
Informix Product Family
Informix
Version 12.10

IBM Informix Administrator's Guide

SC27-4506-03

���

Informix Product Family
Informix
Version 12.10

IBM Informix Administrator's Guide

SC27-4506-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

Edition

This edition replaces SC27-4506-02.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . xvii
In this introduction . xvii
About this publication . xvii

Types of users . xvii
Software dependencies . xvii
Assumptions about your locale . xvii
Demonstration databases . xviii

What's new in administration for Informix, Version 12.10 xviii
Example code conventions. xxiv
Additional documentation . xxv
Compliance with industry standards . xxv
Syntax diagrams . xxv

How to read a command-line syntax diagram . xxvi
Keywords and punctuation . xxvii
Identifiers and names . xxviii

How to provide documentation feedback . xxviii

Part 1. The database server

Chapter 1. Overview of database server configuration and administration 1-1
Database server concepts . 1-1
Environment configuration . 1-2
Database server configuration . 1-3

Storage space creation and management . 1-4
Automatic performance tuning . 1-6
Feature configuration . 1-7
Connectivity configuration . 1-8
Automate startup and shutdown on UNIX. 1-9
Automate startup on Windows . 1-10

Database server maintenance tasks . 1-10
Database server monitoring . 1-11

Chapter 2. Client/server communication . 2-1
Client/server architecture . 2-1

Network protocol . 2-1
Network programming interface . 2-2
Windows network domain . 2-2
Database server connections . 2-3
Supporting multiplexed connections . 2-3

Connections that the database server supports . 2-5
Local connections . 2-6

Shared-memory connections (UNIX) . 2-6
Stream-pipe connections (UNIX and Linux) . 2-7
Named-pipe connections (Windows) . 2-8
Local-loopback connections . 2-8

Communication support services . 2-9
Connectivity files . 2-9

Network-configuration files . 2-10
Network security files . 2-12
The sqlhosts file and the SQLHOSTS registry key . 2-17

The sqlhosts information . 2-19
IANA standard service names and port numbers in the sqlhosts.std file 2-20
sqlhosts connectivity information . 2-20
Group information . 2-32

© Copyright IBM Corp. 1996, 2014 iii

Alternatives for TCP/IP connections . 2-34
Informix support for IPv6 addresses . 2-37
Configuration parameters related to connectivity . 2-38

Connection information set in the DBSERVERNAME configuration parameter 2-38
Connection information set in the DBSERVERALIASES configuration parameter. 2-39
Connection information set in the LIMITNUMSESSIONS configuration parameter 2-40
Connection information set in the NETTYPE configuration parameter 2-40
Name service maximum retention time set in the NS_CACHE configuration parameter 2-41
Connection information set in the NUMFDSERVERS configuration parameter 2-42
Connection information set in the HA_ALIAS configuration parameter 2-42

Environment variables for network connections. 2-43
Automatically terminating idle connections . 2-43
Distributed Relational Database Architecture (DRDA) communications 2-44

Overview of DRDA . 2-44
Configuring connectivity between Informix database servers and IBM Data Server clients 2-45
Allocating poll threads for an interface/protocol combination with the NETTYPE configuration parameter 2-47
Specify the size of the DRDA communication buffer with the DRDA_COMMBUFFSIZE configuration
parameter . 2-47
The DRDAEXEC thread and queries from clients . 2-47
SQL and supported and unsupported data types . 2-48
Display DRDA connection information . 2-48
Display DRDA session information . 2-49

Examples of client/server configurations . 2-49
A network connection . 2-50
Multiple connection types . 2-50
Accessing multiple database servers . 2-51

IBM Informix MaxConnect. 2-52

Chapter 3. Database server initialization . 3-1
Types of initialization . 3-1
Initializing disk space. 3-1
Initialization process . 3-2

Configuration file used during initialization . 3-3
Create shared-memory portions . 3-3
Initialize or restart shared-memory . 3-4
Initialize disk space . 3-4
Start all required virtual processors . 3-5
Make necessary conversions . 3-5
Start fast recovery . 3-5
Start a checkpoint . 3-5
Document configuration changes . 3-5
Create the oncfg_servername.servernum file . 3-5
Drop Temporary Tblspaces . 3-6
Set forced residency if specified . 3-6
Return control to user . 3-6
Create sysmaster database and prepare SMI tables . 3-6
Create the sysutils database. 3-7
Create the sysuser database . 3-7
Create the sysadmin database . 3-7
Monitor maximum number of user connections . 3-7

Database server operating modes . 3-7
Change database server operating modes . 3-8

Users permitted to change modes. 3-9
Command-line options for changing modes . 3-10
Specify administration mode users with the ADMIN_MODE_USERS configuration parameter 3-13

Part 2. Disk, memory, and process management

Chapter 4. Virtual processors and threads . 4-1
Virtual processors . 4-1

iv IBM Informix Administrator's Guide

Threads . 4-1
Advantages of virtual processors . 4-2

How virtual processors service threads . 4-5
Control structures . 4-5
Context switching . 4-5
Stacks . 4-6
Queues . 4-7
Mutexes . 4-8

Virtual processor classes . 4-9
CPU virtual processors . 4-11
User-defined classes of virtual processors . 4-14
Tenant virtual processor class . 4-16
Java virtual processors . 4-16
Disk I/O virtual processors . 4-17
Network virtual processors . 4-21
Communications support module virtual processor . 4-27
Encrypt virtual processors . 4-27
Audit virtual processor . 4-28
Miscellaneous virtual processor . 4-28
Basic text search virtual processors . 4-28
MQ messaging virtual processor . 4-28
Web feature service virtual processor . 4-29
XML virtual processor . 4-29

Chapter 5. Manage virtual processors . 5-1
Set virtual-processor configuration parameters . 5-1
Start and stop virtual processors . 5-1

Add virtual processors in online mode . 5-2
Drop CPU and user-defined virtual processors . 5-3

Monitor virtual processors . 5-3
Monitor virtual processors with command-line utilities 5-3
Monitor virtual processors with SMI tables . 5-4

Chapter 6. Shared memory . 6-1
Shared memory. 6-1
Shared-memory use . 6-1

Shared-memory allocation . 6-2
Shared-memory size . 6-3
Action to take if SHMTOTAL is exceeded . 6-4

Processes that attach to shared memory. 6-4
How a client attaches to the communications portion (UNIX) 6-4
How utilities attach to shared memory . 6-5
How virtual processors attach to shared memory . 6-5

Resident portion of shared memory . 6-8
Shared-memory header . 6-9
Logical-log buffer . 6-9
Physical-log buffer . 6-10
High-Availability Data-Replication buffer . 6-10
Lock table . 6-10

Buffer pool portion of shared memory . 6-11
Virtual portion of shared memory . 6-13

Management of the virtual portion of shared memory 6-13
Components of the virtual portion of shared memory 6-14
Data-distribution cache . 6-18

Communications portion of shared memory (UNIX) . 6-19
Virtual-extension portion of shared memory . 6-20
Concurrency control . 6-20

Shared-memory mutexes . 6-20
Shared-memory buffer locks . 6-20

Database server thread access to shared buffers. 6-21

Contents v

FIFO/LRU queues . 6-21
Read-ahead operations . 6-25
Database server thread access to buffer pages . 6-25

Flush data to disk . 6-26
Flush buffer-pool buffers . 6-26
Flush before-images first . 6-26
Flush the physical-log buffer . 6-26
Synchronize buffer flushing . 6-27
Types of writes during flushing . 6-27
Flush the logical-log buffer . 6-28

Buffer large-object data . 6-29
Write simple large objects . 6-29
Access smart large objects . 6-31

Memory use on 64-bit platforms . 6-32

Chapter 7. Manage shared memory . 7-1
Set operating-system shared-memory configuration parameters 7-1

Maximum shared-memory segment size . 7-2
Semaphores (UNIX) . 7-3

Set database server shared-memory configuration parameters 7-3
Set SQL statement cache parameters . 7-5
Set up shared memory . 7-5
Turn residency on or off for resident shared memory . 7-5

Turn residency on or off in online mode . 7-6
Turn residency on or off when restarting the database server 7-6

Add a segment to the virtual portion of shared memory . 7-6
Reserve memory for critical activities . 7-6
Configure the server response when memory is critically low 7-7

Scenario for maintaining a targeted amount of memory 7-7
Monitor shared memory . 7-8

Monitor shared-memory segments . 7-8
Monitor the shared-memory profile and latches . 7-8
Monitor buffers . 7-9

Deleting shared memory segments after a server failure . 7-11

Chapter 8. Data storage . 8-1
Chunks . 8-2

Disk allocation for chunks . 8-3
Extendable chunks . 8-4
Partitions and offsets . 8-5

Pages . 8-5
Blobpages. 8-6
Sbpages . 8-7
Extents . 8-8
Dbspaces . 8-9

Control of where simple large object data is stored . 8-10
Root dbspace . 8-11
Temporary dbspaces . 8-12

Blobspaces . 8-13
Sbspaces . 8-13

Advantages of using sbspaces . 8-13
Sbspaces and Enterprise Replication . 8-14
Metadata, user data, and reserved area . 8-14
Control of where smart large object data is stored . 8-15
Storage characteristics of sbspaces . 8-16
Levels of inheritance for sbspace characteristics . 8-18
More information about sbspaces . 8-19
Temporary sbspaces . 8-20

Plogspace . 8-22
Extspaces . 8-22

vi IBM Informix Administrator's Guide

Databases . 8-23
Tables . 8-24

Damaged tables . 8-25
Table types for Informix . 8-25

Standard permanent tables . 8-26
RAW tables . 8-26
Temp tables. 8-27
Properties of table types . 8-27
Temporary tables . 8-28

Tblspaces . 8-31
Maximum number of tblspaces in a table . 8-31
Table and index tblspaces . 8-31
Extent interleaving . 8-32

Table fragmentation and data storage . 8-33
Amount of disk space needed to store data . 8-34

Size of the root dbspace . 8-35
Amount of space that databases require . 8-36

The storage pool . 8-36
Disk-layout guidelines . 8-37

Dbspace and chunk guidelines . 8-37
Table-location guidelines . 8-38

Sample disk layouts . 8-39
Sample layout when performance is highest priority . 8-40
Sample layout when availability is highest priority . 8-41

Logical-volume manager . 8-42

Chapter 9. Manage disk space . 9-1
Allocate disk space . 9-1

Specify an offset . 9-2
Allocating cooked file spaces on UNIX . 9-3
Allocating raw disk space on UNIX . 9-3
Create symbolic links to raw devices (UNIX) . 9-4
Allocating NTFS file space on Windows . 9-4
Allocating raw disk space on Windows . 9-5

Specify names for storage spaces and chunks . 9-5
Specify the maximum size of chunks . 9-6
Specify the maximum number of chunks and storage spaces. 9-6
Back up after you change the physical schema . 9-6

Monitor storage spaces . 9-6
Manage dbspaces . 9-7

Creating a dbspace that uses the default page size . 9-7
Creating a dbspace with a non-default page size . 9-10
Improving the performance of cooked-file dbspaces by using direct I/O 9-11
Storing multiple named fragments in a single dbspace 9-11
Creating a temporary dbspace . 9-13
What to do if you run out of disk space . 9-13
Adding a chunk to a dbspace or blobspace . 9-14
Rename dbspaces . 9-14
Managing automatic location and fragmentation . 9-15

Manage blobspaces . 9-16
Creating a blobspace. 9-17
Prepare blobspaces to store TEXT and BYTE data . 9-18
Determine blobpage size . 9-18

Manage sbspaces . 9-19
Creating an sbspace . 9-19
Size sbspace metadata . 9-20
Adding a chunk to an sbspace . 9-20
Alter storage characteristics of smart large objects . 9-21
Creating a temporary sbspace . 9-21

Manage the plogspace . 9-22
Automatic space management . 9-23

Contents vii

Creating and managing storage pool entries . 9-24
Marking a chunk as extendable or not extendable . 9-25
Modifying the sizes of an extendable storage space . 9-26
Changing the threshold and wait time for the automatic addition of more space. 9-27
Configuring the frequency of the monitor low storage task 9-27
Manually expanding a space or extending an extendable chunk 9-28
Example of minimally configuring for and testing the automatic addition of more space 9-29
Example of configuring for the automatic addition of more space. 9-30

Drop a chunk . 9-31
Verify whether a chunk is empty . 9-31
Drop a chunk from a dbspace with onspaces . 9-32
Drop a chunk from a blobspace . 9-32
Drop a chunk from an sbspace with onspaces . 9-32

Drop a storage space . 9-33
Preparation for dropping a storage space . 9-33
Drop a mirrored storage space . 9-33
Drop a storage space with onspaces . 9-33
Back up after dropping a storage space . 9-34

Creating a space or chunk from the storage pool . 9-34
Returning empty space to the storage pool . 9-35
Manage extspaces . 9-36

Create an extspace . 9-36
Drop an extspace . 9-37

Skip inaccessible fragments . 9-37
The DATASKIP configuration parameter . 9-37
The dataskip feature of onspaces . 9-37
Use onstat to check dataskip status . 9-37
The SQL statement SET DATASKIP . 9-37
Effect of the dataskip feature on transactions . 9-38
Determine when to use dataskip. 9-38
Monitor fragmentation use . 9-39

Display databases . 9-39
SMI tables . 9-39

Monitor disk usage . 9-40
Monitor chunks . 9-40
Monitor tblspaces and extents . 9-43
Monitor simple large objects in a blobspace . 9-43
Monitor sbspaces . 9-45

Multitenancy . 9-49
Creating a tenant database. 9-51
Managing tenant databases . 9-52

Storage optimization. 9-53
Storage optimization methods . 9-55
Scheduling data optimization . 9-57
Example: Optimizing data storage on demand . 9-58
Partition defragmentation . 9-59
Compression . 9-60

Load data into a table . 9-67

Chapter 10. Moving data with external tables 10-1
External tables . 10-1
Defining external tables. 10-2
Map columns to other columns . 10-3
Load data from and unload to a named pipe . 10-3

Loading data with named pipes . 10-4
FIFO virtual processors . 10-4
Unloading data with named pipes . 10-4
Copying data from one instance to another using the PIPE option 10-5

Monitor the load or unload operations. 10-6
Monitor frequent load and unload operations . 10-6
Monitor FIFO virtual processors . 10-7

viii IBM Informix Administrator's Guide

External tables in high-availability cluster environments . 10-8
System catalog entries for external tables . 10-8
Performance considerations when using external tables . 10-9
Manage errors from external table load and unload operations 10-9

Reject files . 10-10
External table error messages . 10-11
Recoverability of table types for external tables . 10-11

Part 3. Logging and log administration

Chapter 11. Logging . 11-1
Database server processes that require logging . 11-1
Transaction logging . 11-2
Logging of SQL statements and database server activity . 11-3

Activity that is always logged . 11-3
Activity logged for databases with transaction logging 11-5
Activity that is not logged . 11-6

Database-logging status . 11-7
Unbuffered transaction logging . 11-8
Buffered transaction logging . 11-8
ANSI-compliant transaction logging . 11-8
No database logging . 11-9
Databases with different log-buffering status. 11-9
Database logging in an X/Open DTP environment. 11-9

Settings or changes for logging status or mode . 11-9

Chapter 12. Manage the database-logging mode 12-1
Change the database-logging mode . 12-1
Modify the database-logging mode with ondblog . 12-2

Change the buffering mode with ondblog . 12-2
Cancel a logging mode change with ondblog . 12-2
End logging with ondblog . 12-2
Make a database ANSI compliant with ondblog . 12-3
Changing the logging mode of an ANSI-compliant database 12-3

Modify the database logging mode with ontape . 12-3
Turn on transaction logging with ontape . 12-3
End logging with ontape . 12-3
Change buffering mode with ontape . 12-4
Make a database ANSI compliant with ontape . 12-4

Modify the table-logging mode . 12-4
Alter a table to turn off logging . 12-4
Alter a table to turn on logging . 12-4
Disable logging on temporary tables . 12-5

Monitor transactions . 12-5
Monitor the logging mode of a database . 12-5

Monitor the logging mode with SMI tables . 12-5

Chapter 13. Logical log . 13-1
What is the logical log? . 13-1
Location of logical-log files . 13-1
Identification of logical-log files . 13-2
Status flags of logical-log files . 13-2
Size of the logical-log file . 13-3

Number of logical-log files. 13-3
Performance considerations . 13-4

Dynamic log allocation . 13-4
Freeing of logical-log files . 13-5

Action if the next logical-log file is not free . 13-5
Action if the next log file contains the last checkpoint 13-5

Log blobspaces and simple large objects . 13-6

Contents ix

Switch log files to activate blobspaces . 13-6
Back up log files to free blobpages . 13-6
Back up blobspaces after inserting or deleting TEXT and BYTE data 13-7

Log sbspaces and smart large objects . 13-7
Sbspace logging . 13-7
Smart-large-object log records. 13-9
Prevent long transactions when logging smart-large-object data 13-9

Logging process . 13-9
Dbspace logging . 13-9
Blobspace logging . 13-9

Chapter 14. Manage logical-log files . 14-1
Estimate the size and number of log files . 14-1

Estimate the log size when logging smart large objects 14-3
Estimate the number of logical-log files . 14-3

Back up logical-log files . 14-3
Backing up blobspaces . 14-4
Back up sbspaces . 14-4

Switch to the next logical-log file . 14-4
Free a logical-log file . 14-5

Delete a log file with status D . 14-5
Free a log file with status U . 14-5
Freeing a log file with status U-B or F . 14-5
Freeing a log file with status U-C or U-C-L . 14-6
Free a log file with status U-B-L . 14-6

Monitor logging activity . 14-6
Monitor the logical log for fullness . 14-6
Monitor temporary logical logs . 14-7
SMI tables . 14-7
Monitor log-backup status . 14-8

Allocate logical log files . 14-8
Dynamically add a logical-log file to prevent transaction blocking 14-9
Dynamically add logical logs for performance . 14-12
Adding logical-log files manually . 14-12

Dropping logical-log files . 14-13
Change the size of logical-log files. 14-14
Move logical-log files . 14-14
Display logical-log records . 14-15
Set high-watermarks for rolling back long transactions . 14-15

Long-transaction high-watermark (LTXHWM) . 14-16
Exclusive access, long-transaction high-watermark (LTXEHWM). 14-16
Adjust the size of log files to prevent long transactions 14-16
Recovering from a long transaction hang . 14-16

Chapter 15. Physical logging, checkpoints, and fast recovery 15-1
Critical sections . 15-1
Physical logging . 15-1

Fast recovery use of physically-logged pages . 15-1
Backup use of physically-logged pages . 15-2
Database server activity that is physically logged . 15-2

Size and location of the physical log . 15-2
Strategy for estimating the size of the physical log. 15-3
Physical-log overflow when transaction logging is turned off 15-4

Checkpoints . 15-4
LRU values for flushing a buffer pool between checkpoints. 15-6
Checkpoints during backup . 15-6

Fast recovery . 15-6
Need for fast recovery . 15-7
Situations when fast recovery is initiated . 15-7
Fast recovery after a checkpoint . 15-8

x IBM Informix Administrator's Guide

Chapter 16. Manage the physical log . 16-1
Change the physical-log location and size . 16-1
Monitor physical and logical-logging activity . 16-2
Monitor checkpoint information . 16-3

Turn checkpoint tuning on or off . 16-4
Force a checkpoint . 16-4
Server-provided checkpoint statistics . 16-5
SMI tables . 16-5

Turn automatic LRU tuning on or off . 16-5

Part 4. Fault tolerance

Chapter 17. Mirroring. 17-1
Mirroring . 17-1

Benefits of mirroring. 17-1
Costs of mirroring . 17-1
Consequences of not mirroring . 17-2
Data to mirror . 17-2
Alternatives to mirroring . 17-2

Mirroring process. 17-3
Creation of a mirror chunk . 17-3
Mirror status flags . 17-4
Recovery . 17-4
Actions during processing . 17-4
Result of stopping mirroring . 17-5
Structure of a mirror chunk . 17-5

Chapter 18. Using mirroring . 18-1
Preparing to mirror data . 18-1
Enable the MIRROR configuration parameter . 18-1
Allocate disk space for mirrored data . 18-2

Link chunks (UNIX) . 18-2
Relink a chunk to a device after a disk failure . 18-2

Using mirroring . 18-2
Mirroring the root dbspace during initialization . 18-3
Change the mirror status . 18-3

Manage mirroring . 18-3
Start mirroring for unmirrored storage spaces . 18-3
Start mirroring for new storage spaces. 18-4
Add mirror chunks . 18-4
Take down a mirror chunk . 18-4
Recover a mirror chunk. 18-5
End mirroring . 18-5

Chapter 19. Consistency checking . 19-1
Perform periodic consistency checking. 19-1

Verify consistency . 19-1
Monitor for data inconsistency . 19-3
Retain consistent level-0 backups . 19-4

Deal with corruption . 19-4
Find symptoms of corruption . 19-4
Fix index corruption . 19-5
Fix I/O errors on a chunk . 19-5

Collect diagnostic information . 19-6
Disable I/O errors . 19-6
Monitor the database server for disabling I/O errors . 19-7

The message log to monitor disabling I/O errors . 19-7
Event alarms to monitor disabling I/O errors . 19-8
No bad-sector mapping. 19-8

Contents xi

Part 5. High availability and scalability

Chapter 20. Strategies for high availability and scalability 20-1
Components supporting high availability and scalability. 20-1

Advantages of data replication . 20-3
Transparent scaling and workload balancing strategies . 20-5
High availability strategies. 20-8

Chapter 21. High-availability cluster configuration 21-1
Plan for a high-availability cluster . 21-1
Configuring clusters . 21-1

Hardware and operating-system requirements for clusters 21-2
Database and data requirements for clusters . 21-2
Database server configuration requirements for clusters 21-3
Configuring secure connections for high-availability clusters 21-6

Starting HDR for the First Time . 21-7
Decrease setup time using the ontape STDIO feature 21-10

Remote standalone secondary servers. 21-11
Comparison of RS secondary servers and HDR secondary servers 21-12
Index page logging . 21-12
Server Multiplexer Group (SMX) connections . 21-13
Starting an RS secondary server for the first time . 21-13
Converting an offline primary server to an RS secondary server 21-16
Delayed application of log records. 21-16
Flow control for remote standalone secondary servers 21-19

Shared disk secondary servers . 21-20
SD secondary server . 21-20
Disk requirements for SD secondary servers . 21-21
Setting up a shared disk secondary server . 21-21
Obtain SD secondary server statistics . 21-23
Promote an SD secondary server to a primary server 21-23
Convert a primary server to a standard server. 21-24
SD secondary server security . 21-24
Flow control for shared-disk secondary servers . 21-24

Chapter 22. Cluster administration . 22-1
How data replication works . 22-1

How data initially replicates . 22-1
Replication of primary-server data to secondary servers 22-2
Data replication configuration examples . 22-8
Troubleshooting high-availability cluster environments 22-20
Design data replication group clients . 22-22

Performing basic administration tasks . 22-23
Changing the configuration parameters for an HDR replication pair 22-23
Back up storage spaces and logical-log files. 22-23
Changing the logging mode of databases . 22-24
Add and drop chunks and storage spaces . 22-24
Renaming chunks . 22-24
Saving chunk status on the secondary database server 22-25
Use and change mirroring of chunks . 22-25
Manage the physical log . 22-26
Manage the logical log . 22-26
Manage virtual processors . 22-26
Manage shared memory . 22-26
Set the wait time for SMX activity between servers . 22-26
Replicate an index to an HDR secondary database server 22-27
Encrypting data traffic between HDR database servers 22-28
Adjust LRU flushing and automatic tuning in HDR server pairs. 22-29
Cloning a primary server . 22-30
Database updates on secondary servers . 22-32

xii IBM Informix Administrator's Guide

Backup and restore with high-availability clusters . 22-37
Change the database server mode . 22-37
Changing the database server type . 22-38
Prevent blocking checkpoints on HDR servers . 22-39
Monitor HDR status . 22-40

Obtain RS secondary server statistics . 22-41
Remove an RS secondary server . 22-41
RS secondary server security . 22-41

Create or change a password on an RS secondary server 22-42
Transaction completion during cluster failover. 22-42

Configuring the server so that transactions complete after failover 22-43

Chapter 23. Connection management through the Connection Manager 23-1
Configuring connection management . 23-2

Creating Connection Manager configuration files . 23-3
Configuring environments and setting configuration parameters for connection management 23-37
Defining sqlhosts information for connection management 23-38
Creating a password file for connecting to database servers on untrusted networks 23-59
Starting Connection Managers on UNIX and Linux . 23-62
Starting Connection Managers on Windows . 23-62
Stopping connection management . 23-63

Monitoring and troubleshooting connection management 23-63
Strategies for increasing availability with Connection Managers 23-64
Configuration examples for connection management . 23-65

Example of configuring connection management for a high-availability cluster 23-65
Example of configuring connection management for a grid or replicate set 23-69
Example of configuring connection management for a high-availability replication system 23-72
Example: Configuring connection management for untrusted networks 23-75
Example of configuring connection management for prioritizing connections and network monitoring . . . 23-78

Chapter 24. Cluster failover, redirection, and restoration 24-1
Failover configuration for high-availability clusters . 24-1

Failover with ISV cluster management software . 24-1
I/O fencing for shared file systems . 24-2
Cluster failures . 24-3

Redirection and connectivity for data-replication clients . 24-6
Redirecting clients automatically with the DBPATH environment variable 24-6
Redirecting clients with the connectivity information . 24-7
Redirecting clients with the INFORMIXSERVER environment variable. 24-10
Redirecting clients with application code . 24-11
Comparison of redirection methods . 24-12

Recover HDR and RS clusters after failure . 24-13
Recovering a cluster after critical data is damaged . 24-14
Restarting HDR or RS clusters after a network failure 24-15
Restarting HDR or RS clusters if the secondary server fails 24-16
Recovering an HDR cluster after the secondary server became the primary server 24-16
Restart if the primary server fails . 24-17

Recovering a shared-disk cluster after data is damaged. 24-19
Critical data is damaged . 24-19
Critical data is not damaged. 24-19

Recovering an SD cluster after the secondary server became the primary server 24-20

Part 6. Distributed data

Chapter 25. Multiphase commit protocols . 25-1
Transaction managers . 25-1

TP/XA Library with a transaction manager . 25-1
Microsoft Transaction Server (MTS/XA) . 25-2
Informix transaction support for XA-compliant, external data sources 25-2
XA in high-availability clusters . 25-3

Contents xiii

Loosely-coupled and tightly-coupled modes . 25-5
Two-phase commit protocol . 25-6

When the two-phase commit protocol is used . 25-6
Two-phase commit concepts . 25-6
Phases of the two-phase commit protocol . 25-7
How the two-phase commit protocol handles failures. 25-8
Presumed-end optimization . 25-9

Independent actions . 25-9
Situations that initiate independent action . 25-9
Possible results of independent action . 25-10
The heuristic rollback scenario . 25-11
The heuristic end-transaction scenario . 25-13
Monitor a global transaction . 25-15

Two-phase commit protocol errors . 25-17
Two-phase commit and logical-log records . 25-17

Logical-log records when the transaction commits . 25-18
Logical-log records written during a heuristic rollback 25-19
Logical-log records written after a heuristic end transaction 25-20

Configuration parameters used in two-phase commits . 25-21
Function of the DEADLOCK_TIMEOUT parameter . 25-22
Function of the TXTIMEOUT parameter . 25-22

Heterogeneous commit protocol . 25-22
Gateways that can participate in a heterogeneous commit transaction 25-23
Enable and disable of heterogeneous commit . 25-23
How heterogeneous commit works . 25-24
Implications of a failed heterogeneous commit. 25-25

Chapter 26. Manually recovering from failed two-phase commit 26-1
Determine if manual recovery is required. 26-1

Determine if a transaction was implemented inconsistently 26-1
Determine if the distributed database contains inconsistent data 26-2
Decide if action is needed to correct the situation . 26-4

Example of manual recovery . 26-4

Part 7. Overview of automatic monitoring and corrective actions

Chapter 27. The Scheduler . 27-1
Scheduler tables . 27-2
Built-in tasks and sensors . 27-3
Creating a task . 27-10
Creating a sensor . 27-11
Actions for task and sensors . 27-13
Creating a group . 27-15
Creating a threshold . 27-16
Creating an alert. 27-17
Monitor the scheduler . 27-18
Modifying the scheduler . 27-19

Chapter 28. Remote administration with the SQL administration API 28-1
SQL administration API admin() and task() functions . 28-1
Viewing SQL administration API history . 28-2

Controlling the size of the command_history table. 28-3

Chapter 29. Query drill-down . 29-1
Specifying startup SQL tracing information by using the SQLTRACE configuration parameter 29-3
Disable SQL tracing globally or for a session. 29-4
Enable SQL tracing . 29-4
Enable global SQL tracing for a session . 29-5

xiv IBM Informix Administrator's Guide

Part 8. Appendixes

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Privacy policy considerations . B-3
Trademarks . B-3

Index . X-1

Contents xv

xvi IBM Informix Administrator's Guide

Introduction

In this introduction
This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication
This publication describes concepts and procedures for configuring, administering,
and using IBM® Informix®.

A companion volume, the IBM Informix Administrator's Reference, contains reference
material for using IBM Informix database servers. If you need to tune the
performance of your database server and SQL queries, see your IBM Informix
Performance Guide.

Types of users
This publication is written for the following users:
v Database users
v Database administrators
v Database server administrators
v Performance engineers
v Programmers in the following categories

– Application developers
– DataBlade® module developers
– Authors of user-defined routines

This publication is written with the assumption that you have the following
background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming
v Some experience with database server administration, operating-system

administration, or network administration

Software dependencies
This publication is written with the assumption that you are using IBM Informix
Version 12.10 as your database server.

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

© Copyright IBM Corp. 1996, 2014 xvii

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é, �, and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin
directory in Windows environments.

What's new in administration for Informix, Version 12.10
This publication includes information about new features and changes in existing
functionality.

For a complete list of what's new in this release, go to http://pic.dhe.ibm.com/
infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm.

xviii IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm

Table 1. What's new in the IBM Informix Administrator's Guide for 12.10.xC4

Overview Reference

Multitenancy in Informix

You can now deploy an Informix server that supports
multiple tenants. A tenant is a set of users in a client
organization that needs to access the same data and
system resources. You create a dedicated tenant database,
and assign storage and processing resources for that
database based on the service-level agreements with the
client organization. For example, you can provide services
to multiple companies that run efficiently in a single
Informix instance.

“Multitenancy” on page 9-49

Faster storage optimization

You can now compress, uncompress, and repack data or
indexes faster by including the new parallel option with
the table, fragment, or index argument of the admin() or
task() SQL administration command.

“Example: Optimizing data storage on demand” on page
9-58

Limit the size of extendable storage spaces

You can prevent an extendable storage space from
growing indefinitely by setting a maximum size for the
space. Run the admin() or task() SQL administration
command with the modify space sp_sizes argument and
supply a value as the max_size argument, in KB. If you
omit the max_size argument, or if you set it to 0, the size
of the storage space can grow indefinitely. Limiting the
size of storage spaces is useful especially in a
multitenancy environment because you can use storage
provisioning to automatically expand the spaces that are
used by a tenant, but limit the space according to the
service level agreement with the tenant.

“Modifying the sizes of an extendable storage space” on
page 9-26

PAM password authentication for DRDA® connections

You can implement password authentication through a
pluggable authentication module (PAM) for Distributed
Relational Database Architecture™ (DRDA) connections.

“Overview of DRDA” on page 2-44

Introduction xix

Table 2. What's new in the IBM Informix Administrator's Guide for 12.10.xC3

Overview Reference

Automatic resource tuning for performance

You can configure the database server to adjust resources
to improve performance:

v Increase the size of the buffer pool: Include the
extendable=1 option in the BUFFERPOOL
configuration parameter value to make the buffer pool
extendable. Use the new memory field to specify the
size of the buffer pool in units of memory, such as MB
or GB, instead of units of pages. Buffer pools are now
stored in the buffer pool segment of shared memory.

v Increase the number of logical log files: Set the
AUTO_LLOG configuration parameter to 1, the name
of the dbspace for logical logs, and optionally the
maximum size of all logical log files.

v Increase the number of CPU and AIO virtual
processors: Include the autotune=1 option in the
VPCLASS configuration parameter values for the CPU
and AIO virtual processor settings. Optionally include
a maximum number of CPU VPs.

v Increase the size of the physical log size: Create a
plogspace storage space to store the physical log by
running the onspaces -c -P command. The plogspace is
extendable by default.

If you create a server during installation, the buffer pool,
logical log, and physical log are configured for automatic
expansion. The number of expected users that you specify
in the installation program sets the value of the
AUTO_TUNE_SERVER_SIZE configuration parameter,
which controls the sizes of the buffer pool, the dbspace
for the logical log, the plogspace, and other automatically
created storage spaces.

“Buffer pool portion of shared memory” on page 6-11

“Dynamically add logical logs for performance” on page
14-12

“Plogspace” on page 8-22

“Determine the number of CPU virtual processors
needed” on page 4-11

“AIO virtual processors” on page 4-19

Automatic location and fragmentation

In previous releases, the default location for new
databases was the root dbspace. The default location for
new tables and indexes was in the dbspace of the
corresponding database. By default new tables were not
fragmented. As of 12.10.xC3, you can enable the database
server to automatically choose the location for new
databases, tables, and indexes. The location selection is
based on an algorithm that gives higher priority to
non-critical dbspaces and dbspaces with an optimal page
size. New tables are automatically fragmented in
round-robin order in the available dbspaces.

Set the AUTOLOCATE configuration parameter or session
environment option to the number of initial round-robin
fragments to create for new tables. By default, all
dbspaces are available. More fragments are added as
needed when the table grows. You can manage the list of
dbspaces for table fragments by running the admin() or
task() SQL administration API command with one of the
autolocate datatabase arguments.

“Managing automatic location and fragmentation” on
page 9-15

xx IBM Informix Administrator's Guide

Table 2. What's new in the IBM Informix Administrator's Guide for 12.10.xC3 (continued)

Overview Reference

Improvements to Connection Manager

If you use Connection Manager to manage client
connections, you can use the following new POLICY
values in a service-level agreement:

v Use the ROUNDROBIN policy to direct client
connection requests in a repeating, ordered fashion
(round-robin) to a group of servers.

v Use the SECAPPLYBACKLOG policy to redirect
connections away from secondary, high-availability
cluster servers that have apply backlogs over a specific
threshold.

If failover processing in a high-availability cluster cannot
complete, the Connection Manager now automatically
retries failover processing at 1-minute intervals. The
RETRY attribute of the Connection Manager FOC
parameter is ignored because that attribute is not
supported as of this fix pack.

“SLA Connection Manager configuration parameter” on
page 23-24

Shard data across Enterprise Replication servers

Using Enterprise Replication, Informix can now
horizontally partition (shard) a table or collection across
multiple database servers. When you create a sharding
definition through the cdr utility, rows from a table or
documents from a collection can be distributed across the
nodes of an Enterprise Replication system, reducing the
number of rows or documents and the size of the index
on each node. When you distribute data across database
servers, you also distribute performance across hardware.
As your database grows in size, you can scale up by
adding more database servers.

“Components supporting high availability and
scalability” on page 20-1

Easier configuration and cloning of a server for
replication

If you create a server during installation, you can easily
create an Enterprise Replication domain or a
high-availability cluster. Previously, you had to configure
connectivity manually on each server.

Run the ifxclone command with the -autoconf option to
clone a server, configure connectivity, and start
replication. You can now create HDR and shared-disk
secondary servers with the ifxclone utility.

“Creating a clone of a primary server” on page 22-30

Introduction xxi

Table 3. What's new in the IBM Informix Administrator's Guide for 12.10.xC1

Overview Reference

Automatic space management for Enterprise Replication

If you have a storage pool, storage spaces are created
automatically if needed when you define a replication
server. Also, the CDR_DBSPACE and
CDR_QDATA_SBSPACE configuration parameters are set
automatically in the onconfig file. In earlier versions of
Informix, you had to create the required spaces and set
the configuration parameters before you could define a
replication server.

“Automatic space management” on page 9-23

Configuring log flow control for shared-disk secondary
servers

You can limit log activity on the primary server so that
shared-disk (SD) secondary servers in the cluster can
catch up. This configuration can improve performance
over congested or intermittent networks. You use the
SDS_FLOW_CONTROL configuration parameter to set
thresholds that start and stop flow control.

“Flow control for shared-disk secondary servers” on page
21-24

Improved transactional consistency for HDR
synchronization

Use improved HDR synchronization options to balance
system performance and data protection in your
high-availability cluster. Set the new HDR_TXN_SCOPE
configuration parameter or environment option to choose
between fully synchronous mode, asynchronous mode, or
nearly synchronous mode. The three synchronization
modes control when transaction commits are returned to
client applications: after being processed on the primary
server, after being sent to the HDR secondary server, or
after being processed on the HDR secondary server. HDR
synchronization can be set at the instance or session level.

“Fully synchronous mode for HDR replication” on page
22-4

“Nearly synchronous mode for HDR replication” on page
22-5

“Asynchronous mode for HDR replication” on page 22-6

Dynamically configure the database server

You can dynamically configure the database server in the
following ways:

v Dynamically modify many configuration parameters by
using the onmode command, OAT, or the SQL
administration API commands.

v Dynamically export and import configuration
parameters.

v Use the new AUTO_TUNE configuration parameter to
enable or disable all automatic tuning.

You can view more information about parameters,
including current values, valid ranges, and parameter
descriptions, with onstat commands.

“Database server configuration” on page 1-3

“Configuration file used during initialization” on page
3-3

xxii IBM Informix Administrator's Guide

Table 3. What's new in the IBM Informix Administrator's Guide for 12.10.xC1 (continued)

Overview Reference

Improve space utilization by compressing, repacking, and
shrinking B-tree indexes

You can use SQL administration API commands or
CREATE INDEX statements to save disk space by
compressing B-tree indexes. You can also use SQL
administration API commands to consolidate free space in
a B-tree index, return this free space to the dbspace, and
estimate the amount of space that is saved by
compressing the indexes.

“B-tree index compression” on page 9-63

Save disk space by compressing simple large objects in
dbspaces

You can use SQL administration API commands to save
disk space by compressing simple large objects (TEXT
and BYTE data types) that are stored in the same
partition in the same dbspace as the table in which they
are referenced. When you run an SQL administration API
compress or uncompress command, the database server
compresses both the table row data and the referenced
simple large objects. You can choose to compress or
uncompress only the table row data or only the
referenced simple large objects.

“Data that you can compress” on page 9-61

Save disk space by enabling automatic data compression

You can use the COMPRESSED keyword with the
CREATE TABLE statement to enable the automatic
compression of large amounts of in-row data when the
data is loaded into a table or table fragment. Then, when
2,000 or more rows of data are loaded, the database
server automatically creates a compression dictionary and
compresses the new data rows that are inserted into the
table.

Also, when you run SQL administration API create
dictionary and compress commands on existing tables
and fragments, you enable the automatic compression of
subsequent data loads that contain 2,000 or more rows of
data. If you run an uncompress command, you disable
automatic compression.

In addition to saving space, automatic compression saves
time because you do not have to compress the data after
you load it.

“Storage optimization methods” on page 9-55

Improved network failover support

You can configure the Connection Manager to monitor
application network connections and to initiate failover
when a network failure occurs. In earlier releases, the
Connection Manager initiated failover only when the
primary server failed.

“LOCAL_IP Connection Manager configuration
parameter” on page 23-18“FOC Connection Manager
configuration parameter” on page 23-11

Introduction xxiii

Table 3. What's new in the IBM Informix Administrator's Guide for 12.10.xC1 (continued)

Overview Reference

Managing server connections on Windows operating
systems

On Windows operating systems, you now configure
connectivity information for Informix servers by using the
sqlhosts file, not the Windows registry. The file is
installed in %INFORMIXDIR%\etc\sqlhosts.
%INFORMIXSERVER%, and it uses the same format as the
sqlhosts file on UNIX operating systems. The
sync_registry Scheduler task automatically converts the
connection information between the sqlhosts file format
and the Windows registry format. The task runs every 15
minutes. You can manually convert the connection
information between the sqlhosts file format and the
Windows registry format by running the syncsqlhosts
utility.

“The sqlhosts file and the SQLHOSTS registry key” on
page 2-17

Temporary table projection optimization for views and
derived tables

Applications and analytic tools can define a query in
which a derived table contains multiple views joined with
base tables, potentially including hundreds of columns.
The database server materializes this query in a
system-generated temporary table. The parent query,
however, might project only a few columns.

The database server creates internally generated
temporary tables that include only the columns that are
specified in the Projection list, the WHERE clause, the
ORDER BY clause, and in other clauses of the immediate
parent query. By excluding unnecessary columns from the
temporary table, the database server uses storage
resources efficiently and avoids I/O operations on the
columns that do not contribute to the query result.

“Temporary tables that the database server creates” on
page 8-30

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL

xxiv IBM Informix Administrator's Guide

at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 4. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

Introduction xxv

http://www.ibm.com/software/data/sw-library/

Table 4. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

xxvi IBM Informix Administrator's Guide

Notes:

1 See page Z-1

This diagram has a segment that is named “Setting the Run Mode,” which
according to the diagram footnote is on page Z-1. If this was an actual
cross-reference, you would find this segment on the first page of Appendix Z.
Instead, this segment is shown in the following segment diagram. Notice that the
diagram uses segment start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Include onpladm create job and then the name of the job.
2. Optionally, include -p and then the name of the project.
3. Include the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

4. Optionally, you can include one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to include -f, optionally include d, p, or a, and then
optionally include l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words that are reserved for statements and all commands except
system-level commands.

A keyword in a syntax diagram is shown in uppercase letters. When you use a
keyword in a command, you can write it in uppercase or lowercase letters, but you
must spell the keyword exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Introduction xxvii

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in other syntax diagrams. A variable in a syntax diagram, an
example, or text, is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, complete the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xxviii IBM Informix Administrator's Guide

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Part 1. The database server

© Copyright IBM Corp. 1996, 2014

IBM Informix Administrator's Guide

Chapter 1. Overview of database server configuration and
administration

After you install IBM Informix, you configure the database server system and start
administering the database server.

When you install IBM Informix, follow the installation instructions to ensure that
all prerequisites are met (for example, the permissions of all key files and
directories are set appropriately). The installation instructions are in the IBM
Informix Installation Guide for UNIX, Linux, and Mac OS X and the IBM Informix
Installation Guide for Windows.

You must have the correct permissions to administer the database server. For most
administration tasks, you need the following permissions:
v On UNIX, you must be logged in as user root, user informix, or the owner of

the non-root installation. If role separation is enabled, you must be granted the
DBSA role.

v On Windows, you must be a member of the Informix-Admin group.

You have various options to choose from when you configure the database server.
Configuration includes customizing your environment and the database server.
You can control how the database server runs and what function is available.

You must configure connectivity to connect to client administration tools and
applications.

You must do some initial administration tasks to finish setting up your database
server system. After you configure the database server, your administration
responsibilities include a set of routine tasks.

Database server concepts
To administer the database server, you must understand key concepts around
storage, configuration, logging, CPU use, shared memory use, and automation.

Root dbspace
The root dbspace is the initial dbspace, or storage space, that the database
server creates. The root dbspace contains reserved pages and internal tables
that describe and track all physical and logical units of storage. The root
dbspace is the default location for logical logs, the physical log, databases,
and temporary tables. The database server cannot run without the root
dbspace.

Configuration (onconfig) file
The database server requires a configuration file. Typically, the name of the
configuration file is onconfig.server_name. The onconfig file contains
configuration parameters that control database server properties. The
database server reads the onconfig file during startup, shutdown, and for
some operations while the server is running. Many configuration
parameters can also be set dynamically while the database server is
running.

© Copyright IBM Corp. 1996, 2014 1-1

Virtual processors
A virtual processor runs multiple threads to perform queries and other
tasks. The operating system schedules virtual processors as CPU processes.
Multiple virtual processors run multiple threads in parallel. Virtual
processors are divided into classes where each class is dedicated to
processing a specific type of thread.

Logical logs
The database server contains several logical log files that record data
manipulation operations for logged databases, data definition operations
for all databases, and administrative information such as checkpoint
records and additions and deletions of chunks. A logical log is similar to a
transaction log in other relational database management systems.

Physical log
The physical log stores the before-images of pages. "Before images" are
images of pages that are taken before the database server records the
changed pages on disk. The unmodified pages are available in case the
database server fails or a backup procedure requires the pages to provide
an accurate snapshot of the database server data.

Buffer pool
The buffer pool contains buffers that cache pages from disk in shared
memory. Operations on pages that are cached run faster than operations on
pages that must be retrieved from disk.

Caches
The database server uses caches to store information in shared memory
instead of performing a disk read or another operation to obtain the
information. Caching information improves performance for multiple
queries that access the same tables.

Scheduler
The Scheduler is a subsystem that runs a set of tasks at predefined times
or as determined internally by the server. Tasks are SQL statements can
either collect information or run a specific operation. Some tasks are
internal to the database server and run automatically. You can enable other
tasks, if appropriate. You can also create your own tasks and schedule
when they are run.

System databases
The system databases contain information about the database server. The
sysmaster database contains the system-monitoring interface (SMI) tables.
The SMI tables provide information about the state of the database server.
The sysadmin database contains the tables that contain and organize the
Scheduler tasks and sensors, store data that is collected by sensors, and
record the results of Scheduler jobs and SQL administration API functions.

Environment configuration
You configure your environment by setting environment variables and creating or
modifying files that relate to the environment variables. You can control whether
environment variables are set at the environment level, for a specific user, or for a
database session. You must set environment variables for the database server
environment and for the client environments.

1-2 IBM Informix Administrator's Guide

If you choose to create a database server instance during installation, the
installation program sets the mandatory environment variables. Otherwise, you
must set environment variables before you start the database server. The following
environment variables are mandatory:
v The INFORMIXDIR environment variable specifies the directory where you

installed the database server.
v The INFORMIXSERVER environment variable specifies the name of the database

server.
v The ONCONFIG environment variable specifies the name of the onconfig file in the

INFORMIXDIR/etc directory.
v The PATH environment variable must include the INFORMIXDIR/bin directory.

To configure the database server environment, you can set other environment
variables:
v If you plan to create an sqlhosts file with a non-default name or location, set the

INFORMIXSQLHOSTS environment variable to the name and path of your sqlhosts
file.

v If you plan to use the DB-Access utility to run SQL statements, specify terminal
properties with the INFORMIXTERM or a similar environment variable.

v If you need Global Language Support (GLS), set GLS environment variables.
v If you want to enable other functionality, set the appropriate environment

variables. Some environment variables control functionality that is also
controlled by configuration parameters. Environment variables override
configuration parameter settings.

To configure client environments, you can set the environment variables that are
supported by your client API. For more information, see your client API manual.

You can choose from multiple methods for setting environment variables. For
example, you can run the SET ENVIRONMENT statement to set environment
variables for the current session. You can add environment variable settings to log
in scripts, at the command prompt, or in a configuration file.
Related concepts:

Environment variables (SQL Reference)
Related reference:

GLS-related environment variables (GLS User's Guide)

Environment variables for clients (Client Products Installation Guide)

Environment variable changes by version (Migration Guide)

Database server configuration
You must customize the database server properties and features by setting
configuration parameters, create storage spaces, and configure connectivity. You
can automate startup.

You customize the database server properties by setting or modifying configuration
parameters in the onconfig file. You can use the IBM OpenAdmin Tool (OAT) for
Informix to monitor and update your configuration. OAT provides suggestions for
configuration parameter values to optimize your database server configuration.
The current version of IBM Informix does not use some configuration parameters
that are used in earlier versions of the server.

Chapter 1. Overview of database server configuration and administration 1-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_179.htm#ids_sqr_179
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.glsug.doc/ids_gug_063.htm#ids_gug_063
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.cpi.doc/ids_ev_003.htm#ids_ev_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.mig.doc/ids_mig_212.htm#ids_mig_212

When you start the database server for the first time, disk space is initialized and
the initial chunk of the root dbspace is created. Any existing data in that disk space
is overwritten. Shared memory that the database server requires is also initialized.
When you subsequently start the database server, only shared memory is
initialized. When you install the database server, only the root dbspace is created.
Although the root dbspace is the default location of log files and databases, you
can store log files and databases in other storage spaces to prevent the root
dbspace from running out of space.
Related concepts:
Chapter 3, “Database server initialization,” on page 3-1
Related tasks:

Modifying the onconfig file (Administrator's Reference)

Starting the database server (Installation Guide (UNIX))

Starting the database server from the Control Panel (Installation Guide
(Windows))

Starting the database server from the command line (Installation Guide
(Windows))
Related reference:

Configuration parameter changes by version (Migration Guide)

Storage space creation and management
You can create multiple storage spaces to store different types of objects, such as,
data, indexes, logs, temporary objects, instead of storing everything in the root
dbspace. The way that you distribute the data on disks affects the performance of
the database server. You can configure the database server to both automatically
minimize the storage space that data requires and automatically expand storage
space as needed. You can segregate storage and processing resources among
multiple client organization by configuring multitenancy.

A storage space is composed of one or more chunks. The maximum chunk size is 4
TB. You can have up to 32766 chunks in an instance.

After the database server is initialized, you can create storage spaces such as
dbspaces and sbspaces. Use the IBM OpenAdmin Tool (OAT) for Informix or the
onspaces utility to create storage spaces and chunks.

The following storage spaces are the most common:

dbspace
Stores databases, tables, logical-log files, and the physical log file.

Temporary dbspaces store temporary tables.

sbspace
Stores smart large objects. Smart large objects consist of CLOB (character
large object) and BLOB (binary large object) data types. User-defined data
types can also use sbspaces. Some features of Informix require sbspaces,
such as Enterprise Replication, J/Foundation, spatial data types, and basic
text search queries. In some cases, sbspaces are created automatically when
needed.

Temporary sbspaces store temporary smart large objects without logging
metadata or user data.

1-4 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0010.htm#ids_adr_0010
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igul.doc/ids_in_017x.htm#ids_in_017
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_cw_015x.htm#ids_cw_015
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_cw_015x.htm#ids_cw_015
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_cw_018x.htm#ids_cw_018
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_cw_018x.htm#ids_cw_018
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.mig.doc/ids_mig_213.htm#ids_mig_213

plogspace
Stores the physical log. If you do not create a plogspace, the physical log is
stored in a dbspace.

Other types of storage spaces store specialized types of data.

If you create a server during installation, some storage spaces are created
automatically.

Automatically minimizing storage space

You can minimize the amount of space that data needs by configuring automatic
data compression and consolidation. You can compress data, consolidate and
return free space, and merge extents. You can specify how frequently each of the
operations occurs.

You can automatically rotate message logs to limit the amount of space for the
logs.

Automatically extending storage space

After you create storage spaces, you can configure the server to automatically
extend each storage space as needed. You create a storage pool of entries for
available raw devices, cooked files, and directories, and you make sure that the
SP_AUTOEXPAND configuration parameter set to the default value of 1. All types
of storage spaces except external spaces (extspaces) are automatically expanded.

Automatically managing the location of data

You can automate the process of deciding where to locate databases, tables, and
indexes. You can enable the database server to choose the most optimal location for
databases, table, and indexes, and to automatically fragment tables. Instead of
creating a new database in the root dbspace by default, the database server chooses
the location by favoring non-critical spaces, spaces that have the most efficient
page size, and other factors. The database server fragments new tables by
round-robin and adds more fragments when necessary as the table grows.

You can override the automatic behavior by specifying a location for a database or
table.

Multitenancy

You can create multiple tenant databases in a single Informix instance to segregate
data, storage space, and processing resources among multiple client organizations.
Related concepts:
“Managing automatic location and fragmentation” on page 9-15
Chapter 8, “Data storage,” on page 8-1
Chapter 9, “Manage disk space,” on page 9-1
“Automatic space management” on page 9-23

Manage message logs in an embedded environment (Embeddability Guide)
“Storage optimization” on page 9-53
“Multitenancy” on page 9-49

Chapter 1. Overview of database server configuration and administration 1-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.embed.doc/ids_emb_053.htm#ids_emb_053

Automatic performance tuning
You can set configuration parameters and Scheduler tasks to enable the database
server to automatically adjust values that affect performance. By default, many
automatic tuning configuration parameters and Scheduler tasks are set to solve
common performance issues.

You can configure the database server to adjust resources to improve performance:
v Increase the number of CPU virtual processors (VPs), up to the number of CPU

processors or the number that you specify. Set the VPCLASS configuration
parameter for the cpu class to autotune=1.

v Increase the number of AIO VPs. Set the VPCLASS configuration parameter for
the aio class to autotune=1.

v Increase the size of the buffer pool. Set the BUFFERPOOL configuration
parameter to enable the automatic extension of the buffer pool.

v Increase or decrease the size of private memory caches for CPU VPs. Set the
VP_MEMORY_CACHE_KB configuration parameter to the initial size of the
private memory caches.

v Increase the number of logical log files to improve performance. Set the
AUTO_LLOG configuration parameter to 1, plus the name of the dbspace in
which to add log files, and an optional maximum number of KB for all logical
log files.

v Increase the size of the physical log as needed to improve performance. Create
the plogspace to store the physical log.

If you created a server during installation, the buffer pool, logical log, and physical
log are configured for automatic extension.

The following automatic tuning options are enabled by default. You can control
whether the options are enabled.
v Increase the number of CPU virtual processors to half the number of CPU

processors to ensure optimum performance. Control with the
auto_tune_cpu_vps task in the Scheduler.

v Increase the number of AIO virtual processors and page cleaner threads increase
I/O capability. Control with the AUTO_TUNE configuration parameter.

v Process read-ahead requests to reduce the time to wait for disk I/O. Control
with the AUTO_TUNE configuration parameter.

v Trigger checkpoints as frequently as necessary and add logical log files as
needed to avoid the blocking of transactions. Control with the AUTO_TUNE and
the DYNAMIC_LOGS configuration parameters.

v Tune LRU flushing to improve transaction throughput. Control with the
AUTO_TUNE configuration parameter.

v Reoptimize SPL routines and reprepare prepared objects after the schema of a
table is changed to prevent manual processes and errors. Control with the
AUTO_TUNE configuration parameter.

v Updates statistics that are stale or missing at scheduled intervals to improve
query performance. Control with Auto Update Statistics tasks in the Scheduler
and the AUTO_TUNE configuration parameter.

v Run light scans on compressed tables, tables with rows that are larger than a
page, and tables with VARCHAR, LVARCHAR, and NVARCHAR data. Control
with the BATCHEDREAD_TABLE configuration parameter.

v Fetch a set of keys from an index buffer to reduce the number of times that a
buffer is read. Control with the BATCHREAD_INDEX configuration parameter.

1-6 IBM Informix Administrator's Guide

v Increase shared memory caches to improve query performance. Control with the
DS_POOLSIZE, PC_POOLSIZE, PLCY_POOLSIZE, and USRC_POOLSIZE
configuration parameters.

Related reference:
“Built-in tasks and sensors” on page 27-3

Database configuration parameters (Administrator's Reference)

onspaces -c -P: Create a plogspace (Administrator's Reference)

Feature configuration
You can configure the database server to support the types of optional
functionality that you need.

The following features are often enabled:

Parallel database queries
You can control the resources that the database server uses to perform
decision-support queries in parallel. You must balance the requirements of
decision-support queries against the requirements of online transaction
processing (OLTP) queries. The resources that you must consider include
shared memory, threads, temporary table space, and scan bandwidth.

Data replication
Data replication is the process of representing database objects at more
than one distinct site.

High-availability cluster configurations consist of a primary server and one
or more secondary servers that contain the same data as the primary
server. High-availability clusters can provide redundancy, failover,
workload balancing, and scalability. You can direct connections from
applications to cluster servers with Connection Manager.

Enterprise Replication replicates all or a specified subset of the data
between geographically distributed database servers. You can define set of
replication servers as a grid to administer and run queries across the
servers. You can combine a high-availability cluster and Enterprise
Replication on the same database server.

Auditing
If you enabled role separation when you installed the database server, you
can audit selected activities. To use database server auditing, you must
specify where audit records are stored, how to handle error conditions, and
other configuration options. You also might want to change how users are
audited if you suspect that they are abusing their access privileges.

Security
You can keep your data secure by preventing unauthorized viewing and
altering of data or other database objects. Use network encryption to
encrypt data that is transmitted between servers and clients, and between
servers. You can use column-level encryption to store sensitive data in an
encrypted format. You create secure connections to the database server
with authentication and authorization processes. Discretionary access
control verifies whether the user who is attempting to perform an
operation is granted the required privileges to perform that operation. You
can use label-based access control (LBAC) to control who has read access
and who has write access to individual rows and columns of data.

Chapter 1. Overview of database server configuration and administration 1-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0007.htm#ids_adr_0007
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1182.htm#ids_adr_1182

Distributed queries
You can use the database server to query and update multiple databases
across multiple database servers or within the same database server
instance. IBM Informix uses a two phase commit protocol to ensure that
distributed queries are uniformly committed or rolled back across multiple
database servers.

Disk mirroring
When you use disk mirroring, the database server writes data to two
locations. Mirroring eliminates data loss due to storage device failures. If
mirrored data becomes unavailable for any reason, the mirror of the data is
available immediately and transparently to users.

Warehousing
You can create data warehouse applications and optimize your data
warehouse queries. Informix Warehouse Accelerator is an in-memory
database that boosts performance for analytic queries on operational and
historical data. Informix Warehouse Accelerator uses a columnar,
in-memory approach to accelerate complex warehouse and operational
queries without application changes or tuning.

Related concepts:

Parallel database query (PDQ) (Performance Guide)
Part 5, “High availability and scalability”
Chapter 17, “Mirroring,” on page 17-1

Overview of Informix Warehouse Accelerator (Informix Warehouse Accelerator
Guide)

IBM Informix Enterprise Replication technical overview (Enterprise Replication
Guide)
Related reference:

Distributed queries (Database Design Guide)
Related information:

Auditing data security (Security Guide)

Securing data (Security Guide)

Connectivity configuration
The connectivity information allows a client application to connect to the database
server on the network. You must prepare the connectivity information even if the
client application and the database server are on the same computer or node.

Informix client/server connectivity information, the sqlhosts information, includes
the database server name, the type of connection that a client can use to connect to
the database server, the host name of the computer or node on which the database
server runs, and the service name by which it is known. You do not need to
specify all possible network connections in the sqlhosts information before you
start the database server. However, to make a new connection available you must
shut down the database server and then restart it.

The sqlhosts file contains connectivity information. You might also need to modify
other connectivity and security files, depending on your needs.

When the database server is online, you can connect client applications and begin
to create databases. Before you can access information in a database, the client

1-8 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_577.htm#ids_prf_577
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/ids_acc_011.htm#ids_wh_011
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/ids_acc_011.htm#ids_wh_011
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_008.htm#ids_erp_008
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_008.htm#ids_erp_008
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_141.htm#ids_ddi_141
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_sec_019.htm#ids_sec_019
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_sec_018.htm#ids_sec_018

application must connect to the database server environment. To connect to and
disconnect from a database server, you can issue SQL statements from the client
programs that are included in the IBM Informix Client Software Development Kit
(Client SDK), such as OpenAdmin Tool (OAT) for Informix, DB-Access, or API
drivers.
Related reference:
“Connectivity files” on page 2-9

Automate startup and shutdown on UNIX
You can modify startup and shutdown scripts on UNIX to automatically start and
shut down the database server.

UNIX startup script

Modify the UNIX startup script to start the database server automatically when
your computer enters multiuser mode.
1. Add UNIX and database server utility commands to the UNIX startup script so

that the script performs the following actions:
v Sets the INFORMIXDIR environment variable to the full path name of the

directory in which the database server is installed.
v Sets the PATH environment variable to include the $INFORMIXDIR/bin directory.
v Sets the INFORMIXSERVER environment variable so that the sysmaster database

can be updated (or created, if necessary).
v Runs the oninit command, which starts the database server and leaves it in

online mode.
2. If you plan to start multiple versions of the database server (multiple

residency), you must add commands in the script to set the ONCONFIG and
INFORMIXSERVER environment variables and run the oninit command for each
instance of the database server.

3. If different versions of the database server are installed in different directories,
you must add commands to the script to set the INFORMIXDIR environment
variable and repeat the preceding steps for each version.

UNIX shutdown script

Modify your UNIX shutdown script to shut down the database server in a
controlled manner whenever UNIX shuts down. The database server shutdown
commands run after all client applications complete transactions and exit.
1. Add UNIX and database server utility commands to the UNIX shutdown script

so that the script performs the following tasks:
v Sets the INFORMIXDIR environment variable to the full path name of the

directory in which the database server is installed.
v Sets the PATH environment variable to include the $INFORMIXDIR/bin directory.
v Sets the ONCONFIG environment variable to the appropriate configuration file.
v Runs the onmode -ky command, which initiates an immediate shutdown

and takes the database server offline.
2. If you are running multiple versions of the database server (multiple

residency), you must add commands in the script to set the ONCONFIG
environment variable and run the onmode -ky command for each instance.

Chapter 1. Overview of database server configuration and administration 1-9

3. If different versions of the database server are installed in different directories,
you must add commands to the script to set the INFORMIXDIR environment
variable and repeat the preceding steps for each version.

Related concepts:

Environment variables in Informix products (SQL Reference)
Related reference:

Database configuration parameters (Administrator's Reference)

The oninit utility (Administrator's Reference)

Automate startup on Windows
You can automate startup of the database server on Windows.

To start the database server automatically when Windows starts:
1. From the Service control application window, select the IBM Informix service

and click Startup.
2. Select Automatic in the Status Type dialog box.
3. In the Log On As dialog box, select This Account and verify that informix is

in the text box.

To stop automatic startup, clear the Automatic property.

Database server maintenance tasks
In addition to monitoring the database server for potential problems, regularly
perform routine maintenance tasks to keep the server running smoothly and with
optimum performance.

You can use the IBM OpenAdmin Tool (OAT) for Informix or Informix
command-line utilities to perform the following tasks. Not all of the following
tasks are appropriate for every installation.

Backup data and logical log files
To ensure that you can recover your databases in the event of a failure,
make frequent backups of your storage spaces and logical logs. You can
create backups with the ON-Bar utility or the ontape utility. You can
automate backups with OAT.

Check data for consistency
To ensure that data is consistent, perform occasional checks.

Manage logical logs
To ensure database server performance, perform logical-log administration
tasks, such as, backing up logical-log files, adding, freeing, and resizing
logical-log files, and specifying high-watermarks. The database server
dynamically allocates logical-log files while online to prevent long
transactions from blocking user transactions.

Manage the physical log
To ensure database server performance, make sure that you allocate
enough space for the physical log. You can change the size and location of
the physical log. When the database server starts, it checks whether the
physical log is empty because that implies that the server shut down in a
controlled fashion. If the physical log is not empty, the database server
automatically performs a fast recovery. Fast recovery automatically restores

1-10 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_199.htm#ids_sqr_199
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0007.htm#ids_adr_0007
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0395.htm#ids_adr_0395

the databases to a state of physical and logical consistency after a system
failure that might have left one or more transactions uncommitted.

Manage shared memory
To ensure that the database server has the appropriate amount of shared
memory to maintain performance goals, perform the following tasks:
v Changing the size or number of buffers (by changing the size of the

logical-log or physical-log buffer, or changing the number of buffers in
the shared-memory buffer pool)

v Changing shared-memory parameter values
v Changing forced residency (on or off, temporarily or for a session)
v Tuning checkpoint intervals
v Adding segments to the virtual portion of shared memory
v Configuring the SQL statement cache to reduce memory usage and

preparation time for queries

Manage virtual processors
To ensure database server performance, configure enough virtual
processors (VPs). The configuration and management of VPs has a direct
affect on the performance of a database server. The optimal number and
mix of VPs for your database server depends on your hardware and on the
types of applications that your database server supports.

Manage the database server message log
To ensure that message log space does not fill, monitor the size of the
database server message log. The database server appends new entries to
this file. You can enable the automatic rotating of the database server
message log to limit the total size of the log files.

Related concepts:
Chapter 19, “Consistency checking,” on page 19-1
Chapter 13, “Logical log,” on page 13-1
Chapter 15, “Physical logging, checkpoints, and fast recovery,” on page 15-1
Chapter 6, “Shared memory,” on page 6-1
Chapter 4, “Virtual processors and threads,” on page 4-1

Tasks that automatically rotate message log files (Embeddability Guide)
Related reference:

Overview of backup and restore (Backup and Restore Guide)

Database server monitoring
You can use various tools to monitor database server activity. In addition to tools
and utilities that are provided with Informix, you can use tools that are provided
by the operating system.

IBM OpenAdmin Tool (OAT) for Informix
OAT is a web application for administering and analyzing the performance
of IBM Informix database servers. You can administer multiple database
server instances from a single OAT installation on a web server. You can
access the web server through any browser to administer all your database
servers. The IBM Informix Health Advisor Plug-in for OpenAdmin Tool
(OAT) analyzes the state of the Informix database server. The Health
Advisor plug-in gathers information about the database server, the
databases, and the operating system, and creates a report that contains the
results and recommendations.

Chapter 1. Overview of database server configuration and administration 1-11

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.embed.doc/ids_emb_057.htm#ids_emb_057
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.bar.doc/ids_bar_168.htm#ids_bar_168

You can check the status and performance of one or more Informix
database servers from your mobile device with the IBM Mobile
OpenAdmin Tool for Informix.

Event alarms
You can enable event alarms to report situations that require your
immediate attention. To use the event-alarm feature, set the
ALARMPROGRAM configuration parameter to the full path name of an
executable file that performs the necessary administrative actions. You can
monitor event alarms in OAT or configure how to receive the alarms.

Database server message log
The database server message log is an operating-system file. The messages
that are contained in the database server message log do not usually
require immediate action. If the database server experiences a failure, the
message log serves as an audit trail for retracing the events that led to an
unanticipated problem. Often the message log provides the exact nature of
the problem and the suggested corrective action.

Monitor the message log once or twice a day to ensure that processing is
proceeding normally and that events are being logged as expected. You can
view the message log in OAT.

Alternatively, run the onstat -m command to obtain the name of the
message log and the 20 most recent entries, or read the complete message
log in a text editor. Run an operating-system command, such as the UNIX
command tail -f, to see the messages as they occur. To view additional
information about a message, use the finderr utility.

onstat utility
The onstat utility provides commands to monitor the database server from
the command line. The onstat utility reads data from shared memory and
reports statistics that are accurate for the instant during which the
command runs. That is, onstat provides information that changes
dynamically during processing, including changes in buffers, locks,
indexes, and users. You can run onstat commands at the command line or
in OAT.

SMI tables
The system-monitoring interface (SMI) tables contain dynamic information
about the state of the database server. You can use SELECT statements on
SMI tables to determine almost anything you might want to know about
your database server. SMI tables are in the sysmaster database.

System console
The database server sends messages that are useful to the database server
administrator by way of the system console. By default, the system console
is set to online.con. To change the destination path name of console
messages, set the CONSOLE configuration parameter.

Windows only: A database server system administrator can log in to the
console from any node to perform system management and monitoring
tasks.

Related concepts:

Event Alarms (Administrator's Reference)

The sysmaster database (Administrator's Reference)
Related reference:

1-12 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0668.htm#ids_adr_0668
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0199.htm#ids_adr_0199

The finderr utility (Administrator's Reference)

The onstat utility (Administrator's Reference)

UNIX operating-system tools
The database server relies on the operating system of the host computer to provide
access to system resources such as the CPU, memory, and various unbuffered disk
I/O interfaces and files. Each operating system has its own set of utilities for
reporting how system resources are used. Different operating-systems might have
monitoring utilities with the same name but different options and informational
displays.

The following table shows typical UNIX operating-system resource-monitoring
utilities. For information about how to monitor your operating-system resources,
consult your system administration guide.

UNIX utility Description

vmstat Displays virtual-memory statistics.

iostat Displays I/O utilization statistics.

sar Displays various resource statistics.

ps Displays active process information.

cron Captures the status of system resources by a system scheduler that runs
a command or program at regular intervals. You also can use other
scheduling tools that are available with your operating system.

Windows administrative utilities
You can use IBM Informix utilities and Windows utilities to administer and
monitor the database server on Windows operating systems.

The following Informix utilities simplify administration of the database server on
Windows.

Utility Description and usage

ixpasswd.exe Changes the logon password for all services that log on as user informix. You can change
the password interactively or on the command line by running the -y option. Using this
utility, you are not required to manually change the password for each service whenever
you change the informix password.

If you are logged on locally and run ixpasswd, it changes the password for services that
log on as the local informix user. If you are logged on domain and run ixpasswd, it changes
the password for services that log on as domain\informix

Usage: ixpasswd [-y new_password]

Chapter 1. Overview of database server configuration and administration 1-13

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1149.htm#ids_adr_1149
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0488.htm#ids_adr_0488

Utility Description and usage

ixsu.exe Opens a command line window that runs as the specified user. The user is a local user
unless you specify a domain name. If you do not specify a user name, the default user is
informix. You no longer are required to log off as the current user and log on as informix
to do DBA tasks that must be run as informix.

The ixsu utility requires Advanced User Rights:

v Act as part of the operating system

v Increase quotas

v Replace a process-level token

For information about setting Advanced User Rights, see your Windows documentation.

Usage: ixsu [[domain\]username]

ntchname.exe Changes the registry entries for IBM Informix from the old host name to the new host
name. Run ntchname after you change the host name. This utility does not change user
environment variables.

After you run ntchname, edit the %INFORMIXDIR%\%INFORMIXSERVER%.cmd file and change the
INFORMIXSQLHOSTS entry to the new host name.

Usage: ntchname old_name new_name

Windows Event Viewer

The Event Viewer shows informational, warning, and error messages for the
operating system, other applications, and the database server.

To show database server messages, from the Administrative Tools window, choose
Event Viewer > Security. Double-click any event for a detailed message.

Windows Performance Monitor

The Windows Performance Monitor (perfmon.exe) shows resources such as
processor, memory, cache, threads, and processes. The Performance Monitor also
creates charts, alerts, and reports. You can save information to log files for later
analysis.

To show the Performance Monitor, from the Administrative Tools window, choose
Performance.

1-14 IBM Informix Administrator's Guide

Chapter 2. Client/server communication

These topics explain the concepts and terms that you must understand in order to
configure client/server communication.
Related tasks:
“Changing client connectivity information” on page 24-8

Client/server architecture
IBM Informix products conform to the client/server software-design model.
Application or clients can be on the computer housing the database server or on a
different computer. Client applications issue requests for services and data from
the database server. The database server responds by providing the services and
data that the client requested.

You use a network protocol together with a network programming interface to connect
and transfer data between the client and the database server.

Network protocol
A network protocol is a set of rules that govern how data is transferred between
applications and, in this context, between a client and a database server.

The rules of a protocol are implemented in a network driver. A network driver
contains the code that formats the data when it is sent from client to database
server and from database server to client.

Clients and database servers gain access to a network driver by way of a network
programming interface. A network programming interface contains system calls or
library routines that provide access to network-communications facilities. An
example of a network programming interface for UNIX is TLI (Transport Layer
Interface). An example of a network programming interface for Windows is
WINSOCK (sockets programming interface).

The power of a network protocol lies in its ability to enable client/server
communication even though the client and database server are on different
computers with different architectures and operating systems.

You can configure the database server to support more than one protocol, but
consider this option only if some clients use TCP/IP.
Related concepts:
“The sqlhosts file and the SQLHOSTS registry key” on page 2-17
“Database server connections” on page 2-3
Related tasks:
“Connections that the database server supports” on page 2-5
Related reference:
“Network-configuration files” on page 2-10

© Copyright IBM Corp. 1996, 2014 2-1

Network programming interface
A network programming interface is an application programming interface (API) that
contains a set of communications routines or system calls. An application can call
these routines to communicate with another application that is on the same or on
different computers. In the context of this explanation, the client and the database
server are the applications that call the routines in the TLI or sockets API. Clients
and database servers both use network programming interfaces to send and
receive the data according to a communications protocol.

Both client and database server environments must be configured with the same
protocol if client/server communication is to succeed. However, some network
protocols can be accessed through more than one network programming interface.
For example, TCP/IP can be accessed through either TLI or sockets, depending on
which programming interface is available on the operating-system platform.
Related concepts:
“Communication support services” on page 2-9
“Network security files” on page 2-12
Related reference:
“A network connection” on page 2-50

Windows network domain
Windows network technology enables you to create network domains. A domain is
a group of connected Windows computers that share user account information and
a security policy. A domain controller manages the user account information for all
domain members.

The domain controller facilitates network administration. By managing one account
list for all domain members, the domain controller relieves the network
administrator of the requirement to synchronize the account lists on each of the
domain computers. In other words, the network administrator who creates or
changes a user account must update only the account list on the domain controller
rather than the account lists on each of the computers in the domain.

To log in to a Windows database server, a user on another Windows computer
must belong to either the same domain or a trusted domain. A trusted domain is
one that establishes a trust relationship with another domain. In a trust relationship,
user accounts are only in the trusted domain.

A user who attempts to log in to a Windows computer that is a member of a
domain can do so either by using a local login and profile or a domain login and
profile. However, if the user is listed as a trusted user or the computer from which
the user attempts to log in is listed as a trusted host, the user can be granted login
access without a profile.

Important: A client application can connect to the database server only if there is
an account for the user ID in the Windows domain in which the database server
runs. This rule also applies to trusted domains.

If you specify a user identifier but no domain name for a connection to a
workstation that expects both a domain name and a user name (domain\user), the
database server checks only the local workstation and the primary domain for the
user account. If you explicitly specify a domain name, that domain is used to
search for the user account. The attempted connection fails with error -951 if no
matching domain\user account is found on the local workstation.

2-2 IBM Informix Administrator's Guide

Use the CHECKALLDOMAINSFORUSER configuration parameter to configure
how the database server searches for user names in a networked Windows
environment.

Table 2-1. Locations Informix searches for user names specified either alone or with a
domain name.

Domain and user
specified

User name only
specified

CHECKALLDOMAINSFORUSER is unset Searches in the
specified domain
only

Searches on the local
host only

CHECKALLDOMAINSFORUSER=0 Searches in the
specified domain
only

Searches on the local
host only

CHECKALLDOMAINSFORUSER=1 Searches in the
specified domain
only

Searches in all
domains

Important: The database server's trusted client mechanism is unrelated to the trust
relationship that you can establish between Windows domains. Therefore, even if a
client connects from a trusted Windows domain, the user must have an account in
the domain on which the database server is running.
Related reference:

CHECKALLDOMAINSFORUSER configuration parameter (Administrator's
Reference)

Database server connections
A client application establishes a connection to a database server with either the
CONNECT or DATABASE SQL statement. For example, an application might
contain the following CONNECT statement to connect to the database server
named my_server:
CONNECT TO ’@my_server’

Tip: The database server's internal communications facility is called Association
Services Facility (ASF). If you see an error message that includes a reference to
ASF, you have a problem with your connection.
Related reference:
“Network protocol” on page 2-1

CONNECT statement (SQL Syntax)

DATABASE statement (SQL Syntax)

Supporting multiplexed connections
Some applications connect multiple times to the same database server on behalf of
one user. A multiplexed connection uses a single network connection between the
database server and a client to handle multiple database connections from the
client. Client applications can establish multiple connections to a database server to
access more than one database on behalf of a single user. If the connections are not
multiplexed, each database connection establishes a separate network connection to
the database server. Each additional network connection uses additional computer
memory and processor time, even for connections that are not active. Multiplexed

Chapter 2. Client/server communication 2-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1064.htm#ids_adr_1064
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1064.htm#ids_adr_1064
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0344.htm#ids_sqs_0344
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0652.htm#ids_sqs_0652

connections enable the database server to create multiple database connections
without using up the additional computer resources that are required for
additional network connections.

To configure the database server to support multiplexed connections:
1. Define an alias using the DBSERVERALIASES configuration parameter. For

example, specify:
DBSERVERALIASES ifx_mux

2. Add an sqlhosts file entry for the alias using onsqlmux as the nettype entry.
The hostname and servicename, must have entries, but the entries are ignored.
Dashes (-) can be used as entries. For example:
#dbservername nettype hostname servicename options
ifx_mux onsqlmux - -

3. Enable multiplexing for the selected connection types by specifying m=1 in the
sqlhosts entry that the client uses for the database server connection. For
example:
#dbservername nettype hostname servicename options
menlo ontlitcp valley jfkl m=1

4. On Windows platforms, you must also set the IFX_SESSION_MUX
environment variable.

The following example shows both onconfig file and sqlhosts file entries.

onconfig file:
DBSERVERNAME web_tli
DBSERVERALIASES web_mux

sqlhosts file:
#dbservername nettype hostname servicename options
web_tli ontlitcp node5 svc5 m=1
web_mux onsqlmux - -

You are not required to change the sqlhosts information that the database server
uses. The client program does not require any special SQL calls to enable
connections multiplexing. Connection multiplexing is enabled automatically when
the onconfig file and the sqlhosts entries are configured appropriately and the
database server starts.

Multiplexed connections do not support:
v Multithreaded client connections
v Shared-memory connections
v Connections to subordinate database servers (for distributed queries or data

replication, for example)

If any of these conditions exist when an application attempts to establish a
connection, the database server establishes a standard connection. The database
server does not return an SQL error.

The Informix ESQL/C sqlbreak() function is not supported during a multiplexed
connection.
Related concepts:
“The sqlhosts file and the SQLHOSTS registry key” on page 2-17

Multiplexed connections and CPU utilization (Performance Guide)

2-4 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_127.htm#ids_prf_127

Related reference:
“sqlhosts file and SQLHOSTS registry key options” on page 2-24

DBSERVERNAME configuration parameter (Administrator's Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

Connections that the database server supports
The database server supports the following types of connections with client
application.

Connection type Windows UNIX Local Network

Sockets X X X X

TLI (TCP/IP) X X X

Shared memory X X

Secure Sockets Layer
(SSL)

X X X

Stream pipe X X

Named pipe X X

Secure Sockets Layer (SSL) connections use encryption for data communication
between two points over a network.

When configuring connectivity, consider setting the LISTEN_TIMEOUT and
MAX_INCOMPLETE_CONNECTION configuration parameters. These parameters
enable you to reduce the risk of a hostile denial-of-service (DOS) attack by making
it more difficult to overwhelm the Listener VP that handles connections.

UNIX only: On many UNIX platforms, the database server supports multiple
network programming interfaces. The machine notes show the interface/protocol
combinations that the database server supports for your operating system.

To set up a client connection:
1. Specify connectivity and connection configuration parameters in your onconfig

file.
2. Set up appropriate entries in the connectivity files on your platform.
3. Specify connectivity environment variables in your UNIX start-up scripts or the

local and domain-wide Windows registries.
4. Add an sqlhosts entry to define a dbserver group for your database server.
Related concepts:

Secure sockets layer protocol (Security Guide)

Limiting denial-of-service flood attacks (Security Guide)
“The sqlhosts information” on page 2-19
Related reference:

NETTYPE configuration parameter (Administrator's Reference)
“Network protocol” on page 2-1

LISTEN_TIMEOUT configuration parameter (Administrator's Reference)

Chapter 2. Client/server communication 2-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0045.htm#ids_adr_0045
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_ssl_001.htm#ids_ssl_001
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_034.htm#ids_am_034
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0114.htm#ids_adr_0114
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0093.htm#ids_adr_0093

MAX_INCOMPLETE_CONNECTIONS configuration parameter
(Administrator's Reference)
“Connectivity files” on page 2-9
“Configuration parameters related to connectivity” on page 2-38
“Environment variables for network connections” on page 2-43
“sqlhosts connectivity information” on page 2-20

Local connections
A local connection is a connection between a client and the database server on the
same computer. The following topics describe different types of local connections.

Shared-memory connections (UNIX)
A shared-memory connection uses an area of shared-memory as the channel through
which the client and database server communicate with each other. A client cannot
have more than one shared-memory connection to a database server.

The following figure illustrates a shared-memory connection.

Shared memory provides fast access to a database server, but it poses some
security risks. Errant or malicious applications might delete or view message
buffers of their own or of other local users. Shared-memory communication is also
vulnerable to programming errors if the client application performs explicit
memory addressing or over-indexes data arrays. Such errors do not affect the
database server if you use network communication or stream pipes.

Example of a shared-memory connection

The following figure shows a shared-memory connection on the computer named
river.

Computer

Shared
memory

Client
application

Database server

Figure 2-1. Client application and a database server communication through a
shared-memory connection.

2-6 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0106.htm#ids_adr_0106
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0106.htm#ids_adr_0106

The onconfig file for this installation includes the following line:
DBSERVERNAME river_shm

The sqlhosts file for this installation includes the following lines:
#dbservername nettype hostname servicename options
river_shm onipcshm river rivershm

The client application connects to this database server using the following
statement:
CONNECT TO ’@river_shm’

For a shared-memory connection, no entries in network configuration files are
required. Use arbitrary values for the hostname and servicename fields of the
sqlhosts file.
Related concepts:
“Communications portion of shared memory (UNIX)” on page 6-19
“How a client attaches to the communications portion (UNIX)” on page 6-4
Related reference:
“Examples of client/server configurations” on page 2-49

Stream-pipe connections (UNIX and Linux)
A stream pipe is a UNIX interprocess communication (IPC) facility that allows
processes on the same computer to communicate with each other.

Stream-pipe connections have the following advantages:
v Unlike shared-memory connections, stream pipes do not pose the security risk of

being overwritten or read by other programs that explicitly access the same
portion of shared memory.

v Unlike shared-memory connections, stream-pipe connections allow distributed
transactions between database servers that are on the same computer.

Stream-pipe connections have the following disadvantages:
v Stream-pipe connections might be slower than shared-memory connections on

some computers.
v Stream pipes are not available on all platforms.
v When you use shared memory or stream pipes for client/server

communications, the hostname entry is ignored.

Shared
memory

Client

river_shm

Database server

river

Figure 2-2. A shared-memory connection between a client application and a database server
named river_shm.

Chapter 2. Client/server communication 2-7

Related reference:
“sqlhosts connectivity information” on page 2-20

Named-pipe connections (Windows)
Named pipes are application programming interfaces (APIs) for bidirectional
interprocess communication (IPC) on Windows. Named-pipe connections provide a
high-level interface to network software by making transport-layer operations
transparent. Named pipes store data in memory and retrieve it when requested, in
a way that is similar to reading from and writing to a file system.

Local-loopback connections
A network connection between a client application and a database server on the
same computer is called a local-loopback connection. The networking facilities used
are the same as if the client application and the database server were on different
computers. You can make a local-loopback connection provided your computer is
equipped to process network transactions. Local-loopback connections are not as
fast as shared-memory connections, but they do not pose the security risks of
shared memory.

In a local-loopback connection, data seems to pass from the client application, out
to the network, and then back in again to the database server. The internal
connection processes send the information directly between the client and the
database server and do not put the information out on the network.

An example of a local-loopback connection

The following figure shows a local-loopback connection that uses sockets and
TCP/IP.

The sqlhosts file for this installation includes the following lines:
#dbservername nettype hostname servicename options
river_soc onsoctcp river riverol

If the network connection uses TLI instead of sockets, only the nettype entry in
this example changes. In that case, the nettype entry is ontlitcp instead of
onsoctcp.

The onconfig file for this installation includes the following lines:
DBSERVERNAME river_soc

This example assumes that an entry for river is in the hosts file and an entry for
riverol is in the services file.

Client Database server

SOC - TCP

TCP/IP network
programming
interface

river_soc

river

Figure 2-3. A local-loopback connection between a client and a database server named
river_soc on a computer named river.

2-8 IBM Informix Administrator's Guide

Related reference:
“Examples of client/server configurations” on page 2-49

Communication support services
Communication support services include connectivity-related services such as:
v Authentication, which is the process of verifying the identity of a user or an

application. The most common form of authentication is to require the user to
enter a name and password to obtain access to a computer or an application.

v Message integrity, which ensures that communication messages are intact and
unaltered when they arrive at their destination.

v Message confidentiality, which protects messages from unauthorized viewing,
usually through encryption and decryption, during transmission.

Communication support services can also include other processing such as data
compression or traffic-based accounting.

The database server provides extra security-related communication support
services through plug-in software modules called Communication Support
Modules (CSM). The database server uses the default authentication policy when
you do not specify a communications support module.
Related concepts:
“Network programming interface” on page 2-2
“Network security files” on page 2-12

Communication support modules for data transmission encryption (Security
Guide)

Single sign-on authentication (Security Guide)

Simple password encryption (Security Guide)

Connectivity files
The connectivity files contain the information that enables client/server
communication and enable a database server to communicate with another
database server.

The connectivity configuration files can be divided into three groups:
v Network-configuration files
v Network security files
v The sqlhosts file

Windows: On the database server, the connectivity information is stored in the
sqlhosts file; however, on clients the connectivity information is stored in the
SQLHOSTS registry.
Related tasks:
“Connections that the database server supports” on page 2-5
Related reference:
“Connectivity configuration” on page 1-8

Chapter 2. Client/server communication 2-9

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_en_003.htm#ids_en_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_en_003.htm#ids_en_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_sso_001.htm#ids_sso_001
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_027.htm#ids_am_027

Network-configuration files
These topics identify and explain the use of network-configuration files on TCP/IP
networks.
Related reference:
“Network protocol” on page 2-1

TCP/IP connectivity files
When you configure the database server to use the TCP/IP network protocol, you
use information from the hosts and services files to prepare the sqlhosts
information.

The hosts file requires a single entry for each network-controller card that connects
a computer running an IBM Informix client/server product on the network. Each
entry in the file contains the IP address (or ethernet card address) and host name.
You can also include the host alias. Although the length of the host name is not
limited in the hosts file, the IBM Informix database server limits the host name to
256 bytes.

The following example has two entries.
#address hostname alias
98.555.43.21 odyssey
12.34.56.555 illiad sales

The services file contains an entry for each service available through TCP/IP.
Each entry is a single line that contains the following information:
v Service name

IBM Informix products use this name to determine the port number and
protocol for making client/server connections. The service name is limited to 128
bytes.

v Port number and connection protocol, separated by a forward slash (/)
character
The port number is the computer port, and the protocol for TCP/IP is tcp.
The operating system imposes restrictions on the port number. User informix
must use a port number equal to or greater than 1024. Only root users are
allowed to use a port number lower than 1024.

v Host Aliases (optional)

The service name and port number are arbitrary. However, they must be unique
within the context of the file and must be identical on all the computers running
IBM Informix client/server products. The following example has one entry:
#servicename port/protocol
server2 1526/tcp

This entry makes server2 known as the service name for TCP port 1526. A
database server can then use this port to service connection requests.

Important: For database servers that communicate with other database servers,
you must define either a TCP/IP connection or an IPCSTR (interprocess
communications stream pipe) connection for the DBSERVERNAME configuration
parameter. You can also define at least one DBSERVERALIASES configuration
parameter setting with the appropriate connection protocol for connectivity
between the coordinator and the subordinate servers. For cross-server transactions,
each participating server must support a TCP/IP or an IPCSTR connection with
the coordinator, even if both database server instances are on the same

2-10 IBM Informix Administrator's Guide

workstation.
You typically include a separate NETTYPE parameter for each connection type that
is associated with a dbserver name. You list dbserver name entries in the
DBSERVERNAME and DBSERVERALIASES configuration parameters. You
associate connection types with dbserver names through entries in the sqlhosts
file or registry.

The hosts and services files must be available to each computer that runs an IBM
Informix client/server product.

UNIX:

v The hosts and services files are in the /etc directory.
v On systems that use NIS, the hosts and services files are maintained on the

NIS server. The hosts and services files that are on your local computer might
not be used and might not be up to date. To view the contents of the NIS files,
enter the following commands on the command line:
ypcat hosts
ypcat services

Windows:

v The hosts and services files are in %WINDIR%\system32\drivers\etc\.
v You might want to configure TCP/IP to use the Domain Name Service (DNS)

for host name resolutions.
v The Dynamic Host Configuration Product (DHCP) dynamically assigns IP

addresses from a pool of addresses instead of using IP addresses that are
explicitly assigned to each workstation. If your system uses DHCP, Windows
Internet Name Service (WINS) is required. DHCP is transparent to the database
server.

Related reference:
“sqlhosts connectivity information” on page 2-20

Client and server actions when a TCP/IP connection is opened:
When a TCP/IP connection is opened, the following information is read on the
client side:
v The INFORMIXSERVER environment variable.
v The hosts file information (INFORMIXSQLHOSTS environment variable,

$INFORMIXDIR/etc/sqlhosts file and services file information
v Other environment variables
v Resource files

The following information is read on the server side:
v The DBSERVERNAME configuration parameter
v The DBSERVERALIASES configuration parameter
v Server environment variables and configuration parameters, including any

NETTYPE configuration parameter setting that manages TCP/IP connections.
Related reference:

NETTYPE configuration parameter (Administrator's Reference)

Multiple TCP/IP ports
To take advantage of multiple ethernet cards:
v Make an entry in the services file for each port the database server uses, as in

the following example:

Chapter 2. Client/server communication 2-11

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0114.htm#ids_adr_0114

#servicename port/protocol alias
soc1 21/tcp
soc2 22/tcp

Each port of a single IP address must be unique. Separate ethernet cards can use
unique or shared port numbers. You might want to use the same port number
on ethernet cards connecting to the same database server. (In this scenario, the
service name is the same.)

v Put one entry per ethernet card in the hosts file with a separate IP address, as in
the following example:
#address hostname alias
192.147.104.19 svc8
192.147.104.20 svc81

v In the onconfig file, set DBSERVERNAME configuration parameter for one of the
ethernet cards and the DBSERVERALIASES configuration parameter for the other
ethernet card. The following lines show sample entries in the onconfig file:
DBSERVERNAME chicago1
DBSERVERALIASES chicago2

v Add one sqlhosts entry for each ethernet card. That is, make an entry for the
DBSERVERNAME and another entry for the DBSERVERALIASES.
#dbservername nettype hostname servicename options
chicago1 onsoctcp svc8 soc1
chicago2 onsoctcp svc81 soc2

After this configuration is in place, the application communicates through the
ethernet card assigned to the dbserver name that the INFORMIXSERVER environment
variable provides.
Related reference:

INFORMIXSERVER environment variable (SQL Reference)

Network security files
IBM Informix products follow standard security procedures that are governed by
information contained in the network security files. For a client application to
connect to a database server on a remote computer, the user of the client
application must have a valid user ID on the remote computer.
Related concepts:
“Network programming interface” on page 2-2
“Communication support services” on page 2-9
Related reference:

REMOTE_SERVER_CFG configuration parameter (Administrator's Reference)

REMOTE_USERS_CFG configuration parameter (Administrator's Reference)

S6_USE_REMOTE_SERVER_CFG configuration parameter (Administrator's
Reference)

Trusted-host information
Users on trusted hosts are allowed to access the local system without supplying a
password. You can include an optional user name to limit the authentication to a
specific user on a specific host.

Use one of the following trusted-hosts files to specify remote hosts for rlogin, rsh,
rcp, and rcmd remote-authentication:
v hosts.equiv

2-12 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_266.htm#ids_sqr_266
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1123.htm#ids_adr_1123
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1124.htm#ids_adr_1124
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141

v The file that is specified by a database server's REMOTE_SERVER_CFG
configuration parameter

Use trusted-hosts information only for client applications that do not supply a user
account or password. If a client application supplies an invalid account name and
password, the database server rejects the connection even if the trusted-host
information contains an entry for the client computer.

To use trusted-host information for authentication, specify the s=1 or s=3 options in
sqlhosts file entries. If you do not specify an s option, s=3 is the default.

On Windows, the trusted-host file is in the \%WINDIR%\system32\drivers\etc
directory.

On Linux and UNIX systems, the trusted-host file is in the $INFORMIXDIR/etc/
directory.

The hosts.equiv file has the following requirements:
v It must be owned by user informix

v It belong to group informix

v Permissions on the file must be restricted so that only user informix can modify
the file. Using octal permissions, one of the following values is appropriate:
– 644
– 640
– 444
– 440

If you are using the hosts.equiv file and you use the rlogind daemon, you can
execute the following statement on the client computer to determine whether the
client is trusted:
rlogin hostname

If you log-in successfully without receiving a password prompt, the client is
trusted. This method of determining if a client is trusted does not work when the
file specified by the REMOTE_SERVER_CFG configuration parameter is used

Trusted-host file entries

To avoid an extra DNS lookup, specify the host name both with and without the
domain name. For example, if the trusted host is named host1 and it is in the
domain example.com, then add the following entries to the trusted-host file:
#trustedhost username
host1 informix
host1.example.com informix

On some networks, the host name that a remote host uses to connect to a
particular computer might not be the same as the host name that the computer
uses to refer to itself. For example, the network host with the fully qualified
domain name (FQDN) host2.example.com might refer to itself with the local host
name viking. If this situation occurs, specify both host-name formats:
#trustedhost
host2.example.com
viking

Chapter 2. Client/server communication 2-13

Using the file specified by the REMOTE_SERVER_CFG configuration
parameter instead of the hosts.equiv file

In the following situations, use the REMOTE_SERVER_CFG configuration
parameter and the file that the parameter specifies:
v You need different trusted hosts for the database server than those listed for the

OS.
v The security policies at your installation do not allow the use of hosts.equiv.
v You are a user of a non-root server instance and need to control which hosts are

trusted.

To add entries to the file specified by the REMOTE_SERVER_CFG configuration
parameter, you can manually enter the information or you can run the admin() or
task() function with the cdr add trustedhost argument. If you run cdr add
trustedhost argument with the admin() or task() function on a server in a
high-availability cluster, the trusted-host information is added to the trusted-host
files of all database servers in the cluster. Do not run the admin() or task() function
with the cdr list trustedhost argument if you have manually entered
trusted-host information on any of the database servers in a high-availability
cluster or Enterprise Replication domain.
Related concepts:

Creating sqlhost group entries for replication servers (Enterprise Replication
Guide)
“Redirecting clients with the connectivity information” on page 24-7
Related tasks:
“Configuring secure connections for high-availability clusters” on page 21-6
Related reference:
“sqlhosts file and SQLHOSTS registry key options” on page 2-24

INFORMIXSERVER environment variable (SQL Reference)

DBPATH environment variable (SQL Reference)

REMOTE_SERVER_CFG configuration parameter (Administrator's Reference)

S6_USE_REMOTE_SERVER_CFG configuration parameter (Administrator's
Reference)

Trusted-user information
In their .rhosts file, a user can list hosts from which they can connect as a trusted
user. The .rhosts file is located in the user's home directory on the computer
housing the database server. To enable the trusted user authentication, specify s=2
or s=3 in the options in the sqlhosts entry. If you do not specify an s option, s=3 is
the default.

There may be reasons why a user’s .rhosts file cannot be used. For example, a
non-root installation might not have read access to a specific user’s .rhosts file.
You can specify an alternate filename by setting the REMOTE_USERS_CFG
configuration parameter. If you set this parameter, the database server only has a
single trusted-user file for all users.

Each line of the .rhosts file is a host from which the user can connect. You must
specify server names both with and without domain names to avoid performing an
extra DNS lookup. For example:

2-14 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_112.htm#ids_erp_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_112.htm#ids_erp_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_266.htm#ids_sqr_266
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_221.htm#ids_sqr_221
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1123.htm#ids_adr_1123
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141

#trustedusers
xxx.example.com
xxx

yyy.example.com
yyy

The file specified by the REMOTE_USERS_CFG configuration parameter must be a
combination of individual .rhosts files. Each single-line entry of the file has the
following format:
hostname username

For example, suppose the following two .rhosts files existed for users John and
Fred:

~john/.rhosts

#trustedhosts
xxx.example.com
xxx

yyy.example.com
yyy

~fred/.rhosts

#trustedhosts
xxx.example.com
xxx

zzz.example.com
zzz

John does not trust zzz.example.com or zzz, and Fred does not trust
yyy.example.com or yyy.

The .rhosts files could be combined into a single file with the following format:
#trustedhost username
xxx.example.com john
xxx john

yyy.example.com john
yyy john

xxx.example.com fred
xxx fred

zzz.example.com fred
zzz fred

Windows: A home directory is not automatically assigned when the Windows
administrator creates a user identity. The administrator can add a home directory
to a user's profile with the User Manager application.
Related concepts:

Creating sqlhost group entries for replication servers (Enterprise Replication
Guide)
“Redirecting clients with the connectivity information” on page 24-7
Related reference:
“sqlhosts file and SQLHOSTS registry key options” on page 2-24

INFORMIXSERVER environment variable (SQL Reference)

Chapter 2. Client/server communication 2-15

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_112.htm#ids_erp_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_112.htm#ids_erp_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_266.htm#ids_sqr_266

DBPATH environment variable (SQL Reference)

REMOTE_USERS_CFG configuration parameter (Administrator's Reference)

The netrc information
The netrc information is optional information that specifies identity data. A user
who does not have authorization to access the database server or is not on a
computer that is trusted by the database server can use this file to supply a name
and password that are trusted. A user who has a different user account and
password on a remote computer can also provide this information.

UNIX: The netrc information is in the .netrc file in the user's home directory. Use
any standard text editor to prepare the .netrc file. The format of a netrc entry is:
machine machine_name login user_name password user_password

Windows: Use the Host Information tab of setnet32 to edit the netrc information.

If you do not explicitly provide the user password in an application for a remote
server (that is, through the USER clause of the CONNECT statement or the user
name and password prompts in DB-Access), the client application looks for the
user name and password in the netrc information. If the user explicitly specified
the password in the application, or if the database server is not remote, the netrc
information is not consulted.

The database server uses the netrc information regardless of whether it uses the
default authentication policy or a communications support module.

For information about the specific content of this file, see your operating system
documentation.

Windows only: On Windows, a home directory is not automatically assigned
when the Windows administrator creates a user identity. The administrator can
add a home directory to a user's profile with the User Manager application
Related reference:
“sqlhosts file and SQLHOSTS registry key options” on page 2-24

User impersonation:
For certain client queries or operations, the database server must impersonate the
client to run a process or program on behalf of the client. In order to impersonate
the client, the database server must receive a password for each client connection.
Clients can provide a user ID and password through the CONNECT statement or
netrc information.

The following examples show how you can provide a password to impersonate a
client.

netrc
machine trngpc3 login bruce password im4golf

CONNECT statement
CONNECT TO ol_trngpc3 USER bruce USING "im4golf"

2-16 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_221.htm#ids_sqr_221
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1124.htm#ids_adr_1124

The sqlhosts file and the SQLHOSTS registry key
IBM Informix client/server connectivity information, the sqlhosts information,
contains information that enables a client application to find and connect to any
IBM Informix database server on the network.

The default location of the sqlhosts file is:

UNIX: $INFORMIXDIR/etc/sqlhosts

Windows:
%INFORMIXDIR%\etc\sqlhosts.%INFORMIXSERVER%

If you store the information in another location, you must set the INFORMIXSQLHOSTS
environment variable.

If you set up several database servers to use distributed queries, use one of the
following ways to store the sqlhosts information for all the databases:
v In one sqlhosts file, pointed to by the INFORMIXSQLHOSTS environment variable
v In separate sqlhosts files in each database server directory
Related concepts:
“Redirecting clients with the connectivity information” on page 24-7
Related tasks:
“Supporting multiplexed connections” on page 2-3
Related reference:
“Network protocol” on page 2-1

Creating the sqlhosts file with a text editor
The sqlhosts file is located, by default, in the $INFORMIXDIR/etc directory. As an
alternative, you can set the INFORMIXSQLHOSTS environment variable to the full path
name and file name of a file that contains the sqlhosts information. Each
computer that hosts a database server or a client must have an sqlhosts file.

Open any standard text editor to create the sqlhosts file.

Note:

v Use white space (spaces, tabs, or both) to separate the fields.
v Do not include any spaces or tabs within a field.
v To put comments in the sqlhosts file, start a line with the comment character

(#). You can also leave lines blank for readability.

Sample sqlhosts file

The following code block shows a sample sqlhosts file.
#dbservername nettype hostname servicename options
menlo onipcshm valley menlo
newyork ontlitcp hill dynsrvr2 s=2,b=5120
payroll onsoctcp dewar py1
asia group - - e=asia.3
asia.1 ontlitcp node6 svc8 g=asia
asia.2 onsoctcp node0 svc1 g=asia
portland drsocssl dewar portland_serv

Setting up the SQLHOSTS registry key with Setnet32 (Windows)
A client application connects to an Informix database server that is running on a
computer that can be reached through the network. To establish the connection,

Chapter 2. Client/server communication 2-17

use Setnet32 to specify the location of the Informix database server on the network
and the network communications protocol to use. You must obtain this information
from the administrator of the database server you want to use.

If you specify a shared SQLHOSTS registry key, you must set the
INFORMIXSQLHOSTS environment variable on your local computer to the name
of the Windows computer that stores the registry. The database server first looks
for the SQLHOSTS registry key on the INFORMIXSQLHOSTS computer. If the
database server does not find an SQLHOSTS registry key on the
INFORMIXSQLHOSTS computer, or if INFORMIXSQLHOSTS is not set, the
database server looks for an SQLHOSTS registry key on the local computer.

You must comply with Windows network-access conventions and file permissions
to ensure that the local computer has access to the shared SQLHOSTS registry key.
For information about network-access conventions and file permissions, see your
Windows documentation.
1. Double-click Setnet32 in the folder that contains the Client SDK products.

The Informix Setnet32 window opens.
2. Click the Server Information tab to display the Server Information page,

which has the following elements:
v Informix Server

Select an existing Informix database server or type the name of a new
database server.

v Host Name

Select the host computer with the database server that you want to use or
type the name of a new host computer.

v Protocol Name

Select a network protocol from a list of protocols that the installation
procedure provides.

v Service Name

Specify the service name that is associated with a specific database server.
Type either the service name or the port number that is assigned to the
database server on the host computer. You must obtain this information from
the database server administrator.

Requirement: If you enter a service name, it must be defined on the client
computer in the services file in the Windows installation directory. This file
is in system32\drivers\etc\services. The service definition must match the
definition on the database server host computer.

v Options

Enter options specific to the database server. For more information, see the
IBM Informix Administrator's Guide.

v Make Default Server

Sets the INFORMIXSERVER environment variable to the name of the current
database server to make it the default database server.

v Delete Server

Deletes the definition of a database server from the Windows registry. It also
deletes the host name, protocol name, and service name associated with that
database server.

3. Click OK to save the values.

2-18 IBM Informix Administrator's Guide

The sqlhosts information
Each computer that hosts a database server or a client must include connectivity
information.

The sqlhosts information contains connectivity information for each database
server. The sqlhosts information also contains definitions for groups. The database
server looks up the connectivity information when you start the database server,
when a client application connects to a database server, or when a database server
connects to another database server.

In the sqlhosts file, each row contains the connectivity information for one
database server, or the definition for one group.
v The connectivity information for each database server includes four fields of

required information and one field for options.
v The group definition contains information in only three of the fields.

In the registry, the database server name is assigned to a key in the SQLHOSTS
registry key, and the other fields are values of that key.

The following table summarizes the fields that are used for the SQLHOSTS
information.

Field name in the
sqlhosts file

Field name in the
SQLHOSTS registry key

Description of connectivity
information

Description of group
information

dbservername Database server name key or
database server group key

Database server name Database server group name

nettype PROTOCOL Connection type The keyword group

hostname HOST Host computer for the
database server

No information. Use a dash
as a placeholder in this field.

servicename SERVICE Alias for the port number No information. Use a dash
as a placeholder in this field.

options OPTIONS Options that describe or limit
the connection

Group options

UNIX: If you install IBM Informix Enterprise Gateway with DRDA in the same
directory as the database server, your sqlhosts file also contains entries for the
Gateway and non-Informix database servers. However, this section covers only the
entries for the database server. For information about other entries in the sqlhosts
file, see the IBM Informix Enterprise Gateway with DRDA User Manual.
Related concepts:
“Strategies for increasing availability with Connection Managers” on page 23-64
Related tasks:
“Defining sqlhosts information for connection management” on page 23-38
“Configuring connection management” on page 23-2
“Connections that the database server supports” on page 2-5
“Configuring connectivity between Informix database servers and IBM Data Server
clients” on page 2-45
“Defining sqlhosts information for connection management of high-availability
clusters” on page 23-39

Chapter 2. Client/server communication 2-19

“Defining sqlhosts information for connection management of high-availability
clusters that use secure ports” on page 23-41
“Defining sqlhosts information for high-availability clusters that use Distributed
Relational Database Architecture (DRDA)” on page 23-43
“Defining sqlhosts information for high-availability clusters that use Distributed
Relational Database Architecture (DRDA) and secure ports” on page 23-45
“Defining sqlhosts information for connection management of grids and replicate
sets” on page 23-48
“Defining sqlhosts information for connection management of grids and replicate
sets that use secure ports” on page 23-49
“Defining sqlhosts information for connection management high-availability
replication systems” on page 23-52
“Defining sqlhosts information for connection management of high-availability
replication systems that use secure ports” on page 23-54
“Defining sqlhosts information for connection management of server sets” on page
23-58
Related reference:

The syncsqlhosts utility (Embeddability Guide)

IANA standard service names and port numbers in the
sqlhosts.std file

The Internet Assigned Numbers Authority (IANA) assigned the following service
names and port numbers for IBM Informix database servers:

Port/service IANA code Description

sqlexec 9088/tcp IBM Informix SQL Interface

sqlexec-ssl 9089/tcp IBM Informix SQL Interface -
Encrypted

These service names are created in the sqlhosts.std file of IBM Informix. You are
not required to change installed Informix systems, because they continue to work
with existing port numbers and service names. (Also, there is no guarantee that
some other system is not already using the service names or port numbers
assigned to Informix.)

Organizations that have policies for following standards can use these service
names and port numbers if they want the database server to be in compliance with
the IANA standard. If another application that is installed on the same workstation
already uses one of the service names or port numbers, you can ask the publisher
of the non-compliant application to register for an IANA port number assignment
to avoid the conflict. When applications are noncompliant, you can run Informix
using non-standard ports.

For more information, see the IANA organization website.

sqlhosts connectivity information
Fields in the sqlhosts file or SQLHOSTS registry key describe connectivity
information.

Syntax

2-20 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.embed.doc/ids_emb_072.htm#ids_emb_072

�� dbservername connection_type hostname servicename
group (1)

Options

��

Notes:

1 See “sqlhosts file and SQLHOSTS registry key options” on page 2-24

Element Purpose Restrictions

dbservername Names the database server for
which the connectivity information
is being specified.

If specified with the group
keyword instead of the connection
type, names a group to treat
multiple, related database server
entries as one logical entry. You can
use groups to establish or change
client/server connections, or to
simplify the redirection of
connections to database servers.

The name must begin with a
lowercase letter, and can contain
lowercase letters, numbers, and
underscore (_) symbols. The field
length is limited to 128 bytes.

The database server must exist. Its
name must be specified by the
DBSERVERNAME or
DBSERVERALIASES configuration
parameter in the onconfig file.

A database server group cannot be
nested inside another database
server group. Database servers can
be members of one group.

connection_type Describes the type of connection
that is made between the database
server and the client application or
another database server.

hostname Specifies the computer where the
database server is located.

The field length is limited to 256
bytes.

If the group keyword is specified,
must be null (-).

servicename Specifies the alias for the port
number. The interpretation of the
service name field depends on the
type of connection in the
connection-type field.

The field length is limited to 128
bytes.

If the group keyword is specified,
must be null (-).

dbservername field

Each database server across all of your associated networks must have a unique
database server name.

If an sqlhosts file has multiple entries with the same dbservername, only the first
one is used.

Connection-type field

The connection-type field is called nettype in the sqlhosts file and PROTOCOL in
the SQLHOSTS registry key.

The following table summarizes the possible connection-type values for database
server connections on different operating systems.

Chapter 2. Client/server communication 2-21

Table 2-2. Summary of connection-types

Values for UNIX Values for Windows Description Connection type

drsocssl drsocssl Secured Sockets Layer (SSL) protocol for DRDA.

You must configure a new server alias in the
sqlhosts file or SQLHOSTS registry that uses
drsoctcp connection protocol.

Network

drsoctcp drsoctcp Distributed Relational Database Architecture
(DRDA) - connection for IBM Data Server Client.

You must configure a new server alias in the
sqlhosts file or SQLHOSTS registry that uses
drsoctcp connection protocol.

Network

drtlitcp drtlitcp Distributed Relational Database Architecture
(DRDA) - connection for IBM Data Server Client.

You must configure a new server alias in the
sqlhosts file or SQLHOSTS registry that uses
drtlitcp connection protocol.

Network

onipcshm Shared-memory communication. Requires the cfd
option in the sqlhosts file if used for a non-root
installation where the server and client are in
different locations.

IPC

onipcstr Stream-pipe communication. Requires the cfd
option in the sqlhosts file if used for a non-root
installation where the server and client are in
different locations.

IPC

onipcnmp Named-pipe communication IPC

ontlitcp TLI with TCP/IP protocol Network

onsocssl onsocssl Secured Sockets Layer (SSL) protocol Network

onsoctcp onsoctcp Sockets with TCP/IP protocol Network

onsocimc Sockets with TCP/IP protocol for communication
with Informix MaxConnect

Network

ontliimc TLI with TCP/IP protocol for communication
with Informix MaxConnect

Network

onsqlmux onsqlmux Multiplexed connection Network

Note: The connection-type values that begin with "on" can use "ol" in the place of
"on". For example, either onipcshm or olipcshm specify shared-memory connections
if used in the sqlhosts information.

Host name field

The host name is entered in the hostname field in the sqlhosts file, and in the
HOST registry key.

If the connection type is onsqlmux, the hostname field must not be empty, but any
specific value entered in it is ignored.

Following is an explanation of how client applications derive the values that are
used in the host name field.

2-22 IBM Informix Administrator's Guide

Network communication with TCP/IP
When you use the TCP/IP connection protocol, the host name field is a key
to the hosts file, which provides the network address of the computer. The
name that you use in the hostname field must correspond to the name in
the hosts file. In most cases, the host name in the hosts file is the same as
the name of the computer.

In some situations, you might want to use the actual Internet IP address in
the host name field.

UNIX: Shared-memory and stream-pipe communication
When you use shared memory or stream pipes for client/server
communications, the hostname field must contain the actual host name of
the computer on which the database server is located.

Multiplexed connections
When you use onsqlmux as the connection type, the hostname field must
have an entry, but the entry is ignored. Dashes (-) can be used as entries.

Service name field

Network communication with TCP/IP
The service name field is called servicename on the UNIX operating system
and SERVICE on the Windows operating system. When you use the
TCP/IP connection protocol, the service name entry must correspond with
the name in the services file. The port number in the services file tells
the network software how to find the database server on the specified host.

The following figure shows the relationship between the sqlhosts
information and the hosts file, and the relationship of sqlhosts
information to the services file.

In some cases, you might use the actual TCP listen-port number in the
service name field.

Windows: Named-pipe communication
For a named-pipe connection (onipcnmp), the SERVICE entry can be any
short group of letters that is unique in the environment of the host
computer where the database server is located.

UNIX: Shared-memory and stream-pipe communication
For a shared-memory connection (onipcshm) or a stream-pipe connection

sqlhosts entry to connect by TCP/IP

dbservername nettype hostname servicename options

sales onsoctcp knight sales_ol

hosts file

IP address hostname alias

37.1.183.92 knight

services file

service name port#/protocol

sales_ol 1543/tcp

Figure 2-4. Relationship of sqlhosts information to hosts and services files

Chapter 2. Client/server communication 2-23

(onipcstr), the database server uses the value in the servicename entry
internally to create a file that supports the connection. For both onipcshm
and onipcstr connections, the servicename can be any short group of letters
that is unique in the environment of the host computer where the database
server is located.

Tip: Use the dbservername as the servicename for stream-pipe connections.

Multiplexed connections
For multiplexed connections (onsqlmux), the hostname field must have an
entry, but the entry is ignored. Dashes (-) can be used as entries.

