argument
values” on page 7-5. The default is 0.

Description

If there is no element at the specified timepoint, no elements are deleted and no
error is raised.

The API equivalent of DelElem is ts_del_elem().

Hidden time stamps cannot be deleted.

Returns

A time series with one element deleted.

Example

The following example deletes an element from a time series:
update activity_stocks
set activity_data = DelElem(activity_data,

’2011-01-05 12:58:09.23456’
::datetime year to fraction(5))

where stock_id = 600;

Chapter 7. Time series SQL routines 7-33

Related reference:
“DelClip function” on page 7-32
“DelTrim function” on page 7-35
“GetElem function” on page 7-40
“HideElem function” on page 7-55
“InsElem function” on page 7-57
“PutElem function” on page 7-65
“The ts_del_elem() function” on page 9-20
“UpdElem function” on page 7-113
“The ts_elem() function” on page 9-20

DelRange function
The DelRange function deletes all elements in the specified time range, including
the delimiting timepoints. The DelRange function is similar to the DelTrim
function except that the DelRange function deletes elements and reclaims space
from any part of a regular time series.

Syntax
DelRange(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

begin_stamp
The begin point of the range.

end_stamp
The end point of the range.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

Use the DelRange function to delete elements in a time series from a specified
time range and free any resulting empty pages. For example, you can remove data
from the beginning of a time series to archive the data.

If you use the DelRange function to delete hidden elements, or if the begin point
of the range falls before the origin of the time series, an error is raised.

Returns

A time series with all elements in the range between the specified timepoints
deleted.

Example

The following example removes all elements in a one-day range on a given day:
UPDATE ts_data
SET meter_data = DelRange(meter_data,

’2010-11-11 00:00:00.00000’

7-34 IBM Informix TimeSeries Data User's Guide

::datetime year to fraction(5),
’2010-11-11 00:00:00.00000’

::datetime year to fraction(5))
WHERE loc_esi_id = 4727354321000111;

DelTrim function
The DelTrim function deletes all elements in the specified time range, including
the delimiting timepoints. The DelTrim function is similar to the DelClip function
except that the DelTrim function deletes elements and reclaims space from the end
of a regular time series, whereas the DelClip function replaces elements with null
values. The DelTrim function is also similar to the DelRange function except that
the DelRange function deletes elements and reclaims space from any part of a
regular time series.

Syntax
DelTrim(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

begin_stamp
The begin point of the range.

end_stamp
The end point of the range.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

If you use the DelTrim function to delete elements from the end of a time series,
DelTrim trims off all null elements from the end of the time series and thus
reduces the number of elements in the time series.

If you use the DelTrim function to delete hidden elements, or if the begin point of
the range falls before the origin of the time series, an error is raised.

Returns

A time series with all elements in the range between the specified timepoints
deleted.

Example

The following example removes all elements in a one-day range on a given day:
update activity_stocks
set activity_data = DelTrim(activity_data,

’2011-01-05 00:00:00.00000’
::datetime year to fraction(5),

’2011-01-06 00:00:00.00000’
::datetime year to fraction(5))

where stock_id = 600;

Chapter 7. Time series SQL routines 7-35

Related reference:
“DelClip function” on page 7-32
“DelElem function” on page 7-33
“Clip function” on page 7-26
“HideElem function” on page 7-55
“InsSet function” on page 7-58
“PutSet function” on page 7-69
“UpdSet function” on page 7-115

Divide function
The Divide function divides one time series by another.

It is one of the binary arithmetic functions that work on time series. The others are
Atan2, Minus, Mod, Plus, Pow, and Times.
Related reference:
“Binary arithmetic functions” on page 7-21

ElemIsHidden function
The ElemIsHidden function determines if an element is hidden.

Syntax
ElemIsHidden(ts TimeSeries,

offset integer)
returns Boolean;

ElemIsHidden(ts TimeSeries,
tstamp datetime year to fraction(5))

returns Boolean;

ts The time series to act on.

offset The offset of the element to examine.

tstamp The time stamp of the element to examine.

Description

Use either offset or time stamp to locate the element you want to examine.

Returns

Returns TRUE if the element is hidden and FALSE if it is not.
Related reference:
“ElemIsNull function”
“FindHidden function” on page 7-37

ElemIsNull function
The ElemIsNull function determines if an element contains no data.

7-36 IBM Informix TimeSeries Data User's Guide

Syntax
ElemIsNull(ts TimeSeries,

offset integer)
returns Boolean;

ElemIsNull(ts TimeSeries,
tstamp datetime year to fraction(5))

returns Boolean;

ts The time series to act on.

offset The offset of the element to examine.

tstamp The time stamp of the element to examine.

Description

Use either offset or time stamp to locate the element you want to examine.

Returns

Returns TRUE if the element has never been written to or was written to and the
data has since been deleted; returns FALSE if the element contains data or is
hidden.
Related reference:
“ElemIsHidden function” on page 7-36
“FindHidden function”

Exp function
The Exp function exponentiates the time series.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Asin, Atan, Cos, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

FindHidden function
The FindHidden function scans a time series and returns all elements that are
hidden.

Syntax
FindHidden(ts TimeSeries,

start datetime year to fraction(5) default NULL,
end datetime year to fraction(5) default NULL)

returns multiset;

ts The time series to act on.

start (optional)
The date from which to start the scan.

end (optional)
The date at which to end the scan.

Chapter 7. Time series SQL routines 7-37

Description

You can scan the whole time series or specify a start date and an end date for the
scan.

Returns

A multiset containing all the hidden elements in the date range you specify.
Related reference:
“ElemIsHidden function” on page 7-36
“ElemIsNull function” on page 7-36

GetCalendar function
The GetCalendar function returns the calendar associated with the given time
series.

Syntax
GetCalendar(ts TimeSeries)
returns Calendar;

ts The time series from which to obtain a calendar.

Returns

The calendar used by the time series.

Example

The following example returns the calendar used by the time series for IBM:
select GetCalendar(stock_data)
from daily_stocks
where stock_name = ’IBM’;

(expression) startdate(2011-01-01 00:00:00),pattstart(2011-
01-02 00:00:00),pattern({1 off,5 on,1 off},day)

Related reference:
“GetClosestElem function” on page 7-39
“GetInterval function” on page 7-43
“GetOrigin function” on page 7-52
“TSCreate function” on page 7-92
“GetCalendarName function”
“TSCreateIrr function” on page 7-94

GetCalendarName function
The GetCalendarName function returns the name of the calendar used by the
given time series.

Syntax
GetCalendarName(ts TimeSeries)
returns lvarchar;

ts The time series from which to obtain a calendar name.

7-38 IBM Informix TimeSeries Data User's Guide

Returns

The name of the calendar used by the time series.

Example

The following example returns the name of the calendar used by the time series for
IBM:
select GetCalendarName(stock_data)
from daily_stocks
where stock_name = ’IBM’;

(expression) daycal

Related reference:
“GetCalendar function” on page 7-38

GetClosestElem function
The GetClosestElem function returns the first element that is non-null and closest
to the given time stamp. Optionally, you can specify which column within the time
series element must be non-null to satisfy the search.

Syntax
GetClosestElem(ts TimeSeries,

tstamp datetime year to fraction(5),
cmp lvarchar,
column_list lvarchar default NULL,
flags integer default 0)

returns ROW

ts The time series to act on.

tstamp The time stamp to start searching from.

cmp A comparison operator used with tstamp to determine where to start the
search. Valid values for cmp are <, <=, =, ==, >=, and >.

column_list
To search for an element with one or more columns non-null, specify a list
of column names separated by a vertical bar (|). An error is raised if any
of the column names does not exist in the time series type

To search for a null element, set column_list to NULL.

flags Determines whether hidden elements should be returned. Valid for the
flags parameter values are defined in tseries.h. They are:
v TS_CLOSEST_NO_FLAGS (no special flags)
v TS_CLOSEST_RETNULLS_FLAGS (return hidden elements)

Description

The search algorithm ts_closest_elem is as follows:
v If cmp is any of : <=, =, ==, or >=, the search starts at tstamp.
v If cmp is <, the search starts at the first element before tstamp.
v If cmp is >, the search starts at the first element after tstamp.

Chapter 7. Time series SQL routines 7-39

The tstamp and cmp parameters are used to determine where to start the search.
The search continues in the direction indicated by cmp until an element is found
that qualifies. If no element qualifies, the return value is NULL.

Important: For irregular time series, values in an irregular element persist until the
next element. This means that any of the “equals” operations on an irregular time
series look for <= first. If cmp is >= and the <= operation fails, the operation then
looks forward for the next element; otherwise, NULL is returned.

Returns

An element meeting the described criteria that is non-null and closest to the given
time stamp.
Related reference:
“GetCalendar function” on page 7-38
“GetInterval function” on page 7-43
“GetOrigin function” on page 7-52
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94

GetContainerName function
The GetContainerName function returns the name of the container for the given
time series.

Syntax
GetContainerName(ts TimeSeries)
returns lvarchar;

ts The time series from which to obtain the container name.

Description

The API equivalent of this function is ts_get_containername().

Returns

The name of the container for the given time series.

An empty string is returned if the time series is not located in a container.

Example

The following example gets the name of the container holding the stock with ID
600:
select GetContainerName(activity_data)

from activity_stocks
where stock_id = 600;

Related reference:
“The ts_get_containername() function” on page 9-27

GetElem function
The GetElem function extracts the element for the given time stamp.

7-40 IBM Informix TimeSeries Data User's Guide

Syntax
GetElem(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns row;

ts The source time series.

tstamp The time stamp of the entry.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

If the time stamp is for a time that is not part of the calendar, or if it falls before
the origin of the given time series, NULL is returned. In some cases, GetLastValid,
GetNextValid, or GetPreviousValid might be more appropriate.

For a regular time series, the data extracted is associated with the time period
containing the time stamp. For example, if the time series is set to hourly, 8:00 a.m.
to 5:00 p.m., the time stamp 3:15 p.m. would return 3:00 p.m. and the data
associated with that time.

The API equivalent of this function is ts_elem().

Returns

A row type containing the time stamp and the data from the time series at that
time stamp. The type of the row is the same as the time series subtype.

Example

The following query retrieves the stock data of two stocks for a particular day:
select GetElem(stock_data,’2011-01-04 00:00:00.00000’)

from daily_stocks
where stock_name = ’IBM’ or stock_name = ’HWP’;

Chapter 7. Time series SQL routines 7-41

Related reference:
“Clip function” on page 7-26
“ClipCount function” on page 7-29
“DelElem function” on page 7-33
“GetLastElem function” on page 7-44
“GetLastValid function” on page 7-46
“GetNextValid function” on page 7-49
“GetNthElem function” on page 7-50
“GetPreviousValid function” on page 7-53
“InsElem function” on page 7-57
“PutElem function” on page 7-65
“Transpose function” on page 7-77
“The ts_elem() function” on page 9-20
“GetIndex function” on page 7-43
“GetStamp function” on page 7-54
“UpdElem function” on page 7-113
“The ts_first_elem() function” on page 9-23

GetFirstElem function
The GetFirstElem function returns the first element in a time series.

Syntax
GetFirstElem(ts TimeSeries,

flags integer default 0)
returns row;

ts The source time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

The API equivalent of this function is ts_first_elem().

Returns

A row type containing the first element of the time series, or NULL if there are no
elements. The type of the row is the same as the time series subtype.

Example

The following example gets the first element in the time series for the stock with
ID 600:
select GetFirstElem(activity_data)

from activity_stocks
where stock_id = 600;

7-42 IBM Informix TimeSeries Data User's Guide

Related reference:
“GetLastElem function” on page 7-44
“The ts_first_elem() function” on page 9-23

GetIndex function
The GetIndex function returns the index (offset) of the time series entry associated
with the supplied time stamp.

Syntax
GetIndex(ts TimeSeries,

tstamp datetime year to fraction(5))
returns integer;

ts The source time series.

tstamp The time stamp of the entry.

Description

The data extracted is associated with the time period that the time stamp is in. For
example, if you have a time series set to hourly, 8:00 a.m. to 5:00 p.m., the time
stamp 3:15 p.m. would return the index associated with 3:00 p.m.

The API equivalent of this function is ts_index().

Returns

The integer offset of the entry for the given time stamp in the time series.

NULL is returned if the time stamp is not a valid day in the calendar, or if it falls
before the origin of the time series.

Example

The following example returns the offset for the supplied time stamp:
select stock_name, GetIndex(stock_data,

’2011-01-05 00:00:00.00000’)
from daily_stocks;

Related reference:
“ClipGetCount function” on page 7-30
“The CalIndex function” on page 6-2
“The CalRange function” on page 6-3
“GetElem function” on page 7-40
“GetNelems function” on page 7-48
“GetNthElem function” on page 7-50
“GetStamp function” on page 7-54
“The ts_index() function” on page 9-32

GetInterval function
The GetInterval function returns the interval used by a time series.

Chapter 7. Time series SQL routines 7-43

Syntax
GetInterval(ts TimeSeries)
returns lvarchar;

ts The source time series.

Description

The calendars used by time series values can record intervals of one second,
minute, hour, day, week, month, or year. The underlying interval of the calendar
describes how often a time series records data.

Returns

An LVARCHAR string that describes the time series interval.

Example

The following query finds all stocks that are not traded on a daily basis:
select stock_name
from daily_stocks
where GetInterval(stock_data) <> ’day’;

Related concepts:
“CalendarPattern data type” on page 2-1
Related reference:
“GetCalendar function” on page 7-38
“GetClosestElem function” on page 7-39
“GetOrigin function” on page 7-52
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94

GetLastElem function
The GetLastElem function returns the final entry stored in a time series.

Syntax
GetLastElem(ts TimeSeries,

flags integer default 0)
returns row;

ts The source time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

The API equivalent of this function is ts_last_elem().

Returns

A row-type value containing the time series data and time stamp of the last entry
in the time series. If the time series is empty, NULL is returned. The type of the row
is the same as the time series subtype.

7-44 IBM Informix TimeSeries Data User's Guide

Example

The following query returns the final entry in a time series:
select GetLastElem(stock_data)

from daily_stocks
where stock_name = ’IBM’;

The following query retrieves the final entries on a daily stocks table:
select GetLastElem(stock_data) from daily_stocks;

Related reference:
“GetElem function” on page 7-40
“GetFirstElem function” on page 7-42
“GetLastValid function” on page 7-46
“GetNthElem function” on page 7-50
“PutElem function” on page 7-65
“The ts_last_elem() function” on page 9-34
“GetPreviousValid function” on page 7-53

GetLastNonNull function
The GetLastNonNull function returns the last non-null element on or before the
date you specify.

Syntax
GetLastNonNull(ts TimeSeries,

tstamp datetime year to fraction(5),
column_name lvarchar default null,
flags integer default 0

)
returns row;

ts The source time series.

tstamp The time stamp for the element you specify.

column_name (optional)
If you specify a column using the column_name argument, the
GetLastNonNull function returns the last non-null element on or before
the specified date that has a non-null value in the specified column.

If you do not specify the column_name argument, the GetLastNonNull
function returns the last non-null element on or before the date. It is
possible that all the columns except the time stamp could be NULL.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

There are no null elements in an irregular time series. Therefore, when you use the
GetLastNonNull function on an irregular time series, always specify a column
name. If you use the GetLastNonNull function on an irregular time series without
specifying a column name, its effect is equivalent to that of the GetLastValid
function.

Chapter 7. Time series SQL routines 7-45

Returns

A non-null element of the time series.

GetLastValid function
The GetLastValid function extracts the element for the given time stamp in a time
series.

Syntax
GetLastValid(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns row;

ts The source time series.

tstamp The time stamp for the element.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

For regular time series, this function returns the element at the calendar's latest
valid timepoint at or before the given time stamp. For irregular time series, it
returns the latest element at or preceding the given time stamp.

The equivalent API function is ts_last_valid().

Returns

A row type containing the nearest element at or before the given time stamp. The
type of the row is the same as the time series subtype.

If the time stamp is earlier than the origin of the time series, NULL is returned.

Example

The following query returns the last valid entry in a time series at or before a
given time stamp:
select GetLastValid(stock_data, ’2011-01-08 00:00:00.00000’)
from daily_stocks
where stock_name = ’IBM’;

7-46 IBM Informix TimeSeries Data User's Guide

Related reference:
“Clip function” on page 7-26
“ClipCount function” on page 7-29
“GetElem function” on page 7-40
“GetLastElem function” on page 7-44
“GetNextValid function” on page 7-49
“GetNthElem function” on page 7-50
“GetPreviousValid function” on page 7-53
“PutElem function” on page 7-65
“The ts_last_valid() function” on page 9-35
“The ts_next_valid() function” on page 9-40

GetMetaData function
The GetMetaData function returns the user-defined metadata from the given time
series.

Syntax
create function GetMetaData(ts TimeSeries)
returns TimeSeriesMeta;

ts The time series to retrieve metadata from.

Returns

This function returns the user-defined metadata contained in the given time series.
If the time series does not contain user-defined metadata, then NULL is returned.
This return value must be cast to the source data type to be useful.
Related tasks:
“Creating a time series with metadata” on page 3-13
Related reference:
“GetMetaTypeName function”
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94
“UpdMetaData function” on page 7-114
“The ts_create_with_metadata() function” on page 9-17
“The ts_get_metadata() function” on page 9-28
“The ts_update_metadata() function” on page 9-52

GetMetaTypeName function
The GetMetaTypeName function returns the type name of the user-defined
metadata type stored in the given time series.

Syntax
create function GetMetaTypeName(ts TimeSeries)
returns lvarchar;

ts The time series to retrieve the metadata from.

Chapter 7. Time series SQL routines 7-47

Returns

The type name of the user-defined metadata type stored in the given time series.
Returns NULL if the given time series does not have user-defined metadata.
Related reference:
“GetMetaData function” on page 7-47
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94
“UpdMetaData function” on page 7-114
“The ts_create_with_metadata() function” on page 9-17
“The ts_get_metadata() function” on page 9-28
“The ts_update_metadata() function” on page 9-52

GetNelems function
The GetNelems function returns the number of elements stored in a time series.

Syntax
GetNelems(ts TimeSeries)
returns integer;

ts The source time series.

Description

For regular time series, GetNelems also counts null elements before the last
non-null element, so GetNelems might not return the same results as
ClipGetCount, which does not count null elements.

Returns

The number of elements in the time series.

Example

The following query returns all stocks containing fewer than 355 elements:
select stock_name from daily_stocks
where GetNelems(stock_data) < 355;

The following query returns the last five elements of each time series:
select Clip(stock_data, GetNelems(stock_data) - 4,

GetNelems(stock_data))
from daily_stocks where stock_name = ’IBM’;

This example only works if the time series has more than four elements.

7-48 IBM Informix TimeSeries Data User's Guide

Related reference:
“ClipGetCount function” on page 7-30
“GetIndex function” on page 7-43
“GetNthElem function” on page 7-50
“GetStamp function” on page 7-54
“The ts_nelems() function” on page 9-38

GetNextNonNull function
The GetNextNonNull function returns the next non-null element on or after the
date you specify.

Syntax
GetNextNonNull(ts TimeSeries,

tstamp datetime year to fraction(5),
column_name lvarchar default null
flags integer default 0

)
returns row;

ts The source time series.

tstamp The time stamp for the element.

column_name (optional)
If you specify a column using the column_name argument, the
GetNextNonNull function returns the next non-null element on or after
the specified date that has a non-null value in the specified column.

If you do not specify the column_name argument, the GetLastNonNull
function returns the next non-null element on or after the date specified by
tstamp. It is possible that all the columns except the time stamp could be
NULL.

flags Valid values for the flags parameter are described in “The flags argument
values” on page 7-5. The default is 0.

Description

There are no null elements in an irregular time series. Therefore, when you use the
GetNextNonNull function on an irregular time series, always specify a column
name. If you use the GetNextNonNull function on an irregular time series without
specifying a column name, the function's effect is equivalent to that of the
GetNextValid function.

Returns

A non-null element of the time series.

GetNextValid function
The GetNextValid function returns the nearest entry after a given time stamp.

Syntax
GetNextValid(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns row;

Chapter 7. Time series SQL routines 7-49

ts The source time series.

tstamp The time stamp of the entry.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

For regular time series, GetNextValid returns the element at the calendar's earliest
valid timepoint following the given time stamp. For irregular time series, it returns
the earliest element following the given time stamp.

The equivalent API function is ts_next_valid().

Returns

A row type containing the nearest element after the given time stamp. The type of
the row is the same as the time series subtype.

NULL is returned if the time stamp is later than that of the last time stamp in the
time series.

Example

The following example gets the first element that follows time stamp 2011-01-03 in
a regular time series:
select GetNextValid(stock_data,’2011-01-03 00:00:00.00000’)

from daily_stocks
where stock_name = ’IBM’;

The following example gets the first element that follows time stamp 2011-01-03 in
an irregular time series:
select GetNextValid(activity_data,

’2011-01-03 00:00:00.00000’)
from activity_stocks
where stock_id = 600;

Related reference:
“GetElem function” on page 7-40
“GetLastValid function” on page 7-46
“GetNthElem function”
“GetPreviousValid function” on page 7-53
“The ts_next_valid() function” on page 9-40

GetNthElem function
The GetNthElem function extracts the entry at a particular offset or position in a
time series.

Syntax
GetNthElem(ts TimeSeries,

N integer,
flags integer default 0)

returns row;

ts The source time series.

7-50 IBM Informix TimeSeries Data User's Guide

N The offset or position of an entry in the time series. This value cannot be
less than 0.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

For irregular time series, the GetNthElem function returns the Nth element that is
found. For regular time series, the Nth element is also the Nth interval from the
beginning of the time series.

The API equivalent of this function is ts_nth_elem().

Returns

A row value for the requested offset, including all the time series data at that
timepoint and the time stamp of the entry in the time series' calendar. The type of
the row is the same as the time series subtype.

If the offset is greater than the offset of the last element in the time series, NULL is
returned.

Example

The following query returns the last element in a time series:
select GetNthElem(stock_data,GetNelems(stock_data)-1)

from daily_stocks
where stock_name = ’IBM’;

The following query returns the element in a time series at a certain time stamp
(this could also be done with GetElem):
select GetNthElem(stock_data,GetIndex(stock_data,

’2011-01-04 00:00:00.00000’))
from daily_stocks
where stock_name = ’IBM’;

Chapter 7. Time series SQL routines 7-51

Related reference:
“Clip function” on page 7-26
“ClipCount function” on page 7-29
“ClipGetCount function” on page 7-30
“GetElem function” on page 7-40
“GetIndex function” on page 7-43
“GetLastElem function” on page 7-44
“GetLastValid function” on page 7-46
“GetNelems function” on page 7-48
“GetNextValid function” on page 7-49
“GetPreviousValid function” on page 7-53
“PutElem function” on page 7-65
“Transpose function” on page 7-77
“The ts_nth_elem() function” on page 9-41
“GetStamp function” on page 7-54

GetOrigin function
The GetOrigin function returns the origin of the time series.

Syntax
GetOrigin(ts TimeSeries)
returns datetime year to fraction(5);

ts The source time series.

Description

Every time series value has a corresponding calendar and an origin within the
calendar. The calendar describes how often data values appear in the time series.
The origin of the time series is the first timepoint within the calendar for which the
time series can contain data; however, the time series does not necessarily have
data for that timepoint. The origin is set when the time series is created, and it can
be changed with SetOrigin.

Returns

The time series origin.

Example

The following example returns the time stamp of the origin of the time series for a
given stock:
select GetOrigin(stock_data)
from daily_stocks
where stock_name = ’IBM’;

7-52 IBM Informix TimeSeries Data User's Guide

Related reference:
“GetCalendar function” on page 7-38
“GetInterval function” on page 7-43
“GetClosestElem function” on page 7-39
“TSCreate function” on page 7-92
“SetOrigin function” on page 7-74
“TSCreateIrr function” on page 7-94
“The ts_get_origin() function” on page 9-28

GetPreviousValid function
The GetPreviousValid function returns the last element before the given time
stamp.

Syntax
GetPreviousValid(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns row;

ts The source time series.

tstamp The time stamp of interest.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

The equivalent API function is ts_previous_valid().

Returns

A row containing the last element before the given time stamp. The type of the
row is the same as the time series subtype.

If the time stamp is less than or equal to the time series origin, NULL is returned.

Example

The following query gets the first element that precedes time stamp 2011-01-05 in a
regular time series:
select GetPreviousValid(stock_data,

’2011-01-05 00:00:00.00000’)
from daily_stocks
where stock_name = ’IBM’;

The following query gets the first element that precedes time stamp 2011-01-05 in
an irregular time series:
select GetPreviousValid(activity_data,

’2011-01-05 00:00:00.00000’)
from activity_stocks
where stock_id = 600;

Chapter 7. Time series SQL routines 7-53

Related reference:
“GetElem function” on page 7-40
“GetLastElem function” on page 7-44
“GetLastValid function” on page 7-46
“GetNextValid function” on page 7-49
“GetNthElem function” on page 7-50
“The ts_previous_valid() function” on page 9-43

GetStamp function
The GetStamp function returns the time stamp associated with the supplied offset
in a time series. Offsets can be positive or negative integers.

Syntax
GetStamp(ts TimeSeries,

offset integer)
returns datetime year to fraction(5);

ts The source time series.

offset The offset.

Description

The equivalent API function is ts_time().

Returns

The time stamp that begins the interval at the specified offset.

Example

The following query returns the time stamp of the beginning of a time series:
select GetStamp(stock_data,0)

from daily_stocks
where stock_name = ’IBM’;

Related reference:
“ClipGetCount function” on page 7-30
“GetIndex function” on page 7-43
“GetNelems function” on page 7-48
“The CalIndex function” on page 6-2
“The CalRange function” on page 6-3
“GetElem function” on page 7-40
“GetNthElem function” on page 7-50
“The ts_time() function” on page 9-49

GetThreshold function
The GetThreshold function returns the threshold associated with the specified time
series.

7-54 IBM Informix TimeSeries Data User's Guide

Syntax
GetThreshold(ts TimeSeries)
returns integer;

ts The source time series.

Description

The equivalent API function is ts_get_threshold().

Returns

The threshold of the supplied time series.

Example

The following query returns the threshold of the specified time series:
select GetThreshold(stock_data) from daily_stocks;

Related reference:
“The ts_get_threshold() function” on page 9-30

HideElem function
The HideElem function marks an element, or a set of elements, at a given time
stamp as invisible.

Syntax
HideElem(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

HideElem(ts TimeSeries,
multiset_tstamps multiset(datetime year to fraction(5) not null),
flags integer default 0)

returns TimeSeries;

ts The source time series.

tstamp The time stamp to be made invisible.

multiset_tstamps
The multiset of time stamps to be made invisible.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

After an element is hidden, reading that element returns NULL and writing it results
in an error message. It is, however, possible to use ts_begin_scan() to read hidden
elements.

The API equivalent to this function is ts_hide_elem().

If the time stamp is not a valid timepoint in the time series, an error is raised.

Chapter 7. Time series SQL routines 7-55

Returns

The modified time series.

Example

The following example hides the element at 2011-01-03 in the time series for IBM:
select HideElem(stock_data, ’2011-01-03 00:00:00.00000’)

from daily_stocks
where stock_name = ’IBM’;

Related concepts:
“Calendar data type” on page 2-3
“CalendarPattern data type” on page 2-1
Related reference:
“DelClip function” on page 7-32
“DelElem function” on page 7-33
“DelTrim function” on page 7-35
“RevealElem function” on page 7-72
“The ts_begin_scan() function” on page 9-6
“The ts_hide_elem() function” on page 9-31
“The ts_reveal_elem() function” on page 9-48
“HideRange function”

HideRange function

The HideRange function marks as invisible a range of elements between a starting
time stamp and an ending time stamp.

Syntax
HideRange(ts TimeSeries,

start datetime year to fraction(5),
end datetime year to fraction(5),
flags integer default 0

)
returns TimeSeries;

ts The time series to act on.

start The starting time stamp.

end The ending time stamp.

flags Valid values for the flags parameter are described in “The flags argument
values” on page 7-5. The default is 0.

Description

After an element is hidden, reading that element returns NULL and writing it results
in an error message. It is, however, possible to use ts_begin_scan() to read hidden
elements, as described in “The ts_begin_scan() function” on page 9-6.

If the time stamp is not a valid timepoint in the time series, an error is raised.

7-56 IBM Informix TimeSeries Data User's Guide

Returns

The modified time series.
Related reference:
“HideElem function” on page 7-55
“RevealRange function” on page 7-73

InsElem function

The InsElem function inserts an element into a time series.

Syntax
InsElem(ts TimeSeries,

row_value row,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

row_value
The row type value to be added to the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

The element must be a row type of the correct type for the time series, beginning
with a valid time stamp. If there is already an element with that time stamp in the
time series, the insertion is void, and an error is raised. After the insertion is done,
the time series must be assigned to a row in a table, or the insertion is lost.

InsElem should be used only within UPDATE and INSERT statements. If it is used
within a SELECT statement or a qualification, unpredictable results can occur.

You cannot insert an element at a time stamp that is hidden.

The API equivalent of InsElem is ts_ins_elem().

Returns

The new time series with the element inserted.

Example

The following example inserts an element into a time series:
update activity_stocks
set activity_data =

InsElem(activity_data,
row(’2011-10-06 08:06:56.00000’, 6.50, 2000,

1, 007, 3, 1)::stock_trade)
where stock_id = 600;

Chapter 7. Time series SQL routines 7-57

Related reference:
“DelElem function” on page 7-33
“GetElem function” on page 7-40
“InsSet function”
“PutElem function” on page 7-65
“The ts_ins_elem() function” on page 9-33
“UpdElem function” on page 7-113

InsSet function

The InsSet function inserts every element of a given set into a time series.

Syntax
InsSet(ts TimeSeries,

multiset_rows multiset,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

multiset_rows
The multiset of new row type values to store in the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

The supplied row type values must have a time stamp as their first attribute. This
time stamp is used to determine where in the time series the insertions are to be
performed. For example, to insert into a time series that stores a single
double-precision value, the row type values passed to InsSet would have to
contain a time stamp and a double-precision value.

If there is already an element at the given timepoint, the entire insertion is void,
and an error is raised.

You cannot insert an element at a time stamp that has been hidden.

Returns

The time series with the multiset inserted.

Example

The following example inserts a set of stock_trade items into a time series:
update activity_stocks
set activity_data = (select InsSet(activity_data, set_data)

from activity_load_tab where stock_id = 600)
where stock_id = 600;

7-58 IBM Informix TimeSeries Data User's Guide

Related reference:
“DelClip function” on page 7-32
“DelTrim function” on page 7-35
“InsElem function” on page 7-57
“PutSet function” on page 7-69
“UpdSet function” on page 7-115

InstanceId function

The InstanceId function determines if the time series is stored in a container and,
if it is, returns the instance ID of that time series.

Syntax
InstanceId(ts TimeSeries)
returns integer;

ts The source time series.

Description

The instance ID is used as an index in the container. It can also be used to perform
a lookup in the TSInstanceTable table.

Returns

The instance ID associated with the specified time series, unless the time series is
stored in a row rather than in a container, in which case the return value is -1.

Example

The following example gets the instance IDs for each stock in the activity_stocks
table:
select stock_id, InstanceId(activity_data) from activity_stocks;

Intersect function

The Intersect function performs an intersection of the specified time series over the
entire length of each time series or over a clipped portion of each time series.

Syntax
Intersect(ts TimeSeries,

ts TimeSeries,...)
returns TimeSeries;

Intersect(set_ts set(TimeSeries))
returns TimeSeries;

Intersect(begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
ts TimeSeries,
ts TimeSeries,...)

returns TimeSeries;

Chapter 7. Time series SQL routines 7-59

Intersect(begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
set_ts set(TimeSeries))

returns TimeSeries;

ts The time series that form the intersection. Intersect can take from two to
eight time series arguments.

set_ts Indicates the intersection of a set of time series.

begin_stamp
The begin point of the clip.

end_stamp
The end point of the clip.

Description

The second and fourth forms of the function intersect a set of time series. The
resulting time series has one DATETIME YEAR TO FRACTION(5) column
followed by each column in each time series in order, not including the other time
stamps. When using the second or fourth form, it is important to ensure that the
order of the time series in the set is deterministic so that elements remain in the
correct order.

Since the resulting time series is a different type from the input time series, the
result of the intersection must be cast.

Intersect can be thought of as a join on the time stamp columns.

If any of the input time series is irregular, the resulting time series is irregular.

For the purposes of Intersect, the value at a given timepoint is that of the most
recent valid element. For regular time series, this is the value corresponding to the
current interval, which can be NULL; it is not necessarily the most recent non-null
value. For irregular time series, this condition never occurs, because irregular time
series do not have null intervals.

For example, consider the intersection of two irregular time series, one containing
bid prices for a certain stock, and one containing asking prices. The intersection of
the two time series contains bid and ask values for each timepoint at which a price
was either bid or asked. Now consider a timepoint at which a bid was made but
no price was asked. The intersection at that timepoint contains the bid price
offered at that timepoint, along with the most recent asking price.

If an intersection involves one or more regular time series, the resulting time series
starts at the latest of the start points of the input time series and ends at the
earliest of the end points of the regular input time series. If all the input time
series are irregular, the resulting irregular time series starts at the latest of the start
points of the input time series and ends at the latest of the end points. If a union
involves one or more time series, the resulting time series starts at the first of the
start points of the input time series and ends at the latest of the end points of the
input time series. Other than this difference in start and end points, and of the
resulting calendar, there is no difference between union and intersection involving
time series.

In an intersection, the resulting time series has a calendar that is the combination
of the calendars of the input time series with the AND operator. The resulting
calendar is stored in the CalendarTable table. The name of the resulting calendar is

7-60 IBM Informix TimeSeries Data User's Guide

a string containing the names of the calendars of the input time series joined by an
ampersand (&). For example, if two time series are intersected, and mycal and
yourcal are the names of their corresponding calendars, the resulting calendar is
named mycal&yourcal.

To be certain of the order of the columns in the resultant time series when using
Intersect with the set_ts argument, use the ORDER BY clause.

Apply also combines multiple time series into a single time series. Therefore, using
Intersect within Apply is often unnecessary.

Returns

The time series that results from the intersection.

Example

The following example returns the intersection of two time series:
select Intersect(d1.stock_data,

d2.stock_data)::TimeSeries(stock_bar_union)
from daily_stocks d1, daily_stocks d2
where d1.stock_name=’IBM’ and d2.stock_name=’HWP’;

The following query intersects two time series and returns data only for time
stamps between 2011-01-03 and 2011-01-05:
select Intersect(’2011-01-03 00:00:00.00000’

::datetime year to fraction(5),
’2011-01-05 00:00:00.00000’
::datetime year to fraction(5),
d1.stock_data,
d2.stock_data

)::TimeSeries(stock_bar_union)
from daily_stocks d1, daily_stocks d2
where d1.stock_name = ’IBM’ and d2.stock_name = ’HWP’;

Related reference:
“Apply function” on page 7-11
“Union function” on page 7-111

IsRegular function

The IsRegular function tells whether a given time series is regular.

Syntax
IsRegular(ts TimeSeries)
returns boolean;

ts The source time series.

Returns

TRUE if the time series is regular; otherwise FALSE.

Example

The following query gets stock IDs for all stocks in irregular time series:

Chapter 7. Time series SQL routines 7-61

select stock_id
from activity_stocks
where not IsRegular(activity_data);

Related reference:
“The ts_get_flags() function” on page 9-27

Lag function

The Lag function creates a new regular time series in which the data values lag the
source time series by a fixed offset.

Syntax
Lag(ts TimeSeries,

nelems integer)
returns TimeSeries;

ts The source time series.

nelems The number of elements to lag the series by. Positive values lag the result
behind the argument, and negative values lead the result ahead.

Description

Lag shifts only offsets, not the source time series. Therefore, a lag of -2 eliminates
the first two elements. For example, if there is a daily time series, Monday to
Friday, and a one-day lag (an argument of -1) is imposed, then there is no first
Monday, the first Tuesday is Monday, and the next Monday is Friday. It would be
more typical of a daily time series to lag a full week.

For example, this function allows the user to create a hypothetical time series, with
closing stock prices for each day moved two days ahead on the calendar.

Lag is valid only for regular time series.

Returns

A new time series with the same calendar and origin as the source time series but
that has its elements assigned to different offsets.

Example

The following query creates a new time series that lags the original time series by
three days:
select Lag(stock_data,3)
from daily_stocks
where stock_name = ’IBM’;

Logn function

The Logn function returns the natural logarithm of a time series. It is one of the
unary arithmetic functions that work on time series. The others are Abs, Acos,
Asin, Atan, Cos, Exp, Negate, Positive, Round, Sin, Sqrt, and Tan.

7-62 IBM Informix TimeSeries Data User's Guide

Related reference:
“Unary arithmetic functions” on page 7-110

Minus function

The Minus function subtracts one time series from another. It is one of the binary
arithmetic functions that work on time series. The others are Atan2, Divide, Mod,
Plus, Pow, and Times.
Related reference:
“Binary arithmetic functions” on page 7-21

Mod function

The Mod function computes the modulus or remainder of a division of one time
series by another. It is one of the binary arithmetic functions that work on time
series. The others are Atan2, Divide, Minus, Plus, Pow, and Times.
Related reference:
“Binary arithmetic functions” on page 7-21

Negate function

The Negate function negates a time series. It is one of the unary arithmetic
functions that work on time series. The others are Abs, Acos, Asin, Atan, Cos,
Exp, Logn, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

NullCleanup function
The NullCleanup function frees any pages that contain only null elements in a
range or for the whole time series.