Related tasks:
“Configuring secure connections for high-availability clusters” on page 21-6
“Changing client connectivity information” on page 24-8
“Connections that the database server supports” on page 2-5
Related reference:
“Configuration parameters related to connectivity” on page 2-38
“Group information” on page 2-32
“Stream-pipe connections (UNIX and Linux)” on page 2-7
“Specifying Network Connections” on page 4-21
“IBM Informix MaxConnect” on page 2-52
“TCP/IP connectivity files” on page 2-10
“Alternatives for TCP/IP connections” on page 2-34

Connectivity protocols (Client Products Installation Guide)

sqlhosts file and SQLHOSTS registry key options
You can include server options and group options in the sqlhosts file or
SQLHOSTS registry key.

The following syntax fragments show the server options. The syntax fragment for
group options is described in a section after the server options.

Important: Options must be separated by commas, but the first option that is
listed in each sqlhosts entry must not have a comma before it.

Server options:

a = token b = size
,

cfd = filepath
,

�

�
g = group

,
1

k = 0
,

0
m = 1

,

�

�

Lookup options PAM options CSM options
s=6

,

2-24 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.cpi.doc/ids_cpi_034.htm#ids_cpi_034

Lookup options:

r = 0
, 1

3
s = 0

, 1
2

PAM options:

s=4, pam_serv =(name), pamauth =(challenge)
, password

CSM options:

csm =(GSSCSM)
, 1 1

, c = 0 , i = 0
SPWDCSM

1
, p =(0

ENCCSM

Table 2-3. Server options in the sqlhosts file and SQLHOSTS registry key.

Element Purpose Restrictions

a Stores the authentication token that is
required for connecting to the
Informix Warehouse Accelerator. This
entry is created by Informix during
Informix Warehouse Accelerator
connection setup.

Important: Do not manually change
this option.

b Specifies, in bytes, the size of the
communications buffer space for
TCP/IP connections.

The maximum buffer size supported
is 32 KB.

c Enables confidentiality service for the
Generic Security Services CSM, which
supports single sign-on (SSO).

Data transmitted to and from the
SSO-authenticated user is encrypted
and can be viewed only by the user
that is logged in with the authorized
credentials.

v c=1 enables the service (default)

v c=0 disables the service

cfd Indicates the storage location for
communication files that are used in
shared-memory and stream-pipe
connections.

The length of the cfd path is
restricted to 70 bytes. Relative-path
byte lengths include $INFORMIXDIR.

csm Describes the communication support
module (CSM) for each database
server that uses a CSM.

CSM entries must be specified in the
concsm.cfg file.

Chapter 2. Client/server communication 2-25

Table 2-3. Server options in the sqlhosts file and SQLHOSTS registry key. (continued)

Element Purpose Restrictions

ENCCSM The name of the encryption
communication support module.

The ENCCSM must be specified in
the concsm.cfg file.

You cannot use an ENCCSM with

v Enterprise Replication and
high-availability clusters

v A multiplexed connection

v A simple password CSM
(SPWDCSM)

g Specifies the name of the group to
which the database server belongs.

The group must be defined.

GSSCSM The name of the generic security
services communications support
module for single sign-on (SSO)
authentication.

The GSSCSM must be specified in the
concsm.cfg file. Cannot be used for
Enterprise Replication and
high-availability clusters.

i Enables the integrity service for the
Generic Security Services CSM, which
supports single sign-on (SSO).

v i=1 enables the service (default)

v i=0 disables the service

k Enables the network service to check
periodically whether the connection
between the client and server is still
active. If the connection is found to
be broken the network service frees
resources.

Only available for TCP/IP
connections.

m Enables the database server to create
multiple database connections
without using up the additional
computer resources that are required
for more network connections.

v Multithreaded client connections,
shared-memory connections, and
connections to subordinate
database servers are not supported.

v The Informix ESQL/C sqlbreak()
function is not supported.

v Cannot be used with a CSM.

p Enables and disables the simple
password CSM, which provides
password encryption.

v p=0 password is not required
(default)

v p=1 password is required

r Enables the control of
operating-system security-file
lookups to control the way that a
client (user) gains access to a
database server. The s option
identifies database server-side
settings, and the r option identifies
client-side settings.

The database server ignores r
settings.

s Enables the control of
operating-system security-file
lookups to control the way that a
client (user) gains access to a
database server. The s option
identifies database server-side
settings, and the r option identifies
client-side settings.

A client ignores s settings.

2-26 IBM Informix Administrator's Guide

Table 2-3. Server options in the sqlhosts file and SQLHOSTS registry key. (continued)

Element Purpose Restrictions

pam_serv Gives the name of a PAM service that
a database is using.

Must be used with s=4 option.

pamauth Describes the authorization method
that is used by the PAM service.

Must be used with s=4 option.

SPWDCSM The name of the simple password
communication support module

The SPWDCSM must be specified in
the concsm.cfg file.

You cannot use an SPWDCSM with

v Enterprise Replication and
high-availability clusters

v A multiplexed connection

v An encryption CSM (ENCCSM)

The following syntax fragment shows the group options in the sqlhosts file.

Group options:

0
c = 1

e = server
,

i = identifier
,

Table 2-4. Group options in the sqlhosts file and SQLHOSTS registry key.

Element Purpose Restrictions

c Controls connection redirection.
Indicates the order in which client
applications choose database servers,
or the aliases within a database
server group.

e Specifies a database server name that
marks the end of a database server
group.

i Assigns an identifying number to a
database server group.

The identifier must be a positive
integer from 1 through 32767 and
must be unique within your network
environment. The i option is required
for Enterprise Replication.

Usage

When you change option values in an sqlhosts entry, those changes affect the next
connection that a client application makes. The server automatically recognizes any
changes that are made.

The database server evaluates the options entries as a series of columns. A comma
or white space in an options entry represents an end of a column. Client and
database server applications check each column to determine whether the option is
supported.

You can combine multiple options in each entry, and you can include them in any
order. The maximum length for an options entry is 256 bytes.

Chapter 2. Client/server communication 2-27

Attention: Unsupported or incorrect options do not trigger a notification.

Buffer option (b)

The b option applies only to connections that use the TCP/IP connection protocol.
Other types of connections ignore the b option.

You can adjust the buffer size to use system and network resources more
efficiently; however, if the buffer size is set too high, the user receives a
connection-reject error because no memory can be allocated. For example, if you
set b=16000 on a system that has 1000 users, the system might require 16
megabytes of memory for the communications buffers. This setting might exhaust
the memory resources of the computer. The default buffer size for the database
server for TCP/IP is 4096 bytes.

If your network includes several different types of computers, be careful when you
change the size of the communications buffer.

Tip: Use the default size for the communications buffer. If you choose to set the
buffer size to a different value, set the client-side communications buffer and the
database server-side communications buffer to the same size.

Group connection-redirection option (c)

The c option is valid only for servers that are assigned to a server group.

Use the c option to:
v Balance the load across multiple database server instances.
v Set High-Availability Data Replication (HDR) to transfer over to a backup

database server in the event of a failure.

Table 2-5. Settings for the connection-redirection option.

Setting Result

c=0 This is the default setting.

Client applications connect to the first
database server instance listed in the server
group in the sqlhosts information. If the
client cannot connect to the first instance, it
attempts to connect to the second instance,
and so on.

c=1 Client applications choose a random starting
point from which to connect to a database
server instance in a server group.

Communication files directory option (cfd)

You can use the communication files directory option to store shared-memory or
stream-pipe connection communication files in a new location. Specifying the
communication files directory option for non-root installations of Informix is
necessary if the server and client are in different locations, and increases system
performance if the server and client are in the same location.

The cfd option can define an absolute path or a path relative to $INFORMIXDIR for
storing communication files:

2-28 IBM Informix Administrator's Guide

v cfd=/location defines an absolute path
v cfd=location defines a path relative to $INFORMIXDIR

The length of the cfd path is restricted to 70 bytes. Relative-path byte lengths
include $INFORMIXDIR.

Non-root installations of Informix do not have permission to write to the
/INFORMIXTMP directory, so shared-memory and stream-pipe connection
communication files are written to the $INFORMIXDIR/etc directory if no
communication files directory is specified as an option in the sqlhosts information.

Important: This option must be defined for non-root installations of Informix,
where the server and client are in different locations, or the connection fails.

Communication support module option (csm)

The format of the CSM option is csm=(name,options).

The value of name must match a name entry in the concsm.cfg file.

CSM options that are defined in the sqlhosts file override options that are
specified in the concsm.cfg file. CSM encryption options cannot be specified in the
sqlhosts information.

If you do not specify the csm option, the database server uses the default
authentication policy for that database server.

Note: The s=7 option is deprecated and not required for the Single Sign-On (SSO)
CSM.

End of group option (e)

If no e option is specified for a group, but all sqlhosts entries specify either
groups or group members, the network must scan the entire file. You can use the e
option to specify the end of a server group, and improve system performance. The
network layer scans the sqlhosts file until the entry specified by the e option is
read.

If no end-of-group option is specified for a group, the group members are assumed
to be contiguous. The end of the group is determined when an entry is reached
that does not belong to the group, or at the end of file, whichever comes first.

In the following example, the e option specifies entry lx3, so entry lx4 is not
scanned by the network layer.
#dbservername nettype hostname servicename options
g_x1 group - - i=10,e=lx3
lx1 onsoctcp apollo11 9810 g=g_x1
lx2 onsoctcp apollo12 9820 g=g_x1
lx3 onsoctcp apollo13 9830 g=g_x1

lx4 onsoctcp apollo14 9840

Keep-alive option (k)

This option enables the network service to check periodically whether the
connection between the client and server is still active. If the receiving end of the

Chapter 2. Client/server communication 2-29

connection does not respond within the time that is specified by the parameters of
your operating system, the network service immediately detects the broken
connection and frees resources.

Table 2-6. Settings for the keep-alive option

Setting Result

k=0 Disables this service

k=1 Enables this service (default)

Multiplex option (m)

This option enables the database server to create multiple database connections to
client applications without using up the additional computer resources that are
required for more network connections. You must restart the server after you
enable this service.

Table 2-7. Settings for the multiplex option

Setting Result

m=0 Disables this service (default)

m=1 Enables this service

PAM options (pam_serv, pam_auth, s=4)

The database server provides an interface to use pluggable authentication modules
(PAM) for session authentication. To configure this interface, supply the PAM
service name and the authentication method. Authentication can be the connection
password or a user challenge that requires the user to answer a question.

Informix PAM authentication calls the pam_authenticate() and pam_acct_mgmt()
functions.

Table 2-8. Settings for PAM services

Option Description Settings

pam_serv The name of the PAM service
that the database server is
using.

PAM services typically are in
the /usr/lib/security
directory and parameters are
listed in the /etc/pam.conf
file.

In Linux, the /etc/pam.conf
file can be replaced with a
directory called /etc/pam.d,
where there is a file for each
PAM service. If /etc/pam.d
exists, /etc/pam.conf is
ignored by Linux.

2-30 IBM Informix Administrator's Guide

Table 2-8. Settings for PAM services (continued)

Option Description Settings

pamauth The method of authentication
that is used by the PAM
service.

An application must be
designed to respond to the
challenge prompt correctly
before connecting to the
database server.

pamauth=password uses the
connection request password
for authentication.

pamauth=challenge
authentication requires a
correct user reply to a
question or prompt

s=4 Enables PAM authentication.

Trusted-host and trusted-user lookup options (s)

With these security options, you can specifically enable or disable the use of either
or both files.

Table 2-9. Settings for trusted-host and trusted-user lookup.

Setting Result

s=0 Disables trusted-hosts lookup in hosts.equiv or the file specified by
the REMOTE_SERVER_CFG configuration parameter.

Disables trusted-user lookup in rhosts files or the file specified by the
REMOTE_USERS_CFG configuration parameter.

Only incoming connections with passwords are accepted. Cannot be
used for distributed database operations.

s=1 Enables trusted-hosts lookup in hosts.equiv or the file specified by the
REMOTE_SERVER_CFG configuration parameter.

Disables trusted-user lookup in rhosts files or the file specified by the
REMOTE_USERS_CFG configuration parameter.

s=2 Disables trusted-hosts lookup in hosts.equiv or the file specified by
the REMOTE_SERVER_CFG configuration parameter.

Enables trusted-user lookup in rhosts files or the file specified by the
REMOTE_USERS_CFG configuration parameter.

Cannot be used for distributed database operations.

s=3 Enables trusted-hosts lookup in hosts.equiv or the file specified by the
REMOTE_SERVER_CFG configuration parameter.

Enables trusted-user lookup in rhosts files or the file specified by the
REMOTE_USERS_CFG configuration parameter.(default)

Secure connections for clusters option (s=6)

The s=6 option in the sqlhosts information ensures that the connections between
cluster servers are trusted. Secure ports that are listed in the sqlhosts information
can be used only for cluster communication. Client applications cannot connect to
secure ports.

Chapter 2. Client/server communication 2-31

Table 2-10. The secure connection option for clusters.

Setting Result

s=6 Configures Enterprise Replication and High
Availability Connection Security. Cannot be
used with any other s option.

netrc lookup options (r)

With r options, you can enable or disable netrc lookup.

Table 2-11. Settings for netrc lookup options.

Setting Result

r=0 netrc lookup is disabled.

r=1 netrc lookup is enabled (default)

Related concepts:
“Trusted-host information” on page 2-12
“Trusted-user information” on page 2-14

Pluggable authentication modules (UNIX or Linux) (Security Guide)

Communication support modules for data transmission encryption (Security
Guide)

Simple password encryption (Security Guide)
Related tasks:
“Supporting multiplexed connections” on page 2-3
“Configuring secure connections for high-availability clusters” on page 21-6

Configuring an IBM Informix instance for SSO (Security Guide)

Configuring secure ports for connections between replication servers
(Enterprise Replication Guide)
Related reference:
“Group information”
“The netrc information” on page 2-16

Group information
You define server groups in the sqlhosts file or SQLHOSTS registry key. When
you create a server group, you can treat multiple related database server or
Connection Manager SLA entries as a single entity for client connections to
simplify connection redirection to database servers or Connection Managers. You
must create group entries for database servers that participate in Enterprise
Replication.

You can use the name of a group instead of the database server name in the
following environment variables, or in the SQL CONNECT command:
v The value of the INFORMIXSERVER environment variable for a client application

can be the name of a group. However, you cannot use a group name as the
value of the INFORMIXSERVER environment variable for a database server or
database server utility.

v The value of the DBPATH environment variable can contain the names of groups.

2-32 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_002.htm#ids_am_002
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_en_003.htm#ids_en_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_en_003.htm#ids_en_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_027.htm#ids_am_027
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_sso_004.htm#ids_sso_004
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_110.htm#ids_erp_110
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_110.htm#ids_erp_110

Use a dash (-) character (ASCII 45) for hostname and server/port values when you
specify a connection information for a group.

High-availability cluster groups

A high-availability cluster groups sqlhosts have the following format:
#dbservername nettype hostname servicename options
group_name group - - c=1,e=member_name_n
member_name_1 protocol host_name_1 service_or_port_1 g=group_name
member_name_2 protocol host_name_2 service_or_port_2 g=group_name
member_name_n protocol host_name_n service_or_port_n g=group_name

C=1 is optional, and specifies that a random starting point in the list of group
members is used for connection attempts. e=member_name is optional, and specifies
the final entry for group members, so that the entire file is not scanned. The
g=group_name option is required for group members, and specifies the group that
the member belongs to.

Enterprise Replication server groups

All database servers that participate in replication must be a member of a database
server group. Each database server in the enterprise must have a unique identifier.
Enterprise Replication node groups have the following sqlhosts format:

#dbservername nettype hostname servicename options
group_name_1 group - - i=identifier_1,e=member_name_1
member_name_1 protocol host_name_1 service_or_port_1 g=group_name_1

group_name_2 - - i=identifier_2,e=member_name_2
member_name_2 protocol host_name_2 service_or_port_2 g=group_name_2

group_name_n - - i=identifier_n,e=member_name_n
member_name_n protocol host_name_n service_or_port_n g=group_name_n

The i=identifier is required for Enterprise Replication. e=member_name is optional,
and specifies the final entry for group members, so that the entire file is not
scanned. The g=group_name option is required for group members, and specifies the
group that the member belongs to.

Connection Manager service-level agreement groups

Connection Manager SLA groups have the following sqlhosts format:
#dbservername nettype hostname servicename options
SLA_1_group_name group - - c=1,e=SLA_name_1_from_CM_n
SLA_name_1_from_CM_1 protocol CM_1_host CM_1_port_or_service_1 g=SLA_1_group_name
SLA_name_1_from_CM_2 protocol CM_2_host CM_2_port_or_service_1 g=SLA_1_group_name
SLA_name_1_from_CM_n protocol CM_n_host CM_n_port_or_service_1 g=SLA_1_group_name

SLA_2_group_name group - - c=1,e=SLA_name_2_from_CM_n
SLA_name_2_from_CM_1 protocol CM_1_host CM_1_port_or_service_2 g=SLA_2_group_name
SLA_name_2_from_CM_2 protocol CM_2_host CM_2_port_or_service_2 g=SLA_2_group_name
SLA_name_2_from_CM_n protocol CM_n_host CM_n_port_or_service_2 g=SLA_2_group_name

SLA_n_group_name group - - c=1,e=SLA_name_n_from_CM_n
SLA_name_n_from_CM_1 protocol CM_1_host CM_1_port_or_service_n g=SLA_n_group_name
SLA_name_n_from_CM_2 protocol CM_2_host CM_2_port_or_service_n g=SLA_n_group_name
SLA_name_n_from_CM_n protocol CM_n_host CM_n_port_or_service_n g=SLA_n_group_name

C=1 is optional, and specifies that a random starting point in the list of group
members is used for connection attempts. e=member_name is optional, and specifies
the final entry for group members, so that the entire file is not scanned. The

Chapter 2. Client/server communication 2-33

g=group_name option is required for group members, and specifies the group that
the member belongs to.
Related reference:
“sqlhosts connectivity information” on page 2-20
“sqlhosts file and SQLHOSTS registry key options” on page 2-24

Creating a group in the sqlhosts file
You can define a group and the members of the group by adding entries to the
sqlhosts file.

To create a database server group in the sqlhosts file:
1. Add an entry to define the database server group:

dbservername
The name of the group. The name must begin with a lowercase letter,
and can contain lowercase letters, numbers, and underscore (_)
symbols.

nettype
The word group.

hostname
A dash (-) character (ASCII 45), to indicate that the field value is null.

servicename
A dash (-) character (ASCII 45), to indicate that the field value is null.

options
The c, e, or i options, as appropriate.

2. Add one or more entries for members of the group. Include the g=group option.

Example

The following example shows definition of a group named g_asia. The group
contains four members.
#dbservername nettype hostname servicename options
g_asia group – – c=1,e=manilla
tokyo onsoctcp node_1 service_1 g=g_asia
beijing onsoctcp node_2 service_2 g=g_asia
seoul onsoctcp node_3 service_4 g=g_asia
manilla onsoctcp node_4 service_5 g=g_asia

Alternatives for TCP/IP connections
The following topic describes some ways to bypass port and IP address lookups
for TCP/IP connections.

IP addresses for TCP/IP connections

For TCP/IP connections (both TLI and sockets), you can use the actual IP address
in the hostname field instead of the host name or alias found in the hosts file. The
following example shows sample IP addresses and hosts from a hosts file.
#address hostname alias
555.12.12.12 smoke
98.555.43.21 odyssey
12.34.56.555 knight sales

Using the IP address for knight from the table, the following two sqlhosts entries
are equivalent:

2-34 IBM Informix Administrator's Guide

#dbservername nettype hostname servicename options
sales ontlitcp 12.34.56.789 sales_ol

#dbservername nettype hostname servicename options
sales ontlitcp knight sales_ol

Using an IP address might speed up connection time in some circumstances.
However, because computers are usually known by their host name, using IP
addresses in the host name field makes it less convenient to identify the computer
with which an entry is associated.

UNIX: You can find the IP address in the net address field of the hosts file, or you
can use the UNIX arp or ypmatch command.

Windows: You can configure Windows to use either of the following mechanisms
to resolve a domain to an IP address:
v Windows Internet Name Service
v Domain Name Server

Wildcard addressing for TCP/IP connections

You can use wildcard addressing in the hostname field of the hosts file when both
of the following conditions are met:
v You are using TCP/IP connections.
v The computer where the database server is located uses multiple

network-interface cards (NICs).

If the preceding conditions are met, you can use an asterisk (*) as a wildcard in the
hostname field that the database server uses. When you enter a wildcard in the
hostname field, the database server can accept connections at any valid IP address
on its host computer.

Each IP address is associated with a unique host name. When a computer uses
multiple NICs, as in the following table, the hosts file must have an entry for each
interface card. For example, the hosts file for the texas computer with two NICs
might include these entries.
#address hostname alias
123.45.67.81 texas1
123.45.67.82 texas2

If the client application and database server share the sqlhosts information, you
can specify both the wildcard and a host name or IP address in the hostname field
(for example, *texas1 or *123.45.67.81). The client application ignores the
wildcard and uses the host name (or IP address) to make the connection, and the
database server uses the wildcard to accept a connection from any IP address.

The wildcard format allows the listen thread of the database server to wait for a
client connection using the same service port number on each of the valid
network-interface cards. However, waiting for connections at multiple IP addresses
might require more processor time than waiting for connections with a specific
host name or IP address.

The following figure shows a database server on a computer named texas that has
two network-interface cards. The two client sites use different network cards to
communicate with the database server.

Chapter 2. Client/server communication 2-35

The following examples show potential sqlhosts connectivity information for the
texas_srvr database server.
#dbservername nettype hostname servicename options
texas_srvr ontlitcp *texas1 pd1_on

#dbservername nettype hostname servicename options
texas_srvr ontlitcp *123.45.67.81 pd1_on

#dbservername nettype hostname servicename options
texas_srvr ontlitcp *texas2 pd1_on

#dbservername nettype hostname servicename options
texas_srvr ontlitcp *123.45.67.82 pd1_on

#dbservername nettype hostname servicename options
texas_srvr ontlitcp * pd1_on

If the connectivity information corresponds to any of the preceding lines, the
texas_srvr database server can accept client connections from either of the network
cards. The database server finds the wildcard in the hostname field and ignores
the explicit host name.

Tip: For clarity and ease of maintenance, include a host name when you use the
wildcard in the host name field (that is, use *host instead of *).

The connectivity information used by a client application must contain an explicit
host name or IP address. The client applications on iowa can use any of the
following host names: texas1, *texas1, 123.45.67.81, or *123.45.67.81. If there is
a wildcard (*) in the hostname field, the client application ignores it.

The client application on kansas can use any of the following host names: texas2,
*texas2, 123.45.67.82, or *123.45.67.82.

iowa

texas

Network
programming
interfaces

kansas

Client

Client

texas_srvr

Figure 2-5. Using multiple network-interface cards

2-36 IBM Informix Administrator's Guide

Port numbers for TCP/IP connections

For the TCP/IP network protocol, you can use the actual TCP listen port number
in the service name field.

For example, if the port number for the sales database server in the services file is
1543, you can write an entry in the sqlhosts file as follows:
#dbservername nettype hostname servicename options
sales ontlitcp knight 1543

Using the actual port number might save time when you make a connection in
some circumstances. However, as with the IP address in the hostname field, using
the actual port number might make administration of the connectivity information
less convenient.
Related reference:
“sqlhosts connectivity information” on page 2-20

Informix support for IPv6 addresses
On all platforms, IBM Informix recognizes Internet Protocol Version 6 (IPv6)
addresses, which are 128 bits long, and Internet Protocol Version 4 (IPv4)
addresses, which are 32 bits long.

Beginning with Informix 10.00.xC4 and Client SDK 2.90.xC4, the database server
checks, on startup, whether IPv6 is supported in the underlying operating system.
If IPv6 is supported it is used. If the underlying operating system does not support
IPv6, the IPv4 address is used. Informix and Client SDK retrieve the IP address
from the name service.

You can treat Informix that runs on a host with both IPv4 and IPv6 addresses the
same way you treat a server running on a multi-homed host. You can configure
Informix on a host with both IPv4 and IPv6 addresses in either of the following
ways:
v Create aliases (using the DBSERVERALIASES configuration parameter) and

assign an IPv6 address to one of them and an IPv4 address to the other.
v Instruct the Informix to listen on all the IP addresses configured on the host by

using a wild-carded hostname in the sqlhosts file.
For example:
#dbservername nettype hostname servicename options
olserver1 onsoctcp *myhost onservice1

Starting with Informix Version 10.0, the host name entry in the SQLHOSTS file
maps to an IPv6 address if the host has a configured IPv6 address. If the host
does not have a configured IPv6 address, the hostname entry maps to an IPv4
address.

Disabling IPv6 Support

Informix also provides a way to disable IPv6 support when working in IPv4
environments.

To disable IPv6 support for all database instances and client applications:
v Create an empty file $INFORMIXDIR/etc/IFX_DISABLE_IPV6.

Chapter 2. Client/server communication 2-37

The file must have read permission for user informix. The file is not read from or
written to, and is not required to contain any data.

To disable IPv6 support for a single database instance or for a single client
application:
v On the database server instance, or on the workstation on which applications are

run, create an environment variable named IFX_DISABLE_IPV6 and set its value
to yes, as in:
IFX_DISABLE_IPV6=yes

Configuration parameters related to connectivity
Some of the configuration parameters in the onconfig file specify information
related to connectivity.

When you restart the database server, the restart procedure uses the values that
you set in these configuration parameters.

The following configuration parameters are related to connectivity:
v DBSERVERNAME
v DBSERVERALIASES
v LIMITNUMSESSIONS
v NETTYPE
v NS_CACHE
v NUMFDSERVER
v HA_ALIAS

UNIX: When you configure connectivity, also consider setting the
LISTEN_TIMEOUT and MAX_INCOMPLETE_CONNECTIONS configuration
parameters. These parameters can reduce the risk of a hostile denial-of-service
(DOS) attack by making it more difficult to overwhelm the Listener VP that
handles connections. For more information, see the IBM Informix Security Guide.
Related tasks:
“Connections that the database server supports” on page 2-5
Related reference:
“sqlhosts connectivity information” on page 2-20

Connection information set in the DBSERVERNAME
configuration parameter

When a client application connects to a database server, it must specify the name
for the database server. The sqlhosts information that is associated with the
specified database server name describes the type of connection between the
application and the database server.

For example, to assign the name nyc_research to a database server, set the
DBSERVERNAME value in the onconfig file or Windows registry key:
DBSERVERNAME nyc_research

Client applications specify the name of the database server in one of the following
places:
v In the INFORMIXSERVER environment variable

2-38 IBM Informix Administrator's Guide

v In SQL statements such as CONNECT, DATABASE, CREATE TABLE, and
ALTER TABLE, which specify a database environment

v In the DBPATH environment variable

The DBSERVERNAME must specify either the database server name or one of the
database server aliases. The name must begin with a lowercase letter and can
contain other lowercase letters, digits, and underscores. The name must not include
uppercase characters, a field delimiter (space or tab), or a new line character. Other
characters from the basic ASCII code set are not necessarily reliable. For example, a
hyphen or minus sign can create problems and a colon might not work reliably.
The @ character is reserved to separate the database from the server (as in
dbase@server).

For onimcsoc or onsoctcp protocols, you can update the DBSERVERNAME
configuration parameter to include the number of multiple listen threads for the
database server aliases in your sqlhosts information, as follows:
DBSERVERNAME name-number_of_multiple_listen_threads

You can configure DBSERVERALIASES connections as SSL connections, and you
can have a mix of SSL and non-SSL connections.
Related reference:

DBSERVERNAME configuration parameter (Administrator's Reference)

Connection information set in the DBSERVERALIASES
configuration parameter

The DBSERVERALIASES configuration parameter lets you assign additional
dbserver names to the same database server.

The maximum number of aliases is 32. The following example shows entries in an
onconfig configuration file that assign three dbserver names to the same database
server instance.
DBSERVERNAME sockets_srvr
DBSERVERALIASES ipx_srvr,shm_srvr

Because each dbserver name has a corresponding sqlhosts entry, you can associate
multiple connection types with one database server.
shm_srvr onipcshm my_host my_shm
sockets_srvr onsoctcp my_host port1
ipx_srvr ontlispx nw_file_server ipx_srvr

Using the sqlhosts file shown in the previous example, a client application uses
the following statement to connect to the database server using shared-memory
communication:
CONNECT TO ’@shm_srvr’

A client application can initiate a TCP/IP sockets connection to the same database
server using the following statement:
CONNECT TO ’@sockets_srvr’

DBSERVERALIASES must begin with a lowercase letter and can contain other
lowercase letters, digits, and underscores. DBSERVERALIASES must not include
uppercase characters, a field delimiter (space or tab), or a new line character. Other
characters from the basic ASCII code set are not necessarily reliable. For example, a

Chapter 2. Client/server communication 2-39

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0045.htm#ids_adr_0045

hyphen or minus sign can create problems and a colon might not work reliably.
The @ character is reserved to separate the database from the server (as in
dbase@server).

In the previous examples, the @shm_srvr statement connects to an unidentified
database at that server; alternatively, you can connect to dbase1@shm_srvr.

For onimcsoc or onsoctcp protocols, you can update the DBSERVERALIASES
configuration parameter to include the number of multiple listen threads for the
database server aliases in your sqlhosts information, as follows:
DBSERVERALIASESname-number,name-number

You can configure DBSERVERALIASES connections as SSL connections, and you
can have a mix of SSL and non-SSL connections.
Related reference:

DBSERVERALIASES configuration parameter (Administrator's Reference)

Connection information set in the LIMITNUMSESSIONS
configuration parameter

The LIMITNUMSESSIONS configuration parameter is an optional parameter that
specifies the maximum number of sessions that you want connected to IBM
Informix. If you specify a maximum number, you can also specify whether you
want Informix to print messages to the online.log file when the number of
sessions approaches the maximum number.

Distributed queries against a server are counted against the limit.

You might be required to dynamically increase or temporarily turn off the
LIMITNUMSESSIONS configuration parameter to allow administrative utilities to
run if the database server is reaching the limit. Use onmode -wf or onmode -wm
to dynamically increase or turn off LIMITNUMSESSIONS.

If the LIMITNUMSESSIONS configuration parameter is enabled and sessions are
restricted because of this limit, both regular user threads and DBSA user threads
connecting to any database count against the limit. However, a DBSA user is
allowed to connect to the server even after the limit is reached.

The LIMITNUMSESSIONS configuration parameter is not intended to be used as a
means to adhere to license agreements.

Example

The following example specifies that you want a maximum of 100 sessions to
connect to the database server and you want to print a warning message when the
number of connected sessions approaches 100: LIMITNUMSESSIONS 100,1

Connection information set in the NETTYPE configuration
parameter

The NETTYPE configuration parameter lets you adjust the number and type of
virtual processors the database server uses for communication. Each type of
network connection (for example, ipcshm or soctcp) can have a separate NETTYPE
entry in the configuration file.

2-40 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

Recommendation: Although the NETTYPE parameter is not a required parameter,
you must set NETTYPE if you use two or more connection types. After the
database server is running for some time, you can use the NETTYPE configuration
parameter to tune the database server for better performance.

For more information about NETTYPE, see “Network virtual processors” on page
4-21. For information about the NETTYPE configuration parameter, see the IBM
Informix Administrator's Reference.

Name service maximum retention time set in the NS_CACHE
configuration parameter

The NS_CACHE configuration parameter defines the maximum retention time for
an individual entry in the host name/IP address cache, the service cache, the user
cache, and the group cache. If you specify maximum retention times, the database
server gets host, service, user, and group database server information from the
cache.

Each cache entry expires either after the time configured for the specific cache or
when the time is reconfigured.

Usually the network name service provider (for example, DNS) is on a remote
computer. To avoid spending the time required to return information from the
network name service provider, you can use the NS_CACHE configuration
parameter to specify the maximum retention times for obtaining information from
one of the internal caches. Then Informix looks for information in the cache. If the
information is not there, the database server queries the operating system for the
information.

You can avoid many of these operating system lookups by using the Informix
name service caching mechanism, which can keep and reuse each retrieved piece
of information for a configurable amount of time.

The server can get information from the cache faster than it does when querying
the operating system. However, if you disable one or more of these caches by
setting the retention time to 0, the database server queries the operating system for
the host, service, user, or group information.

As a DBA, you might want to modify the NS_CACHE configuration parameter
settings if the network name service provider runs on a remote computer or the
MSC VP is running with a large amount of processor usage.

For example, you can run the onstat -g glo command to check the msc VP usage in
the Individual virtual processors portion of the output. In the following ouput
sample, the msc processor usage, shown in the usercpu and syscpu columns is
high. If you suspect the usage is high because the DNS call takes too much time,
you can confirm the high usage with an operating system command and then
modify the NS_CACHE configuration parameter settings.
Individual virtual processors:
vp pid class usercpu syscpu total Thread Eff
1 2036 cpu 76.95 7.14 84.09 99.08 84%
2 2149 adm 0.00 0.00 0.00 0.00 0%
3 2151 LIC 0.00 0.00 0.00 0.00 0%
4 2260 lio 0.00 0.00 0.00 0.03 0%
5 2442 pio 0.00 0.00 0.00 0.00 0%

Chapter 2. Client/server communication 2-41

6 2443 aio 0.00 0.01 0.01 0.11 8%
7 2444 msc 14.18 14.64 28.82 199.91 14%
8 2446 fifo 0.00 0.00 0.00 0.00 0%

You might also want to specify NS_CACHE information, if your operating system
does not have a name service (NS) cache or if you disabled the operating system
NS cache.

Example

To define the maximum retention time for your host and service connections as 600
seconds, and to disable the maximum retention limit for your user and group
database server connections, specify:
NS_CACHE host=600,service=600,user=0,group=0

Connection information set in the NUMFDSERVERS
configuration parameter

For network connections on UNIX, use the NUMFDSERVERS configuration
parameter to specify the maximum number of poll threads to handle network
connections migrating between Informix virtual processors (VPs).

Specifying NUMFDSERVERS information is useful if Informix has a high rate of
new connect and disconnect requests or if you find a high amount of contention
between network shared file (NSF) locks.
Related reference:

NUMFDSERVERS configuration parameter (Administrator's Reference)

Connection information set in the HA_ALIAS configuration
parameter

The HA_ALIAS configuration parameter is an optional parameter that defines a
network alias for a secondary server. The network alias that is specified by the
HA_ALIAS configuration parameter is used when you specify a secondary server
in onmode -d commands.

When a database server's HA_ALIAS configuration parameter is set, all
server-to-server communication with other high-availability cluster nodes occurs
through the specified network alias.

If the primary server in a high-availability cluster fails, the Connection Manager
identifies a secondary server to promote to a primary server. If the secondary
server's HA_ALIAS configuration parameter is set, then the HA_ALIAS network
alias is used to identify the new primary. The HA_ALIAS configuration parameter
only affects RS Secondary and SD Secondary server types.

The value of the HA_ALIAS configuration parameter must be one of the name
values specified in either the DBSERVERNAME or the DBSERVERALIASES
configuration parameter. The network alias must have a connection type that is a
TCP network protocol.
Related reference:

HA_ALIAS configuration parameter (Administrator's Reference)

onmode -d: Set data-replication types (Administrator's Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

2-42 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1120.htm#ids_adr_1120
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0087.htm#ids_adr_0087
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0413.htm#ids_adr_0413
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

DBSERVERNAME configuration parameter (Administrator's Reference)

Environment variables for network connections
The INFORMIXCONTIME (connect time) and INFORMIXCONRETRY (connect retry)
environment variables affect the behavior of the client when it is trying to connect
to a database server. Use these environment variables to minimize connection
errors caused by busy network traffic.

If the client application explicitly attaches to shared-memory segments, you might
be required to set INFORMIXSHMBASE (shared-memory base).

You can use the INFORMIXSERVER environment variable to specify a default dbserver
name to which your clients connect.
Related concepts:
“How a client attaches to the communications portion (UNIX)” on page 6-4
Related tasks:
“Connections that the database server supports” on page 2-5
Related reference:

INFORMIXCONTIME environment variable (SQL Reference)

INFORMIXCONRETRY environment variable (SQL Reference)

INFORMIXSHMBASE environment variable (UNIX) (SQL Reference)

INFORMIXSERVER environment variable (SQL Reference)

Automatically terminating idle connections
You can automatically terminate sessions with clients that have been idle for a
specified time by enabling the idle_user_timeout Scheduler task.

You must be connected to the sysadmin database as user informix or another
authorized user.

To enable the idle_user_timeout task, run the following statement:
UPDATE ph_task

SET tk_enable = ’t’
WHERE tk_name = ’idle_user_timeout’;

By default, the idle_user_timeout task terminates user sessions that are idle for
longer than 60 minutes. Sessions owned by user informix are not terminated. The
idle_user_timeout task starts checking for idle sessions after two hours, which is
the default frequency for the task.

Tip: When the system time changes on the database server computer, the amount
of time user sessions have been idle is no longer accurate. For example, if a user
session last did work at 3:14 PM and at 3:15 PM the system clock is moved
forward by one hour, then to the database server, the user session has been idle for
over an hour.

To change the idle timeout period, update the frequency of running the task and
the value of the threshold. The shortest idle timeout period allowed is 5 minutes.
For example, to change the timeout period to 5 minutes, run the following
statements:

Chapter 2. Client/server communication 2-43

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0045.htm#ids_adr_0045
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_262.htm#ids_sqr_262
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_261.htm#ids_sqr_261
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_267.htm#ids_sqr_267
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_266.htm#ids_sqr_266

UPDATE ph_task
SET tk_frequency = INTERVAL (5) MINUTE TO MINUTE
WHERE tk_name = ’idle_user_timeout’;

UPDATE ph_threshold
SET value = ’5’
WHERE task_name = ’idle_user_timeout’;

Distributed Relational Database Architecture (DRDA) communications
This section contains information about how to configure IBM Informix to use the
Distributed Relational Database Architecture (DRDA), which is a set of protocols
that enables multiple database systems and application programs to work together.

Overview of DRDA
Distributed Relational Database Architecture (DRDA) is a set of protocols that
enable communication between applications and database systems on disparate
platforms, and enables relational data to be distributed among multiple platforms.

Any combination of relational database management products that use DRDA can
be connected to form a distributed relational database management system. DRDA
coordinates communication between systems by defining what is exchanged and
the exchange method.

You can configure the database server to use DRDA to respond to requests from a
common API, such as the IBM Data Server JDBC Driver or the IBM Data Server
.NET Provider.

Connection Managers support DRDA, so you can use connection management to
redirect client connection requests to appropriate database servers. Connection
Managers can also provide automatic failover for high-availability clusters using
DRDA.

Enterprise Replication, data replication, and Informix utilities, such as DB-Access,
require standard Informix connections. Enterprise Replication utilities do not
operate over DRDA connections. However, Enterprise Replication connections can
coexist with DRDA connections.

You can secure DRDA connections between a common client API and Informix in
the following ways:
v Encrypted password security or an encrypted user ID and encrypted password

security
v Secure Sockets Layer (SSL) protocol to encrypt data in end-to-end
v Password authentication through a pluggable authentication module
Related concepts:
Chapter 23, “Connection management through the Connection Manager,” on page
23-1

Secure sockets layer protocol (Security Guide)
Related tasks:

Configuring a connection to use PAM (Security Guide)

2-44 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_ssl_001.htm#ids_ssl_001
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_008.htm#ids_am_008

Configuring connectivity between Informix database servers
and IBM Data Server clients

IBM Data Server Client and an applicable driver must be installed.

To configure Informix to connect to an IBM Data Server Client:
1. On each Connection Manager and database server host, add sqlhosts file

entries for each server: For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_2 port_2
server_3 onsoctcp host_3 port_3

2. In each database server's onconfig file, set the DBSERVERALIASES parameter
to specify an alias for the server.
The onconfig file entry for server_1:
DBSERVERALIASES drda_1

The onconfig file entry for server_2:
DBSERVERALIASES drda_2

The onconfig file entry for server_3:
DBSERVERALIASES drda_3

3. On each Connection Manager's host, add sqlhosts file entries for DRDA
aliases. Specify a drtlitcp or drsoctcp protocol and specify a port for DRDA
communication. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_2 port_2
server_3 onsoctcp host_3 port_3

drda_1 drsoctcp host_1 drda_port_1
drda_2 drsoctcp host_2 drda_port_2
drda_3 drsoctcp host_3 drda_port_3

4. On the host of each Connection Manager, add a group entry for the group of
database server and add a group entry for the group of DRDA aliases. Add
group options to the database server and DRDA alias entries. Use the c=1
group-entry option so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:
#dbservername nettype hostname servicename options
my_servers group - - c=1,e=server_3
server_1 onsoctcp host_1 port_1 g=my_servers
server_2 onsoctcp host_2 port_2 g=my_servers
server_3 onsoctcp host_3 port_3 g=my_servers

drda_aliases group - - c=1,e=drda_3
drda_1 drsoctcp host_1 port_4 g=drda_aliases
drda_2 drsoctcp host_2 port_5 g=drda_aliases
drda_3 drsoctcp host_3 port_6 g=drda_aliases

5. Add the DRDA service-level agreements to your Connection Managers'
configuration files. For example:
The first Connection Manager's configuration file has the following entries:
NAME connection_manager_1

CLUSTER my_cluster
{

INFORMIXSERVER my_servers
SLA sla_primary_1 DBSERVERS=PRI

Chapter 2. Client/server communication 2-45

SLA sla_primary_drda_1 DBSERVERS=PRI
SLA sla_secondaries_1 DBSERVERS=SDS,HDR
SLA sla_secondaries_drda_1 DBSERVERS=SDS,HDR

}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

CLUSTER my_cluster
{

INFORMIXSERVER my_servers
SLA sla_primary_2 DBSERVERS=PRI
SLA sla_primary_drda_2 DBSERVERS=PRI
SLA sla_secondaries_2 DBSERVERS=SDS,HDR
SLA sla_secondaries_drda_2 DBSERVERS=SDS,HDR

}

6. On the host of each IBM Data Server client, create sqlhosts file entries for each
service-level agreement (SLA) in each Connection Manager configuration file.
Create group entries for each group of SLA entries, and add group options to
the SLA entries.
For example:

#dbservername nettype hostname servicename options
g_primary group - - c=1,e=sla_primary_2
sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

g_secondaries group - - c=1,e=sla_secondaries_2
sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

g_primary_drda group - - c=1,e=sla_primary_2_drda
sla_primary_1_drda drsoctcp cm_host_1 cm_port_5 g=g_primary_drda
sla_primary_2_drda drsoctcp cm_host_2 cm_port_6 g=g_primary_drda

g_secondaries_drda group - - c=1,e=sla_secondaries_2_drda
sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7 g=g_secondaries_drda
sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8 g=g_secondaries_drda

In the previous example, IBM Data Server client connection requests to
@g_primary_drda are sent by drsoctcp protocol to one of the Connection
Managers. The Connection Manager that receives the request uses an SLA to
provide the client application with connection information for the primary server.

If you receive error -23104 when accessing the server through the DRDA protocol,
the client application might be trying to bind a value that has an encoding
different from the code page or code set of the database locale. Set the GL_USEGLU
environment variable to 1 before you start the Informix instance. This setting
enables the server to initialize the appropriate Unicode converters that are required
to handle the code set conversions.
Related concepts:
“The sqlhosts information” on page 2-19
Related tasks:
“Defining sqlhosts information for high-availability clusters that use Distributed
Relational Database Architecture (DRDA)” on page 23-43
“Defining sqlhosts information for high-availability clusters that use Distributed
Relational Database Architecture (DRDA) and secure ports” on page 23-45
Related reference:

GL_USEGLU environment variable (GLS User's Guide)

2-46 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.glsug.doc/ids_gug_090.htm#ids_gug_090

Allocating poll threads for an interface/protocol combination
with the NETTYPE configuration parameter

The NETTYPE configuration parameter configures poll threads for each connection
type that your instance of the database server supports. You can use this
configuration parameter to allocate more than one poll thread for an
interface/protocol combination.

Set the NETTYPE configuration parameter as follows:
1. Specify SQLI, drtlitcp, or drsoctcp as the connection protocol.
2. Add information about the number of poll threads, the number of connections,

and the virtual processor class.

For example, specify:
NETTYPE drtlitcp,3,2,CPU

A NETTYPE entry can handle multiple database server aliases on the same
protocol type. Thus, when DRDA is in use, the network listener thread (NETTYPE
drtlitcp or drsoctcp) typically has at least two sockets open and listening for
connections. One socket is open for SQLI connections and another is open for
DRDA connections. Additional sockets might be open if many separate server
aliases are configured.

For more information about the NETTYPE configuration parameter, see the IBM
Informix Administrator's Reference.

Specify the size of the DRDA communication buffer with the
DRDA_COMMBUFFSIZE configuration parameter

Use the DRDA_COMMBUFFSIZE configuration parameter to specify the size of
the DRDA communications buffer. The minimum size is 4 KB, the maximum size is
2 megabytes, and the default value is 32 KB.

You can specify a one megabyte buffer as 1M, 1m, 1024K, 1024k, or 1024. IBM
Informix automatically resets values that are less than 4 KB as 32 KB.

When a DRDA session is established, the session allocates a communication buffer
of the current buffer size.

You can use the isgetdrdacommbuffsize() function to return the current value of
DRDA_COMMBUFFSIZE.

You cannot use the onmode -wm command to change the setting while the
database server is running.

The DRDAEXEC thread and queries from clients
For every DRDA client, IBM Informix creates a session and a DRDAEXEC thread,
which is the equivalent of an SQLEXEC thread, to process and run the queries.
This thread also formats the results of the queries in the DRDA protocol format
and sends the results back to the client computer.

Queries issued from a DRDA client run in parallel if PDQPRIORITY is set and the
query can run in parallel. Queries run from DRDAEXEC threads can also run in
parallel.

Chapter 2. Client/server communication 2-47

SQL and supported and unsupported data types
When using DRDA, IBM Informix syntax is supported over the common API.

The following data types are supported over the common API:
v BIGINT
v BIGSERIAL
v BLOB
v BOOLEAN
v BYTE
v CHAR(32k)
v CLOB
v DATE
v DATETIME
v DECIMAL
v FLOAT
v INT
v INT8
v INTERVAL
v LVARCHAR(32k)
v MONEY
v NCHAR(32k)
v NVARCHAR(255)
v SERIAL
v SERIAL8
v SMALLFLOAT
v SMALLINT
v TEXT
v VARCHAR(255)

When using DRDA connections, Informix rounds decimal and money values to
32-digit precision for all data retrieval operations on decimal or money data types.

Informix DATETIME values are mapped to DATE, TIME, or TIMESTAMP values.

The following data types are supported for use with database server host variables:
v CHAR
v DATE
v INT
v SMALLINT
v VCHAR

Display DRDA connection information
Use the following onstat and onmode commands to display information that
includes the DRDA thread name and an indicator that distinguishes SQLI and
DRDA sessions:
v onstat -g ses

v onstat -g sql

2-48 IBM Informix Administrator's Guide

v onstat -g ath

v onstat -g stk

v onstat -u

v onstat -x

v onstat -G

v onstat -g ddr

v onstat -g env

v onstat -g stm

v onstat -g ssc

v onmode -D

v onmode -Z

For example, the onstat output might show "drdaexec" as the threadname.

Display DRDA session information
Use the syssesappinfo table in the sysmaster database to view DRDA client
session information. The table shows the client session ID, session application
name, and a session value in the sesapp_sid, sesapp_name, and sesapp_value
columns.

For example, the table might show the following information:
v sesapp_sid: 6
v sesapp_name: Accting
v sesapp_value: db2jcc_application

You can also display client session information using the onstat -g ses command.
Related concepts:

The sysmaster Database (Administrator's Reference)
Related reference:

syssesappinfo (Administrator's Reference)

onstat -g ses command: Print session-related information (Administrator's
Reference)

Examples of client/server configurations
The next several sections show the correct sqlhosts entries for several
client/server connections. You can assume that the network-configuration files
hosts and services have been correctly prepared even if they are not explicitly
mentioned. The following examples are included:
v Using a network connection
v Using multiple connection types
v Accessing multiple database servers

Examples of shared-memory and local-loopback connections can be found with the
explanation of shared memory and local-loopback connections.
Related reference:
“Shared-memory connections (UNIX)” on page 2-6
“Local-loopback connections” on page 2-8

Chapter 2. Client/server communication 2-49

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0200.htm#ids_adr_0200
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0253.htm#ids_adr_0253
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0574.htm#ids_adr_0574
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0574.htm#ids_adr_0574

A network connection
The following figure shows a configuration in which the client application is on
host river and the database server is on host valley.

An sqlhosts entry for the valley_ds database server is defined on both computers.

Both computers are on the same TCP/IP network, but the host river uses sockets
for its network programming interface, while the host valley uses TLI for its
network programming interface. The nettype field must reflect the type of network
programming interface used by the computer on which sqlhosts is located. In this
example, the nettype field for the valley_ds database server on host river is
onsoctcp, and the nettype field for the valley_ds database server on host valley is
ontlitcp.
Related concepts:
“Network programming interface” on page 2-2

Multiple connection types
A single instance of the database server can provide more than one type of
connection. The following figure illustrates such a configuration. The database
server is on host river. Client A connects to the database server with a
shared-memory connection because shared memory is fast. Client B must use a
network connection because the client and server are on different computers.

When you want the database server to accept more than one type of connection,
you must take the following actions:
v Add DBSERVERNAME and DBSERVERALIASES entries in the onconfig file.
v Add an sqlhosts entry for each database server/connection type pair.

For the configuration in the following figure, the database server has two dbserver
names: river_net and river_shm. The onconfig file includes the following entries:
DBSERVERNAME river_net
DBSERVERALIASES river_shm

river

SOC - TCP

TLI - TCP

valley

Client

valley_ds

Database server

sqlhosts entry on river

valley_ds

dbservername

valleyonsoctcp valleyol

nettype hostname servicename options

sqlhosts entry on valley

valley_ds

dbservername

valleyontlitcp valleyol

nettype hostname servicename options

Figure 2-6. An example of a network client/server configuration

2-50 IBM Informix Administrator's Guide

The dbserver name used by a client application determines the type of connection
that is used. Client A uses the following statement to connect to the database
server:
CONNECT TO ’@river_shm’

In the sqlhosts file, the nettype associated with the name river_shm specifies a
shared-memory connection, so this connection is a shared-memory connection.

Client B uses the following statement to connect to the database server:
CONNECT TO ’@river_net’

In the sqlhosts file, the nettype value associated with river_net specifies a
network (TCP/IP) connection, so Client B uses a network connection.

Accessing multiple database servers
The following figure shows a configuration with two database servers on host
river. When more than one database server is active on a single computer, it is
known as multiple residency.

sqlhosts entries on river

river_shm
river_net

river
river

onipcshm
onsoctcp

riverA
riveron

river

SOC - TCP
TLI - TCP

Shared
memory

Client A

Database server A

valley
sqlhosts entries on valley

river_net riverontlitcp riveronClient B

Figure 2-7. An example of a UNIX client/server configuration that uses multiple connection types

Chapter 2. Client/server communication 2-51

For the configuration in previous example, you must prepare an onconfig file for
database server A and another one for database server B. The sqlhosts file
includes the connectivity information for both database servers.

The onconfig file for database server A includes the following line:
DBSERVERNAME riverA_shm

The onconfig file for database server B includes the following line:
DBSERVERNAME riverB_soc

Related tasks:

Multiple residency (Installation Guide (Windows))

Setting up multiple residency (Installation Guide (UNIX))

IBM Informix MaxConnect
IBM Informix MaxConnect is a networking product for IBM Informix database
server environments on UNIX. Informix MaxConnect manages large numbers
(from several hundred to tens of thousands) of client/server connections. Informix
MaxConnect multiplexes connections so that the ratio of client connections to
database connections can be 200:1 or higher. Informix MaxConnect increases
system scalability to many thousands of connections and saves system resources,
reducing response times and processor requirements. Informix MaxConnect is best
for OLTP data transfers and should not be used for large multimedia data
transfers.

Install Informix MaxConnect separately from your IBM Informix database server
and client applications. For maximum performance benefit, install Informix
MaxConnect either on a separate computer to which IBM Informix clients connect
or on the client application server. You can install Informix MaxConnect in the
following configurations:
v On a dedicated server to which IBM Informix clients connect
v On the client application server
v On the database server computer

river

sqlhosts entries on river

riverA_shm
riverB_soc

dbservername

river
river

onipcshm
onsoctcp

riverA
riveron

nettype hostname servicename

Shared memory

options

Client

riverA_shm

Database server A

riverB_soc

Database server B

SOC - TCP

Figure 2-8. Multiple database servers on UNIX

2-52 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_iw_018x.htm#ids_iw_018
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igul.doc/ids_in_045x.htm#ids_in_045

Two protocols for multiplexing connections, ontliimc and onsocimc, are available
for Informix MaxConnect users. You can use the ontliimc and onsocimc protocols
in the following two configurations:
v To connect Informix MaxConnect to the database server.

In this configuration, the client connections are multiplexed and use packet
aggregation.

v To connect the client applications directly to the database server without going
through Informix MaxConnect.
In this configuration, the client does not get the benefits of connection
multiplexing or packet aggregation. Choose this configuration when the client
application is transferring simple- or smart-large-object data, because a direct
connection to the database server is best.

For more information about how to configure Informix MaxConnect and monitor it
with the onstat -g imc and imcadmin commands, see the IBM Informix MaxConnect
User's Guide.

Important: Informix MaxConnect and the IBM Informix MaxConnect User's Guide
ship separately from the IBM Informix database server.
Related reference:
“sqlhosts connectivity information” on page 2-20

Chapter 2. Client/server communication 2-53

2-54 IBM Informix Administrator's Guide

Chapter 3. Database server initialization

The database server requires both disk-space initialization and shared-memory
initialization.
Related concepts:
“Database server configuration” on page 1-3

Types of initialization
Initialization of the database server is composed of two related activities:
shared-memory initialization and disk-space initialization.

Shared-memory initialization, or starting the server, establishes the contents of
database server shared memory as follows: internal tables, buffers, and the
shared-memory communication area. Shared memory is initialized every time the
database server starts. You use the oninit utility from the command line to
initialize database server shared memory and bring the database server online.

Shared-memory initialization also occurs when you restart the database server.

One key difference distinguishes shared-memory initialization from disk-space
initialization:

Shared-memory initialization has no effect on disk-space allocation or layout.
No data is deleted.

Disk-space initialization uses the values stored in the configuration file to create the
initial chunk of the root dbspace on disk. When you initialize disk space, the
database server automatically initializes shared memory as part of the process.
Disk space is initialized the first time the database server starts. It is only
initialized thereafter during a cold restore or at the request of the database server
administrator.

Warning: When you initialize disk space, you overwrite whatever is on that disk
space. If you reinitialize disk space for an existing database server, all the data in
the earlier database server becomes inaccessible and, in effect, is deleted.

Initializing disk space
You initialize disk space for the root dbspace when you are starting a database
server for the first time or you want to remove all dbspaces and their associated
data. When you install the database server and choose to initialize a new instance
of the database server, the database server is initialized automatically.

Warning: When you initialize the database server, all existing data in the database
server disk space is deleted.

Prerequisites:
v UNIX, Linux, or Mac OS X: You must be logged in as user root or informix.
v Windows: You must be a member of the Administrators or Power Users group.

© Copyright IBM Corp. 1996, 2014 3-1

Before you reinitialize a root dbspace that is already being used by the database
server:
v Back up existing data by performing a level-0 backup.
v Stop the database server by running the onmode -k command.
v Set the FULL_DISK_INIT configuration parameter to 1.

To initialize the database server:

UNIX, Linux, or Mac OS X: Run the oninit -iy command.

Windows: Use one of the following methods:
v In the Services control application, choose the database server service and type

-iy in the Startup parameters field. Then click Start.
v Use the starts command from the command line with the database server name

and the -iy options: starts dbservername -iy

After initialization is complete, you can perform a level-0 restore.
Related reference:

The oninit utility (Administrator's Reference)

onmode -k, -m, -s, -u, -j: Change database server mode (Administrator's
Reference)

FULL_DISK_INIT configuration parameter (Administrator's Reference)

Initialization process
When you start the database server or initialize disk space, the database server
performs a set of steps. You can see the results of each step in the message log.

Disk-space initialization always includes the initialization of shared memory.
However, some activities that normally take place during shared-memory
initialization, such as recording configuration changes, are not required during disk
initialization because those activities are not relevant with a newly initialized disk.

The following table shows the main tasks completed during the two types of
initialization. The following sections explain each step.

Table 3-1. Initialization steps

Shared-memory initialization Disk initialization

Process configuration file. Process configuration file.

Create shared-memory segments. Create shared-memory segments.

Initialize shared-memory structures. Initialize shared-memory structures.

Initialize disk space.

Start all required virtual processors. Start all required virtual processors.

Make necessary conversions.

Initiate fast recovery.

Initiate a checkpoint. Initiate a checkpoint.

Document configuration changes.

Update oncfg_servername.servernum file. Update oncfg_servername.servernum file.

Change to quiescent mode. Change to quiescent mode.

3-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0395.htm#ids_adr_0395
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0422.htm#ids_adr_0422
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0422.htm#ids_adr_0422
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1099.htm#ids_adr_1099

Table 3-1. Initialization steps (continued)

Shared-memory initialization Disk initialization

Drop temporary tblspaces (optional).

Set forced residency, if requested. Set forced residency, if specified.

Change to online mode and return control to user. Change to online mode and return control to user.

If the SMI tables are not current, update the tables. Create sysmaster database that contains the SMI tables.

Create the sysutils database.

Create the sysuser database

Create the sysadmin database

Monitor maximum number of user connections at each
checkpoint.

Monitor maximum number of user connections at each
checkpoint.

Configuration file used during initialization
The database server uses configuration parameters to allocate shared-memory
segments during initialization and restart. If you modify a shared-memory
configuration parameter, you must shut down and restart the database server for
the change to take effect.

The ONCONFIG environment variable, which specifies the onconfig file that contains
your configuration parameters, must be set before you initialize or restart the
database server.

During initialization, the database server looks for configuration values in the
following files:
v If the ONCONFIG environment variable is set, the database server reads values

from the onconfig file.
If the ONCONFIG environment variable is set, but the database server cannot access
the specified onconfig file, the server returns an error message.

v If the ONCONFIG environment variable is not set, the database server reads the
values from the onconfig file.

If you omit any configuration parameters in your onconfig file, the database server
uses the default values that are built in the server.

The restart process compares the values in the current configuration file with the
previous values, if any, that are stored in the root dbspace reserved page,
PAGE_CONFIG. When differences exist, the database server uses the values from
the current onconfig configuration file when the database server is restarted.
Related reference:

Database configuration parameters (Administrator's Reference)

ONCONFIG environment variable (SQL Reference)

Create shared-memory portions
The database server uses the configuration values to calculate the required size of
the database server resident shared memory. In addition, the database server
computes additional configuration requirements from internal values. Space
requirements for overhead are calculated and stored.

Chapter 3. Database server initialization 3-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0007.htm#ids_adr_0007
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_286.htm#ids_sqr_286

To create shared memory, the database server acquires the shared-memory space
from the operating system for three different types of memory:
v Resident portion, used for data buffers and internal tables
v Virtual portion, used for most system and user-session memory requirements
v IPC communication portion, used for IPC communication

The database server allocates this portion of shared memory only if you
configure an IPC shared-memory connection.

Next, the database server attaches shared-memory segments to its virtual address
space and initializes shared-memory structures. For more information about
shared-memory structures, see “Virtual portion of shared memory” on page 6-13.

After initialization is complete and the database server is running, it can create
additional shared-memory segments as necessary. The database server creates
segments in increments of the page size.

Initialize or restart shared-memory
After the database server attaches to shared memory, it clears the shared-memory
space of uninitialized data. Next the database server lays out the shared-memory
header information and initializes data in the shared-memory structures. The
database server lays out the space required for the logical-log buffer, initializes the
structures, and links together the three individual buffers that form the logical-log
buffer. For more information about these structures, see the onstat utility section in
the IBM Informix Administrator's Reference.

After the database server remaps the shared-memory space, it registers the new
starting addresses and sizes of each structure in the new shared-memory header.

During shared-memory initialization, disk structures and disk layout are not
affected. The database server reads essential address information, such as the
locations of the logical and physical logs, from disk and uses this information to
update pointers in shared memory.

Initialize disk space
This procedure is performed only during disk-space initialization, not when the
database server is restarted. After shared-memory structures are initialized, the
database server begins initializing the disk. The database server initializes all the
reserved pages that it maintains in the root dbspace on disk and writes page zero
control information to the disk.

The FULL_DISK_INIT configuration parameter specifies whether oninit -i can run
on your instance when a page zero exists at the root path location (at the first page
of the first chunk location). Use this configuration parameter to prevent an
accidental disk reinitialization of an existing server instance.

The default setting of the FULL_DISK_INIT configuration parameter is 0. When
the configuration parameter is set to0 , the oninit -i command runs only if there is
not a page zero at the root path location.

If a page zero exists at the root path location, initialization occurs only if the
FULL_DISK_INIT configuration parameter is set to 1. The database server
automatically resets the FULL_DISK_INIT configuration parameter to 0 after the
initialization.
Related reference:

3-4 IBM Informix Administrator's Guide

The oninit utility (Administrator's Reference)

Start all required virtual processors
The database server starts all the virtual processors that it requires. The parameters
in the onconfig file influence what processors are started. For example, the
NETTYPE parameter can influence the number and type of processors started for
making connections. For more information about virtual processors, see “Virtual
processors” on page 4-1.

Make necessary conversions
The database server checks its internal files. If the files are from an earlier version,
it updates these files to the current format. For information about database
conversion, see the IBM Informix Migration Guide.

Start fast recovery
The database server checks if fast recovery is required and, if so, starts it. For more
information about fast recovery, see “Fast recovery” on page 15-6.

Fast recovery is not performed during disk-space initialization because there is not
yet anything to recover.

Start a checkpoint
After fast recovery completes, the database server executes a checkpoint to verify
that all recovered transactions are flushed to disk so the transactions are not
repeated.

As part of the checkpoint procedure, the database server writes a
checkpoint-complete message in the message log. For more information about
checkpoints, see “Checkpoints” on page 15-4.

The database server now moves to quiescent mode or online mode, depending on
how you started the initialization or database-server restart process.

Document configuration changes
The database server compares the current values stored in the configuration file
with the values previously stored in the root dbspace reserved page
PAGE_CONFIG. When differences exist, the database server notes both values (old
and new) in a message to the message log.

This task is not performed during disk-space initialization or restart.

Create the oncfg_servername.servernum file
The database server creates the oncfg_servername.servernum file and updates it
every time that you add or delete a dbspace, blobspace, logical-log file, or chunk.
You are not required to manipulate this file in any way, but you can see it listed in
your $INFORMIXDIR/etc directory on UNIX or in your %INFORMIXDIR%\etc directory
on Windows. The database server uses the oncfg_servername.servernum file during
a full-system restore for salvaging the logical log.

For more information about the oncfg_servername.servernum file, see the section
on files that the database server uses in the IBM Informix Administrator's Reference.

Chapter 3. Database server initialization 3-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0395.htm#ids_adr_0395

Drop Temporary Tblspaces
The database server searches through all dbspaces for temporary tblspaces. (If you
use the -p option of oninit to initialize the database server, the database server
skips this step.) These temporary tblspaces, if any, are tblspaces left by user
processes that died prematurely and were unable to perform appropriate cleanup.
The database server deletes any temporary tblspaces and reclaims the disk space.
For more information about temporary tblspaces, see “Temporary tables” on page
8-28.

This task is performed when the database server is restarted; it is not performed
during disk-space initialization.

Set forced residency if specified
If the value of the RESIDENT configuration parameter is -1 or a number greater
than 0, the database server tries to enforce residency of shared memory. If the host
computer system does not support forced residency, the initialization procedure
continues. Residency is not enforced, and the database server sends an error
message to the message log. For more information about the RESIDENT
configuration parameter, see the IBM Informix Administrator's Reference.

Return control to user
The database server writes the IBM Informix Dynamic Server initialized -
complete disk initialized message in the message log only if initialization, not
database-server restart, occurred. The database server also dynamically allocates a
virtual shared-memory segment.

At this point, control returns to the user. Any error messages generated by the
initialization procedure are displayed in the following locations:
v The command line
v The database server message log file, specified by the MSGPATH configuration

parameter
For more information about the MSGPATH parameter, see the IBM Informix
Administrator's Reference.

You can use the oninit -w utility to force the server to return to a command
prompt within a configurable timeout. The oninit -w utility is useful for
troubleshooting initialization failures. For syntax and information about oninit, see
the IBM Informix Administrator's Reference.

Create sysmaster database and prepare SMI tables
Even though the database server has returned control to the user, it has not
finished its work. The database server now checks the system-monitoring interface
(SMI) tables. If the SMI tables are not current, the database server updates the
tables. If the SMI tables are not present, as is the case when the disk is initialized,
the database server creates the tables. After the database server builds the SMI
tables, it puts the message sysmaster database built successfully in the message
log. The database server also recreates the sysmaster database during conversion
and reversion. For more information about SMI tables, see the chapter on the
sysmaster database in the IBM Informix Administrator's Reference.

If you shut down the database server before it finishes building the SMI tables, the
process of building the tables stops. This condition does not damage the database
server. The database server builds the SMI tables the next time that you bring the

3-6 IBM Informix Administrator's Guide

database server online. However, if you do not allow the SMI tables to finish
building, you cannot run any queries against those tables, and you cannot use
ON-Bar for backups.

After the SMI tables have been created, the database server is ready for use. The
database server runs until you stop it or, possibly, until a malfunction.

Recommendation: Do not try to stop the database server by stopping a virtual
processor or ending another database server process. For more information, see
“Start and stop virtual processors” on page 5-1.

Create the sysutils database
The database server drops and recreates the sysutils database during disk
initialization, conversion, or reversion. ON-Bar stores backup and restore
information in the sysutils database. Wait until the message sysutils database
built successfully displays in the message log. For more information, see the
IBM Informix Backup and Restore Guide.

Create the sysuser database
The sysuser database is used for Pluggable Authentication Module (PAM)
authentication in IBM Informix server to server communication.

Create the sysadmin database
The sysadmin database provides remote administration and scheduler API features
in IBM Informix.

Monitor maximum number of user connections
At each checkpoint, the database server prints the maximum number of user
connections in the message log: maximum server connections number. You can
monitor the number of users who have connected to the database server since the
last restart or disk initialization.

The number displayed is reset when the customer reinitializes the database server.

Database server operating modes
You can determine the current database server mode by running the onstat utility
from the command line. The onstat header displays the mode.

The table shows the principal modes of operation of the database server.

Table 3-2. Operating modes

Operating mode Description Users allowed access

Offline mode The database server is not running. Shared
memory is not allocated.

Only the administrator (user informix) can
change from this mode to another mode.

Quiescent mode Database-server processes are running and
shared-memory resources are allocated.

Administrators use this mode to perform
maintenance functions that do not require
the execution of SQL and DDL statements.

Only the administrator (user informix) can
access the database server.

Other users can view database-server status
information, but they cannot access the
database server.

Chapter 3. Database server initialization 3-7

Table 3-2. Operating modes (continued)

Operating mode Description Users allowed access

Administration mode This mode is an intermediary mode
between Quiescent mode and Online mode.

Administrators use this mode to perform
any maintenance task, including tasks
requiring the execution of SQL and DDL
statements. Administrators can also
perform all other functions available in
Online mode.

The following users can connect to the
database server in administration mode:

v User informix

v Users who have the DBSA role

Set the
ADMIN_USER_MODE_WITH_DBSA
configuration parameter to 1 if you want
users who are members of the DBSA
group (in addition to user informix) to
connect to the database server in
administration mode.

v One or more users who have
administration mode access

User informix or a DBSA can
dynamically give one or more specific
users the ability to connect to the
database server in administration mode
through the onmode -j command, the
oninit -U command, or the
ADMIN_MODE_USERS configuration
parameter.

Other users can view database-server status
information, but they cannot access the
database server.

Online mode This is the normal operating mode of the
database server.

Any authorized user can connect with the
database server and perform all database
activities.

User informix or user root can use the
command-line utilities to change many
database server ONCONFIG parameter
values.

In addition, the database server can also be in one of the following modes:
v Read-only mode is used by the secondary database server in a data replication

environment. An application can query a secondary database server that is in
read-only mode, but the application cannot write to a read-only database.

v Recovery mode is transitory. It occurs when the database server performs fast
recovery or recovers from a system archive or system restore. Recovery occurs
during the change from offline to quiescent mode.

v Shutdown mode is transitory. It occurs when the database server is moving from
online to quiescent mode or from online (or quiescent) to offline mode. For the
current users access the system, but no new users are allowed access.
After shutdown mode is initiated, it cannot be canceled.

Change database server operating modes
This section describes how to change from one database server operating mode to
another with the oninit and onmode utilities. It also contains information about
using the ADMIN_MODE_USERS configuration parameter to specify which users
can connect to the server in administration mode.

3-8 IBM Informix Administrator's Guide

Windows only: In Windows, the database server runs as a service. Windows
provides a service control application (also called the Services tool) to start, stop,
and pause a service. The service control application is located in the Control Panel
program group. The service name for the database server includes the database
server name (the value of DBSERVERNAME in the onconfig file). For example, the
IBM Informix service for the newyork database server is:
IBM Informix Database Server - newyork

To change mode with the Services tool, start the tool and select the database server
service. Then choose the appropriate option in the Services window. The tables
shown later in these topics explain which option you select for each mode.

To start and stop the database server, you can use other Windows tools, such as
the NET command and the Server Manager tool. For more information about these
methods, consult your Windows operating-system documentation.

Tip: After you change the mode of your database server, run the onstat command
to verify the current server status.

Users permitted to change modes
UNIX only

Users who are logged in as root or informix and members of the DBSA group can
change the operating mode of the database server.

If you want users with the DBSA group to connect to the database server in
administration mode, set the ADMIN_USER_MODE_WITH_DBSA configuration parameter
to 1. If this parameter is set to zero, then access is restricted to user informix only.
If the parameter is missing from $ONCONFIG, it is treated as 0.

User informix or a DBSA can dynamically give one or more specific users the
ability to connect to the database server in administration mode, using the onmode
utility, the oninit utility, or the ADMIN_MODE_USERS configuration parameter.

Note: For a member of the DBSA group, the permissions on $INFORMIXDIR/bin/
oninit must be changed to allow public execute permission - root:informix:6755
in a standard IBM Informix installation.

Windows only

Table 3-2 on page 3-7 shows which users can change the operating mode of the
database server in Windows. Apache as user informix. The Apache server runs as
a member of the Informix-Admin group.

Table 3-3. Changing operating modes in windows

Changing operating mode Administrators group Informix-Admin group

command-line utilities such as starts X

services control panel X

Chapter 3. Database server initialization 3-9

Command-line options for changing modes
Table 3-2 on page 3-7 contains descriptions of each mode and shows which users
can access the database server when the server is in each mode. These topics
contain information about commands for changing modes and information about
how mode changes effect user sessions.

Also see “Specify administration mode users with the ADMIN_MODE_USERS
configuration parameter” on page 3-13.

Change from offline to quiescent mode
When the database server changes from offline mode to quiescent mode, the
database server initializes shared memory. Only administrators can access the
database server to perform maintenance functions that do not involve the
execution of SQL and DDL statements.

Operating system Action

UNIX Run oninit -s.

Windows On the command line, use the starts
dbservername -s command.

Change from offline to online mode
When you move the database server from offline to online mode, the database
server initializes shared memory and is available for all user sessions.

Operating system Action

UNIX Run oninit.

Windows With the Services tool, select the database
server service and click Start.

On the command line, use the starts
dbservername command.

Change from offline to administration mode
When you move the database server from offline to administration mode, you
move the server into a mode that only administrators can use to perform database
server functions and maintenance functions, including those involving the
execution of SQL and DDL statements.

Operating system Action

UNIX or Windows Run oninit -j.

User informix or a DBSA can use the oninit -U command to specify a list of
administration mode users, as shown in this example:
oninit -U mark,ajay,carol

Users specified in the oninit -U list can connect for the period of time in which the
server instance is active or until you run the onmode -j -U command to change the
list of users who can connect to the server. Run the onmode -j -U command with a
blank space instead of a name to remove all users in the list, as shown in this
example:
oninit -U " "

3-10 IBM Informix Administrator's Guide

Also see “Specify administration mode users with the ADMIN_MODE_USERS
configuration parameter” on page 3-13.

Change from quiescent to online mode
When you take the database server from quiescent mode to online mode, all
sessions gain access.

If you have already taken the database server from online mode to quiescent mode
and you are now returning the database server to online mode, any users who
were interrupted in earlier processing must reselect their database and redeclare
their cursors.

Operating system Action

UNIX or Windows Run onmode -m.

Windows only With the Services tool, choose the database
server service and click Continue.

Change gracefully from online to quiescent mode
Take the database server gracefully from online mode to quiescent mode to restrict
access to the database server without interrupting current processing.

After you perform this task, the database server sets a flag that prevents new
sessions from gaining access to the database server. The current sessions are
allowed to finish processing.

After you initiate the mode change, it cannot be canceled. During the mode change
from online to quiescent, the database server is considered to be in Shutdown
mode.

Operating system Action

UNIX or Windows Run onmode -s or onmode -sy.

Windows only With the Services tool, choose the database
server service and click Pause.

Change immediately from online to quiescent mode
Take the database server immediately from online mode to quiescent mode to
restrict access to the database server as soon as possible. Work in progress can be
lost.

A prompt asks for confirmation of the immediate shutdown. If you confirm, the
database server sends a disconnect signal to all sessions that are attached to shared
memory. If a session does not receive the disconnect signal or is not able to comply
automatically within 10 seconds, the database server terminates the session.

The database server users receive either error message -459 indicating that the
database server was shut down or error message -457 indicating that their session
was unexpectedly terminated.

The database server cleans up all sessions that the database server terminated.
Active transactions are rolled back.

Chapter 3. Database server initialization 3-11

Operating system Action

UNIX or Windows Run onmode -u or onmode -uy

The -y option eliminates the requirement to
confirm the prompt.

Change from quiescent or online to administration mode
When you move the database server from quiescent or online to administration
mode, you move the server into a mode that only administrators can use.

If you begin in online mode, the database server automatically disconnects any
users who are connected with any user ID that is not user informix and the users
receive an error message. If a connection is terminated during a transaction, the
database server rolls back the transaction.

Change to administration mode when you want to run SQL and DLL commands
when no other users are connected.

Operating system Action

UNIX or Windows Run onmode -j.

User informix or a DBSA can use the onmode -j -U option to grant individual
users access to the database server in administration mode.

For example, run the following command to enable three individual users to
connect to the database server and have database server access until the database
server mode changes to offline, quiescent or online mode:
onmode -j -U mark,ajay,carol

After connecting, these individual users can run any SQL or DDL commands.
When the server is changed to administration mode, all sessions for users not
identified in the onmode -j -U command lose their database server connection.

After initially running the onmode -j -U command, you can remove individuals by
running onmode -j -U and removing individual user names from the new list of
names in the command, for example, by running:
onmode -j -U mark,carol

Run the onmode -j -U command with a blank space instead of a name to remove
all users in the list, as shown in this example:
oninit -U " "

Also see “Specify administration mode users with the ADMIN_MODE_USERS
configuration parameter” on page 3-13.

Change from administration to online mode
When you move the database server from administration to online mode, all users
can access the database server.

Operating system Action

UNIX or Windows Run onmode -m.

3-12 IBM Informix Administrator's Guide

Change from administration to quiescent mode
When you move the database server from administration to quiescent mode, you
move the server into a mode that only administrators can use to perform
maintenance functions that do not involve the execution of SQL and DDL
statements.

Operating system Action

UNIX or Windows Run onmode -s.

Change from any mode immediately to offline mode
You can take the database server immediately from any mode to offline mode.

A prompt asks for confirmation to go offline. If you confirm, the database server
initiates a checkpoint request and sends a disconnect signal to all sessions that are
attached to shared memory. If a session does not receive the disconnect signal or is
not able to comply automatically within 10 seconds, the database server terminates
this session.

The database server users receive either error message -459 indicating that the
database server was shut down or error message -457 indicating that their session
was unexpectedly terminated.

After you take the database server to offline mode, restart the database server in
quiescent, administration, or online mode. When you restart the database server, it
performs a fast recovery to ensure that the data is logically consistent.

The database server cleans up all sessions that were terminated by the database
server. Active transactions are rolled back.

Operating system Action

UNIX or Windows Run onmode -k or onmode -ky. The -y
option eliminates the automatic prompt that
confirms an immediate shutdown.

Windows only With the Services tool, choose the database
server service and click Stop.

If the onmode command fails to shut down the database server, you can use the
onclean utility to force an immediate shutdown. For more information about the
onclean utility, see the IBM Informix Administrator's Reference.

Specify administration mode users with the
ADMIN_MODE_USERS configuration parameter

The ADMIN_MODE_USERS configuration parameter enables you to specify which
users can connect to the database server in administration mode. Unlike the oninit
and onmode commands that enable you to specify administration mode users until
the server changes to offline, quiescent, or online mode, the
ADMIN_MODE_USERS configuration parameter preserves a list of administration
mode users indefinitely.

To create a list of administration mode users that is preserved in the onconfig file,
specify a comma-separated list of users as ADMIN_MODE_USERS configuration
parameter values, for example, mark,ajay,carol.

Chapter 3. Database server initialization 3-13

To override ADMIN_MODE_USERS during a session, use the onmode -wf
command, as shown in this example:
onmode -wf ADMIN_MODE_USERS=sharon,kalpana

The effect of the ADMIN_MODE_USERS configuration parameter is to add to the
list of people permitted to access the server in administration mode. Those people
listed in the onmode command line override those listed in the onconfig file.

3-14 IBM Informix Administrator's Guide

Part 2. Disk, memory, and process management

© Copyright IBM Corp. 1996, 2014

IBM Informix Administrator's Guide

Chapter 4. Virtual processors and threads

These topics describe virtual processors, explain how threads run within the virtual
processors, and explain how the database server uses virtual processors and
threads to improve performance.
Related reference:
“Database server maintenance tasks” on page 1-10

Virtual processors
Database server processes are called virtual processors because the way they
function is similar to the way that a CPU functions in a computer. Just as a CPU
runs multiple operating-system processes to service multiple users, a database
server virtual processor runs multiple threads to service multiple SQL client
applications.

A virtual processor is a process that the operating system schedules for processing.

The following figure illustrates the relationship of client applications to virtual
processors. A small number of virtual processors serve a much larger number of
client applications or queries.

Threads
A thread is a task for a virtual processor in the same way that the virtual processor
is a task for the CPU. The virtual processor is a task that the operating system
schedules for execution on the CPU; a database server thread is a task that the

CPU 4CPU 1 CPU 2 CPU 3

Client applications

Client

Client

Client

Client

Client

Client

Client

Virtual processors

Figure 4-1. Virtual processors

© Copyright IBM Corp. 1996, 2014 4-1

virtual processor schedules internally for processing. Threads are sometimes called
lightweight processes because they are like processes, but they make fewer demands
on the operating system.

Database server virtual processors are multithreaded because they run multiple
concurrent threads.

The nature of threads is as follows.

Operating system Action

UNIX A thread is a task that the virtual processor
schedules internally for processing.

Windows A thread is a task that the virtual processor
schedules internally for processing. Because
the virtual processor is implemented as a
Windows thread, database server threads run
within Windows threads.

Important: Throughout these topics, all references to thread refer to the threads
created, scheduled, and deleted by the database server. All references to “Windows
threads” refer to the threads created, scheduled, and deleted by Windows.

A virtual processor runs threads on behalf of SQL client applications (session
threads) and also to satisfy internal requirements (internal threads). In most cases,
for each connection by a client application, the database server runs one session
thread. The database server runs internal threads to accomplish, among other
things, database I/O, logging I/O, page cleaning, and administrative tasks. For
cases in which the database server runs multiple session threads for a single client,
see “Parallel processing” on page 4-3.

A user thread is a database server thread that services requests from client
applications. User threads include session threads, called sqlexec threads, which
are the primary threads that the database server runs to service client applications.

User threads also include a thread to service requests from the onmode utility,
threads for recovery, B-tree scanner threads, and page-cleaner threads.

To display active user threads, use onstat -u. For more information about
monitoring sessions and threads, see IBM Informix Performance Guide.

Advantages of virtual processors
Compared to a database server process that services a single client application, the
dynamic, multithreaded nature of a database server virtual processor provides the
following advantages:
v Virtual processors can share processing.
v Virtual processors save memory and resources.
v Virtual processors can perform parallel processing.
v You can start additional virtual processors and terminate active CPU virtual

processors while the database server is running.
v You can bind virtual processors to CPUs.

The following topics describe these advantages.

4-2 IBM Informix Administrator's Guide

Shared processing
Virtual processors in the same class have identical code and share access to both
data and processing queues in memory. Any virtual processor in a class can run
any thread that belongs to that class.

Generally, the database server tries to keep a thread running on the same virtual
processor because moving it to a different virtual processor can require some data
from the memory of the processor to be transferred on the bus. When a thread is
waiting to run, however, the database server can migrate the thread to another
virtual processor because the benefit of balancing the processing load outweighs
the amount of overhead incurred in transferring the data.

Shared processing within a class of virtual processors occurs automatically and is
transparent to the database user.

Save memory and resources
The database server is able to service many clients with a small number of server
processes compared to architectures that have one client process to one server
process. It does so by running a thread, rather than a process, for each client.

Multithreading permits more efficient use of the operating-system resources
because threads share the resources allocated to the virtual processor. All threads
that a virtual processor runs have the same access to the virtual-processor memory,
communication ports, and files. The virtual processor coordinates access to
resources by the threads. Individual processes, though, each have a distinct set of
resources, and when multiple processes require access to the same resources, the
operating system must coordinate the access.

Generally, a virtual processor can switch from one thread to another faster than the
operating system can switch from one process to another. When the operating
system switches between processes, it must stop one process from running on the
processor, save its current processing state (or context), and start another process.
Both processes must enter and exit the operating-system kernel, and the contents
of portions of physical memory might require replacement. Threads, though, share
the same virtual memory and file descriptors. When a virtual processor switches
from one thread to another, the switch is from one path of execution to another.
The virtual processor, which is a process, continues to run on the CPU without
interruption. For a description of how a virtual processor switches from one thread
to another, see “Context switching” on page 4-5.

Parallel processing
In the following cases, virtual processors of the CPU class can run multiple session
threads, working in parallel, for a single client:
v Index building
v Sorting
v Recovery
v Scanning
v Joining
v Aggregation
v Grouping
v User-defined-routine (UDR) execution

For more information about parallel UDR execution, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Chapter 4. Virtual processors and threads 4-3

The following figure illustrates parallel processing. When a client initiates index
building, sorting, or logical recovery, the database server creates multiple threads
to work on the task in parallel, using as much of the computer resources as
possible. While one thread is waiting for I/O, another can be working.

Add and drop virtual processors in online mode
You can add virtual processors to meet increasing demands for service while the
database server is running. For example, if the virtual processors of a class become
compute bound or I/O bound (meaning that CPU work or I/O requests are
accumulating faster than the current number of virtual processors can process
them), you can start additional virtual processors for that class to distribute the
processing load further.

You can add virtual processors for any of the classes while the database server is
running. For more information, see “Add virtual processors in online mode” on
page 5-2.

Windows only: In Windows, you cannot drop a virtual processor of any class.

While the database server is running, you can drop virtual processors of the CPU
or a user-defined class. For more information, see “Set virtual-processor
configuration parameters” on page 5-1.

Bind virtual processors to CPUs
You can use some multiprocessor systems to bind a process to a particular CPU.
This feature is called processor affinity.

On multiprocessor computers for which the database server supports processor
affinity, you can bind CPU virtual processors to specific CPUs in the computer.
When you bind a CPU virtual processor to a CPU, the virtual processor runs
exclusively on that CPU. This operation improves the performance of the virtual
processor because it reduces the amount of switching between processes that the
operating system must do. Binding CPU virtual processors to specific CPUs also
enables you to isolate database work on specific processors on the computer,
leaving the remaining processors free for other work. Only CPU virtual processors
can be bound to CPUs.

For information about how to assign CPU virtual processors to hardware
processors, see “Processor affinity” on page 4-13.

CPU 1 CPU 2 CPU 3 CPU 4

Client

Virtual processors

Indexing
sorting

recovery

Figure 4-2. Parallel processing

4-4 IBM Informix Administrator's Guide

How virtual processors service threads
At a given time, a virtual processor can run only one thread. A virtual processor
services multiple threads concurrently by switching between them. A virtual
processor runs a thread until it yields. When a thread yields, the virtual processor
switches to the next thread that is ready to run. The virtual processor continues
this process, eventually returning to the original thread when that thread is ready
to continue. Some threads complete their work, and the virtual processor starts
new threads to process new work. Because a virtual processor continually switches
between threads, it can keep the CPU processing continually. The speed at which
processing occurs produces the appearance that the virtual processor processes
multiple tasks simultaneously and, in effect, it does.

Running multiple concurrent threads requires scheduling and synchronization to
prevent one thread from interfering with the work of another. Virtual processors
use the following structures and methods to coordinate concurrent processing by
multiple threads:
v Control structures
v Context switching
v Stacks
v Queues
v Mutexes

These topics describe how virtual processors use these structures and methods.

Control structures
When a client connects to the database server, the database server creates a session
structure, which is called a session control block, to hold information about the
connection and the user. A session begins when a client connects to the database
server, and it ends when the connection terminates.

Next, the database server creates a thread structure, which is called a thread-control
block (TCB) for the session, and initiates a primary thread (sqlexec) to process the
client request. When a thread yields—that is, when it pauses and allows another
thread to run—the virtual processor saves information about the state of the thread
in the thread-control block. This information includes the content of the process
system registers, the program counter (address of the next instruction to execute),
and the stack pointer. This information constitutes the context of the thread.

In most cases, the database server runs one primary thread per session. In cases
where it performs parallel processing, however, it creates multiple session threads
for a single client, and, likewise, multiple corresponding thread-control blocks.

Context switching
A virtual processor switches from running one thread to running another one by
context switching. The database server does not preempt a running thread, as the
operating system does to a process, when a fixed amount of time (time-slice)
expires. Instead, a thread yields at one of the following points:
v A predetermined point in the code
v When the thread can no longer execute until some condition is met

When the amount of processing required to complete a task would cause other
threads to wait for an undue length of time, a thread yields at a predetermined

Chapter 4. Virtual processors and threads 4-5

point. The code for such long-running tasks includes calls to the yield function at
strategic points in the processing. When a thread performs one of these tasks, it
yields when it encounters a yield function call. Other threads in the ready queue
then get a chance to run. When the original thread next gets a turn, it resumes
executing code at the point immediately after the call to the yield function.
Predetermined calls to the yield function allow the database server to interrupt
threads at points that are most advantageous for performance.

A thread also yields when it can no longer continue its task until some condition
occurs. For example, a thread yields when it is waiting for disk I/O to complete,
when it is waiting for data from the client, or when it is waiting for a lock or other
resource.

When a thread yields, the virtual processor saves its context in the thread-control
block. Then the virtual processor selects a new thread to run from a queue of
ready threads, loads the context of the new thread from its thread-control block,
and begins executing at the new address in the program counter. The following
figure illustrates how a virtual processor accomplishes a context switch.

Stacks
The database server allocates an area in the virtual portion of shared memory to
store nonshared data for the functions that a thread executes. This area is called
the stack. For information about how to set the size of the stack, see “Stacks” on
page 6-17.

The stack enables a virtual processor to protect the nonshared data of a thread
from being overwritten by other threads that concurrently execute the same code.
For example, if several client applications concurrently perform SELECT
statements, the session threads for each client execute many of the same functions
in the code. If a thread did not have a private stack, one thread might overwrite
local data that belongs to another thread within a function.

Thread t0 Thread t1Context switch

Thread-control blocks

Time
Save Restore

t0 prgm ctr

registers

stack ptr

etc.

t1 prgm ctr

registers

stack ptr

etc.

Virtual processor

Figure 4-3. Context switch: how a virtual processor switches from one thread to another

4-6 IBM Informix Administrator's Guide

When a virtual processor switches to a new thread, it loads a stack pointer for that
thread from a field in the thread-control block. The stack pointer stores the
beginning address of the stack. The virtual processor can then specify offsets to the
beginning address to access data within the stack. The figure illustrates how a
virtual processor uses the stack to segregate nonshared data for session threads.

Queues
The database server uses three types of queues to schedule the processing of
multiple, concurrently running threads.

Virtual processors of the same class share queues. This fact, in part, enables a
thread to migrate from one virtual processor in a class to another when necessary.

Ready queues
Ready queues hold threads that are ready to run when the current (running)
thread yields. When a thread yields, the virtual processor picks the next thread
with the appropriate priority from the ready queue. Within the queue, the virtual
processor processes threads that have the same priority on a first-in-first-out (FIFO)
basis.

On a multiprocessor computer, if you notice that threads are accumulating in the
ready queue for a class of virtual processors (indicating that work is accumulating
faster than the virtual processor can process it), you can start additional virtual
processors of that class to distribute the processing load. For information about
how to monitor the ready queues, see “Monitor virtual processors” on page 5-3.
For information about how to add virtual processors while the database server is
in online mode, see “Add virtual processors in online mode” on page 5-2.

Sleep queues
Sleep queues hold the contexts of threads that have no work to do at a particular
time. A thread is put to sleep either for a specified period of time or forever.

The administration class (ADM) of virtual processors runs the system timer and
special utility threads. Virtual processors in this class are created and run
automatically. No configuration parameters affect this class of virtual processors.

The ADM virtual processor wakes up threads that have slept for the specified time.
A thread that runs in the ADM virtual processor checks on sleeping threads at

t3 prgm ctr
t2 prgm ctr Stack Stack Stack Stack

Threads

Thread-control blocks

t0 t1 t2 t3

t1 prgm ctr
t0 prgm ctr
registers
stack ptr

etc.
Virtual processor

Figure 4-4. Virtual processors segregate nonshared data for each user

Chapter 4. Virtual processors and threads 4-7

one-second intervals. If a sleeping thread has slept for its specified time, the ADM
virtual processor moves it into the appropriate ready queue. A thread that is
sleeping for a specified time can also be explicitly awakened by another thread.

A thread that is sleeping forever is awakened when it has more work to do. For
example, when a thread that is running on a CPU virtual processor must access a
disk, it issues an I/O request, places itself in a sleep queue for the CPU virtual
processor, and yields. When the I/O thread notifies the CPU virtual processor that
the I/O is complete, the CPU virtual processor schedules the original thread to
continue processing by moving it from the sleep queue to a ready queue. The
following figure illustrates how the database server threads are queued to perform
database I/O.

Wait queues
Wait queues hold threads that must wait for a particular event before they can
continue to run. For example, wait queues coordinate access to shared data by
threads. When a user thread tries to acquire the logical-log latch but finds that the
latch is held by another user, the thread that was denied access puts itself in the
logical-log wait queue. When the thread that owns the lock is ready to release the
latch, it checks for waiting threads, and, if threads are waiting, it wakes up the
next thread in the wait queue.

Mutexes
A mutex (mutually exclusive), also called a latch, is a latching mechanism that the
database server uses to synchronize access by multiple threads to shared resources.
Mutexes are similar to semaphores, which some operating systems use to regulate
access to shared data by multiple processes. However, mutexes permit a greater
degree of parallelism than semaphores.

A mutex is a variable that is associated with a shared resource such as a buffer. A
thread must acquire the mutex for a resource before it can access the resource.
Other threads are excluded from accessing the resource until the owner releases it.
A thread acquires a mutex, after a mutex becomes available, by setting it to an

Partially
executed
threads, t2, t4,
and t6, waiting
for completion
of their disk I/O
requests

Ready queue

t4

t6

Sleep queue

t2

t4

t6

I/O requests
for threads t4

and t6

Processing
I/O request for

thread t2

Threads t5
and t3, ready
to continue
processing
when thread t1
yields

Ready queue

t5

t3

CPU

VPt1

AIO VPt2

Virtual processors

Figure 4-5. How database server threads are queued to perform database I/O

4-8 IBM Informix Administrator's Guide

in-use state. The synchronization that mutexes provide ensures that only one
thread at a time writes to an area of shared memory.

For information about monitoring mutexes, see “Monitor the shared-memory
profile and latches” on page 7-8.
Related concepts:
“Buffer pool portion of shared memory” on page 6-11

Virtual processor classes
Each class of virtual processor is dedicated to processing certain types of threads.

The following table shows the classes of virtual processors and the types of
processing that they do.

The number of virtual processors of each class that you configure depends on the
availability of physical processors (CPUs), hardware memory, and the database
applications in use.

Table 4-1. Virtual-processor classes

Virtual-
processor
class Category Purpose

ADM Administrative Performs administrative functions.

ADT Auditing Performs auditing functions.

AIO Disk I/O Performs nonlogging disk I/O. If KAIO is used, AIO virtual processors
perform I/O to cooked disk spaces.

BTS Basic text searching Runs basic text search index operations and queries.

CPU Central processing Runs all session threads and some system threads. Runs thread for
kernel asynchronous I/O (KAIO) where available. Can run a single poll
thread, depending on configuration.

CSM Communications Support
Module

Performs communications support service operations.

dwavp Data warehousing Runs the administrative functions and procedures for Informix
Warehouse Accelerator on a database server that is connected to Informix
Warehouse Accelerator.

Encrypt Encryption Used by the database server when encryption or decryption functions are
called.

On Windows systems, the number of encrypt virtual processors is
always set to 1, regardless of the value that is set in the onconfig file.

IDSXMLVP XML publishing Runs XML publishing functions.

JVP Java™ UDR Runs Java UDRs. Contains the Java Virtual Machine (JVM).

LIO Disk I/O Writes to the logical-log files (internal class) if they are in cooked disk
space.

MQ MQ messaging Performs MQ messaging transactions.

MSC Miscellaneous Services requests for system calls that require a very large stack.

PIO Disk I/O Writes to the physical-log file (internal class) if it is in cooked disk space.

SHM Network Performs shared memory communication.

SOC Network Uses sockets to perform network communication.

Chapter 4. Virtual processors and threads 4-9

Table 4-1. Virtual-processor classes (continued)

Virtual-
processor
class Category Purpose

tenant Multitenancy Runs session threads for tenant databases. Tenant virtual processors are a
special case of user-defined processors that are specific to tenant
databases.

TLI Network Uses the Transport Layer Interface (TLI) to perform network
communication.

WFSVP Web feature service Runs web feature service routines.

classname User defined Runs user-defined routines in a thread-safe manner so that if the routine
fails, the database server is unaffected.

The following figure illustrates the major components and the extensibility of the
database server.

Related concepts:

Date & Time Text

DataBlade API

Virtual processors

Client applications

Client

Client

Client

Client

Client

Client

Client

Database server

Threads

Numbers Video

Audio

Spatial

Graphics

Documents

Da
ta

Bl
ad

e

Da
ta

Bl
ad

e

Da
ta

Bl
ad

e

Da
ta

Bl
ad

e

Da
ta

Bl
ad

e

AIOAIO User defined

CPU

CPU
User defined

CPU
CPU

Figure 4-6. Database server

4-10 IBM Informix Administrator's Guide

“Start and stop virtual processors” on page 5-1
Related reference:

VPCLASS configuration parameter (Administrator's Reference)

CPU virtual processors
The CPU virtual processor runs all session threads (the threads that process
requests from SQL client applications) and some internal threads. Internal threads
perform services that are internal to the database server. For example, a thread that
listens for connection requests from client applications is an internal thread.

Each CPU virtual processor can have a private memory cache associated with it.
Each private memory cache block consists of 1 to 32 memory pages, where each
memory page is 4096 bytes. The database server uses the private memory cache to
improve access time to memory blocks. Use the VP_MEMORY_CACHE_KB
configuration parameter to enable a private memory cache and specify information
about the memory cache. For more information, see the IBM Informix
Administrator's Reference and the IBM Informix Performance Guide.

Determine the number of CPU virtual processors needed
The right number of CPU virtual processors is the number at which they are all
kept busy but not so busy that they cannot keep pace with incoming requests. You
must not allocate more CPU virtual processors than the number of hardware
processors in the computer.

When the database server starts, the number of CPU virtual processors is
automatically increased to half the number of CPU processors on the database
server computer, unless the SINGLE_CPU_VP configuration parameter is enabled.
However, you can adjust the number of CPU VPs based on your system.

You can configure the database server to automatically add CPU VPs when
needed, up to the number of CPU processors.

To evaluate the performance of the CPU virtual processors while the database
server is running, repeat the following command at regular intervals over a set
period:
onstat -g glo

If the accumulated usercpu and syscpu times, taken together, approach 100 percent
of the actual elapsed time for the period of the test, add another CPU virtual
processor if you have a CPU available to run it.

Use the VPCLASS configuration parameter to specify the following information
about CPU virtual processors:
v The number of virtual processors to start initially for a class
v The maximum number of virtual processors to run for the class
v Processor affinity for CPU class virtual processors
v Disabling of priority aging, if applicable
v Whether the database server automatically adds CPU virtual processors as

needed

In addition to considering the number of CPUs in the computer and the number of
users who connect to the database server, also consider that user-defined routines

Chapter 4. Virtual processors and threads 4-11

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189

and DataBlade modules, which are collections of user-defined routines, run on
either CPU virtual processors or user-defined virtual processors.

Note: Use the VPCLASS configuration parameter instead of the following
discontinued configuration parameters: AFF_SPROC, AFFNPROCS, NOAGE,
NUMCPUVPS, and NUMAIOVPS.
Related reference:

VPCLASS configuration parameter (Administrator's Reference)
“Run poll threads on CPU or network virtual processors” on page 4-21
“Assign a UDR to a user-defined virtual-processor class” on page 4-15

onstat -g glo command: Print global multithreading information
(Administrator's Reference)

Run on a multiprocessor computer
If you are running multiple CPU virtual processors on a multiprocessor computer,
set the MULTIPROCESSOR parameter in the onconfig file to 1. When you set
MULTIPROCESSOR to 1, the database server performs locking in a manner that is
appropriate for a multiprocessor computer. For information about setting
multiprocessor mode, see the chapter on configuration parameters in the IBM
Informix Administrator's Reference.

Run on a single-processor computer
If you are running the database server on a single-processor computer, set the
MULTIPROCESSOR configuration parameter to 0. To run the database server with
only one CPU virtual processor, set the SINGLE_CPU_VP parameter to 1.

Setting MULTIPROCESSOR to 0 enables the database server to bypass the locking
that is required for multiple processes on a multiprocessor computer. For
information about the MULTIPROCESSOR configuration parameter, see the IBM
Informix Administrator's Reference.

Setting SINGLE_CPU_VP to 1 allows the database server to bypass some of the
mutex calls that it normally makes when it runs multiple CPU virtual processors.
For information about setting the SINGLE_CPU_VP parameter, see the IBM
Informix Administrator's Reference.

Important: Setting VPCLASS num to 1 and SINGLE_CPU_VP to 0 does not reduce
the number of mutex calls, even though the database server starts only one CPU
virtual processor. You must set SINGLE_CPU_VP to 1 to reduce the amount of
latching that is performed when you run a single CPU virtual processor.

Setting the SINGLE_CPU_VP parameter to 1 imposes two important restrictions on
the database server, as follows:
v Only one CPU virtual processor is allowed.

You cannot add CPU virtual processors while the database server is in online
mode.

v No user-defined classes are allowed. (However, users can still define routines
that run directly on the CPU VP.)

For more information, see “Add virtual processors in online mode” on page 5-2.

4-12 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0533.htm#ids_adr_0533
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0533.htm#ids_adr_0533

Add and drop CPU virtual processors in online mode
You can add or drop CPU class virtual processors while the database server is
online. For instructions on how to do this, see “Add virtual processors in online
mode” on page 5-2 and “Drop CPU and user-defined virtual processors” on page
5-3.

Prevent priority aging
Some operating systems lower the priority of long-running processes as they
accumulate processing time. This feature of the operating system is called priority
aging. Priority aging can cause the performance of database server processes to
decline over time. In some cases, however, you can use the operating system to
disable this feature and keep long-running processes running at a high priority.

To determine if priority aging is available on your computer, check the machine
notes file that comes with your installation and is described in the Introduction to
this guide.

If you can disable priority aging through the operating system, you can disable it
by specifying noage for the priority entry in the VPCLASS configuration parameter.
For more information, see the IBM Informix Administrator's Reference.

Processor affinity
The database server supports automatic binding of CPU virtual processors to
processors on multiprocessor computers that support processor affinity. Your
database server distribution includes a machine notes file that contains information
about whether your database server version supports this feature. When you
assign a CPU virtual processor to a specific CPU, the virtual processor runs only
on that CPU, but other processes also can run on that CPU.

Use the VPCLASS configuration parameter with the aff option to implement
processor affinity on multiprocessor computers that support it.

The following figure illustrates the concept of processor affinity.

UNIX only: To see if processor affinity is supported on your UNIX platform, see
the machine notes file.

Set processor affinity with the VPCLASS configuration parameter:

CPU 0 CPU 1 CPU 2 CPU 3

CPU virtual processors

Number of virtual processors = 3

Starting CPU = 1

Virtual processor

Virtual processor

Virtual processor

Figure 4-7. Processor affinity

Chapter 4. Virtual processors and threads 4-13

To set processor affinity with the VPCLASS configuration parameter, you can
specify individual processors or ranges of processors that you want to assign the
virtual processors. When specifying a range of processors, you can also specify an
incremental value with the range that indicates which CPUs in the range are
assigned to the virtual processors. For example, you can specify that the virtual
processors are assigned to every other CPU in the range 0-6, starting with CPU 0.
VPCLASS CPU,num=4,aff=(0-6/2)

The virtual processors are assigned to CPUs 0, 2, 4, 6.

If you specify VPCLASS CPU,num=4,aff=(1-10/3), the virtual processors are assigned
to every third CPU in the range 1-10, starting with CPU 1. The virtual processors
are assigned to CPUs 1, 4, 7, 10.

When you specify more than one value or range, the values and ranges are not
required to be incremental or in any particular order. For example you can specify
aff=(8,12,7-9,0-6/2).

The database server assigns CPU virtual processors to CPUs in a circular pattern,
starting with the first processor number that you specify in the aff option. If you
specify a larger number of CPU virtual processors than physical CPUs, the
database server continues to assign CPU virtual processors starting with the first
CPU. For example, suppose you specify the following VPCLASS settings:
VPCLASS cpu,num=8,aff=(4-7)

The database server makes the following assignments:
v CPU virtual processor number 0 to CPU 4

v CPU virtual processor number 1 to CPU 5

v CPU virtual processor number 2 to CPU 6

v CPU virtual processor number 3 to CPU 7

v CPU virtual processor number 4 to CPU 4

v CPU virtual processor number 5 to CPU 5

v CPU virtual processor number 6 to CPU 6

v CPU virtual processor number 7 to CPU 7

For more information, see the VPCLASS configuration parameter in the IBM
Informix Administrator's Reference.

User-defined classes of virtual processors
You can define special classes of virtual processors to run user-defined routines or
to run a DataBlade module . User-defined routines are typically written to support
user-defined data types. If you do not want a user-defined routine to run in the
CPU class, which is the default, you can assign it to a user-defined class of virtual
processors (VPs). User-defined classes of virtual processors are also called extension
virtual processors.

These topics provide the following information about user-defined virtual
processors:
v When to run a C-language UDR in a user-defined VP instead of in the CPU VP
v How to assign a C-language UDR to a particular user-defined VP class
v How to add and drop user-defined VPs when the database server is in online

mode

4-14 IBM Informix Administrator's Guide

Determine the number of user-defined virtual processors needed
You can specify as many user-defined virtual processors as your operating system
allows. If you run many UDRs or parallel PDQ queries with UDRs, you must
configure more user-defined virtual processors.

User-defined virtual processors
User-defined classes of virtual processors protect the database server from
ill-behaved user-defined routines. An ill-behaved user-defined routine has at least
one of the following characteristics:
v Does not yield control to other threads
v Makes blocking operating-system calls
v Modifies the global VP state

A well-behaved C-language UDR has none of these characteristics. Run only
well-behaved C-language UDRs in a CPU VP.

Warning: Execution of an ill-behaved routine in a CPU VP can cause serious
interference with the operation of the database server, possibly causing it to fail or
behave erratically. In addition, the routine itself might not produce correct results.

To ensure safe execution, assign any ill-behaved user-defined routines to a
user-defined class of virtual processors. User-defined VPs remove the following
programming restrictions on the CPU VP class:
v The requirement to yield the processor regularly
v The requirement to eliminate blocking I/O calls

Functions that run in a user-defined virtual-processor class are not required to
yield the processor, and they might issue direct file-system calls that block further
processing by the virtual processor until the I/O is complete.

The normal processing of user queries is not affected by ill-behaved traits of a
C-language UDR because these UDRs do not execute in CPU virtual processors.
For a more detailed explanation of ill-behaved routines, see the IBM Informix
DataBlade API Programmer's Guide.

Specify user-defined virtual processors
The VPCLASS parameter with the vpclass option defines a user-defined VP class.
You also can specify a nonyielding user-defined virtual processor. For more
information, see “Set virtual-processor configuration parameters” on page 5-1 and
the topics about configuration parameters in the IBM Informix Administrator's
Reference.

Assign a UDR to a user-defined virtual-processor class
The SQL CREATE FUNCTION statement registers a user-defined routine. For
example, the following CREATE FUNCTION statement registers the user-defined
routine, GreaterThanEqual(), and specifies that calls to this routine are executed by
the user-defined VP class named UDR:
CREATE FUNCTION GreaterThanEqual(ScottishName, ScottishName)

RETURNS boolean
WITH (CLASS = UDR)
EXTERNAL NAME '/usr/lib/objects/udrs.so’
LANGUAGE C

To execute this function, the onconfig file must include a VPCLASS parameter that
defines the UDR class. If not, calls to the GreaterThanEqual function fail.

Chapter 4. Virtual processors and threads 4-15

Tip: The CLASS routine modifier can specify any name for the VP class. This class
name is not required to exist when you register the UDR. However, when you try
to run a UDR that specifies a user-defined VP class for its execution, this class
must exist and have virtual processors assigned to it.

To configure the UDR class, include a line similar to the following one in the
onconfig file. This line configures the UDR class with two virtual processors and
with no priority aging.
VPCLASS UDR ,num=2,noage

The preceding line defines the UDR VP class as a yielding VP class; that is, this VP
class allows the C-language UDR to yield to other threads that must access to the
UDR VP class. For more information about how to use the VPCLASS configuration
parameter, see the IBM Informix Administrator's Reference.

For more information about the CREATE FUNCTION statement, see the IBM
Informix Guide to SQL: Syntax.
Related reference:
“Determine the number of CPU virtual processors needed” on page 4-11

Add and drop user-defined virtual processors in online mode
You can add or drop virtual processors in a user-defined class while the database
server is online. For instructions on how to do this, see “Add virtual processors in
online mode” on page 5-2 and “Drop CPU and user-defined virtual processors” on
page 5-3.

Tenant virtual processor class
Tenant virtual processor classes are specific to tenant databases. If you configure
multitenancy for your Informix instance, you can specify that session threads for
tenant databases that are run in tenant virtual processors instead of in the available
CPU virtual processors.

You can create a tenant virtual processor class by defining the class and the
number of virtual processors when you create a tenant database. You can assign
the same tenant virtual processor class to more than one tenant database. Follow
the same guidelines for determining the correct number of CPU virtual processors
to determine the correct number of tenant virtual processors to create.

A tenant virtual processor class is automatically dropped when all tenant databases
that include the virtual processor class in their definitions are dropped.
Related concepts:
“Multitenancy” on page 9-49
Related reference:

tenant create argument: create a tenant database (SQL Administration API)
(Administrator's Reference)

Java virtual processors
Java UDRs and Java applications run on specialized virtual processors, called Java
virtual processors (JVPs). A JVP embeds a Java virtual machine (JVM) in its code. A
JVP has the same capabilities as a CPU VP in that it can process complete SQL
queries.

4-16 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_163.htm#ids_sapi_163
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_163.htm#ids_sapi_163

You can specify as many JVPs as your operating system allows. If you run many
Java UDRs or parallel PDQ queries with Java UDRs, you must configure more
JVPs. For more information about UDRs written in Java, see J/Foundation
Developer's Guide.

Use the VPCLASS configuration parameter with the jvp keyword to configure
JVPs. For more information, see the configuration parameters chapter in the IBM
Informix Administrator's Reference.

Disk I/O virtual processors
The following classes of virtual processors perform disk I/O:
v PIO (physical-log I/O)
v LIO (logical-log I/O)
v AIO (asynchronous I/O)
v CPU (kernel-asynchronous I/O)

The PIO class performs all I/O to the physical-log file, and the LIO class performs
all I/O to the logical-log files, unless those files are in raw disk space and the
database server has implemented KAIO.

On operating systems that do not support KAIO, the database server uses the AIO
class of virtual processors to perform database I/O that is not related to physical
or logical logging.

The database server uses the CPU class to perform KAIO when it is available on a
platform. If the database server implements KAIO, a KAIO thread performs all I/O
to raw disk space, including I/O to the physical and logical logs.

UNIX only: To find out if your UNIX platform supports KAIO, see the machine
notes file.

Windows only: Windows supports KAIO.

For more information about nonlogging I/O, see “Asynchronous I/O” on page
4-18.

I/O priorities
In general, the database server prioritizes disk I/O by assigning different types of
I/O to different classes of virtual processors and by assigning priorities to the
nonlogging I/O queues. Prioritizing ensures that a high-priority log I/O, for
example, is never queued behind a write to a temporary file, which has a low
priority. The database server prioritizes the different types of disk I/O that it
performs, as the table shows.

Table 4-2. How database server prioritizes disk I/O

Priority Type of I/O VP class

1st Logical-log I/O CPU or LIO

2nd Physical-log I/O CPU or PIO

3rd Database I/O CPU or AIO

3rd Page-cleaning I/O CPU or AIO

3rd Read-ahead I/O CPU or AIO

Chapter 4. Virtual processors and threads 4-17

Logical-log I/O
The LIO class of virtual processors performs I/O to the logical-log files in the
following cases:
v KAIO is not implemented.
v The logical-log files are in cooked disk space.

Only when KAIO is implemented and the logical-log files are in raw disk space
does the database server use a KAIO thread in the CPU virtual processor to
perform I/O to the logical log.

The logical-log files store the data that enables the database server to roll back
transactions and recover from system failures. I/O to the logical-log files is the
highest priority disk I/O that the database server performs.

If the logical-log files are in a dbspace that is not mirrored, the database server
runs only one LIO virtual processor. If the logical-log files are in a dbspace that is
mirrored, the database server runs two LIO virtual processors. This class of virtual
processors has no parameters associated with it.

Physical-log I/O
The PIO class of virtual processors performs I/O to the physical-log file in the
following cases:
v KAIO is not implemented.
v The physical-log file is stored in buffered-file chunks.

Only when KAIO is implemented and the physical-log file is in raw disk space
does the database server use a KAIO thread in the CPU virtual processor to
perform I/O to the physical log. The physical-log file stores before-images of
dbspace pages that have changed since the last checkpoint. (For more information
about checkpoints, see “Checkpoints” on page 15-4.) At the start of recovery, before
processing transactions from the logical log, the database server uses the
physical-log file to restore before-images to dbspace pages that have changed since
the last checkpoint. I/O to the physical-log file is the second-highest priority I/O
after I/O to the logical-log files.

If the physical-log file is in a dbspace that is not mirrored, the database server runs
only one PIO virtual processor. If the physical-log file is in a dbspace that is
mirrored, the database server runs two PIO virtual processors. This class of virtual
processors has no parameters associated with it.

Asynchronous I/O
The database server performs database I/O asynchronously, meaning that I/O is
queued and performed independently of the thread that requests the I/O.
Performing I/O asynchronously allows the thread that makes the request to
continue working while the I/O is being performed.

The database server performs all database I/O asynchronously, using one of the
following facilities:
v AIO virtual processors
v KAIO on platforms that support it

Database I/O includes I/O for SQL statements, read-ahead, page cleaning, and
checkpoints.

4-18 IBM Informix Administrator's Guide

Kernel-asynchronous I/O: The database server uses KAIO when the following
conditions exist:
v The computer and operating system support it.
v A performance gain is realized.
v The I/O is to raw disk space.

The database server implements KAIO by running a KAIO thread on the CPU
virtual processor. The KAIO thread performs I/O by making system calls to the
operating system, which performs the I/O independently of the virtual processor.
The KAIO thread can produce better performance for disk I/O than the AIO
virtual processor can, because it does not require a switch between the CPU and
AIO virtual processors.

UNIX only: IBM Informix implements KAIO when Informix ports to a platform
that supports this feature. The database server administrator does not configure
KAIO. To see if KAIO is supported on your platform, see the machine notes file.

Linux only: Kernel asynchronous I/O (KAIO) is enabled by default. You can
disable this by specifying that KAIOOFF=1 in the environment of the process that
starts the server.

On Linux, there is a system-wide limit of the maximum number of parallel KAIO
requests. The /proc/sys/fs/aio-max-nr file contains this value. The Linux system
administrator can increase the value, for example, by using this command:
echo new_value > /proc/sys/fs/aio-max-nr

The current number of allocated requests of all operating system processes is
visible in the /proc/sys/fs/aio-nr file.

By default, Dynamic Version allocates half of the maximum number of requests
and assigns them equally to the number of configured CPU virtual processors. You
can use the environment variable KAIOON to control the number of requests
allocated per CPU virtual processor. Do this by setting KAIOON to the required
value before starting Informix.

The minimum value for KAIOON is 100. If Linux is about to run out of KAIO
resources, for example when dynamically adding many CPU virtual processors,
warnings are printed in the online.log file. If this happens, the Linux system
administrator must add KAIO resources as described previously.

AIO virtual processors:

If the platform does not support KAIO or if the I/O is to buffered-file chunks, the
database server performs database I/O through the AIO class of virtual processors.
All AIO virtual processors service all I/O requests equally within their class.

The database server assigns each disk chunk a queue, sometimes known as a gfd
queue, which is based on the file name of the chunk. The database server orders
I/O requests within a queue according to an algorithm that minimizes disk-head
movement. The AIO virtual processors service queues that have pending work in
round-robin fashion. All other non-chunk I/O is queued in the AIO queue.

Use the VPCLASS parameter with the aio keyword to specify the number of AIO
virtual processors that the database server starts initially. You can start additional

Chapter 4. Virtual processors and threads 4-19

AIO virtual processors while the database server is in online mode. You cannot
drop AIO virtual processors while the database server is in online mode.

You can enable the database server to add AIO virtual processors and flusher
threads when the server detects that AIO VPs are not keeping up with the I/O
workload. Include the autotune=1 keyword in the VPCLASS configuration
parameter setting.

Manually controlling the number of AIO VPs

The goal in allocating AIO virtual processors is to allocate enough of them so that
the lengths of the I/O request queues are kept short; that is, the queues have as
few I/O requests in them as possible. When the gfd queues are consistently short,
it indicates that I/O to the disk devices is being processed as fast as the requests
occur.

The onstat-g ioq command shows the length and other statistics about I/O queues.
You can use this command to monitor the length of the gfd queues for the AIO
virtual processors.

One AIO virtual processor might be sufficient:
v If the database server implements kernel asynchronous I/O (KAIO) on your

platform and all of your dbspaces are composed of raw disk space
v If your file system supports direct I/O for the page size that is used for the

dbspace chunk and you use direct I/O

Allocate two AIO virtual processors per active dbspace that is composed of
buffered file chunks.
v If the database server implements KAIO, but you are using some buffered files

for chunks
v IF KAIO is not supports by the system for chunks.

If KAIO is not implemented on your platform, allocate two AIO virtual processors
for each disk that the database server accesses frequently.

If you use cooked files and if you enable direct I/O using the DIRECT_IO
configuration parameter, you might be able to reduce the number of AIO virtual
processors.

If the database server implements KAIO and you enabled direct I/O using the
DIRECT_IO configuration parameter, IBM Informix attempts to use KAIO, so you
probably do not require more than one AIO virtual processor. However, even when
direct I/O is enabled, if the file system does not support either direct I/O or
KAIO, you still must allocate two AIO virtual processors for every active dbspace
that is composed of buffered file chunks or does not use KAIO.

Temporary dbspaces do not use direct I/O. If you have temporary dbspaces, you
probably require more than one AIO virtual processors.

Allocate enough AIO virtual processors to accommodate the peak number of I/O
requests. Generally, it is not detrimental to allocate too many AIO virtual
processors.
Related reference:

VPCLASS configuration parameter (Administrator's Reference)

4-20 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189

Network virtual processors
As explained in Chapter 2, “Client/server communication,” on page 2-1, a client
can connect to the database server in the following ways:
v Through a network connection
v Through a pipe
v Through shared memory

The network connection can be made by a client on a remote computer or by a
client on the local computer mimicking a connection from a remote computer
(called a local-loopback connection).

Specifying Network Connections
In general, the DBSERVERNAME and DBSERVERALIASES parameters define
dbservernames that have corresponding entries in the sqlhosts file or registry. Each
dbservername parameter in sqlhosts has a nettype entry that specifies an
interface/protocol combination. The database server runs one or more poll threads
for each unique nettype entry.

The NETTYPE configuration parameter provides optional configuration
information for an interface/protocol combination. You can use it to allocate more
than one poll thread for an interface/protocol combination and also designate the
virtual-processor class (CPU or NET) on which the poll threads run.

For a complete description of the NETTYPE configuration parameter, see the IBM
Informix Administrator's Reference.
Related reference:
“sqlhosts connectivity information” on page 2-20

Run poll threads on CPU or network virtual processors
Poll threads can run either on CPU virtual processors or on network virtual
processors. In general, and particularly on a single-processor computer, poll
threads run more efficiently on CPU virtual processors. This might not be true,
however, on a multiprocessor computer with many remote clients.

The NETTYPE parameter has an optional entry, called vp class, which you can use
to specify either CPU or NET, for CPU or network virtual-processor classes,
respectively.

If you do not specify a virtual processor class for the interface/protocol
combination (poll threads) associated with the DBSERVERNAME variable, the class
defaults to CPU. The database server assumes that the interface/protocol
combination associated with DBSERVERNAME is the primary interface/protocol
combination and that it is the most efficient.

For other interface/protocol combinations, if no vp class is specified, the default is
NET.

While the database server is in online mode, you cannot drop a CPU virtual
processor that is running a poll or a listen thread.

Important: You must carefully distinguish between poll threads for network
connections and poll threads for shared memory connections, which run one per
CPU virtual processor. TCP connections must only be in network virtual
processors, and you must only have the minimum required to maintain

Chapter 4. Virtual processors and threads 4-21

responsiveness. Shared memory connections must only be in CPU virtual
processors and run in every CPU virtual processor.
Related reference:
“Determine the number of CPU virtual processors needed” on page 4-11

Specify the number of networking virtual processors
Each poll thread requires a separate virtual processor, so you indirectly specify the
number of networking virtual processors when you specify the number of poll
threads for an interface/protocol combination and specify that they are to be run
by the NET class. If you specify CPU for the vp class, you must allocate a
sufficient number of CPU virtual processors to run the poll threads. If the database
server does not have a CPU virtual processor to run a CPU poll thread, it starts a
network virtual processor of the specified class to run it.

For most systems, one poll thread and consequently one virtual processor per
network interface/protocol combination is sufficient. For systems with 200 or more
network users, running additional network virtual processors might improve
throughput. In this case, you must experiment to determine the optimal number of
virtual processors for each interface/protocol combination.

Specify listen and poll threads for the client/server connection
When you start the database server, the oninit process starts an internal thread,
called a listen thread, for each dbservername that you specify with the
DBSERVERNAME and DBSERVERALIASES parameters in the onconfig file. To
specify a listen port for each of these dbservername entries, assign it a unique
combination of hostname and service name entries in sqlhosts. For example, the
sqlhosts file or registry entry shown in the following table causes the database
server soc_ol1 to start a listen thread for port1 on the host, or network address,
myhost.

Table 4-3. A listen thread for each listen port

dbservername nettype hostname service name

soc_ol1 onsoctcp myhost port1

The listen thread opens the port and requests one of the poll threads for the
specified interface/protocol combination to monitor the port for client requests.
The poll thread runs either in the CPU virtual processor or in the network virtual
processor for the connection that is being used. For information about the number
of poll threads, see “Specify the number of networking virtual processors.”

For information about how to specify whether the poll threads for an
interface/protocol combination run in CPU or network virtual processors, see “Run
poll threads on CPU or network virtual processors” on page 4-21 and to the
NETTYPE configuration parameter in the IBM Informix Administrator's Reference.

When a poll thread receives a connection request from a client, it passes the
request to the listen thread for the port. The listen thread authenticates the user,
establishes the connection to the database server, and starts an sqlexec thread, the
session thread that performs the primary processing for the client. The following
figure illustrates the roles of the listen and poll threads in establishing a connection
with a client application.

4-22 IBM Informix Administrator's Guide

A poll thread waits for requests from the client and places them in shared memory
to be processed by the sqlexec thread. For network connections, the poll thread
places the message in a queue in the shared-memory global pool. The poll thread
then wakes up the sqlexec thread of the client to process the request. Whenever
possible, the sqlexec thread writes directly back to the client without the help of
the poll thread. In general, the poll thread reads data from the client, and the
sqlexec thread sends data to the client.

UNIX only: For a shared-memory connection, the poll thread places the message
in the communications portion of shared memory.

The following figure illustrates the basic tasks that the poll thread and the sqlexec
thread perform in communicating with a client application.

Key

Client

Database server

Poll
thread

Thread
process

Data

Request
connection

Receive
connect
request

Start
sqlexec
thread

Listen
thread

Receive
connect
request

Accept client
connectionPass request to

listen thread

Figure 4-8. The roles of the poll and the listen threads in connecting to a client

Chapter 4. Virtual processors and threads 4-23

Fast polling
You can use the FASTPOLL configuration parameter to enable or disable fast
polling of your network, if your operating-system platform supports fast polling.
Fast polling is beneficial if you have many connections. For example, if you have
more than 300 concurrent connections with the database server, you can enable the
FASTPOLL configuration parameter for better performance. You can enable fast
polling by setting the FASTPOLL configuration parameter to 1.

If your operating system does not support fast polling, IBM Informix ignores the
FASTPOLL configuration parameter.

Multiple listen threads
You can improve service for connection requests by using multiple listen threads.

If the database server cannot service connection requests satisfactorily for a given
interface/protocol combination with a single port and corresponding listen thread,
you can improve service for connection requests in the following ways:
v By adding listen threads for additional ports.

Key

Read data

Process

Read data
from client

Client

Database server

Poll
thread

Application
process

Thread
process

Data

Pass request
and data
to sqlexec

Wait for client
request

Processsqlexec
thread

Send
data
to client

Figure 4-9. The roles of the poll and sqlexec threads in communicating with the client
application

4-24 IBM Informix Administrator's Guide

v By adding listen threads to the same port if you have the onimcsoc or onsoctcp
protocol

v By adding another network-interface card.
v By dynamically starting, stopping, or restarting listen threads for a SOCTCP or

TLITCP network protocol, using SQL administration API or onmode -P
commands.

If you have multiple listen threads for one port for the onsoctcp protocol, the
database server can accept new connections if a CPU VP connection is busy.

Add listen threads:

When you start the database server, the oninit process starts a listen thread for
servers with the server names and server alias names that you specify with the
DBSERVERNAME and DBSERVERALIASES configuration parameters. You can
add listen threads for additional ports.

You can also set up multiple listen threads for one service (port) for the onimcsoc
or onsoctcp protocol.

To add listen threads for additional ports, you must first use the
DBSERVERALIASES parameter to specify dbservernames for each of the ports. For
example, the DBSERVERALIASES parameter in the following figure defines two
additional dbservernames, soc_ol2 and soc_ol3, for the database server instance
identified as soc_ol1.
DBSERVERNAME soc_ol1
DBSERVERALIASES soc_ol2,soc_ol3

After you define additional dbservernames for the database server, you must
specify an interface/protocol combination and port for each of them in the
sqlhosts file or registry. Each port is identified by a unique combination of
hostname and servicename entries. For example, the sqlhosts entries shown in the
following table cause the database server to start three listen threads for the
onsoctcp interface/protocol combination, one for each of the ports defined.

Table 4-4. The sqlhosts entries to listen to multiple ports for a single interface/protocol
combination

dbservername nettype hostname service name

soc_ol1 onsoctcp myhost port1

soc_ol2 onsoctcp myhost port2

soc_ol3 onsoctcp myhost port3

If you include a NETTYPE parameter for an interface/protocol combination, it
applies to all the connections for that interface/protocol combination. In other
words, if a NETTYPE parameter exists for onsoctcp in the previous table, it applies
to all of the connections shown. In this example, the database server runs one poll
thread for the onsoctcp interface/protocol combination unless the NETTYPE
parameter specifies more. For more information about entries in the sqlhosts file
or registry, see “Connectivity files” on page 2-9.

Chapter 4. Virtual processors and threads 4-25

Setting up multiple listen threads for one port for the onimcsoc or onsoctcp
protocol

To set up multiple listen threads for one service (port) for the onimcsoc or
onsoctcp protocol, specify DBSERVERNAME and DBSERVERALIASES information
as follows:
v DBSERVERNAME <name>-<n>
v DBSERVERALIASES <name1>-<n>,<name2>

For example:
v To bring up two listen threads for the server with the DBSERVERNAME of ifx,

specify:
DBSERVERNAME ifx-2

v To bring up two listen threads for DBSERVERALIASES ifx_a and ifx_b, specify:
DBSERVERALIASES ifx_a-2,ifx_b-2

Add a network-interface card:

You can add a network-interface card to improve performance or connect the
database server to multiple networks.

You might want to improve performance if the network-interface card for the host
computer cannot service connection requests satisfactorily.

To support multiple network-interface cards, you must assign each card a unique
hostname (network address) in sqlhosts.

For example, using the same dbservernames shown in “Add listen threads” on
page 4-25, the sqlhosts file or registry entries shown in the following table cause
the database server to start three listen threads for the same interface/protocol
combination (as did the entries in “Add listen threads” on page 4-25). In this case,
however, two of the threads are listening to ports on one interface card (myhost1),
and the third thread is listening to a port on the second interface card (myhost2).

Table 4-5. Example of sqlhosts entries to support two network-interface cards for the
onsoctcp interface/protocol combination

dbservername nettype hostname service name

soc_ol1 onsoctcp myhost1 port1

soc_ol2 onsoctcp myhost1 port2

soc_ol3 onsoctcp myhost2 port1

Dynamically starting, stopping, or restarting a listen thread:

You can dynamically start, stop, or stop and start a listen thread for a SOCTCP or
TLITCP network protocol without interrupting existing connections. For example,
you might want to stop listen threads that are unresponsive and then start new
ones in situations when other server functions are performing normally and you
do not want to shut down the server.

The listen thread must be defined in the sqlhosts file for the server. If necessary,
before start, stop, or restart a listen thread, you can revise the sqlhosts entry.

To dynamically start, stop, or restart listen threads:

4-26 IBM Informix Administrator's Guide

1. Run one of the following onmode -P commands:
v onmode -P start server_name

v onmode -P stop server_name

v onmode -P restart server_name

2. Alternatively, if you are connected to the sysadmin database, either directly or
remotely, you can run one of the following commands:
v An admin() or task() command with the start listen argument, using the

format
EXECUTE FUNCTION task("start listen", "server_name");

v An admin() or task() command with the stop listen argument, using the
format
EXECUTE FUNCTION task("stop listen" ,"server_name");

v An admin() or task() command with the restart listen argument, using the
format
EXECUTE FUNCTION task("restart listen", "server_name");

For example, either of the following commands starts a new listen thread for a
server named ifx_serv2:
onmode -P start ifx_serv2

EXECUTE FUNCTION task("start listen", "ifx_serv2");

Communications support module virtual processor
The communications support module (CSM) class of virtual processors performs
communications support service and communications support module functions.

The database server starts the same number of CSM virtual processors as the
number of CPU virtual processors that it starts, unless the communications support
module is set to GSSCSM to support single sign-on. When the communications
support module is GSSCSM, the database server starts only one CSM virtual
processor.

For more information about the communications support service, see Chapter 2,
“Client/server communication,” on page 2-1.

Encrypt virtual processors
If the encrypt option of the VPCLASS parameter is not defined in the onconfig
configuration file, the database server starts one ENCRYPT VP the first time that
any encryption or decryption functions defined for column-level encryption are
called. You can define multiple ENCRYPT VPs if necessary to decrease the time
required to start the database server.

Use the VPCLASS configuration parameter with the encrypt keyword to configure
encryption VPs. For example, to add five ENCRYPT VPs, add information in the
onconfig file as follows:
VPCLASS encrypt,num=5

You can modify the same information using the onmode utility, as follows:
onmode -p 5 encrypt

For more information, see the configuration parameters and the onmode utility
topics in the IBM Informix Administrator's Reference. For more information about
column-level encryption, see the IBM Informix Security Guide.

Chapter 4. Virtual processors and threads 4-27

Audit virtual processor
The database server starts one virtual processor in the audit class (ADT) when you
turn on audit mode by setting the ADTMODE parameter in the onconfig file to 1.
For more information about database server auditing, see the IBM Informix Security
Guide.

Miscellaneous virtual processor
The miscellaneous virtual processor services requests for system calls that might
require a very large stack, such as fetching information about the current user or
the host-system name. Only one thread runs on this virtual processor; it executes
with a stack of 128 KB.

Basic text search virtual processors
A basic text search virtual processor is required to run basic text search queries.

A basic text search virtual processor is added automatically when you create a
basic text search index.

A basic text search virtual processor runs without yielding; it processes one index
operation at a time. To run multiple basic text search index operations and queries
simultaneously, create additional basic text search virtual processors.

Use the VPCLASS configuration parameter with the BTS keyword to configure
basic text search virtual processors. For example, to add five BTS virtual
processors, add the following line to the onconfig and restart the database server:
VPCLASS bts,num=5

You can dynamically add BTS virtual processors by using the onmode -p
command, for example:
onmode -p 5 bts

Related reference:

VPCLASS configuration parameter (Administrator's Reference)

onmode -p: Add or drop virtual processors (Administrator's Reference)

Basic Text Search (Database Extensions Guide)

MQ messaging virtual processor
An MQ virtual processor is required to use MQ messaging.

When you perform MQ messaging transactions, an MQ virtual processor is created
automatically.

An MQ virtual processor runs without yielding; it processes one operation at a
time. To perform multiple MQ messaging transactions simultaneously, create
additional MQ virtual processors.

Use the VPCLASS configuration parameter with the MQ keyword to configure MQ
virtual processors. For example, to add five MQ virtual processors, add the
following line to the onconfig and restart the database server:
VPCLASS mq,noyield,num=5

4-28 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0432.htm#ids_adr_0432
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dbext.doc/ids_dbxt_175.htm#ids_dbxt_175

For more information about the VPCLASS configuration parameter, see the IBM
Informix Administrator's Reference. For more information about MQ messaging, see
the IBM Informix Database Extensions User's Guide.

Web feature service virtual processor
A web feature service virtual processor is required to use web feature service for
geospatial data.

When you run a WFS routine, a WFS virtual processor is created automatically.

A WFS virtual processor runs without yielding; it processes one operation at a
time. To run multiple WFS routines simultaneously, create additional WFS virtual
processors.

Use the VPCLASS configuration parameter with the WFSVP keyword to configure
WFS virtual processors. For example, to add five WFS virtual processors, add the
following line to the onconfig and restart the database server:
VPCLASS wfsvp,noyield,num=5

For more information about the VPCLASS configuration parameter, see the IBM
Informix Administrator's Reference. For more information about WFS, see the IBM
Informix Database Extensions User's Guide.

XML virtual processor
An XML virtual processor is required to perform XML publishing.

When you run an XML function, an XML virtual processor is created automatically.

An XML virtual processor runs one XML function at a time. To run multiple XML
functions simultaneously, create additional XML virtual processors.

Use the VPCLASS configuration parameter with the IDSXMLVP keyword to
configure XML virtual processors. For example, to add five XML virtual processors,
add the following line to the onconfig and restart the database server:
VPCLASS idsxmlvp,num=5

You can dynamically add XML virtual processors by using the onmode -p
command, for example:
onmode -p 5 idsxmlvp

For more information about the VPCLASS configuration parameter and the
onmode utility, see the IBM Informix Administrator's Reference. For more information
about XML publishing, see the IBM Informix Database Extensions User's Guide.

Chapter 4. Virtual processors and threads 4-29

4-30 IBM Informix Administrator's Guide

Chapter 5. Manage virtual processors

These topics describe how to set the configuration parameters that affect database
server virtual processors, and how to start and stop virtual processors.

For descriptions of the virtual-processor classes and for advice on how many
virtual processors you must specify for each class, see Chapter 4, “Virtual
processors and threads,” on page 4-1.

Set virtual-processor configuration parameters
Use the VPCLASS configuration parameter to designate a class of virtual
processors (VPs), create a user-defined virtual processor, and specify options such
as the number of VPs that the server starts, the maximum number of VPs allowed
for the class, and the assignment of VPs to CPUs if processor affinity is available.

The table lists the configuration parameters that are used to configure virtual
processors.

Table 5-1. Configuration parameters for configuring virtual processors

Parameter Description

MULTIPROCESSOR Set to 1 to support multiple CPU virtual processors, or to 0 for only a
single CPU VP

NETTYPE Specifies parameters for network protocol threads and virtual
processors

SINGLE_CPU_VP Set to 0 to enable user-defined CPU VPs, or to any other setting for
only a single CPU VP

VPCLASS Each defines a VP class and its properties, such as how many VPs of
this class start when the server starts

VP_MEMORY_CACHE_KB Speeds access to memory blocks by creating a private memory cache
for each CPU virtual processor

Related reference:

VPCLASS configuration parameter (Administrator's Reference)

MULTIPROCESSOR configuration parameter (Administrator's Reference)

SINGLE_CPU_VP configuration parameter (Administrator's Reference)

VP_MEMORY_CACHE_KB configuration parameter (Administrator's
Reference)

Start and stop virtual processors
When you start the database server, the oninit utility starts the number and types
of virtual processors that you specify directly and indirectly.

You configure virtual processors primarily through configuration parameters and,
for network virtual processors, through parameters in the sqlhosts information.

You can use the database server to start a maximum of 1000 virtual processors.

© Copyright IBM Corp. 1996, 2014 5-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0113.htm#ids_adr_0113
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0161.htm#ids_adr_0161
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0188.htm#ids_adr_0188
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0188.htm#ids_adr_0188

After the database server is in online mode, you can start more virtual processors
to improve performance, if necessary.

While the database server is in online mode, you can drop virtual processors of the
CPU and user-defined classes.

To shut down the database server and stop all virtual processors, use the onmode
-k command.
Related concepts:
“Virtual processor classes” on page 4-9
Related reference:

onmode -k, -m, -s, -u, -j: Change database server mode (Administrator's
Reference)

Add virtual processors in online mode
While the database server is in online mode, you can start additional virtual
processors for the following classes: CPU, AIO, PIO, LIO, SHM, STR, TLI, SOC,
JVP, and user-defined. The database server automatically starts one virtual
processor each in the LIO and PIO classes unless mirroring is used, in which case
it starts two.

You can start these additional virtual processors with the -p option of the onmode
utility.

You can also start additional virtual processors for user-defined classes to run
user-defined routines. For more information about user-defined virtual processors,
see “Assign a UDR to a user-defined virtual-processor class” on page 4-15.

Add virtual processors in online mode with onmode
Use the -p option of the onmode command to add virtual processors while the
database server is in online mode. Specify the number of virtual processors that
you want to add with a positive number. As an option, you can precede the
number of virtual processors with a plus sign (+). Following the number, specify
the virtual processor class in lowercase letters. For example, either of the following
commands starts four additional virtual processors in the AIO class:
onmode -p 4 aio

onmode -p +4 aio

The onmode utility starts the additional virtual processors immediately.

You can add virtual processors to only one class at a time. To add virtual
processors for another class, you must run onmode again.

Add network virtual processors
When you add network virtual processors, you add poll threads, each of which
requires its own virtual processor to run.

If you try to add poll threads for a protocol while the database server is in online
mode, and you specify in the NETTYPE configuration parameter that the poll
threads run in the CPU class, the database server does not start the new poll
threads if CPU virtual processors are not available to run them.

In the following example, the poll threads handle a total of 240 connections:

5-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0422.htm#ids_adr_0422
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0422.htm#ids_adr_0422

NETTYPE ipcshm,4,60,CPU # Configure poll thread(s) for nettype

For ipcshm, the number of poll threads correspond to the number of memory
segments. For example, if NETTYPE is set to 3,100 and you want one poll thread,
set the poll thread to 1,300.

Drop CPU and user-defined virtual processors
While the database server is in online mode, you can use the -p option of the
onmode utility to drop, or terminate, virtual processors of the CPU and
user-defined classes.

Drop CPU virtual processors

Following the onmode command, specify a negative number that is the number of
virtual processors that you want to drop, and then specify the CPU class in
lowercase letters. For example, the following command drops two CPU virtual
processors:
% onmode -p -2 cpu

If you attempt to drop a CPU virtual processor that is running a poll thread, you
receive the following message:
onmode: failed when trying to change the number of cpu virtual processor by -number.

For more information, see “Run poll threads on CPU or network virtual
processors” on page 4-21.

Drop user-defined virtual processors

Following the onmode command, specify a negative number that is the number of
virtual processors that you want to drop, and then specify the user-defined class in
lowercase letters. For example, the following command drops two virtual
processors of the class usr:
onmode -p -2 usr

Windows only: In Windows, you can have only one user-defined virtual processor
class at a time. Omit the number parameter in the onmode -p vpclass command.

For information about how to create a user-defined class of virtual processors and
assign user-defined routines to it, see “User-defined classes of virtual processors”
on page 4-14.

Monitor virtual processors
Monitor the virtual processors to determine if the number of virtual processors
configured for the database server is optimal for the current level of activity. For
more information about these onstat -g options, see the topics on the effect of
configuration on CPU utilization in the IBM Informix Performance Guide.

For examples of output for the onstat -g commands, see information about the
onstat utility in the IBM Informix Administrator's Reference.

Monitor virtual processors with command-line utilities
You can use the following onstat -g options to monitor virtual processors:

Chapter 5. Manage virtual processors 5-3

The onstat -g ath command
The onstat -g ath command displays information about system threads and the
virtual-processor classes.

The onstat -g glo command
Use the onstat -g glo command to display information about each virtual processor
that is currently running, and cumulative statistics for each virtual processor class.
For an example of onstat -g glo output, see information about the onstat utility in
the IBM Informix Administrator's Reference.

The onstat -g ioq command
Use the onstat -g ioq option to determine whether you must allocate additional
virtual processors. The command onstat -g ioq displays the length and other
statistics about I/O queues.

If the length of the I/O queue is growing, I/O requests are accumulating faster
than the AIO virtual processors can process them. If the length of the I/O queue
continues to show that I/O requests are accumulating, consider adding AIO virtual
processors.

For an example of onstat -g ioq output, see information in the IBM Informix
Administrator's Reference.

The onstat -g rea command
Use the onstat -g rea option to monitor the number of threads in the ready queue.
If the number of threads in the ready queue is growing for a class of virtual
processors (for example, the CPU class), you might be required to add more virtual
processors to your configuration.

For an example of onstat -g rea output, see information in the IBM Informix
Administrator's Reference.

Monitor virtual processors with SMI tables
Query the sysvpprof table to obtain information about the virtual processors that
are currently running. This table contains the following columns.

Column Description

vpid Virtual-processor ID number

class Virtual-processor class

usercpu Minutes of user CPU used

syscpu Minutes of system CPU used

5-4 IBM Informix Administrator's Guide

Chapter 6. Shared memory

These topics describe the content of database server shared memory, the factors
that determine the sizes of shared-memory areas, and how data moves into and
out of shared memory. For information about how to change the database server
configuration parameters that determine shared memory allocations, see Chapter 7,
“Manage shared memory,” on page 7-1.
Related reference:
“Database server maintenance tasks” on page 1-10

Shared memory
Shared memory is an operating-system feature that allows the database server
threads and processes to share data by sharing access to pools of memory. The
database server uses shared memory for the following purposes:
v To reduce memory usage and disk I/O
v To perform high-speed communication between processes

Shared memory enables the database server to reduce overall memory usage
because the participating processes, in this case, virtual processors, do not require
maintaining private copies of the data that is in shared memory.

Shared memory reduces disk I/O, because buffers, which are managed as a
common pool, are flushed on a database server-wide basis instead of a per-process
basis. Furthermore, a virtual processor can often avoid reading data from disk
because the data is already in shared memory as a result of an earlier read
operation. The reduction in disk I/O reduces execution time.

Shared memory provides the fastest method of interprocess communication,
because it processes read and write messages at the speed of memory transfers.

Shared-memory use
The database server uses shared memory for the following purposes:
v To enable virtual processors and utilities to share data
v To provide a fast communications channel for local client applications that use

IPC communication

The following figure illustrates the shared-memory scheme.

© Copyright IBM Corp. 1996, 2014 6-1

Shared-memory allocation
The database server creates portions in shared memory to handle different
processes.

The database server creates the following portions of shared memory:
v The resident portion
v The buffer pool portion
v The virtual portion
v The IPC communications or message portion

If the sqlhosts file specifies shared-memory communications, the database
server allocates memory for the communications portion.

v The virtual-extension portion

The database server adds operating-system segments, as required, to the virtual
and virtual-extension portions of shared memory.

For more information about shared-memory settings for your platform, see the
machine notes. The following figure shows the contents of each portion of shared
memory.

All database server virtual processors have access to the same shared-memory
segments. Each virtual processor manages its work by maintaining its own set of
pointers to shared-memory resources such as buffers, locks, and latches. Virtual

Unallocated space

Private data

Program text

Unallocated space

Private data

Program text

Client applications (UNIX)Data

Shared-memory
segments

Client

Client

Client

Client

Virtual processor A
memory space

Virtual processor B
memory space

Figure 6-1. How the database server uses shared memory

6-2 IBM Informix Administrator's Guide

processors attach to shared memory when you take the database server from
offline mode to quiescent, administration, or online. The database server uses locks
and latches to manage concurrent access to shared-memory resources by multiple
threads.

Shared-memory size
Each portion of the database server shared memory consists of one or more
operating-system segments of memory, each one divided into a series of blocks
that are 4 KB in size and managed by a bitmap.

The header-line output by the onstat utility contains the size of the database server
shared memory, expressed in KB. You can also use onstat -g seg to monitor how
much memory the database server allocates for each portion of shared memory.
For information about how to use onstat, see the IBM Informix Administrator's
Reference.

You can set the SHMTOTAL parameter in the onconfig file to limit the amount of
memory overhead that the database server can place on your computer or node.
The SHMTOTAL parameter specifies the total amount of shared memory that the
database server can use for all memory allocations. However, certain operations
might fail if the database server requires more memory than the amount set in
SHMTOTAL. If this condition occurs, the database server displays the following
message in the message log:
size of resident + virtual segments x + y > z

total allowed by configuration parameter SHMTOTAL

In addition, the database server returns an error message to the application that
initiated the offending operation. For example, if the database server requires more

Figure 6-2. Contents of database server shared memory

Chapter 6. Shared memory 6-3

memory than you specify in SHMTOTAL while it tries to perform an operation
such as an index build or a hash join, it returns an error message to the application
that is similar to one of the following messages:
-567 Cannot write sorted rows.
-116 ISAM error: cannot allocate memory.

After the database server sends these messages, it rolls back any partial results
performed by the offending query.

Internal operations, such as page-cleaner or checkpoint activity, can also cause the
database server to exceed the SHMTOTAL ceiling. When this situation occurs, the
database server sends a message to the message log. For example, suppose that the
database server attempts and fails to allocate additional memory for page-cleaner
activity. As a consequence, the database server sends information to the message
log that is similar to the following messages:
17:19:13 Assert Failed: WARNING! No memory available for page cleaners
17:19:13 Who: Thread(11, flush_sub(0), 9a8444, 1)
17:19:13 Results: Database server may be unable to complete a checkpoint
17:19:13 Action: Make more virtual memory available to database server
17:19:13 See Also: /tmp/af.c4

After the database server informs you about the failure to allocate additional
memory, it rolls back the transactions that caused it to exceed the SHMTOTAL
limit. Immediately after the rollback, operations no longer fail from lack of
memory, and the database server continues to process transactions as usual.

Action to take if SHMTOTAL is exceeded
When the database server requires more memory than SHMTOTAL allows, a
transient condition occurs, perhaps caused by a burst of activity that exceeds the
normal processing load. Only the operation that caused the database server to run
out of memory temporarily fails. Other operations continue to be processed in a
normal fashion.

If messages indicate on a regular basis that the database server requires more
memory than SHMTOTAL allows, you have not configured the database server
correctly. Lowering DS_TOTAL_MEMORY or the buffers value in the
BUFFERPOOL configuration parameter is one possible solution; increasing the
value of SHMTOTAL is another.

Processes that attach to shared memory
The following processes attach to the database server shared memory:
v Client-application processes that communicate with the database server through

the shared-memory communications portion (ipcshm)
v Database server virtual processors
v Database server utilities

The following topics describe how each type of process attaches to the database
server shared memory.

How a client attaches to the communications portion (UNIX)
Client-application processes that communicate with the database server through
shared memory (nettype ipcshm) attach transparently to the communications
portion of shared memory. System-library functions that are automatically
compiled into the application enable it to attach to the communications portion of

6-4 IBM Informix Administrator's Guide

shared memory. For information about specifying a shared-memory connection, see
Chapter 2, “Client/server communication,” on page 2-1, and “Network virtual
processors” on page 4-21.

If the INFORMIXSHMBASE environment variable is not set, the client application
attaches to the communications portion at an address that is platform-specific. If
the client application attaches to other shared-memory segments (not database
server shared memory), the user can set the INFORMIXSHMBASE environment variable
to specify the address at which to attach the database server shared-memory
communications segments. When you specify the address at which to address the
shared-memory communications segments, you can prevent the database server
from colliding with the other shared-memory segments that your application uses.
For information about how to set the INFORMIXSHMBASE environment variable, see
the IBM Informix Guide to SQL: Reference.
Related reference:
“Shared-memory connections (UNIX)” on page 2-6
“Environment variables for network connections” on page 2-43

How utilities attach to shared memory
Database server utilities such as onstat, onmode, and ontape attach to shared
memory through one of the following files.

Operating system File

UNIX $INFORMIXDIR/etc/.infos.servername

Windows %INFORMIXDIR%\etc\.infos.servername

The variable servername is the value of the DBSERVERNAME parameter in the
onconfig file. The utilities obtain the servername portion of the file name from the
INFORMIXSERVER environment variable.

The oninit process reads the onconfig file and creates the file .infos.servername
when it starts the database server. The file is removed when the database server
terminates.

How virtual processors attach to shared memory
The database server virtual processors attach to shared memory during setup.
During this process, the database server must satisfy the following two
requirements:
v Ensure that all virtual processors can locate and access the same shared-memory

segments
v Ensure that the shared-memory segments are located in physical memory

locations that are different than the shared-memory segments assigned to other
instances of the database server, if any, on the same computer

The database server uses two configuration parameters, SERVERNUM and
SHMBASE, to meet these requirements.

When a virtual processor attaches to shared memory, it performs the following
major steps:
v Accesses the SERVERNUM parameter from the onconfig file
v Uses SERVERNUM to calculate a shared-memory key value
v Requests a shared-memory segment using the shared-memory key value

Chapter 6. Shared memory 6-5

The operating system returns the shared-memory identifier for the first
shared-memory segment.

v Directs the operating system to attach the first shared-memory segment to its
process space at SHMBASE

v Attaches additional shared-memory segments, if required, to be contiguous with
the first segment

The following topics describe how the database server uses the values of the
SERVERNUM and SHMBASE configuration parameters in the process of attaching
shared-memory segments.

Obtain key values for shared-memory segments
The values of the SERVERNUM configuration parameter and shmkey, an internally
calculated number, determine the unique key value for each shared-memory
segment.

To see the key values for shared-memory segments, run the onstat -g seg
command. For more information, see the sections on SHMADD and the buffer pool
in your IBM Informix Performance Guide.

When a virtual processor requests that the operating system attach the first
shared-memory segment, it supplies the unique key value to identify the segment.
In return, the operating system passes back a shared-memory segment identifier
associated with the key value. Using this identifier, the virtual processor requests
that the operating system attach the segment of shared memory to the
virtual-processor address space.

Specify where to attach the first shared-memory segment
The SHMBASE parameter in the onconfig file specifies the virtual address where
each virtual processor attaches the first, or base, shared-memory segment. Each
virtual processor attaches to the first shared-memory segment at the same virtual
address. This situation enables all virtual processors within the same database
server instance to reference the same locations in shared memory without
calculating shared-memory addresses. All shared-memory addresses for an instance
of the database server are relative to SHMBASE.

Warning: Do not change the value of SHMBASE.

The value of SHMBASE is sensitive for the following reasons:
v The specific value of SHMBASE depends on the platform and whether the

processor is a 32-bit or 64-bit processor. The value of SHMBASE is not an
arbitrary number and is intended to keep the shared-memory segments safe
when the virtual processor dynamically acquires additional memory space.

v Different operating systems accommodate additional memory at different virtual
addresses. Some architectures extend the highest virtual address of the
virtual-processor data segment to accommodate the next segment. In this case,
the data segment might grow into the shared-memory segment.

v Some versions of UNIX require the user to specify an SHMBASE parameter of
virtual address zero. The zero address informs the UNIX kernel that the kernel
picks the best address at which to attach the shared-memory segments.
However, not all UNIX architectures support this option. Moreover, on some
systems, the selection that the kernel makes might not be the best selection.

For information about SHMBASE, see your IBM Informix machine notes.

6-6 IBM Informix Administrator's Guide

Attach additional shared-memory segments
Each virtual processor must attach to the total amount of shared memory that the
database server has acquired. After a virtual processor attaches each
shared-memory segment, it calculates how much shared memory it has attached
and how much remains. The database server facilitates this process by writing a
shared-memory header to the first shared-memory segment. Sixteen bytes into the
header, a virtual processor can obtain the following data:
v The total size of shared memory for this database server
v The size of each shared-memory segment

To attach additional shared-memory segments, a virtual processor requests them
from the operating system in much the same way that it requested the first
segment. For the additional segments, however, the virtual processor adds 1 to the
previous value of shmkey. The virtual processor directs the operating system to
attach the segment at the address that results from the following calculation:
SHMBASE + (seg_size x number of attached segments)

The virtual processor repeats this process until it has acquired the total amount of
shared memory.

Given the initial key value of (SERVERNUM * 65536) + shmkey, the database server
can request up to 65,536 shared-memory segments before it can request a
shared-memory key value used by another database server instance on the same
computer.

Define the shared-memory lower-boundary address
If your operating system uses a parameter to define the lower boundary address
for shared memory, and the parameter is set incorrectly, it can prevent the
shared-memory segments from being attached contiguously.

The following figure illustrates the problem. If the lower-boundary address is less
than the ending address of the previous segment plus the size of the current
segment, the operating system attaches the current segment at a point beyond the
end of the previous segment. This action creates a gap between the two segments.
Because shared memory must be attached to a virtual processor so that it looks
like contiguous memory, this gap creates problems. The database server receives
errors when this situation occurs.

To correct the problem, check the operating-system kernel parameter that specifies
the lower-boundary address or reconfigure the kernel to allow larger
shared-memory segments.

Chapter 6. Shared memory 6-7

Resident portion of shared memory
The operating system, as it switches between the processes that run on the system,
normally swaps the contents of portions of memory to disk. When a portion of
memory is designated as resident, however, it is not swapped to disk. Keeping
frequently accessed data resident in memory improves performance because it
reduces the number of disk I/O operations that would otherwise be required to
access that data.

The database server requests that the operating system keep the virtual portions in
physical memory when the following two conditions exist:
v The operating system supports shared-memory residency.
v The RESIDENT parameter in the onconfig file is set to -1 or a value that is

greater than 0.

Warning: You must consider the use of shared memory by all applications when
you consider whether to set the RESIDENT parameter to -1. Locking all shared
memory for the use of the IBM Informix database server can adversely affect the
performance of other applications, if any, on the same computer.

The resident portion of the database server shared memory stores the following
data structures that do not change in size while the database server is running:
v Shared-memory header
v Logical-log buffer
v Physical-log buffer
v Lock table
Related reference:

RESIDENT configuration parameter (Administrator's Reference)

Operating-system memory

Virtual processor

SHMBASE

When lower boundary is too large,
the next segment attaches here.

The next segment of shared
memory should attach here.

Gap

Shared-memory
segment

Shared-memory
segment

Figure 6-3. Shared-memory lower-boundary address overview

6-8 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0140.htm#ids_adr_0140

Shared-memory header
The shared-memory header contains a description of all other structures in shared
memory, including internal tables and the buffer pool.

The shared-memory header also contains pointers to the locations of these
structures. When a virtual processor first attaches to shared memory, it reads
address information in the shared-memory header for directions to all other
structures.

The size of the shared-memory header is about 200 KB, but the size varies
depending on the computer platform. You cannot tune the size of the header.

Logical-log buffer
The database server uses the logical log to store a record of changes to the
database server data since the last dbspace backup. The logical log stores records
that represent logical units of work for the database server. The logical log contains
the following five types of log records, in addition to many others:
v SQL data definition statements for all databases
v SQL data manipulation statements for databases that were created with logging
v Record of a change to the logging status of a database
v Record of a checkpoint
v Record of a change to the configuration

The database server uses only one of the logical-log buffers at a time. This buffer is
the current logical-log buffer. Before the database server flushes the current
logical-log buffer to disk, it makes the second logical-log buffer the current one so
that it can continue writing while the first buffer is flushed. If the second
logical-log buffer fills before the first one finishes flushing, the third logical-log
buffer becomes the current one. This process is illustrated in the following figure.

For a description of how the database server flushes the logical-log buffer, see
“Flush the logical-log buffer” on page 6-28.

The LOGBUFF configuration parameter specifies the size of the logical-log buffers.
Small buffers can create problems if you store records larger than the size of the
buffers (for example, TEXT or BYTE data in dbspaces). The recommended value

Current
logical-log

fileLogical-log
buffer (ready to

accept data)

Logical-log buffers
Writes performed by

user thread

Logical-log
buffer

(flushing)

Current
logical-log buffer

(now filling)

Free
logical-log

file

Free
logical-log

file

Figure 6-4. The logical-log buffer and its relation to the logical-log files on disk

Chapter 6. Shared memory 6-9

for the size of a logical log buffer is 64 KB. Whenever the setting is less than the
recommended value, the database server suggests a value during server startup.
For the possible values that you can assign to this configuration parameter, see the
IBM Informix Administrator's Reference.

For information about the affect of TEXT and BYTE data on shared memory
buffers, see “Buffer large-object data” on page 6-29.

Physical-log buffer
The database server uses the physical-log buffer to hold before-images of some of
the modified dbspace pages. The before-images in the physical log and the
logical-log records enable the database server to restore consistency to its databases
after a system failure.

The physical-log buffer is actually two buffers. Double buffering permits the
database server processes to write to the active physical-log buffer while the other
buffer is being flushed to the physical log on disk. For a description of how the
database server flushes the physical-log buffer, see “Flush the physical-log buffer”
on page 6-26. For information about monitoring the physical-log file, see “Monitor
physical and logical-logging activity” on page 16-2.

The PHYSBUFF parameter in the onconfig file specifies the size of the physical-log
buffers. A write to the physical-log buffer writes exactly one page. If the specified
size of the physical-log buffer is not evenly divisible by the page size, the database
server rounds the size down to the nearest value that is evenly divisible by the
page size. Although some operations require the buffer to be flushed sooner, in
general the database server flushes the buffer to the physical-log file on disk when
the buffer fills. Thus, the size of the buffer determines how frequently the database
server must flush it to disk.

The default value for the physical log buffer size is 512 KB. If you decide to use a
smaller value, the database server displays a message indicating that optimal
performance might not be attained. Using a physical log buffer smaller than 512
KB affects performance only, not transaction integrity.

For more information about this configuration parameter, see the IBM Informix
Administrator's Reference.

High-Availability Data-Replication buffer
Data replication requires two instances of the database server, a primary instance
and a secondary instance, running on two computers. If you implement data
replication for your database server, the primary database server holds logical-log
records in the data replication buffers before it sends them to the secondary
database server. A data replication buffer is always the same size as the logical-log
buffer. For information about the size of the logical-log buffer, see the preceding
topic, “Logical-log buffer” on page 6-9. For more information about how the data
replication buffer is used, see “How data replication works” on page 22-1.

Lock table
A lock is created when a user thread writes an entry in the lock table. The lock
table is the pool of available locks. A single transaction can own multiple locks. For
an explanation of locking and the SQL statements associated with locking, see the
IBM Informix Guide to SQL: Tutorial.

6-10 IBM Informix Administrator's Guide

The following information, which is stored in the lock table, describes the lock:
v The address of the transaction that owns the lock
v The type of lock (exclusive, update, shared, byte, or intent)
v The page or rowid that is locked
v The table space where the lock is placed
v Information about the bytes locked (byte-range locks for smart large objects):

– Smart-large-object ID
– Offset into the smart large object where the locked bytes begin
– The number of bytes locked, starting at the offset

To specify the initial size of the lock table, set the LOCKS configuration parameter.
For information about using the LOCKS configuration parameter to specify the
number of locks for a session, see the topics about configuration parameters in the
IBM Informix Administrator's Reference and the topics about configuration effects on
memory utilization in your IBM Informix Performance Guide.

If the number of locks allocated by sessions exceeds the value specified in the
LOCKS configuration parameter, the database server doubles the size of the lock
table, up to 15 times. The database server increases the size of the lock table by
attempting to double the lock table on each increase. However, the amount added
during each increase is limited to a maximum value. For 32-bit platforms, a
maximum of 100,000 locks can be added during each increase. Therefore, the total
maximum locks allowed for 32-bit platforms is 8,000,000 (maximum number of
starting locks) + 99 (maximum number of dynamic lock table extensions) x 100,000
(maximum number of locks added per lock table extension). For 64-bit platforms, a
maximum of 1,000,000 locks can be added during each increase. Therefore, the
total maximum locks allowed is 500,000,000 (maximum number of starting locks) +
99 (maximum number of dynamic lock table extensions) x 1,000,000 (maximum
number of locks added per lock table extension).

Use the DEF_TABLE_LOCKMODE configuration parameter to set the lock mode to
page or row for new tables.

Locks can prevent sessions from reading data until after a concurrent transaction is
committed or rolled back. For databases created with transaction logging, you can
use the USELASTCOMMITTED configuration parameter in the onconfig file to
specify whether the database server uses the last committed version of the data.
The last committed version of the data is the version of the data that existed before
any updates occurred. The value you set with the USELASTCOMMITTED
configuration parameter overrides the isolation level that is specified in the SET
ISOLATION TO COMMITTED READ statement of SQL. For more information
about using the USELASTCOMMITTED configuration parameter, see the topics
about configuration parameters in the IBM Informix Administrator's Reference.

For more information about using and monitoring locks, see the topics about
locking in your IBM Informix Performance Guide and the IBM Informix Guide to SQL:
Tutorial.

Buffer pool portion of shared memory
The buffer pool portion of shared memory contains the buffers that store dbspace
pages that are read from disk.

Chapter 6. Shared memory 6-11

The following figure illustrates the shared-memory header and the buffer pool.

You use the BUFFERPOOL configuration parameter to specify information about a
buffer pool, including the number of buffers in the buffer pool or the overall size
of the buffer pool. Each buffer is the size of one database server page. Too few
buffers can severely affect performance. You can set the BUFFERPOOL
configuration parameter to allow the database server to automatically increase the
number of buffers as needed to improve performance. Otherwise, you must
monitor the database server and tune the number of buffers to determine an
acceptable value.

A buffer pool manages one size of pages. You need a different buffer pool for each
page size that is used by storage spaces in the database server. The database server
automatically creates the required buffer pools. For example, if you create the first
dbspace that has a page size of 6 KB, the database server creates a buffer pool to
cache the default number of 6 KB pages in memory. You can control the properties
of buffer pools with the BUFFERPOOL configuration parameter.

If the database server is in online, quiescent, or administration mode, you can also
use the onparams -b command to add a buffer pool of a different size. When you
use the onparams -b command, the information that you specify is transferred
automatically to the onconfig file as a new entry of the BUFFERPOOL
configuration parameter.

In general, the database server performs I/O in full-page units, the size of a buffer.
The exceptions are I/O performed from big buffers, from blobspace buffers, or
from lightweight I/O buffers.

Automatic LRU (least recently used) tuning affects all buffer pools and adjusts the
lru_min_dirty and lru_max_dirty values that can be explicitly set by the
BUFFERPOOL configuration parameter.

The status of the buffers is tracked through the buffer table. Within shared
memory, buffers are organized into FIFO/LRU buffer queues. Buffer acquisition is
managed by mutexes and lock-access information.

The onstat -b command shows information about the buffers.
Related concepts:

Shared-memory
header

Buffer table

Hash table

Buffer pool

Figure 6-5. Shared-memory buffer pool

6-12 IBM Informix Administrator's Guide

The BUFFERPOOL configuration parameter and memory utilization
(Performance Guide)
“Thread data” on page 6-17
“Mutexes” on page 4-8
Related reference:

BUFFERPOOL configuration parameter (Administrator's Reference)

onstat -b command: Print buffer information for buffers in use (Administrator's
Reference)
“Creation of blobpage buffers” on page 6-30

onparams -b: Add a buffer pool (Administrator's Reference)

Virtual portion of shared memory
The virtual portion of shared memory is expandable by the database server and
can be paged out to disk by the operating system. As the database server executes,
it automatically attaches additional operating-system segments, as necessary, to the
virtual portion.

Management of the virtual portion of shared memory
The database server uses memory pools to track memory allocations that are similar
in type and size. Keeping related memory allocations in a pool helps to reduce
memory fragmentation. It also enables the database server to free a large allocation
of memory at one time, as opposed to freeing each piece that makes up the pool.

All sessions have one or more memory pools. When the database server requires
memory, it looks first in the specified pool. If insufficient memory is available in a
pool to satisfy a request, the database server adds memory from the system pool. If
the database server cannot find enough memory in the system pool, it dynamically
allocates more segments to the virtual portion.

The database server allocates virtual shared memory for each of its subsystems
(session pools, stacks, heaps, control blocks, system catalog, SPL routine caches,
SQL statement cache, sort pools, and message buffers) from pools that track free
space through a linked list. When the database server allocates a portion of
memory, it first searches the pool free-list for a fragment of sufficient size. If it finds
none, it brings new blocks into the pool from the virtual portion. When memory is
freed, it goes back to the pool as a free fragment and remains there until the pool
is deleted. When the database server starts a session for a client application, for
example, it allocates memory for the session pool. When the session terminates, the
database server returns the allocated memory as free fragments.

Size of the virtual portion of shared memory
Use configuration parameters to specify the initial size of the virtual portion of
shared memory, the size of segments to be added later, and the amount of memory
available for PDQ queries.

To specify the initial size of the virtual shared-memory portion, set the
SHMVIRTSIZE configuration parameter. To specify the size of segments that are
added later to the virtual shared memory, set the SHMADD and the EXTSHMADD
configuration parameter.

Chapter 6. Shared memory 6-13

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_138.htm#ids_prf_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_138.htm#ids_prf_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0029.htm#ids_adr_0029
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0500.htm#ids_adr_0500
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0500.htm#ids_adr_0500
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0458.htm#ids_adr_0458

To specify the amount of memory available for PDQ queries, set the
DS_TOTAL_MEMORY parameter.

If you want to increase the amount of memory that is available for a query that is
not a PDQ query and the PDQ priority is set to 0 (zero), you can change the
amount in any of the following ways:
v Set the DS_NONPDQ_QUERY_MEM configuration parameter
v Run the onmode -wm or the onmode -wf command

For example, if you use the onmode utility, specify a value as shown in the
following example:
onmode -wf DS_NONPDQ_QUERY_MEM=500

The minimum value for DS_NONPDQ_QUERY_MEM is 128 KB. The maximum
supported value is 25 percent of the value of DS_TOTAL_MEMORY.
Related reference:
“Add a segment to the virtual portion of shared memory” on page 7-6

DS_TOTAL_MEMORY configuration parameter (Administrator's Reference)

DS_NONPDQ_QUERY_MEM configuration parameter (Administrator's
Reference)

SHMVIRTSIZE configuration parameter (Administrator's Reference)

SHMADD configuration parameter (Administrator's Reference)

EXTSHMADD configuration parameter (Administrator's Reference)

Components of the virtual portion of shared memory
The virtual portion of shared memory stores the following data:
v Internal tables
v Big buffers
v Session data
v Thread data (stacks and heaps)
v Data-distribution cache
v Dictionary cache
v SPL routine cache
v SQL statement cache
v Sorting pool
v Global pool

Shared-memory internal tables
The database server shared memory contains seven internal tables that track
shared-memory resources. The shared-memory internal tables are as follows:
v Buffer table
v Chunk table
v Dbspace table
v Page-cleaner table
v Tblspace table
v Transaction table
v User table

6-14 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0066.htm#ids_adr_0066
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0064.htm#ids_adr_0064
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0064.htm#ids_adr_0064
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0160.htm#ids_adr_0160
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0155.htm#ids_adr_0155
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0083.htm#ids_adr_0083

Buffer table: The buffer table tracks the addresses and status of the individual
buffers in the shared-memory pool. When a buffer is used, it contains an image of
a data or index page from disk. For more information about the purpose and
content of a disk page, see “Pages” on page 8-5.

Each buffer in the buffer table contains the following control information, which is
required for buffer management:

Buffer status
Buffer status is described as empty, unmodified, or modified. An
unmodified buffer contains data, but the data can be overwritten. A
modified (dirty) buffer contains data that must be written to disk before it
can be overwritten.

Current lock-access level
Buffers receive lock-access levels depending on the type of operation that
the user thread is executing. The database server supports two buffer
lock-access levels: shared and exclusive.

Threads waiting for the buffer
Each buffer header maintains a list of the threads that are waiting for the
buffer and the lock-access level that each waiting thread requires.

Each database server buffer has one entry in the buffer table.

For information about the database server buffers, see “Resident portion of shared
memory” on page 6-8. For information about how to monitor the buffers, see
“Monitor buffers” on page 7-9.

The database server determines the number of entries in the buffer-table hash
table, based on the number of allocated buffers. The maximum number of hash
values is the largest power of 2 that is less than the value of buffers, which is
specified in one of the BUFFERPOOL configuration parameter fields.

Chunk table: The chunk table tracks all chunks in the database server. If
mirroring has been enabled, a corresponding mirror chunk table is also created
when shared memory is set up. The mirror chunk table tracks all mirror chunks.

The chunk table in shared memory contains information that enables the database
server to locate chunks on disk. This information includes the number of the initial
chunk and the number of the next chunk in the dbspace. Flags also describe chunk
status: mirror or primary; offline, online, or recovery mode; and whether this
chunk is part of a blobspace. For information about monitoring chunks, see
“Monitor chunks” on page 9-40.

The maximum number of entries in the chunk table might be limited by the
maximum number of file descriptors that your operating system allows per
process. You can usually specify the number of file descriptors per process with an
operating-system kernel-configuration parameter. For details, consult your
operating-system manuals.

Dbspace table: The dbspace table tracks storage spaces in the database server.
The dbspace-table information includes the following information about each
dbspace:
v Dbspace number
v Dbspace name and owner
v Dbspace mirror status (mirrored or not)

Chapter 6. Shared memory 6-15

v Date and time that the dbspace was created

If the storage space is a blobspace, flags indicate the media where the blobspace is
located: magnetic or removable. If the storage space is an sbspace, it contains
internal tables that track metadata for smart large objects and large contiguous
blocks of pages containing user data.

For information about monitoring dbspaces, see “Monitor disk usage” on page
9-40.

Page-cleaner table: The page-cleaner table tracks the state and location of each of
the page-cleaner threads. The number of page-cleaner threads is specified by the
CLEANERS configuration parameter in the onconfig file. For advice on how many
page-cleaner threads to specify, see the chapter on configuration parameters in the
IBM Informix Administrator's Reference.

The page-cleaner table always contains 128 entries, regardless of the number of
page-cleaner threads specified by the CLEANERS parameter in the onconfig file.

For information about monitoring the activity of page-cleaner threads, see
information about the onstat -F option in the IBM Informix Administrator's Reference.

Tblspace table: The tblspace table tracks all active tblspaces in a database server
instance. An active tblspace is one that is currently in use by a database session.
Each active table accounts for one entry in the tblspace table. Active tblspaces
include database tables, temporary tables, and internal control tables, such as
system catalog tables. Each tblspace table entry includes header information about
the tblspace, the tblspace name, and pointers to the tblspace tblspace in dbspaces
on disk. (The shared-memory active tblspace table is different from the tblspace
tblspace.) For information about monitoring tblspaces, see “Monitor tblspaces and
extents” on page 9-43.

The database server manages one tblspace table for each dbspace.

Transaction table: The transaction table tracks all transactions in the database
server.

Tracking information derived from the transaction table is shown in the onstat -x
display. For an example of the output that onstat -x displays, see monitoring
transactions in your IBM Informix Performance Guide.

The database server automatically increases the number of entries in the
transaction table, up to a maximum of 32,767, based on the number of current
transactions.

For more information about transactions and the SQL statements that you use with
transactions, see the IBM Informix Guide to SQL: Tutorial, the IBM Informix Guide to
SQL: Reference, and the IBM Informix Guide to SQL: Syntax.

UNIX only: The transaction table also specifically supports the X/Open
environment. Support for the X/Open environment requires TP/XA.

User table: The user table tracks all user threads and system threads. Each client
session has one primary thread and zero-to-many secondary threads, depending on

6-16 IBM Informix Administrator's Guide

the level of parallelism specified. System threads include one to monitor and
control checkpoints, one to process onmode commands, the B-tree scanner threads,
and page-cleaner threads.

The database server increases the number of entries in the user table as necessary.
You can monitor user threads with the onstat -u command.

Big buffers
A big buffer is a single buffer that is made up of several pages. The actual number
of pages is platform-dependent. The database server allocates big buffers to
improve performance on large reads and writes.

The database server uses a big buffer whenever it writes to disk multiple pages
that are physically contiguous. For example, the database server tries to use a big
buffer to perform a series of sequential reads (light scans) or to read into shared
memory simple large objects that are stored in a dbspace.

Users do not have control over the big buffers. If the database server uses light
scans, it allocates big buffers from shared memory.

For information about monitoring big buffers with the onstat command, see the
topics about configuration effects on I/O activity in your IBM Informix Performance
Guide.

Session data
When a client application requests a connection to the database server, the
database server begins a session with the client and creates a data structure for the
session in shared memory called the session-control block. The session-control block
stores the session ID, the user ID, the process ID of the client, the name of the host
computer, and various status flags.

The database server allocates memory for session data as necessary.

Thread data
When a client connects to the database server, in addition to starting a session, the
database server starts a primary session thread and creates a thread-control block for
it in shared memory.

The database server also starts internal threads on its own behalf and creates
thread-control blocks for them. When the database server switches from running
one thread to running another one (a context switch), it saves information about
the thread— such as the register contents, program counter (address of the next
instruction), and global pointers—in the thread-control block. For more information
about the thread-control block and how it is used, see “Context switching” on page
4-5.

The database server allocates memory for thread-control blocks as necessary.
Related concepts:
“Buffer pool portion of shared memory” on page 6-11

Stacks: Each thread in the database server has its own stack area in the virtual
portion of shared memory. For a description of how threads use stacks, see
“Stacks” on page 4-6. For information about how to monitor the size of the stack
for a session, see monitoring sessions and threads section in your IBM Informix
Performance Guide.

Chapter 6. Shared memory 6-17

The size of the stack space for user threads is specified by the STACKSIZE
parameter in the onconfig file. You can change the size of the stack for all user
threads, if necessary, by changing the value of STACKSIZE.

You can use the INFORMIXSTACKSIZE environment variable to override the STACKSIZE
value in the server configuration file. Set INFORMIXSTACKSIZE in the environment
and recycle the instance.
Related reference:

STACKSIZE configuration parameter (Administrator's Reference)

Heaps: Each thread has a heap to hold data structures that it creates while it is
running. A heap is dynamically allocated when the thread is created. The size of
the thread heap is not configurable.

Data-distribution cache
The database server uses distribution statistics generated by the UPDATE
STATISTICS statement in the MEDIUM or HIGH mode to determine the query
plan with the lowest cost. When the database server accesses the distribution
statistics for a specific column the first time, it reads the distribution statistics from
the sysdistrib system catalog table on disk and stores the statistics in the
data-distribution cache. These statistics can then be read for the optimization of
subsequent queries that access the column.

Performance improves if these statistics are efficiently stored and accessed from the
data-distribution cache. You can configure the size of the data-distribution cache
with the DS_HASHSIZE and DS_POOLSIZE configuration parameters. For
information about changing the default size of the data-distribution cache, see the
topics about queries and the query optimizer in your IBM Informix Performance
Guide.

Dictionary cache
When a session executes an SQL statement that requires access to a system catalog
table, the database server reads data from the system catalog tables. The database
server stores the catalog data for each queried table in structures that it can access
more efficiently during subsequent queries on that table. These structures are
created in the virtual portion of shared memory for use by all sessions. These
structures constitute the dictionary cache.

You can configure the size of the dictionary cache with the DD_HASHSIZE and
DD_HASHMAX configuration parameters. For more information about these
parameters, see the chapter on configuration effects on memory in your IBM
Informix Performance Guide.

SQL statement cache
The SQL statement cache reduces memory usage and preparation time for queries.

The database server uses the SQL statement cache to store optimized SQL
statements that a user runs. When users run a statement that is stored in the SQL
statement cache, the database server does not optimize the statement again, so
performance improves.

For more information, see “Set SQL statement cache parameters” on page 7-5. For
details on how these parameters affect the performance of the SQL statement
cache, see the IBM Informix Performance Guide.

6-18 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0165.htm#ids_adr_0165

Sort memory
The following database operations can use large amounts of the virtual portion of
shared memory to sort data:
v Decision-support queries that involve joins, groups, aggregates and sort

operations
v Index builds
v UPDATE STATISTICS statement in SQL

The amount of virtual shared memory that the database server allocates for a sort
depends on the number of rows to be sorted and the size of the row, along with
other factors.

For information about parallel sorts, see your IBM Informix Performance Guide.

SPL routine and the UDR cache
The database server converts an SPL routine to executable format and stores the
routine in the UDR cache, where it can be accessed by any session.

When a session is required to access an SPL routine or other user-defined routine
for the first time, the database server reads the definition from the system catalog
tables and stores the definition in the UDR cache.

You can configure the size of the UDR cache with the PC_HASHSIZE and
PC_POOLSIZE configuration parameters. For information about changing the
default size of the UDR cache, see the chapter on queries and the query optimizer
in your IBM Informix Performance Guide.

Global pool
The global pool stores structures that are global to the database server. For
example, the global pool contains the message queues where poll threads for
network communications deposit messages from clients. The sqlexec threads pick
up the messages from the global pool and process them.

For more information, see the sections on network buffer pools and virtual portion
of shared memory in your IBM Informix Performance Guide.

Communications portion of shared memory (UNIX)
The database server allocates memory for the IPC communication portion of
shared memory if you configure at least one of your connections as an IPC
shared-memory connection. The database server performs this allocation when you
set up shared memory. The communications portion contains the message buffers
for local client applications that use shared memory to communicate with the
database server.

The size of the communications portion of shared memory equals approximately
12 KB multiplied by the expected number of connections required for
shared-memory communications (nettype ipcshm). If nettype ipcshm is not present,
the expected number of connections defaults to 50. For information about how a
client attaches to the communications portion of shared memory, see “How a client
attaches to the communications portion (UNIX)” on page 6-4.
Related reference:
“Shared-memory connections (UNIX)” on page 2-6

Chapter 6. Shared memory 6-19

Virtual-extension portion of shared memory
The virtual-extension portion of shared memory contains additional virtual
segments and virtual-extension segments.

Virtual-extension segments contain thread heaps for DataBlade modules and
user-defined routines that run in user-defined virtual processors.

The EXTSHMADD configuration parameter sets the size of virtual-extension
segments. The SHMADD and SHMTOTAL configuration parameters apply to the
virtual-extension portion of shared memory, just as they do to the other portions of
shared memory.

Concurrency control
The database server threads that run on the same virtual processor and on separate
virtual processors share access to resources in shared memory. When a thread
writes to shared memory, it uses mechanisms called mutexes and locks to prevent
other threads from simultaneously writing to the same area. A mutex gives a
thread the right to access a shared-memory resource. A lock prevents other threads
from writing to a buffer until the thread that placed the lock is finished with the
buffer and releases the lock.

Shared-memory mutexes
The database server uses mutexes to coordinate threads as they attempt to modify
data in shared memory. Every modifiable shared-memory resource is associated
with a mutex. Before a thread can modify a shared-memory resource, it must first
acquire the mutex associated with that resource. After the thread acquires the
mutex, it can modify the resource. When the modification is complete, the thread
releases the mutex.

If a thread tries to obtain a mutex and finds that it is held by another thread, the
incoming thread must wait for the mutex to be released.

For example, two threads can attempt to access the same slot in the chunk table,
but only one can acquire the mutex associated with the chunk table. Only the
thread that holds the mutex can write its entry in the chunk table. The second
thread must wait for the mutex to be released and then acquire it.

For information about monitoring mutexes (which are also called latches), see
“Monitor the shared-memory profile and latches” on page 7-8.

Shared-memory buffer locks
A primary benefit of shared memory is the ability of database server threads to
share access to disk pages stored in the shared-memory buffer pool. The database
server maintains thread isolation while it achieves this increased concurrency
through a strategy for locking the data buffers.

Types of buffer locks
The database server uses two types of locks to manage access to shared-memory
buffers:
v Share locks
v Exclusive locks

6-20 IBM Informix Administrator's Guide

Each of these lock types enforces the required level of thread isolation during
execution.

Share lock: A buffer is in share mode, or has a share lock, if multiple threads
have access to the buffer to read the data but none intends to modify the data.

Exclusive lock: A buffer is in exclusive mode, or has an exclusive lock, if a thread
demands exclusive access to the buffer. All other thread requests that access the
buffer are placed in the wait queue. When the executing thread is ready to release
the exclusive lock, it wakes the next thread in the wait queue.

Database server thread access to shared buffers
Database server threads access shared buffers through a system of queues, using
mutexes and locks to synchronize access and protect data.

FIFO/LRU queues
A buffer holds data for the purpose of caching. The database server uses the
least-recently used (LRU) queues to replace the cached data. IBM Informix also has
a first-in first-out (FIFO) queue. When you set the number of LRU queues, you are
actually setting the number of FIFO/LRU queues.

Use the BUFFERPOOL configuration parameter to specify information about the
buffer pool, including information about the number of LRU queues to create
when database server shared memory is set up and values for lru_min_dirty and
lru_max_dirty, which control how frequently the shared-memory buffers are
flushed to disk.

To improve transaction throughput, increase the lru_min_dirty and lru_max_dirty
values. However, do not change the gap between the lru_min_dirty and
lru_max_dirty values. If the AUTO_LRU_TUNING configuration parameter is
enabled, the values of the lru_max_dirty and lru_min_dirty fields are reset
automatically as needed to improve performance.
Related reference:

AUTO_LRU_TUNING configuration parameter (Administrator's Reference)

BUFFERPOOL configuration parameter (Administrator's Reference)

Components of LRU queue
Each LRU queue is composed of a pair of linked lists, as follows:
v FLRU (free least-recently used) list, which tracks free or unmodified pages in the

queue
v MLRU (modified least-recently used) list, which tracks modified pages in the

queue

The free or unmodified page list is called the FLRU queue of the queue pair, and
the modified page list is called the MLRU queue. The two separate lists eliminate
the task of searching a queue for a free or unmodified page. The following figure
illustrates the structure of the LRU queues.

Chapter 6. Shared memory 6-21

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0025.htm#ids_adr_0025
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0029.htm#ids_adr_0029

Pages in least-recently used order
When the database server processes a request to read a page from disk, it must
decide which page to replace in memory. Rather than select a page randomly, the
database server assumes that recently referenced pages are more likely to be
referenced in the future than pages that it has not referenced for some time. Thus,
rather than replacing a recently accessed page, the database server replaces a
least-recently accessed page. By maintaining pages in least-recently to
most-recently used order, the database server can easily locate the least-recently
used pages in memory.

LRU queues and buffer-pool management
Before processing begins, all page buffers are empty, and every buffer is
represented by an entry in one of the FLRU queues. The buffers are evenly
distributed among the FLRU queues. To calculate the number of buffers in each
queue, divide the total number of buffers by the number of LRU queues. The
number of buffers and LRU queues are specified in the BUFFERPOOL
configuration parameter.

When a user thread is required to acquire a buffer, the database server randomly
selects one of the FLRU queues and uses the oldest or least-recently used entry in
the list. If the least-recently used page can be latched, that page is removed from
the queue.

If the FLRU queue is locked, and the end page cannot be latched, the database
server randomly selects another FLRU queue.

If a user thread is searching for a specific page in shared memory, it obtains the
LRU-queue location of the page from the control information stored in the buffer
table.

After an executing thread finishes its work, it releases the buffer. If the page has
been modified, the buffer is placed at the most-recently used end of an MLRU
queue. If the page was read but not modified, the buffer is returned to the FLRU
queue at its most-recently used end. For information about how to monitor LRU
queues, see “Monitor buffers” on page 7-9.

Number of LRU queues to configure
Multiple LRU queues reduce user-thread contention and allow multiple cleaners to
flush pages from the queues so that the percentage of dirty pages is maintained at
an acceptable level.

LRU queue
(composed of two
queues)

Least-recently used <--> most-recently used

FLRU 1

MLRU 1

Pointer to a
modified page

Pointer to an
unmodified page

Pointer to an
empty page

Figure 6-6. LRU queue

6-22 IBM Informix Administrator's Guide

You specify the number of LRU queues by setting the lrus value in the
BUFFERPOOL configuration parameter. The default number of LRU queues
depends on the number of CPUs on your computer:
v If you have a uniprocessor computer, the default value of the lrus field is 8.
v If you have a multiprocessor computer and the MULTIPROCESSOR

configuration parameter is enabled, the default value of the lrus field is the
greater of 8 or the number of CPU virtual processors.

After you provide an initial value for the lrus field in the BUFFERPOOL
configuration parameter, monitor your LRU queues with the onstat -R command.
If you find that the percentage of dirty LRU queues consistently exceeds the value
of the lru_max_dirty field in the BUFFERPOOL configuration parameter, increase
the value of the lrus field to add more LRU queues.

For example, if the value of the lru_max_dirty field is 70 and your LRU queues are
consistently 75 percent dirty, you can increase the value of the lrus field. If you
increase the number of LRU queues, you shorten the length of the queues, which
reduces the work of the page cleaners. However, you must allocate enough page
cleaners with the CLEANERS configuration parameter.
Related concepts:

LRU tuning (Performance Guide)
Related reference:

BUFFERPOOL configuration parameter (Administrator's Reference)

Number of cleaners to allocate
In general, you must configure one cleaner for each disk that your applications
update frequently. However, you must also consider the length of your LRU
queues and frequency of checkpoints, as explained in the following paragraphs.

In addition to insufficient LRU queues, another factor that influences whether page
cleaners keep up with the number of pages that require cleaning is whether you
have enough page-cleaner threads allocated. The percent of dirty pages might
exceed the BUFFERPOOL value specified for lru_max_dirty in some queues
because no page cleaners are available to clean the queues. After a while, the page
cleaners might be too far behind to catch up, and the buffer pool becomes dirtier
than the percent that you specified in lru_max_dirty.

For example, suppose that the CLEANERS parameter is set to 8, and you increase
the number of LRU queues from 8 to 12. You can expect little in the way of a
performance gain because the 8 cleaners must now share the work of cleaning an
additional 4 queues. If you increase the number of CLEANERS to 12, each of the
now-shortened queues can be more efficiently cleaned by a single cleaner.

Setting CLEANERS too low can cause performance to suffer whenever a
checkpoint occurs because page cleaners must flush all modified pages to disk
during checkpoints. If you do not configure a sufficient number of page cleaners,
checkpoints take longer, causing overall performance to suffer.

For more information, see “Flush buffer-pool buffers” on page 6-26.

Number of pages added to the MLRU queues
Periodically, the page-cleaner threads flush the modified buffers in an MLRU
queue to disk. To specify the point at which cleaning begins, use the
BUFFERPOOL configuration parameter to specify a value for lru_max_dirty.

Chapter 6. Shared memory 6-23

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_276.htm#ids_prf_276
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0029.htm#ids_adr_0029

By specifying when page cleaning begins, the lru_max_dirty value limits the
number of page buffers that can be appended to an MLRU queue. The initial
setting of lru_max_dirty is 60.00, so page cleaning begins when 60 percent of the
buffers managed by a queue are modified.

In practice, page cleaning begins under several conditions, only one of which is
when an MLRU queue reaches the value of lru_max_dirty. For more information
about how the database server performs buffer-pool flushing, see “Flush data to
disk” on page 6-26.

The following example shows how the value of lru_max_dirty is applied to an
LRU queue to specify when page cleaning begins and thereby limit the number of
buffers in an MLRU queue.
Buffers specified as 8000
lrus specified as 8
lru_max_dirty specified as 60 percent

Page cleaning begins when the number of buffers in the MLRU
queue is equal to lru_max_dirty.

Buffers per lru queue = (8000/8) = 1000

Max buffers in MLRU queue and point at which page cleaning
begins: 1000 x 0.60 = 600

End of MLRU cleaning
You can also specify the point at which MLRU cleaning can end. The
lru_min_dirty value in the BUFFERPOOL configuration parameter specifies the
acceptable percentage of buffers in an MLRU queue. For example, if lru_min_dirty
is set to 50.00, page cleaning is not required when 50 percent of the buffers in an
LRU queue are modified. In practice, page cleaning can continue beyond this
point, as directed by the page-cleaner threads.

The following example shows how the value of lru_min_dirty is applied to the
LRU queue to specify the acceptable percent of buffers in an MLRU queue and the
point at which page cleaning ends.
Buffers specified as 8000
lrus specified as 8
lru_min_dirty specified as 50 percent

The acceptable number of buffers in the MLRU queue and
the point at which page cleaning can end is equal
to lru_min_dirty.

Buffers per LRU queue = (8000/8) = 1000

Acceptable number of buffers in MLRU queue and the point
at which page cleaning can end: 1000 x .50 = 500

You can use decimals for the lru_max_dirty and the lru_min_dirty values. For
example, if you set lru_max_dirty to 1.0333 and lru_min_dirty to 1.0, this triggers
the LRU to write at 3,100 dirty buffers and to stop at 3,000 dirty buffers.

For more information about how the database server flushes the buffer pool, see
“Flush data to disk” on page 6-26.

6-24 IBM Informix Administrator's Guide

Read-ahead operations
The database server automatically reads several pages ahead of the current pages
that are being processed for a query, unless you disable automatic read ahead
operations. Reading ahead enables applications to run faster because they spend
less time waiting for disk I/O.

Automatic read-ahead requests for pages to be brought into the bufferpool cache
during sequential scans of data records improves the performance of a query,
including OLTP queries and index scans, when the server detects that the query is
encountering I/O.

By default, the database server automatically determines when to issue read-ahead
requests and when to stop based on when the query is encountering i/o from disk:
v If queries encounter I/O, the server issues read-ahead requests to improve the

performance of the query. This performance improvement occurs because
read-ahead requests can greatly increase the speed of database processing by
compensating for the slowness of I/O processing relative to the speed of CPU
processing.

v If queries are mostly cached, the server detects that no I/O is occurring and
does not read ahead.

Use the AUTO_READAHEAD configuration parameter to change the automatic
read-ahead mode or to disable automatic read ahead for a query. You can:
v Dynamically change the value of the AUTO_READAHEAD configuration

parameter by running an onmode -wm or onmode -wf command.
v Run a SET ENVIRONMENT AUTO_READAHEAD statement to change the

mode or enable or disable automatic read-ahead for a session.

You can use the onstat -p command to view database server reads and writes and
monitor number of times that a thread was required to wait for a shared-memory
latch. The RA-pgsused output field shows the number of pages used that the
database server read ahead and monitor the database server use of read-ahead.

Use the onstat -g rah command to display statistics about read-ahead requests.
Related reference:

AUTO_READAHEAD configuration parameter (Administrator's Reference)

onstat -p command: Print profile counts (Administrator's Reference)

onstat -g rah command: Print read-ahead request statistics (Administrator's
Reference)

Database server thread access to buffer pages
The database server uses shared-lock buffering to allow more than one database
server thread to access the same buffer concurrently in shared memory.

The database server uses two types of buffer locks to provide this concurrency
without a loss in thread isolation. The two types of lock access are share and
exclusive. (For more information, see “Types of buffer locks” on page 6-20.)

Chapter 6. Shared memory 6-25

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1125.htm#ids_adr_1125
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0602.htm#ids_adr_0602
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1126.htm#ids_adr_1126
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1126.htm#ids_adr_1126

Flush data to disk
Writing a buffer to disk is called buffer flushing. When a user thread modifies data
in a buffer, it marks the buffer as dirty. When the database server flushes the buffer
to disk, it subsequently marks the buffer as not dirty and allows the data in the
buffer to be overwritten.

The database server flushes the following buffers:
v Buffer pool (covered in this section)
v Physical-log buffer

See “Flush the physical-log buffer.”
v Logical-log buffer

See “Flush the logical-log buffer” on page 6-28.

Page-cleaner threads manage buffer flushing. The database server always runs at
least one page-cleaner thread. If the database server is configured for more than
one page-cleaner thread, the LRU queues are divided among the page cleaners for
more efficient flushing. For information about specifying how many page-cleaner
threads the database server runs, see the CLEANERS configuration parameter in
the IBM Informix Administrator's Reference.

Flushing the physical-log buffer, the modified shared-memory page buffers, and
the logical-log buffer must be synchronized with page-cleaner activity according to
specific rules designed to maintain data consistency.

Flush buffer-pool buffers
Flushing of the buffers is initiated by any one of the following conditions:
v The number of buffers in an MLRU queue reaches the number specified by the

lru_max_dirty value in the BUFFERPOOL configuration parameter.
v The page-cleaner threads cannot keep up. In other words, a user thread must

acquire a buffer, but no unmodified buffers are available.
v The database server must execute a checkpoint. (See “Checkpoints” on page

15-4.)

Automatic LRU tuning affects all buffer pools and adjusts the lru_min_dirty and
lru_max_dirty values in the BUFFERPOOL configuration parameter.

Flush before-images first
The before-images of modified pages are flushed to disk before the modified pages
themselves.

In practice, the physical-log buffer is flushed first and then the buffers that contain
modified pages. Therefore, even when a shared-memory buffer page must be
flushed because a user thread is trying to acquire a buffer but none is available (a
foreground write), the buffer pages cannot be flushed until the before-image of the
page has been written to disk.

Flush the physical-log buffer
The database server temporarily stores before-images of some of the modified disk
pages in the physical-log buffer. If the before-image is written to the physical-log
buffer but not to the physical log on disk, the server flushes the physical-log buffer
to disk before flushing the modified page to disk.

6-26 IBM Informix Administrator's Guide

The database server always flushes the contents of the physical-log buffer to disk
before any data buffers.

The following events cause the active physical-log buffer to flush:
v The active physical-log buffer becomes full.
v A modified page in shared memory must be flushed, but the before-image is still

in the active physical-log buffer.
v A checkpoint occurs.

The database server uses only one of the two physical-log buffers at a time. This
buffer is the active (or current) physical-log buffer. Before the database server
flushes the active physical-log buffer to disk, it makes the other buffer the active
physical-log buffer so that the server can continue writing to a buffer while the
first buffer is being flushed.

Both the physical-log buffer and the physical log help maintain the physical and
logical consistency of the data. For information about physical logging,
checkpoints, and fast recovery, see Chapter 15, “Physical logging, checkpoints, and
fast recovery,” on page 15-1.

Synchronize buffer flushing
When shared memory is first set up, all buffers are empty. As processing occurs,
data pages are read from disk into the buffers, and user threads begin to modify
these pages.

Types of writes during flushing
To provide you with information about the specific condition that prompted
buffer-flushing activity, the database server defines three types of writes and
counts how often each write occurs.

The types of writes are as follows:
v Foreground write
v LRU write
v Chunk write

To see the write counts that the database server maintains, run the onstat -F
command.

If you implement mirroring for the database server, data is always written to the
primary chunk first. The write is then repeated on the mirror chunk. Writes to a
mirror chunk are included in the counts.
Related reference:
“Monitor buffers” on page 7-9

onstat -F command: Print counts (Administrator's Reference)

Foreground write
Whenever an sqlexec thread writes a buffer to disk, it is termed a foreground write.
A foreground write occurs when an sqlexec thread searches through the LRU
queues on behalf of a user but cannot locate an empty or unmodified buffer. To
make space, the sqlexec thread flushes pages, one at a time, to hold the data to be
read from disk. (For more information, see “FIFO/LRU queues” on page 6-21.)

Chapter 6. Shared memory 6-27

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0509.htm#ids_adr_0509

If the sqlexec thread must perform buffer flushing just to acquire a shared-memory
buffer, performance can suffer. Foreground writes must be avoided. To display a
count of the number of foreground writes, run onstat -F. If you find that
foreground writes are occurring on a regular basis, tune the value of the
page-cleaning parameters. Either increase the number of page cleaners or decrease
the BUFFERPOOL lru_max_dirty value.

LRU write
Unlike foreground writes, LRU writes are performed by page cleaners rather than
by sqlexec threads. The database server performs LRU writes as background
writes that typically occur when the percentage of dirty buffers exceeds the percent
that is specified for lru_max_dirty in the BUFFERPOOL configuration parameter.

In addition, a foreground write can trigger an LRU write. When a foreground write
occurs, the sqlexec thread that performed the write alerts a page-cleaner to wake
up and clean the LRU for which it performed the foreground write.

In an appropriately tuned system, page cleaners ensure that enough unmodified
buffer pages are available for storing pages to be read from disk. Thus, sqlexec
threads that perform a query are not required to flush a page to disk before they
read in the disk pages required by the query. This condition can result in
significant performance gains for queries that do not make use of foreground
writes.

LRU writes are preferred over foreground writes because page-cleaner threads
perform buffer writes much more efficiently than sqlexec threads do. To monitor
both types of writes, use onstat -F.

Chunk write
Chunk writes are commonly performed by page-cleaner threads during a checkpoint
or, possibly, when every page in the shared-memory buffer pool is modified.
Chunk writes, which are performed as sorted writes, are the most efficient writes
available to the database server.

During a chunk write, each page-cleaner thread is assigned to one or more chunks.
Each page-cleaner thread reads through the buffer headers and creates an array of
pointers to pages that are associated with its specific chunk. (The page cleaners
have access to this information because the chunk number is contained within the
physical page number address, which is part of the page header.) This sorting
minimizes head movement (disk seek time) on the disk and enables the
page-cleaner threads to use the big buffers during the write, if possible.

In addition, because user threads must wait for the checkpoint to complete, the
page-cleaner threads are not competing with many threads for CPU time. As a
result, the page-cleaner threads can finish their work with less context switching.

Flush the logical-log buffer
The database server uses the shared-memory logical-log buffer as temporary
storage for records that describe modifications to database server pages. From the
logical-log buffer, these records of changes are written to the current logical-log file
on disk and eventually to the logical-log backup media. For a description of logical
logging, see Chapter 13, “Logical log,” on page 13-1.

Five events cause the current logical-log buffer to flush:
v The current logical-log buffer becomes full.

6-28 IBM Informix Administrator's Guide

v A transaction is prepared or committed in a database with unbuffered logging.
v A nonlogging database session terminates.
v A checkpoint occurs.
v A page is modified that does not require a before-image in the physical log.

The following topics explain each of these events in detail.

After a transaction is prepared or terminated in a database with
unbuffered logging
The following log records cause flushing of the logical-log buffers in a database
with unbuffered logging:
v COMMIT
v PREPARE
v XPREPARE
v ENDTRANS

For a comparison of buffered versus unbuffered logging, see the SET LOG
statement in the IBM Informix Guide to SQL: Syntax.

When a session that uses nonlogging databases or unbuffered
logging terminates
Even for nonlogging databases, the database server logs certain activities that alter
the database schema, such as the creation of tables or extents. When the database
server terminates sessions that use unbuffered logging or nonlogging databases,
the logical-log buffer is flushed to make sure that any logging activity is recorded.

When a checkpoint occurs
For a detailed description of the events that occur during a checkpoint, see
“Checkpoints” on page 15-4.

When a page is modified that does not require a before-image in
the physical-log file
When a page is modified that does not require a before-image in the physical log,
the logical-log buffer must be flushed before that page is flushed to disk.

Buffer large-object data
Simple large objects (TEXT or BYTE data) can be stored in either dbspaces or
blobspaces. Smart large objects (CLOB or BLOB data) are stored only in sbspaces.
The database server uses different methods to access each type of storage space.
The following topics describe buffering methods for each.

Write simple large objects
The database server writes simple large objects to disk pages in a dbspace in the
same way that it writes any other data type. For more information, see “Flush data
to disk” on page 6-26.

You can also assign simple large objects to a blobspace. The database server writes
simple large objects to a blobspace differently from the way that it writes other
data to a shared-memory buffer and then flushes it to disk. For a description of
blobspaces, see the chapter on disk structure and storage in the IBM Informix
Administrator's Reference.

Chapter 6. Shared memory 6-29

Blobpages and shared memory
Blobspace blobpages store large amounts of data. Consequently, the database
server does not create or access blobpages by way of the shared-memory buffer
pool, and it does not write blobspace blobpages to either the logical or physical
logs.

If blobspace data passed through the shared-memory pool, it might dilute the
effectiveness of the pool by driving out index pages and data pages. Instead,
blobpage data is written directly to disk when it is created.

To reduce logical-log and physical-log traffic, the database server writes blobpages
from magnetic media to dbspace backup tapes and logical-log backup tapes in a
different way than it writes dbspace pages. For a description of how blobspaces are
logged, see “Log blobspaces and simple large objects” on page 13-6.

Creation of simple large objects
When simple-large-object data is written to disk, the row to which it belongs might
not exist yet. During an insert, for example, the simple large object is transferred
before the rest of the row data. After the simple large object is stored, the data row
is created with a 56-byte descriptor that points to its location. For a description of
how simple large objects are stored physically, see the structure of a dbspace
blobpage in the disk storage and structure chapter of the IBM Informix
Administrator's Reference.

Creation of blobpage buffers
To receive simple large object data from the application process, the database
server creates a pair of blobspace buffers, one for reading and one for writing, each
the size of one blobspace blobpage. Each user has only one set of blobspace buffers
and, therefore, can access only one simple large object at a time.

Simple large object data is transferred from the client-application process to the
database server in 1 KB segments. The database server begins filling the blobspace
buffers with the 1 KB pieces and attempts to buffer two blobpages at a time. The
database server buffers two blobpages so that it can determine when to add a
forwarding pointer from one page to the next. When it fills the first buffer and
discovers that more data remains to transfer, it adds a forward pointer to the next
page before it writes the page to disk. When no more data remains to transfer, the
database server writes the last page to disk without a forward pointer.

When the thread begins writing the first blobspace buffer to disk, it attempts to
perform the I/O based on the user-defined blobpage size. For example, if the
blobpage size is 32 KB, the database server attempts to read or write the data in
32,768-byte increments. If the underlying hardware (such as the disk controller)
cannot transfer this amount of data in a single operation, the operating-system
kernel loops internally (in kernel mode) until the transfer is complete.

The blobspace buffers remain until the thread that created them is finished. When
the simple large object is written to disk, the database server deallocates the pair of
blobspace buffers. The following figure illustrates the process of writing a simple
large object to a blobspace.

6-30 IBM Informix Administrator's Guide

Blobspace blobpages are allocated and tracked with the free-map page. Links that
connect the blobpages and pointers to the next blobpage segments are created as
necessary.

A record of the operation (insert, update, or delete) is written to the logical-log
buffer.
Related concepts:
“Buffer pool portion of shared memory” on page 6-11

Access smart large objects
The database server accesses smart large objects through the shared-memory
buffers, in the same way that it accesses data that is stored in a dbspace. However,
the user-data portion of a smart large object is buffered at a lower priority than
normal buffer pages to prevent flushing data of higher value out of the buffer
pool. Buffering permits faster access to smart large objects that are accessed
frequently.

A smart large object is stored in an sbspace. You cannot store simple large objects
in an sbspace, and you cannot store smart large objects in a blobspace. An sbspace
consists of a user-data area and a metadata area. The user-data area contains the
smart-large-object data. The metadata area contains information about the content
of the sbspace. For more information about sbspaces, see “Sbspaces” on page 8-13.

Because smart large objects pass through the shared-memory buffer pool and can
be logged, you must consider them when you allocate buffers. Use the
BUFFERPOOL configuration parameter to allocate shared-memory buffers. As a
general rule, try to have enough buffers to hold two smart-large-object pages for
each concurrently open smart large object. (The additional page is available for
read-ahead purposes.) For more information about tuning buffers for smart large
objects, see your IBM Informix Performance Guide.

Use the LOGBUFF configuration parameter to specify the size of the logical-log
buffer. For information about setting each of the following configuration
parameters, see the IBM Informix Administrator's Reference:
v BUFFERPOOL
v LOGBUFF

The user-data area of smart large objects that are logged does not pass through the
physical log, so changing the PHYSBUFF parameter is not required for smart large
objects.

Database server disk space

BlobspaceTe y blobpage
buffers

mporar

Database server shared memory

Client

Virtual processor

Figure 6-7. Writing simple large object to a blobspace

Chapter 6. Shared memory 6-31

For more information about the structure of an sbspace, see sbspace structure in
the disk structures and storage chapter of the IBM Informix Administrator's
Reference. For information about creating an sbspace, see information about the
onspaces utility in the IBM Informix Administrator's Reference.

Memory use on 64-bit platforms
With 64-bit addressing, you can have larger buffer pools to reduce the amount of
I/O operations to obtain data from disks. Because 64-bit platforms allow for larger
memory-address space, the maximum values for the following memory-related
configuration parameters are larger on 64-bit platforms:
v BUFFERPOOL
v CLEANERS
v DS_MAX_QUERIES
v DS_TOTAL_MEMORY
v LOCKS
v SHMADD
v SHMVIRTSIZE

The machine notes for each 64-bit platform lists the maximum values for these
configuration parameters and platform-specific parameters such as SHMMAX. For
more information about the configuration parameters, see the IBM Informix
Administrator's Reference and the chapter on shared memory in the IBM Informix
Performance Guide.

6-32 IBM Informix Administrator's Guide

Chapter 7. Manage shared memory

These topics inform you how to perform the following tasks, which concern
managing shared memory:
v Setting the shared-memory configuration parameters
v Setting up shared memory
v Turning residency on or off for the resident portion of the database server

shared memory
v Adding a segment to the virtual portion of shared memory
v Reserving memory for critical activities
v Maintaining a targeted amount of memory in applications with memory

limitations
v Monitoring shared memory

These topics do not cover the DS_TOTAL_MEMORY configuration parameter. This
parameter places a ceiling on the allocation of memory for decision-support
queries. For information about this parameter, see your IBM Informix Performance
Guide.

Set operating-system shared-memory configuration parameters
Several operating-system configuration parameters can affect the use of shared
memory by the database server. Parameter names are not provided because names
vary among platforms, and not all parameters exist on all platforms. The following
list describes these parameters by function:
v Maximum operating-system shared-memory segment size, expressed in bytes or

KB
v Minimum shared-memory segment size, expressed in bytes
v Maximum number of shared-memory identifiers
v Lower-boundary address for shared memory
v Maximum number of attached shared-memory segments per process
v Maximum amount of systemwide shared memory

UNIX only:

v Maximum number of semaphore identifiers
v Maximum number of semaphores
v Maximum number of semaphores per identifier

On UNIX, the machine notes file contains recommended values that you use to
configure operating-system resources. Use these recommended values when you
configure the operating system. For information about how to set these
operating-system parameters, consult your operating-system manuals.

For specific information about your operating-system environment, see the
machine notes file that is provided with the database server.
Related concepts:

UNIX configuration parameters that affect CPU utilization (Performance
Guide)

© Copyright IBM Corp. 1996, 2014 7-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_084.htm#ids_prf_084
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_084.htm#ids_prf_084

Related tasks:

Windows configuration parameters that affect CPU utilization (Performance
Guide)

Maximum shared-memory segment size
When the database server creates the required shared-memory segments, it
attempts to acquire as large an operating-system segment as possible. The first
segment size that the database server tries to acquire is the size of the portion that
it is allocating (resident, virtual, or communications), rounded up to the nearest
multiple of 8 KB.

The database server receives an error from the operating system if the requested
segment size exceeds the maximum size allowed. If the database server receives an
error, it divides the requested size by two and tries again. Attempts at acquisition
continue until the largest segment size that is a multiple of 8 KB can be created.
Then the database server creates as many additional segments as it requires.

Using more than two gigabytes of memory (Windows)
The database server can access shared-memory segments larger than two gigabytes
on Windows.

For Windows version 2003 and earlier, you must enable this feature with an entry
in the Windows boot file. Enabling larger shared-memory segments is referred to
by Microsoft as 4-gigabyte tuning (4GT).

To add the entry, edit the boot.ini file (in the top level, or root directory). You can
either add a boot option or use the currently existing boot option. To enable
support for more than two gigabytes, add the following text to the end of the boot
line:
/3GB

The following example has support for more than two gigabytes enabled:
[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS
[operating systems]
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows NT
Workstation Version 4.00"
/3GB

The maximum size of the shared-memory segment depends on the operating
system, but it is approximately 3 gigabytes for Windows without additional
drivers.

Maximum number of shared-memory identifiers (UNIX)
Shared-memory identifiers affect the database server operation when a virtual
processor attempts to attach to shared memory. The operating system identifies
each shared-memory segment with a shared-memory identifier. For most operating
systems, virtual processors receive identifiers on a first-come, first-served basis, up
to the limit that is defined for the operating system as a whole. For more
information about shared-memory identifiers, see “How virtual processors attach
to shared memory” on page 6-5.

You might be able to calculate the maximum amount of shared memory that the
operating system can allocate by multiplying the number of shared-memory
identifiers by the maximum shared-memory segment size.

7-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_088.htm#ids_prf_088
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_088.htm#ids_prf_088

Semaphores (UNIX)
The database server operation requires one UNIX semaphore for each virtual
processor, one for each user who connects to the database server through shared
memory (ipcshm protocol), six for database server utilities, and sixteen for other
purposes.

Set database server shared-memory configuration parameters
You can modify the configuration parameters that affect the resident, buffer pool,
or virtual portion of shared memory.

Set parameter for buffer pool shared memory

The BUFFERPOOL configuration parameter in the onconfig file specifies
information about a buffer pool. Each page size that is used by the database server
requires a buffer pool, which is represented in the onconfig file by a
BUFFERPOOL configuration parameter entry.

Set parameters for resident shared memory

The following list contains parameters in the onconfig file that specify the
configuration of the buffer pool and the internal tables in the resident portion of
shared memory. Before any changes that you make to the configuration parameters
take effect, you must shut down and restart the database server.

LOCKS
Specifies the initial number of locks for database objects; for example, rows,
key values, pages, and tables.

LOGBUFF
Specifies the size of the logical-log buffers.

PHYSBUFF
Specifies the size of the physical-log buffers.

RESIDENT
Specifies residency for the resident portion of the database server shared
memory.

SERVERNUM
Specifies a unique identification number for the database server on the local
host computer.

SHMTOTAL
Specifies the total amount of memory to be used by the database server.

Set parameters for virtual shared memory

The following list contains the configuration parameters that you use to configure
the virtual portion of shared memory:

DS_HASHSIZE
Number of hash buckets for lists in the data-distribution cache.

DS_POOLSIZE
Maximum number of entries in the data-distribution cache.

PC_HASHSIZE
Specifies the number of hash buckets for the UDR cache and other caches that
the database server uses.

Chapter 7. Manage shared memory 7-3

PC_POOLSIZE
Specifies the number of UDRs (SPL routines and external routines) that can be
stored in the UDR cache. In addition, this parameter specifies the size of other
database server caches, such as the typename cache and the opclass cache.

SHMADD
Specifies the size of dynamically added shared-memory segments.

SHMNOACCES
Specifies a list of virtual memory address ranges that are not used to attach
shared memory. Use this parameter to avoid conflicts with other processes.

EXTSHMADD
Specifies the size of a virtual-extension segment added when a user-defined
routine or a DataBlade routine runs in a user-defined virtual processor.

SHMTOTAL
Specifies the total amount of memory to be used by the database server.

SHMVIRTSIZE
Specifies the initial size of the virtual portion of shared memory.

STACKSIZE
Specifies the stack size for the database server user threads.

Set parameters for shared-memory performance

The following configuration parameters affect shared-memory performance.

AUTO_READAHEAD
Specifies the automatic read-ahead mode or disables automatic read-ahead
operations for a query. Automatic read-ahead operations help improve query
performance by issuing asynchronous page requests when the database server
detects that the query is encountering I/O. Asynchronous page requests can
improve query performance by overlapping query processing with the
processing necessary to retrieve data from disk and put it in the buffer pool.

CKPTINTVL
Specifies the maximum number of seconds that can elapse before the database
server checks if a checkpoint is required and the RTO_SERVER_RESTART
configuration parameter is not set to turn on automatic checkpoint tuning.

CLEANERS
Specifies the number of page-cleaner threads that the database server is to run.

Related concepts:

Shared memory (Performance Guide)
Related tasks:

Modifying the onconfig file (Administrator's Reference)
Related reference:

Configuration parameters that affect memory utilization (Performance Guide)

Database configuration parameters (Administrator's Reference)

7-4 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_130.htm#ids_prf_130
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0010.htm#ids_adr_0010
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_136.htm#ids_prf_136
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0007.htm#ids_adr_0007

Set SQL statement cache parameters
The following table shows the different ways that you can configure the SQL
statement cache.

Table 7-1. Configure the SQL statement cache

Configuration parameter Purpose The onmode command

STMT_CACHE Turns on, enables, or disables the SQL statement
cache in memory. If turned on, specifies whether
the SQL statement cache can hold a parsed and
optimized SQL statement.

onmode -e mode

STMT_CACHE_HITS Specifies the number of hits (references) to a
statement before it is fully inserted into the SQL
statement cache.

onmode -W
STMT_CACHE_HITS

STMT_CACHE_NOLIMIT Controls whether to insert statements into the
SQL statement cache after its size is greater than
the STMT_CACHE_SIZE value.

onmode -W
STMT_CACHE_NOLIMIT

STMT_CACHE_NUMPOOL Defines the number of memory pools for the
SQL statement cache.

None

STMT_CACHE_SIZE Specifies the size of the SQL statement cache. None

Use the following onstat options to monitor the SQL statement cache:
v onstat -g ssc

v onstat -g ssc all

v onstat -g ssc pool

For more information about these configuration parameters, onstat -g options, and
onmode commands, see the IBM Informix Administrator's Reference.

For more information about using the SQL statement cache, monitoring it with the
onstat -g options, and tuning the configuration parameters, see improving query
performance in the IBM Informix Performance Guide. For details on qualifying and
identical statements, see the IBM Informix Guide to SQL: Syntax.

Set up shared memory
To set up shared memory, take the database server offline and then online. For
information about how to take the database server from online mode to offline, see
“Change from any mode immediately to offline mode” on page 3-13.

Turn residency on or off for resident shared memory
You can turn residency on or off for the resident portion of shared memory in
either of the following two ways:
v Use the onmode utility to reverse the state of shared-memory residency

immediately while the database server is in online mode.
v Change the RESIDENT parameter in the onconfig file to turn shared-memory

residency on or off for the next time that you set up the database server shared
memory.

For a description of the resident portion of shared memory, see “Resident portion
of shared memory” on page 6-8.

Chapter 7. Manage shared memory 7-5

Turn residency on or off in online mode
To turn residency on or off while the database server is in online mode, use the
onmode utility.

To turn on residency immediately for the resident portion of shared memory, run
the following command:% onmode -r

To turn off residency immediately for the resident portion of shared memory, run
the following command: % onmode -n

These commands do not change the value of the RESIDENT parameter in the
onconfig file. That is, this change is not permanent, and residency reverts to the
state specified by the RESIDENT parameter the next time that you set up shared
memory. On UNIX, you must be root or user informix to turn residency on or off.
On Windows, you must be a user in the Informix Admin group to turn residency
on or off.

Turn residency on or off when restarting the database server
You can use a text editor to turn residency on or off. To change the current state of
residency, use a text editor to locate the RESIDENT parameter. Set RESIDENT to 1
to turn residency on or to 0 to turn residency off, and rewrite the file to disk.
Before the changes take effect, you must shut down and restart the database server.

Add a segment to the virtual portion of shared memory
You can use the -a option of the onmode utility to add a segment of specified size
to virtual shared memory.

You are not normally required to add segments to virtual shared memory because
the database server automatically adds segments as necessary.

The option to add a segment with the onmode utility is useful if the number of
operating-system segments is limited, and the initial segment size is so low,
relative to the amount that is required, that the operating-system limit of
shared-memory segments is nearly exceeded.
Related concepts:
“Size of the virtual portion of shared memory” on page 6-13

Reserve memory for critical activities
You can reserve a specific amount of memory for use when critical activities (such
as rollback activities) are required and the database server has limited free
memory. This prevents the database server from crashing if the server runs out of
free memory during critical activities.

If you enable the new LOW_MEMORY_RESERVE configuration parameter by
setting it to a specified value in kilobytes, critical activities, such as rollback
activities, can complete even when a user is getting out of memory errors. If the
value of LOW_MEMORY_RESERVE is 0, the low memory reserve functionality is
turned off.

For example, 512 kilobytes is a reasonable amount of reserved memory. To reserve
512 kilobytes, specify:
LOW_MEMORY_RESERVE 512

7-6 IBM Informix Administrator's Guide

You can also use the onmode -wm or onmode -wf command to dynamically adjust
the value of the LOW_MEMORY_RESERVE configuration parameter.

Use the onstat -g seg command to monitor the LOW_MEMORY_RESERVE value.
Look for the last two lines of output, which contain the phrase "low memory
reserve." The first of these output lines shows the size of memory reserved in
bytes. The second of these lines shows the number times that the database server
has used this memory and the maximum memory required. Both of these values
are reset when the server is restarted.
Related reference:

LOW_MEMORY_RESERVE configuration parameter (Administrator's
Reference)

onstat -g seg command: Print shared memory segment statistics
(Administrator's Reference)

onmode -wf, -wm: Dynamically change certain configuration parameters
(Administrator's Reference)

Configure the server response when memory is critically low
You can configure the actions that primary or standard database server takes when
memory is critically low. You can specify the criteria for terminating sessions based
on idle time, memory usage, and other factors so that the targeted application can
continue to process. Low-memory responses are useful for embedded applications
that have memory limitations.

To set up automatic low-memory management on a primary or standard server:
v Set the LOW_MEMORY_MGR configuration parameter to 1, which enables

low-memory management when the database server starts.
v Set the threshold parameters for the amount of memory to maintain by using an

SQL administration API command with the scheduler lmm enable argument.
v Verify that the SHMTOTAL configuration parameter is set to a positive integer

value.

To disable automatic low-memory management, run an SQL administration API
command with the scheduler lmm disable argument.
Related reference:

LOW_MEMORY_MGR configuration parameter (Administrator's Reference)

scheduler lmm enable argument: Specify automatic low memory management
settings (SQL administration API) (Administrator's Reference)

scheduler lmm disable argument: Stop automatic low memory management
(SQL administration API) (Administrator's Reference)

onstat -g lmm command: Print low memory management information
(Administrator's Reference)

Scenario for maintaining a targeted amount of memory
The scenario in this topic shows how you can maintain a targeted amount of
memory in applications that have memory limitations.

Suppose you want to specify that when the database server has 10 MB or less of
free memory, it starts running the low memory management processes that can

Chapter 7. Manage shared memory 7-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1122.htm#ids_adr_1122
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1122.htm#ids_adr_1122
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0573.htm#ids_adr_0573
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0573.htm#ids_adr_0573
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0439.htm#ids_adr_0439
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0439.htm#ids_adr_0439
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1136.htm#ids_adr_1136
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_137.htm#ids_sapi_137
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_137.htm#ids_sapi_137
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_138.htm#ids_sapi_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_138.htm#ids_sapi_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1135.htm#ids_adr_1135
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1135.htm#ids_adr_1135

stop applications and free memory. Suppose you also want to specify that the
server stops running the low memory management processes when the server has
20 MB or more of free memory:
1. Set the LOW_MEMORY_MGR configuration parameter to 1 and restart the

server, or run an onmode -wf command to change the value of the
LOW_MEMORY_MGR configuration parameter.

2. Run an SQL administration API command with the scheduler lmm enable
argument and low memory parameters, as follows:
EXECUTE FUNCTION task("scheduler lmm enable",
"LMM START THRESHOLD", "10MB",
"LMM STOP THRESHOLD", "20MB",
"LMM IDLE TIME", "300");

3. Run the onstat -g lmm command to display information about automatic low
memory management settings, including the amount of memory that the server
is attempting to maintain, the amount of memory currently used by the server,
the low memory start and stop thresholds, and other memory-related statistics.
You can also view low memory management information in the online.log file.

Related reference:

LOW_MEMORY_MGR configuration parameter (Administrator's Reference)

scheduler lmm enable argument: Specify automatic low memory management
settings (SQL administration API) (Administrator's Reference)

scheduler lmm disable argument: Stop automatic low memory management
(SQL administration API) (Administrator's Reference)

onstat -g lmm command: Print low memory management information
(Administrator's Reference)

Monitor shared memory
These topics describe how to monitor shared-memory segments, the
shared-memory profile, and the use of specific shared-memory resources (buffers,
latches, and locks).

You can use the onstat -o utility to capture a static snapshot of database server
shared memory for later analysis and comparison.

Monitor shared-memory segments
Monitor the shared-memory segments to determine the number and size of the
segments that the database server creates. The database server allocates
shared-memory segments dynamically, so these numbers can change. If the
database server is allocating too many shared-memory segments, you can increase
the SHMVIRTSIZE configuration parameter. For more information, see the topics
about configuration parameters in the IBM Informix Administrator's Reference.

The onstat -g seg command lists information for each shared-memory segment,
including the address and size of the segment, and the amount of memory that is
free or in use. For an example of onstat -g seg output, see information about the
onstat utility in the IBM Informix Administrator's Reference.

Monitor the shared-memory profile and latches
Monitor the database server profile to analyze performance and the use of
shared-memory resources.

7-8 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1136.htm#ids_adr_1136
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_137.htm#ids_sapi_137
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_137.htm#ids_sapi_137
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_138.htm#ids_sapi_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_138.htm#ids_sapi_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1135.htm#ids_adr_1135
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1135.htm#ids_adr_1135

You can obtain statistics on latch use and information about specific latches. These
statistics provide a measure of the system activity.

To reset these statistics to zero, use the onstat -z option. For a description of all the
fields that onstat displays, see information about the onstat utility in the IBM
Informix Administrator's Reference.

Command-line utilities to monitor shared memory and latches
You can use the following command-line utilities to monitor shared memory and
latches:

onstat -s
Use onstat -s command to obtain latch information.

onstat -p
Run onstat -p to display statistics on database server activity and waiting
latches (in the lchwaits field). For an example of onstat -p output, see
information about the onstat utility in the IBM Informix Administrator's
Reference.

SMI tables
Query the sysprofile table to obtain shared-memory statistics. This table contains
all of the statistics available in onstat -p output except the ovbuff, usercpu, and
syscpu statistics.

Monitor buffers
You can obtain both statistics on buffer use and information about specific buffers.

The statistical information includes the percentage of data writes that are cached to
buffers and the number of times that threads were required wait to obtain a buffer.
The percentage of writes that are cached is an important measure of performance.
The number of waits for buffers gives a measure of system concurrency.

Information about specific buffers includes a listing of all the buffers in shared
memory that are held by a thread. You can use this information to track the status
of a particular buffer. For example, you can determine whether another thread is
waiting for the buffer.

You can obtain statistics that relate to buffer availability and information about the
buffers in each LRU queue. The statistical information includes the number of
times that the database server attempted to exceed the maximum number of
buffers and the number of writes to disk (categorized by the event that caused the
buffers to flush). These statistics help you determine if the number of buffers is
appropriate. Information about the buffers in each LRU queue consists of the
length of the queue and the percentage of the buffers in the queue that were
modified.

You can obtain information about buffer pool activity from the onstat utility, the
sysprofile SMI table, or the IBM OpenAdmin Tool (OAT) for Informix.

onstat commands to monitor buffers

You can use the following onstat commands to monitor buffers:

onstat -g buf
Run the onstat -g buf command to obtain statistics about how active and
efficient each buffer is. The following types of statistics are shown:

Chapter 7. Manage shared memory 7-9

v Page reads and writes
v Caching percentages
v Waits for buffers
v Flushes
v Extensions of the buffer pool
v Buffer pool segments
v Fast cache

onstat -B
Run the onstat -B command to obtain information about all of the buffers
that are not on the free-list, including:
v The shared memory address of the buffer
v The address of the thread that currently holds the buffer
v The address of the first thread that is waiting for each buffer
v Information about buffer pools

onstat -b
Run the onstat -b command to obtain the following information about
each buffer:
v Address of each buffer that is currently held by a thread
v Page numbers for the page that is held in the buffer
v Type of page that is held in the buffer (for example, data page, tblspace

page, and so on)
v Type of lock that is placed on the buffer (exclusive or shared)
v Address of the thread that is holding the buffer
v Address of the first thread that is waiting for each buffer
v Information about buffer pools

You can compare the addresses of the user threads to the addresses that
are shown in the onstat -u output to obtain the session ID number.

onstat -X
Run the onstat -X command to obtain the same information as for onstat
-b, along with the complete list of all threads that are waiting for buffers,
not just the first waiting thread.

onstat -R
Run the onstat -R command to show information about buffer pools, the
number of buffers in each LRU queue, and the number and percentage of
the buffers that are modified or free.

onstat -F
Run the onstat-F command to obtain a count by write type of the writes
that are performed and the following information about the page cleaners:
v Page-cleaner number
v Page-cleaner shared-memory address
v Current state of the page cleaner
v LRU queue to which the page cleaner was assigned

The sysprofile SMI table

Query the sysprofile table to obtain statistics on cached reads and writes, write
types, and total buffer waits. The following rows are relevant.

7-10 IBM Informix Administrator's Guide

bufreads
Number of reads from buffers

bufwrites
Number of writes to buffers

buffwts
Number of times that any thread was required to wait for a buffer

chunkwrites
Number of chunk writes

dskreads
Number of reads from disk

dskwrites
Number of writes to disk

fgwrites
Number of foreground writes

lruwrites
Number of LRU writes

Related concepts:
“Types of writes during flushing” on page 6-27
Related reference:

onstat -g buf command: Print buffer pool profile information (Administrator's
Reference)

onstat -b command: Print buffer information for buffers in use (Administrator's
Reference)

onstat -B command: Prints information about used buffers (Administrator's
Reference)

onstat -X command: Print thread information (Administrator's Reference)

onstat -R command: Print LRU, FLRU, and MLRU queue information
(Administrator's Reference)

onstat -F command: Print counts (Administrator's Reference)

sysprofile (Administrator's Reference)

Deleting shared memory segments after a server failure
You must close shared memory segments after a database server failure.