Syntax
NullCleanup(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

NullCleanup(ts TimeSeries,
flags integer default 0)

returns TimeSeries;

NullCleanup(ts TimeSeries,
begin_stamp datetime year to fraction(5)
flags integer default 0)

returns TimeSeries;

NullCleanup(ts TimeSeries,
NULL,
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

Chapter 7. Time series SQL routines 7-63

begin_stamp
The begin point of the range.

end_stamp
The end point of the range.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

Use the NullCleanup function to free empty pages in one of the following time
ranges:
v A specified begin point and a specified end point
v The whole time series
v A specified begin point and the end of the time series
v The beginning of the time series and a specified end point

If the begin point of the range falls before the origin of the time series, an error is
raised.

Returns

A time series with all the empty pages in the range freed.

Examples

Example 1: Free empty pages between specified begin and end points

The following example frees the empty pages in a one-day range on a given day
for a time series named meter_data for the location ID of 4727354321000111:
UPDATE ts_data
SET meter_data = NullCleanup(meter_data,

’2010-11-11 00:00:00.00000’
::datetime year to fraction(5),

’2010-11-11 00:00:00.00000’
::datetime year to fraction(5))

WHERE loc_esi_id = 4727354321000111;

Example 2: Free all empty pages in the time series

The following example frees all empty pages in the time series named meter_data
for the location ID of 4727354321000111:
UPDATE ts_data
SET meter_data = NullCleanup(meter_data)
WHERE loc_esi_id = 4727354321000111;

Example 3: Free empty pages from the beginning of the time series to a specified
date

The following example frees empty pages from the beginning of the time series to
the specified end point for a time series named meter_data for the location ID of
4727354321000111:

7-64 IBM Informix TimeSeries Data User's Guide

UPDATE ts_data
SET meter_data = NullCleanup(meter_data, NULL,

’2010-11-11 00:00:00.00000’
::datetime year to fraction(5))

WHERE loc_esi_id = 4727354321000111;

Plus function

The Plus function adds two time series together. It is one of the binary arithmetic
functions that work on time series. The others are Atan2, Divide, Minus, Mod,
Pow, and Times.
Related reference:
“Binary arithmetic functions” on page 7-21

Positive function

The Positive function returns the argument. It is bound to the unary “+” operator.
It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Asin, Atan, Cos, Exp, Logn, Negate, Round, Sin, Sqrt, and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

Pow function

The Pow function raises the first argument to the power of the second. It is one of
the binary arithmetic functions that work on time series. The others are Atan,
Divide, Minus, Mod, Plus, and Times.
Related reference:
“Binary arithmetic functions” on page 7-21

PutElem function

The PutElem function adds an element to a time series at the timepoint indicated
in the supplied row type.

Syntax
PutElem(ts TimeSeries,

row_value row,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

row_value
The new row type value to store in the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

If the time stamp is NULL, the data is appended to the time series (for regular time
series) or an error is raised (for irregular time series).

Chapter 7. Time series SQL routines 7-65

For regular time series, if there is data at the given timepoint, it is updated with
the new data; otherwise, the new data is inserted.

For irregular time series, if there is no data at the given timepoint, the new data is
inserted. If there is data at the given timepoint, the following algorithm is used to
determine where to place the data:
1. Round the time stamp up to the next second.
2. Search backwards for the first element less than the new time stamp.
3. Insert the new data at this time stamp plus 10 microseconds.

The row type passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The API equivalent of PutElem is ts_put_elem().

Returns

A modified time series that includes the new values.

Example

The following example appends an element to a time series:
update daily_stocks
set stock_data = PutElem(stock_data,

row(NULL::datetime year to fraction(5),
2.3, 3.4, 5.6, 67)::stock_bar)
where stock_name = ’IBM’;

The following example updates a time series:
update activity_stocks
set activity_data = PutElem(activity_data,

row(’2011-08-25 09:06:00.00000’,
6.25, 1000, 1, 007, 2, 1)::stock_trade)

where stock_id = 600;

7-66 IBM Informix TimeSeries Data User's Guide

Related concepts:
“The TSVTMode parameter” on page 4-11
Related reference:
“DelElem function” on page 7-33
“GetElem function” on page 7-40
“GetLastElem function” on page 7-44
“GetLastValid function” on page 7-46
“GetNthElem function” on page 7-50
“InsElem function” on page 7-57
“PutElemNoDups function”
“PutSet function” on page 7-69
“TSCreate function” on page 7-92
“The ts_put_elem() function” on page 9-44
“PutNthElem function” on page 7-68
“UpdElem function” on page 7-113

PutElemNoDups function

The PutElemNoDups function inserts a single element into a time series. If there is
already an element at the specified timepoint, it is replaced by the new element.

Syntax
PutElemNoDups(ts TimeSeries,

row_value row,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

row_value
The new row type value to store in the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

If the time stamp is NULL, the data is appended to the time series (for regular time
series) or an error is raised (for irregular time series).

If there is data at the given timepoint, it is updated with the new data; otherwise,
the new data is inserted.

The row type passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The API equivalent of PutElemNoDups is ts_put_elem_no_dups().

Returns

A modified time series that includes the new values.

Chapter 7. Time series SQL routines 7-67

Example

The following example updates a time series:
update activity_stocks
set activity_data = PutElemNoDups(activity_data,

row(’2011-08-25 09:06:00.00000’, 6.25,
1000, 1, 007, 2, 1)::stock_trade)

where stock_id = 600;

Related concepts:
“The TSVTMode parameter” on page 4-11
Related reference:
“PutElem function” on page 7-65
“The ts_put_elem_no_dups() function” on page 9-45

PutNthElem function

The PutNthElem function puts the supplied row at the supplied offset in a regular
time series.

Syntax
PutNthElem(ts TimeSeries,

row_value row,
N integer,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

row_value
The new row type value to store in the time series.

N The offset. Must be greater than or equal to 0.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

This function is similar to PutElem, except PutNthElem takes an offset instead of a
time stamp.

If there is data at the given offset, it is updated with the new data; otherwise, the
new data is inserted.

The row type passed in must match the subtype of the time series.

Hidden elements cannot be updated.

Returns

A modified time series that includes the new values.

Example

The following example puts data in the first element of the IBM time series:

7-68 IBM Informix TimeSeries Data User's Guide

update daily_stocks
set stock_data =

PutNthElem(stock_data,
row(NULL::datetime year to fraction(5), 355, 309,
341, 999)::stock_bar, 0)

where stock_name = ’IBM’;

Related reference:
“PutElem function” on page 7-65

PutSet function

The PutSet function updates a time series with the supplied multiset of row type
values.

Syntax
PutSet(ts TimeSeries,

multiset_ts set,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

multiset_ts
The multiset of new row type values to store in the time series.

flags Valid values for the flags argument are described later in this section. The
default is 0.

Description

For each element in the multiset of rows, if the time stamp is NULL, the data is
appended to the time series (for regular time series) or an error is raised (for
irregular time series).

For regular time series, if there is data at a given timepoint, it is updated with the
new data; otherwise, the new data is inserted.

For irregular time series, if there is no data at a given timepoint, the new data is
inserted. If there is data at the given timepoint, the following algorithm is used to
determine where to place the data:
1. Round the time stamp up to the next second.
2. Search backward for the first element less than the new time stamp.
3. Insert the new data at this time stamp plus 10 microseconds.

The row type passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The flags argument values

The value of the flags argument is the sum of the desired flag values from the
following table.

Flag Value Meaning

TSOPEN_RDWRITE 0 (Default) Indicates that the time series can
be read and written to.

Chapter 7. Time series SQL routines 7-69

Flag Value Meaning

TSOPEN_READ_HIDDEN 1 Indicates that hidden elements should be
treated as if they are not hidden.

TSOPEN_WRITE_HIDDEN 2 Allows hidden elements to be written to
without first revealing them. The element
remains hidden afterward.

TSOPEN_WRITE_AND_HIDE 4 Causes any elements written to a time
series also to be marked as hidden.

TSWRITE_AND_REVEAL 8 Reveals any hidden element written to.

TSOPEN_NO_NULLS 32 Affects the way elements are returned that
have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if
an element has not been allocated it is
returned as NULL. If TSOPEN_NO_NULLS
is set, an element that has each column set
to NULL is returned instead.

TS_PUTELEM_NO_DUPS 64 Determines whether the PutSet function
adds elements using the PutElem function
(default) or the PutElemNodups function
(see “PutElem function” on page 7-65 and
“PutElemNoDups function” on page 7-67).
If this flag is set, the PutSet function uses
PutElemNoDups.

Returns

A modified time series that includes the new values.

Example

The following example updates a time series with a multiset:
update activity_stocks
set activity_data = (select PutSet(activity_data, set_data)

from activity_load_tab where stock_id = 600)
where stock_id = 600;

Related reference:
“DelClip function” on page 7-32
“DelTrim function” on page 7-35
“InsSet function” on page 7-58
“PutElem function” on page 7-65
“TSCreate function” on page 7-92
“UpdSet function” on page 7-115
“PutTimeSeries function”

PutTimeSeries function

The PutTimeSeries function puts every element of the first time series into the
second time series.

7-70 IBM Informix TimeSeries Data User's Guide

Syntax
PutTimeSeries(ts1 TimeSeries,

ts2 TimeSeries,
flags integer default 0)

returns TimeSeries;

ts1 The time series to be inserted.

ts2 The time series into which the first time series is to be inserted.

flags Valid values for the flags argument are described later in this topic.

Description

If both time series contain data at the same timepoint, the rule of PutElem is
followed (see “PutElem function” on page 7-65), unless the
TS_PUTELEM_NO_DUPS value of the flags parameter is set.

Both time series must have the same calendar. Also, the origin of the time series
specified by the first argument must be later than or equal to the origin of the time
series specified by the second argument.

This function can be used to convert a regular time series to an irregular one.

Important: Converting an irregular time series to regular often requires
aggregation information, which can be provided using the AggregateBy function.

Elements are added to the second time series by calling ts_put_elem() (if the
TS_PUTELEM_NO_DUPS value of the flags parameter is not set).

The API equivalent of this function is ts_put_ts().

The flags argument values

When the source time series opens, your setting of the flags argument is combined
(using the AND operator) with the TSOPEN_READ_HIDDEN value. The returned
time series is opened with your setting of the flags argument combined (using the
AND operator) with TSOPEN_WRITE_AND_HIDE,
TSOPEN_WRITE_AND_REVEAL, and TSOPEN_WRITE_HIDDEN.

The value of flags is the sum of the desired flag values from the following table.

Flag Value Meaning

TSOPEN_RDWRITE 0 (Default) Hidden elements are read from
the source time series as NULL.

TSOPEN_READ_HIDDEN 1 Indicates that the elements in the source
time series that are hidden are read as if
they are not hidden.

TSOPEN_WRITE_HIDDEN 2 Elements that were hidden in the source
time series are hidden in the resulting time
series.

TSOPEN_WRITE_AND_HIDE 4 Causes all elements written to a resulting
time series also to be marked as hidden.

TSWRITE_AND_REVEAL 8 Reveals all elements written to the resulting
time series.

Chapter 7. Time series SQL routines 7-71

Flag Value Meaning

TSOPEN_NO_NULLS 32 Affects the way elements are returned that
have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if
an element has not been allocated it is
returned as NULL. If TSOPEN_NO_NULLS
is set, an element that has each column set
to NULL is returned instead.

TS_PUTELEM_NO_DUPS 64 Determines whether the PutTimeSeries
function adds elements using the PutElem
function or the PutElemNoDups function
(see “PutElem function” on page 7-65 and
“PutElemNoDups function” on page 7-67).
If this flag is set, PutTimeSeries uses
PutElemNoDups.

These flags can be used in any combination except the following four
combinations:
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_REVEAL
v TSOPEN_WRITE_AND_REVEAL and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_HIDE, and

TSOPEN_WRITE_AND_REVEAL

The TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_REVEAL, and
TSOPEN_WRITE_AND_HIDE flags cannot be used with
TSOPEN_READ_HIDDEN.

Returns

A version of the second time series into which the first time series has been
inserted.

Example

The following example converts a regular time series to an irregular one. The
daily_stocks table holds regular time series data, and the activity_stocks table
holds irregular time series data. Additionally, the elements in the daily_stocks time
series are converted from stock_bar to stock_trade:
update activity_stocks

set activity_data = PutTimeSeries(activity_data, ’calendar(daycal),
irregular’::TimeSeries(stock_trade))

where stock_id = 600;

Related reference:
“AggregateBy function” on page 7-6
“PutSet function” on page 7-69
“The ts_put_ts() function” on page 9-47
“SetOrigin function” on page 7-74

RevealElem function

The RevealElem function makes an element at a given time stamp available for a
scan. It reverses the effect of HideElem.

7-72 IBM Informix TimeSeries Data User's Guide

Syntax
RevealElem(ts TimeSeries,

tstamp datetime year to fraction(5))
returns TimeSeries;

RevealElem(ts TimeSeries,
set_stamps multiset(datetime year to fraction(5)))

returns TimeSeries;

ts The time series to act on.

tstamp The time stamp to be made visible to a scan.

set_stamps
The multiset of time stamps to be made visible to a scan.

Returns

The modified time series.

Example

The following example hides the element at 2011-01-03 in the IBM time series and
then reveals it:
select HideElem(stock_data, ’2011-01-03 00:00:00.00000’)

from daily_stocks
where stock_name = ’IBM’;

select RevealElem(stock_data, ’2011-01-03 00:00:00.00000’)
from daily_stocks
where stock_name = ’IBM’;

Related reference:
“HideElem function” on page 7-55
“The ts_reveal_elem() function” on page 9-48

RevealRange function

The RevealRange function makes hidden elements in a specified date range
visible. It reverses the effect of HideRange.

Syntax
RevealRange(ts TimeSeries,

start datetime year to fraction(5),
end datetime year to fraction(5),

)
returns TimeSeries;

ts The time series to act on.

start The time stamp at the start of the range.

end The time stamp at the end of the range.

Returns

The modified time series.

Chapter 7. Time series SQL routines 7-73

Related reference:
“HideRange function” on page 7-56

Round function

The Round function rounds a time series to the nearest whole number. It is one of
the unary arithmetic functions that work on time series.The others are Abs, Acos,
Asin, Atan, Cos, Exp, Logn, Negate, Positive, Sin, Sqrt, and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

SetContainerName function
The SetContainerName function sets the container name for a time series, even if
the time series already has a container name.

Syntax
SetContainerName(ts TimeSeries,

container_name varchar(128,1))
returns TimeSeries;

ts The time series to act on.

container_name
The name of the container.

Description

If a time series is stored in a container, you can use the SetContainerName
function to copy the time series from one container to another. The time series is
copied to the container that you specify with the container_name parameter. The
original time series is unaffected.

Returns

A time series with a new container set.

Example

The following example creates the container tsirr and sets a time series to it:
execute procedure TSContainerCreate(’tsirr’, ’rootdbs’,

’stock_bar_union’, 0, 0);

select SetContainerName(Union(s1.stock_data,
s2.stock_data)::TimeSeries(stock_bar_union),
’tsirr’)

from daily_stocks s1, daily_stocks s2
where s1.stock_name = ’IBM’ and s2.stock_name = ’AA02’;

Related reference:
“TSContainerCreate procedure” on page 7-83

SetOrigin function

The SetOrigin function moves the origin of a time series back in time.

7-74 IBM Informix TimeSeries Data User's Guide

Syntax
SetOrigin(ts TimeSeries,

origin datetime year to fraction(5))
returns TimeSeries;

ts The time series to act on.

origin The new origin of the time series.

Description

If the supplied origin is not a valid timepoint in the given time series calendar, the
first valid timepoint following the supplied origin becomes the new origin. The
new origin must be earlier than the current origin. To move the origin forward, use
the Clip function.

Returns

The time series with the new origin.

Example

The following example sets the origin of the stock_data time series:
update daily_stocks

set stock_data = SetOrigin(stock_data,
’2011-01-02 00:00:00.00000’);

Related reference:
“Apply function” on page 7-11
“Clip function” on page 7-26
“GetOrigin function” on page 7-52
“PutTimeSeries function” on page 7-70

Sin function

The Sin function returns the sine of its argument. It is one of the unary arithmetic
functions that work on time series. The others are Abs, Acos, Asin, Atan, Cos,
Exp, Logn, Negate, Positive, Round, and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

Sqrt function

The Sqrt function returns the square root of its argument. It is one of the unary
arithmetic functions that work on time series. The others are Abs, Acos, Asin,
Atan, Cos, Exp, Logn, Negate, Positive, Round, Sin, and Tan.
Related reference:
“Unary arithmetic functions” on page 7-110

Sum function

The Sum function is the sum aggregate function for the TimeSeries data type.

Chapter 7. Time series SQL routines 7-75

Syntax
Sum(ts TimeSeries)
returns TimeSeries;

ts The time series to act on.

Description

All time series summed must have the same calendar. They are not required to
have the same start and end points. The columns of each element of the time series
are summed with the corresponding columns of the elements in the other time
series at the same timepoint. An error is raised if one or more columns cannot be
summed. Null values are ignored.

Returns

A time series containing the sum of the columns of each element at the same
timepoint in the source time series.

Example

The following query retrieves the sum of the volumes for a particular day for all
stocks in the table daily_stocks:
select GetElem(stock_data,’2011-01-04 00:00:00.00000’)

from daily_stocks;

select Apply(’$final * $vol’,
’2011-01-04 00:00:00.00000’
::datetime year to fraction(5),
’2011-12-30 00:00:00.00000’
::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;

Tan function

The Tan function returns the tangent of its argument. It is one of the unary
arithmetic functions that work on time series. The others are Abs, Acos, Asin,
Atan, Cos, Exp, Logn, Negate, Positive, Round, and Sin.
Related reference:
“Unary arithmetic functions” on page 7-110

Times function

The Times function multiplies one time series by another. It is one of the binary
arithmetic functions that work on time series. The others are Atan2, Divide,
Minus, Mod, Plus, and Pow.
Related reference:
“Binary arithmetic functions” on page 7-21

TimeSeriesRelease function

The TimeSeriesRelease function returns an LVARCHAR string containing
theTimeSeries extension version number and build date.

7-76 IBM Informix TimeSeries Data User's Guide

Syntax
TimeSeriesRelease()
returns lvarchar;

Returns

The version number and build date.

Example

The following example shows how to get the version number using DB-Access:
execute function TimeSeriesRelease();

Transpose function
The Transpose function converts time series data for processing in a tabular
format.

Syntax
Transpose (ts TimeSeries,

begin_stamp datetime year to fraction(5) default NULL,
end_stamp datetime year to fraction(5) default NULL,
flags integer default 0)

returns row;

Transpose (query lvarchar,
dummy row,
begin_stamp datetime year to fraction(5) default NULL,
end_stamp datetime year to fraction(5) default NULL,
col_name lvarchar default NULL,
flags integer default 0)

returns row with (iterator);

ts The time series to transpose.

begin_stamp
The begin point of the range. Can be NULL.

end_stamp
The end point of the range. Can be NULL.

flags Determines how a scan should work on the returned set.

query A string containing a SELECT statement that can return multiple columns
but only one time series column. The non-time-series columns are
concatenated with each time series element in the returned rows.

dummy
A row type that must be passed in as NULL and cast to the expected return
type of each row returned by the query string version of the Transpose
function.

col_name
If col_name is not NULL, only the column specified with this parameter will
be used from the time series element, plus the non-time-series columns.

Description

The Transpose function is an iterator function. You can run the Transpose function
with the EXECUTE FUNCTION statement or in a table expression.

Chapter 7. Time series SQL routines 7-77

Normally the transpose function skips NULL elements when returning the rows
found in a time series. If the TS_SCAN_NULLS_OK (0x40) bit of the flags
parameter is set, the Transpose function returns NULL elements.

If the beginning point is NULL, the scan starts at the first element of the time series,
unless the TS_SCAN_EXACT_START value of the flags parameter is set.

If the end point is NULL, the scan ends at the last element of the time series, unless
the TS_SCAN_EXACT_END value of the flags parameter is set.

The flags argument values

The flags argument determines how a scan should work on the returned set. The
value of flags is the sum of the desired flag values from the following table.

Flag Value Meaning

TS_SCAN_HIDDEN 512 Return hidden elements marked by HideElem
(see “HideElem function” on page 7-55).

TS_SCAN_EXACT_START 256 Return the element at the beginning
timepoint, adding null elements if necessary.

TS_SCAN_EXACT_END 128 Return elements up to the end point (return
NULL if necessary).

TS_SCAN_NULLS_OK 64 Return null time series elements (by default,
time series elements that are NULL are not
returned).

TS_SCAN_NO_NULLS 32 Instead of returning a null row, return a row
with the time stamp set and the other
columns set to NULL.

TS_SCAN_SKIP_END 16 Skip the element at the end timepoint of the
scan range.

TS_SCAN_SKIP_BEGIN 8 Skip the element at the beginning timepoint of
the scan range.

TS_SCAN_SKIP_HIDDEN 4 Used by ts_begin_scan() to tell ts_next() not
to return hidden elements.

Returns

Multiple rows containing a time stamp and the other columns of the time series
elements.

Examples

Example 1: Convert time series data to a table

The following statement converts the data from stock_data for IBM to tabular
form:
execute function Transpose((select stock_data

from daily_stocks where stock_name = ’IBM’));

Example 2: Transpose clipped data

The following statement converts data for a clipped range into tabular form:

7-78 IBM Informix TimeSeries Data User's Guide

execute function Transpose((select stock_data from daily_stocks
where stock_name = ’IBM’),
datetime(2011-01-05) year to day,
NULL::datetime year to fraction(5));

The statement returns the following data in the form of a row data type:
ROW(’2011-01-06 00:00:00.00000’,99.00000
000000,54.00000000000,66.00000000000,888.0000000000)

Example 3: Convert time series and other data into tabular format

The following example returns the time series columns together with the
non-time-series columns in tabular form:
execute function Transpose (’select * from daily_stocks’, NULL::row(stock_id
int, stock_name lvarchar,

t datetime year to fraction(5), high real, low real, final real, volume real));

Example 4: Display specific data as multiple fields within a single column

The following statement selects the time and energy readings from a time series:
SELECT mr.t,mr.energy

FROM TABLE(transpose
((SELECT readings FROM smartmeters

WHERE meter_id = 13243))::smartmeter_row)
AS tab(mr);

The statements returns a table named tab that contains one column, named mr.
The mr column is an unnamed row type that has the same fields as the
TimeSeries subtype named smartmeter_row. The output has a field for time and a
field for energy:
t energy

2011-01-01 00:00:00.00000 29
2011-01-01 00:15:00.00000 18
2011-01-01 00:30:00.00000 13
2011-01-01 00:45:00.00000 26
2011-01-01 01:00:00.00000 21
2011-01-01 01:15:00.00000 15
2011-01-01 01:30:00.00000 20
2011-01-01 01:45:00.00000 24
2011-01-01 02:00:00.00000 30
2011-01-01 02:15:00.00000 30
2011-01-01 02:30:00.00000 29
2011-01-01 02:45:00.00000 32
2011-01-01 03:00:00.00000 29

Example 5: Display specific data in a table with multiple columns

The following statement uses the statement from the previous example inside a
table expression in the FROM clause:
SELECT * FROM (

SELECT mr.t,mr.energy,mr.temperature
FROM TABLE(transpose

((SELECT readings FROM smartmeters
WHERE meter_id = 13243))::smartmeter_row)

AS tab(mr)
) AS sm(t,energy,temp)

WHERE temp < -10;

Chapter 7. Time series SQL routines 7-79

The statement returns the following data in the form of a table named sm that
contains three columns:
t energy temp

2011-01-01 00:00:00.00000 29 -13.0000000000
2011-01-01 00:30:00.00000 13 -18.0000000000
2011-01-01 01:00:00.00000 21 -13.0000000000
2011-01-01 01:15:00.00000 15 -11.0000000000
2011-01-01 03:15:00.00000 22 -19.0000000000
2011-01-01 03:45:00.00000 28 -14.0000000000
2011-01-01 04:00:00.00000 19 -14.0000000000
2011-01-01 04:30:00.00000 27 -14.0000000000
2011-01-01 04:45:00.00000 27 -15.0000000000
2011-01-01 05:00:00.00000 28 -11.0000000000

Related reference:
“GetElem function” on page 7-40
“GetNthElem function” on page 7-50
“TSColNameToList function” on page 7-82
“TSColNumToList function” on page 7-83
“TSRowNameToList function” on page 7-99
“TSRowNumToList function” on page 7-100
“TSRowToList function” on page 7-101
“TSSetToList function” on page 7-107

TSAddPrevious function

The TSAddPrevious function sums all the values it is called with and returns the
current sum every time it is called. The current argument is not included in the
sum.

Syntax
TSAddPrevious(current_value smallfloat)
returns smallfloat;

TSAddPrevious(current_value double precision)
returns double precision;

current_value
The current value.

Description

This function is useful only when used within an AggregateBy or Apply function.

Returns

The sum of all previous values returned by this function.

Example

The following example uses TSAddPrevious to calculate the summation of the
average dollars into or out of a market or equity:
select Apply(’TSAddPrevious($vol * (($final - $low) - ($high - $final) / (.0001
+ $high - $low)) * (($high + $low + $final) / 3))’,

’2011-01-03 00:00:00.00000’::datetime year to fraction(5),

7-80 IBM Informix TimeSeries Data User's Guide

’2011-01-08 00:00:00.00000’::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Apply function” on page 7-11
“TSCmp function”
“TSDecay function” on page 7-96
“TSPrevious function” on page 7-97
“TSRunningAvg function” on page 7-102
“TSRunningSum function” on page 7-105

TSCmp function

The TSCmp function compares two values.

Syntax
TSCmp(value1 smallfloat,

value2 smallfloat)
returns int;

TSCmp(value1 double precision,
value2 double precision)

returns int;

value1 The first value to be compared.

value2 The second value to be compared.

Description

The TSCmp function returns -1, 0, and 1 if its first argument is, respectively, less
than, equal to, or greater than its second.

This function is useful only when used within the Apply function.

TSCmp takes either two SMALLFLOAT values or two DOUBLE PRECISION
values; both values must be the same type.

Returns

-1 If the first argument is less than the second.

0 If the first argument is equal to the second.

1 If the first argument is greater than the second.

Example

The following example uses TSCmp to calculate the on-balance volume, a
continuous summation that adds the daily volume to the running total if the stock
or index advances and subtracts the volume if it declines:
select Apply

(’TSAddPrevious(TSCmp($final, TSPrevious($final)) * $vol)’,
’2011-01-03 00:00:00.00000’::datetime year to fraction(5),

Chapter 7. Time series SQL routines 7-81

’2011-01-08 00:00:00.00000’::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Apply function” on page 7-11
“TSAddPrevious function” on page 7-80
“TSDecay function” on page 7-96
“TSPrevious function” on page 7-97
“TSRunningAvg function” on page 7-102
“TSRunningSum function” on page 7-105

TSColNameToList function

The TSColNameToList function takes a TimeSeries column and returns a list
(collection of rows) containing the values of one of the columns in the elements of
the time series. Null elements are not added to the list.

Syntax
TSColNameToList(ts TimeSeries,

colname lvarchar)
returns list

ts The time series to act on.

colname
The column to return.

Description

Because this aggregate function can return rows of any type, the return value must
be explicitly cast at runtime.

Returns

A list (collection of rows).

Example

This query returns a list of all values in the column high:
select * from table((select

TSColNameToList(stock_data, ’high’)::list(real
not null) from daily_stocks));

7-82 IBM Informix TimeSeries Data User's Guide

Related reference:
“Transpose function” on page 7-77
“TSColNumToList function”
“TSRowNameToList function” on page 7-99
“TSRowNumToList function” on page 7-100
“TSSetToList function” on page 7-107
“TSRowToList function” on page 7-101

TSColNumToList function

The TSColNumToList function takes a TimeSeries column and returns a list
(collection of rows) containing the values of one of the columns in the elements of
the time series. Null elements are not added to the list.

Syntax
TSColNumToList(ts TimeSeries,

colnum integer)
returns list

ts The time series to act on.

colnum The column to return.

Description

The column is specified by its number; column numbering starts at 1, with the first
column following the time stamp column.

Because this aggregate function can return rows of any type, the return value must
be explicitly cast at runtime.

Returns

A list (collection of rows).

Example

This query returns a list of all values in the column high:
select * from table((select

TSColNumToList(stock_data, 1)::list(real
not null) from daily_stocks));

Related reference:
“TSColNameToList function” on page 7-82
“Transpose function” on page 7-77
“TSRowNameToList function” on page 7-99
“TSRowNumToList function” on page 7-100
“TSSetToList function” on page 7-107
“TSRowToList function” on page 7-101

TSContainerCreate procedure
The TSContainerCreate procedure creates a new container with the specified name
for the specified TimeSeries subtype.

Chapter 7. Time series SQL routines 7-83

Only users with update privileges on the TSContainerTable table can run this
procedure.

Syntax
TSContainerCreate(container_name varchar(128,1),

dbspace_name varchar(128,1),
ts_type varchar(128,1),
container_size integer,
container_grow integer);

container_name
The name of the new container. The container name must be unique.

dbspace_name
The name of the dbspace that will hold the container.

ts_type The name of the TimeSeries subtype that will be placed in the container.
This argument must be the name of an existing row type that begins with
a time stamp.

container_size
The initial size of the container, in KB. If this argument is 0 or less, a
default size of 16 KB is used. If this parameter is positive, it must be at
least four pages. The maximum size of a container depends on the page
size:
v For 2 KB pages, the maximum size is 32 GB.
v For 4 KB pages, the maximum size is 64 GB.
v For 8 KB pages, the maximum size is 128 GB.
v For 16 KB pages, the maximum size is 256 GB.

container_grow
The increments by which the container grows, in KB. If this argument is 0
or less, a default size of 16 KB is used. If this parameter is positive, it must
be at least four pages.

Description

By default, containers are created automatically as needed when you insert data
into a time series. However, you can create additional containers by using the
TSContainerCreate procedure.

As a result of the TSContainerCreate procedure, the database server creates the
container when the first time series is inserted into that container. Both regular and
irregular time series are stored in containers when they exceed a specified size,
which is specified when the time series is created. You can create multiple
containers in the same dbspace.

A row is inserted in the TSContainerTable table.

Example

The following example creates a new container called new_cont in the space
rootdbs for the time series type stock_bar:
execute procedure TSContainerCreate(’new_cont’, ’rootdbs’,’stock_bar’, 0, 0);

7-84 IBM Informix TimeSeries Data User's Guide

Related concepts:
“TSInstanceTable table” on page 2-8
“TSContainerTable table” on page 2-9
Related tasks:
“Managing containers” on page 3-7
“Configuring additional container pools” on page 3-9
Related reference:
“SetContainerName function” on page 7-74
“TSContainerDestroy procedure”

TSContainerDestroy procedure

The TSContainerDestroy procedure deletes the container row from the
TSContainerTable table and removes the container and its corresponding system
catalog rows.

Syntax
TSContainerDestroy(container_name varchar(128,1));

container_name
The name of the container to destroy.

Description

Destroying a container is permitted only when no time series exist in that
container; even an empty time series prevents a container from being destroyed.

Only users with update privileges on the TSContainerTable table can execute this
procedure.

Example

The following example destroys the container ctnr_stock:
execute procedure TSContainerDestroy(’ctnr_stock’);

Related concepts:
“TSInstanceTable table” on page 2-8
“TSContainerTable table” on page 2-9
Related tasks:
“Managing containers” on page 3-7
Related reference:
“TSContainerCreate procedure” on page 7-83

TSContainerNElems function
The TSContainerNElems function returns the number of time series data elements
stored in the specified container or in all containers.

Syntax
TSContainerNElems(container_name varchar(128,1))
returns bigint;

Chapter 7. Time series SQL routines 7-85

container_name
The name of an existing container. Can be NULL.

Description

Use the TSContainerNElems function to view the number of elements stored in a
container. If you specify NULL as the container name, information about all
containers for the database is returned.

Returns

The number of elements stored in the specified container or in all containers.

Example

The following statement returns the number of elements stored in the container
named mult_container:
EXECUTE FUNCTION TSContainerNElems("mult_container");

elements

26

1 row(s) retrieved.

The following statement returns the number of elements stored in all containers:
EXECUTE FUNCTION TSContainerNElems(NULL);

elements

241907

1 row(s) retrieved.

Related tasks:
“Monitoring time series containers” on page 3-8

TSContainerPctUsed function
The TSContainerPctUsed function returns the percentage of space used in the
specified container or in all containers.

Syntax
TSContainerPctUsed(container_name varchar(128,1))
returns decimal;

container_name
The name of an existing container. Can be NULL.

Description

Use the TSContainerPctUsed function to view the percentage of used space in a
container. If you specify NULL as the container name, information about all
containers for the database is returned.

Returns

The percentage of used space in the specified container or in all containers.

7-86 IBM Informix TimeSeries Data User's Guide

Example

The following statement returns the percentage of used space in the container
named mult_container:
EXECUTE FUNCTION TSContainerPctUsed("mult_container");

percent

60.000

1 row(s) retrieved.

The following statement returns the percentage of used space in all containers:
EXECUTE FUNCTION TSContainerPctUsed(NULL);

percent

93.545

1 row(s) retrieved.

Related tasks:
“Monitoring time series containers” on page 3-8

TSContainerPoolRoundRobin function
The TSContainerPoolRoundRobin function provides a round-robin policy for
inserting time series data into containers in the specified container pool.

Syntax
TSContainerPoolRoundRobin(

table_name lvarchar,
column_name lvarchar,
subtype lvarchar,
irregular integer,
pool_name lvarchar)

returns lvarchar;

table_name
The table into which the time series data is being inserted.

column_name
The name of the time series column into which data is being inserted.

subtype
The name of the TimeSeries subtype.

irregular
Whether the time series is regular (0) or irregular (1).

pool_name
The name of the container pool.

Description

Use the TSContainerPoolRoundRobin function to select containers in which to
insert time series data from the specified container pool. The container pool must
exist before you can insert data into it, and at least one container within the
container pool must be configured for the same TimeSeries subtype as used by the
data being inserted. Set the TSContainerPoolRoundRobin function to a container
pool name and use it as the value for the container argument in the VALUES

Chapter 7. Time series SQL routines 7-87

clause of an INSERT statement. The TSContainerPoolRoundRobin function
returns container names to the INSERT statements in round-robin order.

Returns

The container name in which to store the time series value.

Example

The following statement inserts data into a time series. The
TSContainerPoolRoundRobin function specifies that the container pool named
readings is used in the container argument.
INSERT INTO smartmeters(meter_id,rawreadings)

VALUES(’met00001’,’origin(2006-01-01 00:00:00.00000),
calendar(smartmeter),regular,threshold(0),
container(TSContainerPoolRoundRobin(readings)),

[(33070,-13.00,100.00,9.98e+34),
(19347,-4.00,100.00,1.007e+35),
(17782,-18.00,100.00,9.83e+34)]’);

When the INSERT statement runs, the TSContainerPoolRoundRobin function runs
with the following values:
TSContainerPoolRoundRobin(’smartmeters’,’rawreadings’,

’smartmeter_row’,0,’readings’)

The TSContainerPoolRoundRobin function sorts the container names
alphabetically and returns the first container name to the INSERT statement. The
next time an INSERT statement is run, the TSContainerPoolRoundRobin function
returns the second container name, and so on.
Related tasks:
“Configuring additional container pools” on page 3-9
Related reference:
“User-defined container pool policy” on page 3-10

TSContainerSetPool procedure
The TSContainerSetPool procedure moves the specified container into the
specified container pool.

Syntax
TSContainerSetPool(

container_name varchar(128,1),
pool_name varchar(128,1) default null);

TSContainerSetPool(
container_name varchar(128,1));

container_name
The name of the container to move.

pool_name
The name of the container pool in which to move the container.

Description

You can use the TSContainerSetPool procedure to move a container into a
container pool, move a container from one container pool to another, or remove a

7-88 IBM Informix TimeSeries Data User's Guide

container from a container pool. Containers created automatically are in the
container pool named autopool by default. If you create a container with the
TSContainerCreate procedure, the container does not belong to a container pool
until you run the TSContainerSetPool procedure to move it into a container pool.

If the container pool specified in the TSContainerSetPool procedure does not exist,
the procedure creates it.

To move a container from one container pool to another, run the
TSContainerSetPool procedure and specify the destination container pool name.

To move a container out of a container pool, run the TSContainerSetPool
procedure without a container pool name.

The TSContainerTable table contains a row for each container and the container
pool to which the container belongs.

Examples

Example 1: Move a container into a container pool

The following statement moves a container named ctn_1 into a container pool
named smartmeter_pool:
EXECUTE PROCEDURE TSContainerSetPool

(’ctn_1’, ’smartmeter_pool’);

Example 2: Remove a container from a container pool

The following statement removes a container named ctn_1 from its container pool:
EXECUTE PROCEDURE TSContainerSetPool

(’ctn_1’);

Related concepts:
“TSInstanceTable table” on page 2-8
Related tasks:
“Managing containers” on page 3-7
“Configuring additional container pools” on page 3-9

TSContainerTotalPages function
The TSContainerTotalPages function returns the total number of pages allocated to
the specified container or in all containers.

Syntax
TSContainerTotalPages(container_name varchar(128,1))
returns integer;

container_name
The name of an existing container. Can be NULL.

Description

Use the TSContainerTotalPages function to view the size of a container. If you
specify NULL as the container name, information about all containers for the
database is returned.

Chapter 7. Time series SQL routines 7-89

Returns

The number of pages that are allocated to the specified container or that are
allocated to all containers.

Example

The following statement returns the number of pages allocated to the container
named mult_container:
EXECUTE FUNCTION TSContainerTotalPages("mult_container");

total

50

1 row(s) retrieved.

The following statement returns the number of pages allocated to all the
containers:
EXECUTE FUNCTION TSContainerTotalPages(NULL);

total

2169

1 row(s) retrieved.

Related tasks:
“Monitoring time series containers” on page 3-8

TSContainerTotalUsed function
The TSContainerTotalUsed function returns the total number of pages containing
time series data in the specified container or in all containers.

Syntax
TSContainerTotalUsed(container_name varchar(128,1))
returns integer;

container_name
The name of an existing container. Can be NULL.

Description

Use the TSContainerTotalUsed function to view the amount of data in a container.
If you specify NULL as the container name, information about all containers for
the database is returned.

Returns

The number of pages containing time series data in the specified container or in all
containers.

Example

The following statement returns the number of pages used by time series data in
the container named mult_container:

7-90 IBM Informix TimeSeries Data User's Guide

EXECUTE FUNCTION TSContainerTotalUsed("mult_container");

pages

30

1 row(s) retrieved.

The following statement returns the number of pages used by time series data in
all containers:
EXECUTE FUNCTION TSContainerTotalUsed(NULL);

pages

2029

1 row(s) retrieved.

Related tasks:
“Monitoring time series containers” on page 3-8

TSContainerUsage function
The TSContainerUsage function returns information about the size and capacity of
the specified container or of all containers.

Syntax
TSContainerUsage(container_name varchar(128,1))
returns integer, bigint, integer;

container_name
The name of an existing container. Can be NULL.

Description

Use the TSContainerUsage function to monitor how full the specified container is.
If you specify NULL as the container name, information about all containers for
the database is returned. You can use the information from this function to
determine how quickly your containers are filling and whether you need to
allocate additional storage space.

Returns

The number of pages containing time series data in the pages column, the number
of elements in the slots column, and the number of pages allocated to the
container in the total column, for the specified container or for all containers.

Example

The following statement returns the information for the container named
mult_container:
EXECUTE FUNCTION TSContainerUsage("mult_container");

pages slots total

30 26 50

1 row(s) retrieved.

Chapter 7. Time series SQL routines 7-91

This container has 26 time series data elements using 30 pages out of the total 50
pages of space. Although the container is almost half empty, the container can
probably accommodate fewer than 20 additional time series elements.

The following statement returns the information for all containers:
EXECUTE FUNCTION TSContainerUsage(NULL);

pages slots total

2029 241907 2169

1 row(s) retrieved.

The containers have only 140 pages of available space.
Related tasks:
“Monitoring time series containers” on page 3-8

TSCreate function
The TSCreate function creates an empty regular time series or a regular time series
populated with the given set of data. The new time series can also have
user-defined metadata attached to it.

Syntax
TSCreate(cal_name lvarchar,

origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar)

returns TimeSeries with (handlesnulls);

TSCreate(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar,
set_rows set)

returns TimeSeries with (handlesnulls);

TSCreate(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar,
metadata TimeSeriesMeta)

returns TimeSeries with (handlesnulls);

TSCreate(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar,
metadata TimeSeriesMeta,
set_rows set)

returns TimeSeries with (handlesnulls);

cal_name
The name of the calendar for the time series.

7-92 IBM Informix TimeSeries Data User's Guide

origin The origin of the time series. This is the first valid date from the calendar
for which data can be stored in the series.

threshold
The threshold for the time series. If the time series stores more than this
number of elements, it is converted to a container. Otherwise, it is stored
directly in the row that contains it, not in a container. The default is 20.
The size of a row containing an in-row time series should not exceed 1500
bytes.

If a time series has too many bytes to fit in a row before this threshold is
reached, the time series is put into a container at that point.

zero Must be 0.

nelems The number of elements allocated for the resultant time series. If the
number of elements exceeds this value, the time series is expanded
through reallocation.

container_name
The name of the container used to store the time series. Can be NULL.

metadata
The user-defined metadata to be put into the time series. See “Creating a
time series with metadata” on page 3-13 for more information about
metadata.

set_rows
A set of row type values used to populate the time series. The type of
these rows must be the same as the subtype of the time series.

Description

If TSCreate is called with a metadata argument, then the metadata is saved in the
time series.

See “Creating a time series with the TSCreate or TSCreateIrr function” on page
3-12 for a description of how to use this function.

Returns

A regular time series that is empty or populated with the given set and optionally
contains user-defined metadata.

Example

The following example creates an empty time series using TSCreate:
insert into daily_stocks values(

901,’IBM’, TSCreate(’daycal’,
’2011-01-03 00:00:00.00000’,20,0,0, NULL));

The following example creates a populated regular time series using TSCreate:
select TSCreate(’daycal’,

’2011-01-05 00:00:00.00000’,
20,
0,
NULL,
set_data)::TimeSeries(stock_trade)

from activity_load_tab
where stock_id = 600;

Chapter 7. Time series SQL routines 7-93

Related tasks:
“Creating a time series with the TSCreate or TSCreateIrr function” on page 3-12
“Creating a time series with metadata” on page 3-13
Related reference:
“GetCalendar function” on page 7-38
“GetInterval function” on page 7-43
“GetMetaData function” on page 7-47
“GetMetaTypeName function” on page 7-47
“GetOrigin function” on page 7-52
“PutElem function” on page 7-65
“PutSet function” on page 7-69
“GetClosestElem function” on page 7-39
“TSCreateIrr function”
“UpdMetaData function” on page 7-114
“The ts_create() function” on page 9-16
“The ts_create_with_metadata() function” on page 9-17
“The ts_get_metadata() function” on page 9-28
“The ts_update_metadata() function” on page 9-52

TSCreateIrr function

The TSCreateIrr function creates an empty irregular time series or an irregular
time series populated with the given multiset of data. The new time series can also
have user-defined metadata attached to it.

Syntax
TSCreateIrr(cal_name lvarchar,

origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar)

returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar,
multiset_rows multiset)

returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar,
metadata TimeSeriesMeta)

returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,

7-94 IBM Informix TimeSeries Data User's Guide

nelems integer,
container_name lvarchar,
metadata TimeSeriesMeta,
multiset_rows multiset)

returns TimeSeries with (handlesnulls);

cal_name
The name of the calendar for the time series.

origin The origin of the time series. This is the first valid date from the calendar
for which data can be stored in the series.

threshold
The threshold for the time series. If the time series stores more than this
number of elements, it is converted to a container. Otherwise, it is stored
directly in the row that contains it. The default is 20. The size of a row
containing an in-row time series should not exceed 1500 bytes.

If a time series has too many bytes to fit in a row before this threshold is
reached, the time series is put into a container.

zero Must be 0.

nelems The number of elements allocated for the resultant time series. If the
number of elements exceeds this value, the time series is expanded
through reallocation.

container_name
The name of the container used to store the time series. Can be NULL.

metadata
The user-defined metadata to be put into the time series. See “Creating a
time series with metadata” on page 3-13 for more information about
metadata.

multiset_rows
A multiset of rows used to populate the time series. The type of these rows
must be the same as the subtype of the time series.

Description

If TSCreateIrr is called with the metadata argument, then metadata is saved in the
time series.

See “Creating a time series with the TSCreate or TSCreateIrr function” on page
3-12 for a description of how to use this function.

Returns

An irregular time series that is empty or populated with the given multiset and
optionally contains user-defined metadata.

Example

The following example creates an empty irregular time series using TSCreateIrr:
select TSCreateIrr(’daycal’,

’2011-01-05 00:00:00.00000’,
20,
0,

Chapter 7. Time series SQL routines 7-95

NULL,
set_data)::TimeSeries(stock_trade)

from activity_load_tab
where stock_id = 600;

The following example creates a populated irregular time series using TSCreateIrr:
insert into activity_stocks

select 1234,
TSCreateIrr(’daycal’,

’2011-01-03 00:00:00.00000’::datetime year to fraction(5),
20, 0, NULL,
set_data)::timeseries(stock_trade)

from activity_load_tab;

Related tasks:
“Creating a time series with the TSCreate or TSCreateIrr function” on page 3-12
“Creating a time series with metadata” on page 3-13
Related reference:
“GetMetaData function” on page 7-47
“GetMetaTypeName function” on page 7-47
“TSCreate function” on page 7-92
“GetCalendar function” on page 7-38
“GetClosestElem function” on page 7-39
“GetInterval function” on page 7-43
“GetOrigin function” on page 7-52
“UpdMetaData function” on page 7-114
“The ts_get_metadata() function” on page 9-28
“The ts_update_metadata() function” on page 9-52

TSDecay function

The TSDecay function computes a decay function over its arguments.

Syntax
TSDecay(current_value smallfloat,

initial_value smallfloat,
decay_factor smallfloat)

returns smallfloat;

TSDecay(current_value double precision,
initial_value double precision,
decay_factor double precision)

returns double precision;

current_value
The current datum (vj in the sum shown next).

initial_value
The initial value (initial in the sum shown next).

decay_factor
The decay factor (decay in the sum shown next).

Description

All three arguments must be of the same type.

7-96 IBM Informix TimeSeries Data User's Guide

The function maintains a sum of all the arguments it has been called with so far.
Every time it is called, the sum is multiplied by the supplied decay factor. Given a
decay factor between 0 and 1, this causes the importance of older arguments to fall
off over time. The first time that TSDecay is called, it includes the supplied initial
value in the running sum. The actual function that TSDecay computes is:

i

((decayi)initial)+∑((vj)decay
i-j)

j=i

In this computation, i is the number of times the function has been called so far,
and vj is the value it was called with in its jth invocation.

This function is useful only when used within the Apply function.

Returns

The result of the decay function.

Example

The following example computes the decay:
create function ESA18(a smallfloat) returns smallfloat;
return (.18 * a) + TSDecay(.18 * a, a, .82);
end function;

Related reference:
“Apply function” on page 7-11
“TSAddPrevious function” on page 7-80
“TSCmp function” on page 7-81
“TSPrevious function”
“TSRunningAvg function” on page 7-102
“TSRunningSum function” on page 7-105

TSPrevious function

The TSPrevious function records the supplied argument and returns the last
argument it was passed.

Syntax
TSPrevious(value int)
returns int;

TSPrevious(value smallfloat)
returns smallfloat;

TSPrevious(value double precision)
returns double precision;

value The value to save.

Description

This function is useful in comparing a value in a time series with the value
immediately preceding it.

This function is useful only when used within the Apply function.

Chapter 7. Time series SQL routines 7-97

Returns

The value previously saved. The first time TSPrevious is called, it returns NULL.

Example

See the example for “TSCmp function” on page 7-81.
Related reference:
“Apply function” on page 7-11
“TSAddPrevious function” on page 7-80
“TSCmp function” on page 7-81
“TSDecay function” on page 7-96
“TSRunningAvg function” on page 7-102
“TSRunningSum function” on page 7-105

TSRollup function
The TSRollup function aggregates time series values by time for multiple rows in
the table.

Syntax
TSRollup(ts TimeSeries, ’agg_express’ lvarchar)
RETURNS TimeSeries;

agg_express
A comma-separated list of these SQL aggregate operators: AVG, COUNT,
MIN, MAX, SUM. Each operator requires an argument that is the name of
the column in a TimeSeries data type, prefixed by a $.

ts The name of the TimeSeries data type or a function that returns a
TimeSeries data type, such as AggregateBy.

Description

Use the TSRollup function to run one or more aggregate operators on multiple
rows of time series data in a table.

Returns

A TimeSeries data type that is the result of the expression or expressions.

Examples

The following examples show how to use the TSRollup function.

Example 1: Sum of all electricity usage in a zipcode

The following statement adds all the electricity usage values for each time stamp
in the ts_data table in the stores_demo database for the customers that have a
zipcode of 94063:
SELECT TSRollup(raw_reads, "sum($value)")

FROM ts_data, customer, customer_ts_data
WHERE customer.zipcode = "94063"

AND customer_ts_data.customer_num = customer.customer_num
AND customer_ts_data.loc_esi_id = ts_data.loc_esi_id;

7-98 IBM Informix TimeSeries Data User's Guide

Example 2: Sum of daily electricity usage by zipcode

Suppose you have a table named ts_table that contains a user ID, the zipcode of
the user, and the electricity usage data for each customer, which is collected every
15 minutes and stored in a column named value in a time series named ts_col. The
following query returns the total amounts of electricity used daily for each
zipcode:
SELECT zipcode,

TSRollup(
AggregateBy(’SUM($value)’, ’cal1day’, ts_col, 0,

’2011-01-01 00:00:00.00000’, ’2011-01-31 23:45:00:00.00000’),
’SUM($value)’

)
FROM ts_table
GROUP BY zipcode;

The first argument to the TSRollup function is an AggregateBy function, which
sums the electricity usage for each customer for each day of January 2011. The
second argument is a SUM operator that sums the daily electricity usage by
zipcode.

The resulting table contains a row for each zipcode. Each row has a time series that
contains the sum of the electricity used by customers living in that zipcode for
each day in January 2011.
Related reference:
“AggregateBy function” on page 7-6

TSRowNameToList function

The TSRowNameToList function returns a list (collection of rows) containing one
individual column from a time series column plus the non-time-series columns of a
table. Null elements are not added to the list.

Syntax
TSRowNameToList(ts_row row,

colname lvarchar)
returns list (row not null)

ts_row The time series to act on.

colname
The time series column to return.

Description

The TSRowNameToList function can only be used on rows with one TimeSeries
column.

You must cast the return variable to match the names and types of the columns
being returned exactly.

Returns

A list (collection of rows).

Chapter 7. Time series SQL routines 7-99

Example

The query returns a list of rows, each containing the ID and high columns.
select

TSRowNameToList(d, ’high’)::list(
row(id integer, name lvarchar, high real) not null)

from daily_stocks d;

Related reference:
“TSColNameToList function” on page 7-82
“TSColNumToList function” on page 7-83
“Transpose function” on page 7-77
“TSRowNumToList function”
“TSRowToList function” on page 7-101
“TSSetToList function” on page 7-107

TSRowNumToList function

The TSRowNumToList function returns a list (collection of rows) containing one
individual column from a time series column plus the non-time-series columns of a
table. Null elements are not added to the list.

Syntax
TSRowNumToList(ts_row row,

colnum integer)
returns list (row not null)

ts_row The time series to act on.

colnum The number of the time series column to return.

Description

The TSRowNumToList function can only be used on rows with one TimeSeries
column.

The column is specified by its number; column numbering starts at 1, with the first
column following the time stamp column.

You must cast the return variable to match the names and types of the columns
being returned exactly.

Returns

A list (collection of rows).

Example

The query returns a list of rows, each containing the ID , name, and high columns.
select

TSRowNumToList(d, 1)::list(row
(id integer, name lvarchar, high real) not null)
from daily_stocks d;

7-100 IBM Informix TimeSeries Data User's Guide

Related reference:
“TSColNameToList function” on page 7-82
“TSColNumToList function” on page 7-83
“TSRowNameToList function” on page 7-99
“Transpose function” on page 7-77
“TSRowToList function”
“TSSetToList function” on page 7-107

TSRowToList function

The TSRowToList function returns a list (collection of rows) containing the
individual columns from a time series column plus the non-time-series columns of
a table. Null elements are not added to the list.

Syntax
TSRowToList(ts_row row)
returns list (row not null)

ts_row A row value that contains a time series as one of its columns.

Description

The TSRowToList function can only be used on rows with one TimeSeries
column.

You must cast the return variable to match the names and types of the columns
being returned exactly.

Returns

A list (collection of rows).

Example

The query returns a list of rows, each containing the following columns: stock_id,
stock_name, t, high, low, final, vol.
select TSRowToList(d)::list(row(stock_id integer,

stock_name lvarchar,
t datetime year to fraction(5),
high real,
low real,
final real,
vol real) not null)

from daily_stocks d;

Chapter 7. Time series SQL routines 7-101

Related reference:
“TSRowNameToList function” on page 7-99
“TSRowNumToList function” on page 7-100
“Transpose function” on page 7-77
“TSColNameToList function” on page 7-82
“TSColNumToList function” on page 7-83
“TSSetToList function” on page 7-107

TSRunningAvg function

The TSRunningAvg function computes a running average over SMALLFLOAT or
DOUBLE PRECISION values.

Syntax
TSRunningAvg(value double precision,

num_values integer)
returns double precision;

TSRunningAvg(value real,
num_values integer)

returns double precision;

value The value to include in the running average.

num_values
The number of values to include in the running average, k.

Description

A running average is the average of the last k values, where k is supplied by the
user. If a value is NULL, the previous value is used. The running average for the
first k-1 values is NULL.

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

This function is useful only when used within the Apply function.

Returns

A SMALLFLOAT or DOUBLE PRECISION running average of the last k values.

Example

The SELECT query in the following example gets the closing price and the 30-day
moving average from the stocks in the time series:
select stock_name, Apply(’TSRunningAvg($final,30)’,

’2010-01-01 00:00:00.00000’::datetime year to fraction(5),
’2011-01-01 00:00:00.00000’::datetime year to fraction(5),
stock_data::TimeSeries(stock_bar))::

TimeSeries(one_real)
from daily_stocks;

7-102 IBM Informix TimeSeries Data User's Guide

Related reference:
“Apply function” on page 7-11
“TSAddPrevious function” on page 7-80
“TSCmp function” on page 7-81
“TSDecay function” on page 7-96
“TSPrevious function” on page 7-97
“TSRunningSum function” on page 7-105
“TSRunningCor function”
“TSRunningMed function” on page 7-104
“TSRunningVar function” on page 7-106

TSRunningCor function

The TSRunningCor function computes the running correlation of two time series
over a running window. The TSRunningCor function returns NULL if the variance
of either input is zero or NULL over the window.

Syntax
TSRunningCor(value1 double precision,

value2 double precision,
num_values integer)

returns double precision;

TSRunningCor(value1 real,
value2 real,
num_values integer)

returns double precision;

value1 The column of the first time series to use to calculate the running
correlation.

value2 The column of the second time series to use to calculate the running
correlation.

num_values
The number of values to include in the running correlation, k.

Description

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

The first (num_values - 1) outputs result from shorter windows (the first output is
derived from the first input time, the second output is derived from the first two
input times, and so on). Null elements in the input also result in shortened
windows.

This function is useful only when used within the Apply function.

Returns

A DOUBLE PRECISION running correlation of the last k values.

Chapter 7. Time series SQL routines 7-103

Example

This statement finds the running correlation between stock data for IBM and AT&T
over a 20 element window. Again, the first 19 output elements are exceptions
because they result from windows of fewer than 20 elements. The first is NULL
because correlation is undefined for just one element.
select Apply(’TSRunningCor($0.high, $1.high, 20)’,

ds1.stock_data::TimeSeries(stock_bar),
ds1.stock_data::TimeSeries(stock_bar))::TimeSeries(one_real)

from daily_stocks ds1, daily_stocks ds2
where ds1.stock_name = ’IBM’
and ds2.stock_name = ’HWP’;

Tip: When a start date is supplied to the Apply function, the first (num_values -
1) output elements are still formed from incomplete windows. The Apply function
never looks at data before the specified start date.
Related reference:
“Apply function” on page 7-11
“TSRunningAvg function” on page 7-102
“TSRunningMed function”
“TSRunningSum function” on page 7-105
“TSRunningVar function” on page 7-106

TSRunningMed function
The TSRunningMed function computes the median of a time series over a running
window. This function is useful only when used within the Apply function.

Syntax
TSRunningMed(value double precision,

num_values integer)
returns double precision;

TSRunningMed(value real,
num_values integer)

returns double precision;

value The first input value to use to calculate the running median. Typically, the
name of a DOUBLE, FLOAT, or REAL column in your time series.

num_values
The number of values to include in the running median, k.

Description

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

The first (num_values - 1) outputs result from shorter windows (the first output is
derived from the first input time, the second output is derived from the first two
input times, and so on). Null elements in the input also result in shortened
windows.

Returns

A DOUBLE PRECISION running median of the last k values.

7-104 IBM Informix TimeSeries Data User's Guide

Example

This statement produces a time series from the running median over a 10-element
window of the column high of stock_data. You can refer to the columns of a time
series as $colname or $colnumber: for example, $high, or $1.
select stock_name, Apply(’TSRunningMed($high, 10)’,

stock_data::TimeSeries(stock_bar))::
TimeSeries(one_real)

from daily_stocks;

Related reference:
“TSRunningCor function” on page 7-103
“Apply function” on page 7-11
“TSRunningAvg function” on page 7-102
“TSRunningSum function”
“TSRunningVar function” on page 7-106

TSRunningSum function

The TSRunningSum function computes a running sum over SMALLFLOAT or
DOUBLE PRECISION values.

Syntax
TSRunningSum(value smallfloat,

num_values integer)
returns smallfloat;

TSRunningSum(value double precision,
num_values integer)

returns double precision;

value The input value to include in the running sum.

num_values
The number of values to include in the running sum, k.

Description

A running sum is the sum of the last k values, where k is supplied by the user. If a
value is NULL, the previous value is used.

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

This function is useful only when used within the Apply function.

Returns

A SMALLFLOAT or DOUBLE PRECISION running sum of the last k values.

Example

The following function calculates the volume accumulation percentage. The columns
represented by a through e are: high, low, close, volume, and number_of_days,
respectively:

Chapter 7. Time series SQL routines 7-105

create function VAP(a float, b float,c float,d float, e int) returns int;
return cast(100 * TSRunningSum(d * ((c - b) - (a - c))/
(.0001 + a - b), e)/(.0001 + TSRunningSum(d,e)) as int);
end function;

Related reference:
“Apply function” on page 7-11
“TSAddPrevious function” on page 7-80
“TSCmp function” on page 7-81
“TSDecay function” on page 7-96
“TSPrevious function” on page 7-97
“TSRunningAvg function” on page 7-102
“TSRunningCor function” on page 7-103
“TSRunningMed function” on page 7-104
“TSRunningVar function”

TSRunningVar function

The TSRunningVar function computes the variance of a time series over a running
window.

Syntax
TSRunningVar(value double precision,

num_values integer)
returns double precision;

TSRunningVar(value real,
num_values integer)

returns double precision;

value The first input value to use to calculate the running correlation.

num_values
The number of values to include in the running variance, k.

Description

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

The first (num_values - 1) outputs are exceptions because they result from shorter
windows (the first output is derived from the first input time, the second output is
derived from the first two input times, and so on). Null elements in the input also
result in shortened windows.

This function is useful only when used within the Apply function.

Returns

A DOUBLE PRECISION running variance of the last k values.

Example

This statement produces a time series with the same length and calendar as
stock_data but with one data column other than the time stamp. Element n of the
output is the variance of column 1 of stock_bar elements n-19, n-18, ... n. The

7-106 IBM Informix TimeSeries Data User's Guide

first 19 elements of the output are a bit different: the first element is NULL, because
variance is undefined for a series of 1. The second output element is the variance
of the first two input elements, and so on.

If element i of stock_data is NULL, or if column 1 of element i of stock_data is NULL,
output elements i, i + 1, ... i + 19, are variances of just 19 numbers (assuming
that there are no other null values in the input window).
select stock_name, Apply(’TSRunningVar($0.high, 20)’,

stock_data::TimeSeries(stock_bar))::
TimeSeries(one_real)

from daily_stocks;

Related reference:
“Apply function” on page 7-11
“TSRunningAvg function” on page 7-102
“TSRunningCor function” on page 7-103
“TSRunningMed function” on page 7-104
“TSRunningSum function” on page 7-105

TSSetToList function

The TSSetToList function takes a TimeSeries column and returns a list (collection
of rows) containing all the elements in the time series. Null elements are not added
to the list.

Syntax
TSSetToList(ts TimeSeries)
returns list (row not null)

ts The time series to act on.

Description

Because this aggregate function can return rows of any type, the return value must
be explicitly cast at runtime.

Returns

A list (collection of rows).

Example

The following query collects all the elements in all the time series in the stock_data
column into a list and then selects out the high column from each element.
select high from table((select

TsSetToList(stock_data)::list(stock_bar
not null) from daily_stocks));

Chapter 7. Time series SQL routines 7-107

Related reference:
“TSColNameToList function” on page 7-82
“TSColNumToList function” on page 7-83
“TSRowNameToList function” on page 7-99
“TSRowNumToList function” on page 7-100
“Transpose function” on page 7-77
“TSRowToList function” on page 7-101

TSToXML function
The TSToXML function returns an XML representation of a time series.

Syntax
TSToXML(doctype lvarchar,

id lvarchar,
ts timeseries,
output_max integer default 0)

returns lvarchar;

TSToXML(doctype lvarchar,
id lvarchar,
ts timeseries)

returns lvarchar;

doctype
The name of the topmost XML element.

id The primary key value in the time series table that uniquely identifies the
time series.

ts The name of the TimeSeries subtype.

output_max
The maximum size, in bytes, of the XML output. If the parameter is absent,
the default value is 32 768. The following table describes the results for
each possible value of the output_max parameter.

Value Result

no value 32 768 bytes

negative integer 232-1 bytes

1 through 4096 4096 bytes

4096 through 232-1 the specified number of bytes

Description

Use the TSToXML function to provide a standard representation for information
exchange in XML format for small amounts of data.

The top-level tag in the XML output is the first argument to the TSToXML
function.

The id tag must uniquely identify the time series and refer the XML output to the
row on which it is based.

The AllData tag indicates whether all the data was returned or the data was
truncated because it exceeded the size set by the output_max parameter.

7-108 IBM Informix TimeSeries Data User's Guide

The remaining XML tags represent the TimeSeries subtype and its columns,
including the time stamp.

The special characters <, >, &, ', and " are replaced by their XML predefined
entities.

Returns

The specified time series in XML format, up to the size set by the output_max
parameter. The AllData tag indicates whether all the data was returned (1) or
whether the data was truncated (0).

Example

The following query selects the time series data for one hour by using the Clip
function from the TimeSeries subtype named actual to return in XML format:
SELECT TSToXML(’meterdata’, esi_id,

Clip(actual, ’2010-09-08 12:00:00’::datetime year to second,
’2010-09-08 13:00:00’::datetime year to second))

FROM ts_data
WHERE esi_id = ’2250561334’;

The following XML data is returned:
<meterdata>

<id>2250561334</id>
<AllData>1</AllData>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>0.9170000000</value>

</meter_data>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>0.4610000000</value>

</meter_data>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>4.1570000000</value>

</meter_data>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>6.3280000000</value>

</meter_data>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>2.6690000000</value>

</meter_data>
</meterdata>

The name of the TimeSeries subtype is meter_data and its columns are tstamp and
value.

The value of 1 in the AllData tag indicates that for this example, all data was
returned.

Chapter 7. Time series SQL routines 7-109

Related concepts:
“Planning for accessing time series data” on page 1-12

Unary arithmetic functions

The standard unary functions Abs, Acos, Asin, Atan, Cos, Exp, Logn, Negate,
Positive, Round, Sin, Sqrt, and Tan are extended to operate on time series.

Syntax
Function(ts TimeSeries)
returns TimeSeries;

ts The time series to act on.

Description

The resulting time series has the same regularity, calendar, and sequence of time
stamps as the input time series. It is derived by applying the function to each
element of the input time series.

If there is a variant of the function that operates directly on the input element type,
then that variant is applied to each element. Otherwise, the function is applied to
each non-time stamp column of the input time series.

Returns

The same type of time series as the input; unless it is cast, then it returns the type
of time series to which it is cast.

Example

The following query converts the daily stock price and volume data into log space:
create table log_stock (stock_id int, data TimeSeries(stock_bar));
insert into log_stock

select stock_id, Logn(stock_data)
from daily_stocks;

7-110 IBM Informix TimeSeries Data User's Guide

Related reference:
“Abs function” on page 7-6
“Acos function” on page 7-6
“ApplyUnaryTsOp function” on page 7-19
“Asin function” on page 7-20
“Atan function” on page 7-21
“Binary arithmetic functions” on page 7-21
“Cos function” on page 7-31
“Exp function” on page 7-37
“Logn function” on page 7-62
“Negate function” on page 7-63
“Positive function” on page 7-65
“Round function” on page 7-74
“Sin function” on page 7-75
“Sqrt function” on page 7-75
“Tan function” on page 7-76
“Apply function” on page 7-11

Union function

The Union function performs a union of multiple time series, either over the entire
length of each time series or over a clipped portion of each time series.

Syntax
Union(ts TimeSeries,...)
returns TimeSeries;

Union(set_ts set(TimeSeries))
returns TimeSeries;

Union(begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
ts TimeSeries,...)

returns TimeSeries;

Union(begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
set_ts set(TimeSeries))

returns TimeSeries;

ts The time series that form the union. Union can take from two to eight time
series arguments.

set_ts A set of time series.

begin_stamp
The begin point of the clip.

end_stamp
The end point of the clip.

Description

The second and fourth forms of the function perform a union of a set of time
series. The resulting time series has one DATETIME YEAR TO FRACTION(5)

Chapter 7. Time series SQL routines 7-111

column, followed by each column in each time series, in order. When using the
second or fourth form, it is important to ensure that the order of the time series in
the set is deterministic so that the elements remain in the correct order.

Since the type of the resulting time series is different from that of the input time
series, the result of the union must be cast.

Union can be thought of as an outer join on the time stamp.

In a union, the resulting time series has a calendar that is the combination of the
calendars of the input time series with the OR operator. The resulting calendar is
stored in the CalendarTable table. The name of the resulting calendar is a string
containing the names of the calendars of the input time series, separated by a
vertical bar (|). For example, if two time series are combined, and mycal and
yourcal are the names of their corresponding calendars, the resulting calendar is
named mycal|yourcal. If all the time series have the same calendar, then Union
does not create a new calendar.

For a regular time series, if a time series does not have a valid element at a
timepoint of the resulting calendar, the value for that time series element is NULL.

To be certain of the order of the columns in the resultant time series when using
Union over a set, use the ORDER BY clause.

For the purposes of Union, the value at a given timepoint is that of the most
recent valid element. For regular time series, this is the value corresponding to the
current interval, which can be NULL; it is not necessarily the most recent non-null
value. For irregular time series, this condition never occurs since irregular time
series do not have null intervals.

For example, consider the union of two irregular time series, one containing bid
prices for a certain stock, and one containing asking prices. The union of the two
time series contains bid and ask values for each timepoint at which a price was
either bid or asked. Now consider a timepoint at which a bid was made but no
price was asked. The union at that timepoint contains the bid price offered at that
timepoint, along with the most recent asking price.

If an intersection involves one or more regular time series, the resulting time series
starts at the latest of the start points of the input time series and ends at the
earliest of the end points of the regular input time series. If all the input time
series are irregular, the resulting irregular time series starts at the latest of the start
points of the input time series and ends at the latest of the end points. If a union
involves one or more time series, the resulting time series starts at the first of the
start points of the input time series and ends at the latest of the end points of the
input time series. Other than this difference in start and end points, and of the
resulting calendar, there is no difference between union and intersection involving
time series.

Apply also combines multiple time series into a single time series. Therefore, using
Union within Apply is often unnecessary.

Returns

The time series that results from the union.

7-112 IBM Informix TimeSeries Data User's Guide

Example

The following query constructs the union of time series for two different stocks:
select Union(s1.stock_data,

s2.stock_data)::TimeSeries(stock_bar_union)
from daily_stocks s1, daily_stocks s2
where s1.stock_name = ’IBM’ and s2.stock_name = ’HWP’;

The following example finds the union of two time series and returns data only for
time stamps between 2011-01-03 and 2011-01-05:
select Union(’2011-01-03 00:00:00.00000’

::datetime year to fraction(5),
’2011-01-05 00:00:00.00000’
::datetime year to fraction(5),
s1.stock_data,
s2.stock_data)::TimeSeries(stock_bar_union)

from daily_stocks s1, daily_stocks s2
where s1.stock_name = ’IBM’ and s2.stock_name = ’HWP’;

Related reference:
“Apply function” on page 7-11
“Intersect function” on page 7-59

UpdElem function

The UpdElem function updates an existing element in a time series.

Syntax
UpdElem(ts TimeSeries,

row_value row,
flags integer default 0)

returns TimeSeries;

ts The time series to update.

row_value
The new row data.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

The element must be a row type of the correct type for the time series, beginning
with a time stamp. If there is no element in the time series with the given time
stamp, an error is raised.

Hidden elements cannot be updated.

The API equivalent of UpdElem is ts_upd_elem().

Returns

A new time series containing the updated element.

Example

The following example updates a single element in an irregular time series:

Chapter 7. Time series SQL routines 7-113

update activity_stocks
set activity_data = UpdElem(activity_data,

row(’2011-01-04 12:58:09.12345’, 6.75, 2000,
2, 007, 3, 1)::stock_trade)

where stock_id = 600;

Related reference:
“DelElem function” on page 7-33
“GetElem function” on page 7-40
“InsElem function” on page 7-57
“PutElem function” on page 7-65
“UpdSet function” on page 7-115
“Create a custom type map” on page 8-5
“The ts_upd_elem() function” on page 9-52

UpdMetaData function

The UpdMetaData function updates the user-defined metadata in the specified
time series.

Syntax
create function UpdMetaData(ts TimeSeries,

metadata TimeSeriesMeta)
returns TimeSeries;

ts The time series for which to update metadata.

metadata
The metadata to be added to the time series. Can be NULL.

Description

This function adds the supplied user-defined metadata to the specified time series.
If the metadata argument is NULL, then the time series is updated to contain no
metadata. If it is not NULL, then the user-defined metadata is stored in the time
series.

Returns

The time series updated to contain the supplied metadata, or the time series with
metadata removed, if the metadata argument is NULL.

7-114 IBM Informix TimeSeries Data User's Guide

Related tasks:
“Creating a time series with metadata” on page 3-13
Related reference:
“GetMetaData function” on page 7-47
“GetMetaTypeName function” on page 7-47
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94
“The ts_create_with_metadata() function” on page 9-17
“The ts_get_metadata() function” on page 9-28
“The ts_update_metadata() function” on page 9-52

UpdSet function

The UpdSet function updates a set of existing elements in a time series.

Syntax
UpdSet(ts TimeSeries,

set_ts multiset,
flags integer default 0)

returns TimeSeries;

ts The time series to update.

set_ts A set of rows that replace existing elements in the given time series, ts.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-5. The default is 0.

Description

The rows in set_ts must be of the correct type for the time series, beginning with a
time stamp; otherwise, an error is raised. If the time stamp of any element does
not correspond to an element already in the time series, an error is raised, and the
entire update is void.

Hidden elements cannot be updated.

Returns

The updated time series.

Example

The following example updates elements in a time series:
update activity_stocks
set activity_data = (select UpdSet(activity_data, set_data)

from activity_load_tab where stock_id = 600)
where stock_id = 600;

Chapter 7. Time series SQL routines 7-115

Related reference:
“DelClip function” on page 7-32
“DelTrim function” on page 7-35
“InsSet function” on page 7-58
“PutSet function” on page 7-69
“UpdElem function” on page 7-113

WithinC and WithinR functions

The WithinC and WithinR functions perform calendar-based queries, converting
among time units and doing the calendar math to extract periods of interest from a
time series value.

Syntax
WithinC(ts TimeSeries,

tstamp datetime year to fraction(5),
interval lvarchar,
num_intervals integer,
direction lvarchar)

returns TimeSeries;

WithinR(ts TimeSeries,
tstamp datetime year to fraction(5),
interval lvarchar,
num_intervals integer,
direction lvarchar)

returns TimeSeries;

ts The source time series.

tstamp The timepoint of interest.

interval
The name of an interval: second, minute, hour, day, week, month, or year.

num_intervals
The number of intervals to include in the output.

direction
The direction in time to include intervals. Possible values are:
v FUTURE, or F, or f
v PAST, or P, or p

Description

Every time series has a calendar that describes the active and inactive periods for
the time series and how often they occur. A regular time series records one value
for every active period of the calendar. Calendars can have periods of a second, a
minute, an hour, a day, a week, a month, or a year. Given a time series, you might
want to pose calendar-based queries on it, such as, “Show me all the values in this
daily series for six years beginning on May 31, 2004,” or “Show me the values in
this hourly series for the week including December 27, 2010.”

The Within functions are the primary mechanism for queries of this form. They
convert among time units and do the calendar math to extract periods of interest
from a time series value. There are two fundamental varieties of Within queries:
calibrated (WithinC) and relative (WithinR).