Important: This procedure must be performed by a DBA with experience using
IBM Informix. Consult technical support for assistance. This procedure is for UNIX
systems only.

In the event of a failure of an Informix database server instance, follow this
procedure to delete shared memory segments:
1. Log on as user informix.
2. Use the onmode -k command to take the database server to offline mode and

remove shared memory.
3. If the onmode -k command fails and the server is not offline, either run the

onclean -k command, or perform the following steps:
a. Use the onstat -g glo command to display multithreading information.

Chapter 7. Manage shared memory 7-11

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0515.htm#ids_adr_0515
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0515.htm#ids_adr_0515
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0500.htm#ids_adr_0500
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0500.htm#ids_adr_0500
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0501.htm#ids_adr_0501
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0501.htm#ids_adr_0501
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0612.htm#ids_adr_0612
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0605.htm#ids_adr_0605
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0605.htm#ids_adr_0605
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0509.htm#ids_adr_0509
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0241.htm#ids_adr_0241

b. In the output from the previous command, find the process ID (pid)
associated with the first instance of cpu in the class column. For example, in
the following output from the onstat -g glo command, there are four
occurrences of cpu in the class column, having pids of 2599, 2603, 2604, and
2605:
MT global info:
sessions threads vps lngspins
0 49 14 1

sched calls thread switches yield 0 yield n yield forever
total: 900100 898846 1238 27763 423778
per sec: 327 325 2 12 151
Virtual processor summary:
class vps usercpu syscpu total
cpu 4 0.92 0.10 1.02
aio 4 0.02 0.02 0.04
lio 1 0.00 0.00 0.00
pio 1 0.00 0.00 0.00
adm 1 0.00 0.01 0.01
msc 1 0.00 0.00 0.00
fifo 2 0.00 0.00 0.00
total 14 0.94 0.13 1.07
Individual virtual processors:
vp pid class usercpu syscpu total
1 2599 cpu 0.25 0.06 0.31
2 2602 adm 0.00 0.01 0.01
3 2603 cpu 0.23 0.00 0.23
4 2604 cpu 0.21 0.03 0.24
5 2605 cpu 0.23 0.01 0.24
6 2606 lio 0.00 0.00 0.00
7 2607 pio 0.00 0.00 0.00
8 2608 aio 0.02 0.02 0.04
9 2609 msc 0.00 0.00 0.00
10 2610 fifo 0.00 0.00 0.00
11 2611 fifo 0.00 0.00 0.00
12 2612 aio 0.00 0.00 0.00
13 2613 aio 0.00 0.00 0.00
14 2614 aio 0.00 0.00 0.00

tot 0.94 0.13 1.07

c. Use the kill command to terminate (in order) process IDs 2599, 2603, 2604,
and 2605.

4. If the shared segments have not been removed then follow these steps:
a. Determine the server number. The server number can be found by

examining the onconfig file of the Informix instance
b. Add the server number to 21078. For example, if the server number is 1,

then add 1 to 21078, giving 21079.
c. Convert the sum from the previous step to hexadecimal. In the previous

example, 21079 is 5257 hexadecimal.
d. Concatenate 48 to the hex value from the previous step. For example,

525748.
e. Run the ipcs utility as root to display the shared memory segments, if any,

left open by the server. Search the key column for the number from 4d.
f. Remove each shared memory ID associated with the number from 4d.

For more information about the onclean utility, see the IBM Informix Administrator's
Reference.

Consult your operating system documentation for the correct ipcm syntax for your
system.

7-12 IBM Informix Administrator's Guide

Chapter 8. Data storage

The database server uses physical units of storage to allocate disk space. It stores
data in logical units. Unlike the logical units of storage whose size fluctuates, each
of the physical units has a fixed or assigned size that is determined by the disk
architecture.

The following topics define terms and explain concepts that you must understand
to manage disk space. These topics cover the following areas:
v Definitions of the physical and logical units that the database server uses to

store data on disk
v Instructions on how to calculate the amount of disk space that you require to

store your data
v Guidelines on how to lay out your disk space and where to place your

databases and tables
v Instructions on using external tables

The database server uses the following physical units to manage disk space:
“Chunks” on page 8-2

“Pages” on page 8-5

“Blobpages” on page 8-6

“Sbpages” on page 8-7

“Extents” on page 8-8

The database server stores data in the following logical units:
“Dbspaces” on page 8-9

“Temporary dbspaces” on page 8-12

“Blobspaces” on page 8-13

“Sbspaces” on page 8-13

“Temporary sbspaces” on page 8-20

“Plogspace” on page 8-22

“Extspaces” on page 8-22

“Databases” on page 8-23

“Tables” on page 8-24

“Tblspaces” on page 8-31

“Partitions and offsets” on page 8-5

The database server maintains the following storage structures to ensure
physical and logical consistency of data:

Logical log

Physical log

Reserved pages
Related concepts:

Limits in Informix (Administrator's Reference)
“Storage space creation and management” on page 1-4

© Copyright IBM Corp. 1996, 2014 8-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0718.htm#ids_adr_0718

Chapter 9, “Manage disk space,” on page 9-1

Reserved Pages (Administrator's Reference)

Chunks
A chunk is the largest unit of physical disk dedicated to database server data
storage.

Chunks provide administrators with a significantly large unit for allocating disk
space. The maximum size of an individual chunk is 4 TB. The number of allowable
chunks is 32,766. If you have upgraded from a version before version 10.00, you
must run the onmode -BC 2 command to enable the maximum size of a chunk
and the maximum number allowable, otherwise, the maximum chunk size is 2 GB.

The following storage spaces are comprised of chunks:
v Dbspaces
v Blobspaces
v Sbspaces
v Temporary dbspaces
v Temporary sbspaces

When you create a chunk, you specify its path, size, and the associated storage
space name.

The database server also uses chunks for mirroring. When you mirror a chunk, the
database server maintains two copies of the data on the chunk. Every write
operation to a primary chunk is automatically followed by an identical write
operation to the mirror chunk. Read operations are evenly divided between the
two chunks. If either the primary chunk or the mirror chunk fails, the chunk that
failed is marked as down, and the other chunk performs all operations without
interrupting the user access to data.

When you create tables, indexes, and other database objects, chunk space is
allocated, or assigned, to those objects. Space that is allocated is not necessarily
used. For example, when you create a table, you allocate space for it, but that
space is not used until you add data to the table. When all the chunks in a dbspace
report 0 free pages, you cannot create new database objects in that dbspace.
However, you can continue to add data to existing database objects as long as they
have unused space. You can monitor chunks by using the onstat -d command or
the OpenAdmin Tool (OAT) for Informix.
Related concepts:
“Sbspaces” on page 8-13
“Blobspaces” on page 8-13
“Dbspaces” on page 8-9
Chapter 17, “Mirroring,” on page 17-1
Related reference:
“Specify names for storage spaces and chunks” on page 9-5

onstat -d command: Print chunk information (Administrator's Reference)

onmode -BC: Allow large chunk mode (Administrator's Reference)

8-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0282.htm#ids_adr_0282
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0504.htm#ids_adr_0504
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0410.htm#ids_adr_0410

Disk allocation for chunks
The database server can use regular operating-system files or raw disk devices to
store data. On UNIX, you must use raw disk devices to store data whenever
performance is important. On Windows, using NTFS files to store data is
recommended for ease of administration.

An IBM Informix storage space can be on an NFS-mounted file system using
regular operating-system files.

Disk access on Windows
On Windows, both raw disks and NTFS use kernel asynchronous I/O (KAIO). The
Windows file system manager adds additional overhead to disk I/O, so using raw
disks provides slight performance advantages. Because NTFS files are a more
standard method of storing data, you must use NTFS files instead of raw disks.
Consider using raw disks if your database server requires a large amount of disk
access.

Raw disk space on Windows

On Windows, raw disk space can be either a physical drive without a drive letter or
a logical disk partition that has been assigned a drive letter using the Disk
Administrator. The space can either be formatted or unformatted. If it contains
data, the data is overwritten after the space has been allocated to the database
server. For more information, see “Allocating raw disk space on Windows” on
page 9-5.

NTFS files

You must use NTFS files, not FAT files, for disk space on Windows. For more
information, see “Allocating NTFS file space on Windows” on page 9-4.

Unbuffered or buffered disk access on UNIX
You can allocate disk space in two ways. You can either use files that are buffered
through the operating system, or you can use unbuffered disk access.

Files that are buffered through the operating system are often called cooked files.

Unbuffered disk access is also called raw disk space.

When dbspaces are located on raw disk devices (also called character-special devices),
the database server uses unbuffered disk access.

To create a raw device, configure a block device (hard disk) with a raw interface.
The storage space that the device provides is called raw disk space. A chunk of raw
disk space is physically contiguous.

The name of the chunk is the name of the character-special file in the /dev
directory. In many operating systems, you can distinguish the character-special file
from the block-special file by the first letter in the file name (typically r). For
example, /dev/rsd0f is the character-special device that corresponds to the
/dev/sd0f block-special device.

For more information, see “Allocating raw disk space on UNIX” on page 9-3.

Chapter 8. Data storage 8-3

A cooked file is a regular file that the operating system manages. Cooked file chunks
and raw disk chunks are equally reliable. Unlike raw disk space, the logically
contiguous blocks of a cooked file might not be physically contiguous.

You can more easily allocate cooked files than raw disk space. To allocate a cooked
file, you must create the file on any existing partition. The name of the chunk is
the complete path name of the file. These steps are described in “Allocating cooked
file spaces on UNIX” on page 9-3.

In a learning environment, where performance is not critical, or for static data,
cooked files can be convenient. If you must use cooked UNIX files, store the least
frequently accessed data in those files. Store the files in a file system with minimal
activity.

For cooked file chunks, the operating system processes all chunk I/O from its own
buffer pool and ensures that all writes to chunks are physically written to the disk.

Important: While you must generally use raw disk devices on UNIX to achieve
better performance, if you enable the DIRECT_IO configuration parameter, the
performance for cooked files can approach the performance of raw devices used
for dbspace chunks. This occurs because direct I/O bypasses the use of the file
system buffers. If you have an AIX® operating system, you can also enable
concurrent I/O for IBM Informix to use with direct IO when reading and writing
to chunks that use cooked files. For more information about using direct IO or
concurrent IO, see the IBM Informix Performance Guide.

To determine the best device for performance, perform benchmark testing on the
system with both types of devices for the dbspace and table layout.

When using raw disks, you are not required to take any special action to create
chunks and files that are larger than two gigabytes. If you want to create large
chunks in cooked files, or if you want to use the various database export and
import utilities with large files, you must ensure that the files systems that hold
the large files are appropriately configured.

Extendable chunks
Extendable chunks are chunks that Informix can automatically extend or you can
manually extend when additional storage space is required for an application. If
you have extendable chunks, you are not required to add new chunks or spend
time trying to determine which storage space will run out of space and when it
will run out of space.

Configuring Informix to automatically add more storage space prevents the error
that can occur if a partition requires additional storage space and cannot find that
space in one of the chunks in the space in which the partition is located.

An extendable chunk must be in a nonmirrored dbspace or temporary dbspace.

You use an SQL administration API command with the modify space sp_sizes
argument to modify the extend size and the create size for the space in which your
extendable chunk is located.
Related concepts:
“Automatic space management” on page 9-23
“The storage pool” on page 8-36

8-4 IBM Informix Administrator's Guide

Related tasks:
“Marking a chunk as extendable or not extendable” on page 9-25
“Manually expanding a space or extending an extendable chunk” on page 9-28

Partitions and offsets
The system administrator might divide a physical disk into partitions, which are
different parts of a disk that have separate path names. Although you must use an
entire disk partition when you allocate a chunk on a raw disk device, you can
subdivide partitions or cooked files into smaller chunks using offsets.

Tip: With a 4-terabyte limit to the size of a chunk, you can avoid partitioning a
disk by assigning a single chunk per disk drive.

You can use an offset to indicate the location of a chunk on the disk partition, file,
or device. For example, suppose that you create a 1000 KB chunk that you want to
divide into two chunks of 500 KB each. You can use an offset of 0 KB to mark the
beginning of the first chunk and an offset of 500 KB to mark the beginning of the
second chunk.

You can specify an offset whenever you create, add, or drop a chunk from a
dbspace, blobspace, or sbspace.

You might also be required to specify an offset to prevent the database server from
overwriting partition information.
Related concepts:
“Disk-layout guidelines” on page 8-37
Related tasks:
“Allocating raw disk space on UNIX” on page 9-3

Pages
A page is the physical unit of disk storage that the database server uses to read
from and write to IBM Informix databases.

The following figure illustrates the concept of a page, represented by a darkened
sector of a disk platter.

On most UNIX platforms, the page size is 2 KB. On Windows, the page size is 4
KB. Because your hardware determines the size of your page, you cannot alter this
value.

A chunk contains a certain number of pages, as the following figure illustrates. A
page is always entirely contained within a chunk; that is, a page cannot cross

Figure 8-1. A page on disk

Chapter 8. Data storage 8-5

chunk boundaries.

For information about how the database server structures data within a page, see
the chapter on disk structures and storage in the IBM Informix Administrator's
Reference

Blobpages
A blobpage is the unit of disk-space allocation that the database server uses to store
simple large objects (TEXT or BYTE data) within a blobspace.

You specify blobpage size as a multiple of the database server page size. Because
the database server allocates blobpages as contiguous spaces, it is more efficient to
store simple large objects in blobpages that are as close to the size of the data as
possible. The following figure illustrates the concept of a blobpage, represented as
a multiple (three) of a data page.

For information about how IBM Informix structures data stored in a blobpage, see
structure of a blobspace blobpage in the disk structures and storage topics of the
IBM Informix Administrator's Reference.

Just as with pages in a chunk, a certain number of blobpages compose a chunk in
a blobspace, as the following figure illustrates. A blobpage is always entirely
contained in a chunk and cannot cross chunk boundaries.

Chunk

Page

Figure 8-2. A chunk, logically separated into a series of pages

Figure 8-3. A blobpage on disk

8-6 IBM Informix Administrator's Guide

Instead of storing simple-large-object data in a blobspace, you can choose to store
it in a dbspace. However, for a simple large object larger than two pages,
performance improves when you store it in a blobspace. Simple large objects stored
in a dbspace can share a page, but simple large objects stored in a blobspace do
not share pages.

For information about how to determine the size of a blobpage, see “Determine
blobpage size” on page 9-18. For a description of blobspaces, see “Blobspaces” on
page 8-13.

Sbpages
An sbpage is the type of page that the database server uses to store smart large
objects within an sbspace. Unlike blobpages, sbpages are not configurable. An
sbpage is the same size as the database server page, which is usually 2 KB on
UNIX and 4 KB on Windows.

The unit of allocation in an sbspace is an extent, whereas the unit of allocation in a
blobspace is a blobpage. Just as with pages in a chunk, a certain number of smart
large object extents compose a chunk in an sbspace, as the following figure
illustrates. An extent is always entirely contained in a chunk and cannot cross
chunk boundaries.

Smart large objects cannot be stored in a dbspace or blobspace. For more
information, see “Sbspaces” on page 8-13, and sbspace structure in the disk
structures and storage chapter of the IBM Informix Administrator's Reference.

Chunk

Blobpage (defined when
blobspace was created)

Figure 8-4. A chunk in a blobspace, logically separated into a series of blobpages

Chunk

Smart-large-object extent
(size calculated by
database server)

Figure 8-5. A chunk in an sbspace, logically separated into a series of extents

Chapter 8. Data storage 8-7

The database server calculates the extent size for a smart large object from a set of
heuristics, such as the number of bytes in a write operation. For more information,
see “Extent sizes for sbspaces” on page 8-16.

Extents
An extent consists of a collection of contiguous pages that store data for a given
table.

When you create a table, the database server allocates a fixed amount of space to
contain the data to be stored in that table. (See “Tables” on page 8-24.) When this
space fills, the database server must allocate space for additional storage. The
physical unit of storage that the database server uses to allocate both the initial
and subsequent storage space is called an extent.

The following figure illustrates the concept of an extent.

Every permanent database table has two extent sizes associated with it. The
initial-extent size is the number of KB allocated to the table when it is first created.
The next-extent size is the number of KB allocated to the table when the initial
extent (and any subsequent extents) becomes full. For permanent tables and
user-defined temporary tables, the next-extent size begins to double after each
extent. For system-created temporary tables, the next-extent size begins to double
after 4 extents have been added.

When you create a table, you can specify the size of the initial extent, and the size
of the extents to be added as the table grows. You can also modify the size of an
extent in a table in a dbspace, and you can modify the size of new subsequent
extents. To specify the initial-extent size and next-extent size, use the CREATE
TABLE and ALTER TABLE statements. For more information, see the IBM Informix
Guide to SQL: Syntax and disk structures in the IBM Informix Administrator's
Reference.

When you create a table with a column for CLOB or BLOB data types, you also
define extents for an sbspace. For more information, see “Storage characteristics of
sbspaces” on page 8-16.

The following figure shows how the database server allocates six pages for an
extent:

Chunk

Page

Extent

Figure 8-6. An extent that consists of six contiguous pages on a raw disk device

8-8 IBM Informix Administrator's Guide

v An extent is always entirely contained in a chunk; an extent cannot cross chunk
boundaries.

v If the database server cannot find the contiguous disk space that is specified for
the next-extent size, it searches the next chunk in the dbspace for contiguous
space.

Related concepts:
“Tables” on page 8-24
Related reference:

Extent size doubling (Administrator's Reference)

Dbspaces
A dbspace is a logical unit that can contain between 1 and 32,766 chunks. The
database server uses the dbspace to store databases and tables. Place databases,
tables, logical-log files, and the physical log in dbspaces.

When you create a standard or temporary dbspace, you can specify the page size
for the dbspace. You cannot specify a page size for blobspaces, sbspaces, or
external spaces. If you do not specify a page size, the size of the root dbspace is
the default page size.

When you create a standard dbspace, you can specify the first and next extent
sizes for the tblspace in the dbspace. Specifying the extent sizes reduces the
number of tblspace extents and reduces the frequency of situations when you must
place the tblspace extents in non-primary chunks.

You can mirror every chunk in a mirrored dbspace. As soon as the database server
allocates a mirror chunk, it flags all space in that mirror chunk as full.
Related concepts:

Figure 8-7. Process of extent allocation

Chapter 8. Data storage 8-9

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0299.htm#ids_adr_0299

“Chunks” on page 8-2

Control of where simple large object data is stored
A key responsibility of the database server administrator is to control where the
database server stores data.

By storing high-use access tables or critical dbspaces (root dbspace, physical log, and
logical log) on your fastest disk drive, you can improve performance. By storing
critical data on separate physical devices, you ensure that when one of the disks
that holds noncritical data fails, the failure affects only the availability of data on
that disk.

As the following figure shows, to control the placement of databases or tables, you
can use the IN dbspace option of the CREATE DATABASE or CREATE TABLE
statements.

Before you create a database or table in a dbspace, you must first create the
dbspace.

A dbspace includes one or more chunks, as the following figure shows. You can
add more chunks at any time. A database server administrator must to monitor
dbspace chunks for fullness and to anticipate the necessity to allocate more chunks
to a dbspace. When a dbspace contains more than one chunk, you cannot specify
the chunk in which the data is located.

% onspaces -c -d stores_space -p /dev/rsd0f -o 0 -s 10000

CREATE TABLE stores_demo IN stores_space

/dev/rsd0f

Dbspace on UNIX

Figure 8-8. Control table placement with the CREATE TABLE... IN statement

8-10 IBM Informix Administrator's Guide

Related concepts:
“Tables” on page 8-24
“Manage dbspaces” on page 9-7
Related reference:
“Monitor disk usage” on page 9-40

Root dbspace
The root dbspace is the initial dbspace that the database server creates.

The root dbspace is special because it contains reserved pages and internal tables
that describe and track all physical and logical units of storage. (For more
information about these topics, see “Tables” on page 8-24 and the disk structures
and storage chapter in the IBM Informix Administrator's Reference.) The initial chunk
of the root dbspace and its mirror are the only chunks created during disk-space
setup. You can add other chunks to the root dbspace after disk-space setup.

The following disk-configuration parameters in the onconfig configuration file
refer to the first (initial) chunk of the root dbspace:
v ROOTPATH
v ROOTOFFSET
v ROOTNAME
v MIRRORPATH
v MIRROROFFSET
v TBLTBLFIRST
v TBLTBLNEXT

The root dbspace is also the default dbspace location for any database created with
the CREATE DATABASE statement.

Logical units of storage Physical units of storage

ChunksDatabase

Chunk 4

Chunk 3

Chunk 2

Chunk 1

System catalog

Table 2

Table 1

Dbspace 2

Dbspace 1

Dbspace 3

Figure 8-9. Dbspaces that link logical and physical units of storage

Chapter 8. Data storage 8-11

The root dbspace is the default location for all temporary tables created by the
database server to perform requested data management.

See “Size of the root dbspace” on page 8-35 for information about how much space
to allocate for the root dbspace. You can also add extra chunks to the root dbspace
after you set up database server disk space.

Temporary dbspaces
A temporary dbspace is a dbspace reserved exclusively for the storage of temporary
tables. You cannot mirror a temporary dbspace.

The database server never drops a temporary dbspace unless it is explicitly
directed to do so. A temporary dbspace is temporary only in the sense that the
database server does not preserve any of the dbspace contents when the database
server shuts down abnormally.

Whenever you set up the database server, all temporary dbspaces are set up. The
database server clears any tables that might remain since the last time that the
database server shut down.

The database server does not perform logical or physical logging for temporary
dbspaces. Because temporary dbspaces are not physically logged, fewer
checkpoints and I/O operations occur, which improves performance.

The database server logs table creation, the allocation of extents, and the dropping
of the table for a temporary table in a standard dbspace. In contrast, the database
server does not log tables stored in temporary dbspaces. Logical-log suppression in
temporary dbspaces reduces the number of log records to roll forward during
logical recovery as well, thus improving the performance during critical downtime.

Using temporary dbspaces to store temporary tables also reduces the size of your
storage-space backup, because the database server does not back up temporary
dbspaces.

The database server uses temporary disk space to store the before images of data
that are overwritten while backups are occurring and overflow from query
processing that occurs in memory. Make sure that you have correctly set the
DBSPACETEMP environment variable or parameter to specify dbspaces with
enough space for your needs. If there is not enough room in the specified
dbspaces, the backup fails, root dbspace is used, or the backup fails after filling the
root dbspace.

If you have more than one temporary dbspace and execute a SELECT statement
into a temporary table, the results of the query are inserted in round robin order.

For detailed instructions on how to create a temporary dbspace, see “Creating a
temporary dbspace” on page 9-13.

Important: When the database server is running as a secondary database server, it
requires a temporary dbspace to store any internal temporary tables generated by
read-only queries.

8-12 IBM Informix Administrator's Guide

Blobspaces
A blobspace is a logical storage unit composed of one or more chunks that store
only TEXT and BYTE data.

A blobspace stores TEXT and BYTE data in the most efficient way possible. You
can store TEXT and BYTE columns associated with distinct tables (see “Tables” on
page 8-24) in the same blobspace.

The database server writes data stored in a blobspace directly to disk. This data
does not pass through resident shared memory. If it did, the volume of data might
occupy so many of the buffer-pool pages that other data and index pages would be
forced out. For the same reason, the database server does not write TEXT or BYTE
objects that are assigned to a blobspace to either the logical or physical log. The
database server logs blobspace objects by writing them directly from disk to the
logical-log backup tapes when you back up the logical logs. Blobspace objects
never pass through the logical-log files.

When you create a blobspace, you assign to it one or more chunks. You can add
more chunks at any time. One of the tasks of a database server administrator is to
monitor the chunks for fullness and anticipate the necessity to allocate more
chunks to a blobspace. For instructions on how to monitor chunks for fullness, see
“Monitor simple large objects in a blobspace” on page 9-43. For instructions on
how to create a blobspace, add chunks to a blobspace, or drop a chunk from a
blobspace, see Chapter 9, “Manage disk space,” on page 9-1.

For information about the structure of a blobspace, see the topics about disk
structures and storage in the IBM Informix Administrator's Reference.
Related concepts:
“Chunks” on page 8-2

Sbspaces
An sbspace is a logical storage unit composed of one or more chunks that store
smart large objects.

Smart large objects consist of CLOB (character large object) and BLOB (binary large
object) data types. User-defined data types can also use sbspaces. For more
information about data types, see the IBM Informix Guide to SQL: Reference.
Related concepts:
“Chunks” on page 8-2

Advantages of using sbspaces
Sbspaces have the following advantages over blobspaces:
v They have read, write, and seek properties similar to a standard UNIX file.

Programmers can use functions similar to UNIX and Windows functions to read,
write, and seek smart large objects. IBM Informix provides this
smart-large-object interface in the DataBlade API and the Informix ESQL/C
programming interface.

v They are recoverable.
You can log all write operations on data stored in sbspaces. You can commit or
roll back changes if a failure occurs during a transaction.

v They obey transaction isolation modes.

Chapter 8. Data storage 8-13

You can lock smart large objects at different levels of granularity, and the lock
durations obey the rules for transaction isolation levels. For more information
about locking and concurrency, see your IBM Informix Performance Guide.

v Smart large objects within table rows are not required to be retrieved in one
statement.
An application can store or retrieve smart large objects in pieces using either the
DataBlade API or the Informix ESQL/C programming interface. For more
information about the DataBlade API functions, see the IBM Informix DataBlade
API Function Reference. For more information about the Informix ESQL/C
functions, see the IBM Informix ESQL/C Programmer's Manual.

Sbspaces and Enterprise Replication
Before you define a replication server for Enterprise Replication, you must create
an sbspace. Enterprise Replication spools the replicated data to smart large objects.
Specify the sbspace name in the CDR_QDATA_SBSPACE configuration parameter.
Enterprise Replication uses the default log mode with which the sbspace was
created for spooling the row data. The CDR_QDATA_SBSPACE configuration
parameter accepts multiple sbspaces, up to a maximum of 32 sbspaces. Enterprise
Replication can support a combination of logging and non-logging sbspaces for
storing spooled row data. For more information, see the IBM Informix Enterprise
Replication Guide.

You can have Enterprise Replication automatically configure disk space from the
storage pool and set the appropriate configuration parameters when defining a
replication server. If the CDR_QDATA_SBSPACE or the CDR_DBSPACE
configuration parameter is not set or is set to blank, the cdr define server
command automatically creates the necessary disk space and sets the configuration
parameters to appropriate values.

Metadata, user data, and reserved area
As with blobspaces and dbspaces, when you create an sbspace, you assign to it
one or more chunks. However, the first chunk of an sbspace always has three
areas:

Metadata area
Metadata identifies key aspects of the sbspace and each smart large object
stored in the sbspace, and enables the database server to manipulate and
recover smart large objects stored within.

User-data area
User data is the smart large object data stored in the sbspace by user
applications. The chunk has up to two user-data areas.

Reserved area
The database server allocates space from the reserved area to either the
metadata or user-data area when more space is required. The chunk has up
to two reserved areas.

For information about correctly allocating metadata and user data for sbspaces, see
“Size sbspace metadata” on page 9-20 and the IBM Informix Performance Guide.

When you add a chunk to an sbspace, you can specify whether it contains a
metadata area and user-data area or whether to reserve the chunk exclusively for
user data. You can add more chunks at any time. If you are updating smart large
objects, I/O to the user data is much faster on raw disks than cooked chunk files.

8-14 IBM Informix Administrator's Guide

For instructions on how to create an sbspace, add chunks to an sbspace, or drop a
chunk from an sbspace, see Chapter 9, “Manage disk space,” on page 9-1.

Important: Sbspace metadata is always logged, regardless of the logging setting of
the database.

Control of where smart large object data is stored
You specify the data type of a column when you create the table. For smart large
objects, you specify CLOB, BLOB, or user-defined data types. As the following
figure shows, to control the placement of smart large objects, you can use the IN
sbspace option in the PUT clause of the CREATE TABLE statement.

Before you specify an sbspace in a PUT clause, you must first create the sbspace.
For more information about how to create an sbspace with the onspaces -c -S
command, see “Adding a chunk to a dbspace or blobspace” on page 9-14. For
more information about how to specify smart large object characteristics in the
PUT clause, see the CREATE TABLE statement in the IBM Informix Guide to SQL:
Syntax.

If you do not specify the PUT clause, the database server stores the smart large
objects in the default sbspace that you specify in the SBSPACENAME configuration
parameter. For more information about SBSPACENAME, see the configuration
parameter topics of the IBM Informix Administrator's Reference.

An sbspace includes one or more chunks, as the following figure shows. When an
sbspace contains more than one chunk, you cannot specify the chunk in which the
data is located.

You can add more chunks at any time. It is a high-priority task of a database
server administrator to monitor sbspace chunks for fullness and to anticipate the
necessity to allocate more chunks to an sbspace. For more information about
monitoring sbspaces, see your IBM Informix Performance Guide.

% onspaces -c -S s9_sbspc -p./s9_sbspc -o 0 -s 2000

CREATE TABLE catalog
(...advert_descr CLOB, ...)

...PUT advert_descr IN s9_sbspc

s9_sbspc

sbspace on UNIX

Figure 8-10. Control smart-large-object placement

Chapter 8. Data storage 8-15

The database server uses sbspaces to store table columns that contain smart large
objects. The database server uses dbspaces to store the rest of the table columns.

You can mirror an sbspace to speed recovery in event of a media failure. For more
information, see “Mirroring” on page 17-1.

For information about using onspaces to perform the following tasks, see
Chapter 9, “Manage disk space,” on page 9-1.
v Creating an sbspace
v Adding a chunk to an sbspace
v Altering storage characteristics of smart large objects
v Creating a temporary sbspace
v Dropping an sbspace

Storage characteristics of sbspaces
As the database server administrator, you can use the system default values for
these storage characteristics, or you can specify them in the -Df tags when you
create the sbspace with onspaces -c. Later on, you can change these sbspace
characteristics with the onspaces -ch option. The administrator or programmer can
override these default values for storage characteristics and attributes for
individual tables.

Extent sizes for sbspaces
Similar to extents in a table, an extent in an sbspace consists of a collection of
contiguous pages that store smart large object data.

The unit of allocation in an sbspace is an extent. The database server calculates the
extent size for a smart large object from a set of heuristics, such as the number of
bytes in a write operation. For example, if an operation asks to write 30 KB, the
database server tries to allocate an extent the size of 30 KB.

SERIAL

Logical units of storage Physical units of storage

Chunks

Chunk 2

Chunk 1

Chunk 1Dbspace 1

Sbspace 1

Column Data Type
1
2 SMALLINT
3 INTEGER

n CLOB

Table

Figure 8-11. Sbspaces that link logical and physical units of storage

8-16 IBM Informix Administrator's Guide

Important: For most applications, you must use the values that the database server
calculates for the extent size.

If you know the size of the smart large object, you can use one of the following
functions to set the extent size. The database server allocates the entire smart large
object as one extent (if an extent of that size is available in the chunk):
v The DataBlade API mi_lo_specset_estbytes() function

For more information about the DataBlade API functions for smart large objects,
see the IBM Informix DataBlade API Function Reference.

v The Informix ESQL/C ifx_lo_specset_estbytes function
For more information about the Informix ESQL/C functions for smart large
objects, see the IBM Informix ESQL/C Programmer's Manual.

For information about tuning extent sizes, see smart large objects in the chapter on
configuration effects on I/O utilization in your IBM Informix Performance Guide.

Average smart-large-object size
Smart large objects usually vary in length. You can provide an average size of your
smart large objects to calculate space for an sbspace. You specify this average size
with the AVG_LO_SIZE tag of the onspaces -c -Df option.

To specify the size and location of the metadata area, specify the -Ms and -Mo
flags in the onspaces command. If you do not use the -Ms flag, the database server
uses the value of AVG_LO_SIZE to estimate the amount of space to allocate for the
metadata area. For more information, see “Size sbspace metadata” on page 9-20.

Buffering mode
When you create an sbspace, the default buffering mode is on, which means to use
the buffer pool in the resident portion of shared memory.

As the database administrator, you can specify the buffering mode with the
BUFFERING tag of the onspaces -c -Df option. The default is “buffering=ON”,
which means to use the buffer pool. If you turn off buffering, the database server
uses private buffers in the virtual portion of shared memory.

Important: In general, if read and write operations to the smart large objects are
less than 8 KB, do not specify a buffering mode when you create the sbspace. If
you are reading or writing short blocks of data, such as 2 KB or 4 KB, leave the
default of “buffering=ON” to obtain better performance.

For information about when to use private buffers, see the section on light-weight
I/O operations in the topics about configuration effects on I/O utilization in your
IBM Informix Performance Guide.

Last-access time
When you create an sbspace, you can specify whether the database server must
keep the last time that the smart large object was read or updated with the
ACCESSTIME tag of the onspaces -c -Df option. The default is
“ACCESSTIME=OFF”. The database server keeps this last-access time in the
metadata area.

For more information about how programmers use this last-access time, see the
IBM Informix DataBlade API Programmer's Guide and IBM Informix ESQL/C
Programmer's Manual.

Chapter 8. Data storage 8-17

Lock mode
When you create an sbspace, you can specify whether the database server locks the
whole smart large object or a range of bytes within a smart large object with the
LOCK_MODE tag of the onspaces -c -Df option. The default is
“LOCK_MODE=BLOB”, which means to lock the entire smart large object. For
more information, see the locking chapter in your IBM Informix Performance Guide.

Logging
When you create an sbspace, you can specify whether to turn on logging for the
smart large objects. The default is no logging. For more information, see “Log
sbspaces and smart large objects” on page 13-7.

Important: When you use logging databases, turn logging on for the sbspaces. If a
failure occurs that requires log recovery, you can keep the smart large objects
consistent with the rest of the database.

You specify the logging status with the LOGGING tag of the onspaces -c -Df
option. The default is “LOGGING=off”. You can change the logging status with the
onspaces -c -Df option. You can override this logging status with the PUT clause
in the SQL statements CREATE TABLE or ALTER TABLE. For more information
about these SQL statements, see the IBM Informix Guide to SQL: Syntax.

The programmer can override this logging status with functions that the DataBlade
API and Informix ESQL/C provide. For more information about the DataBlade API
functions for smart large objects, see the IBM Informix DataBlade API Function
Reference. For more information about the Informix ESQL/C functions for smart
large objects, see the IBM Informix ESQL/C Programmer's Manual.

When you turn on logging for an sbspace, the smart large objects pass through the
resident portion of shared memory. Although applications can retrieve pieces of a
smart large object, you still must consider the larger size of data that might pass
through the buffer pool and logical-log buffers. For more information, see “Access
smart large objects” on page 6-31.

Levels of inheritance for sbspace characteristics
The four levels of inheritance for sbspace characteristics are system, sbspace,
column, and smart large objects. You can use the system default values for sbspace
attributes, or override them for specific sbspaces, columns in a table, or smart large
objects. The following figure shows the storage-characteristics hierarchy for a smart
large object.

8-18 IBM Informix Administrator's Guide

The figure shows that you can override the system default in the following ways:
v Use the -Df tags of the onspaces -c -S command to override the system default

for a specific sbspace.
You can later change these sbspace attributes for the sbspace with the onspaces
-ch option. For more information about valid ranges for the -Df tags, see the
onspaces topics in the IBM Informix Administrator's Reference.

v You override the system default for a specific column when you specify these
attributes in the PUT clause of the CREATE TABLE or ALTER TABLE
statements.
For more information about these SQL statements, see the IBM Informix Guide to
SQL: Syntax.

v The programmer can override the default values for sbspace attributes for
specific smart large objects with functions that the DataBlade API and Informix
ESQL/C programming interface provide.

More information about sbspaces
The following table lists sources of information about various tasks related to using
and managing sbspaces.

Table 8-1. Finding information for sbspace tasks

Task Reference

Setting memory configuration parameters for smart
large objects

Chapter 7, “Manage shared memory,” on page 7-1

Understanding sbpages “Sbpages” on page 8-7

Specifying I/O characteristics for an sbspace onspaces option in “Storage characteristics of sbspaces” on
page 8-16

Allocating space for an sbspace “Creating an sbspace” on page 9-19

Adding a chunk to an sbspace “Adding a chunk to an sbspace” on page 9-20

Database server storage characteristics
(system defaults)

Sbspace storage characteristics
when the sbspace is created with the onspaces utility or

when you change the sbspace with onspaces -ch)

Column-level storage characteristics
(assigned when the table is created with the CREATE TABLE

statement or when you change the table with the ALTER TABLE

User
(assigned when the smart large object is created with a DataBlade API

mi_lo_create function or ESQL/C ifx_lo_create function)

-specified storage characteristics

System-specified
storage characteristics

Figure 8-12. Storage-characteristics hierarchy

Chapter 8. Data storage 8-19

Table 8-1. Finding information for sbspace tasks (continued)

Task Reference

Defining or altering storage characteristics for a
smart large object

“Alter storage characteristics of smart large objects” on page
9-21

PUT clause of CREATE TABLE or ALTER TABLE statement in
IBM Informix Guide to SQL: Syntax

Monitoring sbspaces “Monitor sbspaces” on page 9-45

Topics about table performance considerations in IBM Informix
Performance Guide

Setting up logging for an sbspace “Log sbspaces and smart large objects” on page 13-7

Backing up an sbspace “Back up sbspaces” on page 14-4

Checking consistency of an sbspace “Validate metadata” on page 19-3

Understanding an sbspace structure Topics about disk structures in the IBM Informix
Administrator's Reference

Using onspaces for sbspaces Topics about utilities in the IBM Informix Administrator's
Reference

Creating a table with CLOB or BLOB data types IBM Informix Guide to SQL: Syntax

Accessing smart large objects in an application IBM Informix DataBlade API Programmer's GuideIBM Informix
ESQL/C Programmer's Manual

Calculating the metadata area size

Improving metadata I/O

Changing storage characteristics

Topics about table performance in IBM Informix Performance
Guide

Understanding smart-large-object locking Topics about locking in IBM Informix Performance Guide

Configuring sbspaces for temporary smart large
objects

Topics about configuration effects on I/O activity in IBM
Informix Performance Guide

Temporary sbspaces
Use a temporary sbspace to store temporary smart large objects without metadata
logging and user-data logging. If you store temporary smart large objects in a
standard sbspace, the metadata is logged. Temporary sbspaces are similar to
temporary dbspaces. To create a temporary sbspace, use the onspaces -c -S
command with the -t option. For more information, see “Creating a temporary
sbspace” on page 9-21.

You can store temporary large objects in a standard sbspace or temporary sbspace.
v If you specify a temporary sbspace in the SBSPACETEMP parameter, you can

store temporary smart large objects there.
v If you specify a standard sbspace in the SBSPACENAME parameter, you can

store temporary and permanent smart large objects there.
v If you specify a temporary sbspace name in the CREATE TEMP TABLE

statement, you can store temporary smart large objects there.
v If you specify a permanent sbspace name in the CREATE TABLE statement, you

can store temporary smart large objects there.
v If you omit the SBSPACETEMP and SBSPACENAME parameters and create a

smart large object, error message -12053 might display.

8-20 IBM Informix Administrator's Guide

v If you specify a temporary sbspace in the SBSPACENAME parameter, you
cannot store a permanent smart large object in that sbspace. You can store
temporary smart large objects in that sbspace.

Comparison of temporary and standard sbspaces
The following table compares standard and temporary sbspaces.

Table 8-2. Temporary and standard sbspaces

Characteristics Standard sbspace Temporary sbspace

Stores smart large objects Yes No

Stores temporary smart large
objects

Yes Yes

Logs metadata Metadata is always logged Metadata is not logged

Logs user data User data is not logged for temporary
smart large objects but is logged for
permanent smart large objects if
LOGGING=ON

User data is not logged

Creation and deletion of space, and
addition of chunks is logged

Fast recovery Yes No (the sbspace is emptied when the
database server restarts) To set up shared
memory without cleaning up temporary
smart large objects, specify oninit -p. If
you keep the temporary large objects, their
state is indeterminate.

Backup and restore Yes No

Add and drop chunks Yes Yes

Configuration parameter SBSPACENAME SBSPACETEMP

Temporary smart large objects
Use temporary smart large objects to store text or image data (CLOB or BLOB) that
do not require restoring from a backup or log replay in fast recovery. Temporary
smart large objects last for the user session and are much faster to update than
smart large objects.

You create a temporary smart large object in the same way as a permanent smart
large object, except you set the LO_CREATE_TEMP flag in the ifx_lo_specset_flags
or mi_lo_specset_flags function. Use mi_lo_copy or ifx_lo_copy to create a
permanent smart large object from a temporary smart large object. For details on
creating temporary smart large objects, see the IBM Informix DataBlade API
Programmer's Guide.

Important: Store pointers to temporary large objects in temporary tables only. If
you store them in standard tables and reboot the database server, it results in an
error that says that the large object does not exist.

The following table compares standard and temporary smart large objects.

Table 8-3. Temporary and standard smart large objects

Characteristics Smart large object Temporary smart large object

Creation flags LO_CREATE_LOG or
LO_CREATE_NOLOG

LO_CREATE_TEMP

Rollback Yes No

Logging Yes, if turned on No

Chapter 8. Data storage 8-21

Table 8-3. Temporary and standard smart large objects (continued)

Characteristics Smart large object Temporary smart large object

Duration Permanent (until user deletes it) Deleted at end of user session or
transaction

Table type stored in Permanent or temporary table Temporary tables

Plogspace
A plogspace is a logical storage unit that is composed of one chunk that stores the
physical log. When the physical log is in the plogspace, the database server
increases the size of the physical log as needed to improve performance.

If you did not create a server during installation, the physical log is created in the
root dbspace. However, you can create the plogspace to move the physical log to a
different dbspace to prevent the physical log from filling the root dbspace. For
optimal performance, create the plogspace on a different disk from the root
dbspace or the location of the logical logs. If you created a server during
installation, the plogspace is created automatically with a default size that depends
on the value of the AUTO_TUNE_SERVER_SIZE configuration parameter.

By default, the chunk that you assign to the plogspace is extendable, therefore, the
initial size of the chunk can be small. The database server automatically expands
the chunk when the physical log requires more space.

The plogspace has the following restrictions:
v A database server instance can have only one plogspace.
v The plogspace can contain only the physical log.
v The plogspace can have only one chunk.
v The chunk must have the same page size as the root dbspace.
Related concepts:
“Manage the plogspace” on page 9-22
Related reference:
“Size and location of the physical log” on page 15-2

AUTO_TUNE_SERVER_SIZE configuration parameter (Administrator's
Reference)

Extspaces
An extspace is a logical name associated with an arbitrary string that signifies the
location of external data. The resource that the extspace references depends on a
user-defined access method for accessing its contents.

For example, a database user might require access to binary files encoded in a
proprietary format. First, a developer creates an access method, which is a set of
routines that access the data. These routines are responsible for all interaction
between the database server and the external file. A DBA then adds an extspace
that has the file as its target to the database. After the DBA creates a table in the
extspace, the users can access the data in the proprietary files through SQL
statements. To locate those files, use the extspace information.

8-22 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1183.htm#ids_adr_1183
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1183.htm#ids_adr_1183

An extspace is not required to be a file name. For example, it can be a network
location. The routines that access the data can use information found in the string
associated with the extspace in any manner.

For more information about user-defined access methods, see the IBM Informix
Virtual-Table Interface Programmer's Guide. For more information about creating
functions and primary access methods, see the IBM Informix Guide to SQL: Syntax.

Databases
A database is a logical storage unit that contains tables and indexes. Each database
also contains a system catalog that tracks information about many of the elements
in the database, including tables, indexes, SPL routines, and integrity constraints.

A database is stored in the dbspace that is specified by the IN clause of the
CREATE DATABASE statement. When you do not explicitly name a dbspace in the
CREATE DATABASE statement, the database is stored in the root dbspace, unless
automatic location is enabled. You can enable automatic location by setting the
AUTOLOCATE configuration parameter or session environment variable to a
positive integer. The database server chooses the dbspaces in which to create new
databases and new tables that are created without specified storage locations.
Tables are automatically fragmented by round robin in the dbspaces that are
chosen by the server.

When you do specify a dbspace in the CREATE DATABASE statement, this
dbspace is the location for the following tables:
v Database system catalog tables
v Any table that belongs to the database

The following figure shows the tables that are contained in the stores_demo
database.

The size limits that apply to databases are related to their location in a dbspace. To
be certain that all tables in a database are created on a specific physical device,
assign only one chunk to the device, and create a dbspace that contains only that

customer
table

orders
table

items
table

stock
table

catalog
table

cust_calls
table

call_type
table

manufact
table

state
table

system catalog zip_ix
index

stores_demo database

systables
table

sysviews
table

Figure 8-13. The stores_demo database

Chapter 8. Data storage 8-23

chunk. Place your database in that dbspace. When you place a database in a chunk
that is assigned to a specific physical device, the database size is limited to the size
of that chunk.
Related concepts:
“Managing automatic location and fragmentation” on page 9-15
Related reference:
“Display databases” on page 9-39

Tables
In relational database systems, a table is a row of column headings together with
zero or more rows of data values. The row of column headings identifies one or
more columns and a data type for each column.

When you create a table, the database server allocates disk space for the table in a
block of pages that is called an extent. You can specify the size of both the first and
any subsequent extents.

You can place the table in a specific dbspace by naming the dbspace when the
table is created (with the IN dbspace clause of the CREATE TABLE statement).
When you do not specify the dbspace, the database server places the table in the
dbspace where the database is located. You can fragment a table over more than
one dbspace or within a dbspace by specifying a fragmentation distribution
scheme. However, if you set the AUTOLOCATE configuration parameter to a
positive integer, the database server automatically fragments new tables by round
robin, in the dbspaces that are optimal for the table.

A table or table fragment is located completely in the dbspace in which it was
created. The database server administrator can use this fact to limit the growth of a
table by placing a table in a dbspace and then refusing to add a chunk to the
dbspace when it becomes full.

A table, which is composed of extents, can span multiple chunks, as the following
figure shows.

Chunk 1 Chunk 2

Two extents, both allocated
to the same table

Extent 1 Extent 2

Figure 8-14. Table that spans more than one chunk

8-24 IBM Informix Administrator's Guide

Simple large objects are in blobpages in either the dbspace with the data pages of
the table or in a separate blobspace.
Related concepts:
“Extents” on page 8-8
“Table fragmentation and data storage” on page 8-33
“Disk-layout guidelines” on page 8-37
“Control of where simple large object data is stored” on page 8-10

Damaged tables
The following items can damage a table:
v An incorrect buffer flush
v A user error
v Mounting a files system or another chunk on top of a chunk
v Deleting or updating when the scope of the change is not as narrow as you

require

Damaged indexes can cause a table to seem damaged, even though it is not.

The oncheck commands cannot fix most damaged tables. If a page is damaged,
oncheck can detect and try to fix the page, but cannot correct the data within the
page.

Table types for Informix
You can create logging or nonlogging tables in a logging database on IBM
Informix. The two table types are STANDARD (logging tables) and RAW
(nonlogging tables). The default standard table is like a table created in earlier
versions without a special keyword specified. You can create either a STANDARD
or RAW table and change tables from one type to another.

In a nonlogging database, both STANDARD tables and RAW tables are
nonlogging. In a nonlogging database, the only difference between STANDARD
and RAW tables is that RAW tables do not support primary-key constraints,
unique constraints, referential constraints, or rollback. However, these tables can be
indexed and updated.

The following table lists the properties of the types of tables available with
Informix. The flag values are the hexadecimal values for each table type in the
flags column of systables.

Table 8-4. Table types for Informix

Characteristic STANDARD RAW TEMP

Permanent Yes Yes No

Logged Yes No Yes

Indexes Yes Yes Yes

Constraints Yes No referential or
unique constraints

NULL and NOT
NULL constraints are
allowed

Yes

Rollback Yes No Yes

Chapter 8. Data storage 8-25

Table 8-4. Table types for Informix (continued)

Characteristic STANDARD RAW TEMP

Recoverable Yes Yes, if not updated No

Restorable Yes Yes, if not updated No

Loadable Yes Yes Yes

Enterprise Replication
servers

Yes No No

Primary servers in a
high-availability
cluster

Yes Yes, cannot alter
logging mode

Yes

Secondary servers in
a high-availability
cluster

Yes Yes, but not accessible
for any operation

Yes

Flag Value None 0x10 None

Standard permanent tables
A STANDARD table is the same as a table in a logged database that the database
server creates. STANDARD tables do not use light appends. All operations are
logged, record by record, so STANDARD tables can be recovered and rolled back.
You can back up and restore STANDARD tables. Logging enables updates since
the last physical backup to be applied when you perform a warm restore or
point-in-time restore. Enterprise Replication is allowed on STANDARD tables.

A STANDARD table is the default type on both logging and nonlogging databases.
STANDARD tables are logged if stored in a logging database but are not logged if
stored in a nonlogging database.

RAW tables
RAW tables are nonlogging permanent tables that are similar to tables in a
nonlogging database. Update, insert, and delete operations on rows in a RAW table
are supported but are not logged. You can define indexes on RAW tables, but you
cannot define unique constraints, primary-key constraints, or referential constraints
on RAW tables. Light appends are not supported for loading RAW tables, except in
High-Performance Loader (HPL) operations and in queries that specify INTO TEMP
... WITH NO LOG.

A RAW table has the same attributes, whether it is stored in a logging database or
in a nonlogging database. If you update a RAW table, you cannot reliably restore
the data unless you perform a level-0 backup after the update. If the table has not
been updated since that backup, you can restore the RAW table from the last
physical backup, but backing up only the logical logs is not sufficient for a RAW
table to be recoverable. Fast recovery can roll back incomplete transactions on
STANDARD tables but not on RAW tables. For information about creating and
altering RAW tables, see the IBM Informix Guide to SQL: Syntax.

RAW tables are intended for the initial loading and validation of data. To load
RAW tables, you can use any loading utility, including dbexport, the LOAD
statement of DB-Access, or the HPL in express mode. If an error or failure occurs
while loading a RAW table, the resulting data is whatever was on the disk at the
time of the failure.

8-26 IBM Informix Administrator's Guide

Restriction: Do not use RAW tables within a transaction. After you have loaded
the data, use the ALTER TABLE statement to change the table to type STANDARD
and perform a level-0 backup before you use the table in a transaction.

Restriction: Do not use Enterprise Replication on RAW or TEMP tables.

There are some restrictions when using RAW tables in a high-availability cluster
environment. Because modifications made to RAW tables are not logged, and
because secondary servers (including HDR, RSS and SDS) use log records to stay
synchronized with the primary server, you are restricted from performing certain
operations on RAW tables:
v On a primary server, RAW tables can be created, dropped, and accessed;

however, altering the table mode from unlogged to logged, or from logged to
unlogged, is not allowed. Altering a table's mode in a high-availability cluster
environment yields error -19845.

v On secondary servers (HDR, SDS, or RSS), RAW tables are not accessible for any
operation. Attempting to access a RAW table from SQL yields error -19846.

Temp tables
Temp tables are temporary, logged tables that are dropped when the user session
closes, the database server shuts down, or on reboot after a failure. Temp tables
support indexes, constraints, and rollback. You cannot recover, back up, or restore
temp tables. Temp tables support bulk operations such as light appends, which
add rows quickly to the end of each table fragment. For more information about
light appends, see your IBM Informix Performance Guide.

For more information, see “Temporary tables” on page 8-28.

Properties of table types
These topics explain loading tables, fast recovery, and backup and restore of table
types.

Loading of data into a table
IBM Informix creates STANDARD tables that use logging by default. Data
warehousing applications can have huge tables that take a long time to load.
Nonlogging tables are faster to load than logging tables. You can use the CREATE
RAW TABLE statement to create a RAW table or use the ALTER TABLE statement
to change a STANDARD table to RAW before loading the table. After you load the
table, run UPDATE STATISTICS on it.

For more information about how to improve the performance of loading very large
tables, see your IBM Informix Performance Guide. For more information about using
ALTER TABLE to change a table from logging to nonlogging, see the IBM Informix
Guide to SQL: Syntax.

Fast recovery of table types
The following table shows fast recovery scenarios for the table types available with
IBM Informix.

Table 8-5. Fast recovery of table types

Table type Fast recovery behavior

Standard Fast recovery is successful. All committed log records are rolled forward, and
all incomplete transactions are rolled back.

Chapter 8. Data storage 8-27

Table 8-5. Fast recovery of table types (continued)

Table type Fast recovery behavior

RAW If a checkpoint completed since the raw table was modified last, all the data is
recoverable.

Inserts, updates, and deletions that occurred after the last checkpoint are lost.

Incomplete transactions in a RAW table are not rolled back.

Backup and restore of RAW tables
The following table explains backup scenarios for the table types available on IBM
Informix.

Table 8-6. Backing up tables on Informix

Table type Backup allowed?

Standard Yes.

Temp No.

RAW Yes. If you update a RAW table, you must back it up so that you can restore
all the data in it. Backing up only the logical logs is not enough.

Important: After you load a RAW table or change a RAW table to type
STANDARD, you must perform a level-0 backup.

The following table shows restore scenarios for these table types.

Table 8-7. Restoring tables on Informix

Table type Restore allowed?

Standard Yes. Warm restore, cold restore, and point-in-time restore work.

Temp No.

RAW When you restore a RAW table, it contains only data that was on disk at the
time of the last backup. Because RAW tables are not logged, any changes that
occurred since the last backup are not restored.

Temporary tables
The database server must provide disk space for temporary tables of the following
two kinds:
v Temporary tables that you create with an SQL statement, such as CREATE

TEMP TABLE. . .
v Temporary tables that the database server creates as it processes a query

Make sure that your database server has configured enough temporary space for
both user-created and database server-created temporary tables. Some uses of the
database server might require as much temporary storage space as permanent
storage space, or more.

By default, the database server stores temporary tables in the root dbspace. If you
decide not to store your temporary tables in the root dbspace, use the DBSPACETEMP
environment variable or the DBSPACETEMP configuration parameter to specify a
list of dbspaces for temporary tables.

8-28 IBM Informix Administrator's Guide

Temporary tables that you create
You can create temporary tables with any of the following SQL statements:
v TEMP TABLE option of the CREATE TABLE statement
v INTO TEMP clause of the SELECT statement, such as SELECT * FROM customer

INTO TEMP cust_temp

Only the session that creates a temporary table can use the table. When the session
exits, the table is dropped automatically.

When you create a temporary table, the database server uses the following criteria:
v If the query used to populate the TEMP table produces no rows, the database

server creates an empty, unfragmented table.
v If the rows that the query produces do not exceed 8 KB, the temporary table is

located in only one dbspace.
v If the rows exceed 8 KB, the database server creates multiple fragments and uses

a round-robin fragmentation scheme to populate them unless you specify a
fragmentation method and location for the table.

If you use the CREATE TEMP and SELECT...INTO TEMP SQL statements and
DBSPACETEMP has been set:
v LOGGING dbspaces in the list are used to create the tables that specify or imply

the WITH LOG clause.
v NON-LOGGING temporary dbspaces in the list are used to create the tables that

specify the WITH NO LOG clause.

When CREATE TEMP and SELECT...INTO TEMP SQL statements are used and
DBSPACETEMP has not been set or does not contain the correct type of dbspace,
IBM Informix uses the dbspace of the database to store the temporary table. See
the IBM Informix Guide to SQL: Syntax for more information.

Where user-created temporary tables are stored:

If your application lets you specify the location of a temporary table, you can
specify either logging spaces or nonlogging spaces that you create exclusively for
temporary tables.

For information about creating temporary dbspaces, see the onspaces topics in the
IBM Informix Administrator's Reference.

If you do not specify the location of a temporary table, the database server stores
the temporary table in one of the spaces that you specify as an argument to the
DBSPACETEMP configuration parameter or environment variable. The database
server remembers the name of the last dbspace that it used for a temporary table.
When the database server receives another request for temporary storage space, it
uses the next available dbspace to spread I/O evenly across the temporary storage
space.

For information about where the database stores temporary tables when you do
not list any spaces as an argument to DBSPACETEMP, see the DBSPACETEMP
section in the IBM Informix Administrator's Reference.

When you use an application to create a temporary table, you can use the
temporary table until the application exits or performs one of the following
actions:

Chapter 8. Data storage 8-29

v Closes the database in which the table was created and opens a database in a
different database server

v Closes the database in which the table was created
v Explicitly drops the temporary table

Temporary tables that the database server creates
The database server sometimes creates temporary tables while running queries
against the database or backing it up.

The database server might create a temporary table in any of the following
circumstances:
v Statements that include a GROUP BY or ORDER BY clause
v Statements that use aggregate functions with the UNIQUE or DISTINCT

keywords
v SELECT statements that use auto-index or hash joins
v Complex CREATE VIEW statements
v DECLARE statements that create a scroll cursor
v Statements that contain correlated subqueries
v Statements that contain subqueries that occur within an IN or ANY clause
v CREATE INDEX statements

When the process that initiated the creation of the table is complete, the database
server deletes the temporary tables that it creates.

If the database server shuts down without removing temporary tables, the
database server removes the temporary tables the next time it is started. To start
the database server without removing temporary tables, run the oninit command
with the -p option.

Applications and analytic tools can define queries in which a derived table
contains multiple views joined with base tables, potentially including hundreds of
columns. The database server attempts to fold views or derived tables into the
main query. Any such views or derived tables that cannot be folded are
materialized into a temporary table. The temporary table excludes all the columns
that are not referenced in the main query. The temporary table is created with only
the columns referenced in the Projection clause and in other clauses of the parent
query, including the WHERE, HAVING, GROUP BY, and ON clauses.

By excluding from the system-generated temporary table any columns that are not
referenced in the main query, this reduced schema can improve query performance
by conserving storage resources, and by avoiding unnecessary I/O of data in the
unused columns.

In a nested query, however, projected columns from views and derived table are
checked only in the parent query, but not in the levels above the immediate parent
query.

Important: In addition to temporary tables, the database server uses temporary
disk space to store the before images of data records that are overwritten while
backups are occurring, and for overflow from query processing that occurs in
memory. Make sure that you have correctly set the DBSPACETEMP environment
variable or the DBSPACETEMP configuration parameter to specify dbspaces with

8-30 IBM Informix Administrator's Guide

enough space for your needs. If there is not enough room in the specified
dbspaces, the backup fails, root dbspace is used, or the backup fails after filling the
root dbspace.

Where database server-created temporary tables are stored: When the database
server creates a temporary table, it stores the temporary table in one of the
dbspaces that you specify in the DBSPACETEMP configuration parameter or the
DBSPACETEMP environment variable. The environment variable supersedes the
configuration parameter.

When you do not specify any temporary dbspaces in DBSPACETEMP, or the
temporary dbspaces that you specify have insufficient space, the database server
creates the table in a standard dbspace according to the following rules:
v If you created the temporary table with CREATE TEMP TABLE, the database

server stores this table in the dbspace that contains the database to which the
table belongs.

v If you created the temporary table with the INTO TEMP option of the SELECT
statement, the database server stores this table in the root dbspace.

For more information, see “Creating a temporary dbspace” on page 9-13.

Tblspaces
Database server administrators sometimes must track disk use by a particular
table. A tblspace contains all the disk space allocated to a given table or table
fragment (if the table is fragmented). A separate tblspace contains the disk space
allocated for the associated index.

A tblspace, for example, does not correspond to any particular part of a chunk or
even to any particular chunk. The indexes and data that make up a tblspace might
be scattered throughout your chunks. The tblspace, however, represents a
convenient accounting entity for space across chunks devoted to a particular table.
(See “Tables” on page 8-24.)

Maximum number of tblspaces in a table
You can specify a maximum of 2**20 (or 1,048,576) tblspaces in a table.

Table and index tblspaces
The table tblspace contains the following types of pages:
v Pages allocated to data
v Pages allocated to indexes
v Pages used to store TEXT or BYTE data in the dbspace (but not pages used to

store TEXT or BYTE data in a blobspace)
v Bitmap pages that track page use within the table extents

The index tblspace contains the following types of pages:
v Pages allocated to indexes
v Bitmap pages that track page use within the index extents

The following table illustrates the tblspaces for three tables that form part of the
stores_demo database. Only one table (or table fragment) exists per tblspace.
Blobpages represent TEXT or BYTE data stored in a dbspace.

Chapter 8. Data storage 8-31

Extent interleaving
The database server allocates the pages that belong to a tblspace as extents.
Although the pages within an extent are contiguous, extents might be scattered
throughout the dbspace where the table is located (even on different chunks).

The following figure depicts this situation with two noncontiguous extents that
belong to the tblspace for table_1 and a third extent that belongs to the tblspace
for table_2. A table_2 extent is located between the first table_1 extent and the
second table_1 extent. When this situation occurs, the extents are interleaved.
Because sequential access searches across table_1 require the disk head to seek
across the table_2 extent, performance is worse than if the table_1 extents were
contiguous. For instructions on how to avoid and eliminate interleaving extents,
see your IBM Informix Performance Guide.

catalog
data tblspace

Blob-
page

Blob-
page

Blob-
page

Blob-
page

Blob-
page

customer
data tblspace

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Bitmap
page

Bitmap
page

Bitmap
page

Bitmap
page

Bitmap
page

Bitmap
page

orders
data tblspace

Index
page

Index
page

Index
page

Index
page

Index
page

Index
page

Index
page

Index
page

Index
page

Index
page

Index
page

Index
page

Index
page

stores_demo Database

catalog
index tblspace

orders
index tblspace

customer
index tblspace

Figure 8-15. Sample tblspaces in the stores_demo database

8-32 IBM Informix Administrator's Guide

Table fragmentation and data storage
The fragmentation feature gives you more control over where the database stores
data. You are not limited to specifying the locations of individual tables and
indexes. You can also specify the location of table and index fragments, which are
different parts of a table or index that are on different storage spaces.

You can fragment a table in the following ways:
v Fragment a table over more than one dbspace. However, you cannot put

fragments into dbspaces that have different page sizes. All fragments must have
the same page size.

v Create multiple partitions of a fragmented table within a single dbspace if the
fragmented table uses an expression-based or round-robin distribution scheme.

You can fragment the following storage spaces:
v Dbspaces
v Sbspaces

Usually you fragment a table when you initially create it. The CREATE TABLE
statement takes one of the following forms:
CREATE TABLE tablename ... FRAGMENT BY ROUND ROBIN IN dbspace1,
dbspace2, dbspace3;

CREATE TABLE tablename ...FRAGMENT BY EXPRESSION
<Expression 1> in dbspace1,
<Expression 2> in dbspace2,
<Expression 3> in dbspace3;

The FRAGMENT BY ROUND ROBIN and FRAGMENT BY EXPRESSION
keywords refer to two different distribution schemes. Both statements associate
fragments with dbspaces.

If you set the AUTOLOCATE configuration parameter or session environment
variable to a positive integer, and you do not specify a location for the table, new
tables are fragmented in round-robin order in dbspaces that are chosen by the
database server.

When you fragment a table, you can also create multiple partitions of the table
within the same dbspace, as shown in this example:

Page

Table_1 Extent Table_2 Extent Table_1 Extent

Figure 8-16. Three extents that belong to two different tblspaces in a single dbspace

Chapter 8. Data storage 8-33

CREATE TABLE tb1(a int)
FRAGMENT BY EXPRESSION

PARTITION part1 (a >=0 AND a < 5) in dbs1,
PARTITION part2 (a >=5 AND a < 10) in dbs1
...

;

The following figure illustrates the role of fragments in specifying the location of
data.

Related concepts:
Chapter 9, “Manage disk space,” on page 9-1

Fragmentation guidelines (Performance Guide)
“Managing automatic location and fragmentation” on page 9-15
“Tables” on page 8-24
Related reference:

Table fragmentation strategies (Database Design Guide)

Amount of disk space needed to store data
To determine how much disk space you require, follow these steps:
1. Calculate the size requirements of the root dbspace.
2. Estimate the total amount of disk space to allocate to all the database server

databases, including space for overhead and growth.

The following topics explain these steps.

Logical units of storage Physical units of storage

Chunks

Chunk 3

Chunk 2

Chunk 1

Dbspace 2

Dbspace 1

Dbspace 3

Database
System catalog

Table 2

Table 1

Fragment 1

Fragment 2

Fragment 3

Figure 8-17. Dbspaces that link logical units (including table fragments) and physical units of
storage

8-34 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_448.htm#ids_prf_448
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_085.htm#ids_ddi_085

Size of the root dbspace
You can calculate the size of the root dbspace, which stores information that
describes your database server.

The following storage structures can be stored in the root dbspace:

Physical and logical logs (200 KB minimum for each type)
Although the root dbspace is the default location for the physical log and
logical log files, move the log files to other dbspaces. You can set the
AUTO_LLOG configuration parameter to specify the dbspace for logical
log files. You can store the physical log in a plogspace.

Recommendation: Set up the system with a small physical log and a few
small logical logs. For example, create three 1000 KB logical log files, or
3000 KB for the total log space. After the initial setup is complete, create a
new dbspace for logical logs in an area that does not compete for I/O with
other dbspaces, and set the AUTO_LLOG configuration parameter to that
dbspace. Create a set of larger logical-log files in the dbspace for logical
logs, and drop the original logs from the root dbspace. Then create a
plogspace for the physical log. Make the plogspace large enough to hold
your final physical log, and isolate it from other dbspaces as much as
possible. This configuration optimizes logging performance and the root
dbspace for the following reasons:
v The unused space that is left in the root dbspace after you move the logs

is minimized.
v The physical and logical logs do not contend for space and I/O on the

same disk as each other or the root dbspace.
v The server automatically increases the total logical log space and the size

of the physical log if increasing logs measurably improves performance.

Temporary tables
Analyze user applications to estimate the amount of disk space that the
database server might require for temporary tables. Try to estimate how
many of these statements are to run concurrently. The space that is
occupied by the rows and columns that are returned provides a good basis
for estimating the amount of space required. The largest temporary table
that the database server creates during a warm restore is equal to the size
of your logical log. You calculate the size of your logical log by adding the
sizes of all logical-log files. You must also analyze user applications to
estimate the amount of disk space that the database server might require
for explicit temporary tables.

Data Although the root dbspace is the default location for databases, do not
store databases and tables in the root dbspace.

System databases (the size varies between versions)
The sysmaster, sysutils, syscdr, and sysuuid databases, and the system
catalogs must be stored in the root dbspace. The sysadmin database is
stored in the root dbspace by default, however, you can move the
sysadmin database to a different dbspace.

Reserved pages (~24 KB)
The reserved pages contain control and tracking information that is used
by the database server. Reserved pages must be stored in the root dbspace.

Tblspace tblspace (100 - 200 KB minimum)
The tblspace tblspace contains information about tblspaces. The tblspace
tblspace must be stored in the root dbspace.

Chapter 8. Data storage 8-35

This estimate is the root dbspace size before you initialize the database server. The
size of the root dbspace depends on whether you plan to store the physical log,
logical logs, and temporary tables in the root dbspace or in another dbspace. The
root dbspace must be large enough for the minimum size configuration during
disk initialization.

Allow extra space in the root dbspace for the system databases to grow, for the
extended reserved pages, and ample free space. The number of extended reserved
pages depends on the number of primary chunks, mirror chunks, logical-log files,
and storage spaces in the database server.

If you need to make the root dbspace larger after the server is initialized, you can
add a chunk to the root dbspace. You can enable automatic space management to
expand the root dbspace as needed.

Important: Mirror the root dbspace and other dbspaces that contain critical data
such as the physical log and logical logs.
Related concepts:
“Automatic space management” on page 9-23
“Manage dbspaces” on page 9-7
“Move logical-log files” on page 14-14
Related tasks:
“Creating a temporary dbspace” on page 9-13
Related reference:

ROOTSIZE configuration parameter (Administrator's Reference)
“Change the physical-log location and size” on page 16-1

reset sysadmin argument: Move the sysadmin database (SQL administration
API) (Administrator's Reference)

Amount of space that databases require
The amount of additional disk space required for the database server data storage
depends on the requirements of users, plus overhead and growth. Every
application that users run has different storage requirements. The following list
suggests some of the steps that you can take to calculate the amount of disk space
to allocate (beyond the root dbspace):
v Decide how many databases and tables you must to store. Calculate the amount

of space required for each one.
v Calculate a growth rate for each table and assign some amount of disk space to

each table to accommodate growth.
v Decide which databases and tables you want to mirror.

For instructions about calculating the size of your tables, see your IBM Informix
Performance Guide.

The storage pool
Every instance of Informix has a storage pool. The storage pool contains
information about the directories, cooked files, and raw devices that the server can
use if necessary to automatically expand an existing dbspace, temporary dbspace,
sbspace, temporary sbspace, or blobspace.

8-36 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0145.htm#ids_adr_0145
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_070.htm#ids_sapi_070
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_070.htm#ids_sapi_070

When the storage space falls below a threshold defined in the SP_THRESHOLD
configuration parameter, Informix can automatically run a task that expands the
space, either by extending an existing chunk in the space or by adding a new
chunk.

You can use SQL administration API commands to:
v Add, delete, or modify an entry that describes one directory, cooked file, or raw

device in the storage pool. The server can use the specified directory, cooked file,
or raw device when necessary to automatically add space to an existing storage
space.

v Control how a storage pool entry is used by modifying two different dbspace
sizes that are associated with expanding a storage space, the extend size and the
create size.

v Mark a chunk as extendable or not extendable.
v Immediately expand the size of a space, when you do not want Informix to

automatically expand the space.
v Immediately extend the size of a chunk by a specified minimum amount.
v Create a storage space or chunk from an entry in the storage pool
v Return empty space from a dropped storage space or chunk to the storage pool

The storagepool table in sysadmin database contains information about all of the
entries in a storage pool for an Informix instance.
Related concepts:
“Extendable chunks” on page 8-4
“Automatic space management” on page 9-23
Related tasks:
“Creating and managing storage pool entries” on page 9-24

Disk-layout guidelines
The following goals are typical for efficient disk layout:
v Limiting disk-head movement
v Reducing disk contention
v Balancing the load
v Maximizing availability

You must make some trade-offs among these goals when you design your disk
layout. For example, separating the system catalog tables, the logical log, and the
physical log can help reduce contention for these resources. However, this action
can also increase the chances that you must perform a system restore. For detailed
disk-layout guidelines, see the IBM Informix Performance Guide.
Related concepts:
“Partitions and offsets” on page 8-5
“Tables” on page 8-24

Dbspace and chunk guidelines
This topic lists some general strategies for disk layout that do not require any
information about the characteristics of a particular database:
v Associate disk partitions with chunks and allocate at least one additional chunk

for the root dbspace.

Chapter 8. Data storage 8-37

A disk that is already partitioned might require the use of offsets. For details, see
“Allocating raw disk space on UNIX” on page 9-3.

Tip: With the 4-terabyte maximum size of a chunk, you can avoid partitioning
by assigning a chunk per disk drive.

v Mirror critical dbspaces: the root dbspace, the dbspaces that contain the physical
log and the logical-log files. Also mirror high-use databases and tables.
You specify mirroring at the dbspace level. Mirroring is either on or off for all
chunks belonging to a dbspace. Locate the primary and the mirrored dbspaces
on different disks. Ideally, different controllers handle the different disks.

v Spread temporary tables and sort files across multiple disks.
To define several dbspaces for temporary tables and sort files, use onspaces -t.
When you place these dbspaces on different disks and list them in the
DBSPACETEMP configuration parameter, you can spread the I/O associated
with temporary tables and sort files across multiple disks. For information about
using the DBSPACETEMP configuration parameter or environment variable, see
the chapter on configuration parameters in the IBM Informix Administrator's
Reference.

v Keep the physical log in the root dbspace but move the logical logs from the
root dbspace. However, if you plan to store the system catalogs in the root
dbspace, move the physical log to another dbspace.
For advice on where to store your logs, see “Location of logical-log files” on
page 13-1. Also see “Move logical-log files” on page 14-14 and “Change the
physical-log location and size” on page 16-1.

v To improve backup and restore performance:
– Cluster system catalogs with the data that they track.
– If you use ON-Bar to perform parallel backups to a high-speed tape drive,

store the databases in several small dbspaces.
For additional performance recommendations, see the IBM Informix Backup
and Restore Guide.

Table-location guidelines
This topic lists some strategies for optimizing the disk layout, given certain
characteristics about the tables in a database. You can implement many of these
strategies with a higher degree of control using table fragmentation:
v Isolate high-use tables on a separate disk.

To isolate a high-use table on its own disk device, assign the device to a chunk,
and assign the same chunk to a dbspace. Finally, place the frequently used table
in the dbspace just created using the IN dbspace option of CREATE TABLE.
To display the level of I/O operations against each chunk, run the onstat -g iof
option.

v Fragment high-use tables over multiple disks.
v Group related tables in a dbspace.

If a device that contains a dbspace fails, all tables in that dbspace are
inaccessible. However, tables in other dbspaces remain accessible. Although you
must perform a cold restore if a dbspace that contains critical information fails,
you must only perform a warm restore if a noncritical dbspace fails.

v Place high-use tables on the middle partition of a disk.
v Optimize table extent sizes.

8-38 IBM Informix Administrator's Guide

For more information, see the chapter on table performance considerations in your
IBM Informix Performance Guide. For information about onstat options, see the IBM
Informix Administrator's Reference.

Sample disk layouts
When setting out to organize disk space, the database server administrator usually
has one or more of the following objectives in mind:
v High performance
v High availability
v Ease and frequency of backup and restore

Meeting any one of these objectives has trade-offs. For example, configuring your
system for high performance usually results in taking risks regarding the
availability of data. The sections that follow present an example in which the
database server administrator must make disk-layout choices given limited disk
resources. These sections describe two different disk-layout solutions. The first
solution represents a performance optimization, and the second solution represents
an availability-and-restore optimization.

The setting for the sample disk layouts is a fictitious sporting goods database that
uses the structure (but not the volume) of the stores_demo database. In this
example, the database server is configured to handle approximately 350 users and
3 gigabytes of data. The disk space resources are shown in the following table.

Disk drive Size of drive High performance

Disk 1 2.5 gigabytes No

Disk 2 3 gigabytes Yes

Disk 3 2 gigabytes Yes

Disk 4 1.5 gigabytes No

The database includes two large tables: cust_calls and items. Assume that both of
these tables contain more than 1,000,000 rows. The cust_calls table represents a
record of all customer calls made to the distributor. The items table contains a line
item of every order that the distributor ever shipped.

The database includes two high-use tables: items and orders. Both of these tables
are subject to constant access from users around the country.

The remaining tables are low-volume tables that the database server uses to look
up data such as postal code or manufacturer.

Table name Maximum size Access rate

cust_calls 2.5 gigabytes Low

items 0.5 gigabytes High

orders 50 megabytes High

customers 50 megabytes Low

stock 50 megabytes Low

catalog 50 megabytes Low

manufact 50 megabytes Low

Chapter 8. Data storage 8-39

Table name Maximum size Access rate

state 50 megabytes Low

call_type 50 megabytes Low

Sample layout when performance is highest priority
To optimize performance, use multiple storage spaces and multiple disks.

The following figure shows a disk layout that is optimized for performance. This
disk layout uses the following strategies to improve performance:
v Migration of the logical log and physical log files from the root dbspace

This strategy separates the logical log and the physical log and reduces
contention for the root dbspace. For best performance, take advantage of
automatic performance tuning for the logical and physical logs:
– Create a plogspace to enable the automatic expansion of the physical log.
– Set the AUTO_LLOG configuration parameter to enable the automatic

expansion of the logical log in a specified dbspace.

If you create a server during installation, the plogspace is created and the
AUTO_LLOG configuration parameter is set to a non-critical dbspace.

v Location of the two tables that undergo the highest use in dbspaces on separate
disks
Neither of these disks stores the logical log or the physical log. Ideally you
might store each of the items and orders tables on a separate high-performance
disk. However, in the present scenario, this strategy is not possible because one
of the high-performance disks is required to store the large cust_calls table (the
other two disks are too small for this task).

8-40 IBM Informix Administrator's Guide

Sample layout when availability is highest priority
The weakness of the previous disk layout is that if either Disk 1 or Disk 2 fails, the
whole database server goes down until you restore the dbspaces on these disks
from backups. In other words, the disk layout is poor with respect to availability.

An alternative disk layout that optimizes for availability and involves mirroring is
shown in following figure. This layout mirrors all the critical data spaces (the
system catalog tables, the physical log, and the logical log) to a separate disk.
Ideally you might separate the logical log and physical log (as in the previous
layout) and mirror each disk to its own mirror disk. However, in this scenario, the
required number of disks does not exist; therefore, the logical log and the physical
log both are located in the root dbspace.

customerstate call_type

Database Disks

Disk 1
(2.5 gigabyte)

Disk 2
(3 gigabyte, high
performance)

Disk 3
(2 gigabyte, high
performance)

Disk 4
(1.5 gigabyte)

rootdbs

phys_log_space

log_log_space

look_up2

look_up3

manufactstock catalog

orders

items

cust_calls
cust_calls_space

orders_space

items_space

Figure 8-18. Disk layout optimized for performance

Chapter 8. Data storage 8-41

Logical-volume manager
You can use the logical-volume manager (LVM) utility to manage your disk space
through user-defined logical volumes.

Many computer manufacturers ship their computers with a proprietary LVM. You
can use the database server to store and retrieve data on disks that are managed
by most proprietary LVMs. Logical-volume managers provide some advantages
and some disadvantages, as explained in the remainder of this section.

Most LVMs can manage multiple gigabytes of disk space. The database server
chunks are limited to a size of 4 terabytes, and this size can be attained only when
the chunk being allocated has an offset of zero. Consequently, you must limit the
size of any volumes to be allocated as chunks to a size of 4 terabytes.

Because you can use LVMs to partition a disk drive into multiple volumes, you can
control where data is placed on a given disk. You can improve performance by
defining a volume that consists of the middle-most cylinders of a disk drive and
placing high-use tables in that volume. (Technically, you do not place a table

cust_calls_space

customerstate call_type

Database Disks

Disk 1
(2.5 gigabyte)

Disk 2
(3 gigabyte, high
performance)

Disk 3
(2 gigabyte, high
performance)

Disk 4
(1.5 gigabyte)

rootdbs

phys_log_space

items_space

log_log_space

look_up1

look_up2

orders_space

manufactstock catalog

orders

items

cust_calls

Figure 8-19. Disk layout optimized for availability

8-42 IBM Informix Administrator's Guide

directly in a volume. You must first allocate a chunk as a volume, then assign the
chunk to a dbspace, and finally place the table in the dbspace. For more
information, see “Control of where simple large object data is stored” on page
8-10.)

Tip: If you choose to use large disk drives, you can assign a chunk to one drive
and eliminate the necessity to partition the disk.

You can also improve performance by using a logical volume manager to define a
volume that spreads across multiple disks and then placing a table in that volume.

Many logical volume managers also allow a degree of flexibility that standard
operating-system format utilities do not. One such feature is the ability to
reposition logical volumes after you define them. Thus getting the layout of your
disk space right the first time is not so critical as with operating-system format
utilities.

LVMs often provide operating-system-level mirroring facilities. For more
information, see “Alternatives to mirroring” on page 17-2.

Chapter 8. Data storage 8-43

8-44 IBM Informix Administrator's Guide

Chapter 9. Manage disk space

You can use several utilities and tools to manage disk spaces and the data that the
database server controls.

You can use the following utilities to manage storage spaces:
v The onspaces utility commands
v OAT
v SQL administration API commands

Your IBM Informix Performance Guide also contains information about managing
disk space. In particular, it describes how to eliminate interleaved extents, how to
reclaim space in an empty extent, and how to improve disk I/O.

You can generate SQL administration API or onspaces commands for reproducing
the storage spaces, chunks, and logs that exist in a file with the dbschema utility.
Related concepts:
“Table fragmentation and data storage” on page 8-33
“Storage space creation and management” on page 1-4

Managing extents (Performance Guide)

Managing sbspaces (Performance Guide)
Chapter 8, “Data storage,” on page 8-1
Related reference:

Storage space, chunk, and log creation (Migration Guide)
Related information:

SQL Administration API Functions (Administrator's Reference)

Allocate disk space
This section explains how to allocate disk space for the database server. Read the
following sections before you allocate disk space:
v “Unbuffered or buffered disk access on UNIX” on page 8-3
v “Amount of disk space needed to store data” on page 8-34
v “Disk-layout guidelines” on page 8-37

Before you can create a storage space or chunk, or mirror an existing storage space,
you must allocate disk space for the chunk file. You can allocate either an empty
file or a portion of raw disk for database server disk space.

UNIX only: On UNIX, if you allocate raw disk space, you must use the UNIX ln
command to create a link between the character-special device name and another
file name. For more information about this topic, see “Create symbolic links to raw
devices (UNIX)” on page 9-4.

Using a UNIX file and its inherent operating-system interface for database server
disk space is called using cooked space.

© Copyright IBM Corp. 1996, 2014 9-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_309.htm#ids_prf_309
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_296.htm#ids_prf_296
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.mig.doc/ids_mig_266.htm#ids_mig_266
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_094.htm#ids_sapi_094

Windows only: On Windows, you must use NTFS files for database server disk
space. For more information about this recommendation, see “Unbuffered or
buffered disk access on UNIX” on page 8-3.

You can balance chunks over disks and controllers. Placing multiple chunks on a
single disk can improve throughput.

Specify an offset
When you allocate a chunk of disk space to the database server, specify an offset
for one of the following two purposes:
v To prevent the database server from overwriting the partition information
v To define multiple chunks on a partition, disk device, or cooked file

The maximum value for the offset is 4 terabytes.

Many computer systems and some disk-drive manufacturers keep information for
a physical disk drive on the drive itself. This information is sometimes called a
volume table of contents (VTOC) or disk label. The VTOC is commonly stored on the
first track of the drive. A table of alternative sectors and bad-sector mappings (also
called a revectoring table) might also be stored on the first track.

If you plan to allocate partitions at the start of a disk, you might be required to use
offsets to prevent the database server from overwriting critical information
required by the operating system. For the exact offset required, see your disk-drive
manuals.

Important: If you are running two or more instances of the database server, be
extremely careful not to define chunks that overlap. Overlapping chunks can cause
the database server to overwrite data in one chunk with unrelated data from an
overlapping chunk. This overwrite effectively deletes overlapping data.

Specify an offset for the initial chunk of root dbspace
For the initial chunk of root dbspace and its mirror, if it has one, specify the offsets
with the ROOTOFFSET and MIRROROFFSET parameters, respectively. For more
information, see the topics about configuration parameters in the IBM Informix
Administrator's Reference.

Specify an offset for additional chunks
To specify an offset for additional chunks of database server space, you must
supply the offset as a parameter when you assign the space to the database server.
For more information, see “Creating a dbspace that uses the default page size” on
page 9-7.

Use offsets to create multiple chunks
You can create multiple chunks from a disk partition, disk device, or file, by
specifying offsets and assigning chunks that are smaller than the total space
available. The offset specifies the beginning location of a chunk. The database
server determines the location of the last byte of the chunk by adding the size of
the chunk to the offset.

For the first chunk, assign any initial offset, if necessary, and specify the size as an
amount that is less than the total size of the allocated disk space. For each
additional chunk, specify the offset to include the sizes of all previously assigned
chunks, plus the initial offset, and assign a size that is less than or equal to the
amount of space remaining in the allocation.

9-2 IBM Informix Administrator's Guide

Allocating cooked file spaces on UNIX
The following procedure shows an example of allocating disk space for a cooked
file, called usr/data/my_chunk, on UNIX.

To allocate cooked file space:
1. Log-in as user informix: su informix

2. Change directories to the directory where the cooked space will be located: cd
/usr/data

3. Create your chunk by concatenating null to the file name that the database
server will use for disk space: cat /dev/null > my_chunk

4. Set the file permissions to 660 (rw-rw----): chmod 660 my_chunk

5. You must set both group and owner of the file to informix:
ls -l my_chunk -rw-rw----

1 informix informix
0 Oct 12 13:43 my_chunk

6. Use onspaces to create the storage space or chunk.

For information about how to create a storage space using the file you have
allocated, see “Creating a dbspace that uses the default page size” on page 9-7,
“Creating a blobspace” on page 9-17, and “Creating an sbspace” on page 9-19.

Allocating raw disk space on UNIX
To allocate raw space, you must have a disk partition available that is dedicated to
raw space. To create raw disk space, you can either repartition your disks or
unmount an existing file system. Back up any files before you unmount the device.

To allocate raw disk space
1. Create and install a raw device.

For specific instructions on how to allocate raw disk space on UNIX, see your
operating-system documentation and “Unbuffered or buffered disk access on
UNIX” on page 8-3.

2. Change the ownership and permissions of the character-special devices to
informix.
The file name of the character-special device usually begins with the letter r.
For the procedure, see steps 4 and 5 in “Allocating cooked file spaces on
UNIX.”

3. Verify that the operating-system permissions on the character-special devices
are crw-rw----.

4. Create a symbolic link between the character-special device name and another
file name with the UNIX link command, ln -s. For details, see “Create symbolic
links to raw devices (UNIX)” on page 9-4.

Restriction: After you create the raw device that the database server uses for disk
space, do not create file systems on the same raw device that you allocate for the
database server disk space. Also, do not use the same raw device as swap space
that you allocate for the database server disk space.
Related concepts:
“Partitions and offsets” on page 8-5

Chapter 9. Manage disk space 9-3

Create symbolic links to raw devices (UNIX)
Use symbolic links to assign standard device names and to point to the device. To
create a link between the character-special device name and another file name, use
the UNIX link command (usually ln). To verify that both the devices and the links
exist, run the UNIX command ls -l (ls -lg on BSD) on your device directory. The
following example shows links to raw devices. If your operating system does not
support symbolic links, hard links also work.
ln -s /dev/rxy0h /dev/my_root # orig_device link to symbolic_name
ln -s /dev/rxy0a /dev/raw_dev2
ls -l
crw-rw--- /dev/rxy0h
crw-rw--- /dev/rxy0a
lrwxrwxrwx /dev/my_root@->/dev/rxy0h
lrwxrwxrwx /dev/raw_dev2@->/dev/rxy0a

Why use symbolic links? If you create chunks on a raw device and that device
fails, you cannot restore from a backup until you replace the raw device and use
the same path name. All chunks that were accessible at the time of the last backup
must be accessible when you perform the restore.

Symbolic links simplify recovery from disk failure and enable you to replace
quickly the disk where the chunk is located. You can replace a failed device with
another device, link the new device path name to the same file name that you
previously created for the failed device, and restore the data. You are not required
to wait for the original device to be repaired.

Allocating NTFS file space on Windows
On Windows, the database server uses NTFS files by default. You can use standard
file names for unbuffered files in the NTFS file system. If all your partitions are
FAT files, you can convert one to NTFS.

To allocate NTFS file space for database server disk space or mirrored space, the
first step is to create a null (zero bytes) file.

To allocate NTFS file space:
1. Log in as a member of the Informix-Admin group.
2. Open an MS-DOS command shell.
3. Change to the directory where you want to allocate the space, as in the

following example:
c:> cd \usr\data

4. If necessary, convert the partition to NTFS by running the following command:
convert /fs:ntfs

5. Create a null file with the following command: c:> copy nul my_chunk

6. If you want to verify that the file was created, use the dir command to do so.

After you allocate the file space, you can create the dbspace or other storage space
as you normally would, using onspaces. For information about how to create a
dbspace or a blobspace, see “Creating a dbspace that uses the default page size”
on page 9-7 and “Creating a blobspace” on page 9-17.

9-4 IBM Informix Administrator's Guide

Allocating raw disk space on Windows
You can configure raw disk space on Windows as a logical drive or physical drive.
To find the drive letter or disk number, run the Disk Administrator. If the drives
must be striped (multiple physical disks combined into one logical disk), only
logical drive specification would work.

You must be a member of the Informix-Admin group when you create a storage
space or add a chunk. The raw disk space can be formatted or unformatted disk
space.

Important: If you allocate a formatted drive or disk partition as raw disk space
and it contains data, the database server overwrites the data when it begins to use
the disk space. You must ensure that any data on raw disk space is expendable
before you allocate the disk space to the database server.

To specify a logical drive:
1. Assign a drive letter to the disk partition.
2. Specify the following value for ROOTDBS in the onconfig file:

\\.\drive_letter

3. To create a storage space or add a chunk, specify the logical drive partition.
This example adds a chunk of 5000 KB on the e: drive, at an offset of 5200 KB,
to dbspace dpspc3.
onspaces -a dbspc3 \\.\e: -o 5200 -s 5000

To specify a physical drive
1. If the disk partition has not been assigned a drive letter, specify the following

value for ROOTDBS in the onconfig file: \\.\PhysicalDrive<number>
2. To create a storage space or add a chunk, specify the physical drive partition.

This example adds a chunk of 5000 KB on PhysicalDrive0, at an offset of 5200
KB, to dbspace dpspc3.
onspaces -a dbspc3 \\.\PhysicalDrive0 : -o 5200 -s 5000

Specify names for storage spaces and chunks
Chunk names follow the same rules as storage-space names. Specify an explicit
path name for a storage space or chunk as follows:
v If you are using raw disks on UNIX, you must use a linked path name. (See

“Create symbolic links to raw devices (UNIX)” on page 9-4.)
v If you are using raw disks on Windows, the path name takes the following form,

where x specifies the disk drive or partition:
\\.\x:

v If you are using a file for database server disk space, the path name is the
complete path and file name.

Use these naming rules when you create storage spaces or add a chunk. The file
name must have the following characteristics:
v Be unique and not exceed 128 bytes
v Begin with a letter or underscore
v Contain only letters, digits, underscores, or $ characters

The name is not case-sensitive unless you use quotation marks around it. By
default, the database server converts uppercase characters in the name to

Chapter 9. Manage disk space 9-5

lowercase. If you want to use uppercase in names, put quotation marks around
them and set the DELIMIDENT environment variable to ON.
Related concepts:
“Chunks” on page 8-2

Specify the maximum size of chunks
On most platforms, the maximum chunk size is 4 terabytes, but on other
platforms, the maximum chunk size is 8 terabytes.

To determine which chunk size your platform supports see your machine notes
file. If you have upgraded from a version before version 10.00 and did not run the
onmode -BC 2 command, the maximum chunk size is 2 GB.

Specify the maximum number of chunks and storage spaces
You can specify a maximum of 32,766 chunks for a storage space, and a maximum
of 32,766 storage spaces on the database server system.

The storage spaces can be any combination of dbspaces, blobspaces, and sbspaces.

Considering all limits that can apply to the size of an instance of the database
server, the maximum size of an instance is approximately 8 petabytes.

If you have upgraded from a version before version 10.00, you must run onmode
-BC 2 to enable the maximum number of chunks and storage spaces.

Back up after you change the physical schema
You must perform a level-0 backup of the root dbspace and the modified storage
spaces to ensure that you can restore the data when you:
v Add or drop mirroring
v Drop a logical-log file
v Change the size or location of the physical log
v Change your storage-manager configuration
v Add, move, or drop a dbspace, blobspace, or sbspace
v Add, move, or drop a chunk to a dbspace, blobspace, or sbspace

Important: When you add a new logical log, you no longer are required to
perform a level-0 backup of the root dbspace and modified dbspace to use the new
logical log. However, you must perform the level-0 backup to prevent level-1 and
level-2 backups from failing.

You must perform a level-0 backup of the modified storage spaces to ensure that
you can restore the unlogged data before you switch to a logging table type:
v When you convert a nonlogging database to a logging database
v When you convert a RAW table to standard

Monitor storage spaces
You can monitor the status of storage spaces and configure how you are notified
when a storage space becomes full.

When a storage space or partition becomes full, a message is shown in the online
message log file.

9-6 IBM Informix Administrator's Guide

You can configure alarms that are triggered when storage spaces become full with
the STORAGE_FULL_ALARM configuration parameter. You can specify how often
alarms are sent and the minimum severity level of alarms to be sent. By default,
the alarm interval is 600 seconds and the alarm severity level is 3. For more
information about the STORAGE_FULL_ALARM configuration parameters and
event alarms, see the IBM Informix Administrator's Reference.

If the primary server in a high-availability cluster encounters an out-of-space
condition, and the STORAGE_FULL_ALARM configuration parameter is enabled,
the event alarm is triggered and an error status is returned on the primary server
but not on any of the secondary servers. This is expected behavior because log
records are no longer sent from the primary server to the secondary servers when
the primary server encounters an out-of-space condition. In this case, the
secondary servers never exceed their storage limits and thus do not trigger an
event alarm or return an error status.

You can use the IBM Informix Scheduler to set up a task that automatically
monitors the status of storage spaces. The properties of the task define the
information that Scheduler collects and specifies how frequently the task runs. For
example, you might define a task to monitor storage spaces every hour, five days a
week. For more information, see Chapter 27, “The Scheduler,” on page 27-1 and
“Creating a task” on page 27-10.

Manage dbspaces
This section contains information about creating standard and temporary dbspaces
with and without the default page size, specifying the first and next extent sizes
for the tblspace tblspace in a dbspace when you create the dbspace, and adding a
chunk to a dbspace or blobspace.

For information about monitoring dbspaces, see “Monitor storage spaces” on page
9-6.
Related concepts:
“Control of where simple large object data is stored” on page 8-10
“Size of the root dbspace” on page 8-35

Creating a dbspace that uses the default page size
You can use onspaces to create a standard dbspace and a temporary dbspace.

For information about creating a dbspace with a non-default page size, see
“Creating a dbspace with a non-default page size” on page 9-10.

Any newly added dbspace (and its mirror, if one exists) is available immediately. If
you are using mirroring, you can mirror the dbspace when you create it. Mirroring
takes effect immediately.

To create a standard dbspace using onspaces:
1. On UNIX, you must be logged in as user informix or root to create a dbspace.

On Windows, users in the Informix-Admin group can create a dbspace.
2. Ensure that the database server is in online, administration, or quiescent mode.
3. Allocate disk space for the dbspace, as described in “Allocate disk space” on

page 9-1.
4. To create a dbspace, use the onspaces -c -d options.

Chapter 9. Manage disk space 9-7

KB is the default unit for the -s size and -o offset options. To convert KB to
megabytes, multiply the unit by 1024 (for example, 10 MB = 10 * 1024 KB).
See “Creating a dbspace with a non-default page size” on page 9-10 for
information about additional onspaces options if you are creating a dbspace
with a non-default page size.

5. If you do not want to specify the first and next extent sizes for the tblspace
tblspace in a dbspace, go to 6.
If you want to specify the first and next extent sizes for the tblspace tblspace in
a dbspace, see additional information in “Specifying the first and next extent
sizes for the tblspace tblspace.”

6. After you create the dbspace, you must perform a level-0 backup of the root
dbspace and the new dbspace.

The following example shows how to create a 10-megabyte mirrored dbspace,
dbspce1, with an offset of 5000 KB for both the primary and mirror chunks, using
raw disk space on UNIX:
onspaces -c -d dbspce1 -p /dev/raw_dev1 -o 5000 -s 10240 -m /dev/raw_dev2 5000

The following example shows how to create a 5-megabyte dbspace, dbspc3, with
an offset of 200 KB, from raw disk space (drive e:) on Windows:
onspaces -c -d dbspc3 \\.\e: -o 200 -s 5120

For more information about creating a dbspace with onspaces, see “Dbspaces” on
page 8-9 and information about the onspaces utility in the IBM Informix
Administrator's Reference.

Specifying the first and next extent sizes for the tblspace
tblspace
You can specify first and next extent sizes if you want to reduce the number of
tblspace tblspace extents and reduce the frequency of situations when you must
place the tblspace tblspace extents in non-primary chunks. (A primary chunk is the
initial chunk in a dbspace.)

You can choose to specify the first extent size, the next extent size, both the first
and the next extent size, or neither extent size. If you do not specify first or next
extent sizes for the tblspace tblspace, IBM Informix uses the existing default extent
sizes.

You can use the TBLTBLFIRST and TBLTBLNEXT configuration parameters to
specify the first and next extent sizes for the tblspace tblspace in the root dbspace
that is created when the server is initialized.

You can use the onspaces utility to specify the first and next extent sizes for the
tblspace tblspace in non-root dbspaces.

You can only specify the first and next extent sizes when you create dbspace. You
cannot alter the specification of the first and next extent sizes after the creation of
the dbspace. In addition, you cannot specify extent sizes for temporary dbspaces,
sbspaces, blobspaces, or external spaces. You cannot alter the specification of the
first and next extents sizes after the creation of the dbspace.

To specify the first and next extent sizes:

9-8 IBM Informix Administrator's Guide

1. Determine the total number of pages required in the tblspace tblspace. The
number of pages is equal to the sum of the number of tables, detached indexes,
and table fragments likely to be located in the dbspace plus one page for the
tblspace tblspace.

2. Calculate the number of KB required for the number of pages. This number
depends on the number of KB to a page on the system.

3. Determine the space management requirements on your system by considering
the importance of having all of the extents for the tblspace tblspace allocated
during dbspace creation and whether the extents must be allocated
contiguously. The more important these issues are, the larger the first extent
size must be. If you are less concerned with having non-contiguous extents,
possibly in secondary chunks, then the first and next extent sizes can be
smaller.

4. Specify the extent size as follows:
v If the space requirement is for the root dbspace, specify the first extent size

in the TBLTBLFIRST configuration parameter and the next extent size in the
TBLTBLNEXT configuration parameter. Then initialize the database server
instance.

v If the space requirement is for a non-root dbspace, indicate the first and next
extent sizes on the command line using the onspaces utility to create the
dbspace.

Extent sizes must be in KB and must be multiples of the page size. When you
specify first and next extent sizes, follow these guidelines:

Type of extent Minimum size Maximum size

First extent in a non-root
dbspace

The equivalent of 50 pages,
specified in KB. This is the
system default. For example,
for a 2 KB page system, the
minimum length is 100.

The size of the initial chunk,
minus the space required for
any system objects such as
the reserved pages, the
database tblspace, and the
physical and logical logs.

First extent in a root dbspace The equivalent of 250 pages
specified in KB. This is the
system default.

The size of the initial chunk,
minus the space required for
any system objects such as
the reserved pages, the
database tblspace, and the
physical and logical logs.

Next Extent Four times the disk-page size
on the system. The default is
50 pages on any type of
dbspace.

The maximum chunk size
minus three pages.

You use the following onspaces utility -ef and -en options to specify the first and
next extent sizes for the tblspace tblspace in non-root dbspaces:
v First extent size: -ef size_in_kbytes

v Next extent size: -en size_in_kbytes

For example, you can specify:
onspaces -c -d dbspace1 -p /usr/data/dbspace1 -o 0 -s 1000000 -e 2000 -n 1000

You can use Oncheck -pt and oncheck -pT to show the first and next extent sizes
of a tblspace tblspace.

Chapter 9. Manage disk space 9-9

If data replication is being used and a dbspace is created on the primary database
server, the first and next extent sizes are passed to the secondary database server
through the ADDCHK log record.

For more information about the onspaces utility, oncheck commands, and
specifying the first and next extent sizes for the tblspace tblspace, see the IBM
Informix Administrator's Reference.
Related reference:

TBLTBLFIRST configuration parameter (Administrator's Reference)

TBLTBLNEXT configuration parameter (Administrator's Reference)

Creating a dbspace with a non-default page size
You can specify a page size for a standard or temporary dbspace if you want a
longer key length than is available for the default page size.

The root dbspace uses the default page size. If you want to create a dbspace with a
different page size, the size must be an integral multiple of the default page size,
and cannot be greater than 16 KB.

For systems with sufficient storage, the performance advantages of a larger page
size include:
v Reduced depth of B-tree indexes, even for smaller index keys.
v Decreased checkpoint time, which typically occurs with larger page sizes.

Additional performance advantages occur because you can:
v Group on the same page long rows that currently span multiple pages of the

default page size.
v Define a different page size for temporary tables, so the temporary tables have a

separate buffer pool.

A table can be in one dbspace and the index for that table can be in another
dbspace. The page size for these partitions can be different.

To create a dbspace with a non-default page size:
1. If you upgraded from a version before version 10.00, run the onmode -BC 2

command to enable the large chunk mode. By default, when IBM Informix is
first initialized or restarted, Informix starts with the large chunk mode enabled.

2. Optional: Create a buffer pool that corresponds to the page size of the dbspace.
You can use the onparams utility or the BUFFERPOOL configuration
parameter.
If you create a dbspace with a page size that does not have a corresponding
buffer pool, Informix automatically creates a buffer pool using the default
values for the BUFFERPOOL configuration parameter as defined in the
onconfig file.
You cannot have multiple buffer pools with the same page size.

3. Define the page size of the dbspace when you create the dbspace. You can use
the onspaces utility.

Tip: If you use non-default page sizes, you might be required to increase the size
of your physical log. If you perform many updates to non-default pages you might
require a 150 - 200 percent increase of the physical log size. Some experimentation

9-10 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0181.htm#ids_adr_0181
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0182.htm#ids_adr_0182

might be required to tune the physical log. You can adjust the size of the physical
log as necessary according to how frequently the filling of the physical log triggers
checkpoints.

Improving the performance of cooked-file dbspaces by using
direct I/O

On UNIX systems, you can improve the performance of cooked files used for
dbspace chunks by using direct I/O.

Direct I/O must be available and the file system must support direct I/0 for the
page size used for the dbspace chunk.

You can use IBM Informix to use either raw devices or cooked files for dbspace
chunks. In general, cooked files are slower because of the additional overhead and
buffering provided by the file system. Direct I/O bypasses the use of the file
system buffers, and therefore is more efficient for reads and writes that go to disk.
You specify direct I/O with the DIRECT_IO configuration parameter. If your file
system supports direct I/O for the page size used for the dbspace chunk and you
use direct I/O, performance for cooked files can approach the performance of raw
devices used for dbspace chunks.

To improve the performance of cooked-file dbspaces by using direct I/O:
1. Verify that you have direct I/O and the file system supports direct I/O for the

page size used for the dbspace chunk.
2. Enable direct I/O by setting the DIRECT_IO configuration parameter to 1.

If you have an AIX operating system, you can also enable concurrent I/O for
Informix to use with direct IO when reading and writing to chunks that use
cooked files.

For more information about using direct IO or concurrent IO, see the IBM Informix
Performance Guide.

Storing multiple named fragments in a single dbspace
For fragmented tables that use expression-based, interval, list, or round-robin
distribution schemes, you can create named fragments that can be located within a
single dbspace.

Storing multiple table or index fragments in a single dbspace improves query
performance over storing each fragment in a different dbspace and simplifies
management of dbspaces.

Suppose you are creating a fragmented table using an expression-based
distribution scheme in which each expression specifies the data sets that are placed
in particular fragments. You might decide to separate the data in the table with
data from one month in one dbspace and data from the next 11 months in 11 other
dbspaces. However, if you want to use only one dbspace for all the yearly data,
you can create named fragments so the data for each month is stored in one
dbspace.

If you create a fragmented table with named fragments, each row in the
sysfragments system catalog table contains a fragment name in the partition
column. If you create a fragmented table without named fragments, the name of

Chapter 9. Manage disk space 9-11

the dbspace is in the partition column. The flags column in the sysfragments
system catalog table tells you if the fragmentation scheme has named fragments.

You can create tables and indexes with named fragments, and you can create,
drop, and alter named fragments using the PARTITION keyword and the fragment
name.

To create a fragmented table with named fragments, use SQL syntax as shown in
the following example:
CREATE TABLE tb1(a int)

FRAGMENT BY EXPRESSION
PARTITION part1 (a >=0 AND a < 5) IN dbspace1,
PARTITION part2 (a >=5 AND a < 10) IN dbspace1

...
;

If you created a table or index fragment containing named fragments, you must
use syntax containing the fragment name when you use the ALTER FRAGMENT
statement, as shown in the following examples:
ALTER FRAGMENT ON TABLE tb1 INIT FRAGMENT BY EXPRESSION

PARTITION part_1 (a >=0 AND a < 5) IN dbspace1,
PARTITION part_2 (a >=5 AND a < 10) IN dbspace1;

ALTER FRAGMENT ON INDEX ind1 INIT FRAGMENT BY EXPRESSION
PARTITION part_1 (a >=0 AND a < 5) IN dbspace1,
PARTITION part_2 (a >=5 AND a < 10) IN dbspace1;

You can use the PARTITION BY EXPRESSION keywords in place of the FRAGMENT BY
EXPRESSION keywords in the CREATE TABLE, CREATE INDEX, and ALTER
FRAGMENT ON INDEX statements, as shown in this example:
ALTER FRAGMENT ON INDEX idx1 INIT PARTITION BY EXPRESSION

PARTITION part1 (a <= 10) IN idxdbspc1,
PARTITION part2 (a <= 20) IN idxdbspc1,
PARTITION part3 (a <= 30) IN idxdbspc1;

Use ALTER FRAGMENT syntax to change fragmented tables and indexes that do
not have named fragments into tables and indexes that have named fragments.
The following syntax shows how you might convert a fragmented table with
multiple dbspaces into a fragmented table with named fragments:
CREATE TABLE t1 (c1 int) FRAGMENT BY EXPRESSION

(c1=10) IN dbs1,
(c1=20) IN dbs2;

ALTER FRAGMENT ON TABLE t1 MODIFY dbs2 TO PARTITION part_3 (c1=20)
IN dbs1

The following syntax shows how you might convert a fragmented index into an
index that contains named fragments:
CREATE TABLE t1 (c1 int) FRAGMENT BY EXPRESSION

(c1=10) IN dbs1, (c1=20) IN dbs2, (c1=30) IN dbs3
CREATE INDEX ind1 ON t1 (c1) FRAGMENT BY EXPRESSION

(c1=10) IN dbs1, (c1=20) IN dbs2, (c1=30) IN dbs3

ALTER FRAGMENT ON INDEX ind1 INIT FRAGMENT BY EXPRESSION
PARTITION part_1 (c1=10) IN dbs1, PARTITION part_2 (c1=20) IN dbs1,
PARTITION part_3 (c1=30) IN dbs1,

See the IBM Informix Performance Guide for more information about fragmentation,
including fragmentation guidelines, procedures for fragmenting indexes,

9-12 IBM Informix Administrator's Guide

procedures for creating attached and detached indexes with named fragments, and
examples of SQL statements used to create attached and detached indexes
containing named fragments.

See the IBM Informix Guide to SQL: Syntax for more syntax details, including
information about named fragments in the GRANT FRAGMENT and REVOKE
FRAGMENT statements, and details for using the DROP, DETACH, and MODIFY
clauses of the ALTER FRAGMENT statement.

Creating a temporary dbspace
To specify where to allocate the temporary files, create temporary dbspaces.

To define temporary dbspaces:
1. Use the onspaces utility with the -c -d -t options.

For more information, see “Creating a dbspace that uses the default page size”
on page 9-7.

2. Use the DBSPACETEMP environment variables or the DBSPACETEMP
configuration parameter to specify the dbspaces that the database server can
use for temporary storage.
The DBSPACETEMP configuration parameter can contain dbspaces with a
non-default page size. Although you can include dbspaces with different page
sizes in the parameter list for DBSPACETEMP, the database server only uses
dbspaces with the same page size as the first listed dbspace.
For further information about DBSPACETEMP, see the topics about
configuration parameters in the IBM Informix Administrator's Reference.

3. If you create more than one temporary dbspace, the dbspaces must be located
on separate disks to optimize the I/O.

If you are creating a temporary dbspace, you must make the database server aware
of the existence of the newly created temporary dbspace by setting the DBSPACETEMP
configuration parameter, the DBSPACETEMP environment variable, or both. The
database server does not begin to use the temporary dbspace until you take both
of the following steps:
v Set the DBSPACETEMP configuration parameter, the DBSPACETEMP environment

variable, or both.
v Restart the database server.

The following example shows how to create 5-megabyte temporary dbspace named
temp_space with an offset of 5000 KB:
onspaces -c -t -d temp_space -p /dev/raw_dev1 -o 5000 -s 5120

For more information, see “Temporary dbspaces” on page 8-12.
Related concepts:
“Size of the root dbspace” on page 8-35

What to do if you run out of disk space
When the initial chunk of the dbspace that you are creating is a cooked file on
UNIX or an NTFS file on Windows, the database server verifies that the disk space
is sufficient for the initial chunk. If the size of the chunk is greater than the
available space on the disk, a message is displayed and no dbspace is created.
However, the cooked file that the database server created for the initial chunk is

Chapter 9. Manage disk space 9-13

not removed. Its size represents the space left on your file system before you
created the dbspace. Remove this file to reclaim the space.

Adding a chunk to a dbspace or blobspace
You add a chunk when a dbspace, blobspace, or sbspace is becoming full or
requires more disk space.

Important: The newly added chunk (and its associated mirror, if one exists) is
available immediately. If you are adding a chunk to a mirrored storage space, you
must also add a mirror chunk.

To add a chunk using onspaces:
1. On UNIX, you must be logged in as user informix or root to add a chunk.

On Windows, users in the Informix-Admin group can add a chunk.
2. Ensure that the database server is in online, administration, or quiescent mode,

or the cleanup phase of fast-recovery mode.
3. Allocate disk space for the chunk, as described in “Allocate disk space” on

page 9-1.
4. To add a chunk, use the -a option of onspaces.

If the storage space is mirrored, you must specify the path name of both a
primary chunk and mirror chunk.
If you specify an incorrect path name, offset, or size, the database server does
not create the chunk and displays an error message. Also see “What to do if
you run out of disk space” on page 9-13.

5. After you create the chunk, you must perform a level-0 backup of the root
dbspace and the dbspace, blobspace, or sbspace that contains the chunk.

The following example adds a 10-megabyte mirror chunk to blobsp3. An offset of
200 KB for both the primary and mirror chunk is specified. If you are not adding a
mirror chunk, you can omit the -m option.
onspaces -a blobsp3 -p /dev/raw_dev1 -o 200 -s 10240 -m /dev/raw_dev2 200

The next example adds a 5-megabyte chunk of raw disk space, at an offset of 5200
KB, to dbspace dbspc3.
onspaces -a dbspc3 \\.\e: -o 5200 -s 5120

You can also define information that Informix can use to automatically extend the
size of a chunk when additional storage space is required for an application. If you
have extendable chunks, you are not required to add new chunks or spend time
trying to determine which storage space will run out of space and when it will run
out of space.
Related concepts:
“Automatic space management” on page 9-23
Related tasks:
“Adding a chunk to an sbspace” on page 9-20

Rename dbspaces
You can use the onspaces utility to rename a dbspace if you are user informix or
have DBA privileges and the database server is in quiescent mode (and not any
other mode).

To rename a dbspace use the following onspaces utility command:

9-14 IBM Informix Administrator's Guide

onspaces -ren old_dbspace_name-n new_dbspace_name

You can rename standard dbspaces and all other spaces, including blobspaces,
smart blobspaces, temporary spaces, and external spaces. However, you cannot
rename any critical dbspace, such as a root dbspace or a dbspace that contains
physical logs.

You can rename a dbspace and an sbspace:
v When Enterprise Replication is enabled
v On a primary database server when data replication is enabled

You cannot rename a dbspace and an sbspace on a secondary database server or
when the secondary database server is part of the Enterprise Replication
configuration

The rename dbspace operation only changes the dbspace name; it does not
reorganize data.

The rename dbspace command updates the dbspace name in all places where that
name is stored. This includes reserved pages on disk, system catalogs, the
ONCONFIG configuration file, and in-memory data structures.

Important: After renaming a dbspace, perform a level-0 archive of the renamed
dbspace and the root dbspace. For information, see the IBM Informix Backup and
Restore Guide.

Additional actions that may be required after you rename a
dbspace
If you rename a dbspace, you must rewrite and recompile any stored procedure
code that references the old dbspace name. For example, if you have a stored
procedure that contains the ALTER FRAGMENT keywords and a reference to the
dbspace name, you must rewrite and recompile that stored procedure.

If you rename dbspaces that are specified in the DATASKIP configuration
parameter, you must manually update the DATASKIP configuration parameter
after renaming the dbspace.

Managing automatic location and fragmentation
You can control whether the database server automatically chooses the location for
databases, indexes, and tables and automatically fragments tables. You can control
the list of dbspaces in which the database server stores databases, indexes, and
table fragments.

If you enable automatic location and fragmentation, the database server performs
the following tasks:
v Stores new databases for which you do not specify a location in the optimal

dbspace instead of in the root dbspace. By default, all dbspaces except dbspaces
that are dedicated to tenant databases are available.

v Stores new tables and indexes for which you do not specify a location in the
optimal dbspace instead of in the same dbspace as the database.

v Allocates an initial number of round-robin fragments for new tables. A table
fragment does not have an extent until a row is inserted into the fragment,
unless you include the FIRST EXTENT clause in the CREATE TABLE statement.

v Adds more table fragments as the table grows.

Chapter 9. Manage disk space 9-15

To enable automatic location and fragmentation, set the AUTOLOCATE
configuration parameter or the AUTOLOCATE session environment variable to a
positive integer.

Automatic location is not applicable to tenant databases or the tables, fragments,
and indexes within tenant databases.

To view the list of available dbspaces, query the sysautolocate system catalog
table.

To add a dbspace to the list of available dbspaces, run the task() or admin() SQL
administration API function with the autolocate database, the autolocate database
add, or the autolocate database anywhere argument.

To remove a dbspace from the list of available dbspaces, run the task() or admin()
SQL administration API function with the autolocate database remove argument.

To disable automatic location and fragmentation for tables in a particular database,
run the task() or admin() SQL administration API function with the autolocate
database off argument.

To disable automatic location and fragmentation of tables in all databases, set the
AUTOLOCATE configuration parameter or the AUTOLOCATE session
environment variable to 0.
Related concepts:
“Table fragmentation and data storage” on page 8-33
“Storage space creation and management” on page 1-4
“Databases” on page 8-23
Related reference:

AUTOLOCATE configuration parameter (Administrator's Reference)

autolocate database argument: Specify dbspaces for automatic location and
fragmentation (SQL administration API) (Administrator's Reference)

autolocate database add argument: Add a dbspace to the dbspace list (SQL
administration API) (Administrator's Reference)

autolocate database remove argument: Remove a dbspace from the dbspace list
(SQL administration API) (Administrator's Reference)

autolocate database anywhere argument: Add all dbspaces to the dbspace list
(SQL administration API) (Administrator's Reference)

autolocate database off argument: Disable automatic fragmentation for a
database (SQL administration API) (Administrator's Reference)

AUTOLOCATE environment option (SQL Syntax)

SYSAUTOLOCATE (SQL Reference)

Manage blobspaces
This section explains how to create a blobspace and determine the blobpage size.
The database server stores TEXT and BYTE data in dbspaces or blobspaces, but
blobspaces are more efficient. For information about adding a chunk, see “Adding
a chunk to a dbspace or blobspace” on page 9-14.

9-16 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1106.htm#ids_adr_1106
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_122.htm#ids_sapi_122
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_122.htm#ids_sapi_122
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_123.htm#ids_sapi_123
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_123.htm#ids_sapi_123
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_124.htm#ids_sapi_124
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_124.htm#ids_sapi_124
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_125.htm#ids_sapi_125
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_125.htm#ids_sapi_125
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_126.htm#ids_sapi_126
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_126.htm#ids_sapi_126
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2101.htm#ids_sqs_2101
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_424.htm#ids_sqr_424

For information about monitoring blobspaces, see “Monitor storage spaces” on
page 9-6

Creating a blobspace
You can use onspaces to create a blobspace.

Before you create a blobspace:
1. Allocate disk space for the blobspace, as described in “Allocate disk space” on

page 9-1.
2. Determine what blobpage size is optimal for your environment.

For instructions, see “Determine blobpage size” on page 9-18.

Specify a blobspace name of up to 128 bytes. The name must be unique and must
begin with a letter or underscore. You can use letters, digits, underscores, and $
characters in the name.

Important: You can mirror the blobspace when you create it if mirroring is
enabled for the database server. Mirroring takes effect immediately.

To create a blobspace using onspaces:
1. To create a blobspace on UNIX, you must be logged in as user informix or

root.
To create a blobspace on Windows, you must be a member of the
Informix-Admin group.

2. Ensure that the database server is in online, administration, or quiescent mode,
or the cleanup phase of fast-recovery mode.

3. To add a blobspace, use the onspaces -c -b options.
a. Specify an explicit path name for the blobspace. If the blobspace is

mirrored, you must specify the path name and size of both the primary
chunk and mirror chunk.

b. Use the -o option to specify an offset for the blobspace.
c. Use the -s option to specify the size of the blobspace chunk, in KB.
d. Use the -g option to specify the blobpage size in terms of the number of

disk pages per blobpages.
See “Determine blobpage size” on page 9-18. For example, if your database
server instance has a disk-page size of 2 KB, and you want your blobpages
to have a size of 10 KB, enter 5 in this field.
If you specify an incorrect path name, offset, or size, the database server
does not create the blobspace and displays an error message. Also see
“What to do if you run out of disk space” on page 9-13.

4. After you create the blobspace, you must perform a level-0 backup of the root
dbspace and the new blobspace.

The following example shows how to create a 10-megabyte mirrored blobspace,
blobsp3, with a blobpage size of 10 KB, where the database server page size is 2
KB. An offset of 200 KB for the primary and mirror chunks is specified. The
blobspace is created from raw disk space on UNIX.
onspaces -c -b blobsp3 -g 5 -p /dev/raw_dev1 -o 200 -s 10240 -m /dev/raw_dev2 200

For reference information about creating a blobspace with onspaces, see
information about the onspaces utility in the IBM Informix Administrator's Reference.

Chapter 9. Manage disk space 9-17

Prepare blobspaces to store TEXT and BYTE data
A newly created blobspace is not immediately available for storage of TEXT or
BYTE data. Blobspace logging and recovery require that the statement that creates
a blobspace and the statements that insert TEXT and BYTE data into that blobspace
be created in separate logical-log files. This requirement is true for all blobspaces,
regardless of the logging status of the database. To accommodate this requirement,
switch to the next logical-log file after you create a blobspace. (For instructions, see
“Back up log files to free blobpages” on page 13-6.)

Determine blobpage size
When you create a blobspace, use the size of the most frequently occurring simple
large object as the size of the blobpage. In other words, choose a blobpage size that
wastes the least amount of space. For information about calculating an optimal
blobpage size, see blobpage size considerations in the topics on the effect of
configuration on I/O activity in the IBM Informix Performance Guide.

If a table has more than one TEXT or BYTE column, and the objects are not close
in size, store each column in a different blobspace, each with an appropriately
sized blobpage. See “Tables” on page 8-24.

Determine database server page size
When you specify the blobpage size, you specify it in terms of the database server
base page size.

You can use one of the following methods to determine the database server page
size for your system:
v Run the onstat -b utility to display the system page size, given as buffer size on

the last line of the output.
v To view the contents of the PAGE_PZERO reserved page, run the oncheck -pr

utility.

Obtain blobspace storage statistics
To help you determine the optimal blobpage size for each blobspace, use the
following database server utility commands:
v oncheck -pe

v oncheck -pB

The oncheck -pe command provides background information about the objects
stored in a blobspace:
v Complete ownership information (displayed as database:owner.table) for each table

that has data stored in the blobspace chunk
v The total number of pages used by each table to store its associated TEXT and

BYTE data
v The total free and total overhead pages in the blobspace

The oncheck -pB command lists the following statistics for each table or database:
v The number of blobpages used by the table or database in each blobspace
v The average fullness of the blobpages used by each simple large object stored as

part of the table or database

For more information, see “Monitor blobspace usage with oncheck -pe” on page
9-44, “Determine blobpage fullness with oncheck -pB” on page 9-43, and

9-18 IBM Informix Administrator's Guide

optimizing blobspace blobpage size in the topics about table performance
considerations in the IBM Informix Performance Guide.

Manage sbspaces
This section describes how to create a standard or temporary sbspace, monitor the
metadata and user-data areas, add a chunk to an sbspace, and alter storage
characteristics of smart large objects.

For information about monitoring sbspaces, see “Monitor storage spaces” on page
9-6.

Creating an sbspace
Use the onspaces utility to create an sbspace.

To create an sbspace using onspaces:
1. To create an sbspace on UNIX, you must be logged in as user informix or root.

To create an sbspace on Windows, you must be a member of the
Informix-Admin group.

2. Ensure that the database server is online, administration, or quiescent mode, or
in the cleanup phase of fast-recovery mode.

3. Use the onspaces -c -S options to create the sbspace.
a. Use the -p option to specify the path name, the -o option to specify the

offset, and the -s option to specify the sbspace size.
b. If you want to mirror the sbspace, use the -m option to specify the mirror

path and offset.
c. If you want to use the default storage characteristics for the sbspace, omit

the -Df option.
If you want to specify different storage characteristics, use the -Df option.
For more information, see “Storage characteristics of sbspaces” on page 8-16.

d. The first chunk in an sbspace must have a metadata area.
You can specify a metadata area for an sbspace or let the database server
calculate the size of the metadata area. For more information, see “Size
sbspace metadata” on page 9-20.

4. After you create the sbspace, you must perform a level-0 backup of the root
dbspace and the new sbspace.

5. To start storing smart large objects in this sbspace, specify the space name in
the SBSPACENAME configuration parameter.

6. Use onstat -d, onstat -g smb s, and oncheck -cs, -cS, -ps, or -pS to display
information about the sbspace.
For more information, see “Monitor sbspaces” on page 9-45.

This shows how to create a 20-megabyte mirrored sbspace, sbsp4. Offsets of 500
KB for the primary and 500 KB for the mirror chunks are specified, and a metadata
size of 150 KB with a 200 KB offset. The AVG_LO_SIZE -Df tag specifies an
expected average smart-large-object size of 32 KB.
onspaces -c -S sbsp4 -p /dev/rawdev1 -o 500 -s 20480 -m /dev/rawdev2 500
-Ms 150 -Mo 200 -Df "AVG_LO_SIZE=32"

For information about creating an sbspace and default options for smart large
objects, see information about the onspaces utility in the IBM Informix

Chapter 9. Manage disk space 9-19

Administrator's Reference. For information about creating smart large objects, see the
IBM Informix DataBlade API Programmer's Guide and IBM Informix ESQL/C
Programmer's Manual.

Size sbspace metadata
The first chunk of an sbspace must have a metadata area. When you add smart
large objects and chunks to the sbspace, the metadata area grows. In addition, the
database server reserves 40 percent of the user area to be used in case the
metadata area runs out of space.

It is important to size the metadata area for an sbspace correctly to ensure that the
sbspace does not run out of metadata space. You can either:
v Let the database server calculate the size of the metadata area for the new

sbspace chunk.
v Specify the size of the metadata area explicitly.

For instructions on estimating the size of the sbspace and metadata area, see table
performance considerations in the IBM Informix Performance Guide. Also see
“Monitoring the metadata and user-data areas” on page 9-49.

Adding a chunk to an sbspace
You can add a chunk to an sbspace or temporary sbspace.

You can specify a metadata area for a chunk, let the database server calculate the
metadata area, or use the chunk for user data only.

To add a chunk to an sbspace using onspaces:
1. Ensure that the database server is online, administration, or quiescent mode, or

in the cleanup phase of fast-recovery mode.
2. Use the onspaces -a option to create the sbspace chunk.

a. Use the -p option to specify the path name, the -o option to specify the
offset, and the -s option to specify the chunk size.

b. If you want to mirror the chunk, use the -m option to specify the mirror
path and offset.

c. To specify the size and offset of the metadata space, use the -Mo and -Ms
options.
The database server allocates the specified amount of metadata area on the
new chunk.

d. To allow the database server to calculate the size of the metadata for the
new chunk, omit the -Mo and -Ms options.
The database server divides the estimated average size of the smart large
objects by the size of the user data area.

e. To use the chunk for user data only, specify the -U option.
If you use the -U option, the database server does not allocate metadata
space in this chunk. Instead, the sbspace uses the metadata area in one of
the other chunks.

3. After you add a chunk to the sbspace, the database server writes the
CHRESERV and CHKADJUP log records.

4. Perform a level-0 backup of the root dbspace and the sbspace.
5. Use onstat -d and oncheck -pe to monitor the amount of free space in the

sbspace chunk.

9-20 IBM Informix Administrator's Guide

This example adds a 10-megabyte mirror chunk to sbsp4. An offset of 200 KB for
both the primary and mirror chunk is specified. If you are not adding a mirror
chunk, you can omit the -m option. The -U option specifies that the new chunk
contains user data exclusively.
onspaces -a sbsp4 -p /dev/rawdev1 -o 200 -s 10240 -m /dev/rawdev2 200 -U

You can also define information that Informix can use to automatically expand the
size of a chunk when additional storage space is required for an application. If you
have extendable chunks, you are not required to add new chunks or spend time
trying to determine which storage space (dbspace, temporary dbspace, sbspace,
temporary sbspace, or blobspace) will run out of space and when it will run out of
space.
Related concepts:
“Automatic space management” on page 9-23
Related tasks:
“Adding a chunk to a dbspace or blobspace” on page 9-14
Related reference:
“Monitor sbspaces” on page 9-45

Alter storage characteristics of smart large objects
Use the onspaces -ch command to change the following default storage
characteristics for the sbspace:
v Extent sizes
v Average smart-large-object size
v Buffering mode
v Last-access time
v Lock mode
v Logging

For more information, see “Storage characteristics of sbspaces” on page 8-16 and
managing sbspaces in the topics about table performance considerations in your
IBM Informix Performance Guide.

Creating a temporary sbspace
For background information and the rules for determining where temporary smart
large objects are stored, see “Temporary sbspaces” on page 8-20. You can store
temporary smart large objects in a standard or temporary sbspace. You can add or
drop chunks in a temporary sbspace.

To create a temporary sbspace with a temporary smart large object:
1. Allocate space for the temporary sbspace. For details, see “Allocate disk space”

on page 9-1.
For information about SBSPACETEMP, see the configuration parameters topics
in the IBM Informix Administrator's Reference.

2. Create the temporary sbspace as the following example shows:
onspaces -c -S tempsbsp -t -p ./tempsbsp -o 0 -s 1000

3. You can specify any of the following onspaces options:
a. Specify a metadata area and offset (-Ms and -Mo).
b. Specify storage characteristics (-Df).

You cannot turn on logging for a temporary sbspace.

Chapter 9. Manage disk space 9-21

4. Set the SBSPACETEMP configuration parameter to the name of the default
temporary sbspace storage area.
Restart the database server.

5. Use onstat -d to display the temporary sbspace.
For information and an example of onstat -d output, see the onstat utility in
the IBM Informix Administrator's Reference.

6. Specify the LO_CREATE_TEMP flag when you create a temporary smart large
object.
Using DataBlade API:
mi_lo_specset_flags(lo_spec,LO_CREATE_TEMP);

Using Informix ESQL/C:
ifx_lo_specset_flags(lo_spec,LO_CREATE_TEMP);

For information about creating smart large objects, see the IBM Informix DataBlade
API Programmer's Guide and IBM Informix ESQL/C Programmer's Manual.

Manage the plogspace
You create or move the plogspace with the onspaces utility or equivalent SQL
administration API command.

To create the plogspace, run the onspaces -c -P command or the admin() or task()
SQL administration API function with the create plogspace argument.

If you want to change the location of the plogspace to a different chunk, create a
new plogspace. The physical log is moved to the new plogspace and the old
plogspace is dropped.

You can modify the chunk in the plogspace in the following ways:
v Mark the chunk as not extendable. Run the admin() or task() SQL

administration API function with the modify chunk extendable off argument
v Change the extend size of the chunk. The default extend size is 10000 KB. Run

the admin() or task() SQL administration API function with the modify space
sp_sizes argument.

Related concepts:
“Plogspace” on page 8-22
Related reference:

onspaces -c -P: Create a plogspace (Administrator's Reference)

create plogspace: Create a plogspace (SQL administration API) (Administrator's
Reference)

modify chunk extendable off argument: Mark a chunk as not extendable (SQL
administration API) (Administrator's Reference)

modify space sp_sizes argument: Modify sizes of an extendable storage space
(SQL administration API) (Administrator's Reference)

9-22 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1182.htm#ids_adr_1182
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_160.htm#ids_sapi_160
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_160.htm#ids_sapi_160
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_105.htm#ids_sapi_105
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_105.htm#ids_sapi_105
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_106.htm#ids_sapi_106
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_106.htm#ids_sapi_106

Automatic space management
You can configure the server to add more storage space automatically when more
space is required. You use space more effectively and ensure that space is allocated
as necessary, while reducing out-of-space errors. You reduce the time required to
manually monitor your spaces to determine which storage space might run out of
free space. If you configure the server to automatically add space, you can also
manually expand a space or extend a chunk.

When the server expands a dbspace, temporary dbspace, sbspace, temporary
sbspace, or blobspace, the server can add a chunk to the storage space. The server
can also extend a chunk in a dbspace, plogspace, or temporary dbspace that is not
mirrored. If the storage space is a non-mirrored dbspace or a temporary dbspace,
the server can also extend a chunk in the storage space.

To configure for the automatic and manual space management, you run SQL
administration API commands or the IBM OpenAdmin Tool (OAT) for Informix to
perform these tasks:
1. Create, modify, and delete one or more entries in the storage pool. The storage

pool contains entries for available raw devices, cooked files, and directories that
Informix uses to expand a storage space.

2. Mark a chunk as extendable.
3. Modify the create and extend size of a storage space (optional).
4. Change the threshold and wait time for the automatic addition of more space

(optional).
5. Configure the frequency of the monitor low storage task (optional).

If your storage pool contains entries, you can also run SQL administration API
commands to:
v Manually expand the storage space or extend a chunk, when you do not want to

wait for the task that automatically expands the space to run.
v Manually create storage spaces from storage pool entries and return space from

empty storage spaces to the storage pool.

By default, the SP_AUTOEXPAND configuration parameter is set to 1 to enable
automatic expansion of storage spaces. If you do not want to the server to
automatically expand space, set the SP_AUTOEXPAND configuration parameter to
0 to disable the automatic creation or extension of chunks. You can also specify
that a chunk is not extendable.

Tip:

In some situations, the database server might not automatically expand a
temporary dbspace that is listed in the DBSPACETEMP configuration parameter
after you configured the server to automatically expand an existing storage space.
If operations (such as an index build or sort) that use the temporary dbspace run
out of space, you receive an out of space error. To work around this problem, you
must manually add a chunk to the temporary dbspace or use a bigger temporary
dbspace.

If you have a storage pool and the database server participates in Enterprise
Replication, storage spaces that are necessary for replication are created
automatically if needed when you define a replication server.
Related concepts:

Chapter 9. Manage disk space 9-23

“Storage space creation and management” on page 1-4
“Size of the root dbspace” on page 8-35
“Extendable chunks” on page 8-4
“The storage pool” on page 8-36
Related tasks:
“Adding a chunk to a dbspace or blobspace” on page 9-14
“Adding a chunk to an sbspace” on page 9-20
“Creating a tenant database” on page 9-51
Related reference:

SP_WAITTIME configuration parameter (Administrator's Reference)

Creating and managing storage pool entries
You can add, modify, and delete the entries in the storage pool.

Each entry in the storage pool contains information about a directory, cooked file,
or raw device that an Informix instance can use if necessary to automatically
expand an existing storage space.

Creating a storage pool entry

To create a storage pool entry, run the admin() or task() function with the
storagepool add argument, as follows:
EXECUTE FUNCTION task("storagepool add", "path", "begin_offset",
"total_size", "chunk size", "priority");

Specify the following information:
v The path for the file, directory, or device that the server can use when

additional storage space is required.
v The offset in KB into the device where Informix can begin allocating

space.
v The total space available to Informix in this entry. The server can allocate

multiple chunks from this amount of space.
v The minimum size in KB of a chunk that can be allocated from the

device, file, or directory. The smallest chunk that you can create is 1000
KB. Therefore, the minimum chunk size that you can specify is 1000 KB.

v A number from 1 to 3 for the priority (1 = high; 2 = medium; 3 = low).
The server attempts to allocate space from a high-priority entry before it
allocates space from a lower priority entry.

The default units for storage pool sizes and offsets are KB. However, you
can specify information in any of the ways shown in the following
examples:
v "100000"
v "100000 K"
v "100 MB"
v "100 GB"
v "100 TB"

Modifying a storage pool entry

To modify a storage pool entry, run the admin() or task() function with the
storagepool modify argument, as follows:

9-24 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1039.htm#ids_adr_1039

EXECUTE FUNCTION task("storagepool modify", "storage_pool_entry_id",
"new_total_size", "new_chunk size", "new_priority");

Deleting storage pool entries

To delete a storage pool entry, run the admin() or task() function with the
storagepool delete argument, as follows:
EXECUTE FUNCTION task("storagepool delete", "storage_pool_entry_id");

To delete all storage pool entries, run the admin() or task() function with
the storagepool purge all argument, as follows:
EXECUTE FUNCTION task("storagepool purge all");

To delete all storage pool entries that are full, run the admin() or task()
function with the storagepool purge full argument, as follows:
EXECUTE FUNCTION task("storagepool purge full");

To delete storage pool entries that have errors, run the admin() or task()
function with the storagepool purge errors argument, as follows:
EXECUTE FUNCTION task("storagepool purge errors");

Examples

The following command adds a directory named /region2/dbspaces with a
beginning offset of 0, a total size of 0, an initial chunk size of 20 MB, and a high
priority. In this example the offset of 0 and the total size of 0 are the only
acceptable entries for a directory.
EXECUTE FUNCTION task("storagepool add", "/region2/dbspaces", "0", "0",
"20000", "1");

The following command changes the total size, chunk size, and priority of storage
pool entry 8 to 10 GB, 10 MB, and a medium priority.
EXECUTE FUNCTION task("storagepool modify", "8", "10 GB", "10000", "2");

The following command deletes the storage pool entry with an entry ID of 7:
EXECUTE FUNCTION task("storagepool delete", "7");

Related concepts:
“The storage pool” on page 8-36
Related reference:

storagepool purge argument: Delete storage pool entries (SQL administration
API) (Administrator's Reference)

storagepool modify argument: Modify a storage pool entry (SQL
administration API) (Administrator's Reference)

storagepool delete argument: Delete one storage pool entry (SQL
administration API) (Administrator's Reference)

Marking a chunk as extendable or not extendable
You mark a chunk as extendable to enable the automatic or manual extension of
the chunk. You can change the mark to not extendable to prevent the automatic or
manual extension of the chunk.

If a chunk is marked as not extendable:

Chapter 9. Manage disk space 9-25

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_109.htm#ids_sapi_109
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_109.htm#ids_sapi_109
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_102.htm#ids_sapi_102
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_102.htm#ids_sapi_102
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_101.htm#ids_sapi_101
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_101.htm#ids_sapi_101

v The server cannot automatically extend the chunk when there is little or no free
space in the chunk. (However, if the storage pool contains entries, the server can
expand a storage space by adding another chunk to the storage space.)

v You cannot manually extend the size of the chunk.

Prerequisite: An extendable chunk must be in an unmirrored dbspace or
temporary dbspace.

To mark a chunk as extendable:

1. Run the admin() or task() function with the modify chunk extendable
argument, as follows:

2. EXECUTE FUNCTION task("modify chunk extendable", "chunk number");

To mark a chunk as not extendable:

1. Run the admin() or task() function with the modify chunk extendable off
argument, as follows:
EXECUTE FUNCTION task("modify chunk extendable off", "chunk number");

The following command specifies that chunk 12 can be extended:
EXECUTE FUNCTION task("modify chunk extendable", "12");

Related concepts:
“Extendable chunks” on page 8-4
Related reference:

modify chunk extendable argument: Mark a chunk as extendable (SQL
administration API) (Administrator's Reference)

modify chunk extendable off argument: Mark a chunk as not extendable (SQL
administration API) (Administrator's Reference)

Modifying the sizes of an extendable storage space
You can control how an extendable storage space in the storage pool grows by
modifying the create size and the extend size. By default, the maximum size of an
extendable storage space is unlimited. You can limit the size of an extendable
storage space by setting a maximum size.

To modify the create, extend, or maximum size of a storage space:

Run the admin() or task() SQL administration API function with the modify space
sp_sizes argument, as follows:
EXECUTE FUNCTION task("modify space sp_sizes", "space_name",
"new_create_size", "new_extend_size", "max_size");

The space_name is the name of the storage space.
The new_create_size is the minimum size that the server can use to create a new
chunk in the specified dbspace, temporary dbspace, sbspace, temporary sbspace, or
blobspace.
The new_extend_size is the minimum size that the server can use to extend a chunk
in the specified unmirrored dbspace or temporary dbspace.
Specify either sizes with a number (for the number of KB) or a percentage (for a
percentage of the total space).
The max_size is the maximum size, in KB, to which the server can expand the
storage space. A value of 0 indicates unlimited.

9-26 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_104.htm#ids_sapi_104
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_104.htm#ids_sapi_104
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_105.htm#ids_sapi_105
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_105.htm#ids_sapi_105

The following command sets the create size to 60 MB, the extend size to 10 MB,
and the maximum size to 200 MB for a space that is named dbspace3:
EXECUTE FUNCTION task("modify space sp_sizes", "dbspace3", "60000",

"10000", "200000");

The following command sets the create size to 20 percent and the extend size to 1.5
percent for a space that is named logdbs:
EXECUTE FUNCTION task("modify space sp_sizes", "logdbs", "20", "1.5");

Related reference:

modify space sp_sizes argument: Modify sizes of an extendable storage space
(SQL administration API) (Administrator's Reference)

Changing the threshold and wait time for the automatic
addition of more space

While Informix can react to out-of-space conditions by automatically extending or
adding chunks when a storage space is full, you can also configure the server to
extend or add chunks before a storage space is full.

Specify a threshold for the minimum amount of free KB in a storage space to
trigger a task that expands the space.

You can also use the SP_WAITTIME configuration parameter to specify the
maximum number of seconds that a thread waits for a space to expand before
returning an out-of-space error.

To change the threshold and wait time:

1. Change the value of the threshold specified in the SP_THRESHOLD
configuration parameter from 0 (disabled) to a non-zero value. Specify a value
from either 1 to 50 for a percentage of a value from 1000 to the maximum size
of a chunk in KB.

2. Change the value of the SP_WAITTIME configuration parameter, which
specifies the maximum number of seconds that a thread waits for a space to
expand before returning an out-of-space error.

Related reference:

SP_THRESHOLD configuration parameter (Administrator's Reference)

SP_WAITTIME configuration parameter (Administrator's Reference)

Configuring the frequency of the monitor low storage task
You can change the frequency of the mon_low_storage task, which periodically
scans the list of dbspaces to find spaces that fall below the threshold indicated by
SP_THRESHOLD configuration parameter. If the task finds spaces that below the
threshold, the task attempts to expand the space, by extending an extendable
chunk or by using the storage pool to add a chunk.

The default frequency of the mon_low_storage task is once per hour, but you can
configure the task to run more or less frequently

Prerequisite: Specify a value in the SP_THRESHOLD configuration parameter for
the minimum amount of free KB in a storage space.

To configure the mon_low_storage task to run more or less frequently:

Chapter 9. Manage disk space 9-27

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_106.htm#ids_sapi_106
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_106.htm#ids_sapi_106
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1038.htm#ids_adr_1038
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1039.htm#ids_adr_1039

Run the following SQL statements, where minutes is the number of minutes
between each run:
DATABASE sysadmin;
UPDATE ph_task set tk_frequency = INTERVAL (minutes)
MINUTE TO MINUTE WHERE tk_name = “mon_low_storage”;

For example, to configure the task to run every 10 minutes, run the following SQL
statements:
DATABASE sysadmin;
UPDATE ph_task set tk_frequency = INTERVAL (10) MINUTE TO MINUTE
WHERE tk_name = “mon_low_storage”;

Manually expanding a space or extending an extendable
chunk

You can manually expand a space or extend a chunk when necessary, instead of
waiting for Informix to automatically expand the space or extend a chunk.

Prerequisites:

v You can extend a chunk only if it is in an unmirrored dbspace or temporary
dbspace.

v The chunk must be marked as extendable before it can be extended. If not, you
must run the admin() or task() function with the modify chunk extendable
argument to specify that the chunk is extendable.

v If a space cannot be expanded by extending a chunk, the storage pool must
contain active entries that the server can use to create new chunks.

To immediately increase your storage space:

Either:
v Manually expand a space by running the admin() or task() function with the

modify space expand argument, as follows:
EXECUTE FUNCTION task("modify space expand", "space_name", "size");

For example, the following command expands space number 8 by 1 gigabyte:
EXECUTE FUNCTION task("modify space expand", "8", "1000000");

The server expands the space either by extending a chunk in the space or
adding a new chunk. The server might round the requested size up, depending
on the page size of the storage space and the configured chunk size for any
storage pool entry used during the expansion.

v Manually extend a chunk by running the admin() or task() function with the
modify chunk extend argument, as follows:
EXECUTE FUNCTION task("modify chunk extend", "chunk_number", "extend_amount");

For example, the following command extends chunk number 12 by 5000 KB:
EXECUTE FUNCTION task("modify chunk extend", "12", "5000");

The server might round the requested size up, depending on the page size of the
storage space.

Related concepts:
“Extendable chunks” on page 8-4
Related reference:

modify space expand argument: Expand the size of a space (SQL
administration API) (Administrator's Reference)

9-28 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_108.htm#ids_sapi_108
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_108.htm#ids_sapi_108

modify chunk extend argument: Extend the size of a chunk (SQL
administration API) (Administrator's Reference)

Example of minimally configuring for and testing the
automatic addition of more space

This example shows how you can minimally configure and then test the automatic
addition of more space. You can do this by creating a dbspace, filling the space,
adding an entry to the Informix storage pool, and loading tables into the space.
When the space fills, Informix automatically expands it.

To minimally configure for and test the automatic addition of more space:

1. Create a dbspace.
For example, create a dbspace named expandable_dbs and allocate an initial
chunk using the first 10000 KB of a cooked file named /my_directory/my_chunk,
as follows:
onspaces -c -d expandable_dbs -p /my_directory/my_chunk -o 0 -s 10000

2. Fill the dbspace.
For example, fill the dbspace without loading a row of data. Instead, create a
table and allocate a large set of contiguous free pages to the first extent, as
follows:
CREATE TABLE large_tab (col1 int) IN expandable_dbs EXTENT SIZE 10000000;

You can monitor the free pages in your chunks by using the onstat -d
command or the IBM OpenAdmin Tool (OAT) for Informix. If your dbspace is
full, you receive out-of-space errors when attempting to create and load data
into another new table.

3. Add an entry to the Informix storage pool.
For example, add the $INFORMIXDIR/tmp directory to the storage pool, as
follows:
DATABASE sysadmin;
EXECUTE FUNCTION task("storagepool add", "$INFORMIXDIR/tmp",
"0", "0", "10000", "2");

4. In the SP_THRESHOLD configuration parameter, set a threshold for the
minimum amount of free KB that can exist in a storage space before Informix
automatically runs a task to expand the space.

5. Create and load new tables into your database.
Now, if a storage space becomes full, instead of receiving an out-of-space error,
Informix automatically creates a cooked file in the $INFORMIXDIR/tmp file and
add a chunk to the expandable_dbs database using the new cooked file. As you
continue to fill this chunk, the server automatically extends it. The server will
always extend chunks if possible before adding new ones to a dbspace.

6. Reduce the free space in a storage space to test the value in the
SP_THRESHOLD configuration parameter.
Allocate enough pages in a storage space to reduce the free space so it is below
the threshold indicated by SP_THRESHOLD. However, do not completely fill
the space.
You must see the space automatically expanded the next time that the
mon_low_storage task runs.

7. Create an out-of-space condition.
Allocate all pages in a storage space. Then try to allocate more pages. The
allocation must be successful and you must not receive an out-of-space error.

Chapter 9. Manage disk space 9-29

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_103.htm#ids_sapi_103
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_103.htm#ids_sapi_103

Informix writes messages to the log whenever it extends or adds a chunk and
marks new chunks as extendable.
Run the onstat -d command to display all chunks in the instance. Look for
extendable chunks, which are marked with an E flag. The command output
shows that the server automatically expanded the space, either through the
addition of a new chunk or by extending the size of an existing chunk.

Example of configuring for the automatic addition of more
space

This example shows how you can fully configure for the automatic addition of
more space by changing some configuration parameter settings, changing the
frequency of a task that monitors low storage, and specifying information for
extendable spaces and chunks.

To configure for the automatic addition of more storage space:
1. Add entries to the storage pool.

For example, add the $INFORMIXDIR/tmp directory to the storage pool, as
follows:
DATABASE sysadmin;
EXECUTE FUNCTION task("storagepool add", "$INFORMIXDIR/tmp",
"0", "0", "10000", "2");

2. Mark some chunks in unmirrored dbspaces and temporary dbspaces as
extendable so that the server can extend the chunks if necessary in the future.
For example, specify that chunk 12 can be extended:
EXECUTE FUNCTION task("modify chunk extendable", "12");

You can also change the mark to of an extendable chunk to not extendable. For
example, specify that chunk number 10 cannot be extended:
EXECUTE FUNCTION task("modify chunk extendable off", "10");

3. In the SP_THRESHOLD configuration parameter, set a threshold for the
minimum amount of free KB that can exist in a storage space before Informix
automatically runs a task to expand the space. Specify either:
v A value from 1 to 50 for a percentage,
v A value from 1000 to the maximum size of the chunk in KB
If an individual storage space fills beyond this threshold that you define and
remains that full until the space-monitoring task (mon_low_storage) next runs,
the server attempts to expand the space by extending an extendable chunk or
by using the storage pool to add a chunk.
For example, suppose the SP_THRESHOLD value is 5.5, which the server treats
as 5.5 percent. If a space runs low on free pages, and the free space percentage
falls below 5.5 percent and remains below that level until the mon_low_storage
task runs next, that task attempts to expand the space. If SP_THRESHOLD is
set to 50000 and a space has fewer than free 50000 KB, that space is expanded
the next time mon_low_storage runs.

4. Optional: Change how often the mon_low_storage task runs. This task
periodically scans the list of dbspaces to find spaces that fall below the
threshold indicated by SP_THRESHOLD configuration parameter.
For example, to configure the task to run every 10 minutes, run the following
SQL statements:
DATABASE sysadmin;
UPDATE ph_task set tk_frequency = INTERVAL (10) MINUTE TO MINUTE
WHERE tk_name = “mon_low_storage”;

9-30 IBM Informix Administrator's Guide

5. Optional: Change the value of the SP_WAITTIME configuration parameter,
which specifies the maximum number of seconds that a thread waits for a
space to expand before returning an out-of-space error.

6. Optional: Change two sizes that are associated with expanding a storage space:
v The extend size, which is the minimum size that is used when extending a

chunk in a dbspace, temporary dbspace, or the plogspace
v The create size, which is the minimum size that is used when creating a new

chunk in a dbspace, temporary dbspace, sbspace, temporary sbspace, or
blobspace that is not a mirror space
For example, the following command sets the create size and extend size to
60 MB and 10 MB, respectively, for space number 3:
EXECUTE FUNCTION task("modify dbspace sp_sizes",
"3", "60000", "10000");

After you configure for the automatic expansion of a storage space, you can also
manually expand the space or extend a chunk in the space, as necessary.

Drop a chunk
Use the onspaces utility to drop a chunk from a dbspace.

Before you drop a chunk, ensure that the database server is in the correct mode,
using the following table as a guideline.

Table 9-1. Database server modes for dropping chunks

Chunk type
Database server in
online mode

Database server in
administration or
quiescent mode

Database server in
offline mode

Dbspace chunk Yes Yes No

Temporary dbspace chunk Yes Yes No

Blobspace chunk No Yes No

Sbspace or temporary
sbspace chunk

Yes Yes No

Verify whether a chunk is empty
To drop a chunk successfully from a dbspace with either of these utilities, the
chunk must not contain any data. All pages other than overhead pages must be
freed.

If any pages remain allocated to nonoverhead entities, the utility returns the
following error: Chunk is not empty.

In addition, when a dbspace consists of two or more chunks and the additional
chunks do not contain user data, the additional chunks cannot be deleted if the
chunks contain a tblspace tblspace.

If you receive the Chunk is not empty message, you must determine which table
or other entity still occupies space in the chunk by running oncheck -pe to list
contents of the extent.

Usually, the pages can be removed when you drop the table that owns them. Then
reenter the utility command.

Chapter 9. Manage disk space 9-31

Drop a chunk from a dbspace with onspaces
The following example drops a chunk from dbsp3 on UNIX. An offset of 300 KB is
specified.
onspaces -d dbsp3 -p /dev/raw_dev1 -o 300

You cannot drop the initial chunk of a dbspace with the syntax in the previous
example. Instead, you must drop the dbspace. Use the fchunk column of onstat -d
to determine which is the initial chunk of a dbspace. For more information about
onstat, see information about the onspaces utility in the IBM Informix
Administrator's Reference.

For information about dropping a chunk from a dbspace with onspaces, see the
IBM Informix Administrator's Reference.

Drop a chunk from a blobspace
The procedure for dropping a chunk from a blobspace is identical to the procedure
for dropping a chunk from a dbspace described in “Drop a chunk from a dbspace
with onspaces” except that the database server must be in quiescent or
administration mode. Other than this condition, you must substitute the name of
your blobspace wherever a reference to a dbspace occurs.

Drop a chunk from an sbspace with onspaces
The following example drops a chunk from sbsp3 on UNIX. An offset of 300 KB is
specified. The database server must be in online administration, or quiescent mode
when you drop a chunk from an sbspace or temporary sbspace.
onspaces -d sbsp3 -p /dev/raw_dev1 -o 300

You cannot drop the initial chunk of an sbspace with the syntax in the previous
example. Instead, you must drop the sbspace. Use the fchunk column of onstat -d
to determine which chunk is the initial chunk of an sbspace.

The -f (force) option
You can use the -f option of onspaces to drop an sbspace chunk without metadata
allocated in it. If the chunk contains metadata for the sbspace, you must drop the
entire sbspace. Use the Chunks section of onstat -d to determine which sbspace
chunks contain metadata.
onspaces -d sbsp3 -f

Warning: If you force the drop of an sbspace, you might introduce consistency
problems between tables and sbspaces.

Delete smart large objects without any pointers
Each smart large object has a reference count, the number of pointers to the smart
large object. When the reference count is greater than 0, the database server
assumes that the smart large object is in use and does not delete it.

Rarely, a smart large object with a reference count of 0 remains. You can use the
onspaces -cl command to delete all smart large objects that have a reference count
of 0, if it is not open by any application.

For information about using onspaces -cl, see information about the onspaces
utility in the IBM Informix Administrator's Reference.

9-32 IBM Informix Administrator's Guide

Drop a storage space
Use onspaces to drop a dbspace, temporary dbspace, blobspace, sbspace,
temporary sbspace, or extspace.

On UNIX, you must be logged in as root or informix to drop a storage space. On
Windows, you must be a member of the Informix-Admin group to drop a storage
space.

You can drop a storage space only when the database server is in online,
administration, or quiescent mode.

Preparation for dropping a storage space
Before you drop a dbspace, you must first drop all databases and tables that you
previously created in that dbspace. You cannot drop the root dbspace.

Before you drop a blobspace, you must drop all tables that have a TEXT or BYTE
column that references the blobspace.

Run oncheck -pe to verify that no tables or log files are located in the dbspace or
blobspace.

Before you drop an sbspace, you must drop all tables that have a CLOB or BLOB
column that reference objects that are stored in the sbspace. For sbspaces, you are
not required to delete columns that point to an sbspace, but these columns must be
null; that is, all smart large objects must be deallocated from the sbspace.

Tip: If you drop tables on dbspaces where light appends are occurring, the light
appends might be slower than you expect. The symptom of this problem is
physical logging activity. If light appends are slower than you expect, make sure
that no tables are dropped in the dbspace either before or during the light
appends. If you have dropped tables, force a checkpoint with onmode -c before
you perform the light append.

Important: Dropping a chunk or a dbspace triggers a blocking checkpoint, which
forces all database updates to wait while all the buffer pools are flushed to disk.
This update blocking can be significantly longer during a blocking checkpoint than
during a non-blocking checkpoint, especially if the buffer pool is large.

Drop a mirrored storage space
If you drop a storage space that is mirrored, the mirror spaces are also dropped.

If you want to drop only a storage-space mirror, turn off mirroring. (See “End
mirroring” on page 18-5.) This action drops the dbspace, blobspace, or sbspace
mirrors and frees the chunks for other uses.

Drop a storage space with onspaces
To drop a storage space with onspaces, use the -d option as illustrated in the
following examples.

This example drops a dbspace called dbspce5 and its mirrors.
onspaces -d dbspce5

This example drops a dbspace called blobsp3 and its mirrors.

Chapter 9. Manage disk space 9-33

onspaces -d blobsp3

Use the -d option with the -f option if you want to drop an sbspace that contains
data. If you omit the -f option, you cannot drop an sbspace that contains data. This
example drops an sbspace called sbspc4 and its mirrors.
onspaces -d sbspc4 -f

Warning: If you use the -f option, the tables in the database server might have
dead pointers to the deleted smart large objects.

For information about dropping a storage space with onspaces, see information
about the onspaces utility in the IBM Informix Administrator's Reference.

Back up after dropping a storage space
If you create a storage space with the same name as the deleted storage space,
perform another level-0 backup to ensure that future restores do not confuse the
new storage space with the old one. For more information, see the IBM Informix
Backup and Restore Guide.

Important: After you drop a dbspace, blobspace, or sbspace, the newly freed
chunks are available for reassignment to other dbspaces, blobspaces, or sbspaces.
However, before you reassign the newly freed chunks, you must perform a level-0
backup of the root dbspace and the modified storage space. If you do not perform
this backup, and you subsequently must perform a restore, the restore might fail
because the backup reserved pages are not up-to-date.

Creating a space or chunk from the storage pool
If your storage pool contains entries, you can create storage spaces or chunks from
free space in the storage pool.

Prerequisite: The storage pool must contain entries (a directory, cooked file, or raw
device).

To create a storage space or chunk from the storage pool:

Run the admin() or task() function with one of the following arguments for
creating a space from the storage pool. The elements you use in the command
vary, depending on the type of space that you are creating.
v EXECUTE FUNCTION task("create dbspace from storagepool", "space_name",

"size", "page_size", "mirroring_flag", "first_extent", "next_extent");
v EXECUTE FUNCTION task("create tempdbspace from storagepool",

"space_name", "size", "page_size");
v EXECUTE FUNCTION task("create blobspace from storagepool", "space_name",

"size", "page_size", "mirroring_flag",);
v EXECUTE FUNCTION task("create sbspace from storagepool", "space_name",

"size", "log_flag", "mirroring_flag",);
v EXECUTE FUNCTION task("create tempsbspace from storagepool",

"space_name", "size",);
v EXECUTE FUNCTION task("create chunk from storagepool",

"space_name", "size",);

Examples

The following command creates a mirrored blobspace named blobspace1. The new
blobspace has a size of 100 gigabytes and a blobpage size of 100 pages.

9-34 IBM Informix Administrator's Guide

EXECUTE FUNCTION task("create blobspace from storagepool", "blobspace1", "100 GB",
"100", "1");

The following command adds a chunk to the dbspace named logdbs. The new
chunk has a size of 200 megabytes.
EXECUTE FUNCTION task("create chunk from storagepool", "logdbs", "200 MB");

Related reference:

create dbspace from storagepool argument: Create a dbspace from the storage
pool (SQL administration API) (Administrator's Reference)

create tempdbspace from storagepool argument: Create a temporary dbspace
from the storage pool (SQL administration API) (Administrator's Reference)

create blobspace from storagepool argument: Create a blobspace from the
storage pool (SQL administration API) (Administrator's Reference)

create sbspace from storagepool argument: Create an sbspace from the storage
pool (SQL administration API) (Administrator's Reference)

create tempsbspace from storagepool argument: Create a temporary sbspace
from the storage pool (SQL administration API) (Administrator's Reference)

create chunk from storagepool argument: Create a chunk from the storage pool
(SQL administration API) (Administrator's Reference)

Returning empty space to the storage pool
You can return the space from an empty chunk or storage space to the storage
pool.

To return storage space from an empty chunk, dbspace, temporary dbspace,
blobspace, sbspace, or temporary sbspace to the storage pool:

Run the admin() or task() function with one of the following arguments for
returning space to the storage pool. The elements you use in the command vary,
depending on the type of object that you are dropping.
v EXECUTE FUNCTION task("drop chunk to storagepool", "space_name",

"chunk_path", "chunk_offset")
v EXECUTE FUNCTION task("drop dbspace to storagepool", "space_name");
v EXECUTE FUNCTION task("drop tempdbspace to storagepool", "space_name");
v EXECUTE FUNCTION task("drop blobspace to storagepool", "space_name");
v EXECUTE FUNCTION task("drop sbspace to storagepool", "space_name");
v EXECUTE FUNCTION task("drop tempsbspace to storagepool", "space_name");

Examples

The following command drops an empty blobspace named blob4 and adds all of
the freed space to the storage pool.
EXECUTE FUNCTION task("drop blobspace to storagepool", "blob4");

The following command drops an empty chunk in a dbspace named health and
adds all of the freed space to the storage pool.
EXECUTE FUNCTION task("drop chunk to storagepool", "health",
"/health/rawdisk23", "100 KB");

Related reference:

Chapter 9. Manage disk space 9-35

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_110.htm#ids_sapi_110
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_110.htm#ids_sapi_110
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_111.htm#ids_sapi_111
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_111.htm#ids_sapi_111
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_112.htm#ids_sapi_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_112.htm#ids_sapi_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_113.htm#ids_sapi_113
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_113.htm#ids_sapi_113
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_114.htm#ids_sapi_114
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_114.htm#ids_sapi_114
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_115.htm#ids_sapi_115
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_115.htm#ids_sapi_115

drop chunk to storagepool argument: Return space from an empty chunk to
the storage pool (SQL administration API) (Administrator's Reference)

drop dbspace to storagepool argument: Return space from an empty dbspace
to the storage pool (SQL administration API) (Administrator's Reference)

drop tempdbspace to storagepool argument: Return space from an empty
temporary dbspace to the storage pool (SQL administration API) (Administrator's
Reference)

drop blobspace to storagepool argument: Return space from an empty
blobspace to the storage pool (SQL administration API) (Administrator's Reference)

drop sbspace to storagepool argument: Return space from an empty sbspace to
the storage pool (SQL administration API) (Administrator's Reference)

drop tempsbspace to storagepool argument: Return space from an empty
temporary sbspace to the storage pool (SQL administration API) (Administrator's
Reference)

Manage extspaces
An extspace does not require allocation of disk space. You create and drop
extspaces using the onspaces utility. For more information about extspaces, see
“Extspaces” on page 8-22.

Create an extspace
You create an extspace with the onspaces utility. But you must first have a valid
data source and a valid access method with which to access that data source.
Although you can create an extspace without a valid access method or a valid data
source, any attempts to retrieve data from the extspace generate an error. For
information about access methods, see the IBM Informix Virtual-Table Interface
Programmer's Guide.

To create an extspace with onspaces, use the -c option as illustrated in the
following example. The following example shows how to create an extspace,
pass_space, that is associated with the UNIX password file.
onspaces -c -x pass_space -l /etc/passwd

Specify an extspace name of up to 128 bytes. The name must be unique and begin
with a letter or underscore. You can use letters, digits, underscores, and $
characters in the name.

Important: The preceding example assumes that you have coded a routine that
provides functions for correctly accessing the file passwd and that the file itself
exists. After you have created the extspace, you must use the appropriate
commands to allow access to the data in the file passwd. For more information
about user-defined access methods, see the IBM Informix Virtual-Table Interface
Programmer's Guide.

For reference information about creating an extspace with onspaces, see
information about the onspaces utility in the IBM Informix Administrator's Reference.

9-36 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_121.htm#ids_sapi_121
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_121.htm#ids_sapi_121
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_116.htm#ids_sapi_116
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_116.htm#ids_sapi_116
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_117.htm#ids_sapi_117
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_117.htm#ids_sapi_117
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_117.htm#ids_sapi_117
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_118.htm#ids_sapi_118
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_118.htm#ids_sapi_118
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_119.htm#ids_sapi_119
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_119.htm#ids_sapi_119
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_120.htm#ids_sapi_120
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_120.htm#ids_sapi_120
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_120.htm#ids_sapi_120

Drop an extspace
To drop an extspace with onspaces, use the -d option as illustrated in the
following examples. An extspace cannot be dropped if it is associated with an
existing table or index.

This example drops an extspace called pass_space.
onspaces -d pass_space

Skip inaccessible fragments
One benefit that fragmentation provides is the ability to skip table fragments that
are unavailable during an I/O operation. For example, a query can proceed even
when a fragment is located on a chunk that is currently down as a result of a disk
failure. When this situation occurs, a disk failure affects only a portion of the data
in the fragmented table. By contrast, tables that are not fragmented can become
completely inaccessible if they are located on a disk that fails.

This function is controlled as follows:
v By the database server administrator with the DATASKIP configuration

parameter
v By individual applications with the SET DATASKIP statement

The DATASKIP configuration parameter
You can set the DATASKIP parameter to OFF, ALL, or ON dbspace_list. OFF means
that the database server does not skip any fragments. If a fragment is unavailable,
the query returns an error. ALL indicates that any unavailable fragment is skipped.
ON dbspace_list instructs the database server to skip any fragments that are located
in the specified dbspaces.

The dataskip feature of onspaces
Use the dataskip feature of the onspaces utility to specify the dbspaces that are to
be skipped when they are unavailable. For example, the following command sets
the DATASKIP parameter so that the database server skips the fragments in
dbspace1 and dbspace3, but not in dbspace2:
onspaces -f ON dbspace1 dbspace3

For the complete syntax of this onspaces option, see information about the
onspaces utility in the IBM Informix Administrator's Reference.

Use onstat to check dataskip status
Use the onstat utility to list the dbspaces currently affected by the dataskip feature.
The -f option lists both the dbspaces that were set with the DATASKIP
configuration parameter and the -f option of the onspaces utility.

When you run onstat -f, you receive a message that tells you whether the
DATASKIP configuration parameter is set to on for all dbspaces, off for all
dbspaces, or on for specific dbspaces.

The SQL statement SET DATASKIP
An application can use the SQL statement SET DATASKIP to control whether a
fragment is skipped if it is unavailable. Applications must include this statement
only in limited circumstances, because it causes queries to return different results,
depending on the availability of the underlying fragments. Like the configuration

Chapter 9. Manage disk space 9-37

parameter DATASKIP, the SET DATASKIP statement accepts a list of dbspaces that
indicate to the database server which fragments to skip. For example, suppose that
an application programmer included the following statement at the beginning of
an application:
SET DATASKIP ON dbspace1, dbspace5

This statement causes the database server to skip dbspace1 or dbspace5 whenever
both of these conditions are met:
v The application attempts to access one of the dbspaces.
v The database server finds that one of the dbspaces is unavailable.

If the database server finds that both dbspace1 and dbspace5 are unavailable, it
skips both dbspaces.

A database server administrator can use the DEFAULT setting for the SET
DATASKIP statement to control the dataskip feature. Suppose that an application
developer includes the following statement in an application:
SET DATASKIP DEFAULT

When a query is run subsequent to this SQL statement, the database server checks
the value of the configuration parameter DATASKIP. A database server
administrator can encourage users to use this setting to specify which dbspaces are
to be skipped as soon as the database server administrator becomes aware that one
or more dbspaces are unavailable.

Effect of the dataskip feature on transactions
If you turn the dataskip feature on, a SELECT statement always executes. In
addition, an INSERT statement always succeeds if the table is fragmented by
round-robin and at least one fragment is online. However, the database server does
not complete operations that write to the database if a possibility exists that such
operations might compromise the integrity of the database. The following
operations fail:
v All UPDATE and DELETE operations where the database server cannot

eliminate the down fragments
If the database server can eliminate the down fragments, the update or delete is
successful, but this outcome is independent of the DATASKIP setting.

v An INSERT operation for a table fragmented according to an expression-based
distribution scheme where the appropriate fragment is down

v Any operation that involves referential constraint checking if the constraint
involves data in a down fragment
For example, if an application deletes a row that has child rows, the child rows
must also be available for deletion.

v Any operation that affects an index value (for example, updates to a column that
is indexed) where the index in question is located in a down chunk

Determine when to use dataskip
Use this feature sparingly and with caution because the results are always suspect.
Consider using it in the following situations:
v You can accept the compromised integrity of transactions.
v You can determine that the integrity of the transaction is not compromised.

The latter task can be difficult and time consuming.

9-38 IBM Informix Administrator's Guide

Determine when to skip selected fragments
In certain circumstances, you might want the database server to skip some
fragments, but not others. This usually occurs in the following situations:
v Fragments can be skipped because they do not contribute significantly to a

query result.
v Certain fragments are down, and you decide that skipping these fragments and

returning a limited amount of data is preferable to canceling a query.

When you want to skip fragments, use the ON dbspace-list setting to specify a list
of dbspaces with the fragments that the database server must skip.

Determine when to skip all fragments
Setting the DATASKIP configuration parameter to ALL causes the database server
to skip all unavailable fragments. Use this option with caution. If a dbspace
becomes unavailable, all queries initiated by applications that do not issue a SET
DATASKIP OFF statement before they execute can be subject to errors.

Monitor fragmentation use
The database administrator might find the following aspects of fragmentation
useful to monitor:
v Data distribution over fragments
v I/O request balancing over fragments
v The status of chunks that contain fragments

The administrator can monitor the distribution of data over table fragments. If the
goal of fragmentation is improved administration response time, it is important for
data to be distributed evenly over the fragments. To monitor fragmentation disk
use, you must monitor database server tblspaces, because the unit of disk storage
for a fragment is a tblspace. (For information about how to monitor the data
distribution for a fragmented table, see “Monitor tblspaces and extents” on page
9-43.)

The administrator must monitor I/O request queues for data that is contained in
fragments. When I/O queues become unbalanced, the administrator must work
with the DBA to tune the fragmentation strategy. (For an explanation of how to
monitor chunk use, including the I/O queues for each chunk, see “Monitor
chunks” on page 9-40.)

The administrator must monitor fragments for availability and take appropriate
steps when a dbspace that contains one or more fragments fails. For how to
determine if a chunk is down, see “Monitor chunks” on page 9-40.

Display databases
You can display the databases that you create with SMI tables.
Related concepts:
“Databases” on page 8-23

SMI tables
Query the sysdatabases table to display a row for each database managed by the
database server. For a description of the columns in this table, see the sysdatabases
information in the topics about the sysmaster database in the IBM Informix
Administrator's Reference.

Chapter 9. Manage disk space 9-39

Monitor disk usage
These topics describe methods of tracking the disk space used by various database
server storage units.

For background information about internal database server storage units
mentioned in this section, see the chapter about disk structures and storage in the
IBM Informix Administrator's Reference.
Related concepts:
“Control of where simple large object data is stored” on page 8-10

Monitor chunks
You can monitor chunks for the following information:
v Chunk size
v Number of free pages
v Tables within the chunk

You can use this information to track the disk space used by chunks, monitor
chunk I/O activity, and check for fragmentation.

The onstat -d utility
The onstat -d utility lists all dbspaces, blobspaces, and sbspaces and the following
information for the chunks within those spaces.
v The address of the chunk
v The chunk number and associated dbspace number
v The offset into the device (in pages)
v The size of the chunk (in pages)
v The number of free pages in the chunk
v The path name of the physical device

If you issue the onstat -d command on an instance with blobspace chunks, the
number of free pages shown is out of date. The tilde (~) that precedes the free
value indicates that this number is approximate. The onstat -d command does not
register a blobpage as available until the logical login which a deletion occurred is
backed up and the blobpage is freed. Therefore, if you delete 25 simple large
objects and immediately run onstat -d, the newly freed space is not in the onstat
output.

To obtain an accurate number of free blobpages in a blobspace chunk, issue the
onstat -d update command. For details, see “The onstat -d update option” on page
9-41.

In onstat -d update output, the flags column in the chunk section provides the
following information:
v Whether the chunk is the primary chunk or the mirror chunk
v Whether the chunk is online, is down, is being recovered, or is a new chunk

For an example of onstat -d output, see information about the onstat utility in the
IBM Informix Administrator's Reference.

9-40 IBM Informix Administrator's Guide

Important: You must perform a level-0 backup of the root dbspace and the
modified dbspace before mirroring can become active and after turning off
mirroring.

The onstat -d update option
The onstat -d update option displays the same information as onstat -d and an
accurate number of free blobpages for each blobspace chunk.

The onstat -D option
The onstat -D option displays the same information as onstat -d, plus the number
of pages read from the chunk (in the page Rd field).

Monitor chunk I/O activity with the onstat -g iof command
Use the onstat -g iof command to monitor chunk I/O activity, including the
distribution of I/O requests against the different fragments of a fragmented table.

The onstat -g iof command displays:
v The number of reads from each chunk and the number of writes to each chunk
v I/0 by service level, broken down by individual operation
v The type of operation
v The number of times the operation occurred
v The average time the operation took to complete

If one chunk has a disproportionate amount of I/O activity against it, this chunk
might be a system bottleneck.

For an example of onstat -g iof output, see information about the onstat utility in
the IBM Informix Administrator's Reference.

The oncheck -pr command
The database server stores chunk information in the reserved pages
PAGE_1PCHUNK and PAGE_2PCHUNK.

To list the contents of the reserve pages, run oncheck -pr. The following example
shows sample output for oncheck -pr. This output is essentially the same as the
onstat -d output; however, if the chunk information has changed since the last
checkpoint, these changes are not in the oncheck -pr output.
Validating PAGE_1DBSP & PAGE_2DBSP...

Using dbspace page PAGE_2DBSP.

DBspace number 1
DBspace name rootdbs
Flags 0x20001 No mirror chunks
Number of chunks 2
First chunk 1
Date/Time created 07/28/2008 14:46:55
Partition table page number 14
Logical Log Unique Id 0
Logical Log Position 0
Oldest Logical Log Unique Id 0
Last Logical Log Unique Id 0
Dbspace archive status No archives have occurred

.

.
Validating PAGE_1PCHUNK & PAGE_2PCHUNK...

Using primary chunk page PAGE_2PCHUNK.

Chunk number 1

Chapter 9. Manage disk space 9-41

Flags 0x40 Chunk is online
Chunk path /home/server/root_chunk
Chunk offset 0 (p)
Chunk size 75000 (p)
Number of free pages 40502
DBSpace number 1

.

.

.

The oncheck -pe command
To obtain the physical layout of information in the chunk, run oncheck -pe. The
dbspaces, blobspaces, and sbspaces are listed. The following example shows
sample output for oncheck -pe.

The following information is displayed:
v The name, owner, and creation date of the dbspace
v The size in pages of the chunk, the number of pages used, and the number of

pages free
v A listing of all the tables in the chunk, with the initial page number and the

length of the table in pages

The tables within a chunk are listed sequentially. This output is useful for
determining chunk fragmentation. If the database server is unable to allocate an
extent in a chunk despite an adequate number of free pages, the chunk might be
badly fragmented.
DBSpace Usage Report: rootdbs Owner: informix Created: 08/08/2006

Chunk Pathname Size Used Free
1 /home/server/root_chunk 75000 19420 55580

Description Offset Size
--- --------------------
RESERVED PAGES 0 12
CHUNK FREELIST PAGE 12 1
rootdbs:’informix’.TBLSpace 13 250
PHYSICAL LOG 263 1000
FREE 1263 1500
LOGICAL LOG: Log file 2 2763 1500
LOGICAL LOG: Log file 3 4263 1500
...
sysmaster:’informix’.sysdatabases 10263 4
sysmaster:’informix’.systables 10267 8
...

Chunk Pathname Size Used Free
2 /home/server/dbspace1 5000 53 4947

Description Offset Size
--- --------------------
RESERVED PAGES 0 2
CHUNK FREELIST PAGE 2 1
dbspace1:’informix’.TBLSpace 3 50
FREE 53 4947

Related reference:
“Change the physical-log location and size” on page 16-1

SMI tables
Query the syschunks table to obtain the status of a chunk. The following columns
are relevant.

9-42 IBM Informix Administrator's Guide

chknum
Number of the chunk within the dbspace

dbsnum
Number of the dbspace

chksize
Total size of the chunk in pages

nfree Number of pages that are free

is_offline
Whether the chunk is down

is_recovering
Whether the chunk is recovering

mis_offline
Whether the mirror chunk is down

mis_recovering
Whether the mirror chunk is being recovered

The syschkio table contains the following columns.

pagesread
Number of pages read from the chunk

pageswritten
Number of pages written to the chunk

Monitor tblspaces and extents
Monitor tblspaces and extents to determine disk usage by database, table, or table
fragment. Monitoring disk usage by table is particularly important when you are
using table fragmentation, and you want to ensure that table data and table index
data are distributed appropriately over the fragments.

Run oncheck -pt to obtain extent information. The oncheck -pT option returns all
the information from the oncheck -pt option and the additional information about
page and index usage.

SMI tables
Query the systabnames table to obtain information about each tblspace. The
systabnames table has columns that indicate the corresponding table, database,
and table owner for each tblspace.

Query the sysextents table to obtain information about each extent. The sysextents
table has columns that indicate the database and the table that the extent belongs
to, and the physical address and size of the extent.

Monitor simple large objects in a blobspace
Monitor blobspaces to determine the available space and whether the blobpage
size is optimal.

Determine blobpage fullness with oncheck -pB
The oncheck -pB command displays statistics that describe the average fullness of
blobpages. If you find that the statistics for a significant number of simple large
objects show a low percentage of fullness, the database server might benefit from
changing the size of the blobpage in the blobspace.

Chapter 9. Manage disk space 9-43

Run oncheck -pB with either a database name or a table name as a parameter. The
following example retrieves storage information for all simple large objects stored
in the table sriram.catalog in the stores_demo database:
oncheck -pB stores_demo:sriram.catalog

For detailed information about interpreting the oncheck -pB output, see optimizing
blobspace blobpage size in the chapter on table performance considerations in the
IBM Informix Performance Guide.

Monitor blobspace usage with oncheck -pe
The oncheck -pe command provides information about blobspace usage:
v Names of the tables that store TEXT and BYTE data, by chunk
v Number of disk pages (not blobpages) used, by table
v Number of free disk pages remaining, by chunk
v Number of overhead pages used, by chunk

The following example shows sample oncheck -pe output.
BLOBSpace Usage Report: fstblob Owner: informix Created: 03/01/08

Chunk: 3 /home/server/blob_chunk Size Used Free
4000 304 3696

Disk usage for Chunk 3 Total Pages
--
OVERHEAD 8
stores_demo:chrisw.catalog 296
FREE 3696

Monitor simple large objects in a dbspace with oncheck -pT
Use oncheck -pT to monitor dbspaces to determine the number of dbspace pages
that TEXT and BYTE data use.

This command takes a database name or a table name as a parameter. For each
table in the database, or for the specified table, the database server displays a
general tblspace report.

Following the general report is a detailed breakdown of page use in the extent, by
page type. See the Type column for information about TEXT and BYTE data.

The database server can store more than one simple large object on the same
blobpage. Therefore, you can count the number of pages that store TEXT or BYTE
data in the tblspace, but you cannot estimate the number of simple large objects in
the table.

The following example shows sample output.
TBLSpace Usage Report for mydemo:chrisw.catalog

Type Pages Empty Semi-Full Full Very-Full
---------------- ---------- ---------- ---------- ---------- ----------
Free 7
Bit-Map 1
Index 2
Data (Home) 9
Data (Remainder) 0 0 0 0 0
Tblspace BLOBs 5 0 0 1 4

Total Pages 24

Unused Space Summary

9-44 IBM Informix Administrator's Guide

Unused data bytes in Home pages 3564
Unused data bytes in Remainder pages 0
Unused bytes in Tblspace Blob pages 1430

Index Usage Report for index 111_16 on mydemo:chrisw.catalog

Average Average
Level Total No. Keys Free Bytes
----- -------- -------- ----------

1 1 74 1058
----- -------- -------- ----------
Total 1 74 1058

Index Usage Report for index 111_18 on mydemo:chrisw.catalog

Average Average
Level Total No. Keys Free Bytes
----- -------- -------- ----------

1 1 74 984
----- -------- -------- ----------
Total 1 74 984

Monitor sbspaces
One of the most important areas to monitor in an sbspace is the metadata page
use. When you create an sbspace, you specify the size of the metadata area. Also,
any time that you add a chunk to the sbspace, you can specify that metadata space
be added to the chunk.

If you attempt to insert a new smart large object, but no metadata space is
available, you receive an error. The administrator must monitor metadata space
availability to prevent this situation from occurring.

Use the following commands to monitor sbspaces.

Command Description

onstat -g smb s Displays the storage attributes for all sbspaces in the system:

v sbspace name, flags, owner

v Logging status

v Average smart-large-object size

v First extent size, next extent size, and minimum extent size

v Maximum I/O access time

v Lock mode

onstat -g smb c Displays the following information for each sbspace chunk:

v Chunk number and sbspace name

v Chunk size and path name

v Total user data pages and free user data pages

v Location and number of pages in each user-data and metadata areas

Chapter 9. Manage disk space 9-45

Command Description

oncheck -ce
oncheck -pe

Displays the following information about sbspace use:

v Names of the tables that store smart-large-object data, by chunk

v Number of disk pages (not sbpages) used, by table

v Number of free user-data pages that remain, by chunk

v Number of reserved user-data pages that remain, by chunk

v Number of metadata pages used, by chunk

The output provides the following totals:

v Total number of used pages for all user-data areas and metadata area. The system adds 53
pages for the reserved area to the totals for the user-data area and metadata area.

v Number of free pages that remain in the metadata area

v Number of free pages that remain in all user-data areas

onstat -d Displays the following information about the chunks in each sbspace:

v Number of free sbpages in each sbspace chunk, in the metadata area, and in the user-data
areas

v Total number of sbpages in each sbspace chunk, in the metadata area, and in the user-data
areas

oncheck -cs
oncheck -ps

Validates and displays information about the metadata areas for sbspaces..

oncheck -cS Displays information about smart-large-object extents and user-data areas for sbspaces.

oncheck -pS Displays information about smart-large-object extents, user-data areas, and metadata areas for
sbspaces. For more information about oncheck -cS and -pS, see managing sbspaces in the topics
on table performance considerations in your IBM Informix Performance Guide.

Related tasks:
“Adding a chunk to an sbspace” on page 9-20
“Monitoring the metadata and user-data areas” on page 9-49
Related reference:

onstat -g smb command: Print sbspaces information (Administrator's
Reference)
“The oncheck -ce and oncheck -pe options” on page 9-47
“The onstat -d option”
“The oncheck -ps option” on page 9-48
“The oncheck -cs option” on page 9-48

The onstat -d option
Use the onstat -d option to display the following information about the chunks in
each sbspace:
v Number of free sbpages in each sbspace chunk, in the metadata area, and in the

user-data area
v Total number of sbpages in each sbspace chunk, in the metadata area, and in the

user-data area

For an example of onstat -d output, see information about the onstat utility in the
IBM Informix Administrator's Reference.

To find out the total amount of used space, run the oncheck -pe command. For
more information, see “The oncheck -ce and oncheck -pe options” on page 9-47.

9-46 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0576.htm#ids_adr_0576
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0576.htm#ids_adr_0576

The onstat -d option does not register an sbpage as available until the logical login
which a deletion occurred is backed up and the sbpage is freed. Therefore, if you
delete 25 smart large objects and immediately run onstat -d, the newly freed space
is not in the onstat output.
Related reference:
“Monitor sbspaces” on page 9-45

The oncheck -ce and oncheck -pe options
Run oncheck -ce to display the size of each sbspace chunk, the total amount of
used space, and the amount of free space in the user-data area. The oncheck -pe
option displays the same information as oncheck -ce plus a detailed listing of
chunk use. First the dbspaces are listed and then the sbspaces. The -pe output
provides the following information about sbspace use:
v Names of the tables that store smart-large-object data, by chunk
v Number of disk pages (not sbpages) used, by table
v Number of free user-data pages that remain, by chunk
v Number of metadata pages used, by chunk

The output provides the following totals:
v Total number of used pages for the user-data area, metadata area, and reserved

area
The system adds 53 extra pages for the reserved area to the totals for the
user-data area and metadata area.

v Number of free pages that remain in the metadata area
v Number of free pages that remain in the user-data area

Tip: The oncheck -pe option provides information about sbspace use in terms of
database server pages, not sbpages.

The following example shows sample output. In this example, the sbspace
s9_sbspc has a total of 214 used pages, 60 free pages in the metadata area, and 726
free pages in the user-data area.
Chunk Pathname Size Used Free

2 /ix/ids9.2/./s9_sbspc 1000 940 60

Description Offset Size
-- -------- --------
RESERVED PAGES 0 2
CHUNK FREELIST PAGE 2 1
s9_sbspc:’informix’.TBLSpace 3 50
SBLOBSpace LO [2,2,1] 53 8
SBLOBSpace LO [2,2,2] 61 1

...
SBLOBSpace LO [2,2,79] 168 1

SBLOBSpace FREE USER DATA 169 305
s9_sbspc:’informix’.sbspace_desc 474 4
s9_sbspc:’informix’.chunk_adjunc 478 4
s9_sbspc:’informix’.LO_hdr_partn 482 8
s9_sbspc:’informix’.LO_ud_free 490 5
s9_sbspc:’informix’.LO_hdr_partn 495 24
FREE 519 60
SBLOBSpace FREE USER DATA 579 421

Total Used: 214
Total SBLOBSpace FREE META DATA: 60
Total SBLOBSpace FREE USER DATA: 726

Chapter 9. Manage disk space 9-47

You can use CHECK EXTENTS as the SQL administration API command equivalent
to oncheck -ce. For information about using SQL API commands, see Chapter 28,
“Remote administration with the SQL administration API,” on page 28-1 and the
IBM Informix Administrator's Reference.
Related reference:
“Monitor sbspaces” on page 9-45

The oncheck -cs option
The oncheck -cs and the oncheck -Cs options validate the metadata area of an
sbspace. The following example shows an example of the -cs output for s9_sbspc.
If you do not specify an sbspace name on the command line, oncheck checks and
displays the metadata for all sbspaces.

Use the oncheck -cs output to see how much space is left in the metadata area. If
it is full, allocate another chunk with adequate space for the metadata area. To find
the number of used pages in the metadata area, total the numbers in the Used
column. To find the number of free pages in the metadata area, total the numbers
in the Free column.

For example, based on the field values displayed in the following figure, the total
number of used pages in the metadata area for s9_sbspc is 33 2 KB pages (or 66
KB). The metadata area contains a total of 62 free pages (or 124 KB).
Validating space ’s9_sbspc’ ...

SBLOBspace Metadata Partition Partnum Used Free
s9_sbspc:’informix’.TBLSpace 0x200001 6 44
s9_sbspc:’informix’.sbspace_desc 0x200002 2 2
s9_sbspc:’informix’.chunk_adjunc 0x200003 2 2
s9_sbspc:’informix’.LO_hdr_partn 0x200004 21 11
s9_sbspc:’informix’.LO_ud_free 0x200005 2 3

Related reference:
“Monitor sbspaces” on page 9-45

The oncheck -ps option
The oncheck -ps option validates and displays information about the metadata
areas in sbspace partitions. The following example shows an example of the -ps
output for s9_sbspc. If you do not specify an sbspace name on the command line,
oncheck validates and displays tblspace information for all storage spaces.

To monitor the amount of free metadata space, run the following command:
oncheck -ps spacename

The -ps output includes information about the locking granularity, partnum,
number of pages allocated and used, extent size, and number of rows in the
metadata area. Use the oncheck -ps output to see how much space is left in the
metadata area. If it is full, allocate another chunk with adequate space for the
metadata area.

If you run oncheck -ps for the dbspace that contains the tables where the smart
large objects are stored, you can find the number of rows in the table.
Validating space ’s9_sbspc’ ...

TBLSpace Report for
TBLspace Flags 2801 Page Locking

TBLspace use 4 bit bit-maps
Permanent System TBLspace

9-48 IBM Informix Administrator's Guide

Partition partnum 0x200001
Number of rows 92
Number of special columns 0
Number of keys 0
Number of extents 1
Current serial value 1
First extent size 50
Next extent size 50
Number of pages allocated 50
Number of pages used 6
Number of data pages 0
Number of rows 0
Partition lockid 2097153

Current SERIAL8 value 1
Current REFID value 1
Created Thu May 24 14:14:33 2007

Related reference:
“Monitor sbspaces” on page 9-45

Monitoring the metadata and user-data areas
The database server reserves 40 percent of the user-data area as a reserved area. The
database server uses this reserved space for either the metadata or user data. The
metadata area gets used up as smart large objects are added to that sbspace. When
the database server runs out of metadata or user-data space, it moves a block of
the reserved space to the corresponding area.

When all of the reserve area is used up, the database server cannot move space to
the metadata area, even if the user-data area contains free space.
1. As you add smart large objects to the sbspace, use oncheck -pe or onstat -g

smb c to monitor the space in the metadata area, user-data area, and reserved
area. For an example, see “The oncheck -ce and oncheck -pe options” on page
9-47.

2. Use the message log to monitor metadata stealing.
The database server prints messages about the number of pages allocated from
the reserved area to the metadata area.

3. Add another chunk to the sbspace before the sbspace runs out of space in the
metadata and reserved areas.
For more information, see “Adding a chunk to an sbspace” on page 9-20.

4. The database server writes the FREE_RE and CHKADJUP log records when it
moves space from the reserve area to the metadata or user-data area.

For more information, see “Size sbspace metadata” on page 9-20.
Related reference:
“Monitor sbspaces” on page 9-45

Multitenancy
You can segregate data, storage space, and processing resources among multiple
client organizations by creating multiple tenant databases.

For example, assume that you want to provide payroll services to small businesses.
You sell the use of the payroll application as a service to small business clients.
Instead of providing a separate Informix instance to each client, you can configure
a tenant database for each client in a single Informix instance.

Chapter 9. Manage disk space 9-49

When you configure multitenancy, you segregate the following aspects of a
database server:

Data You create a separate tenant database for each client.

Storage space
Each tenant database has dedicated storage spaces to store data. Tables,
fragments, and indexes that are created in the tenant database must be
created in the dedicated storage spaces. Only the tenant database can use
the dedicated storage spaces.

Temporary storage spaces can be dedicated to a specific tenant database or
shared between databases.

Users You can set permissions for client users to access each tenant database. You
can grant certain users permission to create, modify, or drop tenant
databases. By default, only a DBA or user informix can create a tenant
database.

Processing resources
You can segregate CPU resources for a tenant database by defining a
tenant virtual processor class and creating virtual processors for running
the session threads for the tenant database. Otherwise, the session threads
for tenant databases have access to all CPU virtual processors.

You can limit the number of locks a tenant session can acquire.

The following illustration shows a possible configuration for two clients in an
Informix server instance. Each client has a database and users who are allowed to
access the tenant database. Each tenant database has dedicated storage spaces. Both
tenant databases share the default temporary sbspace. Tenant A has a tenant virtual
processor class with two virtual processors, while Tenant B has a virtual process
class with one virtual processor.

Database A

tvp

tvp

Tvp_classA

Informix server instance

tempdbspaceA tempdbspaceB

tempsbspace
(SBSPACETEMP)

dbspaceA sbspaceA dbspaceB sbspaceB

blobspaceB

CPU
processor

CPU
processor

CPU
processor

Database B

Tenant BTenant A

tvp

Users = xiao,
xavier, xena

Tvp_classB

Users = ann, ajay, all

Figure 9-1. Multiple tenants in an Informix server instance

9-50 IBM Informix Administrator's Guide

Replication and tenant databases

You can replicate tenant databases with Enterprise Replication and high-availability
clusters.

You can run the commands to create, modify, or delete tenant databases through
an Enterprise Replication grid.

You cannot run the commands to create, modify, or delete tenant databases from
an updatable secondary server in a high-availability cluster.
Related concepts:
“Storage space creation and management” on page 1-4
“Tenant virtual processor class” on page 4-16

Creating a tenant database
You can create a tenant database to segregate data, storage, and processing
resources to a specific client organization.

You must be user informix, a DBA, or have the TENANT privilege to create a
tenant database.

You cannot convert an existing database to a tenant database. You cannot convert a
tenant database to a non-tenant database. You cannot run the CREATE DATABASE
statement to create a tenant database.

To create a tenant database:
1. Create the storage spaces for the tenant database. All dedicated storage spaces

must be empty when you create the tenant database. You can create the
following types of dedicated spaces for a tenant database:

dbspaces
You must create at least one dbspace for the tenant database. The
tenant database must be stored in one or more dedicated dbspaces.

blobspaces
If the tenant database will contain simple large objects, you must create
one or more blobspaces.

sbspaces
If the tenant database will contain smart large objects, you must create
one or more sbspaces. Smart large objects can include BLOB or CLOB
data, or data and table statistics that are too large to fit in a row. Some
Informix features, such as Enterprise Replication, spatial data, and basic
text searching, require sbspaces.

temporary dbspaces
Optional: Create one or more temporary dbspaces to store temporary
tables. Otherwise, temporary tables are stored in the temporary
dbspaces that are specified by the DBSPACETEMP configuration
parameter or environment variable.

temporary sbspaces
Optional: Create one or more temporary sbspaces to store temporary
smart large objects. Otherwise, temporary smart large objects are stored
in the temporary sbspaces that are specified by the SBSPACETEMP
configuration parameter.

Chapter 9. Manage disk space 9-51

2. Optional: Set up a storage pool so that storage spaces can grow automatically.
You can specify maximum sizes for extendable storage spaces to limit the
growth of tenant databases.

3. Optional: Provide TENANT privileges to specific users to create, modify, and
delete tenant databases. For example, the following command gives the user
jsmith TENANT privileges:
EXECUTE FUNCTION task("grant admin", "jsmith", "tenant");

4. Create a tenant database and define its properties by running the admin() or
task() SQL administration API function with the tenant create argument. For
example, the following statement creates a tenant database that is named
companyA:
EXECUTE FUNCTION task(’tenant create’, ’companyA’,

’{dbspace:"companyA_dbs1,companyA_dbs2", sbspace:"companyA_sbs1",
vpclass:"tvp_A,num=2", logmode:"ansi"}’);

The tenant database has two dbspaces, an sbspace, two tenant virtual
processors, and the ANSI logging mode.

When you explicitly specify storage locations during the creation or altering of
tables and indexes in the tenant database, you must specify the dbspaces that are
listed in the tenant database definition. Otherwise the statement fails. If you do not
explicitly specify storage for tables or indexes, they are created in the first dbspace
that is listed in the tenant definition.

Note: Improve the security of your databases by performing the following tasks:
v Run GRANT and REVOKE statements to control user access to databases.
v Set the DBCREATE_PERMISSION configuration parameter to restrict the ability

to create non-tenant databases.
Related concepts:
“Automatic space management” on page 9-23
Related reference:

tenant create argument: create a tenant database (SQL Administration API)
(Administrator's Reference)

The tenant table (Administrator's Reference)

Managing tenant databases
You can view the properties of tenant databases, update the properties of tenant
databases, and delete tenant databases.

Viewing tenant database properties

Use the OpenAdmin Tool (OAT) for Informix to view information about space
usage, storage spaces, tenant virtual processors, chunks, tables, and indexes for
tenant databases.

To view the tenant database definition, query the tenant table in the sysadmin
database. For example, the following statement lists the tenant databases and their
properties:
SELECT hex(tenant_id),tenant_dbsname,tenant_resources::json,

tenant_create_time,tenant_last_updated
FROM tenant;

9-52 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_163.htm#ids_sapi_163
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_163.htm#ids_sapi_163
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1187.htm#ids_adr_1187

The tenant_resources column, which contains the tenant properties, is of type
BSON, so you must cast the column to JSON to view the properties.

Updating the properties of tenant databases

To update properties, run the admin() or task() SQL administration API function
with the tenant update argument. The updates take effect for new sessions.

You can append dbspaces, blobspaces, or sbspaces to the existing lists of storage
spaces for a tenant database. The storage spaces must be empty. You must have
DBA or TENANT privileges to change tenant database properties.

You cannot remove dedicated storage spaces from a tenant database unless you
delete the database.

You can specify new values for temporary dbspaces, temporary sbspaces, the
tenant virtual processor class, or the limit on locks per session. Existing values for
these properties are replaced.

Deleting tenant databases

To delete a tenant database, run the admin() or task() SQL administration API
function with the tenant drop argument. You must have DBA or TENANT
privileges to delete tenant databases. You cannot delete a tenant database with the
DROP DATABASE statement. All dedicated storage spaces for the tenant database
are emptied and become available. Any tenant virtual processors that are not
shared with other tenant databases are dropped.
Related reference:

tenant update argument: modify tenant database properties (SQL
Administration API) (Administrator's Reference)

tenant drop argument: drop a tenant database (SQL Administration API)
(Administrator's Reference)

The tenant table (Administrator's Reference)

Storage optimization
Data compression and consolidation processes can minimize the disk space that is
used by your data and indexes.

The following table describes the processes that you can use to reduce the amount
of disk space that is used by data in rows, simple large objects in dbspaces, and
index keys. You can automate any or all of these processes or do them as needed.

Chapter 9. Manage disk space 9-53

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_164.htm#ids_sapi_164
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_164.htm#ids_sapi_164
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_165.htm#ids_sapi_165
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_165.htm#ids_sapi_165
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1187.htm#ids_adr_1187

Table 9-2. Storage optimization processes

Storage optimization
process Purpose When to use

Compressing Compresses data in tables
and fragments, compress
simple large objects in
dbspaces, and compresses
keys in indexes. Reduces the
amount of required disk
space.

After you enable
compression, new data or
index keys is automatically
compressed.

When you want to reduce
the size of 2000 or more rows
of data, simple large objects
in dbspaces, or 2000 or more
index keys

Repacking Consolidates free space in
tables, fragments, and
indexes.

After you compress or when
you want to consolidate free
space

Shrinking Returns free space to the
dbspace.

After you compress or
repack or when you want to
return free space to the
dbspace

Defragmenting Brings data rows or index
keys closer together in
contiguous, merged extents.

When frequently updated
tables or indexes become
scattered among multiple
non-contiguous extents

The following illustration shows uncompressed data that uses most of the space in
a fragment, free space that is created when the data is compressed, free space that
is moved to the end of the fragment after a repack operation, and data that
remains in the fragment after a shrink operation. The process for storage
optimization of indexes is the same.

9-54 IBM Informix Administrator's Guide

Related concepts:
“Storage space creation and management” on page 1-4

Storage optimization methods
You can optimize individual tables, fragments, or indexes. You can schedule the
automatic optimization of all tables and fragments.

You can use the COMPRESSED option in the CREATE TABLE statement to enable
automatic compression of the table when the table has at least 2000 rows.

You can use the COMPRESSED option in the CREATE INDEX statement to enable
automatic compression of the index if the index has 2000 or more keys.
Compression is not enabled if the index has fewer than 2000 keys.

You can use the SQL administration API task or admin function to perform any
type of storage optimization on a table, fragment, or index.

You can enable the auto_crsd Scheduler task to automatically compress, repack,
shrink, and defragment all tables and table fragments.

You can use OAT to optimize any table, fragment, or index, or automatically
optimize all tables and table fragments.

1) Uncompressed data uses most
of the space in this fragment.

Data Data Data Data

2) A compress operation reduces
the size of rows, creating free space.

3) A repack operation moves compressed
rows to the front of the fragment, leaving
the free space at the end of the fragment.

4) A shrink operation returns free space
to the dbspace.

Data Data Data Data

Data Data Data Data

Data Data Data Data

Data Data Free space Data

Free space Data Data Data

Data Data Free space Data

Free space Data Data Data

Data Data Data Data

Data Data Data Data

Data Data Data Data

Free space Free space Free space Free space

Data Data Data Data

Data Data Data Data

Data Data Data Data

Figure 9-2. Data in a fragment during the compression and storage optimization process

Chapter 9. Manage disk space 9-55

Table 9-3. Methods of storage optimization

Goal SQL statement

SQL
administration
API argument Scheduler task OAT page

Automatically
compress data
for a table or
fragment

CREATE TABLE
with the
COMPRESSED
option

table compress
or fragment
compress

Storage

Automatically
compress data
for all tables and
fragments

auto_crsd Server
Optimization
Policies

Repack and
shrink a table or
fragment

table repack
shrink or
fragment repack
shrink

Storage

Automatically
repack and
shrink all tables
and fragments

auto_crsd Server
Optimization
Policies

Automatically
compress a
B-tree index

CREATE INDEX
with the
COMPRESSED
option

index compress Storage

Repack and
shrink a B-tree
index

index repack
shrink

Storage

Defragment a
table of fragment

defragment Storage

Automatically
defragment all
tables and
fragments

auto_crsd Server
Optimization
Policies

Related concepts:

Table and fragment compress and uncompress operations (SQL administration
API) (Administrator's Reference)
“Data that you can compress” on page 9-61
“Methods for viewing compression information” on page 9-66
“Compression” on page 9-60
Related reference:

COMPRESSED option for tables (SQL Syntax)

COMPRESSED option for indexes (SQL Syntax)

defragment argument: Dynamically defragment partition extents (SQL
administration API) (Administrator's Reference)

index compress repack shrink arguments: Optimize the storage of B-tree
indexes (SQL administration API) (Administrator's Reference)

9-56 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_079.htm#ids_sapi_079
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_079.htm#ids_sapi_079
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2309.htm#ids_sqs_2309
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2307.htm#ids_sqs_2307
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_107.htm#ids_sapi_107
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_107.htm#ids_sapi_107
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_142.htm#ids_sapi_142
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_142.htm#ids_sapi_142

Scheduling data optimization
You can configure the automatic compressing, shrinking, repacking, and
defragmenting of all tables and extents by enabling the auto_crsd Scheduler task.

You can enable and configure the auto_crsd task on the Server Optimization
Policies page in the IBM OpenAdmin Tool (OAT) for Informix or by updating
Scheduler tables in the sysadmin database.

To enable the auto_crsd task by updating the Scheduler tables:
1. Connect to the sysadmin database as user informix or another authorized user.
2. Enable the auto_crsd Scheduler task by using an UPDATE statement on the

ph_task table to set the value of the tk_enable column to T. For example, the
following statement enables the auto_crsd task:
UPDATE ph_task

SET tk_enable = ’T’
WHERE tk_name = ’auto_crsd’;

3. Optional: Change the frequency of when the task is run by running an
UPDATE statement on the ph_task table to change the value of the
tk_frequency column. The default value is 7 00:00:00, which indicates that the
task runs once a week. For example, the following statement changes the
frequency to once a day:
UPDATE ph_task

SET tk_frequency = ’1 00:00:00’
WHERE tk_name = ’auto_crsd’;

4. Optional: Disable individual operations by using an UPDATE statement on the
ph_threshold table to set the value column for a threshold to F:
v AUTOCOMPRESS_ENABLED: controls compression
v AUTOREPACK_ENABLED: controls repacking
v AUTOSHRINK_ENABLED: controls shrinking
v AUTODEFRAG_ENABLED: controls defragmenting

For example, the following statement disables just the defragmentation
operation of the auto_crsd task:
UPDATE ph_threshold

SET value = ’F’
WHERE name = ’AUTODEFRAG_ENABLED’;

5. Optional: Change the thresholds of individual operations by using and
UPDATE statement on the ph_threshold table to change the value of the value
column for a threshold:
v AUTOCOMPRESS_ROWS: The threshold for compression is the number of

uncompressed rows. The default threshold is 50 000 rows. A table is
compressed when the number of uncompressed rows exceeds 50 000.

v AUTOREPACK_SPACE: The threshold for repacking a table is the percentage
of noncontiguous space. The default is 90%. A table is repacked when more
than 90% of the space the table occupies is noncontiguous.

v AUTOSHRINK_UNUSED: The threshold for shrinking a table or fragment is
the percentage of unused, allocated space. The default is 50%. A table or
fragment is shrunk when more than 50% of the allocated space is unused.

v AUTODEFRAG_EXTENTS: The threshold for defragmenting table or
fragment extents is the number of extents. The default is 100. A table or
fragment is defragmented when the number of extents exceeds 100.

For example, the following statement changes the compression threshold to
5000 rows:

Chapter 9. Manage disk space 9-57

UPDATE ph_threshold
SET value = ’5000’
WHERE name = ’AUTOCOMPRESS_ROWS’;

When a threshold for an operation that you enabled is exceeded, the Scheduler
runs the operation.
Related concepts:
“Partition defragmentation” on page 9-59
Chapter 27, “The Scheduler,” on page 27-1
Related reference:

The Scheduler tables (Administrator's Reference)

Example: Optimizing data storage on demand
In this example, you learn how to run SQL administration API commands to
determine how much space you can save by compressing a table, how to compress
the table, and how to optimize storage on demand. You also learn how to
uncompress the table and remove the compression dictionaries.

Assume that you have a table named rock in a database named music that is
owned by user mario. The rock table is not fragmented. You can run the same
operations on a table fragment as you can on a whole table, but the syntax is
slightly different.

Prerequisites:
v There must be at least 2,000 rows in each fragment of the table, not just a total

of 2,000 rows in the whole table.
v You must be able to connect to the sysadmin database (by default only user

informix), and you must be a DBSA.
v Logical and physical logs are large enough to handle normal processing and

compression operations. Compression, repacking, and uncompressing, operations
can use large amounts of logs.

To compress both row data and simple large objects in dbspaces:
1. You run the following command to check how much space you might save by

compressing the table:
EXECUTE FUNCTION task("table estimate_compression", "rock", "music", "mario");

You review the resulting report, which indicates you can save 75 percent of the
space that is used by the rock table. You decide to compress the table.

2. Before you compress data, you want to create a compression dictionary, which
contains information that IBM Informix uses to compress data in the rock table.
You run the following command
EXECUTE FUNCTION task("table create_dictionary", "rock", "music", "mario");

Tip: If you do not create the compression dictionary as a separate step,
Informix creates the dictionary automatically when you compress data.

3. You decide that you want to compress data in the rock table and simple large
objects in dbspaces, consolidate the data, and then return the free space to the
dbspace. You run the following command:
EXECUTE FUNCTION task("table compress repack shrink", "rock", "music", "mario");

You can perform the same operations faster by running them in parallel. You
run the following command:

9-58 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1079.htm#ids_adr_1079

EXECUTE FUNCTION task("table compress repack shrink parallel", "rock",
"music", "mario");

You can adjust the command by specifying what you want to compress or
shrink. For example:
v To compress only row data, specify:

EXECUTE FUNCTION task("table compress rows parallel","rock","music","mario");

v To compress only row data and then repack and shrink the data, specify:
EXECUTE FUNCTION task("table compress repack shrink rows parallel",
"rock","music","mario");

v To compress only simple large objects in the dbspace, specify:
EXECUTE FUNCTION task("table compress blobs parallel","rock","music","mario");

After the existing rows and simple large objects are compressed, Informix
consolidates the free space that is left at the end of the table, and then removes
the free space from the table, returning that space to the dbspace.
If the simple large objects or rows are not smaller when compressed, the
database server does not compress them.

4. Now suppose that you want to uncompress the data. You run the following
command:
EXECUTE FUNCTION task("table uncompress parallel", "rock", "music", "mario");

5. You want to remove the compression dictionary.
a. Verify that Enterprise Replication does not require the dictionary.

If you do require the dictionaries for Enterprise Replication, do not remove
compression dictionaries for uncompressed or dropped tables and
fragments.

b. Archive the dbspace that contains the table or fragment with a compression
dictionary.

c. Run this command:
EXECUTE FUNCTION task("table purge_dictionary", "rock", "music", "mario");

To run compression and other storage optimization commands on table fragments,
include the fragment argument instead of the table argument and the fragment
partition number instead of the table name.
EXECUTE FUNCTION task("fragment command_arguments", "partnum_list");

Related concepts:
“Compression” on page 9-60
Related reference:

table or fragment arguments: Compress data and optimize storage (SQL
administration API) (Administrator's Reference)

Partition defragmentation
You can improve performance by defragmenting partitions to merge
non-contiguous extents.

A frequently updated table can become fragmented over time, which degrades
performance every time the table is accessed by the server. Defragmenting a table
brings data rows closer together and avoids partition header page overflow
problems. Defragmenting an index brings the entries closer together, which
improves the speed at which the table information is accessed.

Before you defragment a table, index, or partition, be sure that none of the
following conflicting operations are in progress:

Chapter 9. Manage disk space 9-59

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_081.htm#ids_sapi_081
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_081.htm#ids_sapi_081

v An existing defragment operation on the table, index, or dbspace.
v DDL statements, such as DROP TABLE or ALTER FRAGMENT, are being run on

the table or partition.
v The table is being truncated.
v The table is being compressed or uncompressed.
v An online index build is running.

You cannot defragment the following objects:
v Pseudo tables, such as virtual-table interface (VTI) tables
v Tables with virtual-index interface (VII) indexes
v Tables with functional indexes
v Temporary tables
v Sort files
v A table that has exclusive access set

To determine how many extents a table, index, or partition has, you can run the
oncheck -pt command.

To defragment a table, index, or partition, run the SQL administration API task() or
admin() function with the defragment argument or the defragment partnum
argument and specify the table name, index, or partition number that you want to
defragment.

You cannot stop a defragment request after you run the command.

If there are problems in completing a defragment request, error messages are sent
to the online log file.
Related tasks:
“Scheduling data optimization” on page 9-57
Related reference:

oncheck -pt and -pT: Display tblspaces for a Table or Fragment
(Administrator's Reference)

defragment argument: Dynamically defragment partition extents (SQL
administration API) (Administrator's Reference)

Compression
You can compress and uncompress row data in tables and fragments and simple
large objects in dbspaces. You can compress B-tree indexes. You can also
consolidate free space in a table or fragment and you can return this free space to
the dbspace. Before you compress data, you can estimate the amount of disk space
that you can save.

Compressing data, simple large objects, or indexes, consolidating data, and
returning free space have the following benefits:
v Significant savings in disk storage space
v Reduced disk usage for compressed fragments
v Significant saving of logical log usage, which saves more space and can prevent

bottlenecks for high-throughput OLTP after the compression operation is
completed.

v Fewer page reads because more rows can fit on a page

9-60 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0387.htm#ids_adr_0387
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0387.htm#ids_adr_0387
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_107.htm#ids_sapi_107
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_107.htm#ids_sapi_107

v Smaller buffer pools because more data fits in the same size pool
v Reduced I/O activity:

– More compressed rows than uncompressed rows fit on a page
– Log records for insert, update, and delete operations of compressed rows are

smaller
v Ability to compress older fragments of time-fragmented data that are not often

accessed, while leaving more recent data that is frequently accessed in
uncompressed form

v Ability to free space no longer required for a table
v Faster backup and restore

If your applications run with high buffer cache hit ratios and high performance is
more important than space usage, you might not want to compress your data,
because compression might slightly decrease performance.

You can compress data and indexes in parallel.

Queries can access data in a compressed table.

Because compressed data covers fewer pages and has more rows per page than
uncompressed data, the query optimizer might choose different plans after
compression.

If you use Enterprise Replication, compressing data on one replication server does
not affect the data on any other replication server.

If you use high-availability clusters, data that is compressed in the source table is
compressed in the target table. You cannot perform compression operations on
secondary servers, because secondary servers must have the same data and
physical layout as the primary server.

The main alternative to compression is to buy more physical storage. The main
alternative for reducing bottlenecks in IO-bound workloads is to buy more
physical memory to enable the expansion of the buffer pools.
Related concepts:
“Storage optimization methods” on page 9-55
Related tasks:
“Example: Optimizing data storage on demand” on page 9-58

Data that you can compress
You can compress data in rows and simple large objects in dbspaces. However, you
might not want to compress all the types of data that you can compress.

You can compress the following types of data:
v The contents of data rows, including any remainder pieces for rows that span

pages, and the images of those rows that are contained in logical log records.
v Simple large objects (TEXT or BYTE data types) that are stored in dbspaces.

Table or table-fragment data with frequently repeating long patterns is very
compressible. Certain types of data, such as text, might be more compressible than
other types of data, such as numeric data, because data types like text might
contain longer and more frequently repeating patterns.

Chapter 9. Manage disk space 9-61

I/O-bound tables, for example, tables that have bad cache hit ratios, are good
candidates for compression. In OLTP environments, compressing I/O-bound tables
can improve performance.

IBM Informix can compress any combination of data types, because it treats all
data to be compressed as unstructured sequences of bytes. Thus, the server can
compress patterns that span columns, for example, in city, state, and zip code
combinations. (The server uncompresses a sequence of bytes in the same sequence
that existed before the data was compressed.)
Related concepts:
“Storage optimization methods” on page 9-55

Data that you cannot compress
You cannot compress data in rows in some types of tables and fragments.

You cannot compress data in rows in the following database objects:
v Tables or fragments that are in the sysmaster, sysutils, sysuser, syscdr, and

syscdcv1 databases
v Catalogs
v Temporary tables
v Virtual-table interface tables
v The tblspace tblspace

v Internal partition tables
v Dictionary tables (these tables, one per dbspace, hold compression dictionaries

for the fragments or tables that are compressed in that dbspace and metadata
about the dictionaries.)

You cannot compress a table while an online index build is occurring on the table.

You cannot compress simple large objects in blobspaces.

Encrypted data, data that is already compressed by another algorithm, and data
without long repeating patterns compresses poorly or does not compress. Try to
avoid placing columns with data that compresses poorly between columns that
have frequent patterns to prevent the potential disruption of column-spanning
patterns.

IBM Informix compresses images of the rows only if the images of the compressed
rows are smaller than the uncompressed images. Even if compressed rows are only
slightly smaller than their uncompressed images, a small saving of space can
enable the server to put more rows onto pages.

Very small tables are not good candidates for compression, because you might not
be able to gain back enough space from compressing the rows to offset the storage
cost of the compression dictionary.

Informix cannot compress an individual row to be smaller than four bytes long.
The server must leave room in case the row image later grows beyond what the
page can hold. Therefore, you must not try to compress fragments or
non-fragmented tables with rows that contain four bytes or are shorter than four
bytes.

9-62 IBM Informix Administrator's Guide

B-tree index compression
You can compress detached B-tree indexes. You can also consolidate free space in
the index and you can return free space at the end of the index to the dbspace.
Before you compress an index, you can estimate the amount of disk space that you
can save.

You can compress a detached B-tree index that is on a fragmented or
non-fragmented table.

An index must have at least 2000 keys to be compressed.

You cannot compress the following types of indexes:
v An index that is not a B-tree index
v An attached B-tree index
v Virtual B-tree indexes
v An index that does not have at least 2000 keys

The compression operation compresses only the leaves (bottom level) of the index.

You cannot uncompress a compressed index. If you no longer need the compressed
index, you can drop the index and then re-create it as an uncompressed index.

You can compress a new index when you create it by including the COMPRESSED
option in the CREATE INDEX statement. You compress an existing index with an
SQL administration API command.
Related concepts:

Creation of Root and Leaf Nodes (Administrator's Reference)
Related reference:

index compress repack shrink arguments: Optimize the storage of B-tree
indexes (SQL administration API) (Administrator's Reference)

index estimate_compression argument: Estimate index compression (SQL
administration API) (Administrator's Reference)

CREATE INDEX statement (SQL Syntax)

Compression ratio estimates
The compression ratio depends on the data that is being compressed. Before you
compress a table or table fragment, you can estimate the amount of space you can
save if data is compressed. Compression estimates are based on samples of row
data. The actual ratio of saved space might vary.

The compression algorithm that IBM Informix uses is a dictionary-based algorithm
that performs operations on the patterns of the data that were found to be the
most frequent, weighted by length, in the data that was sampled at the time the
dictionary was built.

If the typical data distribution skews away from the data that was sampled when
the dictionary was created, compression ratios can decrease.

The maximum compression ratio is 90 percent. The maximum compression of any
sequence of bytes occurs by replacing each group of 15 bytes with a single 12-bit
symbol number, yielding a compressed image that is ten percent of the size of the

Chapter 9. Manage disk space 9-63

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0317.htm#ids_adr_0317
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_142.htm#ids_sapi_142
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_142.htm#ids_sapi_142
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_144.htm#ids_sapi_144
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_144.htm#ids_sapi_144
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0401.htm#ids_sqs_0401

original image. However, the 90 percent ratio is never achieved because Informix
adds a single byte of metadata to each compressed image.

IBM Informix estimates the compression ratios by random sampling of row data
and then summing up the sizes of the following items:
v Uncompressed row images
v Compressed row images, based on a new compression dictionary that is

temporarily created by the estimate compression command
v Compressed row images, based on the existing dictionary, if there is one. If there

is no existing dictionary, this value is the same as the sum of the sizes of the
uncompressed row images.

The actual space saving ratios that are achieved might vary from the compression
estimates due to a sampling error, the type of data, how data fits in data pages, or
whether other storage optimization operations are also run.

Some types of data compress more than other types of data:
v Text in different languages or character sets might have different compression

ratios, even though the text is stored in CHAR or VARCHAR columns.
v Numeric data that consists mostly of zeros might compress well, while more

variable numeric data might not compress well.
v Data with long runs of blank spaces compresses well.
v Data that is already compressed by another algorithm and data that is encrypted

might not compress well. For example, images and sound samples in rows
might already be compressed, so compressing the data again does not save more
space.

Compression estimates are based on raw compressibility of the rows. The server
generally puts a row onto a single data page. How the rows fit on data pages can
affect how much the actual compression ratio varies from the estimated
compression ratio:
v When each uncompressed row nearly fills a page and the compression ratio is

less than 50 percent, each compressed row fills more than half a page. The
server puts each compressed row on a separate page. In this case, although the
estimated compression ratio might be 45 percent, the actual space savings is
nothing.

v When each uncompressed row fills slightly more than half a page and the
compression ratio is low, each compressed row might be small enough to fit in
half a page. The server puts two compressed rows on a page. In this case, even
though the estimated compression ratio might be as low as 5 percent, the actual
space savings is 50 percent.

Informix does not store more than 255 rows on a single page. Thus, small rows or
large pages can reduce the total savings that compression can achieve. For
example, if 200 rows fit onto a page before compression, no matter how small the
rows are when compressed, the maximum effective compression ratio is
approximately 20 percent, because only 255 rows can fit on a page after
compression.

If you are using a page size that is larger than the minimum page size, one way to
increase the realized compression space savings is to switch to smaller pages, so
that:
v The 255 row limit can no longer be reached.

9-64 IBM Informix Administrator's Guide

v If this limit is still reached, there is less unused space on the pages.

More (or less) space can be saved, compared to the estimate, if the compress
operation is combined with a repack operation, shrink operation, or repack and
shrink operation. The repack operation can save extra space only if more
compressed rows fit on a page than uncompressed rows. The shrink operation can
save space at the dbspace level if the repack operation frees space.
Related reference:

Output of the estimate compression operation (SQL administration API)
(Administrator's Reference)

Compression dictionaries
A compression dictionary is a library of frequently occurring patterns in data or
index keys and the symbol numbers that replace the patterns.

One compression dictionary exists for each compressed fragment, each compressed
non-fragmented table, each compressed simple large object in a dbspace, and each
compressed index partition.

A compression dictionary is built using data that is sampled randomly from a
fragment or non-fragmented table that contains at least 2,000 rows, or an index
that has at least 2,000 keys. Typically, approximately 100 KB of space is required
for storing the compression dictionary.

The compression dictionary can store a maximum of 3,840 patterns, each of which
can be from two to 15 bytes in length. (Patterns that are longer than seven bytes
reduce the total number of patterns that the dictionary can hold.) Each of these
patterns is represented by a 12-bit symbol number in a compressed row. To be
compressed, a sequence of bytes in the input row image must exactly match a
complete pattern in the dictionary. A row that does not have enough pattern
matches against the dictionary might not be compressible because each byte of an
input row that did not completely match is replaced in the compressed image by
12 bits (1.5 bytes).

Informix attempts to capture the best compressible patterns (the frequency of the
pattern that is multiplied by the length). Data is compressed by replacing
occurrences of the patterns with the corresponding symbol numbers from the
dictionary, and replacing occurrences of bytes that do not match any pattern with
special reserved symbol numbers.

All dictionaries for the tables or fragments in a dbspace are stored in a hidden
dictionary table in that dbspace. The syscompdicts_full table and the syscompdicts
view in the sysmaster database provide information about the compression
dictionaries.
Related reference:

syscompdicts_full (Administrator's Reference)

Tools for moving compressed data
You can use the High-Performance Loader (HPL) and other IBM Informix data
migration utilities to move compressed data between databases.

You cannot use the onunload and onload utilities to move compressed data from
one database to another. You must uncompress data in compressed tables and
fragments before you use the onunload and onload utilities.

Chapter 9. Manage disk space 9-65

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_082.htm#ids_sapi_082
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_082.htm#ids_sapi_082
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1062.htm#ids_adr_1062

The dbexport utility uncompresses compressed data. Therefore, you must
recompress the data after you use the dbimport utility to import the data.
Related concepts:

High-Performance Loader User’s Guide (High-Performance Loader Guide)
Related information:

Data migration utilities (Migration Guide)

Methods for viewing compression information
You can display compression statistics, information about compression dictionaries,
and the compression dictionary.

The following table describes the different methods that you can use to view
compression information.

Table 9-4. Methods to view compression information

Method Description

IBM OpenAdmin Tool (OAT) for Informix Display whether tables, fragments, or indexes
are compressed, and estimated storage
savings after storage optimization.

oncheck -pT or oncheck -pt command Displays statistics on any compressed items
in the "Compressed Data Summary" section
of the output. If no items are compressed, the
"Compressed Data Summary" section does
not appear in the output.

For example, for row data, oncheck -pT
displays the number of any compressed rows
in a table or table fragment and the
percentage of table or table-fragment rows
that are compressed.

onlog -c option Uses the compression dictionary to expand
compressed data and display the
uncompressed contents of compressed log
records.

onstat –g dsk option Displays information about the progress of
currently running compression operations.

onstat -g ppd option Displays information about the active
compression dictionaries that exist for
currently open compressed fragments (also
referred to as partitions). This option shows
the same information as the syscompdicts
view in the sysmaster database.

syscompdicts_full table in the sysmaster
database

Displays metadata about the compression
dictionary and the compression dictionary
binary object.

Only user informix can access this table.

syscompdicts view in the sysmaster database Displays the same information as the
syscompdicts_full table, except that for
security reasons, it excludes the
dict_dictionary column, which contains the
compression dictionary binary object.

9-66 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.hpl.doc/hpl.htm#hpl
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.mig.doc/ids_mig_246.htm#ids_mig_246

Table 9-4. Methods to view compression information (continued)

Method Description

UNLOAD TO ’compression_dictionary_file’
SELECT * FROM

sysmaster:syscompdicts_full; SQL
statement

View the compression dictionary in a file.

Related concepts:
“Storage optimization methods” on page 9-55

The onlog utility (Administrator's Reference)

IBM OpenAdmin Tool (OAT) for Informix (OpenAdmin Tool (OAT) for
Informix)
Related reference:

onstat -g dsk command: Print the progress of the currently running
compression operation (Administrator's Reference)

onstat -g ppd command: Print partition compression dictionary information
(Administrator's Reference)

oncheck -pt and -pT: Display tblspaces for a Table or Fragment
(Administrator's Reference)

syscompdicts_full (Administrator's Reference)

Load data into a table
You can load data into an existing table in the following ways.

Method to load data TEXT or BYTE data CLOB or BLOB data Reference

DB-Access LOAD statement Yes Yes LOAD statement in the IBM
Informix Guide to SQL: Syntax

dbload utility Yes Yes IBM Informix Migration Guide

dbimport utility Yes Yes IBM Informix Migration Guide

Informix ESQL/C programs Yes Yes IBM Informix ESQL/C Programmer's
Manual

Insert MERGE, using an
EXTERNAL source table

Yes Yes IBM Informix Guide to SQL: Syntax

onload utility No No IBM Informix Migration Guide

onpladm utility Yes, deluxe mode Yes, deluxe mode IBM Informix High-Performance
Loader User's Guide

High-Performance Loader (HPL) Yes, deluxe mode Yes, deluxe mode IBM Informix High-Performance
Loader User's Guide

Important: The database server does not contain any mechanisms for compressing
TEXT and BYTE data after the data has been loaded into a database.

Chapter 9. Manage disk space 9-67

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0402.htm#ids_adr_0402
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.oat.doc/ids_oat.htm#ids_oat.dita
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.oat.doc/ids_oat.htm#ids_oat.dita
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1065.htm#ids_adr_1065
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1065.htm#ids_adr_1065
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1061.htm#ids_adr_1061
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1061.htm#ids_adr_1061
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0387.htm#ids_adr_0387
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0387.htm#ids_adr_0387
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1062.htm#ids_adr_1062

9-68 IBM Informix Administrator's Guide

Chapter 10. Moving data with external tables

You can use external tables to load and unload database data.

You issue a series of SQL statements that perform the following functions:
v Transfer operational data efficiently to or from other systems
v Transfer data files across platforms in IBM Informix internal data format
v Use the database server to convert data between delimited ASCII, fixed-ASCII,

and IBM Informix internal (raw) representation
v Use SQL INSERT and SELECT statements to specify the mapping of data to new

columns in a database table
v Provide parallel standard INSERT operations so that data can be loaded without

dropping indexes
v Use named pipes to support loading data to and unloading data from storage

devices, including tape drives and direct network connections
v Maintain a record of load and unload statistics during the run
v Perform express (high-speed) and deluxe (data-checking) transfers

You can issue the SQL statements with DB-Access or embed them in an ESQL/C
program.

External tables
An external table is a data file that is not managed by an IBM Informix database
server. The definition of the external table includes data-formatting type, external
data description fields, and global parameters.

To map external data to internal data, the database server views the external data
as an external table. Treating the external data as a table provides a powerful
method for moving data into or out of the database and for specifying
transformations of the data.

When the database server runs a load task, it reads data from the external source
and performs the conversion required to create the row and then inserts the row
into the table. The database server writes errors to a reject file.

If the data in the external table cannot be converted, you can specify that the
database server write the record to a reject file, along with the reason for the failure.
To do this, you specify the REJECTFILE keyword in the CREATE EXTERNAL
TABLE statement.

The database server provides a number of different conversion mechanisms, which
are performed within the database server and therefore provide maximum
performance during the conversion task. The database server optimizes data
conversion between ASCII and IBM Informix data representations, in both fixed
and delimited formats.

To perform customized conversions, you can create a filter program that writes
converted data to a named pipe. The database server then reads its input from the
named pipe in one of the common formats.

© Copyright IBM Corp. 1996, 2014 10-1

Defining external tables
To define an external table, you use SQL statements to describe the data file, define
the table, and then specify the data to load or unload.

To set up loading and unloading tasks, you issue a series of SQL statements:
v CREATE EXTERNAL TABLE to describe the data file to load or unload
v CREATE TABLE to define the table to load
v INSERT...SELECT to load and unload

The following steps outline the load process:
1. The CREATE EXTERNAL TABLE statement describes the location of the

various external files, which can be on disk or come from a pipe (tape drive or
direct network connection), and the format of the external data. The following
example is a CREATE EXTERNAL TABLE statement:
CREATE EXTERNAL TABLE emp_ext

(name CHAR(18) EXTERNAL CHAR(18),
hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6))

USING (
FORMAT ’FIXED’,
DATAFILES

("DISK:/work2/mydir/emp.fix")
);

2. The CREATE TABLE statement defines the table to load. The following sample
CREATE TABLE statement defines the employee table:
CREATE TABLE employee

FRAGMENT BY ROUND ROBIN IN dbspaces;

3. The INSERT...SELECT statement maps the movement of the external data from
or to the database table. The following sample INSERT statement loads the
employee table from the external table:
INSERT INTO employee SELECT * FROM emp_ext

Important: If you specify more than one INSERT...SELECT statement to unload
data, each subsequent INSERT statement overwrites the data file. Use absolute
paths for data files.