7-116 IBM Informix TimeSeries Data User's Guide

WithinC, or within calibrated, takes a time stamp and finds the period that
includes that time. Weeks have natural boundaries (Sunday through Saturday), as
do years (January 1 through December 31), months (first day of the month through
the last), 24-hour days, 60-minute hours, and 60-second minutes. WithinC allows
you to specify a time stamp and find the corresponding period (or periods) that
include it.

For example, July 2, 2010, fell on a Friday. Given an hourly time series, WithinC
allows you to ask for all the hourly values in the series beginning on Sunday
morning at midnight of that week and ending on Saturday night at 11:59:59. Of
course, the calendar might not mark all of those hours as active; only data from
active periods is returned by the Within functions.

WithinR, or within relative, takes a time stamp from the user and finds the period
beginning or ending at that time. For example, given a weekly time series,
WithinR can extract all the weekly values for two years beginning on June 3, 2008.
WithinR is able to convert weeks to years and count forward or backward from
the supplied date for the number of intervals requested. Relative means that you
supply the exact time stamp of interest as the begin point or end point of the
range.

WithinR behaves slightly differently for irregular than for regular time series. With
regular time series, the time stamp argument is always mapped to a timepoint in
accordance with the argument time series calendar interval. Relative offsetting is
then performed starting with that point.

In irregular time series, the corresponding calendar interval does not indicate
where time series elements are, and therefore offsetting begins at exactly the time
stamp specified. Also, since irregular elements can appear at any point within the
calendar time interval, WithinR returns elements with time stamps up to the last
instant of the argument interval.

For example, assume an irregular time series with a daily calendar turning on all
weekdays. The following function returns elements in the following interval
(excluding the endpoint):
WithinR(stock_data, ’2010-07-11 07:37:18’, ’day’, 3, ’future’)
[2010-07-11 07:37:18, 2010-07-14 07:37:18]

In a regular time series, the interval is as follows, since each timepoint corresponds
to the period containing the entire following day:
[2010-07-11 00:00:00, 2010-07-13 00:00:00]

Both functions take a time series, a time stamp, an interval name, a number of
intervals, and a direction.

The supplied interval name is not required to be the same as the interval stored by
the time series calendar, but it cannot be smaller than that interval. For example,
given an hourly time series, the Within functions can count forward or backward
for hours, days, weeks, months, or years, but not for minutes or seconds.

The direction argument indicates which periods other than the period containing
the time stamp should be included; if there is only one period, the direction
argument is moot.

For both WithinC and WithinR, the requested timepoint is included in the output.

Chapter 7. Time series SQL routines 7-117

Returns

A new time series with the same calendar as the original, but containing only the
requested values.

Example

The following query retrieves data from the calendar week that includes Friday,
January 4, 2011:
select WithinC(stock_data, ’2011-01-04 00:00:00.00000’,

’week’, 1, ’PAST’)
from daily_stocks
where stock_name = ’IBM’;

(expression)
origin(2011-01-03 00:00:00.00000),calend ar(daycal),
container(),threshold(20),re
gular,[(356.0000000000,310.0000000000,340.000000000,
999.0000000000),(156.000000
0000,110.0000000000,140.0000000000,111.0000000000), NULL,
(99.00000000000,54.000 00000000,66.00000000000,
888.0000000000)]

The following query returns two weeks' worth of stock trades starting on January
4, 2011, at 9:30 a.m.:
select WithinR(activity_data, ’2011-01-04 09:30:00.00000’, ’week’, 2, ’future’)

from activity_stocks
where stock_id = 600;

The following query returns the preceding three months' worth of stock trades:
select WithinR(activity_data, ’2011-02-01 00:00:00.00000’,

’month’, 3, ’past’)
from activity_stocks
where stock_id = 600;

Related concepts:
“CalendarPattern data type” on page 2-1
Related reference:
“Clip function” on page 7-26

7-118 IBM Informix TimeSeries Data User's Guide

Chapter 8. Time series Java class library

The time series Java class library enables you to access and manipulate TimeSeries
type data from within Java applications or applets.

The time series Java class library uses the JDBC 2.0 specification for supporting
User Defined Data Types (UDTs) in Java.

When you execute a Java application that uses TimeSeries data, it uses IBM
Informix JDBC Driver to connect to an IBM Informix database, as shown in the
following figure. See your IBM Informix JDBC Driver Programmer's Guide for
information about how to set up your Java programs to connect to Informix
databases.

You can also use the TimeSeries Java classes in Java applets and servlets, as shown
in the following figures.

Java application

JDBC Driver

Calls to JDBC Results from the database

Queries and other
SQL statements

Query results

Database

Figure 8-1. Runtime architecture for Java programs connecting to a database

© Copyright IBM Corp. 2006, 2011 8-1

Related concepts:
“Planning for accessing time series data” on page 1-12

System requirements for Java programs

Java program must use:
v Java Developers' Kit (JDK), Version 1.2.2 (also known as Java 2) or later
v IBM Informix JDBC Driver, Version 2.20 or later

See your IBM Informix JDBC Driver Programmer's Guide for information about using
the Informix JDBC Driver.

Install the time series Java files
You can move the time series Java class and documentation files to a different
location. You must modify your CLASSPATH variable to include the location of
these files.

The Java class and documentation files are in the following directories:
v $INFORMIXDIR/extend/TimeSeries.version/java/lib contains the .jar files

Web serverBrowserApplet

databaseJDBC driver

Figure 8-2. Runtime architecture for a Java applet

HTTP servlet subclass

Request

Response

database

JDBC driver

Web server

Figure 8-3. Runtime architecture for a Java servlet

8-2 IBM Informix TimeSeries Data User's Guide

There are two .jar files: IfmxTimeSeries.jar and IfmxTimeSeries-g.jar. The -g
file is a debug version that supports tracing (only use this version if you are
troubleshooting a problem); it was compiled using the -g option of the javac
command. See “Problem solving” on page 8-17 for more information about
tracing.

v $INFORMIXDIR/extend/TimeSeries.version/java/doc contains the JavaDoc files

You must do one of the following:
v Modify your CLASSPATH variable to point to these files.

CLASSPATH=$INFORMIXDIR/extend/TimeSeries.version
/java/lib/IfmxTimeSeries.jar:$CLASSPATH;export CLASSPATH

v Copy these files to an appropriate location and include this in your CLASSPATH
variable.
CLASSPATH=new_location/IfmxTimeSeries.jar:$CLASSPATH;

export CLASSPATH

v Copy the files to a new location where you undo the .jar file and modify your
CLASSPATH variable to point to the new location.
CLASSPATH=new_location:$CLASSPATH;export CLASSPATH

In this case, because the .jar file has been undone, the CLASSPATH variable is
only required to point to where the .jar file has been extracted to.

Sample programs

Sample programs are included with the database server. To access the sample
programs, undo the file IfmxTimeSeries.jar using the command jar -xvf
IfmxTimeSeries.jar. This expands the .jar file into a directory structure; the
examples are located in com/informix/docExamples. The examples include the SQL
scripts setup.sql and clean.sql to set up data for the examples and clean it up
afterward.

Time series Java classes
The three time series Java classes represent each of the time series data types:
CalendarPattern, Calendar, and TimeSeries.

The IfmxCalendarPattern class
The IfmxCalendarPattern class represents a calendar pattern in Java. It has
methods that allow you to read and write calendar patterns to and from a
database.

The class diagram shows the time series and JDBC 2.0 interfaces that the class
implements; SQLData is a JDBC interface and IfmxCalendarPatternUDT is a time
series interface (described in “The IfmxCalendarPattern class” on page 8-8).

Chapter 8. Time series Java class library 8-3

The IfmxCalendar class
The IfmxCalendar class represents Calendar types in Java. It contains methods
related to calendar functions and to reading and writing calendars to and from a
database.

The class diagram shows the time series and JDBC 2.0 interfaces that the class
implements; SQLData is a JDBC interface and IfmxCalendarUDT is a time series
interface (described in “The IfmxCalendar class” on page 8-9).

The IfmxTimeSeries class
The IfmxTimeSeries class represents the TimeSeries SQL type in Java. The
IfmxTimeSeries class is used to read and write TimeSeries types to and from a
database. This class is based on the JDBC ResultSet interface and can be thought of
as a set of rows. Each individual row has metadata associated with it that provides
information such as the column name, type, and size.

SQLData
(java.sql.*)

IfmxCalendarPatternUDT
(com.informix.timeseries.*)

IfmxCalendarPattern
(com.informix.timeseries.*)

Implements

Key

Extends
IfmxCalPatValues

Interface

Class

Figure 8-4. CalendarPattern class diagram

IfmxCalendar
(com.informix.timeseries.*) GregorianCalendar

IfmxCalendarPattern
(com.informix.timeseries.*)

SQLData
(java.sql.*)

IfmxCalendarPatternUDT
(com.informix.timeseries.*)

Implements

Key

Extends

Interface

Class
IfxCalendar

(com.informix.timeseries.*)

Figure 8-5. Calendar class diagram

8-4 IBM Informix TimeSeries Data User's Guide

The IfmxTimeSeries class contains most of the time series methods. The class also
implements the methods in the ResultSet interface.

The class diagram shows the time series and JDBC 2.0 interfaces that the class
implements; SQLData and ResultSet are JDBC interfaces and IfmxTimeSeriesUDT is
a time series interface (described in “The IfmxTimeSeries class” on page 8-11).

Get data from the database

The JDBC 2.0 specification describes the procedure for retrieving and sending
user-defined types to and from a database. This is achieved by using a type map
system. To enable your Java program to retrieve or send Calendar,
CalendarPattern, and TimeSeries data to or from an IBM Informix database, you
must create a custom type map as described in “Create a custom type map.”

After you have created the type map, you can select time series data and
manipulate the data as shown in “The IfmxTimeSeries object” on page 8-7.

Note that the time series must be stored in containers. Also, if you clip a time
series, the resultant time series is read-only.

Create a custom type map

To define mappings between Java classes and user-defined SQL data types, use a
type map. For the Informix JDBC Driver to determine which class to call to handle
extended data types, such as TimeSeries, your application must define an entry in
the type map. You can do this in two ways:
v Create an entry in the type map of the current database connection (the entry is

valid only for the current connection).
v Create a map independently and use the map in the getObject method call to

extract the TimeSeries type from the result set in your application. This can be a
better method if you have many time series types.

SQLData
(java.sql.*)

ResultSet
(java.sql.*)

IfmxTimeSeries
(com.informix.timeseries.*)

IfmxResultSetMetaData

IfmxCalendar

Implements

Key

Extends

Interface

Class

IfmxTimeSeriesUDT
(com.informix.timeseries.*)

Figure 8-6. TimeSeries class diagram

Chapter 8. Time series Java class library 8-5

Related reference:
“UpdElem function” on page 7-113

Create an entry in the database connection

The following example makes an entry in the type map of a connection for
handling TimeSeries data:
java.util.Map customTypeMap;
customTypeMap = conn.getTypeMap();

customTypeMap.put("timeseries(stock_bar)",
Class.forName("com.informix.timeseries.IfmxTimeSeries"));

In this example, conn is a valid database connection and timeseries(stock_bar) is the
TimeSeries type. When a TimeSeries type is extracted from the database, the IBM
Informix JDBC Driver searches the type map for an entry for this data type: in this
case, timeseries(stock_bar). If a type map entry exists, an object of the appropriate
class is instantiated (IfmxTimeSeries, in this example) and the readSQL method of
that object is executed.

The readSQL method extracts the time series data from the database result set.
There must be an entry in the type map for every TimeSeries type that your
program uses. For example, you would also require an entry for the
timeseries(stock_trade) TimeSeries type if your Java application accessed that type as
well:
java.util.Map customTypeMap;
customTypeMap = conn.getTypeMap();

customTypeMap.put("timeseries(stock_trade)",
Class.forName("com.informix.timeseries.IfmxTimeSeries"));

You must also add entries for the Calendar and CalendarPattern data types if your
program selects those types from the database. For these types, you must have one
entry for the CalendarPattern type and one entry for the Calendar type, as shown
next.

For CalendarPattern data:
java.util.Map customTypeMap;
customTypeMap = conn.getTypeMap();

customTypeMap.put("calendarpattern",
Class.forName

("com.informix.timeseries.IfmxCalendarPattern"));

For Calendar data:
java.util.Map customTypeMap;
customTypeMap = conn.getTypeMap();

customTypeMap.put("calendar",
Class.forName("com.informix.timeseries.IfmxCalendar"));

Create a map independently

The following example shows how to create a type map independently of your
database connection. For example, you could use just one type map that is global
to the application:
Map typemap = new Map();
typeMap.add("timeseries(test)",

Class.forName("com.informix.timeseries.IfmxTimeSeries"));

8-6 IBM Informix TimeSeries Data User's Guide

You can use the type map in your getObject method call:
ts = (IfmxTimeSeries)rSet.getObject(1, typeMap);

Instead of using the type map associated with the connection, the IBM Informix
JDBC Driver uses the given type map. This example assumes that the time series
column is the first column in the result set.

The IfmxTimeSeries object

Your Java program can use a SELECT statement to retrieve TimeSeries data, as in:
String sqlCmd = "SELECT ts FROM test WHERE id = 1";
PreparedStatement pStmt = conn.prepareStatement(sqlCmd);
ResultSet rSet = pStmt.executeQuery();

com.informix.timeseries.IfmxTimeSeries ts;

rSet.next()
ts = (IfmxTimeSeries)rSet.getObject(1);

In this example, rSet is a valid java.sql.ResultSet object. After executing the SELECT
statement, the getObject method is used to put the time series data into the
variable ts (an IfmxTimeSeries object). The TimeSeries type is at column 1 in the
result set. The example assumes that an entry has been made into the conn object's
type map for the TimeSeries column, ts.

Because the IfmxTimeSeries class implements the JDBC ResultSet interface, you
can treat an IfmxTimeSeries object as if it is an ordinary result set. For example,
you can use the next method to iterate through the elements of the time series, as
in:
ts.beforeFirst();
while (ts.next())
{

java.sql.Timestamp tStamp = ts.getTimestamp(1);
int col1 = ts.getInt(2);
int col2 = ts.getInt(3);

}

The example shows that you use the beforeFirst method to position the time series
cursor before the beginning of the time series and then the next method to iterate
through the elements. While looping through the elements, the program uses the
getTimestamp method to extract the time stamp into the variable tStamp and the
getInt method to extract the first column of data into col1 and the second column
into col2. The columns of a time series element are numbered, starting with the
time stamp column as column 1.

All the available methods of the IfmxTimeSeries, IfmxCalendar, and
IfmxCalendarPattern classes are described in the final topics of this section.

“Sample programs” on page 8-3 points to complete sample programs that
demonstrate how to retrieve and update time series data.

Write TimeSeries data back to the database

You can write a time series back to the database by using the
PreparedStatement.setObject() method:
pStmt.setObject(1, ts);

Chapter 8. Time series Java class library 8-7

In this example, pStmt is a valid PreparedStatement object, ts is a valid
IfmxTimeSeries object, and the TimeSeries type is the first argument in the
prepared statement.

Similarly, the following example writes a Calendar object to the database:
pStmt.setObject(1, c);

In this example, pStmt is a valid PreparedStatement object, c is a valid
IfmxCalendar object, and the Calendar type is the first argument in the prepared
statement.

And, the following example writes a CalendarPattern object to the database:
pStmt.setObject(1, cp);

Where pStmt is a valid PreparedStatement object, cp is a valid
IfmxCalendarPattern object, and the CalendarPattern type is the first argument in
the prepared statement.

Writing data back to the database requires the IBM Informix JDBC Driver to use a
type map, similarly to the way described for retrieving data from the database in
“Create a custom type map” on page 8-5.

Obtain the time series Java class version

There are two ways to retrieve the version stamp for the time series Java classes:
v From the command line

Execute the following to return the version stamp:
java com.informix.timeseries.Version

v From within an application
Use any of the following three methods to return the version stamp:
String version;

version = IfmxTimeSeries.getVersion();
version = IfmxCalendar.getVersion();
version = IfmxCalendarPattern.getVersion();

The getVersion method is a static method; therefore, you are not required to create
a time series object to retrieve the version stamp. The version returned from the
three classes is always the same.

The IfmxCalendarPattern class

The IfmxCalendarPattern class implements the IfmxCalendarPatternUDT
TimeSeries interface. An interface provides an abstract description of the methods
and any constants belonging to a class. The IfmxCalendarPatternUDT interface
specifies the standard constants that any calendar pattern class might have to use.
The interface is intended for use only by programmers who want to develop
calendar pattern classes.

You can create an IfmxCalendarPattern object by:
v Selecting a calendar pattern from the database
v Selecting a calendar from the database
v Selecting a time series from the database

8-8 IBM Informix TimeSeries Data User's Guide

v Instantiating a new object to be inserted into the database

The IfmxCalendarPattern class defines the following constructors for these
situations:
IfmxCalendarPattern()
IfmxCalendarPattern(String pat) throws SQLException

When you select a calendar pattern from the database, the getObject method is
used to extract the calendar pattern from the result set. The IBM Informix JDBC
Driver instantiates a new IfmxCalendarPattern object using the first constructor,
IfmxCalendarPattern(). It creates an empty object with no variables initialized.

When you create a calendar pattern on the client to insert into the database, use
the second constructor to instantiate the object. This constructor initializes the new
object by parsing the input string. The format of the string is: {pattern specification},
interval: for example, {5 on, 2 off}, day.

The IfmxCalendarPattern class provides the following methods.

Method Signature Description

getInterval public byte getInterval() throws SQLException Returns the calendar pattern interval.

getIntervalStr public String getIntervalStr() throws
SQLException

Returns the string representation of the
calendar pattern interval. Valid values are:

v Second

v Minute

v Hour

v Day

v Week

v Month

v Year

getSQLTypeName public String getSQLTypeName() Returns the SQL type name for the object:
in this case, calendar pattern.

readSQL public void readSQL(SQLInput stream String
type)

Called automatically by the IBM Informix
JDBC Driver to initialize an
IfmxCalendarPattern object from the
binary result set stream.

toString public String toString() Returns the String representation of this
calendar pattern object.

writeSQL public void writeSQL(SQLOutput stream) Called automatically by the Informix JDBC
Driver when a setObject method is called
to insert an IfmxCalendarPattern object
into a prepared statement to be sent to the
database server.

The IfmxCalendar class

The IfmxCalendar class implements the IfmxCalendarUDT TimeSeries interface.
An interface provides an abstract description of the methods and any constants
belonging to a class. The IfmxCalendarUDT interface specifies the standard
constants that any calendar class might be required to use. The interface is
intended for use only by programmers who want to develop calendar classes.

Chapter 8. Time series Java class library 8-9

You create an IfmxCalendar object by:
v Selecting a calendar from the database
v Selecting a time series from the database
v Instantiating a new object to be inserted into the database

The IfmxCalendar class defines the following constructors for these situations:
IfmxCalendar()

IfmxCalendar(String calName, TimeStamp calStart,
TimeStamp patStart, String pattern)
throws SQLexception

IfmxCalendar(String calName, TimeStamp calStart,
TimeStamp patStart, IfmxCalendarPattern cPat)
throws SQLexception

When you select a calendar from the database, the getObject method is used to
extract the calendar from the result set. The IBM Informix JDBC Driver instantiates
a new IfmxCalendar object using the first constructor, IfmxCalendar(). It creates an
empty object with no variables initialized.

When you create a calendar on the client to insert into the database, use the second
or third constructor to instantiate the object. These constructors initialize the new
object by parsing the input string and using the given arguments. A calendar
contains an embedded calendar pattern. The first constructor instantiates an
IfmxCalendarPattern object using the specified calendar pattern string. The second
constructor copies the calendar pattern from the IfmxCalendarPattern object that
you specify.

The IfmxCalendar class provides the following methods.

Method Signature Description

getName public String getName() throws SQLException Returns the calendar name.

getOffset public int getOffset() throws SQLException Returns the calendar offset.

getStartDate public Timestamp getStartDate() throws
SQLException

Returns the calendar start date.

getPatStartDate public Timestamp getPatStartDate() throws
SQLException

Returns the start date of the calendar
pattern associated with the calendar.

getPattern public IfmxCalendarPattern getPattern() throws
SQLException

Returns the calendar pattern associated
with the calendar.

getSQLTypeName public String getSQLTypeName() throws
SQLException

Returns the SQL type name for the object:
in this case, calendar.

getStartDate public Timestamp getStartDate() throws
SQLException

Returns the calendar start date.

getTimestamp
FromOffset

public Timestamp getTimestampFromOffset()
throws SQLException

Returns the time stamp for a given offset.

getOffsetFrom
Timestamp

public int getOffsetFromTimestamp() throws
SQLException

Returns the offset for a given time stamp.

readSQL public void readSQL() throws SQLException Called automatically by the IBM Informix
JDBC Driver to initialize an IfmxCalendar
object from a binary result stream.

toString public String toString() Returns the string representation of an
IfmxCalendar object.

8-10 IBM Informix TimeSeries Data User's Guide

Method Signature Description

writeSQL public void writeSQL() throws SQLException Called automatically by the Informix JDBC
Driver when a setObject method is called
to insert an IfmxCalendar object into a
prepared statement to be sent to the
database server.

The IfmxTimeSeries class

The IfmxTimeSeries class implements the IfmxTimeSeriesUDT TimeSeries
interface. An interface provides an abstract description of the methods and any
constants belonging to a class. The IfmxTimeSeriesUDT interface specifies the
standard constants that any calendar class might require. The interface is intended
for use only by programmers who want to develop calendar classes.

You create an IfmxTimeSeries object by:
v Selecting a time series from the database
v Instantiating a new object to be inserted into the database

The IfmxTimeSeries class defines the following constructors for these situations:
IfmxTimeSeries()

IfmxTimeSeries(java.sql.Timestamp startdate,
IfmxCalendar cal,
String containerName,
int threshold,
String sqlTypeName,
Connection conn)

throws SQLexception

When you select a time series from the database, the getObject method is used to
extract the time series from the result set. The IBM Informix JDBC Driver
instantiates a new IfmxTimeSeries object using the first constructor,
IfmxTimeSeries(). It creates an empty object with no variables initialized.

When you create a time series on the client to be inserted into the database, use
the second constructor to instantiate the object. This constructor initializes the new
object by parsing the input string. The following information is required:
v A start date
v A calendar (the calendar must exist in the database)
v A container name (the container must exist in the database).
v A threshold
v A row type name (the row type must exist in the database)
v A valid connection. The connection must include an entry for the time series

type in its type map (see “Create a custom type map” on page 8-5).
v Whether the time series is regular or irregular

The IfmxTimeSeries class provides methods for manipulating time series. The
IfmxTimeSeries class also provides methods that it inherits from the JDBC
ResultSet interface. These methods are listed in “Public methods inherited from the
JDBC ResultSet interface” on page 8-12; see your JDBC documentation for more
information about these methods.

Chapter 8. Time series Java class library 8-11

The IfmxTimeSeries class methods

The IfmxTimeSeries class provides methods for manipulating time series. The
IfmxTimeSeries class also provides methods that it inherits from the JDBC
ResultSet interface. These methods are listed in “Public methods inherited from the
JDBC ResultSet interface”; see your JDBC documentation for more information
about these methods.

Time series methods
The time series methods in the IfmxTimeSeries class are for manipulating time
series.

Table 8-1. Time series methods

Method Signature Description

clip public IfmxTimeSeries clip(java.sql.Timestamp
start, java.sql.Timestamp end) throws
SQLException

Returns a new IfmxTimeSeries object
containing the elements between the start
and end points.

getCalendar public IfmxCalendar getCalendar() throws
SQLException

Returns the IfmxCalendar object
associated with the IfmxTimeSeries object.

getContainerName public String getContainerName() throws
SQLException

Returns the container name associated
with the IfmxTimeSeries object. Returns
NULL if no container name is set.

getNumberOf Elements int getNumberOfElements() Gets the number of elements in this
IfmxTimeSeries object.

getOffset int getOffset() Returns the offset for the IfmxTimeSeries
object.

getOrigin public int getOrigin() throws SQLException Returns the origin for the IfmxTimeSeries
object.

inContainer public boolean inContainer() throws
SQLException

Returns TRUE if the IfmxTimeSeries object
is in a container; FALSE otherwise.

isHidden boolean isHidden() Returns TRUE if the current element is
hidden.

isNull public boolean isNull(columnIndex int) throws
SQLException

public boolean isNull(columnName String)
throws SQLException

The isNull method tests if the value on the
specified column of the selected TimeSeries
row is NULL and returns TRUE if it is;
otherwise, FALSE. You can specify the
column either by number (columnIndex)
or by name (columnName).

isRegular public boolean isRegular() throws
SQLException

Returns TRUE if the IfmxTimeSeries object
represents a regular time series; FALSE
otherwise.

setConnection public void setConnection(connection Conn)
throws SQLException

Sets the connection to be used to update
time series elements. Must be a valid
connection with a correct type map.

The following methods are not currently supported:
v getNelems
v hideElem

Public methods inherited from the JDBC ResultSet interface
The IfmxTimeSeries class contains public methods inherited from the JDBC
ResultSet interface.

8-12 IBM Informix TimeSeries Data User's Guide

The following table shows the supported signatures for the public methods. Other
signatures for these methods are not supported.

Table 8-2. Public methods

Method Signature Description

absolute boolean absolute(int row) Moves the time series cursor to the row
indicated by row.

afterLast void afterLast() Moves the time series cursor to the end of
the IfmxTimeSeries object, just after the
last element.

beforeFirst void beforeFirst() Moves the time series cursor to the
beginning of the IfmxTimeSeries object,
just before the first element.

deleteRow void deleteRow(Connection conn) throws
SQLException

Deletes the current row from the time
series and uses the specified connection to
delete the time series in the underlying
database.

findColumn int findColumn (java.lang.String columnName) Retrieves the column index for
columnName.

first boolean first() Moves the time series cursor to the first
element in the IfmxTimeSeries object.

getBigDecimal java.math.BigDecimal getBigDecimal (int
columnIndex)

Gets the value in the current time series
element as a bigDecimal value.

getBigDecimal java.math.BigDecimal getBigDecimal
(java.lang.String columnName)

Gets the value in the current time series
element as a bigDecimal value.

getBoolean boolean getBoolean(int columnIndex) Gets the value in the current time series
element as a boolean value.

getBoolean boolean getBoolean (java.lang.String
columnName)

Gets the value in the current time series
element as a boolean value.

getByte byte getByte(int columnIndex) Gets the value in the current time series
element as a byte value.

getByte byte getByte (java.lang.String columnName) Gets the value in the current time series
element as a byte value.

getConcurrency int getConcurrency() Gets the concurrency type for this
IfmxTimeSeries object.

getDate java.sql.Date getDate(int columnIndex) Gets the value in the current time series
element as a java.sql.date value.

getDate java.sql.Date getDate (java.lang.String
columnName)

Gets the value in the current time series
element as a java.sql.date value.

getDouble double getDouble(int columnIndex) Gets the value in the current time series
element as a double value.

getDouble double getDouble (java.lang.String
columnName)

Gets the value in the current time series
element as a double value.

getFloat float getFloat(int columnIndex) Gets the value in the current time series
element as a float value.

getFloat float getFloat (java.lang.String columnName) Gets the value in the current time series
element as a float value.

getInt int getInt(int columnIndex) Gets the value in the current time series
element as an int value.

getInt int getInt(java.lang.String columnName) Gets the value in the current time series
element as an int value.

Chapter 8. Time series Java class library 8-13

Table 8-2. Public methods (continued)

Method Signature Description

getLong int getLong(int columnIndex) Gets the value in the current time series
element as a long value.

getLong int getLong (java.lang.String columnName) Gets the value in the current time series
element as a long value.

getMetaData java.sql.ResultSetMetaData getMetaData() Retrieves a ResultSetMetaData object that
contains the number, types, and properties
of the IfmxTimeSeries object elements.

getObject java.lang.Object getObject (int columnIndex) Gets the value in the current time series
element as an Object.

getRow int getRow() Retrieves the number of the current time
series element.

getShort short getShort(int columnIndex) Gets the value in the current time series
element as a short value.

getShort short getShort (java.lang.String columnName) Gets the value in the current time series
element as a short value.

getSQLTypeName java.lang.String getSQLTypeName() Returns the SQL type name used by the
database for the data type.

getString java.lang.String getString (int columnIndex) Gets the value in the current time series
element as a String value.

getString java.lang.String getString (java.lang.String
columnName)

Gets the value in the current time series
element as a String value.

getTime java.sql.Time getTime(int columnIndex) Gets the value in the current time series
element as a java.sql.Time value.

getTime java.sql.Time getTime (java.lang.String
columnName)

Gets the value in the current time series
element as a java.sql.Time value.

getTimestamp java.sql.Timestamp getTimestamp (int
columnIndex)

Gets the value in the current time series
element as a Timestamp object.

getTimestamp java.sql.Timestamp getTimestamp
(java.lang.String columnName)

Gets the value in the current time series
element as a Timestamp object.

getTSMetaData java.sql.ResultSetMetaData getTSMetaData() Retrieves an IfmxResultSetMetaData object
that contains the number, types, and
properties of the time series elements in
this IfmxTimeSeries object.

getType int getType() Retrieves the type of this IfmxTimeSeries
object.

insertRow void insertRow(Connection conn) Inserts the current row using the
connection set by the setConnection
method to update the underlying time
series stored in the database. The
setConnection method is described in
“Time series methods” on page 8-12.

isAfterLast boolean isAfterLast() Determines whether the time series cursor
is after the last element.

isBeforeFirst boolean isBeforeFirst() Determines whether the time series cursor
is before the first element.

isFirst boolean isFirst() Determines whether the time series cursor
is on the first element in this time series.

8-14 IBM Informix TimeSeries Data User's Guide

Table 8-2. Public methods (continued)

Method Signature Description

isLast boolean isLast() Determines whether the current element is
the last element in this time series.

last boolean last() Moves the time series cursor to the last
element in the time series.

moveToCurrentRow void moveToCurrentRow() Moves the time series cursor to the
remembered position in this
IfmxTimeSeries object, usually the current
element.

moveToInsertRow void moveToInsertRow() Moves the time series cursor to the insert
row.

next boolean next() Initially moves the time series cursor to
the first element in the time series.
Subsequent calls move the cursor to the
second element, then the third, and so on.

previous boolean previous() Moves the time series cursor to the
previous row.

readSQL void readSQL (java.sql.InputStream stream,
java.lang.String type)

Populates the IfmxTimeSeries object with
data read from the given binary input
stream.

relative boolean relative(int row) Moves the time series cursor the number
of rows specified by row.

updateBoolean void updateBoolean (int columnIndex, boolean
x)

Updates the current time series element
with the given boolean object.

updateBoolean void updateBoolean (java.lang.String
columnName, boolean x)

Updates the current time series element
with the given boolean object.

updateByte void updateByte(int columnIndex, byte x) Updates the current time series element
with the given byte object.

updateByte void updateByte (java.lang.String
columnName, byte x)

Updates the current time series element
with the given byte object.

updateDate void updateDate (int columnIndex,
java.sql.Date x)

Updates the current time series element
with the given date object.

updateDate void updateDate (java.lang.String
columnName, java.sql.Date x)

Updates the current time series element
with the given date object.

updateDouble void updateDouble (int columnIndex, double x) Updates the current time series element
with the given double object.

updateDouble void updateDouble (java.lang.String
columnName, double x)

Updates the current time series element
with the given double object.

updateFloat void updateFloat (int columnIndex, float x) Updates the current time series element
with the given float object.

updateFloat void updateFloat (java.lang.String
columnName, float x)

Updates the current time series element
with the given float object.

updateInt void updateInt(int columnIndex, int x) Updates the current time series element
with the given int object.

updateInt void updateInt (java.lang.String columnIndex,
int x)

Updates the current time series element
with the given int object.

updateLong void updateLong (int columnIndex, long x) Updates the current time series element
with the given long object.

Chapter 8. Time series Java class library 8-15

Table 8-2. Public methods (continued)

Method Signature Description

updateLong void updateLong (java.lang.String
columnName, long x)

Updates the current time series element
with the given long object.

updateNull void updateNull(int columnIndex) Updates the current time series element
with a null value.

updateNull void updateNull (java.lang.String
columnName)

Updates the current time series element
with a null value.

updateRow void updateRow(Connection conn) Updates the underlying time series with
the contents of the current row using the
connection set by the setConnection
method. The setConnection method is
described in “Time series methods” on
page 8-12.

updateShort void updateShort (int columnIndex, short x) Updates the current time series element
with the given short object.

updateShort void updateShort (java.lang.String
columnName, short x)

Updates the current time series element
with the given short object.

updateString void updateString (int columnIndex,
java.lang.String x)

Updates the current time series element
with the given String object.

updateString void updateString (java.lang.String
columnName, java.lang.String x)

Updates the current time series element
with the given String object.

updateTime void updateTime (int columnIndex,
java.sql.Time x)

Updates the current time series element
with the given Time object.

updateTime void updateTime (java.lang.String
columnName, java.sql.Time x)

Updates the current time series element
with the given Time object.

updateTimestamp void updateTimestamp (int columnIndex,
java.sql.Timestamp x)

Updates the current time series element
with the given Timestamp object.

updateTimestamp void updateTimestamp (java.lang.String
columnName, java.sql.Timestamp x)

Updates the current time series element
with the given Timestamp object.

wasNull boolean wasNull() Checks whether the current element is
NULL.

writeSQL void writeSQL(java.sql.Output stream) Called automatically by the JDBC driver
when a setObject method is called to insert
an IfmxTimeSeries object into a prepared
statement to be sent to the database server.

The following methods are not currently supported:
v cancelRowUpdates
v clearWarnings
v close
v getArray
v getAsciiStream
v getBytes
v getFetchSize
v getRef
v getUnicodeStream
v getWarnings
v updateBigDecimal

8-16 IBM Informix TimeSeries Data User's Guide

v updateBytes
v updateObject
v refreshRow
v rowDeleted
v rowInserted
v rowUpdated
v setFetchDirection
v setFetchSize
v updateAsciiStream
v updateBinaryStream
v updateCharacterStream

Problem solving

These topics contain suggestions to help solve problems if they should occur while
you are using the time series Java class library.

If a user-defined error is returned, turn on JDBC tracing (PROTOCOLTRACE). The
output file should contain the exact error message. See your JDBC documentation
for information about how to turn on JDBC tracing.

Tracing with the Java class library

To turn on tracing with the time series Java class library, change your CLASSPATH
variable to point to the debug version of the library, AA01TimeSeries-g.jar, and
add the information described in the following to the database URL that you use at
connection time.

To turn on tracing, specify the environment variables TRACE, TRACEFILE,
PROTOCOLTRACE, and PROTOCOLTRACEFILE in the connection property list
when you establish a connection to an IBM Informix database or database server.
The following table describes the tracing environment variables.

Environment variable Description

TRACE Traces general information from IBM
Informix JDBC Driver. Can be set to one of
the following levels:

0 Tracing not enabled. This is the
default value.

1 Traces the entry and exit points of
methods.

2 Same as Level 1, except generic
error messages are also traced.

3 Same as Level 2, except data
variables are also traced.

TRACEFILE Specifies the full path name of the operating
system file on the client computer to which
the TRACE messages are written.

Chapter 8. Time series Java class library 8-17

Environment variable Description

PROTOCOLTRACE Traces the SQLI protocol messages sent
between your Java program and the IBM
Informix database server. Can be set to the
following levels:

0 Protocol tracing not enabled. This is
the default value.

1 Traces message IDs.

2 Same as Level 1, except the data in
the message packets is also traced.

PROTOCOLTRACEFILE Specifies the full path name of the operating
system file on the client computer to which
the PROTOCOLTRACE messages are written.

The following example of a database URL specifies the highest level of protocol
tracing and sets tracing output to the operating system file /tmp/trace.out:
String url = "jdbc:informix-
sqli://123.45.67.89:1533:informixserver=myserver;user=rdtest;password=test;
PROTOCOLTRACE=2;PROTOCOLTRACEFILE=/tmp/trace.out";

For more information about establishing a connection to an IBM Informix database
or database server using a property list, see the IBM Informix JDBC Driver
Programmer's Guide.

8-18 IBM Informix TimeSeries Data User's Guide

Chapter 9. Time series API routines

The time series application programming interface routines allow application
programmers to directly access a time series datum.

You can scan and update a set of time series elements, or a single element
referenced by either a time stamp or a time series index. These routines can be
used in client programs that fetch time series data in binary mode or in registered
server or client routines that have an argument or return value of a time series
type.

If there is a failure, these routines raise an error condition and do not return a
value.

On UNIX, these routines exist in two archives: tsfeapi.a and tsbeapi.a. To use
any of these routines, include the tsbeapi.a file when producing a shared library
for the server, or use tsfeapi.a when compiling a client application.

The tseries.h header file must be included when there are calls to any of the time
series interface routines.

On UNIX, tsfeapi.a, tsbeapi.a, and tseries.h are all in the lib directory in the
database server installation.

On Windows, these routines exist in two archives: tsfeapi.lib and tsbeapi.lib.
To use any of these routines, include the tsbeapi.lib file when producing a shared
library for the server, or use tsfeapi.lib when compiling a client application.