When you load data into the database, the FROM table portion of the SELECT
clause is the external table that the CREATE EXTERNAL statement defined. When
you unload data to an external file, the SELECT clause controls the retrieval of the
data from the database.

Unlike a TEMP table, the external table has a definition that remains in the catalog
until it is dropped. When you create an external table you can save the external
description of the data for reuse. This action is particularly helpful when you
unload a table into the IBM Informix internal data representation because you can
later use the same external table description to reload that data.

On Windows systems, if you use the DB-Access utility or the dbexport utility to
unload a database table into a file and then plan to use the file as an external table
datafile, you must define RECORDEND as '\012' in the CREATE EXTERNAL
TABLE statement.

The external table definition contains all the information required to define the
data in the external data file as follows:

10-2 IBM Informix Administrator's Guide

v The description of the fields in the external data.
v The DATAFILES clause.

This clause specifies:
– Whether the data file is located on disk or a named pipe.
– The path name of the file.

v The FORMAT clause.
This clause specifies the type of data formatting in the external data file. The
database server converts external data from several data formats, including
delimited and fixed ASCII, and IBM Informix internal.

v Any global parameters that affect the format of the data.

If you map the external table directly into the internal database table in delimited
format, you can use the CREATE EXTERNAL TABLE statement to define the
columns and add the clause SAMEAS internal-table instead of enumerating the
columns explicitly.

Map columns to other columns
If the data file is to have fields in a different order (for example, empno, name,
address, hiredate), you can use the INSERT statement to map the columns. First,
create the table with the columns in the order in which they are found in the
external file.
CREATE EXTERNAL TABLE emp_ext

(
f01 INTEGER,
f02 CHAR(18),
f03 VARCHAR(40),
f04 DATE
)

USING (
DATAFILES ("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej"
);

INSERT INTO employee (empno, name, address, hiredate)
SELECT * FROM emp_ext;

With this method, the insert columns are mapped to match the field order of the
external table.

Another way to reorder columns is to use the SELECT clause to match the order of
the database table.
INSERT INTO employee

SELECT f02, f04, f03, f01 FROM emp_ext;

Load data from and unload to a named pipe
You can use a named pipe, also called a first-in-first-out (FIFO) data file, to load
from and unload to a nonstandard device, such as a tape drive.

Unlike ordinary operating-system files, named pipes do not have a 2-gigabyte size
limitation. The operating system opens and checks for the end of file differently for
named pipes than for ordinary files.

Chapter 10. Moving data with external tables 10-3

Loading data with named pipes
You can use a named pipe to load data from external tables.

To use a named pipe to load data from an external table, follow these steps:
1. Specify the named pipes in the DATAFILES clause of the CREATE EXTERNAL

TABLE statement in SQL.
2. Create the named pipes that you specified in the DATAFILES clause. Use

operating-system commands to create the named pipes.
Use the mknod UNIX command with the -p option to create a named pipe. To
avoid blocking open problems for pipes on UNIX, start separate UNIX
processes for pipe-readers and pipe-writers or open the pipes with the
O_NDELAY flag set.

3. Open the named pipes with a program that reads the named pipe.
4. Execute the INSERT statement in SQL.

INSERT INTO employee SELECT * FROM emp_ext;

Important: If you do not create and open the named pipes before you execute the
INSERT statement, the INSERT succeeds, but no rows are loaded.

FIFO virtual processors
The database server uses FIFO virtual processors (VPs) to read and write to
external tables on named pipes.

The default number of FIFO virtual processors is 1.

The database server uses one FIFO VP for each named pipe that you specify in the
DATAFILES clause of the CREATE EXTERNAL TABLE statement. For example,
suppose you define an external table with the following SQL statement:
CREATE EXTERNAL TABLE ext_items

SAMEAS items
USING (

DATAFILES("PIPE:/tmp/pipe1",
"PIPE:/tmp/pipe2",
"PIPE:/tmp/pipe3"

));

If you use the default value of 1 for FIFO VPs, the database server does not read
from pipe2 until it finishes reading all the data from pipe1, and does not read
from pipe3 until it finishes reading all the data from pipe2.

Unloading data with named pipes
You can use a named pipe to unload data from the database to external tables.

To use named pipes to unload data to external tables, follow these steps:
1. Specify the named pipe in the DATAFILES clause of either the CREATE

EXTERNAL TABLE statement or the SELECT INTO EXTERNAL statement of
SQL.
DATAFILES ("PIPE:/usr/local/TAPE")

2. Create the named pipes that you specified in the DATAFILES clause. Use
operating-system commands to create the named pipes.

3. Open the named pipes with a program that writes to the named pipe.
4. Unload data to the named pipe.

10-4 IBM Informix Administrator's Guide

CREATE EXTERNAL TABLE emp_ext
(name CHAR(18) EXTERNAL CHAR(20),

hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6))

USING (
FORMAT ’FIXED’,
DATAFILES
("PIPE:/usr/local/TAPE")
);

INSERT INTO emp_ext SELECT * FROM employee;

Important: If you do not create and open the named pipes before you execute the
SELECT or INSERT statement, the unload fails with the ENXIO error message (no
such device or address).

Copying data from one instance to another using the PIPE
option

You can use a named pipe to copy data from one Informix instance to another
without writing the data to an intermediate file.

You can use a named pipe to unload data from one Informix instance and load it
into another instance without writing data to an intermediate file. You can also use
a named pipe to copy data from one table to another on the same Informix
instance. In the following example, data is copied from a source table on one
instance to a destination table on a second instance.

Depending on the hardware platform you are using, you must first create a named
pipe using one of the following commands. For this example, the named pipe is
called pipe1.
% mkfifo /work/pipe1
% mknod /work/pipe1

Follow these steps to copy data from a table on a source instance to a table on a
destination instance on the same computer.
1. Create the source table on the source instance. In this example, the source table

is called source_data_table:
CREATE TABLE source_data_table
(

empid CHAR(5),
empname VARCHAR(40),
empaddr VARCHAR(100)

);

2. Create the external table on the source instance. In this example, the external
table is named ext_table:
CREATE EXTERNAL TABLE ext_table
(

empid CHAR(5),
empname VARCHAR(40),
empaddr VARCHAR(100)

)
USING
(DATAFILES

(
’PIPE:/work/pipe1’

)
);

Chapter 10. Moving data with external tables 10-5

3. Create the destination table on the destination instance. In this example, the
destination table is called destin_data_table:
CREATE TABLE destin_data_table
(

empid CHAR(5),
empname VARCHAR(40),
empaddr VARCHAR(100)

);

4. Create the external table on the destination instance. In this example, the
external table is named ext_table:
CREATE EXTERNAL TABLE ext_table
(

empid CHAR(5),
empname VARCHAR(40),
empaddr VARCHAR(100)

)
USING
(DATAFILES

(
’PIPE:/work/pipe1_1’

)
);

5. Run the following command from a UNIX shell. The command redirects data
from /work/pipe1 to /work/pipe1_1
cat /work/pipe1 > /work/pipe1_1

6. Run the following command on the destination instance to direct data from the
named pipe to the destination table:
INSERT INTO destin_data_table SELECT * FROM ext_table;

7. Run the following command on the source instance to spool data to the named
pipe:
INSERT INTO ext_table SELECT * FROM source_data_table;

You can use more than one pipe by inserting multiple PIPE statements in the
DATAFILES clause and creating a named pipe for each.

Monitor the load or unload operations
You can monitor the status of an external table load or unload operation.

You might want to monitor the load or unload operations for the following
situations:
v If you expect to load and unload the same table often to build a data mart or

data warehouse, monitor the progress of the job to estimate the time of similar
jobs for future use.

v If you load or unload from named pipes, monitor the I/O queues to determine
if you have a sufficient number of FIFO virtual processors.

Monitor frequent load and unload operations
Use the onstat -g iof command to find the global file descriptor (gfd) in the file
that you want to examine. Then the onstat -g sql command to monitor load and
unload operations.

The following example shows sample onstat -g iof command output.
AIO global files:
gfd path name bytes read page reads bytes write page writes io/s
3 rootdbs 1918976 937 145061888 70831 36.5

10-6 IBM Informix Administrator's Guide

op type count avg. time
seeks 0 N/A
reads 937 0.0010
writes 4088 0.0335
kaio_reads 0 N/A
kaio_writes 0 N/A

To determine if a load or unload operation can use parallel execution, execute the
SET EXPLAIN ON statement before the INSERT statement. The SET EXPLAIN
output shows the following counts:
v Number of parallel SQL operators that the optimizer chooses for the INSERT

statement
v Number of rows to be processed by each SQL operator

To monitor a load operation, run onstat -g sql to obtain the session ID.

Monitor FIFO virtual processors
You can monitor the effective usage of FIFO VPs with onstat commands.

Use the onstat -g ioq option to display the length of each FIFO queue that is
waiting to perform I/O requests. The following example shows sample output.
AIO I/O queues:
q name/id len maxlen totalops dskread dskwrite dskcopy
fifo 0 0 0 0 0 0 0
adt 0 0 0 0 0 0 0
msc 0 0 1 153 0 0 0
aio 0 0 9 3499 1013 77 0
pio 0 0 2 3 0 2 0
lio 0 0 2 2159 0 2158 0
gfd 3 0 16 39860 38 39822 0
gfd 4 0 16 39854 32 39822 0
gfd 5 0 1 2 2 0 0
gfd 6 0 1 2 2 0 0

...
gfd 19 0 1 2 2 0 0

The q name field in the sample output in the previous example shows the type of
the queue, such as fifo for a FIFO VP or aio for an AIO VP. If the q name field
shows gfd or gfdwq, it is a queue for a file whose global file descriptor matches
the id field of the output. Disk files have both read and write requests in one
queue. One line per disk file displays in the onstat -g ioq output. Pipes have
separate read and write queues. Two lines per pipe display in the output: gfd for
read requests and gfdwq for write requests.

The len or maxlen field has a value of up to 4 for a load or 4 *
number_of_writer_threads for an unload. The xuwrite operator controls the
number of writer threads.

Use the values in the totalops field rather than the len or maxlen field to monitor
the number of read or write requests done on the file or pipe. The totalops field
represents 34 KB of data read from or written to the file. If totalops is not
increasing, it means the read or write operation on a file or pipe is stalled (because
the FIFO VPs are busy).

To improve performance, use the onmode -p command to add more FIFO VPs.
The default number of FIFO VPs is 1. In this sample output, the FIFO queue does

Chapter 10. Moving data with external tables 10-7

not contain any data. For example, if you usually define more than two pipes to
load or unload, increase the number of FIFO VPs with the following sample
onmode command:
onmode -p +2 FIFO

You can also use the onmode -p command to remove FIFO VPs. However, the
number of FIFO VPs cannot be set to a value less than one.

For more information, see IBM Informix Administrator's Reference.

External tables in high-availability cluster environments
You use external tables on secondary servers in much the same way they are used
on the primary server.

You can perform the following operations on the primary and on secondary
servers:
v Unload data from a database table to an external table:

INSERT INTO external_table SELECT * FROM base_table WHERE ...

v Load data from an external table into a database table:
INSERT INTO base_table SELECT * FROM external_table WHERE ...

Loading data on SDS, RSS, or HDR secondary servers is slower than loading data
on the primary server.

The CREATE EXTERNAL TABLE statement and the SELECT ... INTO EXTERNAL
... statement are not supported on secondary servers.

When unloading data from a database table to an external table, data files are
created on the secondary server but not on the primary server. External table data
files created on secondary servers are not automatically transferred to the primary
server, nor are external table data files that are created on the primary server
automatically transferred to secondary servers.

When creating an external table on a primary server, only the schema of the
external table is replicated to the secondary servers, not the data file.

To synchronize external tables between the primary server and a secondary server,
you can either copy the external table file from the primary server to the secondary
servers, or use the following steps:
1. On the primary server:

a. Create a temporary table with the same schema as the external table.
b. Populate the temporary table:

INSERT INTO dummy_table SELECT * FROM external_table

2. On the secondary server:
Use the following command to populate the external table:
INSERT INTO external_table SELECT * FROM dummy_table

System catalog entries for external tables
You can query system catalog tables to determine the status of external tables.

10-8 IBM Informix Administrator's Guide

IBM Informix updates the sysexternal and sysextdfiles system catalog tables each
time an external table is created. The sysextcols system catalog table is updated
when the external format type (fmttype) FIXED is specified.

Table 10-1. External table system catalog entries

Table name Description

sysexternal Stores information about each external table.

sysextdfiles Stores information about external table data files

sysextcols Stores information about external tables of type FIXED

See the IBM Informix Guide to SQL: Reference for more information.

A row is inserted into the systables system catalog when an external table is
created; however, the nrows (number of rows) and the npused (number of data
pages used) columns might not accurately reflect the number of rows and the
number of data pages used by the external table unless the NUMROWS clause was
specified when the external table was created.

When an external table is created without specifying a value for the NUMROWS
clause, Informix is unable to determine the number of rows in the external table
because the data exists outside the database in data files. Informix updates the
nrows column in the systables system catalog by inserting a large value (MAXINT
– 1), and computes the number of data pages used based on the nrows value. The
values stored in npused and nrows are later used by the optimizer to determine
the most efficient execution plan. While the NUMROWS clause is not required to
be specified precisely, the more accurately it is specified, the more accurate the
values for nrows and npused are.

Performance considerations when using external tables
Use external tables when you want to manipulate data in an ASCII file using SQL
commands, or when loading data from an external data file to a RAW database
table.

There are several ways to load information into a database, including:
v LOAD FROM ... INSERT INTO... DB-Access command
v dbimport utility
v High-Performance Loader utility
v External tables

The High Performance Loader utility provides best performance for loading
external data into a database table with indexes.

External tables provide the best performance for loading data into a RAW table
with no indexes.

Note: Locking an external table prior to loading data increases the load
performance

Manage errors from external table load and unload operations
You can manage errors that occur during external table load and unload
operations.

Chapter 10. Moving data with external tables 10-9

These topics describe how to use the reject file and error messages to manage
errors, and how to recover data loaded into the database.

Reject files
Rows that have conversion errors during a load are written to a reject file on the
server that performs the conversion.

The REJECTFILE keyword in the CREATE EXTERNAL TABLE statement
determines the name given to the reject file.

Instead of using a reject file, you can use the MAXERRORS keyword in the
CREATE EXTERNAL TABLE statement to specify the number of errors that are
allowed before the database server stops loading data. (If you do not set the
MAXERRORS keyword, the database server processes all data regardless of the
number of errors.)

The database server removes the reject files, if any, at the beginning of a load. The
reject files are recreated and written only if errors occur during the load.

Reject file entries are single lines with the following comma-separated fields:
file name, record, reason-code, field-name: bad-line

file name
Name of the input file

record Record number in the input file where the error was detected

reason-code
Description of the error

field-name
The external field name where the first error in the line occurred or
<none> if the rejection is not specific to a particular column

bad-line
For delimited or fixed-ASCII files only, the bad line itself

The load operation writes file name, record, field-name, and reason-code in ASCII.

The bad-line information varies with the type of input file:
v For delimited files or fixed text files, the entire bad line is copied directly into

the reject file. However, if the delimited format table has TEXT or BYTE
columns, the reject file does not include any bad data. The load operation
generates only a header for each rejected row.

v For IBM Informix internal data files, the bad line is not placed in the reject file
because you cannot edit the binary representation in a file. However, the file
name, record, reason-code, and field-name are still reported in the reject file so that
you can isolate the problem.

The following types of errors can cause a row to be rejected.

CONSTRAINT constraint name
This constraint was violated.

CONVERT_ERR
Any field encounters a conversion error.

MISSING_DELIMITER
No delimiter was found.

10-10 IBM Informix Administrator's Guide

MISSING_RECORDEND
No record end was found.

NOT NULL
A null was found in field-name.

ROW_TOO_LONG
The input record is longer than 2 GB.

External table error messages
Most of the error messages related to external tables are in the -26151 to -26199
range.

Additional messages are -615, -999, -23852, and -23855. In the messages, n macro
and r macro refer to the values generated from the substitution character
%r(first..last). For a list of error messages, see IBM Informix Error Messages or use
the finderr utility. For information about the violations table error messages, see
your IBM Informix Administrator's Reference.

Recoverability of table types for external tables
The database server checks the recoverability level of the table when loading of
data.
v If the table type is RAW, the database server can use light-append (or express)

mode to load data and process check constraints. If the database server crashes
during the load, the data loaded is not rolled back, and the table might be left in
an unknown state.

v If the table type is STATIC, the database server cannot load the data at all.
v Only deluxe mode supports data recoverability. Deluxe mode uses logged,

regular inserts. To recover data after a failed express-mode load, revert to the
most recent level-0 backup. The table type must be STANDARD for this level of
recoverability.

For information about restoring table types, see the IBM Informix Backup and Restore
Guide.

Chapter 10. Moving data with external tables 10-11

10-12 IBM Informix Administrator's Guide

Part 3. Logging and log administration

© Copyright IBM Corp. 1996, 2014

IBM Informix Administrator's Guide

Chapter 11. Logging

These topics describe logging of IBM Informix databases and addresses the
following questions:
v Which database server processes require logging?
v What is transaction logging?
v What database server activity is logged?
v What is the database-logging status?
v Who can set or change the database logging status?

All the databases managed by a single database server instance store their log
records in the same logical log, regardless of whether they use transaction logging.
Most database users might be concerned with whether transaction logging is
buffered or whether a table uses logging.

If you want to change the database-logging status, see “Settings or changes for
logging status or mode” on page 11-9.

Database server processes that require logging
As IBM Informix operates, processing transactions, tracking data storage, and
ensuring data consistency, Informix automatically generates logical-log records for
some of the actions that it takes. Most of the time the database server makes no
further use of the logical-log records. However, when the database server is
required to roll back a transaction, to run a fast recovery after a system failure, for
example, the logical-log records are critical. The logical-log records are at the heart
of the data-recovery mechanisms.

The database server stores the logical-log records in a logical log. The logical log is
made up of logical-log files that the database server manages on disk until they
have been safely transferred offline (backed up). The database server administrator
keeps the backed up logical-log files until they are required during a data restore,
or until the administrator decides that the records are no longer required for a
restore. See Chapter 13, “Logical log,” on page 13-1 for more information about
logical logs.

The logical-log records themselves are variable length. This arrangement increases
the number of logical-log records that can be written to a page in the logical-log
buffer. However, the database server often flushes the logical-log buffer before the
page is full. For more information about the format of logical-log records, see the
topics about interpreting logical-log records in the IBM Informix Administrator's
Reference.

The database server uses logical-log records when it performs various functions
that recover data and ensure data consistency, as follows:

Transaction rollback
If a database is using transaction logging and a transaction must be rolled
back, the database server uses the logical-log records to reverse the
changes made during the transaction. For more information, see
“Transaction logging” on page 11-2.

© Copyright IBM Corp. 1996, 2014 11-1

Fast recovery
If the database server shuts down in an uncontrolled manner, the database
server uses the logical-log records to recover all transactions that occurred
since the oldest update not yet flushed to disk and to roll back any
uncommitted transactions. (When all the data in shared memory and on
disk are the same, they are physically consistent.) The database server uses
the logical-log records in fast recovery when it returns the entire database
server to a state of logical consistency up to the point of the most recent
logical-log record. (For more information, see “Fast recovery after a
checkpoint” on page 15-8.)

Data restoration
The database server uses the most recent storage-space and logical-log
backups to recreate the database server system up to the point of the most
recently backed-up logical-log record. The logical restore applies all the log
records since the last storage-space backup.

Deferred checking
If a transaction uses the SET CONSTRAINTS statement to set checking to
DEFERRED, the database server does not check the constraints until the
transaction is committed. If a constraint error occurs while the transaction
is being committed, the database server uses logical-log records to roll back
the transaction. For more information, see SET Database Object Mode in
the IBM Informix Guide to SQL: Syntax.

Cascading deletes
Cascading deletes on referential constraints use logical-log records to
ensure that a transaction can be rolled back if a parent row is deleted and
the system fails before the children rows are deleted. For information about
table inheritance, see the IBM Informix Database Design and Implementation
Guide. For information about primary key and foreign key constraints, see
the IBM Informix Guide to SQL: Tutorial.

Distributed transactions
Each database server involved in a distributed transaction keeps logical-log
records of the transaction. This process ensures data integrity and
consistency, even if a failure occurs on one of the database servers that is
performing the transaction. For more information, see “Two-phase commit
and logical-log records” on page 25-17.

Data Replication
Data Replication environments that use HDR secondary, SD secondary, and
RS secondary servers use logical-log records to maintain consistent data on
the primary and secondary database servers so that one of the database
servers can be used quickly as a backup database server if the other fails.
For more details, see “How data replication works” on page 22-1.

Enterprise Replication
You must use database logging with Enterprise Replication because it
replicates the data from the logical-log records. For more information, see
the IBM Informix Enterprise Replication Guide.

Transaction logging
A database or table is said to have or use transaction logging when SQL data
manipulation statements in a database generate logical-log records.

The database-logging status indicates whether a database uses transaction logging.
The log-buffering mode indicates whether a database uses buffered or unbuffered

11-2 IBM Informix Administrator's Guide

logging, or ANSI-compliant logging. For more information, see “Database-logging
status” on page 11-7 and Chapter 12, “Manage the database-logging mode,” on
page 12-1.

When you create a database, you specify whether it uses transaction logging and, if
it does, what log-buffering mechanism it uses. After the database is created, you
can turn off database logging or change to buffered logging, for example. Even if
you turn off transaction logging for all databases, the database server always logs
some events. For more information, see “Activity that is always logged” and
“Database logging in an X/Open DTP environment” on page 11-9.

You can use logging or nonlogging tables within a database. The user who creates
the table specifies the type of table. Even if you use nonlogging tables, the
database server always logs some events. For more information, see “Table types
for Informix” on page 8-25.

Logging of SQL statements and database server activity
Three types of logged activity are possible in the database server:

Activity that is always logged
Some database operations always generate logical-log records, even if you turn off
transaction logging or use nonlogging tables.

The following operations are always logged for permanent tables:
v Certain SQL statements, including SQL data definition statements
v Storage-space backups
v Checkpoints
v Administrative changes to the database server configuration such as adding a

chunk or dbspace
v Allocation of new extents to tables
v A change to the logging status of a database
v Smart-large-object operations:

– Creating
– Deleting
– Allocating and deallocating extents
– Truncating
– Combining and splitting chunk free list pages
– Changing the LO header and the LO reference count

v Sbspace metadata
v Blobspaces

The following table lists statements that generate operations that are logged even if
transaction logging is turned off.

ALTER ACCESS_METHOD
ALTER FRAGMENT
ALTER FUNCTION
ALTER INDEX
ALTER PROCEDURE
ALTER ROUTINE

Chapter 11. Logging 11-3

ALTER SECURITY LABEL COMPONENT
ALTER SEQUENCE
ALTER TABLE
ALTER TRUSTED CONTEXT
ALTER USER
CLOSE DATABASE
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE CAST
CREATE DATABASE
CREATE DISTINCT TYPE
CREATE EXTERNAL TABLE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROLE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SCHEMA
CREATE SECURITY LABEL
CREATE SECURITY LABEL COMPONENT
CREATE SECURITY POLICY
CREATE SEQUENCE
CREATE SYNONYM
CREATE TABLE
CREATE TEMP TABLE
CREATE TRIGGER
CREATE TRUSTED CONTEXT
CREATE USER
CREATE VIEW
CREATE XADATASOURCE
CREATE XADATASOURCE TYPE
DROP ACCESS_METHOD
DROP AGGREGATE
DROP CAST
DROP DATABASE
DROP FUNCTION
DROP INDEX
DROP OPCLASS
DROP PROCEDURE
DROP ROLE

11-4 IBM Informix Administrator's Guide

DROP ROUTINE
DROP ROW TYPE
DROP SECURITY
DROP SEQUENCE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TRUSTED CONTEXT
DROP TYPE
DROP USER
DROP VIEW
DROP XADATASOURCE
DROP XADATASOURCE TYPE
GRANT
GRANT FRAGMENT
RENAME COLUMN
RENAME DATABASE
RENAME INDEX
RENAME SECURITY
RENAME SEQUENCE
RENAME TABLE
RENAME TRUSTED CONTEXT
RENAME USER
REVOKE
REVOKE FRAGMENT
TRUNCATE
UPDATE STATISTICS
SAVE EXTERNAL DIRECTIVES
SET CONSTRAINTS
SET Database Object Mode
SET INDEXES
SET TRIGGERS
START VIOLATIONS TABLE
STOP VIOLATIONS

Activity logged for databases with transaction logging
If a database uses transaction logging, the following SQL statements generate one
or more log records. If these statements are rolled back, the rollback also generates
log records.

DELETE
FLUSH
INSERT
LOAD
MERGE
PUT

Chapter 11. Logging 11-5

SELECT INTO TEMP
UNLOAD
UPDATE

The following SQL statements generate logs in special situations.

Table 11-1. SQL statements that generate logs in special situations.

SQL statement Log record that the statement generates

BEGIN WORK Returns an error unless the database uses transaction logging. A log record is produced
if the transaction does some other logging work.

COMMIT WORK Returns an error unless the database uses transaction logging. A log record is produced
if the transaction does some other logging work.

ROLLBACK WORK Returns an error unless the database uses transaction logging. A log record is produced
if the transaction does some other logging work.

EXECUTE Whether this statement generates a log record depends on the command being run.

EXECUTE FUNCTION Whether this statement generates a log record depends on the function being executed.

EXECUTE IMMEDIATE Whether this statement generates a log record depends on the command being run.

EXECUTE PROCEDURE Whether this statement generates a log record depends on the procedure being
executed.

Activity that is not logged
Some SQL statements are not logged.

The following SQL statements do not produce log records, regardless of the
database logging mode.

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
CLOSE
CONNECT
DATABASE
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DECLARE
DESCRIBE
DISCONNECT
FETCH
FREE
GET DESCRIPTOR
GET DIAGNOSTICS
INFO
LOCK TABLE
OPEN
OUTPUT
PREPARE
RELEASE SAVEPOINT

11-6 IBM Informix Administrator's Guide

SAVEPOINT
SELECT
SET AUTOFREE
SET COLLATION
SET CONNECTION
SET DATASKIP
SET DEBUG FILE
SET DEFERRED_PREPARE
SET DESCRIPTOR
SET ENCRYPTION PASSWORD
SET ISOLATION
SET LOCK MODE
SET LOG
SET OPTIMIZATION
SET PDQPRIORITY
SET ROLE
SET SESSION AUTHORIZATION
SET STATEMENT CACHE
SET TRANSACTION
SET Transaction Mode
SET USER PASSWORD
UNLOCK TABLE
WHENEVER
SET ENVIRONMENT
SET EXPLAIN

For temporary tables in temporary dbspaces, nothing is logged, not even the SQL
statements that are always logged for other types of tables. If you include
temporary (nonlogging) dbspaces in the value of the DBSPACETEMP configuration
parameter, the database server places nonlogging tables in these temporary
dbspaces first.

Database-logging status
You must use transaction logging with a database to take advantage of any of the
features listed in “Database server processes that require logging” on page 11-1.

Every database that the database server manages has a logging status. The logging
status indicates whether the database uses transaction logging and, if so, which
log-buffering mechanism the database employs. To find out the transaction-logging
status of a database, use the database server utilities, as explained in “Monitor the
logging mode of a database” on page 12-5. The database-logging status indicates
any of the following types of logging:
v Unbuffered transaction logging
v Buffered transaction logging
v ANSI-compliant transaction logging
v No logging

Chapter 11. Logging 11-7

All logical-log records pass through the logical-log buffer in shared memory before
the database server writes them to the logical log on disk. However, the point at
which the database server flushes the logical-log buffer is different for buffered
transaction logging and unbuffered transaction logging. For more information, see
Figure 6-1 on page 6-2 and “Flush the logical-log buffer” on page 6-28.

Unbuffered transaction logging
If transactions are made against a database that uses unbuffered logging, the
records in the logical-log buffer are guaranteed to be written to disk during
commit processing. When control returns to the application after the COMMIT
statement (and before the PREPARE statement for distributed transactions), the
logical-log records are on the disk. The database server flushes the records as soon
as any transaction in the buffer is committed (that is, a commit record is written to
the logical-log buffer).

When the database server flushes the buffer, only the used pages are written to
disk. Used pages include pages that are only partially full, however, so some space
is wasted. For this reason, the logical-log files on disk fill up faster than if all the
databases on the same database server use buffered logging.

Unbuffered logging is the best choice for most databases because it guarantees that
all committed transactions can be recovered. In the event of a failure, only
uncommitted transactions at the time of the failure are lost. However, with
unbuffered logging, the database server flushes the logical-log buffer to disk more
frequently, and the buffer contains many more partially full pages, so it fills the
logical log faster than buffered logging does.

Buffered transaction logging
If transactions are made against a database that uses buffered logging, the records
are held (buffered) in the logical-log buffer for as long as possible. They are not
flushed from the logical-log buffer in shared memory to the logical log on disk
until one of the following situations occurs:
v The buffer is full.
v A commit on a database with unbuffered logging flushes the buffer.
v A checkpoint occurs.
v The connection is closed.

If you use buffered logging and a failure occurs, you cannot expect the database
server to recover the transactions that were in the logical-log buffer when the
failure occurred. Thus, you might lose some committed transactions. In return for
this risk, performance during alterations improves slightly. Buffered logging is best
for databases that are updated frequently (when the speed of updating is
important), as long as you can recreate the updates in the event of failure. You can
tune the size of the logical-log buffer to find an acceptable balance for your system
between performance and the risk of losing transactions to system failure.

ANSI-compliant transaction logging
The ANSI-compliant database logging status indicates that the database owner
created this database using the MODE ANSI keywords. ANSI-compliant databases
always use unbuffered transaction logging, enforcing the ANSI rules for transaction
processing. You cannot change the buffering status of ANSI-compliant databases.

11-8 IBM Informix Administrator's Guide

No database logging
If you turn off logging for a database, transactions are not logged, but other
operations are logged. For more information, see “Activity that is always logged”
on page 11-3. Usually, you would turn off logging for a database when you are
loading data, or just running queries.

If you are satisfied with your recovery source, you can decide not to use
transaction logging for a database to reduce the amount of database server
processing. For example, if you are loading many rows into a database from a
recoverable source such as tape or an ASCII file, you might not require transaction
logging, and the loading would proceed faster without it. However, if other users
are active in the database, you would not have logical-log records of their
transactions until you reinitiate logging, which must wait for a level-0 backup.

Databases with different log-buffering status
All databases on a database server use the same logical log and the same
logical-log buffers. Therefore, transactions against databases with different
log-buffering statuses can write to the same logical-log buffer. In that case, if
transactions exist against databases with buffered logging and against databases
with unbuffered logging, the database server flushes the buffer either when it is
full or when transactions against the databases with unbuffered logging complete.

Database logging in an X/Open DTP environment
Databases in the X/Open distributed transaction processing (DTP) environment
must use unbuffered logging. Unbuffered logging ensures that the database server
logical logs are always in a consistent state and can be synchronized with the
transaction manager. If a database created with buffered logging is opened in an
X/Open DTP environment, the database status automatically changes to
unbuffered logging. The database server supports both ANSI-compliant and
non-ANSI databases. For more information, see “Transaction managers” on page
25-1.

Settings or changes for logging status or mode
The user who creates a database with the CREATE DATABASE statement
establishes the logging status or buffering mode for that database. For more
information about the CREATE DATABASE statement, see the IBM Informix Guide
to SQL: Syntax.

If the CREATE DATABASE statement does not specify a logging status, the
database is created without logging.

Only the database server administrator can change logging status. Chapter 12,
“Manage the database-logging mode,” on page 12-1, describes this topic. Ordinary
users cannot change database-logging status.

If a database does not use logging, you are not required to consider whether
buffered or unbuffered logging is more appropriate. If you specify logging but do
not specify the buffering mode for a database, the default is unbuffered logging.

Users can switch from unbuffered to buffered (but not ANSI-compliant) logging
and from buffered to unbuffered logging for the duration of a session. The SET LOG
statement performs this change within an application. For more information about
the SET LOG statement, see the IBM Informix Guide to SQL: Syntax.

Chapter 11. Logging 11-9

11-10 IBM Informix Administrator's Guide

Chapter 12. Manage the database-logging mode

You can monitor and modify the database-logging mode.

The topics in this section provide information about:
v Understanding database-logging mode
v Modifying database-logging mode with ondblog

v Modifying database-logging mode with ontape

v Monitoring transaction logging

As a database server administrator, you can alter the logging mode of a database
as follows:
v Change transaction logging from buffered to unbuffered.
v Change transaction logging from unbuffered to buffered.
v Make a database ANSI compliant.
v Add transaction logging (buffered or unbuffered) to a database.
v End transaction logging for a database.

For information about database-logging mode, when to use transaction logging,
and when to buffer transaction logging, see Chapter 11, “Logging,” on page 11-1.
To find out the current logging mode of a database, see “Monitor the logging
mode of a database” on page 12-5.

For information about using SQL administration API commands instead of some
ondblog and ontape commands, see Chapter 28, “Remote administration with the
SQL administration API,” on page 28-1 and the IBM Informix Administrator's
Reference.

Change the database-logging mode
You can use ondblog or ontape to add or change logging. Then use ON-Bar, or
ontape to back up the data. When you use ON-Bar or ontape, the database server
must be in online, administration, or quiescent mode.

For information about ON-Bar and ontape, see the IBM Informix Backup and Restore
Guide.

The following table shows how the database server administrator can change the
database-logging mode. Certain logging mode changes take place immediately,
while other changes require a level-0 backup.

Table 12-1. Logging mode transitions

Converting from:
Converting to no
logging

Converting to
unbuffered logging

Converting to
buffered logging

Converting to ANSI
compliant

No logging Not applicable Level-0 backup (of
affected storage
spaces)

Level-0 backup (of
affected storage
spaces)

Level-0 backup (of
affected storage
spaces)

Unbuffered
logging

Yes Not applicable Yes Yes

© Copyright IBM Corp. 1996, 2014 12-1

Table 12-1. Logging mode transitions (continued)

Converting from:
Converting to no
logging

Converting to
unbuffered logging

Converting to
buffered logging

Converting to ANSI
compliant

Buffered logging Yes Yes Not applicable Yes

ANSI compliant Illegal Illegal Illegal Not applicable

Changing the database-logging mode has the following effects:
v While the logging status is being changed, the database server places an

exclusive lock on the database to prevent other users from accessing the
database, and frees the lock when the change is complete.

v If a failure occurs during a logging-mode change, check the logging mode in the
flags in the sysdatabases table in the sysmaster database, after you restore the
database server data. For more information, see “Monitor the logging mode of a
database” on page 12-5. Then try the logging-mode change again.

v After you choose either buffered or unbuffered logging, an application can use
the SQL statement SET LOG to change from one logging mode to the other. This
change lasts for the duration of the session. For information about SET LOG, see
the IBM Informix Guide to SQL: Syntax.

v If you add logging to a database, the change is not complete until the next
level-0 backup of all the storage spaces for the database.

Modify the database-logging mode with ondblog
You can use the ondblog utility to change the logging mode for one or more
databases. If you add logging to a database, you must create a level-0 backup of
the dbspace(s) that contains the database before the change takes effect. For more
information, see the topics on using ondblog in the IBM Informix Administrator's
Reference.

Change the buffering mode with ondblog
To change the buffering mode from buffered to unbuffered logging on a database
called stores_demo, run the following command:
ondblog unbuf stores_demo

To change the buffering mode from unbuffered to buffered logging on a database
called stores_demo, run the following command:
ondblog buf stores_demo

Cancel a logging mode change with ondblog
To cancel the logging mode change request before the next level-0 backup occurs,
run the following command:
ondblog cancel stores_demo

You cannot cancel the logging changes that are executed immediately.

End logging with ondblog
To end logging for two databases that are listed in a file called dbfile, run the
following command:
ondblog nolog -f dbfile

12-2 IBM Informix Administrator's Guide

Make a database ANSI compliant with ondblog
To make a database called stores_demo into an ANSI-compliant database with
ondblog, run the following command:
ondblog ansi stores_demo

Changing the logging mode of an ANSI-compliant database
After you create or convert a database to ANSI mode, you cannot easily change it
to any other logging mode. If you accidentally convert a database to ANSI mode,
follow these steps to change the logging mode:

To change the logging mode:
1. To unload the data, use dbexport or any other migration utility. The dbexport

utility creates the schema file.
For information about how to load and unload data, see the IBM Informix
Migration Guide.

2. To recreate a database with buffered logging and load the data, use the
dbimport -l buffered command.
To recreate a database with unbuffered logging and load the data, use the
dbimport -l command.

Modify the database logging mode with ontape
If you use ontape as your backup tool, you can use ontape to change the logging
mode of a database.

Turn on transaction logging with ontape
Before you modify the database-logging mode, read “Change the database-logging
mode” on page 12-1.

You add logging to a database with ontape at the same time that you create a
level-0 backup.

For example, to add buffered logging to a database called stores_demo with
ontape, run the following command:
ontape -s -B stores_demo

To add unbuffered logging to a database called stores_demo with ontape, run the
following command:
ontape -s -U stores_demo

In addition to turning on transaction logging, these commands create full-system
storage-space backups. When ontape prompts you for a backup level, specify a
level-0 backup.

Tip: With ontape, you must perform a level-0 backup of all storage spaces.

End logging with ontape
To end logging for a database called stores_demo with ontape, run the following
command:
ontape -N stores_demo

Chapter 12. Manage the database-logging mode 12-3

Change buffering mode with ontape
To change the buffering mode from buffered to unbuffered logging on a database
called stores_demo, using ontape, without creating a storage-space backup, run the
following command:
ontape -U stores_demo

To change the buffering mode from unbuffered to buffered logging on a database
called stores_demo, using ontape, without creating a storage-space backup, run the
following command:
ontape -B stores_demo

Make a database ANSI compliant with ontape
To make a database called stores_demo, which already uses transaction logging
(either unbuffered or buffered), into an ANSI-compliant database with ontape, run
the following command:
ontape -A stores_demo

To make a database called stores_demo, which does not already use transaction
logging, into an ANSI-compliant database with ontape, run the following
command:
ontape -s -A stores_demo

In addition to making a database ANSI compliant, this command also creates a
storage-space backup at the same time. Specify a level-0 backup when you are
prompted for a level.

Tip: After you change the logging mode to ANSI compliant, you cannot easily
change it again. To change the logging mode of ANSI-compliant databases, unload
the data, recreate the database with the new logging mode, and reload the data.
For details, see “Changing the logging mode of an ANSI-compliant database” on
page 12-3.

Modify the table-logging mode
The database server creates standard tables that use logging by default. To create a
nonlogging table, use the CREATE TABLE statement with the WITH LOG clause.
For information about the CREATE TABLE and ALTER TABLE statements, see the
IBM Informix Guide to SQL: Syntax. For more information, see “Table types for
Informix” on page 8-25.

Alter a table to turn off logging
To switch a table from logging to nonlogging, use the SQL statement ALTER
TABLE with the TYPE option of RAW. For example, the following statement
changes table tablog to a RAW table:
ALTER TABLE tablog TYPE (RAW)

Alter a table to turn on logging
To switch from a nonlogging table to a logging table, use the SQL statement
ALTER TABLE with the TYPE option of STANDARD. For example, the following
statement changes table tabnolog to a STANDARD table:
ALTER TABLE tabnolog TYPE (STANDARD)

12-4 IBM Informix Administrator's Guide

Important: When you alter a table to STANDARD, you turn logging on for that
table. After you alter the table, perform a level-0 backup if you must be able to
restore the table.

Disable logging on temporary tables
You can disable logging on temporary tables to improve performance and to
prevent IBM Informix from transferring temporary tables when using a primary
server in a data replication environment such as with HDR secondary, RS
secondary, and SD secondary servers.

To disable logging on temporary tables, set the TEMPTAB_NOLOG configuration
parameter to 1.

For HDR, RSS, and SDS secondary servers in a high-availability cluster, logical
logging on temporary tables must always be disabled by setting the
TEMPTAB_NOLOG configuration parameter to 1.

You can use the onmode -wf command to change the value of
TEMPTAB_NOLOG.

Monitor transactions
This topic contains references for information about ways to monitor transactions.

Command Description Reference

onstat -x Monitor transactions. “Monitor a global transaction” on page 25-15

onstat -g sql Monitor SQL statements, listed by session ID
and database.

Performance monitoring in the IBM Informix
Performance Guide

onstat -g stm Monitor memory usage of prepared SQL
statements.

Memory utilization in the IBM Informix
Performance Guide

Monitor the logging mode of a database
These topics explain ways to monitor the logging mode of your database and
tables.

Monitor the logging mode with SMI tables
Query the sysdatabases table in the sysmaster database to determine the logging
mode. This table contains a row for each database that the database server
manages. The flags field indicates the logging mode of the database. The
is_logging, is_buff_log, and is_ansi fields indicate whether logging is active, and
whether buffered logging or ANSI-compliant logging is used. For a description of
the columns in this table, see the sysdatabases section in the chapter about the
sysmaster database in the IBM Informix Administrator's Reference.

Chapter 12. Manage the database-logging mode 12-5

12-6 IBM Informix Administrator's Guide

Chapter 13. Logical log

The information in Chapter 11, “Logging,” on page 11-1, and these topics explains
how the database server uses the logical log. For information about how to
perform logical-log tasks, see Chapter 14, “Manage logical-log files,” on page 14-1,
and Chapter 12, “Manage the database-logging mode,” on page 12-1.
Related reference:
“Database server maintenance tasks” on page 1-10

What is the logical log?
To keep a history of transactions and database server changes since the time of the
last storage-space backup, the database server generates log records. The database
server stores the log records in the logical log, a circular file that is composed of
three or more logical-log files. The log is called logical because the log records
represent logical operations of the database server, as opposed to physical
operations. At any time, the combination of a storage-space backup plus logical-log
backup contains a complete copy of your database server data.

As the database server administrator, you must configure and manage the logical
log. For example, if you do not back up the log files regularly, the logical log fills
and the database server suspends processing.

These responsibilities include the following tasks:
v Choosing an appropriate location for the logical log

See “Location of logical-log files.”
v Monitoring the logical-log file status

See “Identification of logical-log files” on page 13-2.
v Allocating an appropriate amount of disk space for the logical log

See “Size of the logical-log file” on page 13-3.
v Allocating additional log files whenever necessary

See “Allocate logical log files” on page 14-8.
v Backing up the logical-log files to media

See “Back up logical-log files” on page 14-3 and “Freeing of logical-log files” on
page 13-5.

v Managing logging of blobspaces and sbspaces
See “Log blobspaces and simple large objects” on page 13-6 and “Log sbspaces
and smart large objects” on page 13-7.

Location of logical-log files
When the database server initializes disk space, it places the logical-log files and
the physical log in the root dbspace.

To improve performance by reducing the number of writes to the root dbspace and
minimize contention, move the logical-log files out of the root dbspace to a
dbspace on a disk that is not shared by active tables or the physical log.

© Copyright IBM Corp. 1996, 2014 13-1

To improve performance further, separate the logical-log files into two groups and
store them on two separate disks (neither of which contains data). For example, if
you have six logical-log files, you might locate files 1, 3, and 5 on disk 1, and files
2, 4, and 6 on disk 2. This arrangement improves performance because the same
disk drive never is required to handle writes to the current logical-log file and
backups at the same time.

The logical-log files contain critical information and must be mirrored for
maximum data protection. If you move logical-log files to a different dbspace, plan
to start mirroring on that dbspace.
Related concepts:
“Move logical-log files” on page 14-14

Identification of logical-log files
Each logical-log file, whether backed up to media or not, has a unique ID number.
The sequence begins with 1 for the first logical-log file filled after you initialize the
database server disk space. When the current logical-log file becomes full, the
database server switches to the next logical-log file and increments the unique ID
number for the new log file by one. Log files that are newly added or marked for
deletion have unique ID numbers of 0.

The actual disk space allocated for each logical-log file has an identification
number known as the log file number. For example, if you configure six logical-log
files, these files have log numbers one through six. The log numbers might be out
of sequence. As logical-log files are backed up and freed, the database server
reuses the disk space for the logical-log files.

The following table illustrates the relationship between the log numbers and the
unique ID numbers. Log 7 is inserted after log 5 and used for the first time in the
second rotation.

Table 13-1. Logical-log file-numbering sequence

Log file number
First rotation unique
ID number

Second rotation
unique ID number

Third rotation unique
ID number

1 1 7 14

2 2 8 15

3 3 9 16

4 4 10 17

5 5 11 18

7 0 12 19

6 6 13 20

Status flags of logical-log files
All logical-log files have one of the following status flags in the first position:
Added (A), Deleted (D), Free (F), or Used (U). The following table shows the
possible log-status flag combinations.

Table 13-2. Logical-log status flags

Status flag Status of logical-log file

A------ Log file has been added, and is available, but has not yet been used.

13-2 IBM Informix Administrator's Guide

Table 13-2. Logical-log status flags (continued)

Status flag Status of logical-log file

D------ If you drop a log file with a status of U-B, it is marked as deleted. This log file
is dropped and its space is freed for reuse when you take a level-0 backup of
all storage spaces.

F------ Log file is free and available for use.

A logical-log file is freed after it is backed up, all transactions within the
logical-log file are closed, and the oldest update stored in this file is flushed to
disk.

U Log file has been used but not backed up.

U-B---- Log file is backed up but still required for recovery. (The log file is freed when
it is no longer required for recovery.)

U-B---L Log is backed up but still required for recovery. Contains the last checkpoint
record.

U---C The database server is currently filling the log file.

U---C-L This current log file contains the last checkpoint record.

Use the onstat -l command to list the log files by number and monitor the status
flags and percentage of log space used. For more details, see “The onstat -l
command” on page 14-6.

Size of the logical-log file
The minimum size for a logical-log file is 200 KB.

The maximum size for a logical-log file is 524288 pages (equivalent to 0x7ffff + 1),
with a 2 KB or 4 KB base-page size, depending on the operating system. To
determine the database server's base-page size on your operating system, run
onstat -d and then check the pgsize value for the root dbspace.

Determine the size and number of log files to use. If you allocate more disk space
than necessary, space is wasted. If you do not allocate enough disk space, however,
performance might be adversely affected. Use larger log files when many users are
writing to the logs at the same time.

Note: Smaller log files mean that you can recover to a later time if the disk that
contains the log files goes down. If continuous log backup is set, log files are
automatically backed up as they fill. Smaller logs result in slightly longer logical
recovery.

Number of logical-log files
When you think about the number of logical-log files, consider these points:
v You must always have at least three logical-log files and a maximum of 32,767

log files.
v The number of log files affects the frequency of logical-log backups.
v The number of logical-log files affects the rate at which blobspace blobpages can

be reclaimed. See “Back up log files to free blobpages” on page 13-6.

Chapter 13. Logical log 13-3

Performance considerations
For a given level of system activity, the less logical-log disk space that you allocate,
the sooner that logical-log space fills up, and the greater the likelihood that user
activity is blocked due to backups and checkpoints. Tune the logical-log size to
find the optimum value for your system.
v Logical-log backups

When the logical-log files fill, you must back them up. The backup process can
hinder transaction processing that involves data located on the same disk as the
logical-log files. Put the physical log, logical logs, and user data on separate
disks. (See the IBM Informix Backup and Restore Guide.)

v Size of the logical log
A smaller logical log fills faster than a larger logical log. You can add a larger
logical-log file, as explained in “Adding logical-log files manually” on page
14-12.

v Size of individual logical-log records
The sizes of the logical-log records vary, depending on both the processing
operation and the database server environment. In general, the longer the data
rows, the larger the logical-log records. The logical log contains images of rows
that have been inserted, updated, or deleted. Updates can use up to twice as
much space as inserts and deletes because they might contain both
before-images and after-images. (Inserts store only the after-image and deletes
store only the before-image.)

v Number of logical-log records
The more logical-log records written to the logical log, the faster it fills.
Databases with transaction logging fill the logical log faster than transactions
against databases without transaction logging.

v Type of log buffering
Databases that use unbuffered transaction logging fill the logical log faster than
databases that use buffered transaction logging.

v Enterprise Replication on a table
Because Enterprise Replication generates before-images and after-images of the
replicated tables, it might cause the logical log to fill.

v Frequency of rollbacks
More rollbacks fill the logical log faster. The rollbacks themselves require
logical-log file space although the rollback records are small.

v Number of smart large objects
Smart large objects that have user data logging enabled and have a large volume
of user data updates can fill logical logs at a prodigious rate. Use temporary
smart large objects if you do not want to log the metadata.

Dynamic log allocation
Dynamic log allocation prevents log files from filling and hanging the system
during long transaction rollbacks. The only time that this feature becomes active is
when the next log file contains an open transaction. (A transaction is long if it is not
committed or rolled back when it reaches the long-transaction high-watermark.)

The database server automatically (dynamically) allocates a log file after the
current log file when the next log file contains an open transaction. You can use
dynamic log allocation for the following actions:
v Add a log file while the system is active

13-4 IBM Informix Administrator's Guide

v Insert a log file after the current log file
v Immediately access new log files even if the root dbspace is not backed up

The best way to test dynamic log allocation is to produce a transaction that spans
all the log files and then use onstat -l to check for newly added log files. For more
information, see “Allocate logical log files” on page 14-8.

Important: You still must back up log files to prevent them from filling. If the log
files fill, the system hangs until you perform a backup.

Freeing of logical-log files
Each time the database server commits or rolls back a transaction, it attempts to
free the logical-log file in which the transaction began. The following criteria must
be satisfied before the database server frees a logical-log file for reuse:
v The log file is backed up.
v No records within the logical-log file are associated with open transactions.
v The logical-log file does not contain the oldest update not yet flushed to disk.

Action if the next logical-log file is not free
If the database server attempts to switch to the next logical-log file but finds that
the next log file in sequence is still in use, the database server immediately
suspends all processing. Even if other logical-log files are free, the database server
cannot skip a file in use and write to a free file out of sequence. Processing stops
to protect the data within the logical-log file.

The logical-log file might be in use for any of the following reasons:
v The file contains the latest checkpoint or the oldest update not yet flushed to

disk.
Issue the onmode -c command to perform a checkpoint and free the logical-log
file. For more information, see “Force a checkpoint” on page 16-4.

v The file contains an open transaction.
The open transaction is the long transaction explained in “Set high-watermarks
for rolling back long transactions” on page 14-15.

v The file is not backed up.
If the logical-log file is not backed up, processing resumes when you use
ON-Bar or ontape to back up the logical-log files.

Action if the next log file contains the last checkpoint
The database server does not suspend processing when the next log file contains
the last checkpoint or the oldest update. The database server always forces a
checkpoint when it switches to the last available log, if the previous checkpoint
record or oldest update that is not yet flushed to disk is located in the log that
follows the last available log. For example, if four logical-log files have the status
shown in the following list, the database server forces a checkpoint when it
switches to logical-log file 3.

Log file number
Logical-log file status

1 U-B----

2 U---C--

Chapter 13. Logical log 13-5

3 F

4 U-B---L

Log blobspaces and simple large objects
Simple-large-object data (TEXT and BYTE data types) is potentially too voluminous
to include in a logical-log record. If simple large objects are always logged, they
might be so large that they slow down the logical log.

The database server assumes that you designed your databases so that smaller
simple large objects are stored in dbspaces and larger simple large objects are
stored in blobspaces:
v The database server includes simple-large-object data in log records for simple

large objects stored in dbspaces.
v The database server does not include simple-large-object data in log records for

simple large objects stored in blobspaces. The logical log records blobspace data
only when you back up the logical logs.

To obtain better overall performance for applications that perform frequent updates
of simple large objects in blobspaces, reduce the size of the logical log. Smaller logs
can improve access to simple large objects that must be reused. For more
information, see the chapter on configuration effects on I/O utilization in your IBM
Informix Performance Guide.

Switch log files to activate blobspaces
You must switch to the next logical-log file in these situations:
v After you create a blobspace, if you intend to insert simple large objects in the

blobspace right away
v After you add a new chunk to an existing blobspace, if you intend to insert

simple large objects in the blobspace that uses the new chunk

The database server requires that the statement that creates a blobspace, the
statement that creates a chunk in the blobspace, and the statements that insert
simple large objects into that blobspace are created in separate logical-log files.
This requirement is independent of the database-logging status.

For instructions on switching to the next log file, see “Switch to the next logical-log
file” on page 14-4.

Back up log files to free blobpages
When you delete data stored in blobspace pages, those pages are not necessarily
freed for reuse. The blobspace pages are free only when both of the following
actions have occurred:
v The TEXT or BYTE data has been deleted, either through an UPDATE to the

column or by deleting the row
v The logical log that stores the INSERT of the row that has TEXT or BYTE data is

backed up

13-6 IBM Informix Administrator's Guide

Back up blobspaces after inserting or deleting TEXT and
BYTE data

Be sure to back up all blobspaces and logical logs containing transactions on
simple large objects stored in a blobspace. During log backup, the database server
uses the data pointer in the logical log to copy the changed text and byte data
from the blobspace into the logical log.

Log sbspaces and smart large objects
Sbspaces, described in “Sbspaces” on page 8-13, contain two components: metadata
and user data. By default, sbspaces are not logged.

The metadata component of the sbspace describes critical characteristics of smart
large objects stored in a particular sbspace. The metadata contains pointers to the
smart large objects. If the metadata were to be damaged or become inaccessible,
the sbspace would be corrupted and the smart large objects within that sbspace
would be unrecoverable.

Metadata in a standard sbspace is always logged, even if logging is turned off for a
database. Logging sbspace metadata ensures that the metadata can always be
recovered to a consistent transaction state. However, metadata in a temporary
sbspace is not logged.

Sbspace logging
When an sbspace is logged, the database server slows down, and the logical logs
fill up quickly. If you use logging for sbspaces, you must ensure that the logical
logs are large enough to hold the logging data. For more information, see
“Estimate the log size when logging smart large objects” on page 14-3.

When you turn on logging for a database, the database server does not begin
logging until you perform a level-0 backup. However, when you turn on logging
for a smart large object, the database server begins logging changes to it
immediately. To reduce the volume of log entries, load smart large objects with
logging turned off and then turn logging back on to capture updates to the smart
large objects.

Important: When you turn logging on for a smart large object, you must
immediately perform a level-0 backup to be able to recover and restore the smart
large object.

For more information, see “Back up sbspaces” on page 14-4 and the IBM Informix
Backup and Restore Guide.

Logging for smart large objects
Use logging for smart large objects if users are updating the data frequently or if
the ability to recover any updated data is critical. The database server writes a
record of the operation (insert, update, delete, read, or write) to the logical-log
buffer. The modified portion of the CLOB or BLOB data is included in the log
record.

To increase performance, turn off logging for smart large objects. Also turn off
logging if users are primarily analyzing the data and updating it infrequently, or if
the data is not critical to recover.

Chapter 13. Logical log 13-7

Logging for updated smart large objects
When you update a smart large object, the database server does not log the entire
object. Assume that the user is writing X bytes of data at offset Y with logging
enabled for smart large objects. The database server logs the following information:
v If Y is set to the end of the large object, the database server logs X bytes (the

updated byte range).
v If Y is at the beginning or in the middle of the large object, the database server

logs the smallest of these choices:
– Difference between the old and new image
– Before-image and after-image
– Nothing is logged if the before- and after-images are the same

Turn logging on or off for an sbspace
You can control whether logging is on of off for an sbspace with several different
methods.

If you want to use logging in an sbspace, specify the -Df "LOGGING=ON" option
of the onspaces command when you create the sbspace. If logging is turned off in
the sbspace, you can turn on logging for smart large objects in specific columns.
One column that contains smart large objects can have logging turned on while
another column has logging turned off.

To verify that smart large objects in an sbspace are logged, use the oncheck -pS
sbspace_name | grep “Create Flags” command.

If you create smart large objects in the sbspace with the default logging option and
you see the LO_NOLOG flag in the output, the smart large objects in this sbspace
are not logged. If you see the LO_LOG flag in the output, all smart large objects in
this sbspace are logged.

You can modify the logging status of an sbspace in any of the following ways.

Function or statement to specify Logging action References

onspaces -ch -Df "LOGGING=ON"

onspaces -ch -Df "LOGGING=OFF"

Turns logging on or off for an existing
sbspace

“Alter storage characteristics of smart
large objects” on page 9-21

onspaces -ch: Change sbspace default
specifications

The SQL administration API task() or
admin() function with the set
sbspace logging on or set sbspace
logging off argument

Turns logging on or off for an existing
sbspace

set sbspace logging argument: Change
the logging of an sbspace (SQL
administration API)

LOG option in the PUT clause of the
CREATE TABLE or alter table
statement

Turns on logging for all smart large
objects that you load into the column

“Logging” on page 8-18

PUT Clause

mi_lo_create DataBlade API function Turns off logging for a smart large
object when it is initially loaded

IBM Informix DataBlade API Function
Reference

mi_lo_alter DataBlade API function Turns on logging after the load is
complete

IBM Informix DataBlade API Function
Reference

ifx_lo_create Informix ESQL/C
function

Turns off logging for a smart large
object when it is initially loaded

IBM Informix ESQL/C Programmer's
Manual

ifx_lo_alter Informix ESQL/C
function

Turns on logging after the load is
complete

IBM Informix ESQL/C Programmer's
Manual

13-8 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0476.htm#ids_adr_0476
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0476.htm#ids_adr_0476
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_076.htm#ids_sapi_076
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_076.htm#ids_sapi_076
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_076.htm#ids_sapi_076
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0107.htm#ids_sqs_0107

Smart-large-object log records
When you create a smart large object with the LOG option, the logical log creates a
smart-blob log record. Smart-blob log records track changes to user data or metadata.
When smart large objects are updated, only the modified portion of the sbpage is
in the log record. User-data log records are created in the logical log only when
logging is enabled for the smart large object.

Warning: Be careful about enabling logging for smart large objects that are
updated frequently. This logging overhead might significantly slow down the
database server.

For information about the log records for smart large objects, see the chapter on
interpreting logical-log records in the IBM Informix Administrator's Reference.

Prevent long transactions when logging smart-large-object
data

You can use smart large objects in situations where the data collection process for a
single smart large object lasts for long periods of time. Consider, for example, an
application that records many hours of low-quality audio information. Although
the amount of data collected might be modest, the recording session might be long,
resulting in a long-transaction condition.

Tip: To prevent long transactions from occurring, periodically commit writes to
smart large objects.

Logging process
These topics describe in detail the logging process for dbspaces, blobspaces, and
sbspaces. This information is not required for performing normal database server
administration tasks.

Dbspace logging
The database server uses the following logging process for operations that involve
data stored in dbspaces:
1. Reads the data page from disk to the shared-memory page buffer
2. Copies the unchanged page to the physical-log buffer, if required
3. Writes the new data to the page buffer and creates a logical-log record of the

transaction, if required
4. Flushes the physical-log buffer to the physical log on disk
5. Flushes the logical-log buffer to a logical-log file on disk
6. Flushes the page buffer and writes it back to disk

Blobspace logging
The database server logs blobspace data, but the data does not pass through either
shared memory or the logical-log files on disk. The database server copies data
stored in a blobspace directly from disk to tape. Records of modifications to the
blobspace overhead pages (the free-map and bitmap pages) are the only blobspace
data that reaches the logical log.

Chapter 13. Logical log 13-9

13-10 IBM Informix Administrator's Guide

Chapter 14. Manage logical-log files

You must manage logical-log files even if none of your databases uses transaction
logging. See Chapter 13, “Logical log,” on page 13-1 for background information
about logical logs.

You must log-in as either informix or root on UNIX to make any of the changes
described in this chapter. You must be a member of the Informix-Admin group on
Windows.

You perform these tasks when setting up your logical log:
v Before you initialize or restart the database server, use the LOGFILES parameter

to specify the number of logical-log files to create.
v After the database server is online, estimate the size and number of logical-log

files that your system requires.
See “Estimate the size and number of log files.”

v If you do not want to use the default values, change the LOGSIZE and
LOGBUFF configuration parameters.

v Add the estimated number of logical-log files.
See “Allocate logical log files” on page 14-8.

You perform the following tasks routinely:
v Backing up a logical-log file
v Switching to the next logical-log file
v Freeing a logical-log file
v Monitoring logging activity and log-backup status

You perform these tasks occasionally, if necessary:
v Adding a logical-log file
v Dropping a logical-log file
v Changing the size of a logical-log file
v Moving a logical-log file
v Changing the logical-log configuration parameters
v Monitoring event alarms for logical logs
v Setting high-watermarks for transactions

For information about using SQL administration API commands instead of some
oncheck, onmode, onparams and onspaces commands, see Chapter 28, “Remote
administration with the SQL administration API,” on page 28-1 and the IBM
Informix Administrator's Reference.

Estimate the size and number of log files
Use the LOGSIZE configuration parameter to set the size of the logical-log files.

The amount of log space that is optimal for your database server system depends
on the following factors:
v Your application requirements and the amount of update activity your

applications experience. Increased update activity requires increased log space.

© Copyright IBM Corp. 1996, 2014 14-1

v The recovery time objective (RTO) standards for the amount of time, in seconds,
that the server is given to recover from a problem after you restart the server
and bring it into online or quiescent mode.
In the case of a catastrophic event, consider how much data loss you can
tolerate. More frequent log backups, which reduce the risk of data and
transaction loss, require increased log space.

v Whether you use Enterprise Replication or data replication configurations such
as HDR secondary, SD secondary or RS secondary servers.
These replication services can influence the number and size of log files. If your
system uses any of these replication services, see guidelines in Chapter 21,
“High-availability cluster configuration,” on page 21-1 or in the IBM Informix
Enterprise Replication Guide.

Some guidelines for determining log size are:
v Generally, you can more easily manage a few large log files than you can

manage many small log files.
v Having too much log space does not affect performance. However, not having

enough log files and log space can affect performance, because the database
server triggers frequent checkpoints.

v Smart large objects in blobspaces are not logged, but they are included in the log
backup in which the object was created. This means that the objects are not freed
until the server backs up the log in which they were created. Therefore, if smart
large objects in a blobspace are frequently updated, you might require more
frequent log backups to acquire additional free space within a blobspace.

v For applications that generate a small amount of log data, start with 10 log files
of 10 megabytes each.

v For applications that generate a large amount of log data, start with 10 log files
with 100 megabytes.

There are two ways to maintain an RTO policy, which determines the tolerance for
loss of data in case of a catastrophic event such as the loss of the data server:
v One way to maintain an RTO policy is to use automatic log backups that trigger

log backups whenever a log file fills up. This limits data loss to the transactions
contained in the log file during the backup, plus any additional transactions that
occur during the log backup.

v Another way to maintain an RTO policy is to use the Scheduler. You can create a
task that automatically backs up any new log data at timed intervals since the
last log backup. This limits data loss to the transactions not backed up between
time intervals. For information about using the Scheduler, see Chapter 27, “The
Scheduler,” on page 27-1.

If an RTO policy is required, you can use the Scheduler to insert a task that
executes at an appropriate frequency to maintain the policy. This automatically
backs up log files at certain times within the daily cycle. If the log space fills before
the logs being backed up and recycled, you can back up the logs and add a new
log file to allow transaction processing to continue, or you can use the Scheduler to
add a new task to detect this situation and perform either operation automatically.

You can add log files at any time, and the database server automatically adds log
files when required for transaction consistency, for example, for long transactions
that might consume large amounts of log space.

14-2 IBM Informix Administrator's Guide

The easiest way to increase the amount of space for the logical log is to add
another logical-log file. See “Adding logical-log files manually” on page 14-12.

The following expression provides an example total-log-space configuration, in KB:
LOGSIZE = (((connections * maxrows) * rowsize) / 1024) / LOGFILES

Expression
element Explanation

LOGSIZE Specifies the size of each logical-log file in KB.

connections Specifies the maximum number of connections for all network types that
you specify in the sqlhosts file or registry and in the NETTYPE parameter.
If you configured more than one connection by setting multiple NETTYPE
configuration parameters in your configuration file, add the users fields for
each NETTYPE, and substitute this total for connections in the preceding
formula.

maxrows Specifies the largest number of rows to be updated in a single transaction.

rowsize Specifies the average size of a table row in bytes. To calculate the rowsize,
add the length (from the syscolumns system catalog table) of the columns
in the row.

1024 Converts the LOGSIZE to the specified units of KB.

LOGFILES Specifies the number of logical-log files.

Estimate the log size when logging smart large objects
If you plan to log smart-large-object user data, you must ensure that the log size is
considerably larger than the amount of data being written. If you store smart large
objects in standard sbspaces, the metadata is always logged, even if the smart large
objects are not logged. If you store smart large objects in temporary sbspaces, there
is no logging at all.

Estimate the number of logical-log files
The LOGFILES parameter provides the number of logical-log files at system
initialization or restart. If all your logical-log files are the same size, you can
calculate the total space allocated to the logical-log files as follows:
total logical log space = LOGFILES * LOGSIZE

If the database server contains log files of different sizes, you cannot use the
(LOGFILES * LOGSIZE) expression to calculate the size of the logical log. Instead,
you must add the sizes for each individual log file on disk. Check the size field in
the onstat -l output. For more information, see “The onstat -l command” on page
14-6.

For information about LOGSIZE, LOGFILES, and NETTYPE, see the topics about
configuration parameters in the IBM Informix Administrator's Reference.

Back up logical-log files
The logical logs contain a history of the transactions that have been performed.
The process of copying a logical-log file to media is called backing up a logical-log
file. Backing up logical-log files achieves the following two objectives:
v It stores the logical-log records on media so that they can be rolled forward if a

data restore is required.
v It makes logical-log-file space available for new logical-log records.

Chapter 14. Manage logical-log files 14-3

If you neglect to back up the log files, you can run out of log space.

You can initiate a manual logical-log backup or set up continuous logical-log
backups. After you restore the storage spaces, you must restore the logical logs to
bring the data to a consistent state. For more information about log backups, see
the IBM Informix Backup and Restore Guide.

Backing up blobspaces
It does not matter whether you back up the logical logs or blobspaces first.

To back up blobspace data:
1. Close the current logical log if it contains transactions on simple large objects in

a blobspace.
2. Perform a backup of the logical logs and blobspace as soon as possible after

updating simple-large-object data.

Warning: If you do not back up these blobspaces and logical logs, you might not
be able to restore the blobspace data. If you wait until a blobspace is down to
perform the log backup, the database server cannot access the blobspace to copy
the changed data into the logical log.

Back up sbspaces
When you turn on logging for smart large objects, you must perform a level-0
backup of the sbspace.

The following figure shows what happens if you turn on logging in an sbspace
that is not backed up. The unlogged changes to smart large object LO1 are lost
during the failure, although the logged changes are recoverable. You cannot fully
restore LO1.

During fast recovery, the database server rolls forward all committed transactions
for LO1. If LO1 is unlogged, the database server would be unable to roll back
uncommitted transactions. Then the LO1 contents would be incorrect. For more
information, see “Fast recovery” on page 15-6.

Switch to the next logical-log file
You might want to switch to the next logical-log file before the current log file
becomes full for the following reasons:
v To back up the current log
v To activate new blobspaces and blobspace chunks

Turn on logging

Failure

These updates are lost when
database server fails.

These updates are recovered
in fast recovery.

Logging is off

Smart large object LO1 (not backed up)

Figure 14-1. Turn on logging in an sbspace

14-4 IBM Informix Administrator's Guide

The database server can be in online mode to make this change. Run the following
command to switch to the next available log file: onmode -l

The change takes effect immediately. (Be sure that you type a lowercase L on the
command line, not a number 1.)

Free a logical-log file
If a log file is newly added (status A), it is immediately available for use. It also
can be dropped immediately.

You might want to free a logical-log file for the following reasons:
v So that the database server does not stop processing
v To free the space used by deleted blobpages

The procedures for freeing log files vary, depending on the status of the log file.
Each procedure is described in the following topics. To find out the status of
logical-log files, see “Status flags of logical-log files” on page 13-2 and “Monitor
logging activity” on page 14-6.

Tip: For information using ON-Bar or ontape to back up storage spaces and
logical logs, see the IBM Informix Backup and Restore Guide.

Delete a log file with status D
When you drop a used log file, it is marked as deleted (status D) and cannot be
used again, and onparams prints this message:
Log file log_file_number has been pre-dropped. It will be
deleted from the log list and its space can be reused
once you take level 0 archives of all BLOBspaces,
Smart BLOBspaces and non-temporary DBspaces.

The level 0 archive is necessary to make sure that the log file itself and all of the
associated information in the different dbspaces has been archived. The log file is
deleted at the end of the level 0 archive; however, because the removal of the log
file is itself a change in the root reserved pages structure on the disk, the next
archive to be taken also must be a level 0 archive. The level 0 archive must occur
before a level 1 or level 2 archive can be performed.

Free a log file with status U
If a log file contains records, but is not yet backed up (status U), back up the file
using the backup tool that you usually use.

If backing up the log file does not change the status to free (F), its status changes
to either U-B or U-B-L. See “Freeing a log file with status U-B or F” or “Free a log
file with status U-B-L” on page 14-6.

Freeing a log file with status U-B or F
If a log file is backed up but still in use (status U-B), some transactions in the log
file are still under way, or the log file contains the oldest update that is required
for fast recovery. Because a log file with status F has been used in the past, it
follows the same rules as for status U-B.

To free a backed up log file that is in use:

Chapter 14. Manage logical-log files 14-5

1. If you do not want to wait until the transactions complete, take the database
server to quiescent mode. See “Change immediately from online to quiescent
mode” on page 3-11. Any active transactions are rolled back.

2. Use the onmode -c command to force a checkpoint. Do this because a log file
with status U-B might contain the oldest update.

A log file that is backed up but not in use (status U-B) is not required to be freed.
In the following example, log 34 is not required to be freed, but logs 35 and 36 do.
Log 35 contains the last checkpoint, and log 36 is backed up but still in use.
34 U-B-- Log is used, backed up, and not in use
35 U-B-L Log is used, backed up, contains last checkpoint
36 U-B-- Log is used, backed up, and not in use
37 U-C-- This is the current log file, not backed up

Tip: You can free a logical log with a status of U-B (and not L) only if it is not
spanned by an active transaction and does not contain the oldest update.

Freeing a log file with status U-C or U-C-L
Follow these steps to free the current log file.

To free the current log file (status C):
1. Run the following command to switch the current log file to the next available

log file: onmode -l

2. Back up the original log file with ON-Bar or ontape.
3. After all full log files are backed up, you are prompted to switch to the next

available log file and back up the new current log file.
You are not required to do the backup because you just switched to this log
file.

After you free the current log file, if the log file has status U-B or U-B-L, see
“Freeing a log file with status U-B or F” on page 14-5 or “Free a log file with status
U-B-L.”

Free a log file with status U-B-L
If a log file is backed up and all transactions within it are closed but the file is not
free (status U-B-L), this logical-log file contains the most-recent checkpoint record.
You can free log files with a status U-B-L.

To free log files with a status U-B-L, the database server must create a new
checkpoint. You can run the following command to force a checkpoint: onmode -c

Monitor logging activity
Monitor the logical-log files to determine the total available space (in all the files),
the space available in the current file, and the status of a file (for example, whether
the log has been backed up yet). For information about monitoring the logical-log
buffers, see “Monitor physical and logical-logging activity” on page 16-2.

Monitor the logical log for fullness
You can use the following command-line utilities to monitor logical-log files.

The onstat -l command
The onstat -l command displays information about physical and logical logs.

14-6 IBM Informix Administrator's Guide

The output section that contains information about each logical-log file includes
the following information:
v The address of the logical-log file descriptor
v The log file number
v Status flags that indicate the status of each log (free, backed up, current, and so

on)
v The unique ID of the log file
v The beginning page of the file
v The size of the file in pages, the number of pages used, and the percentage of

pages used

The log file numbers in the numbers field can get out of sequence if you drop
several logs in the middle of the list or if the database server dynamically adds log
files.

For more information about and an example of onstat -l output, see the IBM
Informix Administrator's Reference.

The oncheck -pr command
The database server stores logical-log file information in the reserved pages
dedicated to checkpoint information. Because the database server updates this
information only during a checkpoint, it is not as recent as the information that the
onstat -l option displays. For more details on using these options to display
reserved page information, see the IBM Informix Administrator's Reference.

You can view the checkpoint reserved pages with the oncheck -pr command. The
following example shows sample output for one of the logical-log files.
...
Log file number 1
Unique identifier 7
Log contains last checkpoint Page 0, byte 272
Log file flags 0x3 Log file in use

Current log file
Physical location 0x1004ef
Log size 750 (p)
Number pages used 1
Date/Time file filled 01/29/2001 14:48:32
...

Monitor temporary logical logs
The database server uses temporary logical logs to roll forward transactions during a
warm restore, because the permanent logs are not available then. When the
rollforward completes, the database server frees the temporary log files. If you
issue onstat -l during a warm restore, the output includes a fourth section on
temporary log files in the same format as regular log files. Temporary log files use
only the B, C, F, and U status flags.

SMI tables
Query the syslogs table to obtain information about logical-log files. This table
contains a row for each logical-log file. The columns are as follows.

number
Identification number of the logical-log file

uniqid
Unique ID of the log file

Chapter 14. Manage logical-log files 14-7

size Size of the file in pages

used Number of pages used

is_used
Flag that indicates whether the log file is being used

is_current
Flag that indicates whether the log file is current

is_backed_up
Flag that indicates whether the log file has been backed up

is_new
Flag that indicates whether the log file has been added since the last
storage space backup

is_archived
Flag that indicates whether the log file has been written to the archive tape

is_temp
Flag that indicates whether the log file is flagged as a temporary log file

Monitor log-backup status
To monitor the status of the logs and to see which logs have been backed up, use
the onstat -l command. A status flag of B indicates that the log has been backed
up.

Allocate logical log files
When you initialize or restart the database server, it creates the number of
logical-log files that are specified by the LOGFILES configuration parameter. The
size of the logical log files is specified by the LOGSIZE configuration parameter.

You can manually add logical log files or configure the database server to add
logical log files as needed. The database server updates the value of the LOGFILES
configuration parameter dynamically when logical log files are added.

The following configuration parameters also affect logical log files. You can update
the value of these configuration parameters while the server is running, unless
otherwise noted.

AUTO_LLOG
Automatically adds logical logs to improve performance and limits the
total size of logical log files.

DYNAMIC_LOGS
Automatically adds logical logs to prevent transaction blocking.

LOGBUFF
Sets the size of the three logical-log buffers in shared memory. You must
restart the database server when you change the value of the LOGBUFF
configuration parameter.

LTXEHWM
Sets the percentage of available log space that, when filled, triggers the
database server to give the long transaction currently that is being rolled
back exclusive access to the logical log.

14-8 IBM Informix Administrator's Guide

LTXHWM
Sets the percentage of available log space that, when filled, triggers the
database server to check for a long transaction.

Related reference:

LOGFILES configuration parameter (Administrator's Reference)

LOGSIZE configuration parameter (Administrator's Reference)

AUTO_LLOG configuration parameter (Administrator's Reference)

DYNAMIC_LOGS configuration parameter (Administrator's Reference)

LOGBUFF configuration parameter (Administrator's Reference)

LTXEHWM configuration parameter (Administrator's Reference)

LTXHWM configuration parameter (Administrator's Reference)

Dynamically add a logical-log file to prevent transaction
blocking

The DYNAMIC_LOGS configuration parameter determines when the database
server dynamically adds a logical-log file to prevent transaction blocking.

When you use the default value of 2 for DYNAMIC_LOGS, the database server
dynamically adds a new log file and sets off an alarm if the next active log file
contains the beginning of the oldest open transaction.

The database server checks the logical-log space at these points:
v After switching to a new log file
v At the beginning of the transaction-cleanup phase of logical recovery

If the DYNAMIC_LOGS parameter is set to 1 and the next active log file contains
records from an open transaction, the database server prompts you to add a log
file manually and sets off an alarm. After you add the log file, the database server
resumes processing the transaction.

If the DYNAMIC_LOGS parameter is set to 0 and the logical log runs out of space
during a long transaction rollback, the database server can hang. (The long
transaction prevents the first logical-log file from becoming free and available for
reuse.) To fix the problem and complete the long transaction, set DYNAMIC_LOGS
to 2 and restart the database server.
Related reference:
“Monitor events for dynamically added logs” on page 14-10
“Set high-watermarks for rolling back long transactions” on page 14-15

DYNAMIC_LOGS configuration parameter (Administrator's Reference)

Size and number of dynamically added log files
The purpose of enabling dynamic logs with the DYNAMIC_LOGS configuration
parameter is to add enough log space to allow transactions to roll back.

When dynamically adding a log file, the database server uses the following factors
to calculate the size of the log file:
v Average log size
v Amount of contiguous space available

Chapter 14. Manage logical-log files 14-9

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0096.htm#ids_adr_0096
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0098.htm#ids_adr_0098
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1181.htm#ids_adr_1181
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0073.htm#ids_adr_0073
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0095.htm#ids_adr_0095
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0103.htm#ids_adr_0103
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0104.htm#ids_adr_0104
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0073.htm#ids_adr_0073

If the logical log is low on space, the database server adds as many log files as
necessary to allow the transaction to roll back. The number of log files is limited
by:
v The maximum number of log files supported
v The amount of disk space for the log files
v The amount of free contiguous space in the root chunk

If the database server stops adding new log files because it is out of disk space, it
writes an error message and sets off an alarm. Add a dbspace or chunk to an
existing dbspace. Then the database server automatically resumes processing the
transaction.

The reserve pages in the root chunk store information about each log file. The
extents that contain this information expand as more log files are added. The root
chunk requires two extents of 1.4 megabytes each to track 32,767 log files, the
maximum number supported.

If during reversion, the chunk reserve page extent is allocated from a non-root
chunk, the server attempts to put it back in the root chunk. If not enough space is
available in the root chunk, the reversion fails. A message containing the required
space displays in the online log. The required space must be freed from the root
chunk before trying the reversion again.

Location of dynamically added logical log files
If the DYNAMIC_LOGS configuration parameter is set to 2, the default location of
dynamically added log files is the dbspace that contains the newest log file.

The database server allocates log files in dbspaces, in the following search order. A
dbspace becomes critical if it contains logical-log files or the physical log.

Pass Allocate log file in

1 The dbspace that contains the newest log files

(If this dbspace is full, the database server searches other dbspaces.)

2 Mirrored dbspace that contains log files (but excluding the root dbspace)

3 All dbspaces that already contain log files (excluding the root dbspace)

4 The dbspace that contains the physical log

5 The root dbspace

6 Any mirrored dbspace

7 Any dbspace

If you do not want to use this search order to allocate the new log file, you must
set the DYNAMIC_LOGS parameter to 1 and run onparams -a -i with the location
you want to use for the new log. For details, see “Monitor events for dynamically
added logs.”

Monitor events for dynamically added logs
You can monitor the event alarms that are triggered when the database server
dynamically adds logical log files to prevent transaction blocking. The
DYNAMIC_LOGS configuration parameter value must be 1 or 2.

When each alarm is triggered, a message is written to the message log.

14-10 IBM Informix Administrator's Guide

You can include the onparams command to add log files in your alarm script for
event class ID 27, log file required. Your script can also run the onstat -d command
to check for adequate space and run the onparams a -i command with the location
that has enough space. You must use the -i option to add the new log right after
the current log file.

Table 14-1. Event alarms for dynamically added log files

Class ID Severity Class message Message

26 3 Dynamically added log
file log_number

This message shows when the database server dynamically adds
a log file.

Dynamically added log file log_number to DBspace
dbspace_number.

27 4 Log file required This message shows when DYNAMIC_LOGS is set to 1 and the
database server is waiting for you to add a log file.

ALERT: The oldest logical log log_number contains records from
an open transaction transaction_address. Logical logging
remains blocked until a log file is added. Add the log file with
the onparams -a command, using the -i (insert) option, as in:
onparams -a -d dbspace -s size-i

Then complete the transaction as soon as possible.

28 4 No space for log file ALERT: Because the oldest logical log log_number contains
records from an open transaction transaction_address, the
server is attempting to dynamically add a log file. But there is no
space available. Add a dbspace or chunk, then complete the
transaction as soon as possible.

The following table shows the actions that the database server takes for each
setting of the DYNAMIC_LOGS configuration parameter.

Table 14-2. The DYNAMIC_LOGS settings

DYNAMIC_
LOGS value Meaning Event alarm Wait to add log?

Dynamic log
added?

2 (default) Allows automatic allocation of new log
files to prevent open transactions from
hanging the system.

Yes (26, 28) No Yes

1 Allows manual addition of new log files. Yes (27) Yes No

0 Does not allocate log files but issues the
following message about open
transactions:
Warning: The oldest logical-log file
log_number contains records from an open
transaction transaction_address, but the
dynamic log feature is turned off.

No No No

Related concepts:

Event Alarms (Administrator's Reference)
Related reference:
“Dynamically add a logical-log file to prevent transaction blocking” on page 14-9

DYNAMIC_LOGS configuration parameter (Administrator's Reference)

Chapter 14. Manage logical-log files 14-11

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0668.htm#ids_adr_0668
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0073.htm#ids_adr_0073

Dynamically add logical logs for performance
You can set the AUTO_LLOG configuration parameter to enable the database
server to dynamically add logical logs to improve performance.

When you set the AUTO_LLOG configuration parameter, you also specify a
dbspace in which to create new logical log files and the size of all logical log files
at which the server stops adding logs for performance.

The AUTO_LLOG and DYNAMIC_LOGS configuration parameters add logical
logs under different conditions that do not directly interact. When the
AUTO_LLOG configuration parameter is enabled, logical logs are added to
improve performance. When the DYNAMIC_LOGS configuration parameter is
enabled, logical logs are added under more urgent conditions, such as when a long
transaction threatens to block the server by using all available log space. The
settings of the two configuration parameters do not constrain each other. For
example, the maximum size that is specified in the AUTO_LLOG configuration
parameter does not affect the amount of log space that can be added by the
DYNAMIC_LOGS configuration parameter. Similarly, the value of AUTO_LLOG
configuration parameter does not affect the amount of log space that you can add
manually.
Related reference:

AUTO_LLOG configuration parameter (Administrator's Reference)

Adding logical-log files manually
You can use an onparams command to add logical-log files.

You might add logical-log files manually for the following reasons:
v To increase the disk space allocated to the logical log
v To change the size of your logical-log files
v To enable an open transaction to roll back
v As part of moving logical-log files to a different dbspace

Restriction: You cannot do the following actions:
v Add a log file to a blobspace or sbspace.
v Add logical or physical logs to dbspaces that have non-default page sizes.

Add logical-log files one at a time, up to a maximum of 32,767 files, to any
dbspace. As soon as you add a log file to a dbspace, it becomes a critical dbspace.
You can add a logical-log file during a storage space backup.

You can add a logical-log file in either of the following locations:
v At the end of the file list using the onparams -a command
v After the current logical-log file using the onparams -a -i command

To add a logical-log file using onparams

1. Log-in as user informix or root on UNIX or as a member of the
Informix-Admin group on Windows.

2. Ensure that the database server is in online, administration, or quiescent, or
cleanup phase of fast-recovery mode.
The database server writes the following message to the log during the cleanup
phase:

14-12 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1181.htm#ids_adr_1181

Logical recovery has reached the transaction cleanup phase.

3. Decide whether you want to add the log file to the end of the log file list or
after the current log file.
You can insert a log file after the current log file regardless of the
DYNAMIC_LOGS parameter value. Adding a log file of a new size does not
change the value of LOGSIZE.
v The following command adds a logical-log file to the end of the log file list

in the logspace dbspace, using the log-file size specified by the LOGSIZE
configuration parameter:
onparams -a -d logspace

v The following command inserts a 1000 KB logical-log file after the current
log file in the logspace dbspace:
onparams -a -d logspace -s 1000 -i

v To add a logical-log file with a new size (in this case, 250 KB), run the
following command:
onparams -a -d logspace -s 250

4. Use onstat -l to check the status of the log files. The status of the new log file is
A and is immediately available.

5. The next time you must back up data, perform a level-0 backup of the root
dbspace and the dbspaces that contain the new log files.
Although you are no longer required to back up immediately after adding a log
file, your next backup must be level-0 because the data structures have
changed. For information about backing up data, see the IBM Informix Backup
and Restore Guide.

For more information about using onparams to add a logical-log file, see the IBM
Informix Administrator's Reference.
Related concepts:
“Move logical-log files” on page 14-14
Related reference:

onstat -g iov command: Print AIO VP statistics (Administrator's Reference)

Dropping logical-log files
You can use an onparams command to drop logical-log files.

To drop a logical-log file and increase the amount of the disk space available
within a dbspace, you can use onparams. The database server requires a minimum
of three logical-log files at all times. You cannot drop a log if your logical log is
composed of only three log files.

The rules for dropping log files have changed:
v If you drop a log file that has never been written to (status A), the database

server deletes it and frees the space immediately.
v If you drop a used log file (status U-B), the database server marks it as deleted

(D). After you take a level-0 backup of the dbspaces that contain the log files
and the root dbspace, the database server deletes the log file and frees the space.

v You cannot drop a log file that is currently in use or contains the last checkpoint
record (status C or L).

To drop a logical-log file with onparams:

Chapter 14. Manage logical-log files 14-13

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0542.htm#ids_adr_0542

1. Ensure that the database server is in online, administration, or quiescent mode.
2. Run the following command to drop a logical-log file whose log file number is

21: onparams -d -l 21

Drop log files one at a time. You must know the log file number of each logical
log that you intend to drop.

3. If the log file has a status of newly Added (A), it is dropped immediately.
If the log file has a status of Used (U), it is marked as Deleted (D).

4. To drop a used log file, take a level-0 backup of all the dbspaces.
This backup prevents the database server from using the dropped log files
during a restore and ensures that the reserved pages contain information about
the current number of log files.

For information about using onparams to drop a logical-log file, see the IBM
Informix Administrator's Reference.

For information about using onlog to display the logical-log files and unique ID
numbers, see “Display logical-log records” on page 14-15.
Related concepts:

The onlog utility (Administrator's Reference)
“Move logical-log files”
Related reference:

onparams -d -l lognum: Drop a logical-log file (Administrator's Reference)

Change the size of logical-log files
If you want to change the size of the log files, it is easier to add new log files of
the appropriate size and then drop the old ones. You can change the size of
logical-log files in the following ways:
v Use onparams with the -s option to add a new log file of a different size.

See “Adding logical-log files manually” on page 14-12.
v Increase the LOGSIZE value in the onconfig file if you want the database server

to create larger log files.

Move logical-log files
You might want to move logical-log files for performance reasons or to make more
space in the dbspace.

To find the location of logical-log files, run the onstat -l command. Although
moving the logical-log files is not difficult, it can be time-consuming.

Moving logical-log files is a combination of two simpler actions:
v Optionally dropping logical-log files from their current dbspace.
v Adding the logical-log files to their new dbspace

Restriction: You cannot move logical log files into dbspaces that have non-default
page sizes.

The database server must be in online, administration, quiescent, or fast-recovery
mode.

14-14 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0402.htm#ids_adr_0402
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0453.htm#ids_adr_0453

You can change the location for new logical logs by setting the AUTO_LLOG
configuration parameter to 1 and the name of the dbspace. The AUTO_LLOG
configuration parameter enables the database server to add logical logs as needed
to improve performance.

Example

The following procedure provides an example of how to move six logical-log files
from the root dbspace to another dbspace, dbspace_1:
1. Add six new logical-log files to dbspace_1 by running the following command:

onparams -a -d dbspace_1

2. Take a level-0 backup of all storage spaces to free all log files except the current
log file. For example, you can run the following command to back up all log
files, including the current log file:
onbar -l -b -c

3. Run the onmode -l command to switch to a new current log file.
4. Drop all six logical-log files in the root dbspace by running the onparams -d -l

command with the log file number for each log file. You cannot drop the
current logical-log file.

5. Create a level-0 backup of the root dbspace and dbspace_1. For example, you
can run the following command:
onbar -b root dbspace_1

Related concepts:
“Size of the root dbspace” on page 8-35
Related tasks:
“Dropping logical-log files” on page 14-13
“Adding logical-log files manually” on page 14-12
Related reference:

AUTO_LLOG configuration parameter (Administrator's Reference)
“Location of logical-log files” on page 13-1

onstat -l command: Print physical and logical log information (Administrator's
Reference)

onbar -b syntax: Backing up (Backup and Restore Guide)

Display logical-log records
Use the onlog utility to display and interpret logical-log records. For information
about using onlog, see the IBM Informix Administrator's Reference.

Set high-watermarks for rolling back long transactions
The database server uses the LTXHWM and LTXEHWM configuration parameters
to set high-watermarks for long transactions. If DYNAMIC_LOGS is set to 1 or 2,
the default LTXHWM value is 80 percent and LTXEHWM is 90 percent. If
DYNAMIC_LOGS is set to 0, the default LTXHWM value is 50 percent and the
default LTXHEWM value is 60 percent.

If you decrease your high-watermark values, you increase the likelihood of long
transactions. To compensate, allocate additional log space. For information about
LTXHWM and LTXEHWM, see the chapter on configuration parameters in the IBM
Informix Administrator's Reference.

Chapter 14. Manage logical-log files 14-15

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1181.htm#ids_adr_1181
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0598.htm#ids_adr_0598
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0598.htm#ids_adr_0598
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.bar.doc/ids_bar_370.htm#ids_bar_370

Related reference:
“Dynamically add a logical-log file to prevent transaction blocking” on page 14-9

Long-transaction high-watermark (LTXHWM)
The long-transaction high-watermark is the percentage of total log space that a
transaction is allowed to span before it is rolled back. If the database server finds
an open transaction in the oldest used log file, it dynamically adds log files.
Because the log space is increasing, the high-watermark expands outward. When
the log space reaches the high-watermark, the database server rolls back the
transaction. The transaction rollback and other processes also generate logical-log
records. The database server continues adding log files until the rollback is
complete to prevent the logical log from running out of space. More than one
transaction can be rolled back if more than one long transaction exists.

For example, the database server has ten logical logs and LTXHWM is set to 98. A
transaction begins in log file 1 and update activity fills logs 1 through 9. The
database server dynamically adds log file 11 after log file 10. As long as the
transaction does not complete, this process continues until the database server has
added 40 log files. When the database server adds the fiftieth log, the transaction
has caught up to the high-watermark and the database server rolls it back.

Exclusive access, long-transaction high-watermark
(LTXEHWM)

The exclusive-access, long-transaction high-watermark occurs when the long transaction
currently being rolled back is given exclusive access to the logical log. The
database server dramatically reduces log-record generation. Only threads that are
currently rolling back transactions and threads that are currently writing COMMIT
records are allowed access to the logical log. Restricting access to the logical log
preserves as much space as possible for rollback records that are being written by
the user threads that are rolling back transactions.

Important: If you set both LTXHWM and LTXEHWM to 100, long transactions are
never stopped. Therefore, you must set LTXHWM to below 100 for normal
database server operations. Set LTXHWM to 100 to run scheduled transactions of
unknown length. Set LTXEHWM to 100 if you never want to block other users
while a long transaction is rolling back and you have ample disk space.

Adjust the size of log files to prevent long transactions
Use larger log files when many users are writing to the logs at the same time. If
you use small logs and long transactions are likely to occur, reduce the
high-watermark. Set the LTXHWM value to 50 and the LTXEHWM value to 60.

If the log files are too small, the database server might run out of log space while
rolling back a long transaction. In this case, the database server cannot block fast
enough to add a new log file before the last one fills. If the last log file fills, the
system hangs and displays an error message. To fix the problem, shut down and
restart the database server. For details, see “Recovering from a long transaction
hang.”

Recovering from a long transaction hang
If your system has ample disk space and you want to perform transactions of
unknown length, consider setting LTXHWM to 100 to force the database server to
continue adding log files until you complete the transaction.

14-16 IBM Informix Administrator's Guide

A transaction might hang because the database server has run out of disk space.
The database server stops adding new log files, writes an error message, and sets
off an alarm.

To continue the transaction:
1. Add a dbspace or chunk to a dbspace.
2. Resume processing the transaction.

If you cannot add more disk space to the database server, end the transaction.

To end the transaction
v Issue the onmode -z command.
v Shut down and restart the database server.

When the database server comes up in fast-recovery mode, the transaction is rolled
back. Then perform the following steps:

To recover from a long transaction hang
1. Add more disk space or another disk until the transaction is successfully rolled

back.
2. Perform a point-in time restore to a time before the long transaction began or

early enough for the database server to roll back the transaction.
3. Drop the extra log files, dbspaces, or chunks from the database server instance.
4. Perform a complete level-0 backup to free the logical-log space.

Chapter 14. Manage logical-log files 14-17

14-18 IBM Informix Administrator's Guide

Chapter 15. Physical logging, checkpoints, and fast recovery

These topics cover the three procedures that the database server uses to achieve
data consistency:
v Physical logging
v Checkpoints
v Fast recovery

The physical log is a set of disk pages where the database server stores an
unmodified copy of the page called a before-image. Physical logging is the process of
storing a before-image of a page that the database server is going to change. A
checkpoint is a point when the database server synchronizes the pages on disk with
the pages in the shared-memory buffers. Fast recovery is an automatic procedure
that restores the database server to a consistent state after it goes offline under
uncontrolled conditions.

These procedures ensure that multiple, logically related writes are recorded as a
unit, and that data in shared memory is periodically made consistent with data on
disk.

For the tasks to manage and monitor the physical log and checkpoints, see
Chapter 16, “Manage the physical log,” on page 16-1.
Related reference:
“Database server maintenance tasks” on page 1-10

Critical sections
A critical section is a section of code (or machine instructions) that must be
performed as a single unit. A critical section ensures the integrity of a thread by
allowing it to run a series of instructions before it is swapped out.

Physical logging
Physical logging is the process of storing the pages that the database server is going
to change before the changed pages are actually recorded on disk. Before the
database server modifies certain pages in the shared-memory buffer pool, it stores
before-images of the pages in the physical-log buffer in shared memory.

The database server maintains the before-image page in the physical-log buffer in
shared memory for those pages until one or more page cleaners flush the pages to
disk. The unmodified pages are available in case the database server fails or the
backup procedure requires them to provide an accurate snapshot of the database
server data. Fast recovery and database server backups use these snapshots.

The database server recycles the physical log at each checkpoint, except in the
special circumstances. For more information about checkpoints, see “Checkpoints”
on page 15-4.

Fast recovery use of physically-logged pages
After a failure, the database server uses the before-images of pages to restore these
pages on the disk to their state at the last checkpoint. Then the database server

© Copyright IBM Corp. 1996, 2014 15-1

uses the logical-log records to return all data to physical and logical consistency,
up to the point of the most-recently completed transaction. “Fast recovery” on
page 15-6 explains this procedure in more detail.

Backup use of physically-logged pages
When you perform a backup, the database server performs a checkpoint and
coordinates with the physical log to identify the correct version of pages that
belong on the backup. In a level-0 backup, the database server backs up all disk
pages. For more details, see the IBM Informix Backup and Restore Guide.

Database server activity that is physically logged
If multiple modifications were made to a page between checkpoints, typically only
the first before-image is logged in the physical log.

The physical log is a cyclical log in which the pages within the physical log are
used once per checkpoint. If the RTO_SERVER_RESTART configuration parameter
is set, additional physical logging occurs to improve fast recovery performance.

Physical recovery messages
When fast recovery begins, the database server logs the following message with
the name of the chunk and offset:
Physical recovery started at page chunk:offset.

When the fast recovery completes, the database server logs the following message
with the number of pages examined and restored:
Physical recovery complete: number pages examined, number pages restored.

Physical logging and simple large objects
The database server pages in the physical log can be any database server page,
including simple large objects in table spaces (tblspaces). Even overhead pages
(such as chunk free-list pages, blobspace free-map pages, and blobspace bitmap
pages) are copied to the physical log before data on the page is modified and
flushed to disk.

Blobspace blobpages are not logged in the physical log. For more information
about blobspace logging, see “Log blobspaces and simple large objects” on page
13-6.

Physical logging and smart large objects
The user-data portion of smart large objects is not physically logged. However, the
metadata is physically logged. For information about smart large objects, see
“Sbspaces” on page 8-13.

Size and location of the physical log
When the database server initializes disk space, it places the physical log in the
root dbspace. The initial size of the physical log is set by the PHYSFILE
configuration parameter.

After you initialize the database server for the first time, you can change the size
or location of the physical log with the onparams utility.

To improve performance (specifically, to reduce the number of writes to the root
dbspace and minimize disk contention), you can move the physical log out of the
root dbspace to another dbspace, preferably to a disk that does not contain active

15-2 IBM Informix Administrator's Guide

tables or the logical-log files. For best performance, create the plogspace to store
the physical log and allow the database server to expand the size of the physical
log as needed to improve performance.

Recommendation: Locate critical dbspaces on fault-tolerant storage devices. If the
storage that the physical log is in is not fault-tolerant, use IBM Informix mirroring
for the dbspace that contain the physical log. This protects the database if the
storage device fails. However, if you mirror the plogspace, it cannot be expanded.
Related concepts:
“Plogspace” on page 8-22
Related reference:
“Change the physical-log location and size” on page 16-1

Strategy for estimating the size of the physical log
The size of the physical log depends on two factors: the rate at which transactions
generate physical log activity and whether you set the RTO_SERVER_RESTART
configuration parameter

The rate at which transactions generate physical log activity can affect checkpoint
performance. During checkpoint processing, if the physical log starts getting too
full as transactions continue to generate physical log data, the database server
blocks transactions to allow the checkpoint to complete and to avoid a physical log
overflow.

To avoid transaction blocking, the database server must have enough physical log
space to contain all of the transaction activity that occurs during checkpoint
processing. Checkpoints are triggered whenever the physical log becomes 75
percent full. When the physical log becomes 75 percent full, checkpoint processing
must complete before the remaining 25 percent of the physical log is used.
Transaction blocking occurs as soon as the system detects a potential for a physical
log overflow, because every active transaction might generate physical log activity.

For example, suppose you have a one gigabyte physical log and 1000 active
transactions. 1000 active transactions have the potential to generate approximately
80 megabytes of physical log activity if every transaction is in a critical section
simultaneously. When 750 megabytes of the physical log fills, the database server
triggers a checkpoint. If the checkpoint has not completed by the time the 920
megabytes of the physical log are used, transaction blocking occurs until the
checkpoint completes. If transaction blocking takes place, the server automatically
triggers more frequent checkpoints to avoid transaction blocking. You can disable
the generation of automatic checkpoints.

The server might also trigger checkpoints if many dirty partitions exist, even if the
physical log is not 75 percent full, because flushing the modified partition data to
disk requires physical log space. When the server checks if the Physical Log is 75
percent full, the server also checks if the following condition is true:
(Physical Log Pages Used + Number of Dirty Partitions) >=
(Physical Log Size * 9) /10)

For more information about checkpoint processing and automatic checkpoints, see
“Checkpoints” on page 15-4.

The second factor to consider when estimating the size of the physical log depends
on your use of the RTO_SERVER_RESTART configuration parameter to specify a

Chapter 15. Physical logging, checkpoints, and fast recovery 15-3

target amount of time for fast recovery. If you are not required to consider fast
recovery time, you are not requires to enable the RTO_SERVER_RESTART
configuration parameter. If you specify a value for the RTO_SERVER_RESTART
configuration parameter, transaction activity generates additional physical log
activity.

Typically, this additional physical log activity has little or no affect on transaction
performance. The extra logging is used to assist the buffer pool during fast
recovery, so that log replay performs optimally. If the physical log is considerably
larger than the combined sizes of all buffer pools, page flushing and page faulting
occur during fast recovery. The page flushing and page faulting substantially
reduce fast recovery performance, and the database server cannot maintain the
RTO_SERVER_RESTART policy.

For systems with less that four gigabytes of buffer pool space, the physical log can
be sized at 110 percent of the combined size of all the buffer pools. For larger
buffer pools, start with four gigabytes of physical log space and then monitor
checkpoint activity. If checkpoints occur too frequently and seem to affect
performance, increase the physical log size.

A rare condition, called a physical-log overflow, can occur when the database
server is configured with a small physical log and has many users. Following the
previously described size guidelines helps avoid physical-log overflow. The
database server generates performance warnings to the message log whenever it
detects suboptimal configurations.

You can use the onstat -g ckp command to display configuration recommendations
if a suboptimal configuration is detected.

Physical-log overflow when transaction logging is turned off
The physical log can overflow if you use simple large objects or smart large objects
in a database with transaction logging turned off, as the following example shows.

When the database server processes simple large objects, each portion of the
simple large object that the database server stores on disk can be logged separately,
allowing the thread to exit the critical sections of code between each portion.
However, if logging is turned off, the database server must carry out all operations
on the simple large object in one critical section. If the simple large object is large
and the physical log small, this scenario can cause the physical logs to become full.
If this situation occurs, the database server sends the following message to the
message log:
Physical log file overflow

The database server then initiates a shutdown. For the suggested corrective action,
see your message log.

Checkpoints
Periodically, the database server flushes transactions and data within the buffer
pool to disk. Until the transactions and data are flushed to disk, the data and
transactions are in a state of flux. Instead of forcing every transaction to disk
immediately after a transaction is completed, the database server writes
transactions to the logical log. The database server logs the transactions as they
occur. In the event of a system failure, the server:
v Replays the log to redo and restore the transactions.

15-4 IBM Informix Administrator's Guide

v Returns the database to a state consistent with the state of the database system
at the time of the failure.

To facilitate the restoration or logical recovery of a database system, the database
server generates a consistency point, called a checkpoint. A checkpoint is a point in
time in the log when a known and consistent state for the database system is
established. Typically, a checkpoint involves recording a certain amount of
information so that, if a failure occurs, the database server can restart at that
established point.

The purpose of a checkpoint is to periodically move the restart point forward in
the logical log. If checkpoints did not exist and a failure occurred, the database
server would be required to process all the transactions that were recorded in the
logical log since the system restarted.

A checkpoint can occur in one of these situations:
v When specific events occur. For example, a checkpoint occurs whenever a

dbspace is added to the server or a database backup is performed.
Typically, these types of events trigger checkpoints that block transaction
processing. Therefore, these checkpoints are called blocking checkpoints.

v When resource limitations occur. For example, a checkpoint is required for each
span of the logical log space to guarantee that the log has a checkpoint at which
to begin fast recovery. The database server triggers a checkpoint when the
physical log is 75 percent full to avoid physical log overflow.
Checkpoints triggered by resource limitations usually do not block transactions.
Therefore, these checkpoints are called nonblocking checkpoints.
However, if the database server begins to run out of resources during checkpoint
processing, transaction blocking occurs in the midst of checkpoint processing to
make sure that the checkpoint completes before a resource is depleted. If
transactions are blocked, the server attempts to trigger checkpoints more
frequently to avoid transaction blocking during checkpoint processing. For more
information, see “Strategy for estimating the size of the physical log” on page
15-3.

If failover occurs, and the secondary server becomes the primary server, checkpoint
discrepancies between the two servers can affect re-connection attempts. If a
checkpoint on the new secondary server does not exist on the new primary server,
attempts to connect the secondary server to the primary server fail. The secondary
server must be fully restored before it can connect to the primary server.

Automatic checkpoints cause the database server to trigger more frequent
checkpoints to avoid transaction blocking. Automatic checkpoints attempt to
monitor system activity and resource usage (physical and logical log usage along
with how dirty the buffer pools are) to trigger checkpoints in a timely manner so
that the processing of the checkpoint can complete before the physical or logical
log is depleted. The database server generates at least one automatic checkpoint for
each span of the logical-log space. This guarantees the existence of a checkpoint
where fast recovery can begin. Use the AUTO_CKPTS configuration parameter to
enable or disable automatic checkpoints when the database server starts. (You can
dynamically enable or disable automatic checkpoints by using onmode -wm or
onmode -wf.)

Manual checkpoints are event-based checkpoints that you can initiate. The database
server provides two methods for determining how long fast recovery takes in the
event of an unplanned outage.

Chapter 15. Physical logging, checkpoints, and fast recovery 15-5

v Use the CKPTINTVL configuration parameter to specify how frequently the
server triggers checkpoints.

v Use the RTO_SERVER_RESTART configuration parameter to specify how much
time fast recovery takes.
When you use the RTO_SERVER_RESTART configuration parameter:
– The database server ignores the CKPTINTVL configuration parameter.
– The database server monitors the physical and logical log usage to estimate

the duration of fast recovery. If the server estimates that fast recovery exceeds
the time specified in the RTO_SERVER_RESTART configuration parameter,
the server automatically triggers a checkpoint.

The RTO_SERVER_RESTART configuration parameter is intended to be a target
amount of time, not a guaranteed amount of time.Several factors that can increase
restart time can also influence fast recovery time. These factors include rolling back
long transactions that were active at the time of an unplanned outage. For more
information about the RTO_SERVER_RESTART and AUTO_CKPTS configuration
parameters, see the topics on configuration parameters in the IBM Informix
Administrator's Reference.

LRU values for flushing a buffer pool between checkpoints
The LRU values for flushing a buffer pool between checkpoints are not critical for
checkpoint performance. The lru_max_dirty and lru_min_dirty values, which are
set in the BUFFERPOOL configuration parameter, are usually necessary only for
maintaining enough clean pages for page replacement. Start by setting
lru_min_dirty to 70 and lru_max_dirty to 80.

If transactions are blocked during a checkpoint, the database server subsequently
attempts to increase checkpoint frequency to eliminate the transaction being
blocked. When the server searches for a free page to perform page replacement
and a foreground write occurs, the server subsequently automatically increases the
LRU flushing frequency to prevent this event from occurring again. When the
database server completes page replacement and finds a frequently accessed page,
the server automatically increases LRU flushing. Any automatic adjustments to
LRU flushing do not persist to the onconfig file.

For more information about monitoring and tuning checkpoint parameters and
information about LRU tuning and adjustments, see the IBM Informix Performance
Guide.

Checkpoints during backup
If you perform a backup, the database server runs a checkpoint and flushes all
changed pages to the disk. If you perform a restore, the database server reapplies
all logical-log records.

For information about ON-Bar or ontape, see the IBM Informix Backup and Restore
Guide.

Fast recovery
Fast recovery is an automatic, fault-tolerant feature that the database server
executes every time that it moves from offline to quiescent, administration, or
online mode. You are not required to take any administrative actions for fast
recovery; it is an automatic feature.

15-6 IBM Informix Administrator's Guide

The fast-recovery process checks if, the last time that the database server went
offline, it did so in uncontrolled conditions. If so, fast recovery returns the database
server to a state of physical and logical consistency.

If the fast-recovery process finds that the database server came offline in a
controlled manner, the fast-recovery process terminates, and the database server
moves to online mode.

See “Fast recovery after a checkpoint” on page 15-8.

Need for fast recovery
Fast recovery restores the database server to physical and logical consistency after
any failure that results in the loss of the contents of memory for the database
server. For example, the operating system fails without warning. System failures
do not damage the database but instead affect transactions that are in progress at
the time of the failure.

Situations when fast recovery is initiated
Every time that the administrator brings the database server to quiescent,
administration, or online mode from offline mode, the database server checks to
see if fast recovery is required.

As part of shared-memory initialization, the database server checks the contents of
the physical log. The physical log is empty when the database server shuts down
under control. The move from online mode to quiescent mode includes a
checkpoint, which flushes the physical log. Therefore, if the database server finds
pages in the physical log, the database server clearly went offline under
uncontrolled conditions, and fast recovery begins.

Fast recovery and buffered logging
If a database uses buffered logging (as described in “Buffered transaction logging”
on page 11-8), some logical-log records associated with committed transactions
might not be written to the logical log at the time of the failure. If this occurs, fast
recovery cannot restore those transactions. Fast recovery can restore only
transactions with an associated COMMIT record stored in the logical log on disk.
(For this reason, buffered logging represents a trade-off between performance and
data vulnerability.)

Possible physical log overflow during fast recovery
During fast recovery, the physical log can overflow. If this occurs, the database
server tries to extend the physical log space to a disk file named
plog_extend.servernum. The default location of this file is $INFORMIXDIR/tmp.

Use the ONCONFIG parameter PLOG_OVERFLOW_PATH to define the location
for creating this file.

The database server removes the plog_extend.servernum file when the first
checkpoint is performed during a fast recovery.

Fast recovery and no logging
For databases or tables that do not use logging, fast recovery restores the database
to its state at the time of the most recent checkpoint. All changes made to the
database since the last checkpoint are lost.

Chapter 15. Physical logging, checkpoints, and fast recovery 15-7

Fast recovery after a checkpoint
Fast recovery returns the database server to a consistent state as part of
shared-memory initialization. All committed transactions are restored, and all
uncommitted transactions are rolled back.

Fast recovery occurs in the following steps:
1. The database server uses the data in the physical log to return all disk pages to

their condition at the time of the most recent checkpoint. This point is known
as physical consistency.

2. The database server locates the most recent checkpoint record in the logical-log
files.

3. The database server rolls forward all logical-log records written after the most
recent checkpoint record.

4. The database server rolls back all uncommitted transactions. Some XA
transactions might be unresolved until the XA resource manager is available.

The server returns to the last-checkpoint state
To return all disk pages to their condition at the time of the most recent
checkpoint, the database server writes the before-images stored in the physical log
to shared memory and then back to disk. Each before-image in the physical log
contains the address of a page that was updated after the checkpoint. When the
database server writes each before-image page in the physical log to shared
memory and then back to disk, changes to the database server data since the time
of the most recent checkpoint are undone. The database server is now physically
consistent. The following figure illustrates this step.

The server locates the checkpoint record in the logical log
After returning to the last checkpoint state, the database server locates the address
of the most recent checkpoint record in the logical log. The most recent checkpoint
record is guaranteed to be in the logical log on disk.

The server rolls forward logical-log records
After locating the checkpoint record in the logical log, the database server rolls
forward the logical-log records that were written after the most recent checkpoint
record. This action reproduces all changes to the databases since the time of the
last checkpoint, up to the point at which the uncontrolled shutdown occurred. The
following figure illustrates this step.

Tblspace Physical log

Shared memory

Figure 15-1. Writing all remaining before-images in the physical log back to disk

15-8 IBM Informix Administrator's Guide

The server rolls back uncommitted transactions
After rolling the logical-log records forward, the database server rolls back all
logical-log records for transactions that were not committed at the time the system
failed. All databases are logically consistent because all committed transactions are
rolled forward and all uncommitted transactions are rolled back. Some XA
transactions might be unresolved until the XA resource manager is available.

Transactions that have completed the first phase of a two-phase commit are
exceptional cases. For more information, see “How the two-phase commit protocol
handles failures” on page 25-8.

Because one or more transactions possibly spanned several checkpoints without
being committed, this rollback procedure might read backward through the logical
log, past the most recent checkpoint record. All logical-log files that contain records
for open transactions are available to the database server because a log file is not
freed until all transactions that it contains are closed.

The following figure illustrates the rollback procedure. Here, uncommitted changes
are rolled back from the logical log to a dbspace on a particular disk. When fast
recovery is complete, the database server returns to quiescent, administration, or
online mode.

Records since
the checkpoint

Dbspace

Logical log

Changes rolled
forward since
the checkpoint

Figure 15-2. Rolling forward the logical-log records written since the most recent checkpoint

Dbspace

Disk A

Logical log

Uncommitted changes
rolled back

Figure 15-3. Rolling back all incomplete transactions

Chapter 15. Physical logging, checkpoints, and fast recovery 15-9

15-10 IBM Informix Administrator's Guide

Chapter 16. Manage the physical log

These topics describe the following procedures:
v Changing the location and size of the physical log
v Monitoring the physical log, physical-log buffers, and logical-log buffers
v Monitoring and forcing checkpoints

See Chapter 15, “Physical logging, checkpoints, and fast recovery,” on page 15-1
for background information.

Change the physical-log location and size
You can use the onparams utility to change the location and size of the physical
log.

You can move the physical-log file to try to improve performance. When the
database server initializes disk space, it places the disk pages that are allocated for
the physical log in the root dbspace. You might improve performance by moving
the physical log to another dbspace.