The tseries.h header file must be included when there are calls to any of the time
series interface routines.

On Windows, tsfeapi.lib, tsbeapi.lib, and tseries.h are all in the lib directory
in the database server installation.

Important: Since values returned by mi_value are valid only until the next
mi_next_row or mi_query_finish call, it might be necessary to put time series in
save sets or to use ts_copy to access time series outside an mi_get_results loop.
Related concepts:
“Planning for accessing time series data” on page 1-12

Differences in using functions on the server and on the client
There are significant differences between using the client version of the time series
API (tsfeapi) and the server version of the time series API (tsbeapi).

The client and server interfaces do not behave in exactly the same way when
updating a time series. This is because tsbeapi operates directly on a time series,
whereas tsfeapi operates on a private copy of a time series. This means that
updates through tsbeapi are always reflected in the database, while updates
through tsfeapi are not. For changes made by tsfeapi to become permanent, the
client must write the updated time series back into the database.

© Copyright IBM Corp. 2006, 2011 9-1

Another difference between the two interfaces is in how time series are passed as
arguments to the mi_exec_prepare_statement() function. On the server, no special
steps are required: a time series can be passed as is to this function. However, on
the client you must make a copy of the time series with ts_copy and pass the copy
as an argument to the mi_exec_prepare_statement() function.

There can be a difference in efficiency between the client and the server APIs.
Functions built to run on the server take advantage of the underlying paging
mechanism. For instance, if a function must scan across 20 years worth of data, the
tsbeapi interface keeps only a few pages in memory at any one time. For a client
program to do this, the entire time series must be brought over to the client and
kept in memory. Depending on the size of the time series and the memory
available, this might cause swapping problems on the client. However,
performance depends on many factors, including the pattern of usage and
distribution of your hardware. If hundreds of users are performing complex
analysis in the server, it can overwhelm the server, whereas if each client does their
portion of the work, the load can be better balanced.

API data structures
These topics describe the data structures used by time series API routines.

The ts_timeseries structure
A ts_timeseries structure is the header for a time series. It can be stored in and
retrieved from a time series column of a table.

The ts_timeseries structure contains pointers, so it cannot be copied directly. Use
the ts_copy() function to copy a time series.

When you pass a binary time series value, ts, of type ts_timeseries, to
mi_exec_prepared_statement(), you must pass ts in the values array and 0 in the
lengths array.

The ts_tscan structure
A ts_tscan structure allows you to look at no more than two time series elements
at a time. It maintains a current scan position in the time series and has two
element buffers for creating elements. An element fetched from a scan is
overwritten after two ts_next() calls.

A ts_tscan structure is created with the ts_begin_scan() function and destroyed
with the ts_end_scan() procedure.

The ts_tsdesc structure
A ts_tsdesc structure contains a time series (ts_timeseries) and data structures for
working with it. Among other things, ts_tsdesc tracks the current element and
holds two element buffers for creating two elements.

Important: The two element buffers are shared by the element-fetching functions.
An element that is fetched is overwritten two fetch calls later. Elements fetched by
functions like ts_elem() should not be explicitly freed. They are freed when the
ts_tsdesc is closed.

9-2 IBM Informix TimeSeries Data User's Guide

If you must look at more than two elements at a time, open a scan or use the
ts_make_elem() or ts_make_elem_with_buf() routines to make a copy of one of
your elements.

A ts_tsdesc structure is created by the ts_open() function and destroyed by the
ts_close() procedure. It is used by most of the time series API routines.

The ts_tselem structure
A ts_tselem structure is a pointer to one element (row) of a time series.

When you use ts_tselem with a regular time series, the time stamp column in the
element is left as NULL, allowing you to avoid the expense of computing the time
stamp if it is not required. The time stamp is computed on demand in the
ts_get_col_by_name(), ts_get_col_by_number(), and ts_get_all_cols() routines. For
irregular time series, the time stamp column is never NULL.

You can convert a ts_tselem structure to and from an MI_ROW structure with the
ts_row_to_elem() and ts_elem_to_row() routines.

If the element was created by the ts_make_elem() or ts_make_elem_with_buf()
procedure, you must use the ts_free_elem() procedure to free the memory
allocated for a ts_tselem structure.

API routines

This section contains:
v Time series API routines by task type
v The correspondence between API and SQL routines
v Individual routine reference pages

The following table shows the time series interface routines listed by task type. An
uppercase routine name, such as TS_ELEM_NULL, denotes a macro.

Task type Description Routine name

Open and close a time series Open a time series ts_open()

Close a time series ts_close()

Return a pointer to the time series associated with
the given time series descriptor

ts_get_ts()

Create and copy a time series Create a time series ts_create()

Create a time series with metadata ts_create_with_metadata()

Copy a time series ts_copy()

Free all memory associated with a time series
created with ts_copy() or ts_create()

ts_free()

Copy all elements of one time series into another ts_put_ts()

Chapter 9. Time series API routines 9-3

Task type Description Routine name

Scan a time series Start a scan ts_begin_scan()

Retrieve the next element from a scan ts_net()

End a scan ts_end_scan()

Find the time stamp of the last element retrieved
from a scan

ts_current_timestamp()

Return the offset for the last element returned by
ts_next()

ts_current_offset() (regular
only)

Make elements visible or
invisible to a scan

Make an element invisible ts_hide_elem()

Make an element visible ts_reveal_elem()

Select individual elements
from a time series

Get the element closest to a given time stamp ts_closest_elem()

Get the element associated with a given time stamp ts_elem()

Get the element at a specified position ts_nth_elem())

Get the first element ts_first_elem()

Get the last element ts_last_elem()

Find the next element after a given time stamp ts_next_valid()

Find the last element before a given time stamp ts_previous_valid()

Find the last element at or before a given time
stamp

ts_last_valid()

Update a time series Insert an element ts_ins_elem()

Update an element ts_upd_elem()

Delete an element ts_del_elem()

Put an element in a place specified by a time stamp ts_put_elem()

ts_put_elem_no_dups()

Append an element ts_put_last_elem() (regular
only)

Put an element in a place specified by an offset ts_put_nth_elem() (regular
only)

Modify metadata Update metadata ts_update_metadata()

Convert between an index and
a time stamp

Convert time stamp to index ts_index() (regular only)

Convert index to time stamp ts_time() (regular only)

Transform an element Create an element from an array of values and nulls ts_make_elem()

ts_make_elem_rowdesc()

ts_make_elem_with_buf()

Convert an MI_ROW value to an element ts_row_to_elem()

Convert an element to an MI_ROW value ts_elem_to_row()

Free memory from a time series element created by
ts_make_elem() or ts_row_to_elem()

ts_free_elem()

Extract column data from an
element

Get a column from an element by name ts_get_col_by_name()

Get a column from an element by number ts_get_col_by_number()

Pull columns from an element into values and nulls
arrays

ts_get_all_cols()

9-4 IBM Informix TimeSeries Data User's Guide

Task type Description Routine name

Create and perform
calculations with time stamps

Compare two time stamps ts_datetime_cmp()

Get fields from a time stamp ts_get_stamp_fields()

Create a time stamp ts_make_stamp()

Calculate the number of intervals between two time
stamps

ts_tstamp_difference()

Subtract N intervals from a time stamp ts_tstamp_minus()

Add N intervals to a time stamp ts_tstamp_plus()

Get information about element
data

Find the number of a column ts_col_id()

Return the number of columns contained in each
element

ts_col_cnt()

Get type information for a column specified by
number

ts_colinfo_number()

Get type information for a column specified by
name

ts_colinfo_name()

Determine if an element is hidden TS_ELEM_HIDDEN

Determine if an element is NULL TS_ELEM_NULL

Get information about a time
series

Get the name of a calendar associated with a time
series

ts_get_calname()

Return the number of elements in a time series ts_nelems()

Return the flags associated with the time series ts_get_flags()

Get the name of the container ts_get_containername()

Determine if the time series is in a container TS_IS_INCONTAINER

Get the origin of the time series ts_get_origin()

Get the metadata associated with the time series ts_get_metadata()

Determine if the time series is irregular TS_IS_IRREGULAR

Get information about a
calendar

Return the number of valid intervals between two
time stamps

ts_cal_index()

Return all valid timepoints between two time
stamps

ts_cal_range()

Return a specified number of time stamps starting at
a given time stamp

ts_cal_range_index()

Return the time stamp at a given number of
intervals after a given time stamp

ts_cal_stamp()

The following functions are used only with regular time series:
v ts_current_offset()

v ts_index()

v ts_nth_elem()

v ts_put_last_elem()

v ts_put_nth_elem()

v ts_time()

Some of the API routines are much the same as SQL routines. The mapping is
shown in the following table.

Chapter 9. Time series API routines 9-5

API routine SQL routine

ts_cal_index() CalIndex
ts_cal_range() CalRange
ts_cal_stamp() CalStamp
ts_create() TSCreate, TSCreateIrr
ts_create_with_metadata() TSCreate, TSCreateIrr
ts_del_elem() DelElem
ts_elem() GetElem
ts_first_elem() GetFirstElem
ts_get_calname() GetCalendarName
ts_get_containername() GetContainerName
ts_get_metadata() GetMetaData
ts_get_origin() GetOrigin
ts_hide_elem() HideElem
ts_index() GetIndex
ts_ins_elem() InsElem
ts_last_elem() GetLastElem
ts_nelems() GetNelems
ts_next_valid() GetNextValid
ts_nth_elem() GetNthElem
ts_previous_valid() GetPreviousValid
ts_put_elem() PutElem
ts_put_elem_no_dups() PutElemNoDups
ts_put_ts() PutTimeSeries
ts_reveal_elem() RevealElem
ts_time() GetStamp
ts_update_metadata() UpdMetaData
ts_upd_elem() UpdElem

The ts_begin_scan() function

The ts_begin_scan() function begins a scan of elements in a time series.

Syntax
ts_tscan *
ts_begin_scan(ts_tsdesc *tsdesc,

mi_integer flags,
mi_datetime *begin_stamp,
mi_datetime *end_stamp)

tsdesc Returned by ts_open().

flags Determines how a scan should work on the returned set.

begin_stamp
Pointer to mi_datetime, to specify where the scan should start. If
begin_stamp is NULL, the scan starts at the beginning of the time series. The
begin_stamp argument acts much like the begin_stamp argument to the Clip
function (“Clip function” on page 7-26) unless TS_SCAN_EXACT_START is
set.

end_stamp
Pointer to mi_datetime, to specify where the scan should stop. If end_stamp
is NULL, the scan stops at the end of the time series. When end_stamp is set,
the scan stops after the data at end_stamp is returned.

9-6 IBM Informix TimeSeries Data User's Guide

Description

This function starts a scan of a time series between two time stamps.

The scan descriptor is closed by calling ts_end_scan().

The flags argument values

The flags argument determines how a scan should work on the returned set. Valid
values for the flags argument are defined in tseries.h. The integer value is the
sum of the desired values from the following table.

Flag Value Meaning

TS_SCAN_HIDDEN 512
(0x200)

Return hidden elements marked by
ts_hide_elem()

TS_SCAN_EXACT_START 256
(0x100)

Return NULL if the begin point is earlier
than the time series origin. (Normally a
scan does not start before the time series
origin.)

TS_SCAN_EXACT_END 128
(0x80)

Return NULL until the end timepoint of the
scan is reached, even if the end timepoint is
beyond the end of the time series.

TS_SCAN_NO_NULLS 32 (0x20) Affects the way elements are returned that
have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if
an element has not been allocated it is
returned as NULL. If TS_SCAN_NO_NULLS
is set, an element is returned that has each
column set to NULL instead.

TS_SCAN_SKIP_END 16 (0x10) Skip the element at the end timepoint of
the scan range.

TS_SCAN_SKIP_BEGIN 8 (0x08) Skip the element at the beginning timepoint
of the scan range.

TS_SCAN_SKIP_HIDDEN 4 (0x04) Skip hidden elements.

Returns

An open scan descriptor, or NULL if the scan times are both before the origin of the
time series or if the end time is before the start time.

Example

See the ts_interp() function, in Appendix A, “The Interp function example,” on
page A-1, for an example of the ts_begin_scan() function.

Chapter 9. Time series API routines 9-7

Related reference:
“HideElem function” on page 7-55
“The ts_current_offset() function” on page 9-18
“The ts_current_timestamp() function” on page 9-19
“The ts_end_scan() procedure” on page 9-23
“The ts_next() function” on page 9-39
“The ts_open() function” on page 9-41
“The ts_first_elem() function” on page 9-23

The ts_cal_index() function

The ts_cal_index() function returns the number of valid intervals in a calendar
between two given time stamps.

Syntax
mi_integer *
ts_cal_index (MI_CONNECTION *conn,

mi_string *cal_name,
mi_datetime *begin_stamp,
mi_datetime *end_stamp)

conn A valid DataBlade API connection.

cal_name
The name of the calendar.

begin_stamp
The beginning time stamp. begin_stamp must not be earlier than the
calendar origin.

end_stamp
The time stamp whose offset from begin_stamp is to be determined. This
time stamp can be earlier than begin_stamp.

Description

The equivalent SQL function is CalIndex.

Returns

The number of valid intervals in the given calendar between the two time stamps.
If end_stamp is earlier than begin_stamp, then the result is a negative number.
Related reference:
“The ts_cal_range() function” on page 9-9
“The ts_cal_range_index() function” on page 9-10
“The ts_cal_stamp() function” on page 9-11
“The ts_index() function” on page 9-32

The ts_cal_pattstartdate() function

The ts_cal_pattstartdate() function takes a calendar name and returns the start date
of the pattern for that calendar.

9-8 IBM Informix TimeSeries Data User's Guide

Syntax
mi_datetime *
ts_cal_pattstartdate (MI_CONNECTION *conn,

mi_string *cal_name)

conn A pointer to a valid DataBlade API connection structure.

cal_name
The name of the calendar.

Description

The equivalent SQL function is CalPattStartDate.

Returns

An mi_datetime pointer that points to the start date of a calendar pattern. You
must free this value after use.
Related reference:
“The CalPattStartDate function” on page 5-2
“The ts_cal_startdate() function” on page 9-11

The ts_cal_range() function

The ts_cal_range() function returns a list of time stamps containing all valid
timepoints in a calendar between two time stamps (inclusive of the specified time
stamps).

Syntax
MI_COLLECTION *
ts_cal_range (MI_CONNECTION *conn,

mi_string *cal_name,
mi_datetime *begin_stamp,
mi_datetime *end_stamp)

conn A valid DataBlade API connection.

cal_name
The name of the calendar.

begin_stamp
The begin point of the range. It must not be earlier than the calendar
origin.

end_stamp
The end point of the range.

Description

This function is useful if you must print out the time stamps of a series of regular
time series elements. If the range is known, getting an array of all of the time
stamps is more efficient than using ts_time() on each element.

The caller is responsible for freeing the result of this function.

The equivalent SQL function is CalRange.

Chapter 9. Time series API routines 9-9

Returns

A list of time stamps.
Related reference:
“The CalIndex function” on page 6-2
“The CalRange function” on page 6-3
“The CalStamp function” on page 6-4
“The ts_cal_index() function” on page 9-8
“The ts_cal_range_index() function”
“The ts_time() function” on page 9-49
“The ts_cal_stamp() function” on page 9-11

The ts_cal_range_index() function

The ts_cal_range_index() function returns a list containing a specified number of
time stamps starting at a given time stamp.

Syntax
MI_COLLECTION *
ts_cal_range_index (MI_CONNECTION, *conn,

mi_string *cal_name,
mi_datetime *begin_stamp,
mi_integer num_stamps)

conn A valid DataBlade API connection.

cal_name
The name of the calendar.

begin_stamp
The beginning of the range. It must be greater than or equal to the
calendar origin.

num_stamps
The number of time stamps to return.

Description

This function is useful if you must print out the time stamps of a series of regular
time series elements. If the range is known, getting an array of all of the time
stamps is more efficient than using ts_time() on each element.

The caller is responsible for freeing the result of this function.

Returns

A list of time stamps.

9-10 IBM Informix TimeSeries Data User's Guide

Related reference:
“The CalIndex function” on page 6-2
“The CalRange function” on page 6-3
“The CalStamp function” on page 6-4
“The ts_cal_index() function” on page 9-8
“The ts_cal_range() function” on page 9-9
“The ts_cal_stamp() function”
“The ts_time() function” on page 9-49

The ts_cal_stamp() function

The ts_cal_stamp() function returns the time stamp at a given number of calendar
intervals before or after a given time stamp. The returned time stamp is located in
allocated memory, so the caller should free it using mi_free().

Syntax
mi_datetime *
ts_cal_stamp (MI_CONNECTION *conn,

mi_string *cal_name,
mi_datetime *tstamp,
mi_integer offset)

conn A valid DataBlade API connection.

cal_name
The name of the calendar.

tstamp The input time stamp.

offset The number of calendar intervals before or after the input time stamp. Use
a negative number to indicate an offset before the specified time stamp and
a positive number to indicate an offset after the specified time stamp.

Description

The equivalent SQL function is CalStamp.

Returns

The time stamp representing the given offset, which must be freed by the caller.
Related reference:
“The CalIndex function” on page 6-2
“The CalRange function” on page 6-3
“The CalStamp function” on page 6-4
“The ts_cal_index() function” on page 9-8
“The ts_cal_range_index() function” on page 9-10
“The ts_cal_range() function” on page 9-9

The ts_cal_startdate() function

The ts_cal_startdate() function returns the start date of a calendar.

Chapter 9. Time series API routines 9-11

Syntax
mi_datetime *
ts_cal_startdate (MI_CONNECTION *conn,

mi_string *cal_name)

conn A pointer to a valid DataBlade API connection structure.

cal_name
The name of the calendar.

Description

The equivalent SQL function is CalStartDate.

Returns

An mi_datetime pointer that points to the start date of a calendar. You must free
this value after use.
Related reference:
“The CalStartDate function” on page 6-5
“The ts_cal_pattstartdate() function” on page 9-8

The ts_close() function

The ts_close() procedure closes the associated time series.

Syntax
void
ts_close(ts_tsdesc *tsdesc)

tsdesc A time series descriptor returned by ts_open.

Description

After a call to this procedure, tsdesc is no longer valid and so should not be passed
to any routine requiring the tsdesc argument.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_close().
Related reference:
“The ts_open() function” on page 9-41

The ts_closest_elem() function

The ts_closest_elem() function returns the first element, or column(s) of an
element, that is non-null and closest to the given time stamp.

Syntax
ts_tselem
ts_closest_elem(ts_tsdesc *tdesc,

mi_datetime *tstamp,
mi_string *cmp,
mi_string *col_list,
mi_integer flags, mi_integer *isNull,
mi_integer *off)

9-12 IBM Informix TimeSeries Data User's Guide

tdesc A time series descriptor returned by ts_open.

tstamp The time stamp to start searching from.

cmp A comparison operator. Valid values for cmp are <, <=, =, ==, '>=, and >.

col_list To search for an element with a particular set of columns non-null, specify
a list of column names separated by a vertical bar (|). An error is raised if
any of the column names do not exist in the time series sub-rowtype.

To search for a non-null element, set col_list to NULL.

flags Determines whether hidden elements should be returned. Valid values for
the flags parameter are defined in tseries.h. They are:
v TS_CLOSEST_NO_FLAGS (no special flags)
v TS_CLOSEST_RETNULLS_FLAGS (return hidden elements)

isNull The isNull parameter must not be NULL. On return, it is set with the null
indicator bits found in tseries.h. These are:
v 0 (element is not hidden and is allocated)
v TS_NULL_NOTALLOCED (element has not been written to)
v TS_NULL_HIDDEN (element is hidden)

off If the time series is regular, the offset of the returned element will be
returned in the off parameter, if off is not NULL.

Description

The search algorithm that ts_closest_elem uses is as follows:
v If cmp is any of <=, =, ==, or >=, the search starts at tstamp.
v If cmp is <, the search starts at the first element before tstamp.
v If cmp is >, the search starts at the first element after tstamp.

The tstamp and cmp parameters are used to determine where to start the search.
The search continues in the direction indicated by cmp until an element is found
that qualifies. If no element qualifies, then the return value is NULL.

Important: For irregular time series, values in an irregular element persist until the
next element. This means that any of the previous “equals” operations on an
irregular time series will look for <= first. If cmp is >= and the <= operations fails,
the operation then looks forward for the next element; otherwise, NULL is returned.

Returns

An element that meets the criteria described.

The ts_col_cnt() function

The ts_col_cnt() function returns the number of columns contained in each element
of a time series.

Syntax
mi_integer
ts_col_cnt (ts_tsdesc *tsdesc)

tsdesc A time series descriptor returned by ts_open.

Chapter 9. Time series API routines 9-13

Returns

The number of columns.
Related reference:
“The ts_get_all_cols() procedure” on page 9-25

The ts_col_id() function

The ts_col_id() function takes a column name and returns the associated column
number.

Syntax
mi_integer
ts_col_id(ts_tsdesc *tsdesc,

mi_string *colname)

tsdesc A time series descriptor returned by ts_open().

colname
The name of the column.

Description

Column numbers start at 0; therefore, the first time stamp column is always
column 0.

Returns

The number of the column associated with colname.
Related reference:
“The ts_colinfo_name() function”
“The ts_colinfo_number() function” on page 9-15

The ts_colinfo_name() function

The ts_colinfo_name() function gets type information for a column in a time series.

Syntax
ts_typeinfo *
ts_colinfo_name (ts_tsdesc *tsdesc,

mi_string *colname)

tsdesc A time series descriptor returned by ts_open().

colname
The name of the column to return information for.

Description

The resulting typeinfo structure and its ti_typename field must be freed by the
caller.

Returns

A pointer to a ts_typeinfo structure. This structure is defined as follows:

9-14 IBM Informix TimeSeries Data User's Guide

typedef struct _ts_typeinfo
{

MI_TYPEID *ti_typeid; /* type id */
mi_integer ti_typelen; /* internal length */
mi_smallint ti_typealign; /* internal alignment */
mi_smallint ti_typebyvalue; /* internal byvalue flag */
mi_integer ti_typebound; /* internal bound */
mi_integer ti_typeparameter; /* internal parameter */
mi_string *ti_typename; /* name of the column */

} ts_typeinfo;

Related reference:
“The ts_col_id() function” on page 9-14
“The ts_colinfo_number() function”

The ts_colinfo_number() function

The ts_colinfo_number() function gets type information for a column in a time
series.

Syntax
ts_typeinfo *
ts_colinfo_number (ts_tsdesc *tsdesc,

mi_integer id)

tsdesc A time series descriptor returned by ts_open().

id The column number to return information for. The id argument must be
greater than or equal to 0 and less than the number of columns in a time
series element. An id of 0 corresponds to the time stamp column.

Description

The resulting typeinfo structure and its ti_typename field must be freed by the
caller.

Returns

A pointer to a ts_typeinfo structure. This structure is defined as follows:
typedef struct _ts_typeinfo
{

MI_TYPEID *ti_typeid; /* type id */
mi_integer ti_typelen; /* internal length */
mi_smallint ti_typealign; /* internal alignment */
mi_smallint ti_typebyvalue; /* internal byvalue flag */
mi_integer ti_typebound; /* internal bound */
mi_integer ti_typeparameter; /* internal parameter */
mi_string *ti_typename; /* name of the column */

} ts_typeinfo;

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_colinfo_number().

Chapter 9. Time series API routines 9-15

Related reference:
“The ts_col_id() function” on page 9-14
“The ts_colinfo_name() function” on page 9-14

The ts_copy() function

The ts_copy() function makes and returns a copy of the given time series of the
type in the type_id argument.

Syntax
ts_timeseries *
ts_copy(MI_CONNECTION *conn,

ts_timeseries *ts,
MI_TYPEID *typeid)

conn A valid DataBlade API connection.

ts The time series to be copied.

typeid The ID of the row type of the time series to be copied.

Description

Since values returned by mi_value() are valid only until the next mi_next_row() or
mi_query_finish() call, it is sometimes necessary to use ts_copy() to access a time
series outside an mi_get_result() loop.

On the client, you must use the ts_copy() function to make a copy of a time series
before you pass the time series as an argument to the mi_exec_prepare() statement.

Returns

A copy of the given time series. This value must be freed by the user by calling
ts_free().
Related reference:
“The ts_free() procedure” on page 9-24
“The ts_get_typeid() function” on page 9-31

The ts_create() function

The ts_create() function creates a time series.

Syntax
ts_timeseries *
ts_create(MI_CONNECTION *conn,

mi_string *calname,
mi_datetime *origin,
mi_integer threshold,
mi_integer flags,
MI_TYPEID *typeid,
mi_integer nelem,
mi_string *container)

conn A valid DataBlade API connection.

calname
The name of the calendar.

origin The time series origin.

9-16 IBM Informix TimeSeries Data User's Guide

threshold
The time series threshold. If the time series stores this number or more
elements, it is stored in a container. If the time series holds fewer than this
number, it is stored directly in the row that contains it. threshold must be
greater than or equal to 0 and less than 256.

flags Must be 0 for regular time series and TS_CREATE_IRR for irregular time
series.

typeid The ID of the new type for the time series to be created.

nelems The initial number of elements to create space for in the time series. This
space is reclaimed if not used, after the time series is written into the
database.

container
The container for holding the time series. Can be NULL if the time series can
fit in a row or is not going to be assigned to a table.

Description

The equivalent SQL function is TSCreate or TSCreateIrr.

Returns

A pointer to a new time series. The user can free this value by calling ts_free().
Related reference:
“TSCreate function” on page 7-92
“The ts_free() procedure” on page 9-24
“The ts_open() function” on page 9-41
“The ts_get_threshold() function” on page 9-30
“The ts_get_typeid() function” on page 9-31

The ts_create_with_metadata() function

The ts_create_with_metadata() function creates a time series with user-defined
metadata attached.

Syntax
ts_timeseries *
ts_create_with_metadata(MI_CONNECTION *conn,

mi_string *calname,
mi_datetime *origin,
mi_integer threshold,
mi_integer flags,
MI_TYPEID *typeid,
mi_integer nelem,
mi_string *container,
mi_lvarchar *metadata,
MI_TYPEID *metadata_typeid)

conn A valid DataBlade API connection.

calname
The name of the calendar.

origin The time series origin.

threshold
The time series threshold. If the time series stores this number or more

Chapter 9. Time series API routines 9-17

elements, it is stored in a container. If the time series holds fewer than this
number, it is stored directly in the row that contains it. threshold must be
greater than or equal to 0 and less than 256.

flags Must be 0 for regular time series and TS_CREATE_IRR for irregular time
series.

typeid The ID of the new type for the time series to be created.

nelems The initial number of elements to create space for in the time series. This
space is reclaimed if not used, after the time series is written into the
database.

container
The container for holding the time series. This parameter can be NULL if the
time series can fit in a row or is not going to be assigned to a table.

metadata
The metadata to be put into the time series. See “Creating a time series
with metadata” on page 3-13 for more information about metadata. Can be
NULL.

metadata_typeid
The type ID of the metadata. Can be NULL if the metadata argument is
NULL.

Description

This function behaves the same as ts_create(), plus it saves the supplied metadata
in the time series. The metadata can be NULL or a zero-length LVARCHAR; if either,
ts_create_with_metadata() acts exactly like ts_create(). If the metadata pointer
points to valid data, the metadata_typeid parameter must be a valid pointer to a
valid type ID for a user-defined type.

The equivalent SQL function is TSCreate or TSCreateIrr.

Returns

A pointer to a new time series. The user can free this value by calling ts_free().
Related reference:
“GetMetaData function” on page 7-47
“GetMetaTypeName function” on page 7-47
“UpdMetaData function” on page 7-114
“TSCreate function” on page 7-92
“The ts_free() procedure” on page 9-24
“The ts_open() function” on page 9-41
“The ts_get_metadata() function” on page 9-28
“The ts_get_typeid() function” on page 9-31
“The ts_update_metadata() function” on page 9-52

The ts_current_offset() function

The ts_current_offset() function returns the offset for the last element returned by
ts_next().

9-18 IBM Informix TimeSeries Data User's Guide

Syntax
mi_integer
ts_current_offset(ts_tscan *tscan)

tscan The scan descriptor returned by ts_begin_scan().

Returns

The offset of the last element returned. If no element has been returned yet, the
offset of the first element is returned. For irregular time series, ts_current_offset()
always returns -1.
Related reference:
“The ts_begin_scan() function” on page 9-6

The ts_current_timestamp() function

The ts_current_timestamp() function finds the time stamp that corresponds to the
current element retrieved from the scan.

Syntax
mi_datetime *
ts_current_timestamp(ts_tscan *scan)

scan The scan descriptor returned by ts_begin_scan().

Returns

If no elements have been retrieved, the value returned is the time stamp of the first
element. This value cannot be freed by the user with mi_free().
Related reference:
“The ts_begin_scan() function” on page 9-6

The ts_datetime_cmp() function

The ts_datetime_cmp() function compares two time stamps and returns a value
that indicates whether tstamp1 is before, equal to, or after tstamp2.

Syntax
mi_integer
ts_datetime_cmp(mi_datetime *tstamp1,

mi_datetime *tstamp2)

tstamp1
The first time stamp to compare.

tstamp2
The second time stamp to compare.

Returns

< 0 If tstamp1 comes before tstamp2.

0 If tstamp1 equals tstamp2.

> 0 If tstamp1 comes after tstamp2.

Chapter 9. Time series API routines 9-19

Related reference:
“The ts_get_all_cols() procedure” on page 9-25
“The ts_get_col_by_name() function” on page 9-26
“The ts_get_col_by_number() function” on page 9-26

The ts_del_elem() function

The ts_del_elem() function deletes an element from a time series at a given
timepoint.

Syntax
ts_timeseries *
ts_del_elem(ts_tsdesc *tsdesc,

mi_datetime *tstamp)

tsdesc The time series descriptor returned by ts_open().

tstamp The timepoint from which to delete the element.

Description

If there is no element at the timepoint, no error is raised, and no change is made to
the time series. It is an error to delete a hidden element.

The equivalent SQL function is DelElem.

Returns

The original time series minus the element deleted, if there was one.
Related reference:
“DelElem function” on page 7-33
“The ts_ins_elem() function” on page 9-33
“The ts_put_elem() function” on page 9-44
“The ts_upd_elem() function” on page 9-52

The ts_elem() function

The ts_elem() function returns an element from the time series at the given time.

Syntax
ts_tselem
ts_elem(ts_tsdesc *tsdesc,

mi_datetime *tstamp,
mi_integer *STATUS,
mi_integer *off)

tsdesc The time series descriptor returned by ts_open().

tstamp A pointer to the time stamp for the desired element.

STATUS
Set on return to indicate whether the element is NULL or hidden. See “The
ts_hide_elem() function” on page 9-31 for an explanation of the isNull
argument.

9-20 IBM Informix TimeSeries Data User's Guide

off For regular time series, off is set to the offset on return. If the time series is
irregular, or if the time stamp is not in the calendar, off is set to -1. The
offset can be NULL.

Description

On return, off is filled in with the offset of the element for a regular time series or
-1 for an irregular time series. The element is overwritten after two calls to fetch
elements using this tsdesc (time series descriptor).

The equivalent SQL function is GetElem.

Returns

An element, its offset, and whether it is hidden, NULL, or both. This element must
not be freed by the caller.
Related reference:
“GetElem function” on page 7-40
“DelElem function” on page 7-33
“The TS_ELEM_HIDDEN macro”
“The ts_hide_elem() function” on page 9-31
“The ts_last_elem() function” on page 9-34
“The ts_nth_elem() function” on page 9-41
“The TS_ELEM_NULL macro” on page 9-22
“The ts_first_elem() function” on page 9-23
“The ts_ins_elem() function” on page 9-33
“The ts_make_elem() function” on page 9-36
“The ts_put_elem() function” on page 9-44
“The ts_put_elem_no_dups() function” on page 9-45
“The ts_put_last_elem() function” on page 9-46
“The ts_put_nth_elem() function” on page 9-46
“The ts_upd_elem() function” on page 9-52

The TS_ELEM_HIDDEN macro

The TS_ELEM_HIDDEN macro determines whether the STATUS indicator returned
by ts_elem(), ts_nth_elem(), ts_first_elem(), and similar functions is set because
the associated element was hidden.

Syntax
TS_ELEM_HIDDEN((mi_integer) STATUS)

STATUS
The mi_integer argument previously passed to ts_elem(), ts_nth_elem(),
ts_first_elem(), or a similar function.

Description

This macro returns a nonzero value if the associated element is hidden. This macro
is often used in concert with TS_ELEM_NULL.

Chapter 9. Time series API routines 9-21

Returns

A nonzero value if the element associated with the STATUS argument was
previously hidden by the ts_hide_elem() function.
Related reference:
“The ts_elem() function” on page 9-20
“The TS_ELEM_NULL macro”
“The ts_first_elem() function” on page 9-23
“The ts_hide_elem() function” on page 9-31
“The ts_last_elem() function” on page 9-34
“The ts_next() function” on page 9-39
“The ts_next_valid() function” on page 9-40
“The ts_nth_elem() function” on page 9-41
“The ts_previous_valid() function” on page 9-43

The TS_ELEM_NULL macro

The TS_ELEM_NULL macro determines whether the STATUS indicator returned by
ts_elem(), ts_nth_elem(), ts_first_elem(), or a similar function is NULL because the
associated element is NULL.

Syntax
TS_ELEM_NULL((mi_integer) STATUS)

STATUS
The mi_integer argument previously passed to ts_elem(), ts_nth_elem(),
ts_first_elem(), or a similar function.

Description

This macro returns a nonzero value if the associated element is NULL. This macro is
often used in concert with TS_ELEM_HIDDEN.

Returns

A nonzero value if the element returned by ts_elem(), ts_nth_elem(),
ts_first_elem(), or similar function was NULL.
Related reference:
“The TS_ELEM_HIDDEN macro” on page 9-21
“The ts_elem() function” on page 9-20
“The ts_first_elem() function” on page 9-23
“The ts_hide_elem() function” on page 9-31
“The ts_last_elem() function” on page 9-34
“The ts_next() function” on page 9-39
“The ts_next_valid() function” on page 9-40
“The ts_nth_elem() function” on page 9-41
“The ts_previous_valid() function” on page 9-43

The ts_elem_to_row() function

The ts_elem_to_row() function converts a time series element into a new row.

9-22 IBM Informix TimeSeries Data User's Guide

Syntax
MI_ROW *
ts_elem_to_row(ts_tsdesc *tsdesc,

ts_tselem elem,
mi_integer off)

tsdesc The descriptor for a time series returned by ts_open().

elem A time series element. It must agree in type with the time series described
by tsdesc.

off If the time series is regular and off is non-negative, off is used to compute
the time stamp value placed in the first column of the returned row.

If the time series is regular and off is negative, column 0 of the resulting
row will be taken from column 0 of the elem parameter (which will be NULL
if the element was created for or extracted from a regular time series).

If the time series is irregular, the off parameter is ignored.

Returns

A row. The row must be freed by the caller using the mi_row_free() procedure.
Related reference:
“The ts_free_elem() procedure” on page 9-24
“The ts_make_elem() function” on page 9-36
“The ts_make_elem_with_buf() function” on page 9-37
“The ts_row_to_elem() function” on page 9-48

The ts_end_scan() procedure

The ts_end_scan() procedure ends a scan of a time series. It releases resources
acquired by ts_begin_scan(). Upon return, no more elements can be retrieved
using the given ts_tscan pointer.

Syntax
void
ts_end_scan(ts_tscan *scan)

scan The scan to be ended.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_end_scan().
Related reference:
“The ts_begin_scan() function” on page 9-6

The ts_first_elem() function

The ts_first_elem() function returns the first element in the time series.

Syntax
ts_tselem
ts_first_elem(ts_tsdesc *tsdesc,

mi_integer *STATUS)

tsdesc The time series descriptor returned by ts_open().

Chapter 9. Time series API routines 9-23

STATUS
A pointer to an mi_integer value. See “The ts_hide_elem() function” on
page 9-31 for an explanation of the STATUS argument.

Description

If the time series is regular, the first element is always the origin of the time series.
If the time series is irregular, the first element is the one with the earliest time
stamp. The value must not be freed by the caller. The element is overwritten after
two calls to fetch elements using this tsdesc (time series descriptor).

The equivalent SQL function is GetFirstElem.

Returns

The first element in the time series.
Related reference:
“GetFirstElem function” on page 7-42
“The TS_ELEM_HIDDEN macro” on page 9-21
“The TS_ELEM_NULL macro” on page 9-22
“GetElem function” on page 7-40
“The ts_begin_scan() function” on page 9-6
“The ts_elem() function” on page 9-20
“The ts_next() function” on page 9-39
“The ts_next_valid() function” on page 9-40

The ts_free() procedure

The ts_free() procedure frees all memory associated with the given time series
argument. The time series argument must have been generated by a call to either
ts_create() or ts_copy().