You can move the physical log to a dbspace or the plogspace. When the physical
log is in the plogspace, the database server increases the size of the physical log as
needed to improve performance. When the physical log is in a dbspace, you must
manually increase the size of the physical log.

To move the physical log to the plogspace, create the plogspace by running the
onspaces -c -P command or the SQL administration API admin() or task() function
with the create plogspace argument. To change the location of the plogspace,
create a new plogspace. The physical log is moved to the new plogspace and the
old plogspace is dropped.

Prerequisites to moving the physical log to a dbspace:
v Log in as user informix or root on UNIX or as a member of the

Informix-Admin group on Windows.
v Determine whether adequate contiguous space in the target chunk is available

by running the oncheck -pe command.
The space that is allocated for the physical log must be contiguous. When you
change the physical log size or location, if the target dbspace does not contain
adequate contiguous space, the server does not change the physical log.
Additionally, if insufficient resources for the physical log exist when you
initialize the database server, the initialization fails. The dbspace must use the
default page size.

To move the physical log to a dbspace, run the onparams -p -s command or the
SQL administration API admin() or task() function with the create dbspace
argument.

The following example changes the size and location of the physical log. The new
physical-log size is 400 KB, and the log is in the dbspace6 dbspace:
onparams -p -s 400 -d dbspace6

Related concepts:

© Copyright IBM Corp. 1996, 2014 16-1

“Size of the root dbspace” on page 8-35
Related reference:
“Monitor physical and logical-logging activity”
“Size and location of the physical log” on page 15-2
“The oncheck -pe command” on page 9-42

onparams -p: Change physical-log parameters (Administrator's Reference)

onspaces -c -P: Create a plogspace (Administrator's Reference)

Monitor physical and logical-logging activity
Monitor the physical log to determine the percentage of the physical-log file that
gets used before a checkpoint occurs. You can use this information to find the
optimal size of the physical-log file. It must be large enough that the database
server is not required to force checkpoints too frequently and small enough to
conserve disk space and guarantee fast recovery.

Monitor physical-log and logical-log buffers to determine if they are the optimal
size for the current level of processing. The important statistic to monitor is the
pages-per-disk-write statistic. For more information about tuning the physical-log
and logical-log buffers, see your IBM Informix Performance Guide.

To monitor the physical-log file, physical-log buffers, and logical-log buffers, use
the following commands.

16-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0454.htm#ids_adr_0454
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1182.htm#ids_adr_1182

Utility Command Additional information

Command line onstat -l The first line displays the following information for each physical-log
buffer:

v The number of buffer pages used (bufused)

v The size of each physical log buffer in pages (bufsize)

v The number of pages written to the buffer (numpages)

v The number of writes from the buffer to disk (numwrits)

v The ratio of pages written to the buffer to the number of writes to
disk (pages/IO)

The second line displays the following information about the physical
log:

v The page number of the first page in the physical-log file
(phybegin)

v The size of the physical-log file in pages (physize)

v The current position in the log where the next write occurs,
specified as a page number (physpos)

v The number of pages in the log that have been used (phyused)

v The percentage of the total physical-log pages that have been used
(%used)

The third line displays the following information about each
logical-log buffer:

v The number of buffer pages used (bufused)

v The size of each logical-log buffer in pages (bufsize)

v The number of records written to the buffer (numrecs)

v The number of pages written to the buffer (numpages)

v The number of writes from the buffer to disk (numwrits)

v The ratio of records to pages in the buffer (recs/pages)

v The ratio of pages written to the buffer to the number of writes to
disk (pages/IO)

Command line onparams -p Moves or resizes the physical log.

Command line onmode -l Advances to the next logical-log file.

For more information about and an example of onstat -l output, see the IBM
Informix Administrator's Reference.

For information about using SQL administration API commands instead of some
onparams and onmode commands, see Chapter 28, “Remote administration with
the SQL administration API,” on page 28-1 and the IBM Informix Guide to SQL:
Syntax.
Related reference:
“Change the physical-log location and size” on page 16-1

Monitor checkpoint information
Monitor checkpoint activity to view information that includes the number of times
that threads were required to wait for the checkpoint to complete. This information
is useful for determining if the checkpoint interval is appropriate.

To monitor checkpoints, use the following commands.

Chapter 16. Manage the physical log 16-3

Utility Command Additional Information

The onstat utility onstat -m View the last 20 lines in the message log.

If a checkpoint message is not in the last 20 lines, read the message
log directly with a text editor. The database server writes individual
checkpoint messages to the log when the checkpoint ends.

If a checkpoint occurs, but the database server has no pages to write
to disk, the database server does not write any messages to the
message log.

The onstat utility onstat -p Obtains these checkpoint statistics:

v numckpts: Number of checkpoints that occurred since the database
server was brought online.

v ckptwaits: Number of times that a user thread waits for a
checkpoint to finish. The database server prevents a user thread
from entering a critical section during a checkpoint.

For information about tuning the checkpoint interval, see your IBM Informix
Performance Guide.

Turn checkpoint tuning on or off
To turn automatic checkpoint tuning on, issue an onmode –wf AUTO_CKPTS=1
command. To turn automatic checkpoint tuning off, issue an onmode –wf
AUTO_CKPTS=0 command.

Force a checkpoint
When necessary, you can force a checkpoint with an onmode or SQL
administration API command.

Force a checkpoint in any of the following situations:
v To free a logical-log file that contains the most recent checkpoint record and that

is backed up but not yet released (onstat -l status of U-B-L or U-B)
v Before you issue onmode -sy to place the database server in quiescent mode
v After building a large index, if the database server terminates before the next

checkpoint. The index build restarts the next time that you restart the database
server.

v If a checkpoint has not occurred for a long time and you are about to attempt a
system operation that might interrupt the database server

v If foreground writes are taking more resources than you want (force a
checkpoint to bring this down to zero temporarily)

v Before you run dbexport or unload a table, to ensure physical consistency of all
data before you export or unload it

v After you perform a large load of tables using PUT or INSERT statements
(Because table loads use the buffer cache, forcing a checkpoint cleans the buffer
cache.)

To force a checkpoint, run onmode -c.

For information about using SQL administration API commands instead of some
onmode commands, see Chapter 28, “Remote administration with the SQL
administration API,” on page 28-1 and the IBM Informix Guide to SQL: Syntax.

16-4 IBM Informix Administrator's Guide

Server-provided checkpoint statistics
The database server provides history information about the previous twenty
checkpoints. You can access this information through the SMI sysckptinfo table.
Related reference:

sysckptinfo (Administrator's Reference)

SMI tables
Query the sysprofile table to obtain statistics on the physical-log and logical-log
buffers. The sysprofile table also provides the same checkpoint statistics that are
available from the onstat -p option. These rows contain the following statistics.

plgpagewrites
Number of pages written to the physical-log buffer

plgwrites
Number of writes from the physical-log buffer to the physical log file

llgrecs Number of records written to the logical-log buffer

llgpagewrites
Number of pages written to the logical-log buffer

llgwrites
Number of writes from the logical-log buffer to the logical-log files

numckpts
Number of checkpoints that have occurred since the database server was
brought online)

ckptwaits
Number of times that threads waited for a checkpoint to finish entering a
critical section during a checkpoint

value Values for numckpts and ckptwaits

Turn automatic LRU tuning on or off
Use the AUTO_LRU_TUNING configuration parameter to enable or disable
automatic LRU tuning when the database server starts.

If the RTO_SERVER_RESTART configuration parameter is set, the database server
automatically triggers checkpoints so that it can bring the server online within the
specified time. The database server prints warning messages in the message log if
the server cannot meet the RTO_SERVER_RESTART policy.

To turn off automatic LRU tuning for a particular session, issue an onmode –wm
AUTO_LRU_TUNING=0 command.

To turn on automatic LRU tuning after turning it off during a session, issue an
onmode –wm AUTO_LRU_TUNING=1 command

Automatic LRU tuning changes affect all buffer pools and adjust lru_min_dirty
and lru_max_dirty values in the BUFFERPOOL configuration parameter.

For more information about LRU tuning, see the IBM Informix Performance Guide.

Chapter 16. Manage the physical log 16-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1153.htm#ids_adr_1153

16-6 IBM Informix Administrator's Guide

Part 4. Fault tolerance

© Copyright IBM Corp. 1996, 2014

IBM Informix Administrator's Guide

Chapter 17. Mirroring

These topics describe the database server mirroring feature. For instructions on
how to perform mirroring tasks, see Chapter 18, “Using mirroring,” on page 18-1.
Related concepts:
“Feature configuration” on page 1-7
“Chunks” on page 8-2

Mirroring
Mirroring is a strategy that pairs a primary chunk of one defined dbspace,
blobspace, or sbspace with an equal-sized mirror chunk.

Every write to the primary chunk is automatically accompanied by an identical
write to the mirror chunk. This concept is illustrated in the following figure. If a
failure occurs on the primary chunk, mirroring enables you to read from and write
to the mirror chunk until you can recover the primary chunk, all without
interrupting user access to data.

Mirroring is not supported on disks that are managed over a network. The same
database server instance must manage all the chunks of a mirrored set.

Benefits of mirroring
If media failure occurs, mirroring provides the database server administrator with
a means of recovering data without taking the database server offline. This feature
results in greater reliability and less system downtime. Furthermore, applications
can continue to read from and write to a database whose primary chunks are on
the affected media, provided that the chunks that mirror this data are located on
separate media.

Any critical database must be located in a mirrored dbspace. The root dbspace,
which contains the database server reserved pages, must be mirrored.

Costs of mirroring
Disk-space costs and performance costs are associated with mirroring. The
disk-space cost is due to the additional space required for storing the mirror data.
The performance cost results from performing writes to both the primary and
mirror chunks. The use of multiple virtual processors for disk writes reduces this
performance cost. The use of split reads, whereby the database server reads data

Writes

Mirrored chunkPrimary chunk
Database server

Figure 17-1. Writing data to both the primary chunk and the mirror chunk

© Copyright IBM Corp. 1996, 2014 17-1

from either the primary chunk or the mirror chunk, depending on the location of
the data within the chunk, actually causes performance to improve for read-only
data. For more information about how the database server performs reads and
writes for mirror chunks, see “Actions during processing” on page 17-4.

Consequences of not mirroring
If you do not mirror your dbspaces, the frequency with which you must restore
from a storage-space backup after media failure increases.

When a mirror chunk suffers media failure, the database server reads exclusively
from the chunk that is still online until you bring the down chunk back online.
When the second chunk of a mirrored pair goes down, the database server cannot
access the data stored on that chunk. If the chunk contains logical-log files, the
physical log, or the root dbspace, the database server goes offline immediately. If
the chunk does not contain logical-log files, the physical log, or the root dbspace,
the database server can continue to operate, but threads cannot read from or write
to the down chunk. If an unmirrored chunk goes down, you must restore it by
recovering the dbspace from a backup.

Data to mirror
Ideally, you must mirror all of your data. If disk space is an issue, however, you
might not be able to do so. In this case, select certain critical chunks to mirror.

Critical chunks always include the chunks that are part of the root dbspace, the
chunk that stores the logical-log files, and the chunk that stores the physical logs. If
any one of these critical chunks fail, the database server goes offline immediately.

If some chunks hold data that is critical to your business, give these chunks high
priority for mirroring.

Also give priority for mirroring to chunks that store frequently used data. This
action ensures that the activities of many users would not be halted if one widely
used chunk goes down.

Alternatives to mirroring
Mirroring, as explained in this manual, is a database server feature. Your operating
system or hardware might provide alternative mirroring solutions.

If you are considering a mirroring feature provided by your operating system
instead of database server mirroring, compare the implementation of both features
before you decide which to use. The slowest step in the mirroring process is the
actual writing of data to disk. The database server strategy of performing writes to
mirror chunks in parallel helps to reduce the time required for this step. (See “Disk
writes to mirror chunks” on page 17-4.) In addition, database server mirroring uses
split reads to improve read performance. (See “Disk reads from mirror chunks” on
page 17-5.) Operating-system mirroring features that do not use parallel mirror
writes and split reads might provide inferior performance.

Nothing prevents you from running database server mirroring and
operating-system mirroring at the same time. They run independently of each
other. In some cases, you might decide to use both the database server mirroring
and the mirroring feature provided by your operating system. For example, you
might have both database server data and other data on a single disk drive. You

17-2 IBM Informix Administrator's Guide

can use the operating-system mirroring to mirror the other data and database
server mirroring to mirror the database server data.

Logical volume managers
Logical volume managers are an alternative mirroring solution. Some
operating-system vendors provide this type of utility to have multiple disks seem
to be one file system. Saving data to more than two disks gives you added
protection from media failure, but the additional writes have a performance cost.

Hardware mirroring
Another solution is to use hardware mirroring such as redundant array of
inexpensive disks (RAID). An advantage of this type of hardware mirroring is that
it requires less disk space than database server mirroring does to store the same
amount of data to prevent media failure.

Some hardware mirroring systems support hot swapping. You can swap a bad disk
while keeping the database server online. Reducing I/O activity before performing
a hot swap is recommended.

Important: If problems occur with the database server while using hardware
mirroring, see the operating-system or disk documentation or technical support for
assistance.

External backup and restore
If you use hardware disk mirroring, you can get your system online faster with
external backup and restore than with conventional ON-Bar commands. For more
information about external backup and restore, see the IBM Informix Backup and
Restore Guide.

Mirroring process
This section describes the mirroring process in greater detail. For instructions on
how to perform mirroring operations such as creating mirror chunks, starting
mirroring, changing the status of mirror chunks, and so forth, see Chapter 18,
“Using mirroring,” on page 18-1.

Creation of a mirror chunk
When you specify a mirror chunk, the database server copies all the data from the
primary chunk to the mirror chunk. This copy process is known as recovery.
Mirroring begins as soon as recovery is complete.

The recovery procedure that marks the beginning of mirroring is delayed if you
start to mirror chunks within a dbspace that contains a logical-log file. Mirroring
for dbspaces that contain a logical-log file does not begin until you create a level-0
backup of the root dbspace. The delay ensures that the database server can use the
mirrored logical-log files if the primary chunk that contains these logical-log files
becomes unavailable during a dbspace restore.

The level-0 backup copies the updated database server configuration information,
including information about the new mirror chunk, from the root dbspace reserved
pages to the backup. If you perform a data restore, the updated configuration
information at the beginning of the backup directs the database server to look for
the mirrored copies of the logical-log files if the primary chunk becomes
unavailable. If this new storage-space backup information does not exist, the
database server is unable to take advantage of the mirrored log files.

Chapter 17. Mirroring 17-3

For similar reasons, you cannot mirror a dbspace that contains a logical-log file
while a dbspace backup is being created. The new information that must be in the
first block of the dbspace backup tape cannot be copied there after the backup has
begun.

For more information about creating mirror chunks, see Chapter 18, “Using
mirroring,” on page 18-1.

Mirror status flags
Dbspaces, blobspaces, and sbspaces have status flags that indicate whether they are
mirrored or unmirrored.

You must perform a level-0 backup of the root dbspace before mirroring starts.

Chunks have status flags that indicate the following information:
v Whether the chunk is a primary or mirror chunk
v Whether the chunk is currently online, down, a new mirror chunk that requires

a level-0 backup of the root dbspace, or in the process of being recovered

For descriptions of these chunk status flags, see the description of the onstat -d
option in the IBM Informix Administrator's Reference. For information about how to
display these status flags, see “Monitor disk usage” on page 9-40.

Recovery
When the database server recovers a mirror chunk, it performs the same recovery
procedure that it uses when mirroring begins. The mirror-recovery process consists
of copying the data from the existing online chunk onto the new, repaired chunk
until the two are identical.

When you initiate recovery, the database server puts the down chunk in recovery
mode and copies the information from the online chunk to the recovery chunk.
When the recovery is complete, the chunk automatically receives online status. You
perform the same steps whether you are recovering the primary chunk of a
mirrored pair or recovering the mirror chunk.

Tip: You can still use the online chunk during the recovery process. If data is
written to a page that has already been copied to the recovery chunk, the database
server updates the corresponding page on the recovery chunk before it continues
with the recovery process.

For information about how to recover a down chunk, see the information about
recovering a mirror chunk on page “Recover a mirror chunk” on page 18-5.

Actions during processing
These topics explain some of the details of disk I/O for mirror chunks and how
the database server handles media failure for these chunks.

Disk writes to mirror chunks
During database server processing, the database server performs mirroring by
executing two parallel writes for each modification: one to the primary chunk and
one to the mirror chunk.

17-4 IBM Informix Administrator's Guide

Disk reads from mirror chunks
The database server uses mirroring to improve read performance because two
versions of the data are located on separate disks. A data page is read from either
the primary chunk or the mirror chunk, depending on which half of the chunk
includes the address of the data page. This feature is called a split read. Split reads
improve performance by reducing the disk-seek time. Disk-seek time is reduced
because the maximum distance over which the disk head must travel is reduced by
half. The following figure illustrates a split read.

Detection of media failures
The database server checks the return code when it first opens a chunk and after
any read or write. Whenever the database server detects that a primary (or mirror)
chunk device has failed, it sets the chunk-status flag to down (D). For information
about chunk-status flags, see “Mirror status flags” on page 17-4.

If the database server detects that a primary (or mirror) chunk device has failed,
reads and writes continue for the one chunk that remains online. This statement is
true even if the administrator intentionally brings down one of the chunks.

After the administrator recovers the down chunk and returns it to online status,
reads are again split between the primary and mirror chunks, and writes are made
to both chunks.

Chunk recovery
The database server uses asynchronous I/O to minimize the time required for
recovering a chunk. The read from the chunk that is online can overlap with the
write to the down chunk, instead of the two processes occurring serially. That is,
the thread that performs the read is not required to wait until the thread that
performs the write has finished before it reads more data.

Result of stopping mirroring
When you end mirroring, the database server immediately frees the mirror chunks
and makes the space available for reallocation. The action of ending mirroring
takes only a few seconds.

Create a level-0 backup of the root dbspace after you end mirroring to ensure that
the reserved pages with the updated mirror-chunk information are copied to the
backup. This action prevents the restore procedure from assuming that mirrored
data is still available.

Structure of a mirror chunk
The mirror chunk contains the same control structures as the primary chunk, as
follows:

Data on this half of the chunk is
read from the mirrored chunk.

Data on this half of the chunk is
read from the primary chunk.

Primary chunk Mirrored chunk
Database server

Figure 17-2. Split read reducing the maximum distance over which the disk head must travel

Chapter 17. Mirroring 17-5

v Mirrors of blobspace chunks contain blobspace overhead pages.
v Mirrors of dbspace chunks contain dbspace overhead pages.
v Mirrors of sbspaces contain metadata pages.

For information about these structures, see the section on the structure of a mirror
chunk in the disk structures and storage chapter of the IBM Informix Administrator's
Reference.

A display of disk-space use, provided by one of the methods explained under
“Monitor chunks” on page 9-40, always indicates that the mirror chunk is full, even
if the primary chunk has free space. The full mirror chunk indicates that none of
the space in the chunk is available for use other than as a mirror of the primary
chunk. The status remains full for as long as both primary chunk and mirror
chunk are online.

If the primary chunk goes down and the mirror chunk becomes the primary
chunk, disk-space allocation reports then accurately describe the fullness of the
new primary chunk.

17-6 IBM Informix Administrator's Guide

Chapter 18. Using mirroring

These topics describe the various mirroring tasks that are required to use the
database server mirroring feature. It provides an overview of the steps required for
mirroring data.

Preparing to mirror data
This section describes how to start mirroring data on a database server that is not
running with the mirroring function enabled.

To prepare to mirror data:
1. Take the database server offline and enable mirroring.

See “Enable the MIRROR configuration parameter.”
2. Bring the database server back online.
3. Allocate disk space for the mirror chunks.

You can allocate this disk space at any time, as long as the disk space is
available when you specify mirror chunks in the next step. The mirror chunks
must be on a different disk than the corresponding primary chunks. See
“Allocate disk space for mirrored data” on page 18-2.

4. Choose the dbspace, blobspace, or sbspace that you want to mirror, and specify
a mirror-chunk path name and offset for each primary chunk in that storage
space.
The mirroring process starts after you perform this step. Repeat this step for all
the storage spaces that you want to mirror. See “Using mirroring” on page 18-2.

Enable the MIRROR configuration parameter
You can set the MIRROR configuration parameter to enable (or disable) mirroring.

Enabling mirroring starts the database server functions required for mirroring
tasks. However, when you enable mirroring, you do not initiate the mirroring
process. Mirroring does not actually start until you create mirror chunks for a
dbspace, blobspace, or sbspace. See “Using mirroring” on page 18-2.

Enable mirroring when you initialize the database server if you plan to create a
mirror for the root dbspace as part of initialization; otherwise, leave mirroring
disabled. If you later decide to mirror a storage space, you can change the value of
the MIRROR configuration parameter.

To enable mirroring for the database server, you must set the MIRROR parameter
in onconfig to 1. The default value of MIRROR is 0, indicating that mirroring is
disabled.

Do not set the MIRROR parameter to 1 if you are not using mirroring.

To change the value of MIRROR, you can edit the onconfig file with a text editor
while the database server is in online mode. After you change the onconfig file,
take the database server offline and then to quiescent for the change to take effect.

© Copyright IBM Corp. 1996, 2014 18-1

Allocate disk space for mirrored data
Before you can create a mirror chunk, you must allocate disk space for this
purpose. You can allocate either raw disk space or cooked file space for mirror
chunks. For an explanation of allocating disk space, see “Allocate disk space” on
page 9-1.

Always allocate disk space for a mirror chunk on a different disk than the
corresponding primary chunk with, ideally, a different controller. You can use this
setup to access the mirror chunk if the disk on which the primary chunk is located
goes down, or vice versa.

Link chunks (UNIX)
Use the UNIX link (ln) command to link the actual files or raw devices of the
mirror chunks to mirror path names. If a disk failure occurs, you can link a new
file or raw device to the path name, eliminating the necessity to physically replace
the disk that failed before the chunk is brought back online.

Relink a chunk to a device after a disk failure
On UNIX, if the disk on which the actual mirror file or raw device is located goes
down, you can relink the chunk to a file or raw device on a different disk. If you
do this, you can recover the mirror chunk before the disk that failed is brought
back online. Typical UNIX commands that you can use for relinking are shown in
the following examples.

The original setup consists of a primary root chunk and a mirror root chunk,
which are linked to the actual raw disk devices, as follows:
ln -l
lrwxrwxrwx 1 informix 10 May 3 13:38 /dev/root@->/dev/rxy0h
lrwxrwxrwx 1 informix 10 May 3 13:40 /dev/mirror_root@->/dev/rsd2b

Assume that the disk on which the raw device /dev/rsd2b is located has gone
down. You can use the rm command to remove the corresponding symbolic link,
as follows:
rm /dev/mirror_root

Now you can relink the mirror chunk path name to a raw disk device, on a disk
that is running, and proceed to recover the chunk, as follows:
ln -s /dev/rab0a /dev/mirror_root

Using mirroring
Mirroring starts when you create a mirror chunk for each primary chunk in a
dbspace, blobspace, or sbspace.

When you create a mirror chunk, the database server copies data from the primary
chunk to the mirror chunk. When this process is complete, the database server
begins mirroring data. If the primary chunk contains logical-log files, the database
server does not copy the data immediately after you create the mirror chunk but
waits until you perform a level-0 backup. For an explanation of this behavior see
“Creation of a mirror chunk” on page 17-3.

18-2 IBM Informix Administrator's Guide

Important: You must always start mirroring for an entire dbspace, blobspace, or
sbspace. The database server does not permit you to select particular chunks in a
dbspace, blobspace, or sbspace to mirror. You must create mirror chunks for every
chunk in the space.

You start mirroring a storage space when you perform the following operations:
v Create a mirrored root dbspace during system initialization
v Change the status of a dbspace from unmirrored to mirrored
v Create a mirrored dbspace, blobspace, or sbspace

Each of these operations requires you to create mirror chunks for the existing
chunks in the storage space.

Mirroring the root dbspace during initialization
If you enable mirroring when you initialize the database server, you can also
specify a mirror path name and offset for the root chunk. The database server
creates the mirror chunk when the server is initialized. However, because the root
chunk contains logical-log files, mirroring does not actually start until you perform
a level-0 backup.

To specify the root mirror path name and offset, set the values of MIRRORPATH
and MIRROROFFSET in the onconfig file before you start the database server.

If you do not provide a mirror path name and offset, but you do want to start
mirroring the root dbspace, you must change the mirroring status of the root
dbspace after the database server is initialized.

Change the mirror status
You can make the following two changes to the status of a mirror chunk:
v Change a mirror chunk from online to down
v Change a mirror chunk from down to recovery

You can take down or restore a chunk only if it is part of a mirrored pair. You can
take down either the primary chunk or the mirror chunk, as long as the other
chunk in the pair is online.

For information about how to determine the status of a chunk, see “Monitor disk
usage” on page 9-40.

Manage mirroring
You can use the onspaces utility to manage mirroring.

For a full description of the onspaces syntax, see The onspaces utility in the IBM
Informix Administrator's Reference.

Start mirroring for unmirrored storage spaces
You can prepare mirroring for a dbspace, blobspace, or sbspace at any time.
However, the mirroring does not start until you perform a level-0 backup.

Chapter 18. Using mirroring 18-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0460.htm#ids_adr_0460

Start mirroring for unmirrored dbspaces using onspaces
You can use the onspaces utility to start mirroring a dbspace, blobspace, or
sbspace. For example, the following onspaces command starts mirroring for the
dbspace db_project, which contains two chunks, data1 and data2:
onspaces -m db_project\
-p /dev/data1 -o 0 -m /dev/mirror_data1 0\
-p /dev/data2 -o 5000 -m /dev/mirror_data2 5000

The following example shows how to turn on mirroring for a dbspace called sp1.
You can either specify the primary path, primary offset, mirror path, and mirror
offset in the command or in a file.
onspaces -m sp1 -f mirfile

The mirfile file contains the following line:
/ix/9.3/sp1 0 /ix/9.2/sp1mir 0

In this line, /ix/9.3/sp1 is the primary path, 0 is the primary offset,
/ix/9.3/sp1mir is the mirror path, and 0 is the mirror offset.

Start mirroring for new storage spaces
You can also start mirroring when you create a new dbspace, blobspace, or
sbspace.

Start mirroring for new spaces using onspaces
You can use the onspaces utility to create a mirrored dbspace. For example, the
following command creates the dbspace db_acct with an initial chunk /dev/chunk1
and a mirror chunk /dev/mirror_chk1:
onspaces -c -d db_acct -p /dev/chunk1 -o 0 -s 2500 -m /dev/mirror_chk1 0

Another way to start mirroring is to select Index by Utility > onspaces -m.

Add mirror chunks
If you add a chunk to a dbspace, blobspace, or sbspace that is mirrored, you must
also add a corresponding mirror chunk.

Add mirror chunks using onspaces
You can use the onspaces utility to add a primary chunk and its mirror chunk to a
dbspace, blobspace, or sbspace. The following example adds a chunk, chunk2, to
the db_acct dbspace. Because the dbspace is mirrored, a mirror chunk,
mirror_chk2, is also added.
onspaces -a db_acct -p /dev/chunk2 -o 5000 -s 2500 -m /dev/mirror_chk2 5000

Take down a mirror chunk
When a mirror chunk is down, the database server cannot write to it or read from
it. You might take down a mirror chunk to relink the chunk to a different device.
(See “Relink a chunk to a device after a disk failure” on page 18-2.)

Taking down a chunk is not the same as ending mirroring. You end mirroring for a
complete dbspace, which causes the database server to drop all the mirror chunks
for that dbspace.

Take down mirror chunks using onspaces
You can use the onspaces utility to take down a chunk. The following example
takes down a chunk that is part of the dbspace db_acct:

18-4 IBM Informix Administrator's Guide

onspaces -s db_acct -p /dev/mirror_chk1 -o 0 -D

Recover a mirror chunk
To begin mirroring the data in the chunk that is online, you must recover the
down chunk.

Recover a mirror chunk using onspaces
You can use the onspaces -s utility to recover a down chunk. For example, to
recover a chunk that has the path name /dev/mirror_chk1 and an offset of 0 KB,
issue the following command:
onspaces -s db_acct -p /dev/mirror_chk1 -o 0 -O

End mirroring
When you end mirroring for a dbspace, blobspace, or sbspace, the database server
immediately releases the mirror chunks of that space. These chunks are
immediately available for reassignment to other storage spaces.

Only users informix and root on UNIX or members of the Informix-Admin group
on Windows can end mirroring.

You cannot end mirroring if any of the primary chunks in the dbspace are down.
The system can be in online mode when you end mirroring.

End mirroring using onspaces
You can end mirroring with the onspaces utility. For example, to end mirroring for
the root dbspace, enter the following command:
onspaces -r rootdbs

Another way to end mirroring is to select Index by Utility > onspaces -r.

Chapter 18. Using mirroring 18-5

18-6 IBM Informix Administrator's Guide

Chapter 19. Consistency checking

IBM Informix database servers are designed to detect database server malfunctions
or problems caused by hardware or operating-system errors. It detects problems by
performing assertions in many of its critical functions. An assertion is a consistency
check that verifies that the contents of a page, structure, or other entity match what
would otherwise be assumed.

When one of these checks finds that the contents are incorrect, the database server
reports an assertion failure and writes text that describes the check that failed in
the database server message log. The database server also collects further
diagnostics information in a separate file that might be useful to IBM Informix
Technical Support staff.

These topics provide an overview of consistency-checking measures and ways of
handling inconsistencies.
Related reference:
“Database server maintenance tasks” on page 1-10

Perform periodic consistency checking
To gain the maximum benefit from consistency checking and to ensure the
integrity of dbspace backups, you must periodically take the following actions:
v Verify that all data and the database server overhead information is consistent.
v Check the message log for assertion failures while you verify consistency.
v Create a level-0 dbspace backup after you verify consistency.

The following topics describe each of these actions.

Verify consistency
Because of the time required for this check and the possible contention that the
check can cause, schedule this check for times when activity is at its lowest. You
must perform this check just before you create a level-0 backup.

Run the commands shown in the following table as part of the consistency check.

Table 19-1. Checking data consistency

Type of validation Command

System catalog tables oncheck -cc

Data oncheck -cD dbname

Extents oncheck -ce

Indexes oncheck -cI dbname

Reserved pages oncheck -cr

Logical logs and reserved pages oncheck -cR

Metadata and smart large objects oncheck -cs

© Copyright IBM Corp. 1996, 2014 19-1

You can run each of these commands while the database server is in online mode.
For information about how each command locks objects as it checks them and
which users can perform validations, see oncheck in the IBM Informix
Administrator's Reference.

In most cases, if one or more of these validation procedures detects an error, the
solution is to restore the database from a dbspace backup. However, the source of
the error might also be your hardware or operating system.

Validate system catalog tables
To validate system catalog tables, use the oncheck -cc command.

Each database contains its own system catalog, which contains information about
the database tables, columns, indexes, views, constraints, stored procedures, and
privileges.

If a warning is displayed when validation completes, its only purpose is to alert
you that no records of a specific type were found. These warnings do not indicate
any problem with your data, your system catalog, or even your database design.
This warning indicates only that no synonym exists for any table; that is, the
system catalog contains no records in the table syssyntable. For example, the
following warning might be displayed if you validate system catalog tables for a
database that has no synonyms defined for any table:
WARNING: No syssyntable records found.

However, if you receive an error message when you validate system catalog tables,
the situation is quite different. Contact IBM Informix Technical Support
immediately.

Validate data pages
To validate data pages, use the oncheck -cD command.

If data-page validation detects errors, try to unload the data from the specified
table, drop the table, recreate the table, and reload the data. For information about
loading and unloading data, see the IBM Informix Migration Guide. If this procedure
does not succeed, perform a data restore from a storage-space backup.

Validate extents
To validate extents in every database, use the oncheck -ce command.

Extents must not overlap. If this command detects errors, perform a data restore
from a storage-space backup.

Validate indexes
If an index is corrupted, the database server cannot use it in queries.

You can validate indexes on each of the tables in the database by using the
oncheck -cI command.

In addition, the Scheduler task bad_index_alert looks for indexes that have been
marked as corrupted by the server. This task runs nightly. An entry is made into
the sysadmin:ph_alert table for each corrupted index found by the task.

If an index is corrupted, drop and recreate it.

19-2 IBM Informix Administrator's Guide

Validate logical logs
To validate logical logs and the reserved pages, use the oncheck -cR command.

Validate reserved pages
To validate reserved pages, use the oncheck -cr command.

Reserved pages are pages that are located at the beginning of the initial chunk of
the root dbspace. These pages contain the primary database server overhead
information. If this command detects errors, perform a data restore from
storage-space backup.

This command might provide warnings. In most cases, these warnings call your
attention to situations of which you are already aware.

Validate metadata
Run oncheck -cs for each database to validate metadata for all smart large objects
in a database. If necessary, restore the data from a dbspace backup.

Monitor for data inconsistency
If the consistency-checking code detects an inconsistency during database server
operation, an assertion failure is reported to the database server message log. (See
the message-log topics in the IBM Informix Administrator's Reference.)

Read assertion failures in the message log and dump files
The following example shows the form that assertion failures take in the message
log.
Assert Failed: Short description of what failed

Who: Description of user/session/thread running at the time
Result: State of the affected database server entity
Action: What action the database server administrator should take
See Also: file(s) containing additional diagnostics

The See Also: line contains one or more of the following file names:
v af.xxx

v shmem.xxx

v gcore.xxx

v gcore.xxx

v /path name/core

In all cases, xxx is a hexadecimal number common to all files associated with the
assertion failures of a single thread. The files af.xxx, shmem.xxx, and gcore.xxx are
in the directory that the ONCONFIG parameter DUMPDIR specifies.

The file af.xxx contains a copy of the assertion-failure message that was sent to
the message log, and the contents of the current, relevant structures and data
buffers.

The file shmem.xxx contains a complete copy of the database server shared memory
at the time of the assertion failure, but only if the ONCONFIG parameter
DUMPSHMEM is set to 1 or to 2.

UNIX only: On UNIX, gcore.xxx contains a core dump of the database server
virtual process on which the thread was running at the time, but only if the
ONCONFIG parameter DUMPGCORE is set to 1 and your operating system
supports the gcore utility. The core file contains a core dump of the database

Chapter 19. Consistency checking 19-3

server virtual process on which the thread was running at the time, but only if the
ONCONFIG parameter DUMPCORE is set to 1. The path name for the core file is
the directory from which the database server was last invoked.

Validate table and tblspace data
To validate table and tblspace data, use the oncheck -cD command on the database
or table.

Most of the general assertion-failure messages are followed by additional
information that usually includes the tblspace where the error was detected. If this
check verifies the inconsistency, unload the data from the table, drop the table,
recreate the table, and reload the data. Otherwise, no other action is required.

In many cases, the database server stops immediately when an assertion fails.
However, when failures seem to be specific to a table or smaller entity, the
database server continues to run.

When an assertion fails because of inconsistencies on a data page that the database
server accesses on behalf of a user, an error is also sent to the application process.
The SQL error depends on the operation in progress. However, the ISAM error is
almost always either -105 or -172, as follows:
-105 ISAM error: bad isam file format
-172 ISAM error: Unexpected internal error

For additional details about the objectives and contents of messages, see the topics
about message-log messages in the IBM Informix Administrator's Reference.

Retain consistent level-0 backups
After you perform the checks described in “Verify consistency” on page 19-1
without errors, create a level-0 backup. Retain this storage-space backup and all
subsequent logical-log backup tapes until you complete the next consistency check.
Perform the consistency checks before every level-0 backup. If you do not, then at
minimum keep all the tapes necessary to recover from the storage-space backup
that was created immediately after the database server was verified to be
consistent.

Deal with corruption
This section describes some of the symptoms of database server system corruption
and actions that the database server or you, as administrator, can take to resolve
the problems. Corruption in a database can occur as a consequence of hardware or
operating-system problems, or from some unknown database server problems.
Corruption can affect either data or database server overhead information.

Find symptoms of corruption
You can find information about corruption several different ways.

The database server alerts the user and administrator to possible corruption in the
following ways:
v Error messages reported to the application state that pages, tables, or databases

cannot be found. One of the following errors is always returned to the
application if an operation has failed because of an inconsistency in the
underlying data or overhead information:
-105 ISAM error: bad isam file format
-172 ISAM error: Unexpected internal error

19-4 IBM Informix Administrator's Guide

v Assertion-failure reports are written to the database server message log. They
always indicate files that contain additional diagnostic information that can help
you determine the source of the problem. See “Verify consistency” on page 19-1.

v The oncheck utility returns errors
v The ph_alert table shows information about corrupted indexes.

Fix index corruption
At the first indication of corruption, run the oncheck -cI command to determine if
corruption exists in the index.

If you check indexes while the database server is in online mode, oncheck detects
the corruption but does not prompt you for repairs. If corruption exists, you can
drop and recreate the indexes using SQL statements while you are in online mode
(the database server locks the table and index). If you run oncheck -cI in quiescent
mode and corruption is detected, you are prompted to confirm whether the utility
attempts to repair the corruption.

Fix I/O errors on a chunk
If an I/O error occurs during the database server operation, the status of the chunk
on which the error occurred changes to down.

If a chunk is down, the onstat -d display shows the chunk status as PD- for a
primary chunk and MD- for a mirror chunk. For an example of onstat -d output,
see the IBM Informix Administrator's Reference.

In addition, the message log lists a message with the location of the error and a
suggested solution. The listed solution is a possible fix, but does not always correct
the problem.

If the down chunk is mirrored, the database server continues to operate using the
mirror chunk. Use operating-system utilities to determine what is wrong with the
down chunk and correct the problem. You must then direct the database server to
restore mirror chunk data.

For information about recovering a mirror chunk, see “Recover a mirror chunk” on
page 18-5.

If the down chunk is not mirrored and contains logical-log files, the physical log,
or the root dbspace, the database server immediately initiates a stop action.
Otherwise, the database server can continue to operate but cannot write to or read
from the down chunk or any other chunks in the dbspace of that chunk. You must
take steps to determine why the I/O error occurred, correct the problem, and
restore the dbspace from a backup.

If you take the database server to offline mode when a chunk is marked as down
(D), you can restart the database server, provided that the chunk marked as down
does not contain critical data (logical-log files, the physical log, or the root
dbspace).

Chapter 19. Consistency checking 19-5

Collect diagnostic information
Several ONCONFIG parameters affect the way in which the database server
collects diagnostic information. Because an assertion failure is generally an
indication of an unforeseen problem, notify IBM Informix Technical Support
whenever one occurs. The diagnostic information collected is intended for the use
of IBM Informix technical staff. The contents and use of af.xxx files and shared
core are not further documented.

To determine the cause of the problem that triggered the assertion failure, it is
critically important that you not delete diagnostic information until IBM Informix
Technical Support indicates that you can do so. The af.xxx file often contains
information that they require to resolve the problem.

Several ONCONFIG parameters direct the database server to preserve diagnostic
information whenever an assertion failure is detected or whenever the database
server enters into an end sequence:
v DUMPDIR
v DUMPSHMEM
v DUMPCNT
v DUMPCORE
v DUMPGCORE

For more information about the configuration parameters, see the IBM Informix
Administrator's Reference.

You decide whether to set these parameters. Diagnostic output can use a large
amount of disk space. (The exact content depends on the environment variables set
and your operating system.) The elements of the output can include a copy of
shared memory and a core dump.

Tip: A core dump is an image of a process in memory at the time that the assertion
failed. On some systems, core dumps include a copy of shared memory. Core
dumps are useful only if this is the case.

Database server administrators with disk-space constraints might prefer to write a
script that detects the presence of diagnostic output in a specified directory and
sends the output to tape. This approach preserves the diagnostic information and
minimizes the amount of disk space used.

Disable I/O errors
IBM Informix divides disabling I/O errors into two general types: destructive and
nondestructive. A disabling I/O error is destructive when the disk that contains a
database becomes damaged in some way. This type of event threatens the integrity
of data, and the database server marks the chunk and dbspace as down. The
database server prohibits access to the damaged disk until you repair or replace
the disk and perform a physical and logical restore.

A disabling I/O error is nondestructive when the error does not threaten the
integrity of your data. Nondestructive errors occur when someone accidentally
disconnects a cable, you somehow erase the symbolic link that you set up to point
to a chunk, or a disk controller becomes damaged.

19-6 IBM Informix Administrator's Guide

Before the database server considers an I/O error to be disabling, the error must
meet two criteria. First, the error must occur when the database server attempts to
perform an operation on a chunk that has at least one of the following
characteristics:
v The chunk has no mirror.
v The primary or mirror companion of the chunk under question is offline.

Second, the error must occur when the database server attempts unsuccessfully to
perform one of the following operations:
v Seek, read, or write on a chunk
v Open a chunk
v Verify that chunk information about the first used page is valid

The database server performs this verification as a sanity check immediately
after it opens a chunk.

You can prevent the database server from marking a dbspace as down while you
investigate disabling I/O errors. If you find that the problem is trivial, such as a
loose cable, you can bring the database server offline and then online again
without restoring the affected dbspace from backup. If you find that the problem is
more serious, such as a damaged disk, you can use onmode -O to mark the
affected dbspace as down and continue processing.

Monitor the database server for disabling I/O errors
The database server notifies you about disabling I/O errors in two ways:
v Message log
v Event alarms

The message log to monitor disabling I/O errors
The database server sends a message to the message log when a disabling I/O
error occurs.

The message is:
Assert Failed: Chunk {chunk-number} is being taken OFFLINE.
Who: Description of user/session/thread running at the time
Result: State of the affected database server entity
Action: What action the database server administrator should take
See Also: DUMPDIR/af.uniqid containing more diagnostics

The result and action depend on the current setting of ONDBSPACEDOWN, as
described in the following table.

ONDBSPACEDOWN
setting Result Action

0 Dbspace {space_name} is
disabled.

Restore dbspace {space_name}.

Blobspace {space_name} is
disabled.

Restore blobspace {space_name}.

1 The database server must stop. Shut down and restart the
database server.

2 The database server blocks at
next checkpoint.

Use onmode -k to shut down, or
use onmode -O to override.

Chapter 19. Consistency checking 19-7

The value of ONDBSPACEDOWN has no affect on temporary dbspaces. For
temporary dbspaces, the database server continues processing regardless of the
ONDBSPACEDOWN setting. If a temporary dbspace requires fixing, you can drop
and recreate it.

For more information about interpreting messages that the database server sends
to the message log, see the topics about message-log messages in the IBM Informix
Administrator's Reference.

Event alarms to monitor disabling I/O errors
When a dbspace incurs a disabling I/O error, the database server passes the
specified values as parameters to your event-alarm executable file.

Event alarm values:

Severity
4 (Emergency)

Class 5

Class message
Dbspace is disabled: 'dbspace-name'

Specific message
Chunk {chunk-number} is being taken OFFLINE.

Event ID
5001

If you want the database server to use event alarms to notify you about disabling
I/O errors, write a script that the database server executes when it detects a
disabling I/O error. For information about how to set up this executable file that
you write, see the appendix on event alarms and the topics on configuration
parameters in the IBM Informix Administrator's Reference.

No bad-sector mapping
IBM Informix relies on the operating system of your host computer for bad-sector
mapping. The database server learns of a bad sector or a bad track when it
receives a failure return code from a system call. When this situation occurs, the
database server retries the access several times to ensure that the condition is not
spurious. If the condition is confirmed, the database server marks as down the
chunk where the read or write was attempted.

The database server cannot take any action to identify the bad cylinder, track, or
sector location because the only information available is the byte displacement
within the chunk where the I/O operation was attempted.

If the database server detects an I/O error on a chunk that is not mirrored, it
marks the chunk as down. If the down chunk contains logical-log files, the
physical log, or the root dbspace, the database server immediately initiates a stop
action. Otherwise, the database server can continue to operate, but applications
cannot access the down chunk until its dbspace is restored.

19-8 IBM Informix Administrator's Guide

Part 5. High availability and scalability

A successful production environment requires database systems that are always
available, with minimal if any planned outages, and that can be scaled quickly and
easily as business requirements change.

Businesses must provide continuous access to database resources during planned
and unplanned outages. Planned outages include scheduled maintenance of
software or hardware. Unplanned outages are unexpected system failures such as
power interruptions, network outages, hardware failures, operating system or other
software errors. In the event of a disaster, such as an earthquake or a tsunami,
there is the possibility of extensive system failure.

Businesses want to avoid overloading a server in the system to ensure data
availability and to prevent, for example, denial of service attacks.

Businesses also want to quickly and easily expand their systems as their business
grows, during seasonal business peak periods, and for end-of-month or end-of-year
processing.

Systems with one or more of the following abilities can be resilient to outages and
can improve the availability of data:

Redundancy
The ability of a system to maintain secondary servers that are copies of the
primary server and that can take over from the primary server if a failure
occurs.

Failover
The ability of a system to transfer all of the workload from a failed server
to another server.

Workload balancing
The ability of a system to automatically direct client requests to the server
with the most workload capacity.

Scalability
The ability of a system to take advantage of additional resources, such as
database servers, processors, memory, or disk space.

Minimized affect on maintenance
The ability to maintain all servers quickly and easily so that user
applications are affected a little as possible.

Related concepts:
“Feature configuration” on page 1-7
“XA in high-availability clusters” on page 25-3

© Copyright IBM Corp. 1996, 2014

IBM Informix Administrator's Guide

Chapter 20. Strategies for high availability and scalability

IBM Informix database software can be customized to create the appropriate high
availability and scalability solution to match your business goals and environment.

To determine the best way to customize your database system for high availability
and scalability, you must identify the strategies that help you achieve your
business goals. You can use the appropriate Informix technologies and components
to support those strategies.

Components supporting high availability and scalability
IBM Informix database software can be customized to create systems that provide
uninterrupted services, minimize maintenance and downtime, automatically
redirect client connection requests to the most appropriate database servers, and
distribute both processing and storage across hardware.

High-availability clusters

A high-availability cluster consists of a primary server that contains the master
copy of data, and is securely networked to at least one secondary server that is
synchronized with the primary server or has access to the primary server's data.
Transactions are sent to secondary servers after they are committed on the primary
server, so database data is reliable. If the primary server fails, a secondary server
can become the primary server, and client connections can be redirected to the new
primary server.

High-availability cluster servers are configured with identical hardware and
software. High-availability cluster servers can be in close proximity or
geographically remote from each other, and applications can securely connect to
any of the cluster servers.

There are three types of secondary servers:
v Shared-disk (SD) secondary servers, which share disk space with the primary

server.
v High-availability data replication (HDR) secondary servers, which maintain

synchronously or asynchronously updated copies of the entire primary server
and can be accessed quickly if the primary server fails.

v Remote stand-alone (RS) secondary servers, which maintain asynchronously
updated copies of the entire primary server, and can serve as remote-backup
servers in disaster-recovery scenarios.

Enterprise Replication

Using Enterprise Replication, you can maintain complete or partial copies of your
data across multiple servers by replicating transactions. Data is replicated
asynchronously through transactions captured from the logical log. If a remote
database server or network failure occurs, a local database server can service local
users, and store transactions to be replicated until remote servers become available.
At each database server, Enterprise Replication reads the logical logs to capture
locally originating transactions, and then replicates those transactions to other
database servers in the Enterprise Replication domain.

© Copyright IBM Corp. 1996, 2014 20-1

Shard clusters

IBM Informix can horizontally partition (shard) a table or collection across multiple
database servers. The set of database servers that data is sharded across is called a
shard cluster, and each of the database servers in the set is a shard server.
Distributing rows or documents across a shard cluster reduces the size of the
associated index on each shard server, and distributes performance across your
hardware. As your database grows in size, you can scale up by adding more
database servers. Horizontal partitioning is also known as sharding.

Rows or documents that are inserted on one shard server can be replicated or sent
to other shard servers, depending on the sharding rules you specify. Queries that
are performed on a shard server can select data from other shard servers in a
shard cluster. When data is sharded based on a replication key that specifies
certain segmentation characteristics, queries can skip shard servers that do not
contain relevant data. This query optimization is another benefit that comes from
data sharding.

Connection management

The Connection Manager is a utility that can monitor the workload and status of
database servers in high-availability clusters, Enterprise Replication domains, grids,
and server sets, and then use a redirection policy to send client connection requests
to the most appropriate database server. Connection Managers can also act as
proxy servers to handle client/server communication and circumvent connection
issues that are related to firewalls.

Connection Managers can control failover for high-availability clusters,
automatically promoting secondary servers to the role of the primary server if the
original primary server fails.

If a partial network failure occurs, Connection Managers can prioritize connections
between application servers and the primary server of a high-availability cluster, to
better define failover.

Grids

A grid is a set of interconnected replication servers, where SQL commands can be
propagated from one server to all the others. Grids provide an easier way to
administer a large group of servers, update database schemas, run stored
procedures and user-defined routines, and administer replication.
Related concepts:

JSON data sharding (JSON compatibility)

Shard cluster setup (Enterprise Replication Guide)

Grid setup and management (Enterprise Replication Guide)
Chapter 23, “Connection management through the Connection Manager,” on page
23-1
Related information:

Setting up and managing Enterprise Replication (Enterprise Replication Guide)

20-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.json.doc/ids_json_011.htm#ids_json_011
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_646.htm#ids_erp_646
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_560.htm#ids_erp_560
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_470.htm#ids_erp_470

Advantages of data replication
The advantages of data replication do not come without a cost. Data replication
obviously requires more storage, and updating replicated data can take more
processing time than updating a single object.

You can implement data replication in the logic of client applications by explicitly
specifying where data must be updated. However, this method of achieving data
replication is costly, prone to error, and difficult to maintain. Instead, the concept of
data replication is often coupled with replication transparency. Replication
transparency is built into a database server (instead of into client applications) to
handle automatically the details of locating and maintaining data replicas.

Clustering versus mirroring
Clustering and mirroring are transparent methods for increasing fault tolerant.

Mirroring, described “Mirroring” on page 17-1, is the mechanism by which a single
database server maintains a copy of a specific dbspace on a separate disk. This
mechanism protects the data in mirrored dbspaces against disk failure because the
database server automatically updates data on both disks and automatically uses
the other disk if one of the dbspaces fails.

Alternatively, a cluster duplicates on an entirely separate database server all the
data that a database server manages, not just the specified dbspaces. Because
clustering involves two separate database servers, it protects the data that these
database servers manage, not just against disk failures, but against all types of
database server failures, including a computer failure or the catastrophic failure of
an entire site.

Mirroring

High-Availability Cluster

Computer

Disks

Database server

Database serverDatabase server

Figure 20-1. A comparison of mirroring and clustering

Chapter 20. Strategies for high availability and scalability 20-3

Clustering versus two-phase commit
The two-phase commit protocol, described in detail in Chapter 25, “Multiphase
commit protocols,” on page 25-1, ensures that transactions are uniformly
committed or rolled back across multiple database servers.

In theory, you can take advantage of two-phase commit to replicate data by
configuring two database servers with identical data and then defining triggers on
one of the database servers that replicate updates to the other database server.
However, this sort of implementation has numerous synchronization problems in
different failure scenarios. Also, the performance of distributed transactions is
inferior to clustering.

Type of data replicated in clusters
A high-availability cluster replicates data in dbspaces and sbspaces, but does not
replicate data in blobspaces.

All built-in and extended data types are replicated to the secondary server.
User-defined types (UDTs) must be logged and are located in a single database
server. Data types with out-of-row data are replicated if the data is stored in an
sbspace or in a different table on the same database server. For data stored in an
sbspace to be replicated, the sbspace must be logged.

Data stored in operating system files or persistent external files or memory objects
associated with user-defined routines are not replicated.

User-defined types, user-defined routines, and DataBlade modules have special
installation and registration requirements. For instructions, see “How data initially
replicates” on page 22-1.

Primary and secondary database servers
When you configure a set of database servers to use data replication, one database
server is called the primary database server, and the others are called secondary
database servers. (In this context, a database server that does not use data
replication is called a standard database server.) The secondary server can include
any combination of the SD secondary, RS secondary, and HDR secondary servers.

As the following figure illustrates, the secondary database server is dynamically
updated, with changes made to the data that the primary database server manages.

If one of the database servers fails, as the following figure shows, you can redirect
the clients that use that database server to the other database server in the pair,
which becomes the primary server.

Figure 20-2. A primary and secondary database server in a data replication configuration

20-4 IBM Informix Administrator's Guide

Transparent scaling and workload balancing strategies
IBM Informix servers scale easily and they dynamically balance workloads to
ensure optimal use of resources.

IBM Informix can address these objectives:
v “Periodically increase capacity”
v “Geographically disperse processing and increase capacity” on page 20-6
v “Balance workload to optimize resource use” on page 20-7

Periodically increase capacity

If your business environment experiences peak periods, you might be required to
periodically increase capacity. You can increase capacity by adding a remote
stand-alone secondary server. That type of secondary server maintains a complete
copy of the data, with updates transmitted asynchronously from the primary
server over secure network connections. If the amount of data is large and making
multiple copies of it is difficult, use shared-disk secondary servers instead of
remote stand-alone secondary servers. You can use high-availability data
replication (HDR) secondary servers if you want to increase capacity only for
reporting (read-only) workloads.

Table 20-1. Scalability with shared-disk secondary servers

Advantages Potential disadvantages

v High availability. This secondary server
shares disks with the primary server.

v No failover. The secondary server might
be configured to run on the same
computer hardware as the primary server.

v No data redundancy. This secondary
server does not maintain a copy of the
data. (Use SAN devices for disk storage.)

v The primary and secondary servers
require the same hardware, operating
system, and version of the database server
product.

Use an SD secondary server for these reasons:
v Increased reporting capacity

Multiple secondary servers can offload reporting function without affecting the
primary server.

v Server failure backup

Figure 20-3. Database servers and clients in a data replication configuration after a failure

Chapter 20. Strategies for high availability and scalability 20-5

If a failure of the primary server, an SD secondary can be promoted quickly and
easily to a primary server. For example, if you are using SAN (storage area
network) devices that provide ample and reliable disk storage but you are
concerned with server failure, SD secondary servers can provide a reliable
backup.

Table 20-2. Scalability with remote stand-alone secondary servers

Advantages Potential disadvantages

v Data redundancy. This secondary server
maintains a copy of the data.

v Failover. The secondary server can be
geographically remote from the primary
server, such as in another building,
another town, or another country.

v No requirement to change applications.
Client connections to primary or
secondary server can be automatically
switched in the event of server failure.

v The primary and secondary servers
require the same hardware, operating
system, and version of the database server
product.

Geographically disperse processing and increase capacity

Businesses with offices in various locations might want to use local servers for
processing local requests instead of relying on a single, centralized server. In that
case, you can set up a network of Enterprise Replication servers. Remote database
server outages are tolerated. If database server or network failure occurs, the local
database server continues to service local users. The local database server stores
replicated transactions in persistent storage until the remote server becomes
available. Enterprise Replication on the local server captures transactions to be
replicated by reading the logical log, storing the transactions, and reliably
transmitting each transaction as replication data to the target servers.

You can also use Enterprise Replication to set up a shard cluster, where your data
is horizontally partitioned (sharded) across multiple servers. As your capacity
requirements grow, you can add additional database servers to the shard cluster,
increasing your overall capacity.

Table 20-3. Scalability with Enterprise Replication

Advantages Potential disadvantages

v The servers can be in another building,
another town, or another country.

v The servers can be on different hardware.

v The servers can run on different operating
systems.

v The servers can run different versions of
the database server product.

v A subset of the data can be replicated
(asynchronous, log-based replication).

v It is possible to add shared-disk secondary
servers to assist the replication servers,
using multiple Connection Managers for
automatic client redirection.

v You can add additional shard servers to
an established shard cluster as your
capacity needs increase.

v Conflicts are possible.

v Transaction failures are possible. If one
occurs, you must repair inconsistent data.

20-6 IBM Informix Administrator's Guide

Use an RS secondary server in your environment for the following reasons:
v Increased server availability

One or more RS secondary servers provide added assurance by maintaining
multiple servers that can be used to increase availability.

v Geographically distant backup support
It is often desirable to have a secondary server located at some distance from the
site for worst-case disaster recovery scenarios. An RS secondary server is an
ideal remote backup solution. The high level of coordination between a primary
and secondary HDR pair can cause performance issues if the secondary server is
located on a WAN (Wide-Area Network). Keeping the primary and secondary
servers relatively close together eases maintenance and minimizes the affect on
performance.

v Improved reporting performance
Multiple secondary servers can offload reporting function without affecting the
primary server. Also, an RS secondary server configuration makes it easier to
isolate reporting requirements from the HA requirements, resulting in better
solutions for both environments.

v Availability over unstable networks
A slow or unstable network environment can cause delays on both the primary
and secondary server if checkpoints are achieved synchronously. RS secondary
server configurations use fully duplexed networking and require no such
coordination. An RS secondary server is an attractive solution if network
performance between the primary server and RS secondary server is less than
optimal.

Balance workload to optimize resource use

You can configure workload balancing when you create or modify a service level
agreement SLA. Informix gathers information from each server in a cluster and
automatically connects the client application to the server that has the least amount
of activity.

You can create groups within a cluster that are specific to certain types of
applications, such as those for online transaction processing (OLTP) or
(warehouse). Applications can choose to connect to the specific group for
optimized performance of each type of query.
Related concepts:

JSON data sharding (JSON compatibility)

Shard cluster setup (Enterprise Replication Guide)
Related information:

Setting up and managing Enterprise Replication (Enterprise Replication Guide)

Chapter 20. Strategies for high availability and scalability 20-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.json.doc/ids_json_011.htm#ids_json_011
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_646.htm#ids_erp_646
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_470.htm#ids_erp_470

High availability strategies
IBM Informix can be configured to maximize availability in various business
situations.

Goal Strategy Advantages
Potential
disadvantages

Protect system from
server failure

Use a secondary
server that shares
disk space with the
primary server.
(shared-disk
secondary server)

v Very high
availability. This
secondary server
has access to the
same data as the
primary server. If
the primary server
fails, the secondary
server can take
over quickly.

v The database is
always in sync
because this
secondary server
has access to the
same data as the
primary server.

v No requirement to
change
applications. Client
connections to
primary or
secondary server
are automatically
switched in the
event of server
failure.

v This secondary
server on the same
computer as the
primary server.

v No data
redundancy. This
secondary server
does not maintain
a copy of the data.
(Use SAN devices
for disk storage.)

v Primary and
secondary servers
require the same
hardware,
operating system,
and version of the
database server
product.

v Secondary server
hardware must be
able to handle the
same load as the
primary server. If
the secondary
server is too small,
it might affect the
performance of the
primary.

Protection from site
failure

v Use a secondary
server that
maintains a copy
of the database
server and the
data. (high
availability data
replication server)

v (Can also use RSS
and ER)

v Very high
availability.
Applications can
access this server
quickly if they
cannot connect to a
primary server.

v Data is replicated
synchronously.

v Increased
scalability

v No requirement to
change
applications

v Local to the
primary

v Requires an exact
replica of the data
(including table
and database
schemas).

v Primary and
secondary servers
require the same
hardware,
operating system,
and version of the
database server
product.

20-8 IBM Informix Administrator's Guide

Goal Strategy Advantages
Potential
disadvantages

Multilevel site failure
protection

v Use a secondary
server that is
geographically
distant from the
primary server and
that is updated
asynchronously
from the primary
server. (remote
stand-alone
secondary server)

v (Can also use ER)

v Very high
availability.
Applications can
access this server
quickly if they
cannot connect to a
primary server.

v Data is replicated
asynchronously.

v Increased
scalability

v No requirement to
change
applications

Geographically
dispersed processing
with site failure
protection

ER and HDR ER and backup for
ER

Multiple connection
managers required

Chapter 20. Strategies for high availability and scalability 20-9

20-10 IBM Informix Administrator's Guide

Chapter 21. High-availability cluster configuration

These topics describe how to plan, configure, start, and monitor high-availability
clusters for IBM Informix, and how to restore data after a media failure. If you
plan to use a high-availability cluster, read all the topics within this section first. If
you plan to use IBM Informix Enterprise Replication, see the IBM Informix
Enterprise Replication Guide.

Part 5, “High availability and scalability,” explains what a high-availability cluster
is, how it works, and how to design client applications for a cluster environment.

Plan for a high-availability cluster
Before you start setting up computers and database servers to use a
high-availability cluster, you might want to do some initial planning. The following
list contains planning tasks to perform:
v Choose and acquire appropriate hardware.
v If you are using more than one database server to store data that you want to

replicate, migrate and redistribute data, so that it can be managed by a single
database server.

v Ensure that all databases you want to replicate use transaction logging. To turn
on transaction logging, see Chapter 12, “Manage the database-logging mode,” on
page 12-1.

v Develop client applications to make use of both database servers in the
replication pair. For an explanation of design considerations, see “Redirection
and connectivity for data-replication clients” on page 24-6 and “Design data
replication group clients” on page 22-22.

v Create a schedule for starting HDR for the first time.
v Design a storage-space and logical-log backup schedule for the primary database

server.
v Produce a plan for how to handle failures of either database server and how to

restart HDR after a failure. Read “Redirection and connectivity for
data-replication clients” on page 24-6.

Configuring clusters
Configure clusters by securing confirming the hardware, operating-system, and
database requirements. You also set up a security protocol and the secure
connection.

To configure your system as a high-availability cluster, you must take the following
actions:
v Meet hardware and operating-system requirements.
v Meet database and data requirements.
v Meet database server configuration requirements.
v Configure connectivity.

Each of these topics are explained in this section.

© Copyright IBM Corp. 1996, 2014 21-1

You can configure your system to use the Secure Sockets Layer (SSL) protocol, a
communication protocol that ensures the privacy and integrity of data transmitted
over the network, for HDR communications. You can use the SSL protocol for
connections between primary and secondary servers and for connections with
remote standalone (RS) and shared disk (SD) secondary servers in a
high-availability configuration. For information about using the SSL protocol, see
Configuring server-to-server SSL connections (Security Guide).

The Connection Manager also supports Distributed Relational Database
Architecture (DRDA) connections. For more information, see “Distributed
Relational Database Architecture (DRDA) communications” on page 2-44.

Hardware and operating-system requirements for clusters
For a high-availability cluster to function, your hardware must meet certain
requirements.

Your hardware must meet the following requirements:
v The primary and secondary servers must be able to run the same IBM Informix

executable image, even if they do not have identical hardware or operating
systems. For example, you can use servers with different Linux 32-bit operating
systems because those operating systems can run the same Informix executable
image. In this situation, you cannot add a server on a Linux 64-bit operating
system because that operating system requires a different Informix executable
image. Check the machine notes file: you can use any combination of hardware
and operating systems listed as supported in the same machine notes file.

v The hardware that runs the primary and secondary database servers must
support network capabilities.

v The amount of disk space allocated to dbspaces for the primary and secondary
database servers must be equal. The type of disk space is irrelevant; you can use
any mixture of raw or cooked spaces on the two database servers.

v The chunks on each computer must have the same path names. Symbolic links
are allowed for UNIX platforms, but not for Windows platforms.

Database and data requirements for clusters
For a high-availability cluster to function, your database and data must meet
certain requirements.

Your database and data must meet the following requirements:
v All data must be logged.

All databases that you want to replicate must have transaction logging turned
on.
This requirement is important because the secondary database server uses
logical-log records from the primary database server to update the data that it
manages. If databases managed by the primary database server do not use
logging, updates to those databases do not generate log records, so the
secondary database server has no means of updating the replicated data.
Logging can be buffered or unbuffered.
If you must turn on transaction logging before you start HDR, see “Turn on
transaction logging with ontape” on page 12-3.

v The data must be located in dbspaces or sbspaces.

21-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_ssl_004.htm#ids_ssl_004

If your primary database server has simple large objects stored in blobspaces,
modifications to the data within those blobspaces is not replicated as part of
normal HDR processing. However, simple-large-object data within dbspaces is
replicated.
Smart large objects, which are stored in sbspaces, are replicated. The sbspaces
must be logged. User-defined types (UDTs) are replicated, unless they have
out-of-row data stored in operating system files. Data types with out-of-row data
are replicated if the data is stored in an sbspace or in a different table on the
same database server.

v The secondary servers must not use disk compression.
If you use the IBM Informix disk compression feature, data that is compressed
in the source table is compressed in the target table. You cannot perform
compression operations on an HDR secondary, RS secondary, or SD secondary
server, because the HDR target server must have the same data and physical
layout as the source server.

Database server configuration requirements for clusters
For a high-availability cluster server pair to function, you must fully configure
each of the database servers. For information about configuring a database server,
see Chapter 1, “Overview of database server configuration and administration,” on
page 1-1. You can then use the relevant aspects of that configuration to configure
the other database server in the pair. For more information about the configuration
parameters, see the IBM Informix Administrator's Reference.

These topics describe the following configuration considerations for cluster
database server pairs:

Database server version
The versions of the database server on the primary and secondary database servers
must be identical.

Storage space and chunk configuration
The number of dbspaces, the number of chunks, their sizes, their path names, and
their offsets must be identical on the primary and secondary database servers. In
addition, the configuration must contain at least one temporary dbspace if the
HDR secondary server is used for creating activity reports. See “Use of temporary
dbspaces for sorting and temporary tables” on page 22-22.

UNIX Only:

You must use symbolic links for the chunk path names, as explained in
“Allocating raw disk space on UNIX” on page 9-3.

Important: If you do not use symbolic links for chunk path names, you
cannot easily change the path name of a chunk. For more information, see
“Renaming chunks” on page 22-24.

The following ONCONFIG parameters must have the same value on each database
server:
v ROOTNAME
v ROOTOFFSET
v ROOTPATH
v ROOTSIZE

Chapter 21. High-availability cluster configuration 21-3

Non-default page sizes in an HDR environment
The page size of a dbspace and the buffer pool specifications are automatically
propagated from the primary to the secondary database server. While both the
primary and the secondary database servers must have the same buffer pools, the
number of buffers in the buffer pools are not required to match.

Mirroring
You are not required to set the MIRROR parameter to the same value on the two
database servers; you can enable mirroring on one database server and disable
mirroring on the other. However, if you specify a mirror chunk for the root chunk
of the primary database server, you must also specify a mirror chunk for the root
chunk on the secondary database server. Therefore, the following ONCONFIG
parameters must be set to the same value on both database servers:
v MIRROROFFSET
v MIRRORPATH

Physical-log configuration
The physical log must be identical on both database servers. The following
ONCONFIG parameters must have the same value on each database server:
v PHYSBUFF
v PHYSFILE

Dbspace and logical-log tape backup devices
You can specify different tape devices for the primary and secondary database
servers.

If you use ON-Bar, set the ON-Bar configuration parameters to the same value on
both database servers. For information about the ON-Bar parameters, see the IBM
Informix Backup and Restore Guide.

If you use ontape, the tape size and tape block size for the storage-space and
logical-log backup devices must be identical. The following ONCONFIG
parameters must have the same value on each database server:
v LTAPEBLK
v LTAPESIZE
v TAPEBLK
v TAPESIZE

To use a tape to its full physical capacity, set LTAPESIZE and TAPESIZE to 0.

Logical-log configuration
All log records are replicated to the secondary server. You must configure the same
number of logical-log files and the same logical-log size for both database servers.
The following ONCONFIG parameters must have the same value on each database
server:
v LOGBUFF
v LOGFILES
v LOGSIZE
v DYNAMIC_LOGS

The database server logs the addition of logical-log files. Logical-log files added
dynamically on the primary server are automatically replicated on the secondary

21-4 IBM Informix Administrator's Guide

server. Although the DYNAMIC_LOGS value on the secondary server has no
effect, keep DYNAMIC_LOGS in sync with the value on the primary server, in case
their roles switch.

HDR configuration parameters
The following HDR configuration parameters must be set to the same value on
both database servers in the replication pair:
v DRAUTO
v DRINTERVAL
v DRTIMEOUT

For HDR, RSS, and SDS secondary servers in a high-availability cluster, logical
logging on temporary tables must always be disabled by setting the
TEMPTAB_NOLOG configuration parameter to 1.

Cluster transaction coordination
You can configure your high-availability cluster so that when a client session issues
a commit, the server blocks the session until the transaction is applied in that
session, on a secondary server, or across the cluster. Set the
CLUSTER_TXN_SCOPE configuration parameter or run the SET ENVIRONMENT
CLUSTER_TXN_SCOPE statement to configure this behavior.

Multistep client operations that are performed on different high-availability cluster
servers or in different sessions with high-availability cluster servers can fail
because of asynchronous log processing. If a client application loads data onto a
cluster server, and then attempts to process the same data on a second cluster
server before the data is replicated to the second server, the operation fails. The
client transaction must be applied on the second server before its data can be
further processed.

Cluster transaction coordination causes client applications to wait for either
cluster-wide or secondary-server application of transactions before the transaction
commits are returned. This process prevents operation failures and ensures that the
steps of multistep processes occur in serial order.

The different scopes for cluster transaction are:
v SESSION: When a client session issues a commit, the database server blocks the

session until the effects of the transaction commit are returned to that session.
After control is returned to the session, other sessions at the same database
server or on other database servers in the cluster might be unaware of the
transaction commit and the transaction's effects.

v SERVER: When a client session issues a commit, the database server blocks the
session until the transaction is applied at the database server from which the
client session issued the commit. Other sessions at that database server are
aware of the transaction commit and the transaction's effects. Sessions at other
database servers in the cluster might be unaware of the transaction's commit and
its effects. This behavior is default for high-availability cluster servers.

v CLUSTER: When a client session issues a commit, the database server blocks the
session until the transaction is applied at all database servers in the
high-availability cluster, excluding RS secondary servers that are using
DELAY_APPLY or STOP_APPLY. Other sessions at any database server in the
high-availability cluster, excluding RS secondary servers that are using
DELAY_APPLY or STOP_APPLY, are aware of the transaction commit and the
transaction's effects.

Chapter 21. High-availability cluster configuration 21-5

Cluster transaction coordination was introduced in IBM Informix version 11.70.xC6.
Before IBM Informix version 11.70.xC6, high-availability cluster servers had the
following default behaviors:
v Primary servers had a cluster transaction scope of SERVER.
v Read-only secondary servers were in the dirty-read isolation level, and could

read uncommitted data.
v Updatable secondary servers had a cluster transaction scope of SESSION.

Setting a CLUSTER_TXN_SCOPE value to CLUSTER does not change the behavior
that is specified by the DRINTERVAL configuration parameter value. When a client
application commits a transaction on a primary server, the primary server sends
the HDR secondary server logical log buffers at maximum intervals that are
specified by the DRINTERVAL configuration parameter. After the primary server
sends logical log buffers to the HDR secondary server, it returns control to a
session, but the session still does not receive a commit until the transaction is
applied on all cluster servers.
Related reference:

CLUSTER_TXN_SCOPE configuration parameter (Administrator's Reference)

DELAY_APPLY Configuration Parameter (Administrator's Reference)

STOP_APPLY configuration parameter (Administrator's Reference)

SET ENVIRONMENT statement (SQL Syntax)

Configuring secure connections for high-availability clusters
For a high-availability cluster to function, the database servers must establish
trusted connection with each other. Secure connections between cluster servers by
using a trusted-host file on each cluster server and including the connection
security option in sqlhosts file entries.

The secure ports that are specified in sqlhosts files are used only for
communication between database servers. Client applications cannot connect to
secure ports.

To configure a trusted environment for replication, complete the following steps for
each cluster server:
1. Edit the sqlhosts file on each host that contains a cluster server:

a. Add an entry for each cluster server that is running on that host, and
include the s=6 option.

b. Add an entry for each other cluster server that participates in the cluster,
and do not include the s=6 option.

2. Set the nettype field of the sqlhosts file or registry and the NETTYPE
configuration parameter to a network protocol such as ontlitcp or onsoctcp so
that the database servers on two different computers can communicate with
each other. Do not specify a non-network protocol such as onipcshm, onipcstr,
or onipcnmp.

3. Specify trusted-host information. Trusted-host information can be specified in
the following ways:
v Create a hosts.equiv file in the $INFORMIXDIR/etc directory, and then

manually add entries to the file.
v Create a trusted-host file in the $INFORMIXDIR/etc directory, and then

manually add entries to the file. You must set the REMOTE_SERVER_CFG

21-6 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1165.htm#ids_adr_1165
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1069.htm#ids_adr_1069
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1070.htm#ids_adr_1070
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1140.htm#ids_sqs_1140

configuration parameter to the trusted-host file's name and set the
S6_USE_REMOTE_SERVER_CFG configuration parameter to 1.

v Run the admin() or task() function with the cdr add trustedhost argument,
and specify trusted-host information. Trusted-host information that is
specified by the cdr add trustedhost argument propagates to all servers in
the high-availability cluster. Do not run this function if you have manually
entered trusted-host information on any of the database servers in a
high-availability cluster or Enterprise Replication domain.

4. Create a server alias for running utilities and client applications. For example,
set the INFORMIXSERVER environment variable to the alias to run utilities such as
onstat and ontape and client applications such as DB-Access.

Related concepts:
“Trusted-host information” on page 2-12
Related tasks:
“Changing client connectivity information” on page 24-8
Related reference:
“sqlhosts connectivity information” on page 2-20

S6_USE_REMOTE_SERVER_CFG configuration parameter (Administrator's
Reference)

REMOTE_SERVER_CFG configuration parameter (Administrator's Reference)
“sqlhosts file and SQLHOSTS registry key options” on page 2-24

Starting HDR for the First Time
After you complete the HDR configuration, you are ready to start HDR. This topic
describes the necessary steps for starting HDR.

You want to start HDR on two database servers, ServerA and ServerB. The
procedure for starting HDR, using ServerA as the primary database server and
ServerB as the secondary database server, is described in the following steps. The
following table lists the commands required to perform each step and the messages
sent to the message log. You can use ontape or ON-Bar to perform the backup and
restore. You must use the same utility throughout the procedure.

Important: Even if you use ON-Bar to perform the backup and restore, the ontape
utility is still required on both database servers to perform back ups and to apply
logical logs. Do not remove the ontape utility from database servers that
participate in an HDR cluster environment.
You can also set up HDR using external backup and restore. See the IBM Informix
Backup and Restore Guide for information about how to perform an external backup
and restore. See “Decrease setup time using the ontape STDIO feature” on page
21-10 for the quickest way to set up your HDR secondary directly from the HDR
primary.

To start HDR:
1. Install user-defined types, user-defined routines, and DataBlade modules on

both database servers, and then register them on ServerA only.
2. Create a level-0 backup of ServerA.
3. Use the onmode -d command to set the type of ServerA to primary and to

indicate the name of the associated secondary database server (in this case
ServerB).

Chapter 21. High-availability cluster configuration 21-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1123.htm#ids_adr_1123

When you issue an onmode -d command, the database server attempts to
establish a connection with the other database server in the HDR pair and to
start HDR operation. The attempt to establish a connection succeeds only if the
other database server in the pair is already set to the correct type.
At this point, ServerB is not online and is not set to type secondary, so the
HDR connection is not established.

4. Perform a physical restore of ServerB from the level-0 backup that you created
in step 1 on page 21-7. Do not perform a logical restore.
If you are using:
v ON-Bar, use the onbar -r -p command to perform a physical restore.
v ON-Bar and performing an external restore, use the onbar -r -p -e command

to perform the physical restore.
v ontape, use the ontape -p option. You cannot use the ontape -r option

because it performs both a physical and a logical restore.

Note: You must place the physical restore of your primary server on the
secondary server if they are on two different machines. The location of the
physical restore is defined by the onconfig parameter TAPE. You must set
your IFX_ONTAPE_FILE_PREFIX variable on your secondary server before
you can run ontape -p.

v ontape and performing an external restore, use the ontape -p -e command to
perform the physical restore.

5. Use the onmode -d command to set the type of ServerB to secondary and
indicate the associated primary database server.
ServerB tries to establish an HDR connection with the primary database server
(ServerA) and start operation. The connection must be successfully established.
Before HDR begins, the secondary database server performs a logical recovery
using the logical-log records written to the primary database server since step
2. If all these logical-log records still are located on the primary database server
disk, the primary database server sends these records directly to the secondary
database server over the network and logical recovery occurs automatically.
If you have backed up and freed logical-log files on the primary database
server, the records in these files are no longer on disk. The secondary database
server prompts you to recover these files from tape. In this case, you must
perform step 6.

Important: You must complete steps 4 to 5 during the same session. If you
must shut down and restart the secondary database server after step 4, you
must redo step 4.

6. If logical-log records that were written to the primary database server are no
longer on the primary disk, the secondary database server prompts you to
recover these files from tape backups.
If the secondary database server must read the backed-up logical-log files over
the network, set the tape device parameters on the secondary database server
to a device on the computer that is running the primary database server or to a
device at the same location as the primary database server.
After you recover all the logical-log files on tape, the logical restore completes
using the logical-log files on the primary database server disk.

21-8 IBM Informix Administrator's Guide

The following table illustrates the preceding steps so that you can clearly
determine which steps are performed on the primary server and which are
performed on the secondary server. The table also shows information written to
the log file after each step is performed.

Table 21-1. Steps to start HDR for the first time

Step On the primary (ServerA) On the secondary (ServerB)

1. Install UDRs, UDTs, and DataBlade modules.

Register UDRs, UDTs, and DataBlade modules.

Install UDRs, UDTs, and DataBlade modules.

2. ontape command:

Run ontape -s -L 0

ON-Bar command:Run onbar -b -L 0

Messages to message log:

Level 0 archive started on rootdbs
Archive on rootdbs completed

3. onmode command

onmode -d primary sec_name

Messages to message log:

DR: new type = primary
server name = sec_name

DR: Trying to connect to secondary server
DR: Cannot connect to secondary server

4. ontape command

Run ontape -p or ontape -p -e

Answer no when you are prompted to back up the logs.

ON-Bar command

Run onbar -r -p or onbar -r -p -e

Messages to message log:

IBM Informix Database Server Initialized --
Shared Memory Initialized

Recovery Mode
Physical restore of rootdbs started
Physical restore of rootdbs completed

5. Run onmode -d secondary prim_name

Messages to message log:

DR: new type = secondary, primary server
name = prim_name

If all the logical-log records written to the primary
database server since step 1 still are located on the
primary database server disk, the secondary database
server reads these records to perform logical recovery.
(Otherwise, step 6 must be performed).

Chapter 21. High-availability cluster configuration 21-9

Table 21-1. Steps to start HDR for the first time (continued)

Step On the primary (ServerA) On the secondary (ServerB)

Messages to message log:

DR: Primary server connected
DR: Primary server operational

Messages to message log:

DR: Trying to connect to primary server
DR: Secondary server connected
DR: Failure recovery from disk in progress
n recovery worker threads will be started
Logical Recovery Started
Start Logical Recovery - Start Log n, End Log ?
Starting Log Position - n 0xnnnnn
DR: Secondary server operational

6. ontape command

ontape -l

ON-Bar command

onbar -r -l

Messages to message log:

DR: Primary server connected
DR: Primary server operational

Messages to message log:

DR: Secondary server connected
DR: Failure recovery from disk in progress
n recovery worker threads will be started
Logical Recovery Started
Start Logical Recovery - Start Log n, End Log ?
Starting Log Position - n 0xnnnnn
DR: Secondary server operational

Related concepts:
“Backup and restore with high-availability clusters” on page 22-37
Related reference:
“Recovering a cluster after critical data is damaged” on page 24-14

Decrease setup time using the ontape STDIO feature
You can dramatically improve the speed of setting up HDR by using the ontape
STDIO feature. Using this feature, ontape writes the data to the shell's standard
output during a backup, and then read it from standard input during a restore.
Combining a STDIO backup with a simultaneous STDIO restore in a pipe using a
remote command interpreter (such as rsh or ssh), allows performing the initial
setup of an HDR (or RSS) secondary server using a single command line. This
saves storage space by not writing to or reading from tape or disk, and does not
require waiting for the backup to finish before the restore can start.

See the IBM Informix Backup and Restore Guide for details about using the STDIO
value.

This method for setting up HDR using ontape can be used regardless of which
backup utility is used (ontape or ON-Bar).

Important: When you use STDIO in this way, no persistent backup is saved
anywhere that can be used to perform a restore. The use of the -F (fake) option on
the source (backup) side does not record the backup in the database server's
reserved pages. Also, any interactive dialog is suppressed and no prompts or
questions are displayed. You must also ensure that the remote part of the pipe
picks the appropriate environment for the remote Informix instance. The script
must not produce any output other than the backup data since this would be read
by the restore process (for example, do not enable tracing).

21-10 IBM Informix Administrator's Guide

The steps in the following table must be performed by user informix, the scripts
must be executable, and, if called without a complete path, must be located in your
home directory. You can use ssh instead of rsh if you require secure data
transmission across the network.

Table 21-2. Alternative method of setting up HDR from the primary server, using rsh

Step On the primary On the secondary

1. Install UDRs, UDTs, and DataBlade modules.

2. Install UDRs, UDTs, and DataBlade modules.

3. Register UDRs, UDTs, and modules.

4. Run onmode -d primary sec_name

5 Run ontape -s -L 0 -t STDIO -F | rsh sec_name
ontape_HDR_restore.ksh

6. Run onmode -d secondary pri_name

In the previous table, the script ontape_HDR_restore.ksh on the secondary server
must contain the following commands:
#!/bin/ksh
first get the proper Informix environment set
. hdr_sec.env
redirecting stdout and stderr required since otherwise command might never return
ontape -p -t STDIO > /dev/null 2>&1

The following steps show how to set up HDR from the secondary server.

Table 21-3. alternative method of setting up HDR from the secondary server, using rsh:

Step On the Primary On the Secondary

1. Install UDRs, UDTs, and DataBlade modules.

2. Install UDRs, UDTs, and DataBlade modules.

3. Register UDRs, UDTs, and DataBlade modules.

4. Run onmode -d primary sec_name

5. run rsh pri_name ontape_HDR_backup.ksh | ontape -p
-t STDIO

6. Run onmode -d secondary pri_name

In the previous table, the script ontape_HDR_backup.ksh on the primary server must
contain the following commands:
#!/bin/ksh
first get the proper Informix environment set
. hdr_pri.env
ontape -s -L 0 -F -t STDIO

Remote standalone secondary servers

These topics provide an overview of setting up and configuring remote standalone
(RS) secondary servers in a high availability environment.

Chapter 21. High-availability cluster configuration 21-11

Comparison of RS secondary servers and HDR secondary
servers

An RS secondary server is similar in many ways to an HDR secondary server. Logs
are sent to the RS secondary server in much the same way as a primary server
sends logs to an HDR secondary server. However, the RS secondary server is
designed to function entirely within an asynchronous communication framework
so that its affect on the primary server is minimized. Neither transaction commits
nor checkpoints are synchronized between the primary server and RS secondary
servers. Any transaction committed on the primary server is not guaranteed to be
committed at the same time on the RS secondary server.

In a high-availability cluster, the log of the HDR secondary server must be ahead
of the logs of any RS secondary servers. If the HDR secondary server becomes
offline, the primary server continues to send logs to the RS secondary servers.
However, when the HDR secondary comes back online, IBM Informix stops
sending logs to RS secondary servers and prioritizes sending logs to the HDR
secondary server until its log replay is ahead of the RS secondary server. This
prioritization of the HDR secondary server logs is required because the HDR
secondary server is the first failover choice in the cluster. If the RS secondary
server logs are ahead of the HDR secondary server logs when a failover occurs,
then the RS secondary server cannot synchronize with the new primary server.

While an RS secondary server is similar to an HDR secondary server, there are
several things that an HDR secondary server supports that an RS secondary server
does not support:
v SYNC mode
v DRAUTO parameter
v Synchronized checkpoints

For HDR, RSS, and SDS secondary servers in a high-availability cluster, logical
logging on temporary tables must always be disabled by setting the
TEMPTAB_NOLOG configuration parameter to 1.

Index page logging
You must enable index page logging to use an RS secondary server.
Related concepts:
“Replication of primary-server data to secondary servers” on page 22-2

How index page logging works
When an index is created, index page logging writes the pages to the logical log
for the purpose of synchronizing index creation between servers in
high-availability environments.

Index page logging writes the full index to the log file, which is then transmitted
asynchronously to the secondary server. The secondary server can be either an RS
secondary or an HDR secondary server. The log file transactions are then read into
the database on the secondary server. The secondary server is not required to
rebuild the index during recovery. For RS secondary servers, the primary server
does not wait for an acknowledgment from the secondary server, which allows
immediate access to the index on the primary server.

21-12 IBM Informix Administrator's Guide

Control index page logging with the ONCONFIG parameter
LOG_INDEX_BUILDS. Set the LOG_INDEX_BUILDS parameter to 1 (enabled), to
build indexes on the primary server and send them to the secondary server.

Enable or disable index page logging
Use the LOG_INDEX_BUILDS configuration parameter to enable or disable index
page logging when the database server starts. You can change the value of
LOG_INDEX_BUILDS in the onconfig file by running onmode -wf
LOG_INDEX_BUILDS=1 (enable) or 0 (disable).

Index page logging must be enabled when an RS secondary server exists in a
high-availability environment.

View index page logging statistics
You can use the onstat utility or system-monitoring interface (SMI) tables to view
whether index page logging is enabled or disabled. The statistics also display the
date and time index page logging was enabled or disabled.

To view index page logging statistics, use the onstat -g ipl command, or query the
sysipl table.

For an example of onstat -g ipl output, see information about the onstat utility in
the IBM Informix Administrator's Reference.

Server Multiplexer Group (SMX) connections
Server Multiplexer Group (SMX) is a communications interface that supports
encrypted multiplexed network connections between servers in high availability
environments. SMX provides a reliable, secure, high-performance communication
mechanism between database server instances.

Enable SMX encryption
Use the ENCRYPT_SMX configuration parameter to set the level of encryption for
high availability configurations. If you set the ENCRYPT_SMX parameter to 1,
encryption is used for SMX transactions only when the database server being
connected to also supports encryption. If you set the ENCRYPT_SMX configuration
parameter to 2 , only connections to encrypted database servers are allowed.
Setting ENCRYPT_SMX to 0 disables encryption between servers.

Obtain SMX statistics
You can use the onstat utility or system-monitoring interface (SMI) tables to view
SMX connection statistics or SMX session statistics.

To view SMX connection statistics, use the onstat -g smx command.

To view SMX session statistics, use the onstat -g smx ses command.

For examples of onstat -g smx and onstat -g smx ses output, see information about
the onstat utility in the IBM Informix Administrator's Reference.

Starting an RS secondary server for the first time
After you complete the hardware configuration of the RS secondary server, you are
ready to start the RS secondary server and connect it to the primary server.

Suppose you want to start a primary server and an RS secondary server, ServerA
and ServerB. The procedure for starting the servers, using ServerA as the primary

Chapter 21. High-availability cluster configuration 21-13

database server and ServerB as the RS secondary database server, is described in
the following steps. The table ahead lists the commands required to perform each
step.

The procedure requires that the primary server be backed up and then restored
onto the secondary server. You can use ontape or ON-Bar to perform the backup
and restore. You must use the same utility throughout the procedure.

Important: Even if you use ON-Bar to perform the backup and restore, the ontape
utility is still required on both database servers to perform back ups and to apply
logical logs. Do not remove the ontape utility from database servers that
participate in an HDR cluster environment.
You can also set up an RS secondary server using standard ON-Bar or ontape
commands for external backup and restore.

To start a primary server with an RS secondary server:
1. Install user-defined types, user-defined routines, and DataBlade modules on

both database servers, and then register them on ServerA only.
For information about how to install user-defined types or user-defined
routines see the IBM Informix User-Defined Routines and Data Types Developer's
Guide. For information about how to install DataBlade modules, see the IBM
Informix DataBlade Module Installation and Registration Guide.

2. Activate index page logging on the primary server.
3. Record the identity of the RS secondary server on the primary server. The

optional password provides authentication between the primary and RS
secondary server when the connection between the primary and secondary
servers is established for the first time.

4. Create a level-0 backup of ServerA.
5. Perform a physical restore of ServerB from the level-0 backup that you created

in step 4. Do not perform a logical restore.
Use the appropriate command:
v Use the onbar -r -p command to perform a physical restore.
v Use the onbar -r -p -e command to perform a physical external restore.
v Use the ontape -p option. (Do not use the ontape -r option because it

performs both a physical and a logical restore.)
v Use the ontape -p -e command to perform the physical external restore.

6.

7. Use the onmode -d RSS ServerA password command to set the type of ServerB
to an RS secondary server and indicate the associated primary database server.
ServerB tries to establish a connection with the primary database server
(ServerA) and start operation. The connection must be successfully established.
The secondary database server performs a logical recovery using the logical-log
records written to the primary database server since step 4. If all these
logical-log records are still located on the primary database server disk, the
primary database server sends these records directly to the RS secondary server
over the network and logical recovery occurs automatically.
If you have backed up and freed logical-log files on the primary database
server, the records in these files are no longer on disk. The secondary database
server prompts you to recover these files from tape. In this case, you must
perform step 8 on page 21-15.

21-14 IBM Informix Administrator's Guide

Important: You must complete steps 5 on page 21-14 through 6 on page 21-14
during the same session. If you must shut down and restart the secondary
database server after step 5 on page 21-14, you must redo step 5 on page 21-14.

8. If logical-log records that were written to the primary database server are no
longer on the primary disk, the secondary database server prompts you to
recover these files from tape backups.
If the secondary database server must read the backed-up logical-log files over
the network, set the tape device parameters on the secondary database server
to a device on the computer that is running the primary database server or to a
device at the same location as the primary database server.
After you recover all the logical-log files on tape, the logical restore completes
using the logical-log files on the primary database server disk.

Table 21-4. Steps to start a primary with an RS secondary server for the first time

Step On the primary On the RS secondary

1. Install UDRs, UDTs, and DataBlade modules.

Register UDRs, UDTs, and DataBlade modules.

Install UDRs, UDTs, and DataBlade modules.

2. onmode command

onmode -wf LOG_INDEX_BUILDS=1

3. onmode command

onmode -d add RSS rss_servername password

4. ontape command

ontape -s -L 0

ON-Bar command

onbar -b -L 0

5. ontape command

ontape -p or ontape -p -e

Answer no when you are prompted to back up the logs.

ON-Bar command

onbar -r -p or onbar -r -p -e

6. onmode command

onmode -d RSS primary_servername password

If all the logical-log records written to the primary
database server since step 1 still are located on the
primary database server disk, the secondary database
server reads these records to perform logical recovery.
(Otherwise, step 8 must be performed).

7. ontape command

ontape -l

ON-Bar command onbar -r -l

This step is required only when the secondary database
server prompts you to recover the logical-log files from
the tape backup.

Chapter 21. High-availability cluster configuration 21-15

Related concepts:
“Backup and restore with high-availability clusters” on page 22-37

Decrease setup time through an alternative backup method
You can dramatically improve the speed of setting up a secondary server by using
the ontape STDIO feature. See “Decrease setup time using the ontape STDIO
feature” on page 21-10 for more information.

See the IBM Informix Backup and Restore Guide for details about using the STDIO
value.

Converting an offline primary server to an RS secondary
server

After a planned or unplanned failover of the primary server to an RS secondary
server, you can convert the old primary server to an RS secondary server.

For example, assume you have a primary server named srv1 that has failed over
to an RS secondary server named srv2. The following steps show how to convert
the old primary server to an RS secondary server.
1. On the new primary server (srv2) register the old primary server (srv1 as the

RS secondary server.
onmode -d add RSS srv1

2. If you are converting the old primary server to an RS secondary server and the
server is offline, then initialize the server using backup and restore commands
shown here: Starting an RS secondary server for the first time. Alternatively
you can initialize the old primary server by running the following command:
oninit -PHY

See The oninit utility for more information.
3. Convert the server to an RS secondary server using the following commands:

onmode -d RSS srv2

Delayed application of log records
To aid in disaster recovery scenarios, you can configure RS secondary servers to
wait for a specified period of time before applying logs received from the primary
server.

By delaying the application of log files you can recover quickly from erroneous
database modifications by restoring the database from the RS secondary server.
You can also stop the application of logs on an RS secondary server at a specified
time.

For example, suppose a database administrator wants to delete certain rows from a
table based on the age of the row. Each row in the table contains a timestamp that
indicates when the row was created. If the database administrator inadvertently
sets the filter to the wrong date, more rows than intended might be deleted. By
delaying the application of log files, the rows would still exist on the RS secondary
server. The database administrator can then extract the rows from the secondary
server and insert them on the primary server.

Now suppose a database administrator is required to perform changes to the
schema by renaming a table, but types the wrong command and drops the table
orders instead of changing the table name to store_orders. If an RS secondary

21-16 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/ids_admin_1000.htm#ids_admin_1000
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0395.htm#ids_adr_0395

server is configured to delay application of logs, the database administrator can
recover the orders table from the secondary server.

When delayed application of log files configured, transactions sent from the
primary server are not applied until after a specified period of time has elapsed.
Log files received from the primary server are staged in a specified secure
directory on the RS secondary server, and then applied after the specified period of
time. There are two ways to delay the application of log files:
v Apply the staged log files after a specified time interval
v Stop applying log files at a specified time

You enable the delayed application of log files by setting configuration parameters
in the onconfig file of the RS secondary server. You must specify the directory in
which log files are staged by setting the LOG_STAGING_DIR configuration
parameter before enabling the delayed application of log files. After specifying the
LOG_STAGING_DIR configuration parameter, you configure the DELAY_APPLY or
STOP_APPLY configuration parameters either by editing the onconfig file or
dynamically using onmode -wf commands.

Where log records are stored

The server creates additional directories named ifmxlog_## in the directory
specified by LOG_STAGING_DIR, where ## is the instance specified by
SERVERNUM. The directories are used to store the logical logs and are also used
during the recovery of the RS secondary server. If recovery of the RS secondary
server becomes necessary, and the logs have wrapped on the primary server, then
the logs in ifmxlog_## can be used to recover the server. The files within
ifmxlog_## are purged when no longer required.

Conditions that trigger delays

The time values in the BEGIN WORK, COMMIT WORK, and ROLLBACK WORK
log records are used to calculate how to delay or stop the application of log files.
The time values are calculated before passing the log pages to the recovery
process.

When a BEGIN WORK statement is issued, the BEGIN WORK log record is not
written until the first update activity is performed by the transaction; therefore,
there can be a delay between the time that the BEGIN WORK statement is issued
and when the BEGIN WORK log is written.

Interaction with secondary server updates

You must consider the interaction between secondary server updates and delayed
application of log files. If updates are enabled, and the secondary server is
updated, the updates are not applied until after the amount of time specified by
DELAY_APPLY. Disabling secondary server updates, however, also disables
Committed Read, which guarantees that every retrieved row is committed in the
table at the time that the row is retrieved.

To retain the Committed Read isolation level, consider enabling secondary server
updates using the UPDATABLE_SECONDARY configuration parameter, but
removing the RS secondary server used for delayed application of log files from
the Connection Manager service-level agreement list. Alternatively, consider
moving the RS secondary server to a new SLA.

Chapter 21. High-availability cluster configuration 21-17

See “Database updates on secondary servers” on page 22-32 and IBM Informix
Administrator's Reference for more information.

Specifying the log staging directory
You configure the log staging directory to specify where log files on RS secondary
servers are staged before being applied to the database.

You must specify a staging directory for log files sent from the primary server
before enabling delayed application of log files. No default staging directory is
defined. The server creates additional directories in the directory specified by
LOG_STAGING_DIR named ifmxlog_##, where ## is the instance specified by
SERVERNUM. The directories are used to store the logical logs and are also used
during the recovery of the RS secondary server. The staged log files are
automatically removed when they are no longer required. If the files within
LOG_STAGING_DIR are lost, and the primary server has overwritten the logs,
then the RS secondary server must be rebuilt.

You must ensure that the directory specified by LOG_STAGING_DIR exists and is
secure. The directory must be owned by user informix, must belong to group
informix, and must not have public read, write, or execute permission. If role
separation is enabled, the directory specified by LOG_STAGING_DIR must be
owned by the user or group that owns $INFORMIXDIR/etc. If the directory specified
by LOG_STAGING_DIR is not secure, then the server cannot be initialized. The
following message is written to the online message log if the directory is not
secure:
The log staging directory (directory_name) is not secure.

You must also ensure that the disk contains sufficient space to hold all of the logs
from the primary server, and that the directory does not contain staged logs from
previous instances that are no longer being used.

To see information about the data being sent to the log-staging directory set for a
RS secondary server, run the onstat -g rss verbose command on the RS secondary
server.

If the write to the staging file fails, the RS secondary server raises event alarm
40007.

See IBM Informix Administrator's Reference for more information.

To set LOG_STAGING_DIR:
1. Ensure that the directory in which logs are to be stored exists and is secure.
2. Edit the RS secondary server onconfig file.
3. Specify the staging directory as follows: LOG_STAGING_DIR directory_name

where directory_name is the name of the directory in which to store the logs.
4. Restart the server.

You can also set the LOG_STAGING_DIR configuration parameter without
restarting the server by using the onmode -wf command; however, the delayed
application of log files must not be active when the command is run.

Delay application of log records on an RS secondary server
You can delay the application of log records on an RS secondary server to prepare
for disaster recovery scenarios.

21-18 IBM Informix Administrator's Guide

You enable the delayed application of log files by setting the DELAY_APPLY
configuration parameter. You can manually edit the onconfig file and restart the
server, or you can change the value dynamically using the onmode -wf command.
When setting the value of DELAY_APPLY you must also set LOG_STAGING_DIR.
If DELAY_APPLY is configured and LOG_STAGING_DIR is not set to a valid and
secure directory, then the server cannot be initialized.

Set DELAY_APPLY using both a number and a modifier. Number can contain up to
three digits and indicates the number of modifier units. Modifier is one of:
v D (or d) for days
v H (or h) for hours
v M (or m) for minutes
v S (or s) for seconds

See IBM Informix Administrator's Reference for more information.

To delay the application of log files on the RS secondary for four hours:
onmode –wf DELAY_APPLY=4H

To delay the application of log files for one day:
onmode -wf DELAY_APPLY=1D

To disable delayed application of log files:
onmode –wf DELAY_APPLY=0

Stop the application of log records
You can halt the application of log records on an RS secondary server to prepare
for disaster recovery scenarios.

You stop the application of log files on the RS secondary server by setting the
STOP_APPLY configuration parameter. You can manually edit the onconfig file
and restart the server, or you can change the value dynamically using the onmode
-wf command. When setting the value of STOP_APPLY you must also set
LOG_STAGING_DIR. If STOP_APPLY is configured and LOG_STAGING_DIR is
not set to a valid and secure directory, then the server cannot be initialized.

See IBM Informix Administrator's Reference for more information.

To stop the application of log files on the RS secondary server immediately, run the
following command:
onmode –wf STOP_APPLY=1

To stop the application of log files at 11:00 p.m. on April 15th, 2009:
onmode –wf STOP_APPLY="2009:04:15-23:00:00"

To resume the normal application of log files
onmode –wf STOP_APPLY=0

Flow control for remote standalone secondary servers
Flow control provides a way to limit log activity on the primary server so that
remote standalone (RS) secondary servers in the cluster do not fall too far behind
on processing transactions. Enabling flow control ensures that logs on RS
secondary servers remain current if the servers are on a busy or intermittent
network.

Chapter 21. High-availability cluster configuration 21-19

Set the RSS_FLOW_CONTROL configuration parameter on the primary server to
enable flow control. All RS secondary servers in the cluster are affected by the
primary server's RSS_FLOW_CONTROL configuration parameter setting. When
flow control is active, users connected to the primary server may experience slower
response time.

Logs are always sent to the RS secondary server in the order in which they were
received.

To check if flow control is active for a RS secondary server, use the onstat -g rss
verbose command, and compare the RSS flow control value to the Approximate
Log Page Backlog value. If the Approximate Log Page Backlog is higher than the
first value of RSS flow control, flow control is active. If the Approximate Log Page
Backlog is lower than the second value of RSS flow control, flow control is
disabled.
Related reference:

RSS_FLOW_CONTROL configuration parameter (Administrator's Reference)

SDS_FLOW_CONTROL configuration parameter (Administrator's Reference)

Shared disk secondary servers

These topics provide an overview of setting up and configuring SD (shared disk)
secondary servers in a high-availability environment. SD secondary server options
are available with the standard version of IBM Informix.

SD secondary server
A shared-disk (SD) secondary server participates in high-availability cluster
configurations. In such configurations, the primary server and the SD secondary
server share the same disk or disk array.

An SD secondary server does not maintain a copy of the physical database on its
own disk space. Rather, it shares disks with the primary server.

SD secondary servers must be configured to access shared disk devices that allow
concurrent access. Do not configure an SD secondary server that uses operating
system buffering, such as NFS cross-mounted file systems. If the SD secondary
server instance and the primary server instance both are located on a single
machine, then both servers can access local disks. If the SD secondary server and
the primary server are on separate physical machines, then they must be
configured to access shared disk devices that appear locally attached, such as
Veritas or GPFS™.

SD secondary servers can be used in conjunction with HDR secondary servers,
with RS secondary servers, and with Enterprise Replication.

SD secondary servers can be added to a high availability environment very
quickly, because they do not require a separate copy of the disk. Because the SD
server shares the disk storage resources of the primary server, it is recommended
that you provide some other means of disk backup, such as disk mirroring, or the
use of an RS secondary server or an HDR secondary server.

The following restrictions affect the promotion of database server instances that are
shared-disk secondary servers:

21-20 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1119.htm#ids_adr_1119
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1178.htm#ids_adr_1178

v An SD secondary server cannot be promoted to an RS secondary server.
v An SD secondary server cannot be promoted to a standard server that would

exist outside the primary high availability environment.

Disk requirements for SD secondary servers
Except for disk requirements (which are shared with the primary server), hardware
and software requirements are generally the same as for HDR secondary servers
(See the Machine Notes for specific supported platforms). In addition, the primary
disk system must be shared across the computers that are hosting the database
servers. This means that the path to the dbspaces from the SD secondary is the
same dbspace path as the primary server. see “Configuring clusters” on page 21-1.

Setting up a shared disk secondary server

A shared disk secondary server is set up by first setting the SDS_TIMEOUT
configuration parameter. Next, the onmode utility is used to set the primary server
alias that the SD secondary server uses to connect to the primary server. Then, the
configuration file on the SD secondary is modified to include the appropriate
options. Finally, the oninit utility is run to start the SD secondary server.
1. On the primary server, set the SDS_TIMEOUT configuration parameter in the

onconfig file:
SDS_TIMEOUT x

SDS_TIMEOUT specifies the amount of time in seconds that the primary server
waits for a log position acknowledgment to be sent from the SD secondary
server. See the IBM Informix Administrator's Reference for information about the
SDS_TIMEOUT configuration parameter.

2. On the primary server, configure the alias name of the SD primary server:
onmode -d set SDS primary <alias>

The server name specified by <alias> becomes the primary server of the shared
disk environment and the source of logs for the SD secondary server.

3. On the SD secondary server set the following configuration parameters in the
configuration file:
SDS_ENABLE 1
SDS_PAGING <path 1>,<path 2>
SDS_TEMPDBS <dbsname>,<dbspath>,<pagesize>,<offset>,<size>

SDS_ENABLE must be set to 1 (enable) on the secondary server to enable
support of the shared disk environment. SDS_PAGING specifies the path to
two files that are used to hold pages that might be required to be flushed
between checkpoints. Each file acts as temporary disk storage for chunks of any
page size. SDS_TEMPDBS is used to define the temporary dbspace used by the
SD secondary server. This dbspace is dynamically created when the server is
started (it is not created by running onspaces). See the IBM Informix
Administrator's Reference for additional information about these parameters.

4. On the SD secondary server, set the following configuration parameters to
match those on the primary server:
v ROOTNAME
v ROOTPATH
v ROOTOFFSET
v ROOTSIZE
v PHYSFILE

Chapter 21. High-availability cluster configuration 21-21

v LOGFILES
v LOGSIZE

Map the other configuration parameters to match those of the primary server
with the exception of DBSERVERALIASES, DBSERVERNAME, and
SERVERNUM.
For HDR, RSS, and SDS secondary servers in a high-availability cluster, logical
logging on temporary tables must always be disabled by setting the
TEMPTAB_NOLOG configuration parameter to 1.

5. On the SD secondary server, optionally set the UPDATABLE_SECONDARY
configuration parameter to a positive integer if you want to enable client
applications to perform update, insert, and delete operations on the secondary
server.

6. Add an entry to the sqlhosts file (or for Windows systems, the SQLHOSTS
registry key) for the primary server:
primary_dbservername nettype primary_hostname servicename

7. Start the SD secondary server using the oninit command.
The primary server must be active before starting the SD secondary server.
When a secondary server is started, it must first process any open transactions
using fast recovery mode. Client applications can connect to the server only
after all of the transactions open at the startup checkpoint have either
committed or rolled back. After open transactions have been processed, client
applications can connect to the server as they normally do. You must examine
the online.log file on the secondary server to verify that it has completed
processing open transactions.

The following table illustrates the preceding steps so that you can clearly
determine which steps are performed on the primary server and which are
performed on the secondary server.

Table 21-5. Steps to start an SD secondary server for the first time

Step On the primary On the secondary

1. Set the SDS_TIMEOUT configuration parameter
in the onconfig file:

SDS_TIMEOUT x

2. Configure the alias name of the SD primary
server:

onmode -d set SDS primary <alias>

3 Set configuration parameters:

SDS_ENABLE 1
SDS_PAGING <path 1>,<path 2>
SDS_TEMPDBS <dbsname>,<dbspath>,
<pagesize>,<offset>,
<size>

21-22 IBM Informix Administrator's Guide

Table 21-5. Steps to start an SD secondary server for the first time (continued)

Step On the primary On the secondary

4 Set configuration parameters to match those on the
primary server:

v ROOTNAME

v ROOTPATH

v ROOTOFFSET

v ROOTSIZE

v PHYSFILE

v LOGFILES

v LOGSIZE

5 Optionally set the UPDATABLE_SECONDARY
configuration parameter to a positive integer.

6 Add an entry to the sqlhosts file (or for Windows
systems, the SQLHOSTS registry key) for the primary
server:

dbservername nettype hostname servicename

7 Start the SD secondary server

oninit

There is increased memory usage in the LGR memory pool when a secondary
server is added.

See the IBM Informix Administrator's Reference for information about configuration
parameters.

Obtain SD secondary server statistics
Use the onstat utility or system-monitoring interface (SMI) tables to view SD
secondary server statistics.

Use onstat -g sds to view SD secondary server statistics. The output of the onstat
utility depends on whether the utility is run on the primary or secondary server.

Query the syssrcsds table to obtain information about shared disk statistics on the
primary server.

Query the systrgsds table to obtain information about shared disk statistics on the
secondary server.

For information about onstat and SMI tables see the IBM Informix Administrator's
Reference.

Promote an SD secondary server to a primary server
Convert an SD secondary server to a primary server by issuing the following
command on the SD secondary server:
onmode -d set SDS primary <alias>

An SD secondary server cannot be converted to a standard server.

Chapter 21. High-availability cluster configuration 21-23

Convert a primary server to a standard server
You can convert a primary server to a standard server and disconnect it from the
shared disk environment using the following command on the primary server:
onmode -d clear SDS primary <alias>

SD secondary server security
SD secondary servers support similar encryption rules as HDR. See “Database
server configuration requirements for clusters” on page 21-3 for details.

Encryption can be enabled or disabled between any primary and secondary server
pair. That is, you can encrypt traffic between the primary server and one SD
secondary server and not encrypt traffic between the primary server and another
SD secondary server.

See the “Server Multiplexer Group (SMX) connections” on page 21-13 topic for
additional information about setting up and configuring encryption between
primary servers and SD secondary servers.

Flow control for shared-disk secondary servers
Flow control provides a way to limit log activity on the primary server so that
shared-disk (SD) secondary servers in the cluster do not fall too far behind on
processing transactions.

Set the SDS_FLOW_CONTROL configuration parameter on the primary server to
enable flow control. All SD secondary servers in the cluster are affected by the
primary server's SDS_FLOW_CONTROL configuration parameter setting. When
flow control is active, users connected to the primary server may experience slower
response time.

Logs are always sent to the SD secondary server in the order in which they were
received.
Related reference:

SDS_FLOW_CONTROL configuration parameter (Administrator's Reference)

RSS_FLOW_CONTROL configuration parameter (Administrator's Reference)

21-24 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1178.htm#ids_adr_1178
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1119.htm#ids_adr_1119

Chapter 22. Cluster administration

This chapter describes various administrative tasks, some optional, for monitoring
and maintaining a cluster. For example, load-balancing to optimize performance,
ensuring security.

How data replication works
These topics describe the mechanisms that the database server uses to perform
replication of data to secondary servers. For instructions on how to set up, start,
and administer the various types of secondary servers, see the table

Table 22-1. Secondary server setup information

Secondary server type See

HDR secondary See Chapter 21, “High-availability cluster
configuration,” on page 21-1, and
information about starting an HDR pair
using external backup and restore in the
IBM Informix Backup and Restore Guide.

RS secondary See “Remote standalone secondary servers”
on page 21-11.

SD secondary See “Shared disk secondary servers” on
page 21-20

How data initially replicates
HDR secondary and RS secondary servers use storage-space backups and
logical-log backups (both those backed up to tape and those on disk) to perform an
initial replication of the data on the primary database server to the secondary
database server.

SD secondary servers do not require a backup and restore from the primary server
because SD secondary servers share the same disks as the primary.

To replicate data:
1. Install user-defined types, user-defined routines, and DataBlade modules on

both database servers.
2. Register user-defined types, user-defined routines, and DataBlade modules on

the primary database server only.
3. To synchronize the data managed by the two database servers, create a level-0

backup of all the storage spaces on the primary database server.
4. Restore all the storage spaces from the backup on the secondary database

server in the data-replication pair.
The secondary database server that you restored from a storage-space backup
in the previous step then reads all the logical-log records generated since that
backup from the primary database server.
The database server reads the logical-log records first from any backed-up
logical-log files that are no longer on disk and then from any logical-log files
on disk.

© Copyright IBM Corp. 1996, 2014 22-1

For detailed instructions about replicating data, see “Starting HDR for the First
Time” on page 21-7. The IBM Informix Backup and Restore Guide explains how to
start replication using ON-Bar.

You must perform the initial backup with a storage-space backup. You cannot use
data-migration utilities such as onload and onunload to replicate data because the
physical page layout of tables on each database server must be identical in order
for data replication to work.

Replication of primary-server data to secondary servers
All secondary server types use logs to replicate primary-server replicate data. The
primary server sends its entire logical log to HDR and RS secondary servers, but
only the log page's position to SD secondary servers.

Index page logging can be used by all secondary servers, but is required for
replication to RS secondary servers.

Databases must use transaction logging to be replicated.

Note: If the primary server and secondary server disconnect from each other, and
are allowed to independently run as standard servers or primary servers, then
high-availability data replication might have to be reestablished.

Replication to HDR secondary servers

There are three synchronization modes that the primary database server can use to
replicate data to an HDR secondary server:
v Fully synchronous mode, where transactions require acknowledgement of

completion on the HDR secondary server before they can complete.
Data integrity is highest when you use fully synchronous mode, but system
performance can be negatively affected if client applications use unbuffered
logging and have many small transactions.

v Asynchronous mode, where transactions do not require acknowledgement of being
received or completed on the HDR secondary server before they can complete.
System performance is best when you use asynchronous mode, but if there is a
server failure, data can be lost.

v Nearly synchronous mode, where transactions require acknowledgement of being
received on the HDR secondary server before they can complete.
Nearly synchronous mode can have better performance than fully synchronous
mode and better data integrity than asynchronous mode. If used with
unbuffered logging, SYNC mode, which is turned on when DRINTERVAL is set
to -1, is the same as nearly synchronous mode.

The synchronization mode is controlled by the combination of DRINTERVAL
configuration parameter value, HDR_TXN_SCOPE configuration parameter value,
and database logging type.

The following two figures illustrate replication from a primary server to an HDR
secondary server.