Syntax
void
ts_free(ts_timeseries *ts)

ts The source time series.
Related reference:
“The ts_copy() function” on page 9-16
“The ts_create() function” on page 9-16
“The ts_create_with_metadata() function” on page 9-17
“The ts_get_ts() function” on page 9-30
“The ts_ins_elem() function” on page 9-33

The ts_free_elem() procedure

The ts_free_elem() procedure frees a time series element, releasing its resources. It
is used to free elements created by ts_make_elem() or ts_row_to_elem(). It must
not be called to free elements returned by ts_elem(), ts_first_elem(), ts_last_elem(),
ts_last_valid(), ts_next(), ts_next_valid(), ts_nth_elem(), or ts_previous_valid();
those elements are overwritten with subsequent calls or freed when the
corresponding scan or time series descriptor is closed.

9-24 IBM Informix TimeSeries Data User's Guide

Syntax
void
ts_free_elem(ts_tsdesc *tsdesc,

ts_tselem elem)

tsdesc The descriptor for a time series returned by ts_open().

elem A time series element. It must agree in type with the time series described
by tsdesc.

Related reference:
“The ts_elem_to_row() function” on page 9-22
“The ts_make_elem() function” on page 9-36
“The ts_make_elem_with_buf() function” on page 9-37
“The ts_row_to_elem() function” on page 9-48

The ts_get_all_cols() procedure

The ts_get_all_cols() procedure loads the values in the element into the values and
nulls arrays.

Syntax
void
ts_get_all_cols(ts_tsdesc *tsdesc,

ts_tselem tselem,
MI_DATUM *values,
mi_boolean *nulls,
mi_integer off)

tsdesc A time series pointer returned by ts_open().

tselem The element to extract data from.

values The array to put the column data into. This array must be large enough to
hold data for all the columns of the time series.

nulls An array that indicates null values.

off For a regular time series, off is the offset of the element. For an irregular
time series, off is ignored.

Returns

None. The values and nulls arrays are filled in with data from the element. The
values array is filled with values or pointers to values depending on whether the
corresponding column is by reference or by value. The values in the values array
must not be freed by the caller.
Related reference:
“The ts_datetime_cmp() function” on page 9-19
“The ts_col_cnt() function” on page 9-13

The ts_get_calname() function

The ts_get_calname() function returns the name of the calendar associated with the
given time series.

Syntax
mi_string *
ts_get_calname(ts_timeseries *ts)

Chapter 9. Time series API routines 9-25

ts The source time series.

Description

The equivalent SQL function is GetCalendarName.

Returns

The name of the calendar. This value must be freed by the caller with mi_free().

The ts_get_col_by_name() function

The ts_get_col_by_name() function pulls out the individual piece of data from an
element in the column with the given name.

Syntax
MI_DATUM
ts_get_col_by_name(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_string *colname,
mi_boolean *isNull,
mi_integer off)

tsdesc A pointer returned by ts_open().

tselem An element to get column data from.

colname
The name of the column in the element.

isNull A pointer to a null indicator.

off For a regular time series, off is the offset of the element in the time series.
For an irregular time series, off is ignored.

Returns

The data in the specified column. If the type of the column is by reference, a
pointer is returned. If the type is by value, the data itself is returned. The caller
cannot free this value. On return, isNull is set to indicate whether the column is
NULL.
Related reference:
“The ts_datetime_cmp() function” on page 9-19
“The ts_get_col_by_number() function”

The ts_get_col_by_number() function

The ts_get_col_by_number() function pulls the individual pieces of data from an
element. The column 0 (zero) is always the time stamp.

Syntax
MI_DATUM
ts_get_col_by_number(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_integer colnumber,
mi_boolean *isNull,
mi_integer off)

tsdesc A pointer returned by ts_open().

9-26 IBM Informix TimeSeries Data User's Guide

tselem An element to get column data from.

colnumber
The column number. Column numbers start at 0, which represents the time
stamp.

isNull A pointer to a null indicator.

off For a regular time series, off is the offset of the element in the time series.
For an irregular time series, off is ignored.

Returns

The data in the specified column. If the type of the column is by reference, a
pointer is returned. If the type is by value, the data itself is returned. The caller
cannot free this value. On return, isNull is set to indicate whether the column is
NULL.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_get_col_by_number().
Related reference:
“The ts_datetime_cmp() function” on page 9-19
“The ts_get_col_by_name() function” on page 9-26

The ts_get_containername() function

The ts_get_containername() function gets the container name of the given time
series.

Syntax
mi_string *
ts_get_containername(ts_timeseries *ts)

ts The source time series.

Description

The equivalent SQL function is GetContainerName.

Returns

The name of the container for the given time series. This value must not be freed
by the user.
Related reference:
“GetContainerName function” on page 7-40

The ts_get_flags() function

The ts_get_flags() function returns the flags associated with the given time series.

Syntax
mi_integer
ts_get_flags(ts_timeseries *ts)

ts The source time series.

Chapter 9. Time series API routines 9-27

Description

The return value is a collection of flag bits. The possible flag bits set are
TSFLAGS_IRR, TSFLAGS_INMEM, and TSFLAGS_ASSIGNED.

To check whether the time series is regular, use TS_IS_IRREGULAR.

Returns

An integer containing the flags for the given time series.
Related reference:
“IsRegular function” on page 7-61
“The TS_IS_IRREGULAR macro” on page 9-34

The ts_get_metadata() function

The ts_get_metadata() function returns the user-defined metadata and its type ID
from the specified time series.

Syntax
mi_lvarchar *
ts_get_metadata(ts_timeseries *ts,

MI_TYPEID **metadata_typeid)

ts The time series to retrieve the metadata from.

metadata_typeid
The return parameter to hold the type ID of the user-defined metadata.

Description

The equivalent SQL function is GetMetaData.

Returns

The user-defined metadata contained in the specified time series. If the time series
does not contain any user-defined metadata, then NULL is returned and the
metadata_typeid pointer is set to NULL. This return value must be cast to the real
user-defined type to be useful. The value returned can be freed by the caller with
mi_var_free().
Related reference:
“GetMetaData function” on page 7-47
“GetMetaTypeName function” on page 7-47
“UpdMetaData function” on page 7-114
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94
“The ts_create_with_metadata() function” on page 9-17
“The ts_get_metadata() function”
“The ts_update_metadata() function” on page 9-52

The ts_get_origin() function

The ts_get_origin() function returns the origin of the given time series.

9-28 IBM Informix TimeSeries Data User's Guide

Syntax
mi_datetime *
ts_get_origin(ts_timeseries *ts)

ts The source time series.

Description

The equivalent SQL function is GetOrigin.

Returns

The origin of the given time series. This value must be freed by the caller using
mi_free().
Related reference:
“GetOrigin function” on page 7-52

The ts_get_stamp_fields() procedure

The ts_get_stamp_fields() procedure takes a pointer to an mi_datetime structure
and returns the parameters with the year, month, day, hour, minute, second, and
microsecond.

Syntax
void
ts_get_stamp_fields (MI_CONNECTION *conn,

mi_datetime *dt,
mi_integer *year,
mi_integer *month,
mi_integer *day,
mi_integer *hour,
mi_integer *minute,
mi_integer *second,
mi_integer *ms)

conn A valid DataBlade API connection.

dt The time stamp to convert.

year Pointer to year integer that the procedure sets. Can be NULL.

month Pointer to month integer that the procedure sets. Can be NULL.

day Pointer to day integer that the procedure sets. Can be NULL.

hour Pointer to hour integer that the procedure sets. Can be NULL.

minute Pointer to minute integer that the procedure sets. Can be NULL.

second Pointer to second integer that the procedure sets. Can be NULL.

ms Pointer to microsecond integer that the procedure sets. Can be NULL.

Returns

On return, the non-null year, month, day, hour, minute, second, and microsecond
are set to the time that corresponds to the time indicated by the dt argument.

Chapter 9. Time series API routines 9-29

Related reference:
“The ts_make_stamp() function” on page 9-38

The ts_get_threshold() function

The ts_get_threshold() function returns the threshold of the specified time series.

Syntax
mi_integer
ts_get_threshold(ts_timeseries *ts)

ts The source time series.

Description

The equivalent SQL function is GetThreshold.

Returns

The threshold of the given time series.
Related reference:
“GetThreshold function” on page 7-54
“The ts_create() function” on page 9-16

The ts_get_ts() function

The ts_get_ts() function returns a pointer to the time series associated with the
given time series descriptor.

Syntax
ts_timeseries *
ts_get_ts(ts_tsdesc *tsdesc)

tsdesc The time series descriptor from ts_open().

Description

The ts_get_ts() function is useful when you must call a function that takes a time
series argument (for example, ts_get_calname()), but you only have a tsdesc (time
series descriptor).

Returns

A pointer to the time series associated with the given time series descriptor. This
value can be freed by the caller after ts_close() has been called if the original time
series was created by ts_create() or ts_copy(). To free it, use ts_free().

9-30 IBM Informix TimeSeries Data User's Guide

Related reference:
“The ts_free() procedure” on page 9-24
“The ts_put_elem() function” on page 9-44
“The ts_put_elem_no_dups() function” on page 9-45
“The ts_put_last_elem() function” on page 9-46
“The ts_put_nth_elem() function” on page 9-46

The ts_get_typeid() function

The ts_get_typeid() function returns the type ID of the specified time series.

Syntax
mi_typeid *
ts_get_typeid(MI_CONNECTION *conn,

ts_timeseries *ts)

conn A valid DataBlade API connection.

ts The source time series.

Description

This function returns the type ID of the specified time series. Usually, a time series
type ID is located in an MI_FPARAM structure. This function is useful when there
is no easy access to an MI_FPARAM structure.

Returns

A pointer to an MI_TYPEID structure that contains the type ID of the specified
time series. You must not free this value after use.
Related reference:
“The ts_copy() function” on page 9-16
“The ts_create() function” on page 9-16
“The ts_create_with_metadata() function” on page 9-17
“The ts_open() function” on page 9-41

The ts_hide_elem() function

The ts_hide_elem() function marks the element at the given time stamp as
invisible to a scan unless TS_SCAN_HIDDEN is set.

Syntax
ts_timeseries
ts_hide_elem(ts_tsdesc *tsdesc,

mi_datetime *tstamp)

tsdesc The time series descriptor returned by ts_open() for the source time series.

tstamp The time stamp to be made invisible to the scan.

Description

When an element is hidden, element retrieval API functions such as ts_elem() and
ts_nth_elem() return the hidden element; however, their STATUS argument has the
TS_NULL_HIDDEN bit set. The values for the element's STATUS argument are:

Chapter 9. Time series API routines 9-31

v If STATUS is TS_NULL_HIDDEN, the element is hidden.
v If STATUS is TS_NULL_NOTALLOCED, the element is NULL.
v If STATUS is both TS_NULL_HIDDEN and TS_NULL_NOTALLOCED, the

element is both hidden and NULL.
v If STATUS is 0 (zero), the element is not hidden and is not NULL.

The TS_ELEM_HIDDEN and TS_ELEM_NULL macros are provided to check the
value of STATUS.

Hidden elements cannot be modified; they must be revealed first using
ts_reveal_elem().

The equivalent SQL function is HideElem.

Returns

The modified time series. If there is no element at the given time stamp, an error is
raised.
Related reference:
“HideElem function” on page 7-55
“The ts_elem() function” on page 9-20
“The TS_ELEM_HIDDEN macro” on page 9-21
“The TS_ELEM_NULL macro” on page 9-22
“The ts_reveal_elem() function” on page 9-48
“The ts_previous_valid() function” on page 9-43

The ts_index() function

The ts_index() function converts from a time stamp to an index (offset) for a
regular time series.

Syntax
mi_integer
ts_index(ts_tsdesc *tsdesc,

mi_datetime *tstamp)

tsdesc The time series descriptor returned by ts_open().

tstamp The time stamp to convert.

Description

Consider a time series that starts on Monday, January 1 and keeps track of
weekdays. Calling ts_index() with a time stamp argument that corresponds to
Monday, January 1, would return 0; a time stamp argument corresponding to
Tuesday, January 2, would return 1; a time stamp argument corresponding to
Monday, January 8, would return 5; and so on.

The equivalent SQL function is GetIndex.

9-32 IBM Informix TimeSeries Data User's Guide

Returns

An offset into the time series. If the time stamp falls before the time series origin,
or if it is not a valid point in the calendar, -1 is returned; otherwise, the return
value is always a positive integer.
Related reference:
“GetIndex function” on page 7-43
“The ts_cal_index() function” on page 9-8
“The ts_nth_elem() function” on page 9-41
“The ts_put_nth_elem() function” on page 9-46
“The ts_time() function” on page 9-49

The ts_ins_elem() function

The ts_ins_elem() function puts an element into an existing time series at a given
timepoint.

Syntax
ts_timeseries *
ts_ins_elem(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_datetime *tstamp)

tsdesc A descriptor of the time series to be modified, returned by ts_open().

tselem The element to add.

tstamp The timepoint at which to add the element. The time stamp column of the
tselem is ignored.

Description

The equivalent SQL function is InsElem.

Returns

The original time series with the new element added. If the time stamp is not a
valid timepoint in the time series, an error is raised. If there is already an element
at the given time stamp, an error is raised.

Chapter 9. Time series API routines 9-33

Related reference:
“InsElem function” on page 7-57
“The ts_del_elem() function” on page 9-20
“The ts_elem() function” on page 9-20
“The ts_free() procedure” on page 9-24
“The ts_make_elem() function” on page 9-36
“The ts_make_elem_with_buf() function” on page 9-37
“The ts_put_elem() function” on page 9-44
“The ts_upd_elem() function” on page 9-52
“The ts_put_elem_no_dups() function” on page 9-45

The TS_IS_INCONTAINER macro

The TS_IS_INCONTAINER macro determines whether the time series data is
stored in a container.

Syntax
TS_IS_INCONTAINER((ts_timeseries *) ts)

ts A pointer to a time series.

Returns

This function returns nonzero if the time series data is in a container, rather than in
memory or in a row.

The TS_IS_IRREGULAR macro

The TS_IS_IRREGULAR macro determines whether the given time series is
irregular.

Syntax
TS_IS_IRREGULAR((ts_timeseries *) ts)

ts A pointer to a time series.

Returns

A nonzero value if the given time series is irregular; otherwise, 0 is returned.
Related reference:
“The ts_get_flags() function” on page 9-27

The ts_last_elem() function

The ts_last_elem() function returns the last element from a time series.

Syntax
ts_tselem
ts_last_elem(ts_tsdesc *tsdesc,

mi_integer *STATUS,
mi_integer *off)

tsdesc The descriptor for a time series returned by ts_open().

9-34 IBM Informix TimeSeries Data User's Guide

STATUS
A pointer to a mi_integer value. See “The ts_hide_elem() function” on
page 9-31 for a description of STATUS.

off If the time series is regular, off is set to the offset of the returned element. If
the time series is irregular, or if the time series is empty, off is set to -1.
This argument can be passed in as NULL.

Description

This function fills in off with the element's offset if off is not NULL and the time
series is regular, and it sets STATUS to indicate if the element is NULL or hidden.

The equivalent SQL function is GetLastElem.

Returns

The last element of the specified time series, its offset, and whether it is NULL or
hidden. If the time series is irregular, the offset is set to -1. This value must not be
freed by the caller. The element is overwritten after two calls to fetch elements
with this tsdesc (time series descriptor).
Related reference:
“GetLastElem function” on page 7-44
“The ts_elem() function” on page 9-20
“The TS_ELEM_HIDDEN macro” on page 9-21
“The TS_ELEM_NULL macro” on page 9-22
“The ts_nth_elem() function” on page 9-41
“The ts_upd_elem() function” on page 9-52

The ts_last_valid() function

The ts_last_valid() function extracts the entry for a particular timepoint.

Syntax
ts_tselem
ts_last_valid(ts_tsdesc *tsdesc,

mi_datetime *tstamp,
mi_integer *STATUS,
mi_integer *off)

tsdesc The descriptor for a time series returned by ts_open().

tstamp The time stamp of interest.

STATUS
A pointer to an mi_integer value. See “The ts_hide_elem() function” on
page 9-31 for a description of STATUS.

off If the time series is regular, off is set to the offset of the returned element. If
the time series is irregular, or if the time series is empty, off is set to -1.
This argument can be passed as NULL.

Description

For regular time series, this function returns the first element with a time stamp
less than or equal to tstamp. For irregular time series, it returns the latest element
at or preceding the given time stamp.

Chapter 9. Time series API routines 9-35

Returns

The nearest element at or before the given time stamp. If there is no such element
before the time stamp, NULL is returned.

NULL is returned if:
v The element at the timepoint is NULL and the time series is regular.
v The timepoint is before the origin.
v The time series is irregular and there are no elements at or before the given time

stamp.

This element must not be freed by the caller; it is valid until the next element is
fetched from the descriptor.
Related reference:
“GetLastValid function” on page 7-46
“The ts_previous_valid() function” on page 9-43

The ts_make_elem() function

The ts_make_elem() function makes an element from an array of values and nulls.
Each array has one value for each column in the element.

Syntax
ts_tselem
ts_make_elem(ts_tsdesc *tsdesc,

MI_DATUM *values,
mi_boolean *nulls,
mi_integer *off)

tsdesc The descriptor for a time series returned by ts_open().

values An array of data to be placed in the element. Data that is by value is
placed in the array, and data that is by reference stores pointers.

nulls Stores columns in the element that should be NULL.

off For a regular time series, off contains the offset of the element on return.
For an irregular time series, off is set to -1. This argument can be NULL.

Returns

An element and its offset. If tsdesc is a descriptor for a regular time series, the time
stamp column in the element is set to NULL; if tsdesc is a descriptor for an irregular
time series, the time stamp column is set to whatever was in values[0]. This
element must be freed by the caller using ts_free_elem().

9-36 IBM Informix TimeSeries Data User's Guide

Related reference:
“The ts_elem_to_row() function” on page 9-22
“The ts_free_elem() procedure” on page 9-24
“The ts_ins_elem() function” on page 9-33
“The ts_elem() function” on page 9-20
“The ts_make_elem_with_buf() function”
“The ts_put_elem() function” on page 9-44
“The ts_put_elem_no_dups() function” on page 9-45
“The ts_put_last_elem() function” on page 9-46
“The ts_put_nth_elem() function” on page 9-46
“The ts_row_to_elem() function” on page 9-48
“The ts_upd_elem() function” on page 9-52

The ts_make_elem_with_buf() function

The ts_make_elem_with_buf() function creates a time series element using the
buffer in an existing time series element. The initial data in the element is
overwritten.

Syntax
ts_tselem
ts_make_elem_with_buf(ts_tsdesc *tsdesc,

MI_DATUM *values,
mi_boolean *nulls,
mi_integer *off,
ts_tselem elem)

tsdesc The descriptor for a time series returned by ts_open().

values An array of data to be placed in the element. Data that is by value is
placed in the array, and data that is by reference stores pointers.

nulls Stores which columns in the element should be NULL.

off For a regular time series, off contains the offset of the element on return.
For an irregular time series, off is set to -1. This argument can be NULL.

elem The time series element to be overwritten. It must agree in type with the
subtype of the time series. If this argument is NULL, a new element is
created.

Returns

A time series element. If the elem argument is non-null, that is returned containing
the new values. If the elem argument is NULL, a new time series element is returned.

Chapter 9. Time series API routines 9-37

Related reference:
“The ts_elem_to_row() function” on page 9-22
“The ts_free_elem() procedure” on page 9-24
“The ts_ins_elem() function” on page 9-33
“The ts_make_elem() function” on page 9-36
“The ts_put_last_elem() function” on page 9-46
“The ts_upd_elem() function” on page 9-52

The ts_make_stamp() function

The ts_make_stamp() function constructs a time stamp from the year, month, day,
hour, minute, second, and microsecond values and puts them into the mi_datetime
pointed to by the dt argument.

Syntax
mi_datetime *
ts_make_stamp (MI_CONNECTION *conn,

mi_datetime *dt,
mi_integer year,
mi_integer month,
mi_integer day,
mi_integer hour,
mi_integer minute,
mi_integer second,
mi_integer ms)

conn A valid DataBlade API connection.

dt The time stamp to fill in. The caller should supply the buffer.

year The year to put into the returned mi_datetime.

month The month to put into the returned mi_datetime.

day The day to put into the returned mi_datetime.

hour The hour to put into the returned mi_datetime.

minute The minute to put into the returned mi_datetime.

second The second to put into the returned mi_datetime.

ms The microsecond to put into the returned mi_datetime.

Returns

A pointer to the same mi_datetime structure that was passed in.
Related reference:
“The ts_get_stamp_fields() procedure” on page 9-29

The ts_nelems() function

The ts_nelems() function returns the number of elements in the time series.

Syntax
mi_integer
ts_nelems(ts_tsdesc *tsdesc)

tsdesc The time series descriptor returned by ts_open().

9-38 IBM Informix TimeSeries Data User's Guide

Description

The equivalent SQL function is GetNelems.

Returns

The number of elements in the time series.
Related reference:
“ClipGetCount function” on page 7-30
“GetNelems function” on page 7-48

The ts_next() function

After a scan has been started with ts_begin_scan(), elements can be retrieved from
the time series with ts_next().

Syntax
mi_integer
ts_next(ts_tscan *tscan,

ts_tselem *tselem)

tscan The specified scan.

tselem A pointer to an element that ts_next() fills in.

Description

On return, the ts_tselem contains the next element in the time series, if there is
one.

When ts_tselem is valid, it can be passed to other routines in the time series API,
such as ts_put_elem(), ts_get_col_by_name(), and ts_get_col_by_number().

Returns

TS_SCAN_ELEM
The tselem parameter contains a valid element.

TS_SCAN_NULL
The value in the element was NULL or hidden; if tselem is not NULL, then the
element was hidden; otherwise, the element was NULL.

TS_SCAN_EOS
The scan has completed; tselem is not valid.

The return value must not be freed by the caller; it is freed when the scan is
ended. It is overwritten after two ts_next() calls.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_next().

Chapter 9. Time series API routines 9-39

Related reference:
“The ts_begin_scan() function” on page 9-6
“The TS_ELEM_HIDDEN macro” on page 9-21
“The TS_ELEM_NULL macro” on page 9-22
“The ts_first_elem() function” on page 9-23
“The ts_next_valid() function”
“The ts_previous_valid() function” on page 9-43
“The ts_put_elem() function” on page 9-44
“The ts_put_elem_no_dups() function” on page 9-45
“The ts_put_last_elem() function” on page 9-46
“The ts_put_nth_elem() function” on page 9-46
“The ts_upd_elem() function” on page 9-52

The ts_next_valid() function

The ts_next_valid() function returns the nearest entry after a given time stamp.

Syntax
ts_tselem
ts_next_valid(ts_tsdesc *tsdesc,

mi_datetime *tstamp,
mi_integer *STATUS,
mi_integer *off)

tsdesc The time series descriptor returned by ts_open().

tstamp Points to the time stamp that precedes the element returned.

STATUS
Points to an mi_integer value that is filled in on return. See the discussion
of ts_hide_elem() (“The ts_hide_elem() function” on page 9-31) for a
description of STATUS.

off For regular time series, off points to an mi_integer value that is filled in on
return with the offset of the returned element. For irregular time series, off
is set to -1. Can be NULL.

Description

For regular time series, this function returns the element at the calendar's earliest
valid timepoint following the given time stamp. For irregular time series, it returns
the earliest element following the given time stamp.

Tip: The ts_next_valid() function is less efficient than ts_next(), so it is better to
iterate through a time series using ts_begin_scan() and ts_next() rather than using
ts_first_elem() and ts_next_valid().

The equivalent SQL function is GetNextValid.

Returns

The element following the given time stamp. If no valid element exists or the time
series is regular and the next valid interval contains a null element, NULL is
returned. The value pointed to by off is either -1 if the time series is irregular or the

9-40 IBM Informix TimeSeries Data User's Guide

offset of the element if the time series is regular. The element returned must not be
freed by the caller. It is overwritten after two fetch calls.

See “The ts_hide_elem() function” on page 9-31 for an explanation of STATUS.
Related reference:
“GetNextValid function” on page 7-49
“The TS_ELEM_HIDDEN macro” on page 9-21
“The TS_ELEM_NULL macro” on page 9-22
“The ts_first_elem() function” on page 9-23
“GetLastValid function” on page 7-46
“The ts_next() function” on page 9-39
“The ts_previous_valid() function” on page 9-43

The ts_nth_elem() function

The ts_nth_elem() function returns the element at the nth position of the given
time series.

Syntax
ts_tselem
ts_nth_elem(ts_tsdesc *tsdesc,

mi_integer N,
mi_integer *STATUS)

tsdesc The descriptor returned by ts_open().

N The time series offset or position to read the element from. This value must
not be less than 0.

STATUS
A pointer to an mi_integer value that is set on return to indicate whether
the element is NULL. See “The ts_hide_elem() function” on page 9-31 for a
description of STATUS.

Description

The equivalent SQL function is GetNthElem.

Returns

The element at the nth position of the given time series, and whether it was NULL.
This value must not be freed by the caller. It is overwritten after two fetch calls.
Related reference:
“GetNthElem function” on page 7-50
“The ts_elem() function” on page 9-20
“The TS_ELEM_HIDDEN macro” on page 9-21
“The TS_ELEM_NULL macro” on page 9-22
“The ts_index() function” on page 9-32
“The ts_last_elem() function” on page 9-34

The ts_open() function

The ts_open() function opens a time series.

Chapter 9. Time series API routines 9-41

Syntax
ts_tsdesc *
ts_open(MI_CONNECTION *conn,

ts_timeseries *ts,
MI_TYPEID *type_id,
mi_integer flags)

conn A database connection. This argument is unused in the server.

ts The time series to open.

type_id The ID for the type of the time series to be opened. The ID is generally
determined by looking in the MI_FPARAM structure.

flags Valid values for the flags parameter are defined in tseries.h.

The flags argument values

Valid values for the flags argument are defined in the file tseries.h. (the integer
value you use for the flags argument is the sum of the desired values). Valid
options are:

TSOPEN_RDWRITE
The default mode for opening a time series. Indicates that the time series
can be read and written to.

TSOPEN_READ_HIDDEN
Indicates that hidden elements should be treated as if they are not hidden.

TSOPEN_WRITE_HIDDEN
Allows hidden elements to be written to without first revealing the
element.

TSOPEN_WRITE_AND_HIDE
Causes any elements written to a time series also to be marked as hidden.

TSOPEN_WRITE_AND_REVEAL
Reveals any hidden element that is written.

TSOPEN_NO_NULLS
Affects the way elements are returned that have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if an element has not been
allocated, it is returned as NULL. If TSOPEN_NO_NULLS is set, an element
that has each column set to NULL is returned instead.

These flags can be used in any combination except the following four
combinations:
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_REVEAL
v TSOPEN_WRITE_AND_REVEAL and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_HIDE, and

TSOPEN_WRITE_AND_REVEAL

The TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_REVEAL, and
TSOPEN_WRITE_AND_HIDE flags cannot be used with
TSOPEN_READ_HIDDEN.

9-42 IBM Informix TimeSeries Data User's Guide

Description

Almost all other functions depend on this function being called first.

Use ts_close to close the time series.

Returns

A descriptor for the open time series.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_open().
Related reference:
“The ts_begin_scan() function” on page 9-6
“The ts_close() function” on page 9-12
“The ts_create() function” on page 9-16
“The ts_create_with_metadata() function” on page 9-17
“The ts_get_typeid() function” on page 9-31

The ts_previous_valid() function

The ts_previous_valid() function returns the last element preceding the given time
stamp.

Syntax
ts_tselem
ts_previous_valid(ts_tsdesc *tsdesc,

mi_datetime *tstamp,
mi_integer *STATUS,
mi_integer *off)

tsdesc The time series descriptor returned by ts_open().

tstamp Points to the time stamp that follows the element returned.

STATUS
Points to an mi_integer value that is filled in on return. If no element
exists before the time stamp, or if the time stamp falls before the time
series origin, STATUS is set to a nonzero value. See “The ts_hide_elem()
function” on page 9-31 for a description of STATUS.

off For regular time series, off points to an mi_integer value that is filled in on
return with the offset of the returned element. For irregular time series, off
is set to -1. This argument can be passed as NULL.

Description

The equivalent SQL function is GetPreviousValid.

Returns

The element, if any, preceding the given time stamp. The element returned must
not be freed by the caller. It is overwritten after two calls to fetch an element using
this tsdesc (time series descriptor).

Chapter 9. Time series API routines 9-43

For irregular time series, if no valid element precedes the given time stamp, NULL is
returned. NULL is also returned if the given time stamp is less than or equal to the
origin of the time series.
Related reference:
“GetPreviousValid function” on page 7-53
“The TS_ELEM_HIDDEN macro” on page 9-21
“The TS_ELEM_NULL macro” on page 9-22
“The ts_last_valid() function” on page 9-35
“The ts_next_valid() function” on page 9-40
“The ts_hide_elem() function” on page 9-31
“The ts_next() function” on page 9-39

The ts_put_elem() function

The ts_put_elem() function puts new elements into an existing time series.

Syntax
ts_timeseries *
ts_put_elem(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_datetime *tstamp)

tsdesc A descriptor of the time series to be modified, returned by ts_open().

tselem The element to add.

tstamp The time stamp at which to put the element. The time stamp column of
tselem is ignored.

Description

If the time stamp is NULL, the data is appended to the time series (for regular time
series) or an error is raised (for irregular time series).

For regular time series, if there is data at the given timepoint, it is updated with
the new data; otherwise, the new data is inserted.

For irregular time series, if there is no data at the given timepoint, the new data is
inserted. If there is data at the given timepoint, then the following algorithm is
used to determine where to place the data:
1. Round the time stamp up to the next second.
2. Search backward for the first element less than the new time stamp.
3. Insert the new data at this time stamp plus 10 microseconds.

The element passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The equivalent SQL function is PutElem.

Returns

The original time series with the element added.

9-44 IBM Informix TimeSeries Data User's Guide

Related reference:
“PutElem function” on page 7-65
“The ts_del_elem() function” on page 9-20
“The ts_get_ts() function” on page 9-30
“The ts_ins_elem() function” on page 9-33
“The ts_make_elem() function” on page 9-36
“The ts_elem() function” on page 9-20
“The ts_next() function” on page 9-39
“The ts_put_elem_no_dups() function”
“The ts_put_last_elem() function” on page 9-46
“The ts_upd_elem() function” on page 9-52
“The ts_put_ts() function” on page 9-47

The ts_put_elem_no_dups() function

The ts_put_elem_no_dups() function puts a new element into an existing time
series. The element is inserted even if there is already an element with the given
time stamp in the time series.

Syntax
ts_timeseries *
ts_put_elem_no_dups(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_datetime *tstamp)

tsdesc A descriptor of the time series to be modified, returned by ts_open().

tselem The element to add.

tstamp The time stamp at which to put the element. The time stamp column of
tselem is ignored.

Description

If the time stamp is NULL, the data is appended to the time series (for regular time
series) or an error is raised (for irregular time series).

If there is data at the given timepoint, it is updated with the new data; otherwise,
the new data is inserted.

The element passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The equivalent SQL function is PutElemNoDups.

Returns

The original time series with the element added.

Chapter 9. Time series API routines 9-45

Related reference:
“PutElemNoDups function” on page 7-67
“The ts_put_elem() function” on page 9-44
“The ts_elem() function” on page 9-20
“The ts_get_ts() function” on page 9-30
“The ts_ins_elem() function” on page 9-33
“The ts_make_elem() function” on page 9-36
“The ts_next() function” on page 9-39
“The ts_put_last_elem() function”
“The ts_upd_elem() function” on page 9-52

The ts_put_last_elem() function

The ts_put_last_elem() function puts new elements at the end of an existing
regular time series.

Syntax
ts_timeseries *
ts_put_last_elem(ts_tsdesc *tsdesc,

ts_tselem tselem)

tsdesc The time series to be updated.

tselem The element to add; any time stamp in the element is ignored.

Returns

The original time series with the element added. If the time series is irregular, an
error is raised.
Related reference:
“The ts_put_elem() function” on page 9-44
“The ts_put_elem_no_dups() function” on page 9-45
“The ts_elem() function” on page 9-20
“The ts_get_ts() function” on page 9-30
“The ts_make_elem() function” on page 9-36
“The ts_make_elem_with_buf() function” on page 9-37
“The ts_next() function” on page 9-39

The ts_put_nth_elem() function

The ts_put_nth_elem() function puts new elements into an existing regular time
series at a specified offset.

Syntax
ts_timeseries *
ts_put_nth_elem(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_integer N)

tsdesc The time series to be updated.

tselem The element to add; any time stamp in the element is ignored.

9-46 IBM Informix TimeSeries Data User's Guide

N The offset, indicating where the element to add should be placed. Offsets
start at 0.

Returns

The original time series with the element added. If the time series is irregular, an
error is raised.
Related reference:
“The ts_index() function” on page 9-32
“The ts_elem() function” on page 9-20
“The ts_get_ts() function” on page 9-30
“The ts_make_elem() function” on page 9-36
“The ts_next() function” on page 9-39

The ts_put_ts() function

The ts_put_ts() function updates a destination time series with the elements from
the source time series.

Syntax
ts_timeseries *
ts_put_ts(ts_tsdesc *src_tsdesc,

ts_tsdesc *dst_tsdesc,
mi_boolean nodups)

src_tsdesc
The source time series descriptor.

dst_tsdesc
The destination time series descriptor.

nodups Determines whether to overwrite an element in the destination time series
if there is an element at the same time stamp in the source time series. This
argument is ignored if the destination time series is regular.

Description

The two descriptors must meet the following conditions:
v The origin of the source time series must be after or equal to that of the

destination time series.
v The two time series must have the same calendar.

If nodups is MI_TRUE, the element from the source time series overwrites the
element in the destination time series. For irregular time series, if nodups is
MI_FALSE and there is already a value at the existing timepoint, the update is
made at the next microsecond after the last element in the given second. If the last
microsecond in the second already contains a value, an error is raised.

The equivalent SQL function is PutTimeSeries.

Returns

The time series associated with the destination time series descriptor.

Chapter 9. Time series API routines 9-47

Related reference:
“PutTimeSeries function” on page 7-70
“The ts_put_elem() function” on page 9-44

The ts_reveal_elem() function

The ts_reveal_elem() function makes the element at a given time stamp visible to a
scan. It reverses the effect of ts_hide_elem().

Syntax
ts_timeseries
ts_reveal_elem(ts_tsdesc *tsdesc,

mi_datetime *tstamp)

ts_desc The time series descriptor returned by ts_open() for the source time series.

tstamp The time stamp to be made visible to the scan.

Description

The equivalent SQL function is RevealElem.

Returns

The modified time series. No error is raised if there is no element at the given time
stamp.
Related reference:
“HideElem function” on page 7-55
“The ts_hide_elem() function” on page 9-31
“RevealElem function” on page 7-72

The ts_row_to_elem() function

The ts_row_to_elem() function converts an MI_ROW structure into a new
ts_tselem structure. The new element does not overwrite elements returned by any
other time series API function.

Syntax
ts_tselem
ts_row_to_elem(ts_tsdesc *tsdesc,

MI_ROW *row,
mi_integer *offset_ptr)

tsdesc The descriptor for a time series returned by ts_open().

row A pointer to an MI_ROW structure. The row must have the same type as
the subtype of the time series.

offset_ptr
If the time series is regular, the offset of the element in the time series is
returned in offset_ptr. In this case, column 0 (the time stamp column) must
not be NULL. If the time series is irregular, -1 is returned in offset_ptr.

The offset_ptr argument can be NULL. In this case, calendar computations are
avoided and column 0 can be NULL.

9-48 IBM Informix TimeSeries Data User's Guide

Returns

An element and its offset. If the time series is regular, column 0 (the time stamp
column) of the element is NULL.

The element must be freed by the caller using the ts_free_elem() procedure.
Related reference:
“The ts_elem_to_row() function” on page 9-22
“The ts_free_elem() procedure” on page 9-24
“The ts_make_elem() function” on page 9-36

The ts_time() function

The ts_time() function converts a regular time series offset to a time stamp.

Syntax
mi_datetime *
ts_time(ts_tsdesc *tsdesc,

mi_integer N)

ts_desc The time series descriptor returned by ts_open() for the source time series.

N The offset to convert. Negative values are allowed.

Description

For example, for a daily time series that starts on Monday, January 1, with a
five-day-a-week pattern starting on Monday, this function returns Monday, January
1, when the argument is set to 0; Tuesday, January 2, when the argument is set to
1; Monday, January 8, when the argument is 5; and so on.

The equivalent SQL function is GetStamp.

Returns

The time stamp corresponding to the offset. This value must be freed by the user
with mi_free().
Related reference:
“GetStamp function” on page 7-54
“The ts_cal_range() function” on page 9-9
“The ts_cal_range_index() function” on page 9-10
“The ts_index() function” on page 9-32

The ts_tstamp_difference() function

The ts_tstamp_difference() function subtracts one date from another and returns
the number of complete intervals between the two dates.

Syntax
mi_integer
ts_tstamp_difference(mi_datetime *date1,

mi_datetime *date2,
mi_integer interval)

date1 The first date.

Chapter 9. Time series API routines 9-49

date2 The date to subtract from the first date.

interval
The interval, as described next.

Description

Before the difference is calculated, both time stamps are truncated to the given
interval. For example, if the interval is an hour and the first date is 2011-01-03
01:02:03.12345, its truncated value is 2011-01-03 01:00:00.00000.

Valid values for the interval parameter can be found in tseries.h. They are:
v TS_SECOND
v TS_MINUTE
v TS_HOUR
v TS_DAY
v TS_WEEK
v TS_MONTH
v TS_YEAR

Returns

The number of intervals of the type you specify between the two dates.

Example

For example, if the interval is day and the dates are 2011-01-01 00:00:00.00000 and
2011-01-01 00:00:00.00001, the result is 0. If the dates are 2011-01-01 00:00:00.0000
and 2011-01-02 00:10:00.12345, the result is 1.
Related reference:
“The ts_tstamp_minus() function”
“The ts_tstamp_plus() function” on page 9-51

The ts_tstamp_minus() function

The ts_tstamp_minus() function returns a time stamp at a specified number of
intervals before a starting date you specify.

Syntax
mi_datetime *
ts_tstamp_minus(mi_datetime *startdate,

mi_integer cnt,
mi_integer interval,
mi_datetime *result)

startdate
The date to start from.

cnt The number of intervals to subtract from the start date.

interval
The interval, as described next.

result The resulting date.

9-50 IBM Informix TimeSeries Data User's Guide

Description

Valid values for the interval parameter can be found in tseries.h. They are:
v TS_SECOND
v TS_MINUTE
v TS_HOUR
v TS_DAY
v TS_WEEK
v TS_MONTH
v TS_YEAR

If the result parameter is NULL, then a result mi_datetime structure is allocated and
returned; otherwise, the return value is the given result parameter.

Returns

The time stamp at the specified number of intervals before the start date.
Related reference:
“The ts_tstamp_difference() function” on page 9-49
“The ts_tstamp_plus() function”

The ts_tstamp_plus() function

The ts_tstamp_plus() function returns a time stamp at a specified number of
intervals after a starting date you specify.

Syntax
mi_datetime *
ts_tstamp_plus(mi_datetime *startdate,

mi_integer cnt,
mi_integer interval,
mi_datetime *result)

startdate
The date to start from.

cnt The number of intervals to add to the start date.

interval
The interval, as described next.

result The resulting date.

Description

Valid values for the interval parameter can be found in tseries.h. They are:
v TS_SECOND
v TS_MINUTE
v TS_HOUR
v TS_DAY
v TS_WEEK
v TS_MONTH
v TS_YEAR

Chapter 9. Time series API routines 9-51

If the result parameter is NULL, then a result mi_datetime structure is allocated and
returned; otherwise, the return value is the given result parameter.

Returns

The time stamp at the specified number of intervals after the start date.
Related reference:
“The ts_tstamp_difference() function” on page 9-49
“The ts_tstamp_minus() function” on page 9-50

The ts_update_metadata() function

The ts_update_metadata() function adds the supplied user-defined metadata to the
specified time series.

Syntax
ts_timeseries *
ts_update_metadata(ts_timeseries *ts,

mi_lvarchar *metadata,
MI_TYPEID *metadata_typeid)

ts The time series for which to update metadata.

metadata
The metadata to add to the time series. Can be NULL.

metadata_typeid
The type ID of the metadata.

Description

The equivalent SQL function is UpdMetaData.

Returns

A copy of the specified time series updated to contain the supplied metadata, or if
the metadata argument is NULL, a copy of the specified time series with the
metadata removed.
Related reference:
“GetMetaData function” on page 7-47
“UpdMetaData function” on page 7-114
“GetMetaTypeName function” on page 7-47
“TSCreate function” on page 7-92
“TSCreateIrr function” on page 7-94
“The ts_create_with_metadata() function” on page 9-17
“The ts_get_metadata() function” on page 9-28

The ts_upd_elem() function

The ts_upd_elem() function updates an element in an existing time series at a
given timepoint.

9-52 IBM Informix TimeSeries Data User's Guide

Syntax
ts_timeseries *
ts_upd_elem(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_datetime *tstamp)

tsdesc A descriptor of the time series to be updated, returned by ts_open().

tselem The element to update.

tstamp The timepoint at which to update the element.

Description

There must already be an element at the given time stamp. For irregular time
series, hidden elements cannot be updated.

The equivalent SQL function is UpdElem.

Returns

An updated copy of the original time series.
Related reference:
“The ts_del_elem() function” on page 9-20
“The ts_ins_elem() function” on page 9-33
“The ts_put_elem() function” on page 9-44
“The ts_put_elem_no_dups() function” on page 9-45
“UpdElem function” on page 7-113
“The ts_elem() function” on page 9-20
“The ts_last_elem() function” on page 9-34
“The ts_make_elem() function” on page 9-36
“The ts_make_elem_with_buf() function” on page 9-37
“The ts_next() function” on page 9-39

Chapter 9. Time series API routines 9-53

9-54 IBM Informix TimeSeries Data User's Guide

Appendix A. The Interp function example

The Interp function is an example of a server function that uses the time series
API. This function interpolates between values of a regular time series to fill in
null elements.

This function does not handle individual null columns. It assumes that all columns
are of type FLOAT.

Interp might be used as follows:
select Interp(stock_data) from daily_stocks where stock_name = ’IBM’;

This example, along with many others, is supplied in the $INFORMIXDIR/extend/
TimeSeries.version directory.

To use the Interp function, create a server function:
create function Interp(TimeSeries) returns TimeSeries
external name ’/tmp/Interpolate.bld(ts_interp)’
language c not variant;

You can now use the Interp function in a DB-Access statement. For example,
consider the difference in output between the following two queries (the output
has been reformatted; the actual output you would see would not be in tabular
format):
select stock_data from daily_stocks where stock_name = ’IBM’;

2011-01-03 00:00:00 1 1 1 1
2011-01-04 00:00:00 2 2 2 2
NULL
2011-01-06 00:00:00 3 3 3 3

select Interp(stock_data) from daily_stocks where stock_name = ’IBM’;

2011-01-03 00:00:00 1 1 1 1
2011-01-04 00:00:00 2 2 2 2
2011-01-05 00:00:00 2.5 2.5 2.5 2.5
2011-01-06 00:00:00 3 3 3 3

/*
* SETUP:
* create function Interp(TimeSeries) returns TimeSeries
* external name ’Interpolate.so(ts_interp)’
* language c not variant;
*
*
* USAGE:
* select Interp(stock_data) from daily_stocks where stock_id = 901;
*/

#include <stdio.h>
#include <mi.h>
#include <tseries.h>

define TS_MAX_COLS 100
define DATATYPE "smallfloat"

/*

© Copyright IBM Corp. 2006, 2011 A-1

* This example interpolates between values to fill in null elements.
* It assumes that all columns are of type smallfloat and that there
are
* less than 100 columns in each element.
*/

ts_timeseries *
ts_interp(tsPtr, fParamPtr)

ts_timeseries *tsPtr;
MI_FPARAM *fParamPtr;

{
ts_tsdesc *descPtr;
ts_tselem tselem;
ts_tscan *scan;
MI_CONNECTION *conn;
ts_typeinfo *typeinfo;
int scancode;
mi_real *values[TS_MAX_COLS];
mi_real lastValues[TS_MAX_COLS], newValues[TS_MAX_COLS];
mi_boolean nulls[TS_MAX_COLS];
mi_integer minElem, curElem, elem;
mi_integer i;
mi_boolean noneYet;
mi_integer ncols;
char strbuf[100];

/* get a connection for libmi */
conn = mi_open(NULL,NULL,NULL);

/* open a descriptor for the timeseries */
descPtr = ts_open(conn, tsPtr, mi_fp_rettype(fParamPtr, 0), 0);

if ((ncols = (mi_integer) mi_fp_funcstate(fParamPtr)) == 0) {
ncols = ts_col_cnt(descPtr);

if (ncols > TS_MAX_COLS) {
sprintf(strbuf, "Timeseries elements have too many columns,

100 is
the max, got %d instead.", ncols);

mi_db_error_raise(NULL, MI_FATAL, strbuf, 0);
}

for (i = 1; i < ncols; i++) {
typeinfo = ts_colinfo_number(descPtr, i);

if (strlen(typeinfo->ti_typename) != strlen(DATATYPE) &&
memcmp(typeinfo->ti_typename, DATATYPE, strlen(DATATYPE)) !=

0){
sprintf(strbuf, "column was not a %s, got %s instead.", DATATYPE,

typeinfo->ti_typename);
mi_db_error_raise(NULL, MI_FATAL, strbuf, 0);
}

}

mi_fp_setfuncstate(fParamPtr, (void *) ncols);
}

noneYet = MI_TRUE;
minElem = -1;
curElem = 0;
/* begin a scan of the whole timeseries */
scan = ts_begin_scan(descPtr, 0, NULL, NULL);
while ((scancode = ts_next(scan, &tselem)) != TS_SCAN_EOS)

{
switch(scancode) {

case TS_SCAN_ELEM:

A-2 IBM Informix TimeSeries Data User's Guide

/* if this element is not null expand its values */
noneYet = MI_FALSE;
ts_get_all_cols(descPtr, tselem, (void **) values, nulls, curElem);
if (minElem == -1) {

/* save each element */
for (i = 1; i < ncols; i++)
lastValues[i] = *values[i];

}
else {

/* calculate the average */
for (i = 1; i < ncols; i++) {
newValues[i] = (*values[i] + lastValues[i])/2.0;
lastValues[i] = *values[i];
values[i] = &newValues[i];
}

/* update the missing elements */

tselem = ts_make_elem(descPtr, (void **) values, nulls, &elem);
for (elem = minElem; elem < curElem; elem++)
ts_put_nth_elem(descPtr, tselem, elem);

minElem = -1;
}

break;
case TS_SCAN_NULL:
if (noneYet)

break;
/* remember the first null element */
if (minElem == -1)

minElem = curElem;
break;

}

curElem++;
}
ts_end_scan(scan);
ts_close(descPtr);
return(tsPtr);

}

Appendix A. The Interp function example A-3

A-4 IBM Informix TimeSeries Data User's Guide

Appendix B. The TSIncLoad procedure example

The TSIncLoad procedure loads data into a database containing a time series of
corporate bond prices.

The TSIncLoad procedure loads time-variant data from a file into a table
containing time series. It assumes that the table has already been populated with
the time-invariant data. If the table already has time series data, the new data
overwrites the old data or is appended to the existing time series, depending on
the time stamps.

To set up the TSIncLoad example, create the procedure, the row subtype, and the
database table:
create procedure TSIncLoad(table_name lvarchar,

file_name lvarchar,
calendar_name lvarchar,
origin datetime year to day,
threshold integer,
regular boolean,
container_name lvarchar,
nelems integer)

external name
’$INFORMIXDIR/extend/timeseries/Loader.bld(TSIncLoad)’
language C;

create row type day_info (
ValueDate datetime year to fraction(5),
carryover char(1),
spread integer,
pricing_bmk_id integer,
price float,
yield float,
priority char(1));

execute procedure TSContainerCreate(’ctnr_daily’, ’rootdbs’,
’day_info’, 0, 0);

create table corporates (
Secid integer UNIQUE,
series TimeSeries(day_info));

insert into corporates values (
25000006,

’container(ctnr_daily), origin(2011-01-03
00:00:00.00000), calendar(daycal),
threshold(0)’);
execute procedure TSIncLoad(’corporates’,

’/tmp/daily.dat’,
’daycal’,
’2011-01-03’,
0,
’t’,
’ctnr_daily’,
1);

Any name can be used for the corporates table. The corporates table can have any
number of columns in addition to the Secid and series columns.

© Copyright IBM Corp. 2006, 2011 B-1

Each line of the data file has the following format:
Secid year-mon-day carryover spread pricing_bmk_id price yield priority

For example:
25000006 2010-1-7 m 2 12 2.2000000000 22.2 6

You can invoke the TSIncLoad procedure with an SQL statement like:
execute procedure TSIncLoad(’corporates’,

’data_file_name’,
’cal_name’,
’2010-1-1’,
20,
’t’,
’container-name’);

#include <ctype.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "datetime.h"
#include "mi.h"
#include "tseries.h"

#define DAY_INFO_TYPE_NAME "day_info"
#define DAILY_COL_COUNT 7

typedef struct
{
mi_integer fd;
mi_unsigned_integer flags;

#define LDBUF_LAST_CHAR_EOL 0x1

mi_integer buf_index;
mi_integer buf_len;
mi_integer line_no;
mi_lvarchar *file_name;
mi_string data[2048];
}

FILE_BUF;

#define STREAM_EOF (-1)

typedef struct sec_entry_s
{
mi_integer sec_id;
ts_tsdesc *tsdesc;
int in_row; /* Indicates whether the time series is stored in

row. */
struct sec_entry_s *next;
}

sec_entry_t;

typedef struct
{
mi_lvarchar *table_name;
MI_TYPEID ts_typeid; /* The type id of timeseries(day_info) */
mi_string *calendar_name;
mi_datetime *origin;
mi_integer threshold;
mi_boolean regular;
mi_string *container_name;
mi_integer nelems; /* For created time series. */

mi_integer hash_size;

B-2 IBM Informix TimeSeries Data User's Guide

MI_CONNECTION *conn;
sec_entry_t **hash;
/* Value buffers -- only allocated once. */
MI_DATUM col_data[DAILY_COL_COUNT];
mi_boolean col_is_null[DAILY_COL_COUNT];
char *carryover;
char *priority;
mi_double_precision price, yield;

mi_integer instances_created;
/* A count of the number of tsinstancetable entries added. Used

to
* decide when to update statistics on this table.
*/
MI_SAVE_SET *save_set;
}

loader_context_t;

/*

* name: init_context
*
* purpose: Initialize the loader context structure.
*
* notes:

*/
static void
init_context(mi_lvarchar *table_name,

mi_lvarchar *calendar_name,
mi_datetime *origin,
mi_integer threshold,
mi_boolean regular,
mi_lvarchar *container_name,
mi_integer nelems,
loader_context_t *context_ptr)

{
mi_string buf[256];
mi_integer table_name_len = mi_get_varlen(table_name);
MI_ROW *row = NULL;
MI_DATUM retbuf = 0;
mi_integer retlen = 0;
mi_lvarchar *typename = NULL;
MI_TYPEID *typeid = NULL;
mi_integer err = 0;

if(table_name_len > IDENTSIZE)
mi_db_error_raise(NULL, MI_EXCEPTION, "The table name is too long");

memset(context_ptr, 0, sizeof(*context_ptr));
context_ptr->conn = mi_open(NULL, NULL, NULL);

typename = mi_string_to_lvarchar
("timeseries(" DAY_INFO_TYPE_NAME ")");

typeid = mi_typename_to_id(context_ptr->conn, typename);
mi_var_free(typename);
if(NULL == typeid)
mi_db_error_raise(NULL, MI_EXCEPTION,

"Type timeseries(" DAY_INFO_TYPE_NAME ") not defined.");
context_ptr->ts_typeid = *typeid;

context_ptr->table_name = table_name;

context_ptr->calendar_name = mi_lvarchar_to_string(calendar_name);
context_ptr->origin = origin;

Appendix B. The TSIncLoad procedure example B-3

context_ptr->threshold = threshold;
context_ptr->regular = regular;
context_ptr->container_name = mi_lvarchar_to_string(container_name);
context_ptr->nelems = nelems;

/* Use the size (count) of the table as the hash table size. */
sprintf(buf, "select count(*) from %.*s;",

table_name_len,
mi_get_vardata(table_name));

if(MI_OK != mi_exec(context_ptr->conn, buf, MI_QUERY_BINARY))
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_exec failed");
if(MI_ROWS != mi_get_result(context_ptr->conn))
{
sprintf(buf, "Could not get size of %.*s table.",

table_name_len,
mi_get_vardata(table_name));

mi_db_error_raise(NULL, MI_EXCEPTION, buf);
}
if(NULL == (row = mi_next_row(context_ptr->conn, &err)))
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_next_row failed");
if(MI_NORMAL_VALUE != mi_value(row, 0, &retbuf, &retlen)
|| 0 != dectoint((mi_decimal *) retbuf, &context_ptr->hash_size))
context_ptr->hash_size = 256;
(void) mi_query_finish(context_ptr->conn);
context_ptr->hash
= mi_zalloc(context_ptr->hash_size*sizeof(*context_ptr->hash));

context_ptr->col_data[1] = (MI_DATUM) mi_new_var(1); /* carryover
*/

context_ptr->col_data[6] = (MI_DATUM) mi_new_var(1); /* priority
*/

if(NULL == context_ptr->hash
|| NULL == context_ptr->col_data[1]
|| NULL == context_ptr->col_data[6])
mi_db_error_raise(NULL, MI_EXCEPTION, "Not enough memory.");

context_ptr->carryover
= mi_get_vardata((mi_lvarchar *) context_ptr->col_data[1]);
context_ptr->col_data[4] = (MI_DATUM) &context_ptr->price;
context_ptr->col_data[5] = (MI_DATUM) &context_ptr->yield;
context_ptr->priority
= mi_get_vardata((mi_lvarchar *) context_ptr->col_data[6]);

context_ptr->save_set = mi_save_set_create(context_ptr->conn);
} /* End of init_context. */

/*

* name: close_context
*
* purpose: Close the context structure. Free up all allocated memory.
*

*/
static void
close_context(loader_context_t *context_ptr)
{

mi_free(context_ptr->hash);
context_ptr->hash = NULL;
context_ptr->hash_size = 0;

mi_var_free((mi_lvarchar *) context_ptr->col_data[1]);
mi_var_free((mi_lvarchar *) context_ptr->col_data[6]);
context_ptr->col_data[1] = context_ptr->col_data[6] = 0;
context_ptr->carryover = context_ptr->priority = NULL;

B-4 IBM Informix TimeSeries Data User's Guide

(void) mi_save_set_destroy(context_ptr->save_set);
context_ptr->save_set = NULL;

(void) mi_close(context_ptr->conn);

mi_free(context_ptr->calendar_name);
context_ptr->calendar_name = NULL;
mi_free(context_ptr->container_name);
context_ptr->container_name = NULL;

context_ptr->conn = NULL;
} /* End of close_context. */

/*

* name: update_series
*
* purpose: Update all the time series back into the table.
*
* returns:
*
* notes:

*/
static void
update_series(loader_context_t *context_ptr)
{

mi_integer i = 0;
register struct sec_entry_s *entry_ptr = NULL;
struct sec_entry_s *next_entry_ptr = NULL;
MI_STATEMENT *statement = NULL;
char buf[256];
mi_integer rc = 0;
MI_DATUM values[2] = {0, 0};
mi_integer lengths[2] = {-1, sizeof(mi_integer)};
static const mi_integer nulls[2] = {0, 0};
static const mi_string const *types[2]
= {"timeseries(day_info)", "integer"};
mi_unsigned_integer yield_count = 0;

sprintf(buf, "update %.*s set series = ? where Secid = ?;",
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name));

statement = mi_prepare(context_ptr->conn, buf, NULL);
if(NULL == statement)
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_prepare failed");

/* Look at all the entries in the hash table. */
for(i = context_ptr->hash_size - 1; 0 <= i; i--)
{
for(entry_ptr = context_ptr->hash[i];

NULL != entry_ptr;
entry_ptr = next_entry_ptr)
{
if(NULL != entry_ptr->tsdesc)
{
yield_count++;
if(0 == (yield_count & 0x3f))

{
if(mi_interrupt_check())
mi_db_error_raise(NULL, MI_EXCEPTION, "Load aborted.");
mi_yield();
}

Appendix B. The TSIncLoad procedure example B-5

values[0] = ts_get_ts(entry_ptr->tsdesc);
values[1] = (MI_DATUM) entry_ptr->sec_id;
lengths[0] = mi_get_varlen(ts_get_ts(entry_ptr->tsdesc));

if(mi_exec_prepared_statement(statement,
MI_BINARY,
1,
2,
values,
lengths,
(int *) nulls,
(char **) types,
0,
NULL)

!= MI_OK)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_exec_prepared_statement(update) failed");
ts_close(entry_ptr->tsdesc);
}
next_entry_ptr = entry_ptr->next;
mi_free(entry_ptr);
}

context_ptr->hash[i] = NULL;
}

} /* End of update_series. */

/*

* name: open_buf
*
* purpose: Open a file for reading and attach it to a buffer.
*

*/
static void
open_buf(mi_lvarchar *file_name,

FILE_BUF *buf_ptr)
{

mi_string *file_name_str = mi_lvarchar_to_string(file_name);

memset(buf_ptr, 0, sizeof(*buf_ptr));
buf_ptr->fd = mi_file_open(file_name_str, O_RDONLY, 0);
mi_free(file_name_str);
buf_ptr->file_name = file_name;

if(MI_ERROR == buf_ptr->fd)
{
char buf[356];
mi_integer name_len = (256 < mi_get_varlen(file_name))

? 256 : mi_get_varlen(file_name);

sprintf(buf, "mi_file_open(%.*s) failed",
name_len, mi_get_vardata(file_name));

mi_db_error_raise(NULL, MI_EXCEPTION, buf);
}
buf_ptr->buf_index = 0;
buf_ptr->buf_len = 0;
buf_ptr->line_no = 1;

} /* End of open_buf. */

/*

* name: get_char
*

B-6 IBM Informix TimeSeries Data User's Guide

* purpose: Get the next character from a buffered file.
*
* returns: The character or STREAM_EOF
*

*/
static mi_integer
get_char(FILE_BUF *buf_ptr)
{

register mi_integer c = STREAM_EOF;

if(buf_ptr->buf_index >= buf_ptr->buf_len)
{
buf_ptr->buf_index = 0;
buf_ptr->buf_len = mi_file_read(buf_ptr->fd,

buf_ptr->data,
sizeof(buf_ptr->data));

if(MI_ERROR == buf_ptr->buf_len)
{
char buf[356];
mi_integer name_len = (256 < mi_get_varlen(buf_ptr->file_name))
? 256 : mi_get_varlen(buf_ptr->file_name);

sprintf(buf, "mi_file_read(%.*s) failed",
name_len, mi_get_vardata(buf_ptr->file_name));

mi_db_error_raise(NULL, MI_EXCEPTION, buf);
}

if(0 == buf_ptr->buf_len)
return(STREAM_EOF);

}

/* Increment buf_ptr->line_no until we have started on the next
line,

* not when the newline character is seen.
*/
if(buf_ptr->flags & LDBUF_LAST_CHAR_EOL)
{
buf_ptr->line_no++;
buf_ptr->flags &= ~LDBUF_LAST_CHAR_EOL;
}

c = buf_ptr->data[buf_ptr->buf_index++];
if(’\n’ == c)
buf_ptr->flags |= LDBUF_LAST_CHAR_EOL;
return(c);

} /* End of get_char. */

/*

* name: close_buf
*
* purpose: Close a file attached to a buffer.
*
* notes:

*/
static void
close_buf(FILE_BUF *buf_ptr)
{

mi_file_close(buf_ptr->fd);
buf_ptr->fd = MI_ERROR;
buf_ptr->buf_index = 0;
buf_ptr->buf_len = 0;
buf_ptr->file_name = NULL;

} /* End of close_buf. */

Appendix B. The TSIncLoad procedure example B-7

/*

* name: get_token
*
* purpose: Get the next token from an input stream.
*
* returns: The token in a buffer and the next character after the
buffer.
*
* notes: Assumes that the tokens are separated by white space.

*/
static mi_integer
get_token(FILE_BUF *buf_ptr,

mi_string *token,
size_t token_buf_len)

{
register mi_integer c = get_char(buf_ptr);
register mi_integer i = 0;

while(STREAM_EOF != c && isspace(c))
c = get_char(buf_ptr);

for(;STREAM_EOF != c && ! isspace(c); c = get_char(
buf_ptr))

{
if(i >= token_buf_len - 1)

{
char err_buf[128];

sprintf(err_buf, "Word is too long on line %d.", buf_ptr->line_no);
mi_db_error_raise(NULL, MI_EXCEPTION, err_buf);
}

token[i++] = c;
}
token[i] = 0;

return(c);
} /* End of get_token. */

/*

* name: increment_instances_created
*
* purpose: Increment the instances_created field and update statistics
* when it crosses a threshold. If the statistics for the
* time series instance table were never updated then the
server
* would not use the index on the instance table, and time
series
* opens would be very slow.
*
* returns: nothing
*
* notes:

*/
static void
increment_instances_created(loader_context_t *context_ptr)
{

context_ptr->instances_created++;
if(50 != context_ptr->instances_created)
return;

B-8 IBM Informix TimeSeries Data User's Guide

(void) mi_exec(context_ptr->conn,
"update statistics high for table tsinstancetable(id);",
MI_QUERY_BINARY);

} /* End of increment_instances_created. */

/*

* name: get_sec_entry
*
* purpose: Get the security entry for a security ID
*
* returns: A pointer to security entry
*
* notes: If the entry is not found in the hash table then the
security
* is looked up in the table and a new entry made in the
hash
* table. A warning message will be emitted if the security
ID
* cannot be found. In this case the security entry will
have
* a NULL tsdesc.

*/
static sec_entry_t *
get_sec_entry(loader_context_t *context_ptr,

mi_integer sec_id,
mi_integer line_no)

{
mi_unsigned_integer i
= ((mi_unsigned_integer) sec_id) % context_ptr->hash_size;
sec_entry_t *entry_ptr = context_ptr->hash[i];
mi_string buf[256];
mi_integer rc = 0;

/* Look the security ID up in the hash table. */
for(; NULL != entry_ptr; entry_ptr = entry_ptr->next)
{
if(sec_id == entry_ptr->sec_id)

return(entry_ptr);
}
/* This is the first time this security ID has been seen. */
entry_ptr = mi_zalloc(sizeof(*entry_ptr));
entry_ptr->sec_id = sec_id;
entry_ptr->next = context_ptr->hash[i];
context_ptr->hash[i] = entry_ptr;

/* Look up the security ID in the database table. */
sprintf(buf,

"select series from %.*s where Secid = %d;",
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name),
sec_id);

if(MI_OK != mi_exec(context_ptr->conn, buf, MI_QUERY_BINARY))
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_exec failed.");

rc = mi_get_result(context_ptr->conn);
if(MI_NO_MORE_RESULTS == rc)
{
sprintf(buf, "Security %d (line %d) not in %.*s.",

sec_id, line_no,
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name));

mi_db_error_raise(NULL, MI_MESSAGE, buf);
/* Mi_db_error_raise returns after raising messages of type MI_MESSAGE.
*/

Appendix B. The TSIncLoad procedure example B-9

}
else if(MI_ROWS != rc)
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_get_result failed.");
else
{
mi_integer err = 0;
MI_ROW *row = mi_next_row(context_ptr->conn, &err);
MI_DATUM ts_datum = 0;
mi_integer retlen = 0;

/* Save the row so that the time series column will not be erased
when

* the query is finished.
*/
if(NULL != row

&& MI_NORMAL_VALUE == mi_value(row, 0, &ts_datum, &retlen))
{
if(NULL == (row = mi_save_set_insert(context_ptr->save_set,

row)))
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_save_set_insert failed");
}

if(NULL != row)
rc = mi_value(row, 0, &ts_datum, &retlen);

else
rc = MI_ERROR;

if(MI_NORMAL_VALUE != rc && MI_NULL_VALUE != rc)
{
if(0 != err)
{
sprintf(buf, "Look up of security ID %d in %.*s failed.",

sec_id,
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name));

mi_db_error_raise(NULL, MI_EXCEPTION, buf);
}
else
{
sprintf(buf, "Security %d (line %d) not in %.*s.",

sec_id, line_no,
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name));

mi_db_error_raise(NULL, MI_MESSAGE, buf);
return(entry_ptr);
}
}

if(MI_NULL_VALUE != rc)
entry_ptr->in_row = (TS_IS_INCONTAINER((ts_timeseries *) ts_datum)

!= 0);
else

{
/* No time series has been created for this security yet.
* Start one.
*/
ts_datum = ts_create(context_ptr->conn,

context_ptr->calendar_name,
context_ptr->origin,
context_ptr->threshold,
context_ptr->regular ? 0 : TS_CREATE_IRR,
&context_ptr->ts_typeid,
context_ptr->nelems,
context_ptr->container_name);

entry_ptr->in_row = (TS_IS_INCONTAINER((ts_timeseries *) ts_datum)
== 0);

if(entry_ptr->in_row)
increment_instances_created(context_ptr);

B-10 IBM Informix TimeSeries Data User's Guide

}
entry_ptr->tsdesc = ts_open(context_ptr->conn,

ts_datum,
&context_ptr->ts_typeid,
0);

}
return(entry_ptr);

} /* End of get_sec_entry. */

/*

* name: is_null
*
* purpose: Determine whether a token represents a null value.
*
* returns: 1 if so, 0 if not
*

*/
static int
is_null(register mi_string *token)
{

return((’N’ == token[0] || ’n’ == token[0])
&& (’U’ == token[1] || ’u’ == token[1])
&& (’L’ == token[2] || ’l’ == token[2])
&& (’L’ == token[3] || ’l’ == token[3])
&& 0 == token[4]);

} /* End of is_null. */

/*

* name: read_day_data
*
* purpose: Read in the daily data for one security.
*
* returns: Fills in the timestamp structure, the col_data and col_is_null
* arrays.
*
* notes: Assumes that the col_is_null array is initialized to
all TRUE.

*/
static void
read_day_data(loader_context_t *context_ptr,

FILE_BUF *buf_ptr,
mi_string *token,
size_t token_buf_len,
mi_datetime *tstamp_ptr)

{
register mi_integer i = 0;
register mi_integer c;

/* ValueDate DATETIME year to day*/
c = get_token(buf_ptr, token, token_buf_len);
if(STREAM_EOF== c && 0 == strlen(token)
|| ’\n’ == c)
return;
tstamp_ptr->dt_qual = TU_DTENCODE(TU_YEAR, TU_DAY);
if(is_null(token))
tstamp_ptr->dt_dec.dec_pos = DECPOSNULL;
else
{
if(0 == dtcvasc(token, tstamp_ptr))

{
context_ptr->col_is_null[0] = MI_FALSE;

Appendix B. The TSIncLoad procedure example B-11

context_ptr->col_data[0] = (MI_DATUM) tstamp_ptr;
}

else
{
mi_string err_buf[128];

sprintf(err_buf, "Illegal date on line %d", buf_ptr->line_no);
mi_db_error_raise(NULL, MI_MESSAGE, err_buf);
}

}

/* carryover char(1) */
c = get_token(buf_ptr, token, token_buf_len);
if(STREAM_EOF== c && 0 == strlen(token) || ’\n’ == c)
return;
if(! is_null(token))
{
*(context_ptr->carryover) = token[0];
context_ptr->col_is_null[1] = MI_FALSE;
}

/* spread integer,
* pricing_bmk_id integer
*/
for(i = 2; i < 4; i++)

{
c = get_token(buf_ptr, token, token_buf_len);
if(STREAM_EOF== c && 0 == strlen(token)

|| ’\n’ == c)
return;

if(! is_null(token))
{
context_ptr->col_data[i] = (MI_DATUM) atoi(token);
context_ptr->col_is_null[i] = MI_FALSE;
}

}

/* price float,
* yield float
*/
for(i = 4; i < 6; i++)
{
c = get_token(buf_ptr, token, token_buf_len);
if(STREAM_EOF== c && 0 == strlen(token)

|| ’\n’ == c)
return;

if(! is_null(token))
{
*((double *) context_ptr->col_data[i]) = atof(token);
context_ptr->col_is_null[i] = MI_FALSE;
}

}

/* priority char(1) */
c = get_token(buf_ptr, token, token_buf_len);
if((STREAM_EOF == c || ’\n’ == c) && 0 == strlen(token))
return;
if(! is_null(token))
{
*(context_ptr->priority) = token[0];
context_ptr->col_is_null[6] = MI_FALSE;
}

} /* End of read_day_data. */

/*

B-12 IBM Informix TimeSeries Data User's Guide

* name: read_line
*
* purpose: Read a line from the file, fetch the time series descriptor
* corresponding to the Secid, create a time series element
for
* the line, and convert the date into an mi_datetime structure.
*
* returns: 1 if there was more data in the file,
* 0 if the end of the file was found.
*
* notes: Creates a new time series if the series column for the
Secid is
* NULL.

*/
int
read_line(loader_context_t *context_ptr,

FILE_BUF *buf_ptr,
ts_tsdesc **tsdesc_ptr,
ts_tselem *day_elem_ptr,
int *null_line,
mi_datetime *tstamp_ptr,
sec_entry_t **sec_entry_ptr_ptr)

{
mi_integer sec_id = -1;
sec_entry_t *sec_entry_ptr = NULL;
mi_string token[256];
mi_integer c = 0; /* Next character from file. */
mi_integer i = 0;

*sec_entry_ptr_ptr = NULL;
*null_line = 1;
for(i = 0; i < DAILY_COL_COUNT; i++)
context_ptr->col_is_null[i] = MI_TRUE;

c = get_token(buf_ptr, token, sizeof(token));
if(STREAM_EOF== c && 0 == strlen(token))
return(0);

sec_id = atoi(token);

*sec_entry_ptr_ptr = sec_entry_ptr
= get_sec_entry(context_ptr, sec_id, buf_ptr->line_no);

read_day_data(context_ptr,
buf_ptr,
token,
sizeof(token),
tstamp_ptr);

*tsdesc_ptr = sec_entry_ptr->tsdesc;
if(NULL == sec_entry_ptr->tsdesc)
/* An invalid security ID. */
return(1);

if(context_ptr->col_is_null[0]
&& TS_IS_IRREGULAR(ts_get_ts(sec_entry_ptr->tsdesc)))
{
mi_string err_buf[128];

sprintf(err_buf, "Missing date on line %d.", buf_ptr->line_no);
mi_db_error_raise(NULL, MI_MESSAGE, err_buf);
return(1);
}
*null_line = 0;
*day_elem_ptr = ts_make_elem_with_buf(sec_entry_ptr->tsdesc,

Appendix B. The TSIncLoad procedure example B-13

context_ptr->col_data,
context_ptr->col_is_null,
NULL,
*day_elem_ptr);

return(1);
} /* End of read_line. */

/*

* name: TSIncLoad
*
* purpose: UDR for incremental loading of timeseries from a file.
*

*/
void
TSIncLoad(mi_lvarchar *table_name, /* the table that holds the time
series. */

mi_lvarchar *file_name,
/* The name of the file containing the data. It must be accessible
* on the server machine.
*/
/*
* The following parameters are only used to create new time
* series.
*/
mi_lvarchar *calendar_name,
mi_datetime *origin,
mi_integer threshold,
mi_boolean regular,
mi_lvarchar *container_name,
mi_integer nelems,
MI_FPARAM *fParamPtr)

{
FILE_BUF buf = {0};
ts_tselem day_elem = NULL;
ts_tsdesc *tsdesc = NULL;
ts_timeseries *ts = NULL;
mi_datetime tstamp = {0};
loader_context_t context = {0};
mi_unsigned_integer yield_count = 0;
sec_entry_t *sec_entry_ptr = NULL;
int null_line = 0;

init_context(table_name,
calendar_name,
origin,
threshold,
regular,
container_name,
nelems,
&context);

open_buf(file_name, &buf);

while(read_line(&context,
&buf,
&tsdesc,
&day_elem,
&null_line,
&tstamp,
&sec_entry_ptr))

{
yield_count++;
/* Periodically (once every 64 input lines) check for interrupts

B-14 IBM Informix TimeSeries Data User's Guide

and
* yield the processor to other threads.
*/
if(0 == (yield_count & 0x3f))

{
if(mi_interrupt_check())
mi_db_error_raise(NULL, MI_EXCEPTION, "Load aborted.");
mi_yield();
}

if(null_line)
continue;

ts = ts_put_elem_no_dups(tsdesc, day_elem, &tstamp);
if(sec_entry_ptr->in_row && TS_IS_INCONTAINER(ts))

{
sec_entry_ptr->in_row = 0;
increment_instances_created(&context);
}

}

if(NULL != day_elem)
ts_free_elem(tsdesc, day_elem);

close_buf(&buf);
update_series(&context);
close_context(&context);

} /* End of TSIncLoad. */

Appendix B. The TSIncLoad procedure example B-15

B-16 IBM Informix TimeSeries Data User's Guide

Appendix C. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled
for the IBM Home Page Reader. You can operate all features by using the keyboard
instead of the mouse.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using
the Adobe Acrobat Reader.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive

© Copyright IBM Corp. 2006, 2011 C-1

http://www.ibm.com/able

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

C-2 IBM Informix TimeSeries Data User's Guide

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix C. Accessibility C-3

C-4 IBM Informix TimeSeries Data User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2006, 2011 D-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

D-2 IBM Informix TimeSeries Data User's Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices D-3

http://www.ibm.com/legal/copytrade.shtml

D-4 IBM Informix TimeSeries Data User's Guide

Index

A
Abs function 7-6
absolute method 8-13
Absolute value, determining 7-6
Accessibility C-1

dotted decimal format of syntax diagrams C-1
keyboard C-1
shortcut keys C-1
syntax diagrams, reading in a screen reader C-1

Acos function 7-6
Adding previous values to current 7-80
Adding two time series 7-65
afterLast method 8-13
AggregateBy function 7-6, 7-9
Aggregating time series values 7-6
ALTER TYPE statement 1-13
AndOp function 5-1, 6-1
Applets 8-1
Apply function 7-11

virtual tables 4-6
ApplyBinaryTsOp function 7-16
ApplyCalendar function 7-17
Applying a calendar to a time series 7-17
Applying an expression to a time series 7-11
ApplyOpToTsSet function 7-19
ApplyUnaryTsOp function 7-20
Arc cosine, determining 7-6
Arc sine, determining 7-20
Arc tangent, determining 7-21
Arithmetic functions

binary 7-21
unary 7-110

Asin function 7-20
Atan function 7-21
Atan2 function 7-21
autopool container pool 3-7
Average, computing running 7-102

B
BaseTableName parameter 4-4
beforeFirst method 8-7, 8-13
Binary arithmetic functions

Atan2 7-21
description of 7-21
Divide 7-36
Minus 7-63
Mod 7-63
Plus 7-65
Pow 7-65
Times 7-76

BulkLoad function 3-17, 7-24

C
Calendar 1-4
Calendar data type 2-3, 8-4
Calendar pattern 1-4
Calendar pattern routines 5-1
Calendar patterns 1-8

Calendar patterns (continued)
collapsing 5-3
data type for 2-1
expanding 5-4
getting 7-38
intersection of two 5-1
interval options 2-1
Java representation 8-3
reversing intervals for 5-4
specification for 2-1
start date for 2-3
system table for 2-7
union of two 5-5

Calendar routines 6-1
CalendarPattern data type 2-1, 8-3
CalendarPatterns system table

defined 2-7
Calendars 1-8

applying new to time series 7-17
built-in 3-5
calibrated search using 7-116
data type for 2-3
getting 7-38
intersection of time series, from 7-59
intervals, determining number of between time

stamps 6-2
intervals, determining number of between timestamps 9-8
Java representation 8-4
lagging 7-62
names of, getting 9-25
relative search using 7-116
returned time series and 2-6
specifying 2-3, 3-13
start date for 2-3
system table for 2-7
timestamp, getting after intervals 6-4, 9-11
timestamps, getting in a range 6-3, 9-9, 9-10
union of two 6-5

CalendarTable system table
defined 2-7

Calibrated search type 7-116
CalIndex function 6-2
CalPattStartDate function 5-2
CalRange function 6-3
CalStamp function 6-4
CalStartDate function 6-5
cancelRowUpdates method 8-13
Change Data Capture and time series 1-14
CLASSPATH variable 8-2
clearWarnings method 8-13
Clip function 7-26
clip method 8-12
ClipCount function 7-29
ClipGetCount function 7-30
Clipping a time series 7-11, 7-26, 7-29
close method 8-13
Closing a time series 9-12
Collapse function 5-3
Collapsing a calendar pattern 5-3
Columns

data, getting 9-26

© Copyright IBM Corp. 2006, 2011 X-1

Columns (continued)
ID number, getting 9-14, 9-15
number of in a time series, getting 9-13
numbering with Java 8-7
TimeSeries type 3-6
type information, getting for 9-14

Comparing two time stamps 9-19
Comparing two values 7-81
compliance with standards xiv
Constructors

IfmxCalendar 8-9
IfmxCalendarPattern 8-8
IfmxTimeSeries 8-11

Container pool
default 3-7
round-robin order 3-9
user-defined policy 3-9

Container pools 1-8
creating 3-7
user-defined policy 3-10

Containers 1-8
creating 3-7, 7-84
dbspace, residing in 1-8
destroying 7-85
determining implicitly 3-15
instance ID of a time series in a, getting 7-59
monitor 3-8
moving 3-7
name of, getting 7-40, 9-27
name, setting 7-74
specifying 3-13
system table for 2-9
time series, determining if it is in a 9-34
TSContainerNElems 7-85
TSContainerPctUsed 7-86
TSContainerTotalPages 7-89
TSContainerTotalUsed 7-90
TSContainerUsage 7-91
with Java 8-5, 8-11

Converting
element to a row 9-22
row to element 9-48
time series data to tabular form 7-77

Copying
one time series into another 9-47
time series 9-16

Cos function 7-31
Cosine, determining 7-31
CREATE ROW TYPE statement 3-6
CREATE TABLE statement 3-6
Creating

irregular time series 7-94
regular time series 7-92
table for time series 3-6
time series 3-11, 3-15, 9-16, 9-17
time series from function output 3-15
time series subtype 3-6
time series with input function 3-13
time series with metadata 3-13
virtual tables 4-4

D
Data

file formats 3-17
loading from a file 7-24
loading into a time series with BulkLoad 3-17

Data structures
ts_timeseries 9-2
ts_tscan 9-2
ts_tsdesc 9-2
ts_tselem 9-3

Data Studio 1-3
TimeSeries plug-in 3-16

Data types
Calendar 2-3
CalendarPattern 2-1
DATETIME 3-6
restrictions for time series 3-6
TimeSeriesMeta 3-13

Database
requirements 1-13

DATETIME data type 3-6
dbload utility 3-16
dbspace, time series container in 1-8
Decay, computing 7-96
DelClip function 7-32
DelElem function 7-33
deleteRow method 8-13
Deleting

element 7-33, 9-20
elements in a clip 7-32, 7-35
elements in a range 7-34
null elements 7-63

DelRange function 7-34
DelTrim function 7-35
Directory 1-15
Disabilities, visual

reading syntax diagrams C-1
Disability C-1
Divide function 7-36
Dividing one time series by another 7-36
Documentation files, Java 8-2
Dotted decimal format of syntax diagrams C-1
DROP statement, virtual tables 4-19

E
Element 1-4
Elements

columns in, getting number of 9-13
converting to a row 9-22
data from one column in, getting 9-26
deleting 7-33, 9-20
deleting from a clip 7-32, 7-35
deleting from a range 7-34
deleting null 7-63
first in a time series, getting 7-42, 9-23
freeing memory for 9-24
getting 7-41, 9-20, 9-25
hidden, determining if 9-21
hidden, revealing 7-72, 7-73, 9-48
hiding 7-55, 9-31
inserting 7-57, 7-65, 7-67, 9-33, 9-36, 9-44, 9-45
inserting a set of 7-58, 7-69
inserting at an offset 7-68, 9-46
inserting at end of a time series 9-46
last valid, getting 7-46
last, getting 7-44, 9-34
next valid, getting 7-49
next, getting 9-39
null, determining if 9-22
number in time series clip, getting 7-30
number of, getting 7-48, 9-38

X-2 IBM Informix TimeSeries Data User's Guide

Elements (continued)
offset, getting for an 7-50, 9-18, 9-41
summing across time series 7-75
timestamp, getting for an 9-35
timestamp, getting last before 7-53, 9-43
timestamp, getting nearest to an 9-40
updating 7-113, 9-44, 9-45, 9-52
updating a set of 7-115

Enterprise Replication and time series 1-14
Examples

directory 1-15
stock data 1-15
virtual tables 4-6

Exp function 7-37
Expand function 5-4
Expanding a calendar pattern 5-4
Exponentiating a time series 7-37

F
findColumn method 8-13
first method 8-13
Flags

argument 7-5
getting for a time series 9-27
TS_CREATE_IRR 9-16, 9-17
TS_SCAN_EXACT_START 7-5, 7-17, 7-24, 7-69, 7-70, 7-77,

9-6
TS_SCAN_HIDDEN 7-5, 7-17, 7-24, 7-30, 7-69, 7-70, 7-77,

9-6
TS_SCAN_SKIP_BEGIN 7-5, 7-17, 7-24, 7-69, 7-70, 7-77,

9-6
TS_SCAN_SKIP_END 7-5, 7-17, 7-24, 7-69, 7-70, 7-77, 9-6

Freeing memory for a time series 9-24
Freeing memory for a time series element 9-24
Function output, creating time series with 3-15

G
getArray method 8-13
getAsciiStream method 8-13
getBigDecimal method 8-13
getBinaryStream method 8-13
getBlob method 8-13
getBoolean method 8-13
getByte method 8-13
getBytes method 8-13
GetCalendar function 7-38
getCalendar method 8-12
GetCalendarName function 7-38
getCharacterStream method 8-13
getClob method 8-13
getConcurrency method 8-13
GetContainerName function 7-40
getContainerName method 8-12
getCursorName method 8-13
getDate method 8-13
getDouble method 8-13
GetElem function 7-41
getFetchDirection method 8-13
getFetchSize method 8-13
GetFirstElem function 7-42
getFloat method 8-13
GetIndex function 7-43
getInt method 8-7, 8-13
GetInterval function 7-44

getInterval method 8-8
getIntervalStr method 8-8
GetLastElem function 7-44, 7-45, 7-49
GetLastValid function 7-46
getLong method 8-13
GetMetaData function 7-47
getMetaData method 8-13
GetMetaTypeName function 7-47
getName method 8-9
GetNelems function 7-48
getNelems method 8-12
GetNextValid function 7-49
GetNthElem function 7-50
getNumberOfElements method 8-12
getObject method 8-5, 8-6, 8-8, 8-9, 8-11, 8-13
getOffset method 8-9, 8-12
getOffsetFromTimestamp method 8-9
GetOrigin function 7-52
getOrigin method 8-12
getPatStartDate method 8-9
getPattern method 8-9
GetPreviousValid function 7-53
getRef method 8-13
getRow method 8-13
getShort method 8-13
getSQLTypeName method 8-8, 8-9, 8-13
GetStamp function 7-54
getStartDate method 8-9
getStatement method 8-13
getString method 8-13
GetThreshold function 7-55
getTime method 8-13
getTimestamp method 8-7, 8-13
getTimestampFromOffset method 8-9
getTSMetaData method 8-13
getType method 8-13
getUnicodeStream method 8-13
getVersion method 8-8
getWarnings method 8-13
GMT, converting to 9-38

H
Hardware requirements 1-13
HDR and time series 1-14
Hidden elements 4-3
HideElem function 7-55
hideElem method 8-12
Hiding an element 7-55, 9-31

I
IfmxCalendar class 8-3, 8-9

methods 8-9
IfmxCalendarPattern class 8-3, 8-8

methods 8-8
IfmxCalendarPatternUDT interface 8-3, 8-8
IfmxCalendarUDT interface 8-4
IfmxTimeSeries class 8-3, 8-4
IfmxTimeSeries class methods 8-11, 8-12
IfmxTimeSeries object 8-7
IfmxTimeSeriesUDT interface 8-4, 8-11
inContainer method 8-12
Indexes

base tables 4-19
industry standards xiv

Index X-3

Informix JDBC Driver 8-1
Informix TimeSeries DataBlade module

system tables 2-9
Input function, creating time series with 3-13
InsElem function 3-18, 7-57
INSERT statement 3-13
Inserting

element 7-57, 7-65, 7-67, 9-33, 9-36, 9-44, 9-45
element at an offset 7-68, 9-46
element at end of a time series 9-46
elements, set of 7-58, 7-69
time series into another time series 7-70

insertRow method 8-13
InsSet function 3-18, 7-58
Instance ID, getting for a time series 7-59
InstanceId function 7-59
Intersect function 7-59
Intersection

calendar patterns, of 5-1
calendars, of 6-1
time series, of 7-59

Interval
calendar pattern, for 1-8, 2-1
getting for a time series 7-44
number of between time stamps, determining 9-8

Irregular time series 1-7
creating with metadata 7-94
creating with TSCreateIrr 7-94
determining if 9-34
specifying 3-13

isAfterLast method 8-13
isBeforeFirst method 8-13
isFirst method 8-13
isHidden method 8-12
isLast method 8-13
IsRegular function 7-61
isRegular method 8-12

J
jar file 8-2
Java 2 8-2
Java class library 8-1
Java Developers' Kit 8-2
JavaSoft website 8-2
JDBC 8-1
JDBC 2.0 specification 8-1

L
Lag function 7-62
Lagging, creating new time series 7-62
last method 8-13
LessThan operator 1-13
load command 3-16
Loading data 3-15, 3-16

from a file 3-17, 7-24
time series 1-11
using virtual tables 3-16

Loading time series data 3-1
Local time, converting to 9-29
Logn function 7-62

M
Mapping API functions to SQL functions 9-3

Metadata
adding to a time series 7-114, 9-52
creating a time series with 7-92, 7-94, 9-17
creating for a time series 3-13
getting from a time series 7-47, 9-28
getting the type name of 7-47
getting type ID from a time series 9-28
using distinct type TimeSeriesMeta 3-13

mi_set_trace_file() API routine, virtual tables 4-20
mi_set_trace_level() API routine, virtual tables 4-20
Minus function 7-63
Mod function 7-63
Modulus, computing of division of two time series 7-63
moveToCurrentRow method 8-13
moveToInsertRow method 8-13
Multiplying one time series by another 7-76

N
Natural logarithm, determining 7-62
Negate function 7-63
Negating a time series 7-63
next method 8-7, 8-13
NotOp function 5-4
Null elements 4-3
NullCleanup function 7-63

O
Offsets 1-7

converting to time stamp 9-49
determining 9-18
element, getting for 9-41
inserting an element at 7-68, 9-46
timestamp, getting for 7-43, 7-54, 9-32

onpload utility 3-16
OpenAdmin Tool for Informix 1-3
Opening a time series 9-41
Operators

LessThan 1-13
Optim Developer Studio

TimeSeries plug-in 3-16
ORDER BY clause, virtual tables 4-6
Origin 1-4
Origin of a time series

changing 7-74
getting 7-52, 9-28
specifying 3-13

OrOp function 5-5, 6-5
Output of a function, creating time series with 3-15

P
Patterns 1-8
Performance, virtual tables 4-19
planning 1-9
pload utility 3-16
Plus function 7-65
Positive function 7-65
Pow function 7-65
PreparedStatement object 8-7
previous method 8-13
Properties of time series 1-9
PutElem function 3-18, 7-65
PutElemNoDups function 7-67
PutNthElem function 7-68

X-4 IBM Informix TimeSeries Data User's Guide

PutSet function 3-18, 7-69
PutTimeSeries function 7-70

R
Raising one time series to the power of another 7-65
readSQL method 8-6, 8-8, 8-9, 8-13
refreshRow method 8-13
Regular time series 1-7

creating with metadata 7-92
creating with TSCreate 7-92
determining if 7-61
specifying 3-13

Regularity 1-4
relative method 8-13
Relative search type 7-116
Replicating time series data 1-14
ResultSet interface 8-4, 8-7

inherited methods 8-13
Retrieving time series data (Java) 8-7
RevealElem function 7-72, 7-73
Revealing a hidden element 7-72, 7-73, 9-48
Round function 7-74
Rounding a time series to a whole number 7-74
Routines

API
ts_begin_scan 9-6
ts_cal_index 9-8
ts_cal_pattstartdate 9-8
ts_cal_range 9-9
ts_cal_range_index 9-10
ts_cal_stamp 9-11
ts_close 9-12
ts_col_cnt 9-13
ts_col_id 9-14
ts_colinfo_name 9-14
ts_colinfo_number 9-15
ts_copy 9-16
ts_create 9-16
ts_create_with_metadata 9-17
ts_current_offset 9-18
ts_current_timestamp 9-19
ts_datetime_cmp 9-19
ts_del_elem 9-20
ts_elem 9-20
TS_ELEM_HIDDEN 9-21
TS_ELEM_NULL 9-22
ts_elem_to_row 9-22
ts_end_scan 9-23
ts_first_elem 9-23
ts_free 9-24
ts_free_elem 9-24
ts_get_all_cols 9-25
ts_get_calname 9-25
ts_get_col_by_name 9-26
ts_get_col_by_number 9-26
ts_get_containername 9-27
ts_get_flags 9-27
ts_get_metadata 9-28
ts_get_origin 9-28
ts_get_stamp_fields 9-29
ts_get_threshold 9-30
ts_get_ts 9-30
ts_get_typeid 9-31
ts_hide_elem 9-31
ts_index 9-32
ts_ins_elem 9-33

Routines (continued)
API (continued)

TS_IS_INCONTAINER 9-34
TS_IS_IRREGULAR 9-34
ts_last_elem 9-34
ts_last_valid 9-35
ts_make_elem 9-36
ts_make_elem_with_buf 9-37
ts_make_stamp 9-38
ts_nelems 9-38
ts_next 9-39
ts_next_valid 9-40
ts_nth_elem 9-41
ts_open 9-41
ts_previous_valid 9-43
ts_put_elem 9-44
ts_put_elem_no_dups 9-45
ts_put_last_elem 9-46
ts_put_nth_elem 9-46
ts_put_ts 9-47
ts_reveal_elem 9-48
ts_row_to_elem 9-48
ts_time 9-12, 9-49, 9-50, 9-51
ts_upd_elem 9-52
ts_update_metadata 9-52

SQL, calendar
AndOp 6-1
CalIndex 6-2
CalRange 6-3
CalStamp 6-4
CalStartDate 6-5
OrOp 6-5

SQL, calendar pattern
AndOp 5-1
CalPattStartDate 5-2
Collapse 5-3
Expand 5-4
NotOp 5-4
OrOp 5-5

SQL, time series
Abs 7-6
Acos 7-6
AggregateBy 7-6, 7-9
Apply 7-11
ApplyBinaryTsOp 7-16
ApplyCalendar 7-17
ApplyOpToTsSet 7-19
ApplyUnaryTsOp 7-20
Asin 7-20
Atan 7-21
Atan2 7-21
BulkLoad 3-17, 7-24
Clip 7-26
ClipCount 7-29
ClipGetCount 7-30
Cos 7-31
DelClip 7-32
DelElem 7-33
DelRange 7-34
DelTrim 7-35
Divide 7-36
Exp 7-37
GetCalendar 7-38
GetCalendarName 7-38
GetContainerName 7-40
GetElem 7-41
GetFirstElem 7-42

Index X-5

Routines (continued)
SQL, time series (continued)

GetIndex 7-43
GetInterval 7-44
GetLastElem 7-44, 7-45, 7-49
GetLastValid 7-46
GetMetaData 7-47
GetMetaTypeName 7-47
GetNelems 7-48
GetNextValid 7-49
GetNthElem 7-50
GetOrigin 7-52
GetPreviousValid 7-53
GetStamp 7-54
GetThreshold 7-55
HideElem 7-55
InsElem 3-18, 7-57
InsSet 3-18, 7-58
InstanceId 7-59
Intersect 7-59
IsRegular 7-61
Lag 7-62
Logn 7-62
Minus 7-63
Mod 7-63
Negate 7-63
NullCleanup 7-63
Plus 7-65
Positive 7-65
Pow 7-65
PutElem 3-18, 7-65
PutElemNoDups 7-67
PutNthElem 7-68
PutSet 3-18, 7-69
PutTimeSeries 7-70
RevealElem 7-72, 7-73
Round 7-74
SetContainerName 7-74
SetOrigin 7-74
Sin 7-75
Sqrt 7-75
sum 7-75
Tan 7-76
Times 7-76
TimeSeriesRelease 7-76
Transpose 7-77
TSAddPrevious 7-80
TSCmp 7-81
TSContainerCreate 7-84
TSContainerDestroy 7-85
TSCreate 7-92
TSCreateIrr 7-94
TSDecay 7-96
TSPrevious 7-97
TSRollup 7-98
TSRunningAvg 7-82, 7-83, 7-102
TSRunningCor 7-103
TSRunningMed 7-104
TSRunningSum 7-105
TSRunningVar 7-106
TSSetToList 7-107
TSToXML 7-108
Union 7-111
UpdElem 7-113
UpdMetaData 7-114
UpdSet 7-115
WithinC 7-116

Routines (continued)
SQL, time series (continued)

WithinR 7-116
Row converting to an element 9-48
rowDeleted method 8-13
rowInserted method 8-13
rowUpdated method 8-13
RSS and time series 1-14
Running average, computing 7-102
Running sum, computing 7-105

S
Scanning

beginning for a time series 9-6
ending for a time series 9-23

Screen reader
reading syntax diagrams C-1

SDS and time series 1-14
SELECT DISTINCT statement 1-13
Servlets 8-1
session_number.trc file 4-20
setConnection method 8-12
SetContainerName function 7-74
setFetchDirection method 8-13
setFetchSize method 8-13
setObject method 8-7, 8-8, 8-9
SetOrigin function 7-74
setup.class file 8-2
Shortcut keys

keyboard C-1
Sin function 7-75
Sine, determining 7-75
Software requirements 1-13
SQL statements

ALTER TYPE 1-13
CREATE ROW TYPE 3-6
CREATE TABLE 3-6
INSERT 3-13
restrictions for time series 1-13
SELECT DISTINCT 1-13
UPDATE 3-17
virtual tables 4-1

SQLData interface 8-3, 8-4
Sqrt function 7-75
Square root, determining 7-75
standards xiv
Start date

calendar of 2-3
calendar pattern of 2-3

Storage, for time series 1-8
Subtracting, one time series from another 7-63
sum function 7-75
Sum, running 7-105
Summing elements in time series 7-75
Syntax diagrams

reading in a screen reader C-1
System tables

CalendarPatterns 2-7
CalendarTable 2-7
TSContainerTable 2-9
TSInstanceTable 2-8

X-6 IBM Informix TimeSeries Data User's Guide

T
Table. 2-9
Tables, virtual 4-1, 4-6
Tabular form, converting time series data to 7-77
Tan function 7-76
Tangent, determining 7-76
Threshold for containers

specifying 3-13
time series

examples directory 1-15
Time series 1-9

accessing 1-12
calendar pattern routines 5-1
calendar routines 6-1
concepts 1-4
creating 3-1
data types 2-6
decisions 1-9
example of creating and loading 3-1
hardware and software requirements 1-13
loading data 1-11
loading methods 3-15
loading with the plug-in 3-16
overview 1-1
planning 1-9
properties 1-9
solution architecture 1-3
SQL restrictions for 1-13

Time series functions
TSContainerNElems 7-85
TSContainerPctUsed 7-86
TSContainerTotalPages 7-89
TSContainerTotalUsed 7-90
TSContainerUsage 7-91
TSCreateExpressionVirtualTab 4-8

Time Series Java class version 8-8
Timepoint 1-4
Timepointes

arbitrary 1-7
Times function 7-76
TimeSeries

database requirements 1-13
replicating 1-14

TimeSeries data type 1-5, 3-1
Java representation 8-4

TimeSeries plug-in 1-3, 3-1, 3-16
TimeSeriesMeta distinct type 3-13
TimeSeriesRelease function 7-76
Timestamps

calendar, getting from a 9-11
comparing 9-19
current, getting 9-19
getting after intervals 6-4
GMT, converting to 9-38
local time, converting to 9-29
offset associated with 1-7
offset, converting from 9-49
offset, getting for 7-54
offset, getting from 9-32
range, getting from a calendar 9-9, 9-10
returning set of valid in range 6-3

toString method 8-8, 8-9
traceFileName parameter 4-20
traceLevelSpec parameter 4-20
Tracing, virtual tables 4-19
Transpose function 7-77
ts_begin_scan function 9-6

ts_cal_index function 9-8
ts_cal_pattstartdate function 9-8
ts_cal_range function 9-9
ts_cal_range_index function 9-10
ts_cal_stamp function 9-11
ts_close procedure 9-12
ts_col_cnt function 9-13
ts_col_id function 9-14
ts_colinfo_name function 9-14
ts_colinfo_number function 9-15
ts_copy function 9-16
ts_create function 9-16
TS_CREATE_IRR flag 9-16, 9-17
ts_create_with_metadata function 9-17
ts_current_offset function 9-18
ts_current_timestamp function 9-19
ts_datetime_cmp function 9-19
ts_del_elem function 9-20
ts_elem function 9-20
TS_ELEM_HIDDEN macro 9-21
TS_ELEM_NULL macro 9-22
ts_elem_to_row 9-22
ts_end_scan procedure 9-23
ts_first_elem function 9-23
ts_free procedure 9-24
ts_free_elem procedure 9-24
ts_get_all_cols procedure 9-25
ts_get_calname function 9-25
ts_get_col_by_name function 9-26
ts_get_col_by_number function 9-26
ts_get_containername function 9-27
ts_get_flags function 9-27
ts_get_metadata function 9-28
ts_get_origin function 9-28
ts_get_stamp_fields procedure 9-29
ts_get_threshold function 9-30
ts_get_ts function 9-30
ts_get_typeid function 9-31
ts_hide_elem function 9-31
ts_index function 9-32
ts_ins_elem function 9-33
TS_IS_INCONTAINER macro 9-34
TS_IS_IRREGULAR macro 9-34
ts_last_elem function 9-34
ts_last_valid function 9-35
ts_make_elem function 9-36
ts_make_elem_with_buf function 9-37
ts_make_stamp function 9-38
ts_nelems function 9-38
ts_next function 9-39
ts_next_valid function 9-40
ts_nth_elem function 9-41
ts_open function 9-41
ts_previous_valid function 9-43
ts_put_elem function 9-44
ts_put_elem_no_dups function 9-45
ts_put_last_elem function 9-46
ts_put_nth_elem function 9-46
ts_put_ts function 9-47
ts_reveal_elem function 9-48
ts_row-to_elem function 9-48
TS_SCAN_EXACT_END flag 9-6
TS_SCAN_EXACT_START flag 7-5, 7-17, 7-24, 7-69, 7-70,

7-77, 9-6
TS_SCAN_HIDDEN flag 7-5, 7-17, 7-24, 7-30, 7-69, 7-70, 7-77,

9-6

Index X-7

TS_SCAN_SKIP_BEGIN flag 7-5, 7-17, 7-24, 7-69, 7-70, 7-77,
9-6

TS_SCAN_SKIP_END flag 7-5, 7-17, 7-24, 7-69, 7-70, 7-77, 9-6
ts_time function 9-12, 9-49, 9-50, 9-51
ts_timeseries data structure 9-2
ts_tscan data structure 9-2
ts_tsdesc data structure 9-2
ts_tselem data structure 9-3
ts_upd_elem function 9-52
ts_update_metadata function 9-52
TS_VTI_DEBUG trace class 4-20
TSAddPrevious function 7-80
TSCmp function 7-81
TSColName parameter 4-4
TSContainerCreate procedure 7-84
TSContainerDestroy procedure 7-85
TSContainerNElems 7-85
TSContainerPctUsed 7-86
TSContainerTable system table 2-9
TSContainerTotalPages 7-89
TSContainerTotalUsed 7-90
TSContainerUsage 7-91
TSCreate function 7-92
TSCreateExpressionVirtualTab 4-4, 4-8
TSCreateIrr function 7-94
TSCreateVirtualTab procedure 4-4
TSDecay function 7-96
TSInstanceTable system table 2-8
TSPrevious function 7-97
TSRollup function 7-98
TSRowNameToList function 7-99
TSRowNumToList function 7-100
TSRowToList function 7-101
TSRunningAvg function 7-82, 7-83, 7-102
TSRunningCor function 7-103
TSRunningMed function 7-104
TSRunningSum function 7-105
TSRunningVar function 7-106
TSSetToList function 7-107
TSSetTraceFile function 4-19
TSSetTraceLevel function 4-19, 4-20
TSToXML function 7-108
TSVTMode parameter 4-11
Type map 8-5

U
Unary arithmetic functions

Abs 7-6
Acos 7-6
Asin 7-20
Atan 7-21
Cos 7-31
description 7-110
Exp 7-37
Logn 7-62
Negate 7-63
Positive 7-65
Round 7-74
Sin 7-75
Sqrt 7-75
Tan 7-76

Union function 7-111
Union of time series 7-111
UPDATE statement 3-17
UPDATE STATISTICS statement 4-19
updateAsciiStream method 8-13

updateBigDecimal method 8-13
updateBinaryStream method 8-13
updateBoolean method 8-13
updateByte method 8-13
updateBytes method 8-13
updateCharacterStream method 8-13
updateDate method 8-13
updateDouble method 8-13
updateFloat method 8-13
updateInt method 8-13
updateLong method 8-13
updateNull method 8-13
updateObject method 8-13
updateRow method 8-13
updateShort method 8-13
updateString method 8-13
updateTime method 8-13
updateTimestamp method 8-13
Updating

element 9-44, 9-45
element in a time series 9-52
metadata in a time series 9-52

Updating a set of elements 7-115
Updating an element 7-113
UpdElem function 7-113
UpdMetaData function 7-114
UpdSet function 7-115

V
Version, TimeSeries Java class 8-8
Virtual table 4-1
Virtual table interface 4-6
Virtual tables

creating with expressions 4-8
display of data 4-3
structure 4-2

VirtualTableName parameter 4-4
Visual disabilities

reading syntax diagrams C-1

W
wasNull method 8-13
WithinC function 7-116
WithinR function 7-116
writeSQL method 8-8, 8-9, 8-13
Writing TimeSeries data to database (Java) 8-7

X-8 IBM Informix TimeSeries Data User's Guide

����

Printed in USA

SC27-3567-02

Sp
in
e
in
fo
rm
at
io
n:

In
fo

rm
ix

Pr
od

uc
tF

am
ily

In
fo

rm
ix

Ve
rs

io
n

11
.7

0
IB

M
In

fo
rm

ix
Ti

m
eS

er
ie

s
Da

ta
Us

er
's

Gu
id

e
�
�

�

	Contents
	Introduction
	About this publication
	Types of users
	Assumptions about your locale

	What's new in TimeSeries data for Informix, Version 11.70
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Informix TimeSeries solution
	Informix TimeSeries solution architecture
	Time series concepts
	TimeSeries data type technical overview
	Regular time series
	Irregular time series
	Calendar
	Time series data storage

	Getting started with the Informix TimeSeries solution
	Planning for creating a time series
	Planning for data storage
	Planning for loading time series data
	Planning for accessing time series data

	Hardware and software requirements
	Installing the IBM Informix TimeSeries Plug-in for Data Studio
	Database requirements for time series data
	SQL restrictions for time series data
	Replication of time series data
	Time series global language support

	Sample smart meter data
	Setting up stock data examples

	Chapter 2. Data types and system tables
	CalendarPattern data type
	Calendar data type
	TimeSeries data type
	Time series return types
	CalendarPatterns table
	CalendarTable table
	TSInstanceTable table
	TSContainerTable table

	Chapter 3. Create and load a time series
	Example: Create and load a time series
	Creating a TimeSeries data type and table
	Creating regular, empty time series
	Creating the data load file
	Loading the time series data
	Accessing time series data through a virtual table

	Defining a calendar
	Predefined calendars

	Create a time series column
	Creating a TimeSeries subtype
	Create the database table

	Managing containers
	Monitoring time series containers
	Configuring additional container pools
	User-defined container pool policy

	Create a time series
	Creating a time series with the TSCreate or TSCreateIrr function
	Creating a time series with metadata

	Create a time series with its input function
	Create a time series with the output of a function

	Load data into an existing time series
	Loading data with the IBM Informix TimeSeries Plug-in for Data Studio
	Loading data from a file into a virtual table
	Load data with BulkLoad
	Data file formats for BulkLoad
	Example: Load data with BulkLoad

	Load small amounts of data with functions

	Chapter 4. Virtual tables for time series data
	The structure of virtual tables
	The display of data in virtual tables
	The insertion of data through virtual tables
	Creating a time series virtual table
	TSCreateVirtualTab procedure
	Example of creating a virtual table

	TSCreateExpressionVirtualTab procedure
	The TSVTMode parameter
	Drop a virtual table
	Manage performance
	Trace functions
	The TSSetTraceFile function
	TSSetTraceLevel function

	Chapter 5. Calendar pattern routines
	The AndOp function
	The CalPattStartDate function
	The Collapse function
	The Expand function
	The NotOp function
	The OrOp function

	Chapter 6. Calendar routines
	The AndOp function
	The CalIndex function
	The CalRange function
	The CalStamp function
	The CalStartDate function
	The OrOp function

	Chapter 7. Time series SQL routines
	Time series SQL routines sorted by task
	The flags argument values
	Abs function
	Acos function
	AggregateBy function
	AggregateRange function
	Apply function
	ApplyBinaryTsOp function
	ApplyCalendar function
	ApplyOpToTsSet function
	ApplyUnaryTsOp function
	Asin function
	Atan function
	Atan2 function
	Binary arithmetic functions
	BulkLoad function
	Clip function
	ClipCount function
	ClipGetCount function
	Cos function
	DelClip function
	DelElem function
	DelRange function
	DelTrim function
	Divide function
	ElemIsHidden function
	ElemIsNull function
	Exp function
	FindHidden function
	GetCalendar function
	GetCalendarName function
	GetClosestElem function
	GetContainerName function
	GetElem function
	GetFirstElem function
	GetIndex function
	GetInterval function
	GetLastElem function
	GetLastNonNull function
	GetLastValid function
	GetMetaData function
	GetMetaTypeName function
	GetNelems function
	GetNextNonNull function
	GetNextValid function
	GetNthElem function
	GetOrigin function
	GetPreviousValid function
	GetStamp function
	GetThreshold function
	HideElem function
	HideRange function
	InsElem function
	InsSet function
	InstanceId function
	Intersect function
	IsRegular function
	Lag function
	Logn function
	Minus function
	Mod function
	Negate function
	NullCleanup function
	Plus function
	Positive function
	Pow function
	PutElem function
	PutElemNoDups function
	PutNthElem function
	PutSet function
	PutTimeSeries function
	RevealElem function
	RevealRange function
	Round function
	SetContainerName function
	SetOrigin function
	Sin function
	Sqrt function
	Sum function
	Tan function
	Times function
	TimeSeriesRelease function
	Transpose function
	TSAddPrevious function
	TSCmp function
	TSColNameToList function
	TSColNumToList function
	TSContainerCreate procedure
	TSContainerDestroy procedure
	TSContainerNElems function
	TSContainerPctUsed function
	TSContainerPoolRoundRobin function
	TSContainerSetPool procedure
	TSContainerTotalPages function
	TSContainerTotalUsed function
	TSContainerUsage function
	TSCreate function
	TSCreateIrr function
	TSDecay function
	TSPrevious function
	TSRollup function
	TSRowNameToList function
	TSRowNumToList function
	TSRowToList function
	TSRunningAvg function
	TSRunningCor function
	TSRunningMed function
	TSRunningSum function
	TSRunningVar function
	TSSetToList function
	TSToXML function
	Unary arithmetic functions
	Union function
	UpdElem function
	UpdMetaData function
	UpdSet function
	WithinC and WithinR functions

	Chapter 8. Time series Java class library
	System requirements for Java programs
	Install the time series Java files
	Sample programs
	Time series Java classes
	The IfmxCalendarPattern class
	The IfmxCalendar class
	The IfmxTimeSeries class

	Get data from the database
	Create a custom type map
	Create an entry in the database connection
	Create a map independently

	The IfmxTimeSeries object
	Write TimeSeries data back to the database

	Obtain the time series Java class version
	The IfmxCalendarPattern class
	The IfmxCalendar class
	The IfmxTimeSeries class
	The IfmxTimeSeries class methods
	Time series methods
	Public methods inherited from the JDBC ResultSet interface

	Problem solving
	Tracing with the Java class library

	Chapter 9. Time series API routines
	Differences in using functions on the server and on the client
	API data structures
	The ts_timeseries structure
	The ts_tscan structure
	The ts_tsdesc structure
	The ts_tselem structure

	API routines
	The ts_begin_scan() function
	The ts_cal_index() function
	The ts_cal_pattstartdate() function
	The ts_cal_range() function
	The ts_cal_range_index() function
	The ts_cal_stamp() function
	The ts_cal_startdate() function
	The ts_close() function
	The ts_closest_elem() function
	The ts_col_cnt() function
	The ts_col_id() function
	The ts_colinfo_name() function
	The ts_colinfo_number() function
	The ts_copy() function
	The ts_create() function
	The ts_create_with_metadata() function
	The ts_current_offset() function
	The ts_current_timestamp() function
	The ts_datetime_cmp() function
	The ts_del_elem() function
	The ts_elem() function
	The TS_ELEM_HIDDEN macro
	The TS_ELEM_NULL macro
	The ts_elem_to_row() function
	The ts_end_scan() procedure
	The ts_first_elem() function
	The ts_free() procedure
	The ts_free_elem() procedure
	The ts_get_all_cols() procedure
	The ts_get_calname() function
	The ts_get_col_by_name() function
	The ts_get_col_by_number() function
	The ts_get_containername() function
	The ts_get_flags() function
	The ts_get_metadata() function
	The ts_get_origin() function
	The ts_get_stamp_fields() procedure
	The ts_get_threshold() function
	The ts_get_ts() function
	The ts_get_typeid() function
	The ts_hide_elem() function
	The ts_index() function
	The ts_ins_elem() function
	The TS_IS_INCONTAINER macro
	The TS_IS_IRREGULAR macro
	The ts_last_elem() function
	The ts_last_valid() function
	The ts_make_elem() function
	The ts_make_elem_with_buf() function
	The ts_make_stamp() function
	The ts_nelems() function
	The ts_next() function
	The ts_next_valid() function
	The ts_nth_elem() function
	The ts_open() function
	The ts_previous_valid() function
	The ts_put_elem() function
	The ts_put_elem_no_dups() function
	The ts_put_last_elem() function
	The ts_put_nth_elem() function
	The ts_put_ts() function
	The ts_reveal_elem() function
	The ts_row_to_elem() function
	The ts_time() function
	The ts_tstamp_difference() function
	The ts_tstamp_minus() function
	The ts_tstamp_plus() function
	The ts_update_metadata() function
	The ts_upd_elem() function

	Appendix A. The Interp function example
	Appendix B. The TSIncLoad procedure example
	Appendix C. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