22-2 IBM Informix Administrator's Guide

The contents of the primary server's logical-log buffer are copied to the
shared-memory data-replication buffer and flushed to disk. If the primary server is
using fully synchronous or nearly synchronous mode, it must receive an
acknowledgement from the HDR secondary server before it can complete the
logical-log flush. The primary server starts a drprsend thread to transmit the
data-replication buffer across the network to the secondary server's drsecrcv
thread, which then writes the data into the shared-memory reception buffer. The
drsecapply thread copies the reception buffer to the recovery buffer. Both HDR
and RS secondary servers use logrecvr threads to apply logical-log records their
dbspaces. You can adjust the number of logrecvr threads by changing the value of
the OFF_RECVRY_THREADS configuration parameter.

The drprping and drsecping threads send and receive messages to monitor the
connection between two servers.

Replication to RSS secondary servers

Because checkpoints between a primary server and an RS secondary server are
asynchronous, RS secondary servers require index page logging.

Logical-log
buffer

HDR buffer

Recovery
buffer

Reception
buffer

Shared memory

Disk

Shared memory

Disk

SecondaryPrimary

Figure 22-1. How data replicates from a primary to HDR secondary server

Secondary

sqlexec

drprsend

drprping

drsecrcv

drsecapply

drsecping
logrecvr

Client
Primary

Figure 22-2. Threads that manage data replication

Chapter 22. Cluster administration 22-3

The following figure illustrated replication from a primary server to an RS
secondary server.

If the primary server can verify that it is connected to an RS secondary server, the
RSS_send thread copies a page from either the disk or the logical-log buffer to the
data-replication buffer. The RSS_Send thread uses a Server Multiplexer Group
(SMX) connection to send the data-replication buffer to the RS secondary server's
RSS_recv thread. The RSS_recv thread then writes the data into the reception buffer.
The RSS_apply thread copies the reception buffer to the recovery buffer.

Unlike with HDR fully synchronous mode or nearly synchronous mode, the
primary server does not require acknowledgment from the secondary server before
sending the next buffer. The primary server sends up to 32 unacknowledged
data-replication buffers before the RSS_send thread waits for the RSS_Recv thread
to receive an acknowledgment from the RS secondary server.

Replication to SD secondary servers

SD secondary servers read logical log pages from disk and then apply the data to
their memory data buffers.
Related concepts:
“Cluster failures” on page 24-3
“Index page logging” on page 21-12
Related reference:

DRINTERVAL configuration parameter (Administrator's Reference)

HDR_TXN_SCOPE configuration parameter (Administrator's Reference)

HDR_TXN_SCOPE environment option (SQL Syntax)

Fully synchronous mode for HDR replication
HDR fully synchronous mode ensures that any transaction committed on a
primary server was also committed on the HDR secondary server, which can
protects transactional consistency if a failure occurs.

After the primary database server writes the logical-log buffer contents to the HDR
buffer, it sends the records from the buffer to the HDR secondary database server.
The logical-log buffer flush on the primary database server completes only after

Figure 22-3. Threads that manage data replication for RS secondary servers

22-4 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0058.htm#ids_adr_0058
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1175.htm#ids_adr_1175
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2603.htm#ids_sqs_2603.dita

the primary database server receives acknowledgment from the HDR secondary
database server that the records were received.

To track synchronization, both the primary and HDR secondary server store the
following information in their reserved pages:
v The ID of the logical-log file that contains the last completed checkpoint
v The position of the checkpoint record within the logical-log file
v The ID of the last logical-log file that was sent or received
v The page number of the last logical-log record that was sent or received

To view this information, run the onstat -g dri ckpt command.

Checkpoints between database servers in an HDR replication pair are synchronous.
The primary server waits for the HDR secondary server to acknowledge that it
received the checkpoint log record before the primary server completes its
checkpoint. If the checkpoint does not complete within the time that is specified by
the DRTIMEOUT configuration parameter, the primary database server assumes
that a failure occurred.

HDR fully synchronous mode has the following requirements:
v The DRINTERVAL configuration parameter on the primary and HDR secondary

server must be set to 0.
v The DRTIMEOUT configuration parameter on the primary and HDR secondary

server must be set to the same value.

Administration can be easier if the operating-system times on the primary and
HDR secondary servers are synchronized.

To turn on fully synchronous data replication, set the DRINTERVAL configuration
parameter to 0, and then use one of the following methods:
v Set the HDR_TXN_SCOPE configuration parameter to FULL_SYNC.
v Run SET ENVIRONMENT HDR_TXN_SCOPE 'FULL_SYNC';

Log records are applied in the order in which they were received. When the log
transmission buffer contains many log records, the application of those log records
on the HDR secondary server requires more time, and performance can be
negatively affected. If this situation occurs, consider using nearly synchronous
mode for HDR data replication.
Related reference:

DRINTERVAL configuration parameter (Administrator's Reference)

onstat -g dri command: Print high-availability data replication information
(Administrator's Reference)

HDR_TXN_SCOPE environment option (SQL Syntax)

Nearly synchronous mode for HDR replication
When you use nearly synchronous mode for HDR replication, the primary server
flushes the logical-log buffer to disk after receiving acknowledgement that the
HDR secondary server received a transmitted transaction. The primary server does
not wait for acknowledgement that the transaction was committed on the HDR
secondary server.

When the log transmission buffer contains many log records, the application of
those log records on the HDR secondary server requires more time. Nearly

Chapter 22. Cluster administration 22-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0058.htm#ids_adr_0058
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0527.htm#ids_adr_0527
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0527.htm#ids_adr_0527
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2603.htm#ids_sqs_2603.dita

synchronous mode for HDR replication provides better performance than fully
synchronous mode, and better data integrity than asynchronous mode.

The primary server stores the following near-synchronization information in its
reserved page:
v The number of unprocessed data replication buffers queued to the drprsend

thread.
v The log unique value, the page number for the most recently paged log.
v The pointer to the thread-control block (TCB), the thread id in parentheses, and

the log sequence number (LSN) of the commit that was performed by that
thread.

v The LSNs of commits that are waiting for acknowledgement of being received
on the HDR secondary.

To view this information, run the onstat -g dri que command.

HDR nearly synchronous mode has the following requirements:
v The DRINTERVAL configuration parameters on the primary and HDR secondary

server must be set to -1, or the DRINTERVAL configuration parameter on the
primary server must be set to 0.

v The DRTIMEOUT configuration parameters on the primary and HDR secondary
server must be set to the same value.

v The operating-system time on the primary and HDR secondary servers must be
synchronized.

To turn on nearly synchronous data replication, set the DRINTERVAL
configuration parameter to 0, and then use one of the following methods:
v Set the HDR_TXN_SCOPE configuration parameter to NEAR_SYNC.
v Run SET ENVIRONMENT HDR_TXN_SCOPE ’NEAR_SYNC’;

Related reference:

DRINTERVAL configuration parameter (Administrator's Reference)

onstat -g dri command: Print high-availability data replication information
(Administrator's Reference)

HDR_TXN_SCOPE environment option (SQL Syntax)

Asynchronous mode for HDR replication
Asynchronous HDR replication means that the primary server does not wait for a
response from the HDR secondary server before flushes the logical log to disk.
Asynchronous HDR replication can increase replication speed, but transactions can
be lost.

There are multiple ways to turn on asynchronous mode for HDR replication:
v Set the DRINTERVAL configuration parameter to a positive integer value.
v Set the DRINTERVAL configuration parameter to 0, and set the

HDR_TXN_SCOPE configuration parameter to ASYNC.
v Run the following statement:

SET ENVIRONMENT HDR_TXN_SCOPE ’ASYNC’;

In asynchronous mode, the primary database server flushes the logical-log to disk
after it copies the contents of the logical-log buffer to the data-replication buffer.
The primary database server sends the contents of the HDR buffer across the
network when one of the following conditions occurs:

22-6 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0058.htm#ids_adr_0058
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0527.htm#ids_adr_0527
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0527.htm#ids_adr_0527
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2603.htm#ids_sqs_2603.dita

v The HDR buffer becomes full.
v The time interval since the records were sent to the HDR secondary database

server exceeds the value of the primary server's DRINTERVAL configuration
parameter.

To reduce the risk of lost transactions in a cluster that uses asynchronous
replication, use unbuffered logging for all the databases. Unbuffered logging
reduces the amount of time between transaction-record writing and transfer. If
your primary server uses buffered logging, and you receive an error -7350
Attempt to update a stale version of a row message, switch to unbuffered
logging.

If a failover does occur, but the primary server is restarted with data replication,
transactions that were committed on the primary server and not committed on the
secondary server are stored in a file that is specified by the DRLOSTFOUND
configuration parameter.
Related reference:

DRINTERVAL configuration parameter (Administrator's Reference)

onstat -g dri command: Print high-availability data replication information
(Administrator's Reference)

HDR_TXN_SCOPE environment option (SQL Syntax)

Lost-and-found transactions
With asynchronous updating, a transaction committed on the primary database
server might not be replicated on the secondary database server. This situation can
result if a failure occurs after the primary database server copies a commit record
to the HDR buffer but before the primary database server sends that commit
record to the secondary database server.

If the secondary database server is changed to a standard database server after a
failure of the primary database server, it rolls back any open transactions. These
transactions include any that were committed on the primary database server but
for which the secondary database server did not receive a commit record. As a
result, transactions are committed on the primary database server but not on the
secondary database server. When you restart data replication after the failure, the
database server places all the logical-log records from the lost transactions in a file
(which the DRLOSTFOUND configuration parameter specifies) during logical
recovery of the primary database server. The following figure illustrates the
process.

Chapter 22. Cluster administration 22-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0058.htm#ids_adr_0058
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0527.htm#ids_adr_0527
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0527.htm#ids_adr_0527
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2603.htm#ids_sqs_2603.dita

If the lost-and-found file is created on the computer that is running the primary
database server after it restarts data replication, a transaction has been lost. The
database server cannot reapply the transaction records in the lost-and-found file
because conflicting updates might have occurred while the secondary database
server was acting as a standard database server.

To reduce the risk of a lost transaction without running data replication in
synchronous mode, use unbuffered logging for all the databases. This method
reduces the amount of time between the writing and transfer of the transaction
records from the primary database server to the secondary database server.

Data replication configuration examples
These topics describe some examples of how a data replication environment can be
configured.

Remote standalone secondary configuration examples
The following figure illustrates an example of a configuration consisting of
multiple RS secondary servers. This configuration would be useful in a situation
where the primary server is located a long distance from the RS secondary servers
or if the network speed between the primary server and the RS secondary server is
slow or erratic. Because RS secondary servers use fully duplexed communication
protocols, and do not require synchronous checkpoints processing, the
primary-server's performance is usually unaffected.

Records in
primary logical

log

Records for
transaction
committed on
primary but
rolled back on
secondary

Secondary
switched to
standard

Records in
lost-and-found

file after recovery

Records in
secondary
logical log

Records in
primary logical

log after recovery

Figure 22-4. Using a lost-and-found file

22-8 IBM Informix Administrator's Guide

The next illustration shows an example of a configuration of an RS secondary
server along with an HDR secondary server. In this example, the HDR secondary
provides high availability while the RS secondary provides additional disaster
recovery if both the primary and HDR secondary servers are lost. The RS
secondary server can be geographically remote from the primary and HDR
secondary servers so that a regional disruption such as an earthquake or flood
would not affect the RS secondary server.

If a primary database server fails, it is possible to convert the existing HDR
secondary server into the primary server, as in the following diagram:

Figure 22-5. Primary server with three RS secondary servers

Figure 22-6. Primary server with HDR secondary and RS secondary servers

Chapter 22. Cluster administration 22-9

If the original primary is going to be offline for an extended period of time, then
the RS secondary server can be converted to an HDR secondary server. Then when
the original primary comes back online, it can be configured as an RS secondary
server, as in the following illustration:

Shared disk secondary configuration examples
The following figure shows an example of a primary server with two SD
secondary servers. In this case the role of the primary server can be transferred to
either of the two SD secondary servers. This is true whether the primary must be
taken out of service because of a planned outage, or because of failure of the
primary server.

Because both of the SD secondary servers are reading from the same disk
subsystem, they are both equally able to assume the primary server role. The

Figure 22-7. Failover of primary server to HDR secondary server

Figure 22-8. RS secondary server assuming role of HDR secondary server

Figure 22-9. Primary server configured with two SD secondary servers

22-10 IBM Informix Administrator's Guide

following figure illustrates a situation in which the primary server is offline.

There are several ways to protect against hardware failure of the shared disk.
Probably the most common way is to configure the disk array based on RAID
technology (such as RAID-5). Another way to protect against disk failure is to use
SAN (Storage Area Technology) to include some form of remote disk mirroring.
Since SAN disks can be located a short distance from the primary disk and its
mirror, this provides a high degree of availability for both the planned and
unplanned outage of either the server or of the disk subsystem. The following
illustration depicts such a configuration:

In the event of a disk failure, the servers can be reconfigured as in the following
illustration:

Figure 22-10. SD secondary server assuming role of primary server

Figure 22-11. Primary server and SD secondary servers with mirrored disks

Chapter 22. Cluster administration 22-11

In addition to configuring a mirrored disk subsystem as in the previous
illustration, you might want to configure additional servers. For example, you
might want to use the primary and two SD secondary servers within a single blade
server enclosure. By placing the server group within a single blade server, the
blade server itself can become a failure point. The configuration in the following
illustration is an attractive solution when you must periodically increase read
processing ability such as when performing large reporting tasks.

You might decide to avoid the possible failure point of a single blade server by
using multiple blade servers, as in the following illustration.

In the previous illustration, if Blade Server A fails, it would be possible to transfer
the primary server role to the SD secondary server on Blade Server B. Since it is

Figure 22-12. Shared disk mirror after failure of primary shared disk

Figure 22-13. Primary and SD secondary servers in a blade server

Figure 22-14. Multiple blade server configuration to prevent single point of failure

22-12 IBM Informix Administrator's Guide

possible to bring additional SD secondary servers online very quickly, it would be
possible to dynamically add additional SD secondary servers to Blade Server B as
in the following illustration.

Because of limits on the distance between the primary and mirrored disks that disk
mirroring can support, you might be concerned about using shared disks and
relying on shared disk mirroring to provide disk availability. For example, you
might want significant distance between the two copies of the disk subsystem. In
this case, you might choose to use either an HDR secondary or an RS secondary
server to maintain the secondary copy of the disk subsystem. If the network
connection is fairly fast (that is, if a ping to the secondary server is less than 50
milliseconds) you must consider using an HDR secondary server. For slower
network connections, consider using an RS secondary server. The following
illustration shows an example of an HDR secondary server in a blade server
configuration.

In the configuration shown in the previous illustration, if the primary node fails,
but the shared disks are intact and the blade server is still functional, it is possible
to transfer the primary server role from the first server in Blade Server A to
another server in the same blade server. Changing the primary server would cause
the source of the remote HDR secondary server to automatically reroute to the new
primary server, as illustrated in the following diagram:

Figure 22-15. Failover after failure of blade server

Figure 22-16. HDR secondary server in blade server configuration

Chapter 22. Cluster administration 22-13

Suppose, however, that the failure described in the previous illustration was not a
blade within the blade server, but the entire blade server. In this case you might be
required to fail over to the HDR secondary. Since starting an SD secondary server
is very quick, you can easily add additional SD secondary servers. Note that the
SD secondary server can only work with the primary node; when the primary has
been transferred to Blade Server B, then it becomes possible to start SD secondary
servers on Blade Server B as well, as shown in the following illustration.

Enterprise Replication as part of the recoverable group
While Enterprise Replication does not support a SYNC (synchronous) mode of
operation, it does provide the ability to support environments with multiple active
servers. During a failover event, Enterprise Replication is able to reconcile database
differences between two servers. You must consider Enterprise Replication as a
means of improving synchronization between servers because each Enterprise
Replication system maintains an independent logging system. A configuration
using Enterprise Replication is shown in the following figure.

Figure 22-17. Failover of primary server to SD secondary server in blade server configuration

Figure 22-18. Failure of entire blade server

22-14 IBM Informix Administrator's Guide

High-availability clusters with Enterprise Replication
configuration example
Suppose you require Enterprise Replication between two high-availability server
clusters configured as follows:

Cluster 1:

v Primary server
v HDR secondary server
v SD secondary server 1
v SD secondary server 2
v RS secondary server 1
v RS secondary server 2

Cluster 2:

v Primary server
v HDR secondary server
v SD secondary server 1
v SD secondary server 2
v RS secondary server 1
v RS secondary server 2

Suppose further that each of the servers is named according to the following
convention:
v First three characters: name of enterprise
v Character 4: host short number
v Characters 5, 6, and 7: cluster number
v Characters 8, 9, and 10: server type: "pri" for primary server, "sec" for secondary

server
v Characters 11, 12, and 13: connection type: "shm" or "tcp"

For example, a server with the name: srv4_1_pri_shm is described as follows:
v srv = name of enterprise

Figure 22-19. Configure Enterprise Replication as part of the recoverable group

Chapter 22. Cluster administration 22-15

v 4 = host short number
v _1_ = cluster number
v pri = this is a primary server
v shm = connection type uses shared memory communication

The following entries in the sqlhosts file would support the previous
configuration:
srv4_1_pri_shm onipcshm sun-mach4 srv4_1_pri_shm
srv4_1_sec_shm onipcshm sun-mach4 srv4_1_sec_shm
srv5_1_rss_shm onipcshm sun-mach5 srv5_1_rss_shm
srv5_1_sds_shm onipcshm sun-mach5 srv5_1_sds_shm
srv6_1_rss_shm onipcshm sun-mach6 srv6_1_rss_shm
srv6_1_sds_shm onipcshm sun-mach6 srv6_1_sds_shm
srv_1_cluster group - - i=1
srv4_1_pri_tcp ontlitcp sun-mach4 21316 g=srv_1_cluster
srv4_1_sec_tcp ontlitcp sun-mach4 21317 g=srv_1_cluster
srv5_1_rss_tcp ontlitcp sun-mach5 21316 g=srv_1_cluster
srv5_1_sds_tcp ontlitcp sun-mach5 21317 g=srv_1_cluster
srv6_1_rss_tcp ontlitcp sun-mach6 21316 g=srv_1_cluster
srv6_1_sds_tcp ontlitcp sun-mach6 21317 g=srv_1_cluster

srv4_2_pri_shm onipcshm sun-mach4 srv4_2_pri_shm
srv4_2_sec_shm onipcshm sun-mach4 srv4_2_sec_shm
srv5_2_rss_shm onipcshm sun-mach5 srv5_2_rss_shm
srv5_2_sds_shm onipcshm sun-mach5 srv5_2_sds_shm
srv6_2_rss_shm onipcshm sun-mach6 srv6_2_rss_shm
srv6_2_sds_shm onipcshm sun-mach6 srv6_2_sds_shm
srv_2_cluster group - - i=2
srv4_2_pri_tcp ontlitcp sun-mach4 21318 g=srv_2_cluster
srv4_2_sec_tcp ontlitcp sun-mach4 21319 g=srv_2_cluster
srv5_2_rss_tcp ontlitcp sun-mach5 21318 g=srv_2_cluster
srv5_2_sds_tcp ontlitcp sun-mach5 21319 g=srv_2_cluster
srv6_2_rss_tcp ontlitcp sun-mach6 21318 g=srv_2_cluster
srv6_2_sds_tcp ontlitcp sun-mach6 21319 g=srv_2_cluster

Example of a complex failover recovery strategy
This topic describes a three-tiered server approach for achieving maximum
availability in the case of a large region-wide disaster.

In general, an HDR Secondary server provides backup for SD secondary servers
and provides support for a highly available system which is geographically remote
from the main system. RS secondary servers provide additional availability for the
HDR secondary and are viewed as a disaster-availability solution. If you must use
an RS secondary server for availability, then you are forced to manually rebuild the
other systems by performing backup and restore in order to return to normal
operation. To further understand this, a scenario is presented in which a large
region-wide disaster occurs, such as a hurricane.

To provide maximum availability to survive a regional disaster requires layered
availability. The first layer provides availability solutions to deal with transitory
local failures. For example, this might include having a couple of blade servers
attached to a single disk subsystem running SD secondary servers. Placing the SD
secondary servers in several locations throughout your campus makes it possible
to provide seamless failover in the event of a local outage.

You might want to add a second layer to increase availability by including an
alternative location with its own copy of the disks. To protect against a large
regional disaster, you might consider configuring an HDR secondary server located
some distance away, perhaps hundreds of miles. You might also want to make the

22-16 IBM Informix Administrator's Guide

remote system a blade server or some other multiple-server system. By providing
this second layer, if a fail-over occurs and the remote HDR secondary became the
primary, then it would be possible to easily start SD secondary servers at the
remote site.

However, even a two-tiered approach might not be enough. A hurricane in one
region can create tornadoes hundreds of miles away. To protect against this,
consider adding a third tier of protection, such as an RS secondary server located
one or more thousand miles away. This three-tier approach provides for additional
redundancy that can significantly reduce the risk of an outage.

Now suppose that a local outage occurred in Building-A on the New Orleans
campus. Perhaps a pipe burst in the machine room causing water damage to the
blade server and the primary copy of the shared disk subsystem. You can switch
the role of primary server to Building-B by running onmode -d make primary
servername on one of the SD secondary servers running on the blade server in
Building-B. This would cause all other secondary nodes to automatically connect to
the new primary node.

Figure 22-20. Configuration for three-tiered server availability

Chapter 22. Cluster administration 22-17

If there be a regional outage in New Orleans such that both building A and
building B were lost, then you can shift the primary server role to Memphis. In
addition, you might also want to make Denver into an HDR secondary and
possibly add additional SD secondary servers to the machine in Memphis.

Figure 22-21. First tier of protection

Figure 22-22. Second tier of protection

22-18 IBM Informix Administrator's Guide

An even larger outage which affected both sites would require switching to the
most remote system.

Table 22-2. Suggested configurations for various requirements

Requirement Suggested configuration

You periodically must increase reporting
capacity

Use SD secondary servers

You are using SAN devices, which provide
ample disk hardware availability, but are
concerned about server failures

Use SD secondary servers

You are using SAN devices, which provide
ample disk hardware mirroring, but also
want a second set of servers that are able to
be brought online if the main operation is
lost (and the limitations of mirrored disks
are not a problem)

Consider using two blade centers running
SD secondary servers at the two sites

You want to have a backup site some
moderate distance away, but cannot tolerate
any loss of data during failover

Consider using two blade centers with SD
secondary servers on the main blade center
and an HDR secondary on the remote.

You want to have a highly available system
in which no transaction is ever lost, but
must also have a remote system on the other
side of the world

Consider using a local HDR secondary
server that is running fully synchronous
mode or nearly synchronous mode for data
replication, and also using an RS secondary
server on the other side of the world.

You want to have a high availability
solution, but because of the networks in
your region, the best response time from a
ping is about 200 ms

Consider using an RS secondary server

Figure 22-23. Third tier of protection

Chapter 22. Cluster administration 22-19

Table 22-2. Suggested configurations for various requirements (continued)

Requirement Suggested configuration

You want a backup site but you do not have
any direct communication with the backup
site

Consider using Continuous Log Restore
with backup and recovery

You can tolerate a delay in the delivery of
data as long as the data arrives eventually;
however you must have quick failover in
any case

Consider using SD secondary servers with
hardware disk mirroring in conjunction with
ER.

You require additional write processing
power, can tolerate some delay in the
delivery of those writes, require something
highly available, and can partition the
workload

Consider using ER with SD secondary
servers

Troubleshooting high-availability cluster environments
A high-availability cluster environment requires little or no additional
troubleshooting when compared with a stand-alone server environment. This topic
explains the terminology used to describe high-availability cluster environments
and provides some common troubleshooting procedures.

You use the diagnostic tools to display the configuration of a high-availability
environment and to verify that your secondary servers are set up correctly to
update data.

Transactions are processed by the servers very quickly. The onstat commands
display status information only for the instant the command was run.

To update data on secondary servers, IBM Informix creates proxy distributors on
both the primary and the secondary database servers. Each proxy distributor is
assigned an ID that is unique within the cluster. The proxy distributor is
responsible for sending DML update requests from secondary servers to the
primary server. Secondary servers determine how many instances of the proxy
distributors to create based on the UPDATABLE_SECONDARY setting in the
secondary server's onconfig file.

For updatable secondary servers in a high-availability cluster environment,
encryption from the updatable secondary server to primary server requires SMX
encryption. To encrypt data sent from an updatable secondary server to the
primary server, set the ENCRYPT_SMX configuration parameter on the secondary
server. See “Enable SMX encryption” on page 21-13 for more information.

When initializing an updatable secondary server in a high-availability cluster, the
server remains in fast recovery mode until all open transactions, including open
and prepared XA transactions, are complete. Applications cannot connect to the
server while it is in fast recovery mode. The server remains in fast recovery mode
until all open transactions are either committed or rolled back.

Use the onstat -g proxy command on the primary server to view information
about all proxy distributors in the high-availability cluster.
onstat -g proxy

Secondary Proxy Reference Transaction Hot Row

22-20 IBM Informix Administrator's Guide

Node ID Count Count Total
serv2 392 0 2 112
serv2 393 0 2 150

Examining the output from the onstat command in the previous example, there are
two proxy distributors whose IDs are 392 and 393. The Transaction Count indicates
the number of transactions currently being processed by each proxy distributor.

You run onstat -g proxy on a secondary server to view information about the
proxy distributors that are able to service update requests from the secondary
server.
onstat -g proxy

Primary Proxy Reference Transaction Hot Row
Node ID Count Count Total
serv1 392 0 2 112
serv1 393 0 2 150

In this example, the server is a shared disk (SD) secondary server, and is
configured to update data. In addition, the server is connected to the primary
server named serv1, and there are two proxy distributors, each with a transaction
count of 2.

Use onstat -g proxy all on the primary server to display information about proxy
distributors and proxy agent threads. One or more proxy agent threads are created
by the proxy distributor to handle data updates from the secondary server.
onstat -g proxy all

Secondary Proxy Reference Transaction Hot Row
Node ID Count Count Total
serv2 392 0 2 1
serv2 393 0 2 0

TID Flags Proxy Source Proxy Current sqlerrno iserrno
ID SessID TxnID Seq

63 0x00000024 392 22 1 5 0 0
64 0x00000024 392 19 2 5 0 0
62 0x00000024 393 23 1 5 0 0
65 0x00000024 393 21 2 5 0 0

In the output of the onstat -g proxy all command, TID represents the ID of the
proxy agent thread that is running on the primary server. Source SessID
represents the ID of the user's session on the secondary server. Proxy TxnID
displays the sequence number of the current transaction. Each Proxy TxnID is
unique to the proxy distributor. Current Seq represents the sequence number of
the current operation in the transaction being processed. Each database transaction
sent to a secondary server is separated internally into one or more operations that
are then sent to the primary server. The last two fields, sqlerrno and iserrno,
display any SQL or ISAM/RSAM errors encountered in the transaction. An error
number of 0 indicates completion with no errors.

Running onstat -g proxy all on the secondary server displays information about all
of the sessions that are currently able to update data on secondary servers.
onstat -g proxy all

Primary Proxy Reference Transaction Hot Row
Node ID Count Count Total
serv1 3466 0 0 1
serv1 3465 0 1 0

Chapter 22. Cluster administration 22-21

Session Proxy Proxy Proxy Current Pending Reference
ID TID TxnID Seq Ops Count

19 3465 67 1 23 0 1

In the output from the onstat -g proxy all command run on the secondary server,
Session represents the ID of a user's session on the secondary server. The Proxy ID
and Proxy TID are the same as those displayed on the primary server. Pending
Ops displays the number of operations that are waiting to be transferred to the
primary server. Reference Count displays the number of threads in use for the
transaction. When Reference Count displays 0 the transaction processing is
complete.

To display detailed information about the current work being performed by a
given distributor, use:
onstat -g proxy <proxy id> [proxy transaction id] [operation number]

The proxy transaction ID and operation number are both optional parameters.
When supplied, the first number is considered the proxy transaction ID. If a
secondary number follows it is interpreted as the operation number. If no proxy
transaction ID exists, the command performs the same as: onstat -. Similarly, if no
such operation number for the given proxy transaction ID exists, the command
performs the same as: onstat -.

Use the following command to display information about whether a server is
configured to allow updates to data. The command can be run either on the
primary or secondary server:
onstat -g <server_type>

Examples:
onstat -g rss
onstat -g sds
onstat -g dri

Design data replication group clients
This topic explains various design considerations for clients that connect to
database servers that are running data replication.

Also see “Isolation levels on secondary servers” on page 22-35 for information
about committed read and committed read last committed isolation levels on
secondary servers.

Use of temporary dbspaces for sorting and temporary tables
Even though the secondary database server is in read-only mode, it does write
when it must sort or create a temporary table. “Temporary dbspaces” on page 8-12
explains where the database server finds temporary space to use during a sort or
for a temporary table.

To prevent the secondary database server from writing to a dbspace that is in
logical-recovery mode, you must take the following actions:
1. Ensure that one or more temporary dbspaces exist. For instructions on creating

a temporary dbspace, see “Creating a dbspace that uses the default page size”
on page 9-7.

2. Perform one of the following actions:
v Set the DBSPACETEMP parameter in the onconfig file of the secondary

database server to the temporary dbspace or dbspaces.

22-22 IBM Informix Administrator's Guide

v Set the DBSPACETEMP environment variable of the client applications to the
temporary dbspace or dbspaces.

Temporary tables created on secondary servers (SD secondary servers, RS
secondary servers, and HDR secondary servers) must be created using the WITH
NO LOG option. Alternatively, set the TEMPTAB_NOLOG configuration parameter
to 1 on the secondary server to change the default logging mode for temporary
tables to no logging. Tables created with logging enabled result in ISAM errors.

For SD secondary servers, set the SDS_TEMPDBS configuration parameter for
configuring temporary dbspaces to be used by the SD secondary server.

For SD secondary servers, it is not necessary to explicitly add a temporary dbspace
because the secondary server allocates the chunk specified by SDS_TEMPDBS
when the server is started. It is only necessary to prepare the device that accepts
the chunk.

If the primary server in a high-availability cluster fails and an SD secondary server
takes over as the primary server, then the value set for the SDS_TEMPDBS
configuration parameter on the SD secondary server is used for temporary
dbspaces until the server is restarted. You must ensure that the value specified for
the SDS_TEMPDBS configuration parameter on the SD secondary server is
different than the value specified on the primary server. After the SD secondary
server is restarted, the DBSPACETEMP configuration parameter is used.

Performing basic administration tasks
These topics contain instructions on how to perform database server administration
tasks when your system is running HDR.

Changing the configuration parameters for an HDR replication
pair

Certain configuration parameters must be set to the same value on both database
servers in a HDR replication pair (as listed under “Database server configuration
requirements for clusters” on page 21-3.) Configuration parameters that can have
different values on each database server can be changed individually.

To make changes to onconfig files:
1. Bring each database server offline with the onmode -k option. If automatic

failover by Connection Managers or automatic switchover from DRAUTO
settings of 1 or 2 are enabled, bring the HDR secondary server offline first.

2. Change the parameters on each database server.
3. Starting with the database server that was last brought offline, bring each

database server back online.
For example, if you brought the HDR secondary database server offline last,
bring the HDR secondary database server online first. Table 21-1 on page 21-9
lists the procedures for bringing the primary and secondary database servers
back online.

Back up storage spaces and logical-log files
When you use HDR, you must back up logical-log files and storage spaces only on
the primary database server. Be prepared, however, to perform storage-space and
logical-log backups on the secondary database server in case the type of the
database server is changed to standard.

Chapter 22. Cluster administration 22-23

You must use the same backup and restore tool on both database servers.

The block size and tape size used (for both storage-space backups and logical-log
backups) must be identical on the primary and secondary database servers.

You can use ontape to set the tape size to 0 to automatically use the full physical
capacity of a tape.

Changing the logging mode of databases
You cannot turn on transaction logging for databases on the primary database
server while you are using HDR. You can turn logging off for a database; however,
subsequent changes to that database are not duplicated on the secondary database
server.

To turn on database logging:
1. To turn HDR off, shut down the secondary database server.
2. Turn on database logging.

After you turn on logging for a database, if you start data replication without
performing the level-0 backup on the primary database server and restore on
the secondary database server, the database on the primary and secondary
database servers might have different data. This situation might cause
data-replication problems.

3. Perform a level-0 backup on the primary database server and restore on the
secondary database server. This procedure is described in “Starting HDR for
the First Time” on page 21-7.

Add and drop chunks and storage spaces
You can perform disk-layout operations, such as adding or dropping chunks and
dbspaces, only from the primary database server. The operation is replicated on the
secondary database server. This arrangement ensures that the disk layout on both
database servers in the replication pair remains consistent.

The directory path name or the actual file for chunks must exist before you create
them. Make sure the path names (and offsets, if applicable) exist on the secondary
database server before you create a chunk on the primary database server, or else
the database server turns off data replication.

Tip: When adding a dbspace on the primary server of a high-availability cluster
that has one or more SD secondary servers, the online.log of an SD secondary
server might show this error: "Assert Failed: Page Check Error". If that happens,
shut down and restart that SD secondary server. After restarting that SD secondary
server, the newly added dbspace will be available and fully functional.

Renaming chunks
If you use symbolic links for chunk path names, you can rename chunks while
HDR is operating. For instructions on renaming chunks, see the IBM Informix
Backup and Restore Guide.

If you do not use symbolic links for chunk path names, you must take both
database servers offline while renaming the chunks, for the time that it takes to
complete a cold restore of the database server.

To rename chunks on a failed HDR server:

22-24 IBM Informix Administrator's Guide

1. Change the mode of the undamaged server to standard.
2. Take a level-0 backup of the standard server.
3. Shut down the standard server.
4. Rename the chunks on the standard server during a cold restore from the new

level-0 archive (for instructions, see the IBM Informix Backup and Restore Guide).
5. Start the standard server.
6. Take another level-0 archive of the standard server. Be sure the server is in

standard mode.
7. Restore the failed server with the new level-0 backup and reestablish the HDR

pair.

Saving chunk status on the secondary database server
For high-availability cluster servers, if the status of a chunk (down or online) is
changed on the secondary database server, and that secondary server is restarted
before a checkpoint is completed, the updated chunk status is not saved.

To ensure that the new chunk status is flushed to the reserved pages on the
secondary database server, force a checkpoint on the primary database server and
verify that a checkpoint also completes on the secondary database server. The new
chunk status is now retained even if the secondary database server is restarted.

If the primary chunk on the secondary database server is down, you can recover
the primary chunk from the mirror chunk.

To recover the primary chunk from the mirror chunk:
1. Run onspaces -s on the secondary database server to bring the primary chunk

online.
2. Run onmode -c on the primary database server to force a checkpoint.
3. Run onmode -m on the primary database server to verify that a checkpoint

was completed.
4. Run onmode -m on the secondary database server to verify that a checkpoint

was also completed on the secondary database server.

After you complete these steps, the primary chunk is online when you restart the
secondary database server.

Use and change mirroring of chunks
Before you can add a mirror chunk, the disk space for that chunk must already be
allocated on both the primary and secondary database servers. If you want to
mirror a dbspace on one of the database servers in the replication pair, you must
create mirror chunks for that dbspace on both database servers. For general
information about allocating disk space, see “Allocate disk space” on page 9-1.

Do not set the MIRROR configuration parameter to 1 unless you are using
mirroring.

You can perform disk-layout operations from the primary database server only.
Thus, you can add or drop a mirror chunk only from the primary database server.
A mirror chunk that you add to or drop from the primary database server is added
to or dropped from the secondary database server as well. You must perform
mirror recovery for the newly added mirror chunk on the secondary database
server. For more information, see “Recover a mirror chunk” on page 18-5.

Chapter 22. Cluster administration 22-25

When you drop a chunk from the primary database server, IBM Informix
automatically drops the corresponding chunk on the secondary database server.
This applies to both primary and mirror chunks.

When you turn mirroring off for a dbspace on the primary database server,
Informix does not turn mirroring off for the corresponding dbspace on the
secondary database server. To turn off mirroring for a dbspace on the secondary
database server independent of the primary server, use onspaces -r. For more
information about turning off mirroring, see “End mirroring” on page 18-5.

You can take down a mirror chunk or recover a mirror chunk on either the
primary or secondary database server. These processes are transparent to HDR.

Manage the physical log
The size of the physical log must be the same on both database servers. If you
change the size and location of the physical log on the primary database server,
this change is replicated to the secondary database server. ONCONFIG values on
secondary are updated automatically.

For information about changing the size and location of the physical log, see
Chapter 16, “Manage the physical log,” on page 16-1.

Manage the logical log
The size of the logical log must be the same on both database servers. You can add
or drop a logical-log file with the onparams utility, as described in Chapter 14,
“Manage logical-log files,” on page 14-1. IBM Informix replicates this change on
the secondary database server; however, the LOGFILES parameter on the
secondary database server is not updated. After you issue the onparams command
from the primary database server, therefore, you must manually change the
LOGFILES parameter to the appropriate value on the secondary database server.
Finally, for the change to take effect, you must perform a level-0 backup of the root
dbspace on the primary database server.

If you add a logical-log file to the primary database server, this file is available for
use and flagged F as soon as you perform the level-0 backup. The new logical-log
file on the secondary database server is still flagged A. However, this condition
does not prevent the secondary database server from writing to the file.

Manage virtual processors
The number of virtual processors has no effect on data replication. You can
configure and tune each database server in the pair individually.

Manage shared memory
If you make changes to the shared-memory ONCONFIG parameters on one
database server, you must make the same changes at the same time to the
shared-memory ONCONFIG parameters on the other database server. For the
procedure for making this change, see “Changing the configuration parameters for
an HDR replication pair” on page 22-23.

Set the wait time for SMX activity between servers
You can set the SMX_PING_INTERVAL and SMX_PING_RETRY configuration
parameters to adjust the interval that secondary server in a high-availability cluster
waits for activity from the primary server.

22-26 IBM Informix Administrator's Guide

Use the SMX_PING_INTERVAL configuration parameter to specify the number of
seconds in a timeout interval, where a secondary server waits for activity from the
primary server in a Server Multiplexer Group (SMX) connection.

Use the SMX_PING_RETRY configuration parameter to specify the maximum
number of times that a secondary server repeats the timeout interval that is
specified by the SMX_PING_INTERVAL configuration parameter if a response
from the primary server is not received. If the maximum number is reached
without a response, the secondary server prints an error message in the online.log
and closes the Server Multiplexer Group (SMX) connection.
Related reference:

SMX_PING_INTERVAL configuration parameter (Administrator's Reference)

SMX_PING_RETRY configuration parameter (Administrator's Reference)

Replicate an index to an HDR secondary database server
If index page logging is enabled, index replication to the HDR secondary database
server occurs automatically (see “Index page logging” on page 21-12). If index
page logging is disabled, and an index on an HDR secondary database server
becomes corrupted and must be rebuilt, you can either:
v Manually replicate the index from the primary server to the secondary server.
v Let the secondary server automatically replicate the index if you enabled the

secondary server to do this.

To enable the secondary database server to automatically replicate the index, either:
v Set onmode -d idxauto to on.
v Set the value of the DRIDXAUTO configuration parameter to 1.

After you set either of these values, when one of the threads on the secondary
database server detects a corrupted index, the index is automatically replicated to
the secondary database server. Restarting index replication can take up to the
amount of time specified in seconds in the DRTIMEOUT configuration parameter.

Sometimes, you might want to replicate an index manually, for example, when you
want to postpone index repair because the table is locked. If you want to be able to
manually replicate an index on the HDR secondary server, turn off the automatic
replication feature.

To turn off the automatic index replication feature, either:
v Set onmode -d idxauto to off.
v Set the DRIDXAUTO configuration parameter to 0.

If onmode -d idxauto is set to off or DRIDXAUTO is set to 0 and the secondary
server detects a corrupted index, you can manually replicate an index on the HDR
secondary server by issuing an onmode -d index command in the following
format.onmode -d index database:[ownername].table#index

For example:onmode -d index cash_db:user_dx.table_12#index_z

In the case of a fragmented index with one corrupted fragment, the onmode -d
idxauto option only transfers the single affected fragment, whereas the onmode -d
index option transfers the whole index.

Chapter 22. Cluster administration 22-27

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1173.htm#ids_adr_1173
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1174.htm#ids_adr_1174

Important: When turning the automatic index replication feature on or off, you
can use either the onmode command or the DRIDXAUTO configuration parameter.
If you use the onmode command, you are not required to stop and restart the
database server. When you use the DRIDXAUTO parameter, the database server is
restarted with the setting you specify. The onmode command does not change the
DRIDXAUTO value. If you use the onmode command, you must manually change
the value of DRIDXAUTO.

The online.log file produced by the secondary server contains information about
any replicated index.
Related reference:

onmode -d command: Replicate an index with data-replication (Administrator's
Reference)

DRIDXAUTO configuration parameter (Administrator's Reference)

Encrypting data traffic between HDR database servers
To support encrypted HDR connections in conjunction with Communication
Support Module (CSM) client/server encryption, two network ports must be
configured:
v One network port must be configured for HDR.
v The other network port must be configured for CSM client/server connections.

You can use Informix server encryption options to encrypt the data traffic between
the database servers of an HDR pair. Do this when you want to ensure secure
transmission of data.

After you enable encryption, the first database server in an HDR pair encrypts the
data before sending the data to the other server in the pair. The server that receives
the data, decrypts the data as soon as it receives the data.

For updatable secondary servers in a high-availability cluster environment,
encryption from the updatable secondary server to primary server requires SMX
encryption. To encrypt data sent from an updatable secondary server to the
primary server, set the ENCRYPT_SMX configuration parameter on the secondary
server. See “Enable SMX encryption” on page 21-13 for more information.

Restriction: You cannot start HDR on a network connection that is configured to
use CSM encryption for client/server connections.

Additional buffers or larger buffers might be necessary to accommodate the size of
encrypted data.

To encrypt data traffic between two HDR database servers:
1. Set the following configuration parameters on the first server in the HDR pair.

v ENCRYPT_HDR, which enables or disables HDR encryption
v ENCRYPT_CIPHERS, which specifies the ciphers and modes to use for

encryption
v ENCRYPT_MAC, which controls the level of message authentication code

(MAC) generation
v ENCRYPT_MACFILE, which specifies a list of the full path names of MAC

key files

22-28 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0418.htm#ids_adr_0418
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0418.htm#ids_adr_0418
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0057.htm#ids_adr_0057

v ENCRYPT_SWITCH, which specifies the number of minutes between
automatic renegotiations of ciphers and keys

To change these parameters, follow the instructions in “Changing the
configuration parameters for an HDR replication pair” on page 22-23.

2. Set the encryption configuration parameters on the secondary server. The
ENCRYPT_HDR, ENCRYPT_CIPHERS, ENCRYPT_MAC, and the
ENCRYPT_SWITCH configuration parameters must have the same values as
the corresponding configuration parameters on the primary server. The
ENCRYPT_MACFILE configuration parameter can have a different value on
each server, but the files must contain the same MAC keys.

For example, specify the following information about the primary and secondary
servers in an HDR pair:

Configuration parameter
Sample setting on primary
server

Sample setting on secondary
server

ENCRYPT_HDR 1 1

ENCRYPT_CIPHERS all all

ENCRYPT_MAC medium medium

ENCRYPT_MACFILE /vobs/tristan/sqldist/etc/
mac1.dat

vobs/tristan/sqldist/etc/
mac2.dat

ENCRYPT_SWITCH 60,60 60,60

In this example, the file name in the ENCRYPT_MACFILE path for the primary
server is mac1.dat and the file name in the ENCRYPT_MACFILE path for the
secondary server is mac2.dat. Otherwise, all settings are the same on both servers.

Only use these configuration parameters to specify encryption information for
HDR. You cannot specify HDR encryption information by using the CSM option in
the sqlhosts file.

HDR encryption works in conjunction with Enterprise Replication encryption and
operates whether Enterprise Replication encryption is enabled or not. When
working in conjunction with each other, HDR and Enterprise Replication share the
same ENCRYPT_CIPHER, ENCRYPT_MAC, ENCRYPT_MACFILE and
ENCRYPT_SWITCH configuration parameters.

For more information about these configuration parameters, see the IBM Informix
Administrator's Reference.

Adjust LRU flushing and automatic tuning in HDR server pairs
When a server is configured for HDR, checkpoints triggered by the secondary
database server are nonblocking. These types of checkpoints occur infrequently. If a
nonblocking checkpoint is triggered by the secondary server, transactions are
blocked on the primary server to make sure that the integrity of the secondary
server is not compromised. If nonblocking checkpoints triggered by the secondary
server occur on your system, you must tune LRU flushing more aggressively on
the primary server to reduce transaction blocking.

To increase LRU flushing, reduce the values of lru_min_dirty and lru_max_dirty in
the BUFFERPOOL configuration parameter.

Chapter 22. Cluster administration 22-29

Automatic LRU tuning can be turned on or off independently on each HDR node.
The setting can be different on each HDR database server. For information about
turning off automatic LRU tuning, see “Turn automatic LRU tuning on or off” on
page 16-5.

For more information about LRU tuning, see the IBM Informix Performance Guide.

Cloning a primary server
You can use the ifxclone utility to perform one-step server instantiation, allowing a
primary server in a high-availability cluster to be cloned with minimum setup or
configuration.

You can use the ifxclone utility to create one of the following database server
types:
v Standalone server
v Remote standalone (RS) secondary server
v High-availability data replication (HDR) secondary server
v Shared-disk (SD) secondary server
v Enterprise Replication server

Using the ifxclone utility, the database administrator can quickly, easily, and
securely create a clone server from a running Informix instance without requiring
to back up data on the source server, and transfer and restore it to the clone server.
The backup and restore processes are started simultaneously using the ifxclone
utility and there is no requirement to read or write data to disk or tape.

Data is transferred from the source server to the target server over the network
using encrypted Server Multiplexer Group (SMX) Connections.

You can automate the creation of clone instances by calling the ifxclone utility
from a script.

Creating a clone of a primary server
Use the ifxclone utility to create a clone of a primary server.

The general steps to create a clone of a server are as follows:
1. Verify that the ENABLE_SNAPSHOT_COPY configuration parameter on the

source server is set to 1.
2. Verify that the CDR_AUTO_DISCOVER configuration parameter is set to 1, and

that the REMOTE_SERVER_CFG file is set on all cluster servers.
3. Set the following environment variables on the target server:

v INFORMIXDIR
v INFORMIXSERVER
v ONCONFIG
v INFORMIXSQLHOSTS

4. On the target server, create all of the chunks that exist on the source server.
Follow these steps to create the chunks:
a. On the source server, run the onstat -d command to display a list of chunks
b. On the target server, log-in as user informix and use the commands touch,

chown, and chmod to create the chunks. For example, to create a chunk
that is named /usr/informix/chunks/rootdbs.chunk, follow these steps:

22-30 IBM Informix Administrator's Guide

$ su informix
Password:
$ touch /usr/informix/chunks/rootdbs.chunk
$ chown informix:informix /usr/informix/chunks/rootdbs.chunk
$ chmod 660 /usr/informix/chunks/rootdbs.chunk

c. Repeat all of the commands in the previous step for each chunk reported by
the onstat -d command.

5. Create an sqlhosts file on the target server's host, and add the target server's
connectivity information to the file.

6. On the source server, run the admin() or task() function with the cdr add
trustedhost argument, including the target server's trusted-host information.

7. While still logged in as user informix, run the ifxclone utility with the
--autoconf option and other appropriate parameters on the target system on
which the clone server is started.

Note: If trusted-host information was added manually, do not use the
--autoconf option; you must configure trusted hosts and sqlhosts file
information manually.

Example: Cloning a primary server

For this example, you have the following system:
v server_1 is the source server and has the following sqlhosts file entries:

#dbservername nettype hostname servicename options
server_1 onsoctcp host1.example.com 123

v server_1 has the following configuration parameter settings:
– ENABLE_SNAPSHOT_COPY 1
– CDR_AUTO_DISCOVER 1
– REMOTE_SERVER_CFG authfile.server_1

v server_1 has the following trusted-host file entries
#trustedhost
host1
host1.example.com
host2
host2.example.com

v server_2 is the target server, is on host2.example.com, and uses port 456.
1. On the target server, log in as user informix and use the touch, chown, and

chmod commands to create, change the owner, and change the permissions for
the chunks. The chunk paths must match the paths of the chunks on the source
server.

2. Run the ifxclone utility on the target server as user informix:
ifxclone -T -S server_1 -I host1.example.com -P 123 -t server_2

-i host2.example.com -p 456 -a

The ifxclone utility modifies the sqlhosts file on the source server and creates a
copy of the file on the new target server:
#dbservername nettype hostname servicename options
server_1 onsoctcp host1.example.com 123
server_2 onsoctcp host2.example.com 456

The ifxclone utility also propagates the trusted-host file on the source server to the
target server.
Related reference:

Chapter 22. Cluster administration 22-31

The ifxclone utility (Administrator's Reference)

Database updates on secondary servers
You can enable applications connected to secondary servers to update database
data. If you enable write operations on a secondary server, DELETE, INSERT,
MERGE, and UPDATE operations are propagated to the primary server.

Use the UPDATABLE_SECONDARY configuration parameter to control whether
the secondary server can update data and to configure the number of connections
that update operations use.

Both data definition language (DDL) statements and data manipulation language
(DML) statements are supported on secondary servers.

The dbimport utility is supported on all updatable secondary servers.

You cannot use the dbexport utility on HDR secondary servers or shared disk (SD)
secondary servers. The dbexport utility is supported on a remote standalone (RS)
secondary server only if the server is set to stop applying log files. Use the
STOP_APPLY configuration parameter to stop application of log files.

The dbschema utility is supported on all updatable secondary servers.

The dbschema utility is also supported on read-only secondary servers. However,
the dbschema utility displays a warning message when running on these servers.

Most applications that use DDL or DML can run on any of the secondary servers
in a high-availability cluster; however, the following DDL statements are not
supported:
v CREATE DATABASE (with no logging)
v CREATE EXTERNAL TABLE
v CREATE RAW TABLE
v CREATE TEMP TABLE (with logging)
v CREATE XADATASOURCE
v CREATE XADATASOURCE TYPE
v DROP XADATASOURCE
v DROP XADATASOURCE TYPE
v UPDATE STATISTICS

In cluster environments, the SET CONSTRAINTS, SET INDEXES, and SET
TRIGGERS statements are not supported on updatable secondary servers. Any
session-level index, trigger, or constraint modes that the SET Database Object Mode
statement specifies are not redirected for UPDATE operations on table objects in
databases of secondary servers.

Client applications can insert, update, and delete rows on a secondary server only
if the secondary server image matches that of the primary server. The following
data types are supported:
v BIGINT
v BIGSERIAL
v BLOB
v BOOLEAN

22-32 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1093.htm#ids_adr_1093

v BYTE (stored in the table)
v CHAR
v CLOB
v DATE
v DECIMAL
v DATETIME
v FLOAT
v INT
v INT8
v INTERVAL
v MONEY
v NCHAR
v NVCHAR
v SERIAL
v SERIAL8
v SMALLFLOAT
v SMALLINT
v TEXT (stored in the table)
v VARCHAR

BYTE and TEXT data types that are stored in blobspaces are not supported because
blobspace data is not replicated.

The following data types are also supported if they do not receive a pointer
reference to a different partition:
v COLLECTION
v LIST
v LVARCHAR
v MULTISET
v ROW
v SET
v UDTVAR

Any difference between the primary server image and the secondary server image
causes an SQL error and the rollback of any changes.

You cannot use the following utilities on HDR secondary servers, remote
standalone (RS) secondary servers, or shared disk (SD) secondary servers:
v archecker

v dbload

v High-Performance Loader (HPL)
v ondblog

v onload

v onparams

v onperf

v onsnmp

v onspaces

Chapter 22. Cluster administration 22-33

v onunload

SD secondary servers are not supported in Windows environments.

Byte range locking is not supported on secondary servers configured for updates.
Byte range locks on secondary servers are promoted to full object locks.

Replicate smart large objects

You might receive one or more of the following error messages while working with
updatable secondary servers:
v 12014
v 12015
v 12233

These errors generally indicate a problem with a smart large object file descriptor.
These errors can be caused by any of the following conditions:
v A smart large object identifier is passed to another transaction or process before

committing the transaction. Because all objects including smart large objects are
uncommitted until the transaction is committed, do not allow other transactions
to use the smart large object. In particular, dirty reads can access locked smart
large objects.

v Smart large objects are not closed after opening them. At the end of a
transaction, all smart large objects must be closed on secondary servers,
especially those that are created and then the transaction is rolled back. Leaving
smart large object file descriptors open causes memory to remain allocated until
the session terminates.

v Another process has deleted the smart large object on the primary server. Share
locks are not automatically propagated from secondary servers to the primary
server so a different secondary server might access a smart large object that has
actually been deleted on the primary. These accesses work until either the log
record containing the delete is replayed on the secondary server or the
secondary server is updated by the primary server.

Three additional error codes might be returned when processing dirty read
information.
v -126 (ISAM error: bad row id)
v -244 (SQL error: Could not do a physical-order read to fetch next row)
v -937

Try your query again if you receive any of the previous codes.

LOCK TABLE statement behavior on secondary servers

You can set an exclusive lock on a table from an updatable secondary server in a
high-availability cluster. For exclusive mode locks requested from a secondary
server, sessions can read the table but not update it. This behavior is similar to
shared access mode on a secondary server; that is, when one session has an
exclusive lock on a given table, no other session can obtain a shared or exclusive
lock on that table.

On read-only secondary servers, the session issuing the LOCK TABLE statement
does not lock the table and the database server does not return an error to the
client.

22-34 IBM Informix Administrator's Guide

Shared mode locks in a cluster behave the same as for a standalone server. After a
LOCK TABLE statement runs successfully, users can read the table but cannot
modify it until the lock is released.
Related concepts:
“XA in high-availability clusters” on page 25-3

Isolation levels on secondary servers
The following statements are supported on all types of secondary servers:
Set isolation to committed read
Set isolation to committed read last committed

Secondary servers on which Committed Read isolation is set can read locally
committed data. They can also read data committed on the primary server when it
becomes available and committed on the secondary server. Applications connected
to a secondary server receive data that is currently committed on the secondary
server. See “Design data replication group clients” on page 22-22 for additional
information about design considerations for clients that connect to database servers
that are running data replication.

The default isolation level on secondary servers is Dirty Read; however, setting an
explicit isolation level enables the correct isolation level: Dirty Read, Committed
Read, or Committed Read Last Committed.

Repeatable Read and Cursor Stability isolation levels are not supported. Using the
SET ISOLATION statement with Cursor Stability and Repeatable Read levels is
ignored.

After starting a secondary server, client applications connect to the server only
when all transactions open at the startup checkpoint have either committed or
rolled back.

If the UPDATABLE_SECONDARY configuration parameter is disabled (by being
unset or being set to zero), a secondary data replication server is read-only. In this
case, only the DIRTY READ or READ UNCOMMITTED transaction isolation levels
are available on secondary servers.

If the UPDATABLE_SECONDARY parameter is enabled (by setting it to a valid
number of connections greater than zero), a secondary data replication server can
support the COMMITTED READ, COMMITTED READ LAST COMMITTED, or
COMMITTED READ transaction isolation level, or the USELASTCOMMITTED
session environment variable. Only DML statements of SQL (the DELETE, INSERT,
UPDATE, and MERGE statements), and the dbexport utility, can support write
operations on an updatable secondary server. (Besides UPDATABLE_SECONDARY,
the STOP_APPLY and USELASTCOMMITTED configuration parameters must also
be set to enable write operations by dbexport on a secondary data replication
server.)

Use onstat -g ses or onstat -g sql to view isolation level settings. See the IBM
Informix Administrator's Reference for more information.

Set lock mode: Issuing a SET LOCK MODE TO WAIT or SET LOCK MODE TO
WAIT n statement on a secondary server sets the lock wait timeout value for that
session just like on a primary server. The value set by SET LOCK MODE is used
by the proxy thread created for the current session on the primary server when it
performs updates from a secondary server. If the value for SET LOCK MODE is

Chapter 22. Cluster administration 22-35

greater than the ONCONFIG parameter value of DEADLOCK_TIMEOUT, the
value of DEADLOCK_TIMEOUT is used instead.

Transient types on high-availability cluster secondary servers
Transient unnamed complex data types (ROW, SET, LIST, and MULTISET) can be
used on high-availability cluster secondary servers, whether the secondary servers
are read-only or updatable. The following types of operations that use transient
types are supported on secondary servers:
v SQL queries that use transient types
v SQL queries that use derived tables, collection subqueries, and XML functions

(these statements implicitly use transient types)
v Temporary tables created with the CREATE TEMP statement that uses transient

types

See the IBM Informix Guide to SQL: Reference and IBM Informix Guide to SQL: Syntax
for information about complex data types.

Row versioning
Use row versioning to determine whether a row was changed and to detect
collisions. With row versioning enabled, each row of a table is configured to
contain both a checksum and a version number. When a row is first inserted, the
checksum is generated automatically, and the version is set to 1. Every time the
row is updated the version is incremented by one, while the checksum value is not
changed. With row versioning, if a row is deleted and another row is reinserted in
a table, it is possible to recognize that the row is different. By comparing the row
checksum and row version between the secondary and the primary servers, it is
possible to detect data collisions.

Web applications can use a version column to determine whether information
contained in a previously retrieved object is still current. For example, a web
application might display items for sale to a customer. When the customer decides
to purchase an item, the application can check the version column of the item's
row to determine whether any information about the item has changed.

If client applications can update data on the secondary servers in your
environment, use row versioning to minimize network use, especially if your tables
have many columns. Otherwise, entire rows on the secondary server are compared
with entire rows on the primary server to determine whether updates occurred.

To add row versioning to an existing table, use the following syntax:
ALTER TABLE tablename add VERCOLS;

Similarly, you can delete row versioning from a table with the following syntax:
ALTER TABLE tablename drop VERCOLS;

To create a new table with row versioning, use the following syntax:
CREATE TABLE tablename (

Column Name Datatype
Column Name Datatype
Column Name Datatype
) with VERCOLS;

When row versioning is enabled, ifx_row_version is incremented by one each time
the row is updated; however, row updates made by Enterprise Replication do not

22-36 IBM Informix Administrator's Guide

increment the row version. To update the row version on a server using Enterprise
Replication, you must include the ifx_row_version column in the replicate
participant definition.

Backup and restore with high-availability clusters
You cannot perform most backup and restore operations on secondary servers.

Before you can establish a server as an HDR (high-availability data replication) or
RS (remote stand-alone) secondary server, you must perform a cold restore on it.

After you have set up a server as an HDR or RSS secondary server, you can only
perform the following backup and restore operations:
v You can perform a logical restore on HDR or RS secondary servers when you

are setting up a high-availability cluster.
v You can perform an external backup on an RS secondary server. For more

information, see the IBM Informix Backup and Restore Guide.

SD secondary servers must be shut down during a cold restore of the primary
server, but can be online during a warm restore, after they have been shut down
and restarted.
Related tasks:
“Starting an RS secondary server for the first time” on page 21-13
“Starting HDR for the First Time” on page 21-7
“Recovering a shared-disk cluster after data is damaged” on page 24-19

Change the database server mode
If you change the mode of a database server in a high-availability cluster,
replication stops.

To change the database server mode, use the onmode utility.

The following table summarizes the effects of changing the mode of the primary
database server.

Table 22-3. Mode changes on the primary database server

On the primary On the secondary To restart HDR

From any mode to offline:

(onmode -k)

Secondary displays: DR: Receive
error.

HDR is turned off.

The mode remains read-only.

If DRAUTO is set to 0, the mode
remains read-only.

If DRAUTO is set to 1, the
secondary server switches to
standard type and can accept
updates. (If DRAUTO is set to 2 ,
the secondary database server
becomes a primary database server
as soon as the connection ends
when the old primary server fails.)

Treat it like a failure of the primary. Two
different scenarios are possible, depending on
what you do with the secondary database server
while the primary database server is offline. See
these sections for information:

v The secondary server was not changed to the
primary server

v The secondary server was changed to the
primary server automatically

See “Restart if the primary server fails” on page
24-17.

Chapter 22. Cluster administration 22-37

Table 22-3. Mode changes on the primary database server (continued)

On the primary On the secondary To restart HDR

To online, quiescent, or
administration mode:

(onmode -s / onmode -u)

(onmode -j)

Secondary does not receive errors.

HDR remains on.

Mode remains read-only.

Use onmode -m on the primary.

The following table summarizes the effects of changing the mode of the secondary
database server.

Table 22-4. Mode changes on the secondary database server

On the secondary On the primary To restart HDR

Read-only offline

(onmode -k)

Primary displays: DR: Receive
error.

HDR is turned off.

Treat it as you would a failure of the secondary.
Follow the procedures in “Restarting HDR or RS
clusters if the secondary server fails” on page
24-16.

Administration mode operates the same way on an HDR secondary database
server as it does on the primary database server.

Changing the database server type
You can change the type of either the primary or the secondary database server.

You can change the type of either the primary or the secondary database server.

You can change the database server type from secondary to standard only if HDR
is turned off on the secondary database server. HDR is turned off when the data
replication connection to the primary database server breaks or data replication
fails on the secondary database server. When you take the standard database
server offline and bring it back online, it does not attempt to connect to the other
database server in the replication pair.

Use the following commands to switch the type:
v hdrmksec.[sh|bat] and hdrmkpri.[sh|bat] scripts

To switch the database server type using hdrmkpri and hdrmksec scripts:
1. Shut down the primary database server (ServerA): onmode -ky

2. With the secondary database server (ServerB) online, run the hdrmkpri.sh
script on UNIX or hdrmkpri.bat script on Windows.Now ServerB is a primary
database server.

3. For ServerA, run the hdrmksec.sh script on UNIX or hdrmksec.bat script on
Windows.Now ServerA is a secondary database server.

4. Bring ServerB (primary database server) online.

The following commands can also be used to switch the server type:
1. Change ServerA to the primary server by running the following command:

onmode -d make primary ServerA

This command makes ServerA the primary server, and redirects any other
secondary servers in the cluster to point to the new primary server. The

22-38 IBM Informix Administrator's Guide

command also shuts down the old HDR primary (ServerB) because only a
single primary server can exist in a high-availability environment.

2. Initialize ServerB as the HDR secondary server by running the following
command:
v On UNIX systems:

$INFORMIXDIR/bin/hdrmksec.sh ServerB

v On Windows systems:
hdrmksec.bat ServerB

Related concepts:
“Manual switchover” on page 24-5

Prevent blocking checkpoints on HDR servers
On an HDR secondary server, checkpoint processing must wait until the flushing
of buffer pools is complete. You can configure non-blocking checkpoints on an
HDR secondary server so that log data sent from the primary server is stored, or
staged, in a directory until checkpoint processing is complete.

You configure non-blocking checkpoints on an HDR secondary server by setting
the LOG_STAGING_DIR and LOG_INDEX_BUILDS configuration parameters.
When non-blocking checkpoints is configured, log data sent from the primary
server is staged in a directory specified by the LOG_STAGING_DIR configuration
parameter. When the HDR secondary server finishes processing the checkpoint it
reads and applies the log data stored in the staging area. When the staging
directory is empty the HDR secondary server reads and applies log data as it is
received from the primary server.

You enable non-blocking checkpoints by setting the LOG_STAGING_DIR
configuration parameter on the HDR secondary server, and LOG_INDEX_BUILDS
on both the primary server and the HDR secondary server. The value for
LOG_INDEX_BUILDS must be the same on both the primary server and the HDR
secondary server.

When the HDR secondary server encounters a checkpoint, it enters a buffering
mode. While in buffering mode, the secondary server stages any log page data
from the primary server into files in the staging directory.

When the HDR secondary server completes checkpoint processing, the server
enters a drain mode. In this mode, the HDR secondary server reads data from the
staging file and also receives new data from the primary server. After the staging
area is empty, the HDR secondary server resumes normal operation.

Where log records are stored on the HDR server

The HDR secondary server creates additional directories named ifmxhdrstage_##
in the directory specified by LOG_STAGING_DIR, where ## is the instance
specified by SERVERNUM. The directories are used to store the logical logs sent
from the primary server during checkpoint processing. The files within
ifmxhdrstage_## are purged when no longer required.

Interaction of non-blocking checkpoints with secondary server
updates

You must consider the interaction between secondary server updates and
non-blocking checkpoints on HDR secondary servers. If the HDR secondary server

Chapter 22. Cluster administration 22-39

receives an update request, the updates are not applied until the HDR secondary
server processes the corresponding log records. When non-blocking checkpoints are
enabled on the HDR secondary server, a delay in the application of data on the
secondary server might occur because log data is staged at the secondary server
due to checkpoint processing.

View statistics for nonblocking checkpoints on HDR servers
You use the onstat utility to view information about nonblocking checkpoints on
primary servers and on HDR secondary servers.

To view information about staged logs, use the onstat -g dri ckpt command.

For an example of onstat -g dri ckpt output, see information about the onstat
utility in the IBM Informix Administrator's Reference.

Monitor HDR status
Monitor the HDR status of a database server to determine the following
information:
v The database server type (primary, secondary, or standard)
v The name of the other database server in the pair
v Whether HDR is on
v The values of the HDR parameters

Command-line utilities
The header information displayed every time you run onstat has a field to indicate
if a database server is operating as a primary or secondary database server.

The following example shows a header for a database server that is the primary
database server in a replication pair, and in online mode:
IBM Informix Dynamic Server Version 11.50.UC1 -- online(Prim) -- Up 45:08:57

This example shows a database server that is the secondary database server in a
replication pair, and in read-only mode.
IBM Informix Dynamic Server Version 11.50.UC1 -- Read-Only (Sec) -- Up 45:08:57

The following example shows a header for a database server that is not involved
in HDR. The type for this database server is standard.
IBM Informix Dynamic Server Version 11.50.UC1 -- online -- Up 20:10:57

The onstat -g dri option:
To obtain full HDR monitoring information, run the onstat -g dri option. The
following fields are displayed:
v The database server type (primary, secondary, or standard)
v The HDR state (on or off)
v The paired database server
v The last HDR checkpoint
v The values of the HDR configuration parameters

For an example of onstat -g dri output, see the IBM Informix Administrator's
Reference.

The oncheck -pr option:

22-40 IBM Informix Administrator's Guide

If your database server is running HDR, the reserved pages PAGE_1ARCH and
PAGE_2ARCH store the checkpoint information that HDR uses to synchronize the
primary and secondary database servers. An example of the relevant oncheck -pr
output is given in the following example.
Validating Informix Database Server reserved pages - PAGE_1ARCH &
PAGE_2ARCH

Using archive page PAGE_1ARCH.

Archive Level 0
Real Time Archive Began 01/11/95 16:54:07
Time Stamp Archive Began 11913
Logical Log Unique Id 3
Logical Log Position b018

DR Ckpt Logical Log Id 3
DR Ckpt Logical Log Pos 80018
DR Last Logical Log Id 3
DR Last Logical Log Page 128

SMI tables
The sysdri table provides information about the High-Availability Data-Replication
status of the database server.

The sysdri table, described in these topics on the sysmaster database in the IBM
Informix Administrator's Reference, contains the following columns.

type HDR server type

state HDR server state

name Database server name

intvl HDR buffer flush interval

timeout
Network timeout

lostfound
HDR lost-and-found path name

Obtain RS secondary server statistics
Use the onstat command to display information about the state of RS secondary
servers. To display the number of RS secondary servers, information about the data
that has been sent to the RS secondary servers, and information about what the RS
secondary servers have acknowledged receiving, use the onstat -g rss command.

This command has options to show extended information about a single server or
multiple secondary servers. For examples of onstat -g rss output, see information
about the onstat utility in the IBM Informix Administrator's Reference.

Remove an RS secondary server
Remove an RS secondary server from a high-availability cluster by issuing the
following command:
onmode -d delete RSS rss_servername

RS secondary server security
RS secondary servers support similar encryption rules as HDR. See “Encrypting
data traffic between HDR database servers” on page 22-28 for details.

Chapter 22. Cluster administration 22-41

See “Server Multiplexer Group (SMX) connections” on page 21-13 for additional
information about setting up and configuring encryption between servers and RS
secondary servers.

Create or change a password on an RS secondary server
You can create a password for an RS secondary server to provide authentication
between the primary server and the secondary server when the cluster is
established. The password is optional. The password is valid only the first time the
primary and secondary connect to each other.

The password prevents an unwanted instance on the network from initializing and
accepting transaction data from the primary. The password is independent of the
informix user password.

You create the password with the same command that you use to specify the RS
secondary server name. The name and password of each RS secondary server can
be defined either before or after the level-0 backup of the primary server.

To set the RS secondary server name and password, run the onmode -d add RSS
rss_servername password command on the primary server. During secondary server
setup, you include the password when you run the onmode -d RSS rss_servername
password command on the secondary server.

You can change the password only if the server is not connected to a high
availability environment. Attempting to change the password of an RS secondary
server that is already connected returns an error.

To change the password on an RS secondary server before the server is connected,
use the onmode -d change RSS password command on the primary server.

Examples

The following commands establish an RS secondary server named ServerB using a
password of s#cure.

On the primary server:
onmode -d add RSS ServerB s#cure

On the secondary server:
onmode -d RSS ServerB s#cure

The following command changes the password of the RS secondary server named
ServerB that is not connected to the primary to s@fest:
onmode -d change RSS ServerB s@fest

Transaction completion during cluster failover
You can configure servers in a high-availability cluster environment to continue
processing transactions after failover of the primary server.

Transactions running on any server except the failed primary server continue to
run. You configure the cluster environment so that:
v Transactions running on secondary servers are not affected.

22-42 IBM Informix Administrator's Guide

v Transactions running on the secondary server that becomes the primary server
are not affected.

v Transactions running on the failed primary server are terminated.

Transaction completion after failover is currently not supported for smart large
objects, XA transactions, and when running DDL statements on secondary servers.

When a failover occurs, the secondary servers in the cluster temporarily suspend
running user transactions until the new primary server is running. After failover,
the secondary servers resend the saved transactions to the new primary server. The
new primary server resumes execution of the transactions from the surviving
secondary servers.

When running distributed transactions (transactions that span multiple database
servers), any transaction running on the primary server at the time of failure are
terminated.

When failover occurs, whether it is manual or performed by the Connection
Manager, the database server that receives failover must have the most advanced
log-replay position of all active servers in the cluster. If the database server that
receives failover does not have the most advanced log replay position, all
transactions in the cluster are terminated and rolled back.

For best Connection Manager failover performance, use the default FOC ORDER
value of SDS,HDR,RSS. Because the primary and SD secondary server read from the
same physical disk, failover to an SD secondary server is recommended. If the
failover server is an HDR secondary server, SD secondary servers are shut down.

Configuring the server so that transactions complete after
failover

Use the FAILOVER_TX_TIMEOUT configuration parameter to configure the
servers in a high-availability cluster so that transactions complete after failover.

The value of FAILOVER_TX_TIMEOUT indicates the maximum number of seconds
the server waits before rolling back transactions after failure of the primary server.
Set FAILOVER_TX_TIMEOUT to the same value on all servers in the cluster. For
example, to specify 20 seconds for transaction completion, set the value of the
FAILOVER_TX_TIMEOUT configuration parameter in the onconfig file to 20.

To disable transaction completion after failover, set the FAILOVER_TX_TIMEOUT
configuration parameter to 0 on all servers in the cluster.
Related reference:

FAILOVER_TX_TIMEOUT configuration parameter (Administrator's Reference)

Chapter 22. Cluster administration 22-43

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1080.htm#ids_adr_1080

22-44 IBM Informix Administrator's Guide

Chapter 23. Connection management through the Connection
Manager

Connection Managers can control automatic failover for high-availability clusters,
monitor client connections and direct requests to appropriate database servers, act
as proxy servers and handle client/server communication, and prioritize
connections between application servers and the primary server of a
high-availability cluster. Connection Managers support high-availability clusters,
replicate sets, server sets, and grids.

Automatic failover for database servers

If the Connection Manager detects that a primary server of a high-availability
cluster has failed, it can promote a secondary server to the role of the primary
server.

If you use multiple Connection Managers to manager failover for a cluster, you can
enforce a consistent failover policy by setting the onconfig file HA_FOC_ORDER
configuration parameter on the cluster's primary server. The value of the onconfig
file HA_FOC_ORDER configuration parameter replaces the value of the FOC
parameter's ORDER attribute in the configuration file of each Connection Manager
that connects to the primary server.

Rule-based connection redirection and load balancing

Client applications can connect to a Connection Manager as if they are connecting
to a database server. The Connection Manager gathers workload statistics from
each server in the connection unit and uses service level agreements (SLAs) to
manage and direct client connection requests to appropriate servers. When a client
application makes a connection request through a redirect-mode SLA, the
Connection Manager returns a database server's IP address and port number to the
client application. The client application then uses the information to connect to the
specified database server.

Connection Manager redirection takes place in the communication layer, so
additional action is not required by client applications. Connection Managers can
use redirection policies that are based on workload, latency, apply failures, or the
apply backlog. Redirection can also be configured to occur round-robin.

Redirection-policy SLAs do not support connections from application that are
compiled with Data Server Driver for JDBC and SQLJ version 3.5.1 or before, or
with Informix Client SDK 3.00 or before.

Proxy-server connection management

Proxy-mode SLAs and redirect-mode SLAs are similar; in both cases, the
Connection Manager gathers workload statistics from connection-unit servers, and
controls which servers receive client connection request servers. When a client
application makes a connection request through a proxy-mode SLA, client/server
communication travels through the Connection Manager. When a database server
is behind a firewall, Connection Managers can act as proxy servers, and handle
client/server communication.

© Copyright IBM Corp. 1996, 2014 23-1

Proxy-policy SLAs do not have the same version restrictions that redirect-policy
SLAs have. Connections from application that are compiled with any version of
Data Server Driver for JDBC and SQLJ, or with any version of Informix Client SDK
are supported.

Failover prioritization for application servers

You can install Connection Managers on the same hosts as application servers, and
then prioritize the connections between each application server and the primary
server of a high-availability cluster. This can help the highest priority application
server maintain a connection to the cluster's primary server if a portion of the
network fails.
Related concepts:
“Redirection and connectivity for data-replication clients” on page 24-6
“Failover configuration for high-availability clusters” on page 24-1
“Overview of DRDA” on page 2-44
“Components supporting high availability and scalability” on page 20-1

Configuring connection management
To configure connection management, you must install software, set environments
and connectivity information, create Connection Manager configuration files, and
run the oncmsm utility.

To configure and start connection management, complete the following steps:
1. Install at least one Connection Manager as part of the IBM Informix Client

Software Development Kit (Client SDK) installation.
a. If Connection Managers are installed on hosts where database servers are

not installed, set each Connection Manager's host INFORMIXDIR environment
variable to the directory the Connection Manager is installed into.

2. Modify connectivity information in the sqlhosts files that are on all client,
database server, and Connection Manager hosts.
a. If sqlhosts files are in host directories other than $INFORMIXDIR/etc, set host

INFORMIXSQLHOSTS environment variables to the appropriate sqlhosts file
location.

b. If Connection Managers or clients are installed on hosts where database
servers are not installed, create a sqlhosts file on each host, and then set
each Connection Manager's or client's host INFORMIXSQLHOSTS environment
variable to the location of the sqlhosts file.

3. If Connection Managers, application servers, or database servers are on an
untrusted network, complete the following steps:
a. Create a password file.
b. Encrypt the password file by running the onpassword utility.
c. Distribute the password file to the database servers that Connection

Managers connect to. If the database servers are on other operating systems,
distribute the unencrypted password file, and then encrypt it on the other
operating systems.

4. On Connection Manager hosts, create a configuration file for each installed
Connection Manager.
a. If the configuration file is in a directory other than $INFORMIXDIR/etc, set

the CMCONFIG environment variable to specify the file's location.

23-2 IBM Informix Administrator's Guide

b. If you define a service-level agreement that uses a transaction-latency or
apply-failure redirection policy, start quality of data (QOD) monitoring by
running the cdr define qod and cdr start qod commands.

5. Set onconfig parameters on the cluster database servers.
a. If Connection Managers control failover for a high-availability cluster, set

the DRAUTO configuration parameter to 3 on all managed cluster database
servers, and set the HA_FOC_ORDER configuration parameter on the
primary server of each cluster to a failover order.

b. On each database server that uses multiple ports, set the
DBSERVERALIASES configuration parameter to the alias names listed in
Connection Manager and database server sqlhosts file entries.

6. Optional: Configure the cmalarmprogram script that is installed with Connection
Managers.

7. Run the oncmsm utility to start Connection Managers.
Related concepts:
“The sqlhosts information” on page 2-19
Related reference:

The oncmsm utility (Administrator's Reference)

The onpassword utility (Administrator's Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

DRAUTO configuration parameter (Administrator's Reference)

HA_FOC_ORDER configuration parameter (Administrator's Reference)

INFORMIXSQLHOSTS environment variable (SQL Reference)

INFORMIXDIR environment variable (SQL Reference)

cdr define qod (Enterprise Replication Guide)

cdr start qod (Enterprise Replication Guide)

Creating Connection Manager configuration files

To configure a Connection Manager, you must create a configuration file, and then
load the configuration file by running the oncmsm utility.

A Connection Manager configuration file consists of two parts:
v The header, which contains Connection Manager parameters that are specific to

the Connection Manager.
v The body, which consists of one or more connection unit sections that contain

parameters and attributes that are specific to the defined connection units.

The following steps apply to all connection-unit types:
1. Create an ASCII text file in the $INFORMIXDIR/etc directory of the host the

Connection Manager is installed on.
2. On the first line of the file, specify the NAME parameter, followed by a name

for the Connection Manager. Connection Manager names must be unique in the
domain of the connection units that are managed. For example:
NAME my_connection_manager_1

3. Specify optional header parameters. For example:

Chapter 23. Connection management through the Connection Manager 23-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0620.htm#ids_adr_0620
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0056.htm#ids_adr_0056
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1158.htm#ids_adr_1158
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_264.htm#ids_sqr_264
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_539.htm#ids_erp_539
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_540.htm#ids_erp_540

NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

4. Create the body of the configuration file by specifying at least one connection
unit type followed by the name of the connection unit, and then opening and
closing braces. For example:
NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{
}

5. Set the connection unit's INFORMIXSERVER parameter to the sqlhosts file
entries for connection-unit participants. For example:
NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{

INFORMIXSERVER group_name
}

6. If the Connection Manager manages connection requests, specify SLA
parameters, SLA names, and DBSERVER attributes. For example:
NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{

INFORMIXSERVER group_name
SLA sla_1 DBSERVERS=PRI
SLA sla_2 DBSERVERS=HDR,SDS,RSS

}

7. If the Connection Manager manages failover, specify the FOC parameter,
ORDER attribute, and PRIORITY attribute. For example:
NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{

INFORMIXSERVER group_name
SLA sla_1 DBSERVERS=PRI
SLA sla_2 DBSERVERS=HDR,SDS,RSS
FOC ORDER=SDS,HDR,RSS \

PRIORITY=1
}

8. Specify optional SLA parameter attributes. For example:
NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{

INFORMIXSERVER group_name
SLA sla_1 DBSERVERS=PRI
SLA sla_2 DBSERVERS=(HDR,SDS,RSS) \

23-4 IBM Informix Administrator's Guide

POLICY=ROUNDROBIN
FOC ORDER=SDS,HDR,RSS \

PRIORITY=1
}

9. If the Connection Manager manages more than one connection unit, add the
other connection units to the body of the configuration file. For example:
NAME my_connection_manager_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm_1.log

CLUSTER my_cluster
{

INFORMIXSERVER group_name
SLA sla_1 DBSERVERS=PRI
SLA sla_2 DBSERVERS=(HDR,SDS,RSS) \

POLICY=ROUNDROBIN
FOC ORDER=SDS,HDR,RSS \

PRIORITY=1
}

CLUSTER my_cluster_2
{

INFORMIXSERVER group_name_2
SLA sla_3 DBSERVERS=PRI
SLA sla_4 DBSERVERS=(HDR,SDS) \

POLICY=ROUNDROBIN
FOC ORDER=SDS,HDR \

PRIORITY=1
}

Parameters and format of the Connection Manager configuration
file
The following example shows the format of the Connection Manager configuration
file, and shows which parameters and attributes can be set for each connection-unit
type.

#******************************* HEADER *******************************

NAME connection_manager_instance_name

Optional Parameters
MACRO name_1=value
MACRO name_2=value
MACRO name_n=value_n
.
.
.
LOCAL_IP ip_address_list
LOG value
LOGFILE path_and_filename
DEBUG value
CM_TIMEOUT seconds
EVENT_TIMEOUT seconds
SECONDARY_EVENT_TIMEOUT seconds
SQLHOSTS value

#******************************** BODY ********************************

Replicate set connection-unit example

REPLSET unit_name_1
{

INFORMIXSERVER sqlhosts_group_names_list

#Optional Parameters and Attributes
SLA sla_name_1 DBSERVERS=value_list \

Chapter 23. Connection management through the Connection Manager 23-5

#Optional SLA Attributes
MODE=value \
USEALIASES=value \
POLICY=value \
WORKERS=number_of_threads \
HOST=host_name \
NETTYPE=network_protocol \
SERVICE=service_name \
SQLHOSTSOPT="options"

SLA sla_name_2 DBSERVERS=value_list ...
SLA sla_name_n DBSERVERS=value_list ...
.
.
.

}

High-availability cluster connection-unit example

CLUSTER unit_name_2
{

INFORMIXSERVER sqlhosts_group_name

#Optional Parameters and Attributes
SLA sla_name_1 DBSERVERS=value_list \

#Optional SLA Attributes
MODE=value \
USEALIASES=value \
POLICY=value \
WORKERS=number_of_threads \
HOST=host_name \
NETTYPE=network_protocol \
SERVICE=service_name \
SQLHOSTSOPT="options"

SLA sla_name_2 DBSERVERS=value_list ...
SLA sla_name_n DBSERVERS=value_list ...
.
.
.
CMALARMPROGRAM path_and_filename
FOC ORDER=value \

PRIORITY=value \
TIMEOUT=value

}

Server set connection-unit example

SERVERSET unit_name_3
{

INFORMIXSERVER sqlhosts_group_names_and_standalone_servers_list

#Optional Parameter and Attributes
SLA sla_name_1 DBSERVERS=value_list \

#Optional SLA Attributes
MODE=value \
USEALIASES=value \
POLICY=value \
WORKERS=number_of_threads \
HOST=host_name \
NETTYPE=network_protocol \
SERVICE=service_name \
SQLHOSTSOPT="options"

SLA sla_name_2 DBSERVERS=value_list ...
SLA sla_name_n DBSERVERS=value_list ...

23-6 IBM Informix Administrator's Guide

.

.

.
}

Grid connection-unit example

GRID unit_name_4
{

INFORMIXSERVER server_list

#Optional Parameter and Attributes
SLA sla_name_1 DBSERVERS=value_list \

#Optional SLA Attributes
MODE=value \
USEALIASES=value \
POLICY=value \
WORKERS=number_of_threads \
HOST=host_name \
NETTYPE=network_protocol \
SERVICE=service_name \
SQLHOSTSOPT="options"

SLA sla_name_2 DBSERVERS=value_list ...
SLA sla_name_n DBSERVERS=value_list ...
.
.
.

}

Connection Unit n
connection_unit_type unit_name_n
{

INFORMIXSERVER values
.
.
.

}
#**

Tip: For increased readability, break long configuration-file lines by using a
backslash (\) line-continuation character.

The following example shows a macro definition that uses two text-file lines, but is
read as a single line:
MACRO servers=node1,node2,node3,node4,node5,node6,node7,node8, \

node9,node10,node11,node12,node13,node14,node15

CMALARMPROGRAM Connection Manager configuration parameter:

The CMALARMPROGRAM parameter specifies the path and file name of a
program or script to run if failover processing encounters an error.

Syntax:

CMALARMPROGRAM path_and_filename

Usage

The CMALARMPROGRAM parameter is optional, and is supported by the
following connection units:

Chapter 23. Connection management through the Connection Manager 23-7

v CLUSTER
v GRID
v REPLSET
v SERVERSET

If the Connection Manager cannot find a server capable of receiving failover, it
searches for ORDER-attribute servers at increasing intervals, up to 60 seconds, for
a maximum of two days. If failover processing fails after eight attempts, the
Connection Manager calls the program that is specified by the
CMALARMPROGRAM parameter. The first eight failover attempts take
approximately one minute.

Before you can use the cmalarmprogram script, you must edit the file, and set the
script parameters.

The ALARMADMIN and ALARMPAGER parameters determine the level of Connection
Manager event alarms that are sent to specified email addresses.

Table 23-1. Connection Manager event-alarm levels

Level of
Connection
Manager event
alarm Alarm type

0 (default) None

1 Unimportant informational alarms

2 Informational alarms

3 Alarms requiring attention

4 Emergency alarms

5 Fatal error alarms

Example

In the following example, cmalarmprogram.sh is called if failover processing fails
after eight attempts:
CMALARMPROGRAM $INFORMIXDIR/etc/cmalarmprogram.sh

Related reference:
“FOC Connection Manager configuration parameter” on page 23-11

CM_TIMEOUT Connection Manager configuration parameter:

The CM_TIMEOUT parameter specifies the number of seconds that a cluster of
database servers waits to receive events from the failover-arbitrator Connection
Manager. If the specified period elapses with no events received by the cluster, the
primary server promotes the Connection Manager with the highest priority to the
role of failover arbitrator.

Syntax:

60
CM_TIMEOUT seconds

23-8 IBM Informix Administrator's Guide

Usage

The CM_TIMEOUT parameter is optional, and applies to CLUSTER connection
units.

If the CM_TIMEOUT parameter is not specified, the timeout is 60 seconds.

Example

In the following example, if 100 seconds elapse without the servers of a
high-availability cluster receiving any events from the current failover arbiter, the
primary server of the cluster promotes an active Connection Manager to the role of
failover arbiter:
CM_TIMEOUT 100

CLUSTER Connection Manager configuration parameter:

The CLUSTER parameter specifies that a connection unit is a high-availability
cluster, and specifies the name of the high-availability cluster.

Syntax:

CLUSTER cluster_name

Usage

Each connection-unit name must be unique within the Connection Manager
configuration file.

CLUSTER connection units can use the following redirection policies:
v Round-robin
v Secondary apply-backlog
v Workload

CLUSTER connection-unit names cannot use multibyte characters.

Example

In the following example, the high-availability cluster connection unit named
my_cluster is defined:
CLUSTER my_cluster
{

INFORMIXSERVER my_server_group
SLA sla_1 DBSERVERS=ANY
FOC ORDER=ENABLED

PRIORITY=1
}

DEBUG Connection Manager configuration parameter:

The DEBUG parameter specifies whether logging of SQL and ESQL/C error
messages is enabled or disabled.

Chapter 23. Connection management through the Connection Manager 23-9

Syntax:

0
DEBUG 1

Table 23-2. Values for the DEBUG Connection Manager configuration parameter

DEBUG parameter
value Description

1 Enables logging of SQL and ESQL/C error messages.

0 (default) Disables logging of SQL and ESQL/C error messages.

Usage

The DEBUG parameter is optional, and applies to the following connection units:
v CLUSTER
v GRID
v REPLSET
v SERVERSET

Debug messages are created in the location that is specified by the LOGFILE
parameter in the Connection Manager configuration file. If the LOGFILE parameter
is not specified, then the Connection Manager creates $INFORMIXDIR/tmp/
connection_manager_name.pid.log.

Connection Manager debug logging is enabled in the configuration file; you cannot
enable debug mode from the command line.

Example

In the following example, a my_log is created in $INFORMIXDIR/tmp and logging of
SQL and ESQL/C error messages is enabled.
LOGFILE $INFORMIXDIR/tmp/my_log
DEBUG 1

EVENT_TIMEOUT Connection Manager configuration parameter:

The EVENT_TIMEOUT parameter specifies the number of seconds that must
elapse with no primary-server events before the active-arbiter Connection Manager
starts failover processing. The Connection Manager waits for primary-server events
or notifications from secondary servers that the primary server is offline. A
primary-server event is an indication from the primary server that the server is still
functioning, such as a sent performance-statistics or administration messages, or
node-changes.

Syntax:

60
EVENT_TIMEOUT -1

seconds

23-10 IBM Informix Administrator's Guide

Table 23-3. Values for the EVENT_TIMEOUT Connection Manager configuration parameter

EVENT_TIMEOUT
parameter value Description

-1 Connection Manager waits indefinitely

0 to 30 Connection Manager waits 30 seconds.

> 30 Connection Manager waits the specified number of seconds.

Usage

The EVENT_TIMEOUT parameter is optional, and applies to CLUSTER connection
units.

If EVENT_TIMEOUT is not specified in the Connection Manager configuration file,
the Connection Manager waits 60 seconds for primary-server events or
notifications from secondary servers that the primary server is offline before it
starts failover processing.

Example

In the following example, the active-arbiter Connection Manager begins failover
processing after 200 seconds elapse with no primary-server events.
EVENT_TIMEOUT 200

Related reference:
“FOC Connection Manager configuration parameter”

FOC Connection Manager configuration parameter:

The FOC parameter and attributes specify the failover configuration for
high-availability clusters, and specify the priority of the connection between the
Connection Manager and the primary server.

Syntax:

�

FOC ORDER = DISABLED
FOC ORDER = ENABLED PRIORITY = value

SDS,HDR,RSS
,

FOC ORDER = HDR
RSS PRIORITY = value
SDS

�

�
TIMEOUT = seconds

Chapter 23. Connection management through the Connection Manager 23-11

Attributes of the FOC Connection Manager configuration parameter

The FOC parameter is optional, and is supported by CLUSTER connection units.

Table 23-4. Attributes of the FOC parameter

Attribute of the FOC parameter Description

ORDER Specifies a comma-separated list of server types, is overridden by the value
of the primary server's onconfig file HA_FOC_ORDER configuration
parameter, or specifies that automatic failover is disabled.

If the ORDER attribute is not specified, and Connection Managers do not
receive values from the primary server's onconfig file HA_FOC_ORDER
configuration parameter, the failover order is SDS, HDR, and then RSS.
Important: When you configure multiple Connection Managers to manage
failover for a cluster, you must set the ORDER attribute to ENABLED and
set the primary server's HA_FOC_ORDER configuration parameter.

PRIORITY Specifies the priority of connections between Connection Managers and the
primary server of a cluster.

The value must be a positive integer and unique among all Connection
Managers that connect to the cluster. The lower the number, the higher the
priority.
Important: When you configure multiple Connection Managers to manage
failover for a cluster, you must set the ORDER attribute to ENABLED and
set the primary server's onconfig file HA_FOC_ORDER configuration
parameter.

TIMEOUT Specifies the number of additional seconds the Connection Manager waits
for primary-server events before the Connection Manager begins failover
processing.

The TIMEOUT attribute value applies after the EVENT_TIMEOUT
parameter value is exceeded. For example, if the EVENT_TIMEOUT
parameter is set to 60 and the TIMEOUT value is set to 10, 70 seconds of no
primary server events must elapse before failover can begin.

If the TIMEOUT attribute is not specified, failover begins immediately after
the amount of time that is specified by the EVENT_TIMEOUT parameter
value is exceeded.

Values for the ORDER attribute of the FOC Connection Manager configuration
parameter

Table 23-5. Values for the ORDER attribute of the FOC Connection Manager configuration
parameter.

ORDER attribute value Description

ENABLED Specifies that the Connection Manager can perform failover. The
Connection Manager uses the value of the primary server's
onconfig file HA_FOC_ORDER configuration parameter to
determine failover sequence. You must set the HA_FOC_ORDER
configuration parameter in the primary server's onconfig file.

HDR Specifies that the Connection Manager can perform failover, and
that the high-availability data replication (HDR) secondary
server can receive failover.

RSS Specifies that the Connection Manager can perform failover, and
that remote standalone (RS) secondary servers can receive
failover.

23-12 IBM Informix Administrator's Guide

Table 23-5. Values for the ORDER attribute of the FOC Connection Manager configuration
parameter. (continued)

ORDER attribute value Description

SDS Specifies that the Connection Manager can perform failover, and
that shared-disk (SD) secondary servers can receive failover.

ORDER Usage

The ORDER attribute specifies the failover order of database-server types. If a
primary server fails, the Connection Manager searches for an active server from
the ordered types that are specified by the ORDER attribute. If failover cannot
complete, the Connection Manager reattempts failover at increasing intervals, up to
60 seconds, for a maximum of two days.

To modify the number of seconds that must elapse before the active-arbiter
Connection Manager starts failover processing, set the EVENT_TIMEOUT
parameter.

If you configure failover, you can set the CMALARMPROGRAM parameter to
specify a program or script to run if failover processing cannot complete after eight
tries.

Important: If the ORDER attribute is specified, and failover processing begins, you
must not manually restart the failed primary server until failover processing
completes.

PRIORITY Usage

If you install Connection Managers on application-server hosts, you can use the
PRIORITY attribute to prioritize the connections between the application servers
and the primary server of a cluster.

If the network connection between a specific Connection Manager and primary
database server fails, PRIORITY determines whether the Connection Manager
starts failover. If failover would promote a database server that cannot
communicate with an active, higher-priority Connection Manager, then failover
does not occur. If failover would promote a database server that cannot
communicate with an active, lower-priority Connection Manager, failover can
occur.

Example 1: Configuring multiple Connection Managers for failover

In the following example, the HA_FOC_ORDER configuration parameter in the
my_primary_server_1 onconfig file is set:
HA_FOC_ORDER SDS,HDR,RSS

Three Connection Managers are installed and have the following configuration
files:

cm_configuration_file_1

NAME my_connection_manager_1

CLUSTER my_cluster_1
{

INFORMIXSERVER my_server_group_1

Chapter 23. Connection management through the Connection Manager 23-13

SLA sla_1 DBSERVERS=ANY
FOC ORDER=ENABLED \

PRIORITY=1
CMALARMPROGRAM $INFORMIXDIR/etc/cmalarmprogram.sh

}

cm_configuration_file_2

NAME my_connection_manager_2

CLUSTER my_cluster_1
{

INFORMIXSERVER my_server_group_1
SLA sla_2 DBSERVERS=ANY
FOC ORDER=ENABLED \

PRIORITY=2
CMALARMPROGRAM $INFORMIXDIR/etc/cmalarmprogram.sh

}

cm_configuration_file_3

NAME my_connection_manager_3

CLUSTER my_cluster_1
{

INFORMIXSERVER my_server_group_1
SLA sla_3 DBSERVERS=ANY
FOC ORDER=ENABLED \

PRIORITY=3
CMALARMPROGRAM $INFORMIXDIR/etc/cmalarmprogram.sh

}

When the connection managers are initialized, they each search their hosts's
sqlhosts file for a my_server_group_1 entry and connect with the servers that are
in the group. The value of the HA_FOC_ORDER configuration parameter in the
onconfig file of the primary server in my_server_group_1 replaces the ORDER
attribute value that is set in each of the Connection Manager's configuration files,
so that all the Connection Managers have a consistent failover policy:
FOC ORDER=SDS,HDR,RSS

The value of the primary server's HA_FOC_ORDER configuration parameter also
replaces the values of the HA_FOC_ORDER configuration parameters in the
onconfig files of all secondary servers in the cluster. This process maintains
failover-order consistency if the primary server fails and then a Connection
Manager restarts.

If a Connection Manager detects that the primary server failed, it first attempts to
convert the most suitable SD secondary server to the primary server. If no SD
secondary server is available, the Connection Manager attempts to convert the
HDR secondary server into the primary server. If the HDR secondary server is not
available, the Connection Manager attempts to convert the most suitable RS
secondary server to the primary server.

If failover processing fails after eight attempts, the Connection Manager calls
$INFORMIXDIR/etc/cmalarmprogram.sh.

Example 2: Configuring multiple Connection Managers to prioritize the
connections between application servers and the primary server of a cluster

In the following example, the HA_FOC_ORDER configuration parameter in the
my_primary_server_2 onconfig file is set:

23-14 IBM Informix Administrator's Guide

HA_FOC_ORDER HDR,RSS

The two Connection Managers, my_important_app_cm and
my_non_essential_app_cm, are installed and configured:

cm_configuration_file_4

NAME important_app_cm
LOCAL_IP 192.0.2.0, 192.0.2.256

CLUSTER my_cluster
{

INFORMIXSERVER my_server_group_1
SLA sla_1 DBSERVERS=ANY
FOC ORDER=ENABLED \

PRIORITY=1
}

cm_configuration_file_5

NAME non_essential_app_cm
LOCAL_IP 192.0.2.257, 192.0.2.258

CLUSTER my_cluster
{

INFORMIXSERVER my_server_group_1,
SLA sla_2 DBSERVERS=ANY
FOC ORDER=ENABLED \

PRIORITY=2
}

v The network state is:
v important_app_cm can connect to the primary server and RS secondary server,

but cannot connect to the HDR secondary server.
v non_essential_app_cm can connect to the primary server and the HDR server,

but cannot connect to the RS secondary server.

If the network between non_essential_app_cm and my_primary_server goes
down, non_essential_app_cm attempts failover to the HDR secondary server.
Because important_app_cm cannot connect to the HDR secondary server, and has
higher priority than non_essential_app_cm, the failover attempt is blocked.

If, instead, the network between important_app_cm and my_primary_server goes
down, important_app_cm attempts failover to the HDR secondary server. Because
important_app_cm cannot connect to the HDR secondary server, it then attempts
failover to the RS secondary server. non_essential_app_cm cannot connect to the
RS secondary server, but it has a lower priority than important_app_cm, so
failover occurs.

In both situations, the connection between important_app_cm and the primary
server is prioritized over the connection between non_essential_app_cm and the
primary server. Because the Connection Managers are on the application-server
hosts, the connections between the application servers and the primary server are,
essentially, prioritized.
Related tasks:
“Example of configuring connection management for prioritizing connections and
network monitoring” on page 23-78
Related reference:

HA_FOC_ORDER configuration parameter (Administrator's Reference)

Chapter 23. Connection management through the Connection Manager 23-15

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1158.htm#ids_adr_1158

“LOCAL_IP Connection Manager configuration parameter” on page 23-18
“CMALARMPROGRAM Connection Manager configuration parameter” on page
23-7
“EVENT_TIMEOUT Connection Manager configuration parameter” on page 23-10

GRID Connection Manager configuration parameter:

The GRID parameter specifies that a connection unit is a grid, and specifies the
name of the grid.

Syntax:

GRID unit_name

Usage

Each connection-unit name must be unique within the Connection Manager
configuration file.

GRID connection units can use the following redirection policies:
v Apply failure
v Round-robin
v Transaction latency
v Workload

Grid names can use multibyte characters.

Example

In the following example, the grid connection unit named my_grid is defined:
GRID my_grid
{

INFORMIXSERVER my_server_group_1,my_server_group_2
SLA sla_1 DBSERVERS=ANY

}

INFORMIXSERVER Connection Manager configuration parameter:

The INFORMIXSERVER parameter specifies database servers or Enterprise
Replication nodes that the Connection Manager connects to after it starts. The
values of the INFORMIXSERVER parameter are also used for providing database
server information for service-level agreements when a Connection Manager's
SQLHOSTS parameter is set to REMOTE or LOCAL+REMOTE.

Syntax

CLUSTER connection unit:

�

,

INFORMIXSERVER server_name
sqlhosts_group_name

23-16 IBM Informix Administrator's Guide

GRID connection unit:

�

,

INFORMIXSERVER sqlhosts_group_name

REPLSET connection unit:

�

,

INFORMIXSERVER sqlhosts_group_name

SERVERSET connection unit:

�

,

INFORMIXSERVER sqlhosts_group_name
stand_alone_server_name

Usage

The INFORMIXSERVER parameter is required, and is supported by the following
connection units:
v CLUSTER
v GRID
v REPLSET
v SERVERSET

For Enterprise Replication domains, list group names for the nodes that receive
client requests from the Connection Manager.

For server-set replication domains, list group names for the nodes that receive
client requests from the Connection Manager. List standalone server names, as
well.

For high-availability clusters, list the group name for the cluster, or list the names
of database servers.

Example

In the following example, the Connection Manager connects to all database servers
that are members of the my_server_group group in the Connection Manager
sqlhosts file.
NAME my_connection_manager

CLUSTER my_cluster
{

INFORMIXSERVER my_server_group
FOC ORDER=ENABLED \

PRIORITY=1
}

Related reference:

Chapter 23. Connection management through the Connection Manager 23-17

“Group information” on page 2-32

LOCAL_IP Connection Manager configuration parameter:

The LOCAL_IP parameter specifies IP addresses to monitor on the computer that
is running the Connection Manager. The LOCAL_IP parameter is used with the
FOC parameter's PRIORITY attribute to determine if database-failover occurs
during a partial network failure.

Syntax:

�

,

LOCAL_IP ip_address

Usage

The LOCAL_IP parameter is optional, and applies to CLUSTER connection units.

You must list the IP address of each network interface card to be monitored.

Example

In the following example, the Connection Manager monitors the network
connection between its host and the primary server of a cluster through the
network interface cards that have IP addresses of 192.0.2.0 and 192.0.2.1:
LOCAL_IP 192.0.2.0,192.0.2.1

Related tasks:
“Example of configuring connection management for prioritizing connections and
network monitoring” on page 23-78
Related reference:
“FOC Connection Manager configuration parameter” on page 23-11

LOG Connection Manager configuration parameter:

The LOG parameter specifies logging for Connection Manager modes.

Syntax:

0
LOG 1

2
3

Table 23-6. Values for the LOG Connection Manager configuration parameter

LOG parameter value Description

0 (default) Specifies that logging is turned off.

1 The Connection Manager logs proxy-mode and redirect-mode
SLA information.

2 The Connection Manager logs proxy-mode SLA information
only. Data send-and-receive activities between clients and the
Connection Manager is logged.

23-18 IBM Informix Administrator's Guide

Table 23-6. Values for the LOG Connection Manager configuration parameter (continued)

LOG parameter value Description

3 The Connection Manager logs proxy-mode SLA information
only. Data content between clients and the Connection Manager
is logged.

Usage

The LOG parameter is optional, and applies to the following connection units:
v CLUSTER
v GRID
v REPLSET
v SERVERSET

Set the LOGFILE parameter to specify where log files are stored. If the LOGFILE
parameter is not set, the Connection Manager creates a log file in the
$INFORMIXDIR/tmp directory, with a name of
connection_manager_name.process_ID.log.

Example

In the following example, the Connection Manager logs proxy-mode and
redirect-mode SLA information to $INFORMIXDIR/tmp/my_cm.log.
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm.log

LOGFILE Connection Manager configuration parameter:

The LOGFILE parameter specifies the name and location of the Connection
Manager log file.

Syntax:

LOGFILE path_and_filename

Usage

The LOGFILE parameter is optional, and applies to the following connection units:
v CLUSTER
v GRID
v REPLSET
v SERVERSET

The path and file name of the log file display when the Connection Manager is
started, and the log file is continuously updated with status information while the
Connection Manager is running. If multiple Connection Managers are installed on
the same host, specify a different path and file name for each Connection Manager.

Make sure that the directory for the log file exists, and that access to the file is
enabled for the user that starts the Connection Manager.

Chapter 23. Connection management through the Connection Manager 23-19

If the LOGFILE parameter is not set, the Connection Manager creates a log file in
the $INFORMIXDIR/tmp directory, with a name of
connection_manager_name.process_ID.log.

Example

In the following example, the Connection Manager logs proxy-mode SLA
information about data send-and-receive activities between clients and the
Connection Manager. The information is logged to $INFORMIXDIR/tmp/my_cm.log.
LOG 2
LOGFILE $INFORMIXDIR/tmp/my_cm.log

MACRO Connection Manager configuration parameter:

The MACRO parameter specifies the name of a macro and a value that can be
reused in the Connection Manager configuration file.

Macro definition format:

MACRO name = value

Macro use format:

${ macro_name }

Usage

The MACRO parameter is optional, and applies to the Connection Manager
configuration file.

A macro can contain spaces, but not line breaks.

The MACRO parameter can be set multiple times to create multiple macros.

After a macro is defined, it can be used in other macros. For example:
MACRO WA=wa_server_1,wa_server_2,wa_server_3,wa_server_4
MACRO OR=or_server_1,or_server_2,or_server_3,or_server_4
MACRO ID=id_server_1,id_server_2,id_server_3,id_server_4
MACRO PNW=${WA),${OR),${ID)

Example 1: Using a macro in a service-level agreement

In the following example, the macro CA contains the names of eight servers.
NAME my_connection_manager_1
MACRO CA=ca_server_1,ca_server_2,ca_server_3,ca_server_4, \

ca_server_5,ca_server_6,ca_server_7,ca_server_8

CLUSTER my_cluster_1
{

INFORMIXSERVER group_name_1
SLA sla_1 DBSERVERS=${CA}

}

The macro expands in the following way:

23-20 IBM Informix Administrator's Guide

{
INFORMIXSERVER group_name_1
SLA sla_1 DBSERVERS=ca_server_1,ca_server_2,ca_server_3,ca_server_4, \

ca_server_5,ca_server_6,ca_server_7,ca_server_8
}

Example 2: Using multiple macros in service-level agreements

In the following example, the macros WA, OR, and ID each contain the names of
servers. Macro ID also contains parentheses to create a redirection-policy group.
NAME my_connection_manager_2
MACRO WA=wa_server_1,wa_server_2,wa_server_3
MACRO OR=or_server_1,or_server_2,or_server_3
MACRO ID=(id_server_1,id_server_2,id_server_3)

CLUSTER my_cluster_2
{

INFORMIXSERVER group_name_2
SLA sla_1 DBSERVERS=PRI
SLA sla_2 DBSERVERS=${WA},${OR}
SLA sla_3 DBSERVERS=${ID} POLICY=ROUNDROBIN

}

The macros expand in the following ways:
{

INFORMIXSERVER group_name_2
SLA sla_1 DBSERVERS=PRI
SLA sla_2 DBSERVERS=wa_server_1,wa_server_2,wa_server_3,or_server_1,or_server_2,or_server_3
SLA sla_3 DBSERVERS=(id_server_1,id_server_2,id_server_3) POLICY=ROUNDROBIN

}

NAME Connection Manager configuration parameter:

The NAME parameter specifies the name of the Connection Manager instance.

Syntax:

NAME connection_manager_name

Usage

The NAME parameter is required, and applies to the Connection Manager
instance.

The name of the Connection Manager instance is necessary for monitoring,
shutting down, or reloading the Connection Manager.

Connection Manager names must be unique in the domain of the connection units
that are managed.

Example

In the following example, a Connection Manager instance is named
my_connection_manager.
NAME my_connection_manager

Chapter 23. Connection management through the Connection Manager 23-21

REPLSET Connection Manager configuration parameter:

The REPLSET parameter specifies that a connection unit is a replicate set, and
specifies the name of the replicate set.

Syntax:

REPLSET unit_name

Usage

Each connection-unit name must be unique within the Connection Manager
configuration file.

REPLSET connection units can use the following redirection policies:
v Apply failure
v Round-robin
v Transaction latency
v Workload

Replicate set names can use multibyte characters.

Example

In the following example, the replicate-set connection unit named my_replicate_set
is defined:
REPLSET my_replicate_set
{

INFORMIXSERVER my_group_1,my_group_2
SLA sla_1 DBSERVERS=ANY

}

SECONDARY_EVENT_TIMEOUT Connection Manager configuration
parameter:

The SECONDARY_EVENT_TIMEOUT parameter specifies the number of seconds
that must elapse with no secondary-server events before the Connection Manager
disconnects from a secondary server. A secondary-server event is an indication
from a secondary server that the server is still functioning, such as a sent
performance-statistics or administration messages.

Syntax:

60
SECONDARY_EVENT_TIMEOUT -1

seconds

Table 23-7. Values for the SECONDARY_EVENT_TIMEOUT Connection Manager
configuration parameter

SECONDARY_EVENT_TIMEOUT parameter
value Description

-1 The Connection Manager waits
indefinitely

23-22 IBM Informix Administrator's Guide

Table 23-7. Values for the SECONDARY_EVENT_TIMEOUT Connection Manager
configuration parameter (continued)

SECONDARY_EVENT_TIMEOUT parameter
value Description

0 to 30 The Connection Manager waits 30
seconds.

> 30 The Connection Manager waits the
specified number of seconds.

Usage

The SECONDARY_EVENT_TIMEOUT parameter is optional, and applies
CLUSTER connection units.

If the SECONDARY_EVENT_TIMEOUT parameter is not specified in the
Connection Manager configuration file, the Connection Manager waits 60 seconds
for secondary-server events before it disconnects from the server.

Example

In the following example, the Connection Manager disconnects from a secondary
server after 300 seconds elapse with no secondary-server events.
SECONDARY_EVENT_TIMEOUT 300

SERVERSET Connection Manager configuration parameter:

The SERVERSET parameter specifies that a connection unit is a server set, and
specifies the name of the server set.

Syntax:

SERVERSET unit_name

Usage

Each connection-unit name must be unique within the Connection Manager
configuration file.

SERVERLSET connection units can use the following redirection policies
v Round-robin
v Workload

Server set names cannot use multibyte characters.

Example

In the following example, the server-set connection unit named my_server_set is
defined:
SERVERSET my_server_set
{

INFORMIXSERVER my_group_1,my_group_2
SLA sla_1 DBSERVERS=ANY

}

Chapter 23. Connection management through the Connection Manager 23-23

SLA Connection Manager configuration parameter:

The SLA parameter defines service-level agreements that direct client requests to
database servers.

Syntax

�� SLA sla_name CLUSTER SLA syntax
GRID or REPLSET SLA syntax
SERVERSET SLA syntax

REDIRECT
MODE= PROXY

�

�
ON

USEALIASES= OFF
4

WORKERS= Number_of_threads
HOST= host_name

ip_address

�

�
NETTYPE= drsocssl

drsoctcp
onsocssl
onsoctcp

SERVICE= port_number
service_name

�

,

SQLHOSTSOPT=" option "

��

CLUSTER SLA syntax fragment:

�

� �

�

DBSERVERS= ANY
POLICY= ROUNDROBIN

WORKLOAD

+SECAPPLYBACKLOG:pages
,

(1)
group
HDR
PRI
primary
RSS
SDS
server

,
,

group
HDR POLICY= ROUNDROBIN
PRI WORKLOAD
primary
RSS +SECAPPLYBACKLOG:pages
SDS
server
,

(group)
HDR
PRI
primary
RSS
SDS
server

GRID or REPLSET SLA syntax fragment:

23-24 IBM Informix Administrator's Guide

�

�

� �

�
�

DBSERVERS= ANY
+

WORKLOAD
weight*

POLICY= FAILURE
weight*

LATENCY
weight*

ROUNDROBIN
,

group
,

,
(1)

group
, +

WORKLOAD
(group) weight*

POLICY= FAILURE
weight*

LATENCY
weight*

ROUNDROBIN

SERVERSET SLA syntax fragment:

�

� �

�

DBSERVERS= ANY
WORKLOAD

POLICY= ROUNDROBIN
,

group
server

,
,

(1)
group
server WORKLOAD
, POLICY= ROUNDROBIN

(group)
server

Notes:

1 You must use at least one cluster keyword or a group of values that are enclosed by parentheses if
you specify a redirection policy.

SLA parameter attributes

Table 23-8. The attributes of the SLA Connection Manager configuration parameter

Attribute name Description

DBSERVERS Specifies servers, server aliases, server groups, or server types for directing
connection requests. Use the ANY keyword, the SDS or RSS cluster keywords, or
enclose a group of values in parentheses to enable a redirection policy for that
group.

HOST Specifies a database server's host. The value in the SLA is used, rather than the
value in the Connection Manager's host sqlhosts file.

Chapter 23. Connection management through the Connection Manager 23-25

Table 23-8. The attributes of the SLA Connection Manager configuration parameter (continued)

Attribute name Description

MODE Specifies whether connection requests go through the Connection Manager or if
the Connection Manager provides connection information to the source of a
connection request.

The default value is REDIRECT.

NETTYPE Specifies the network protocol of a database server. The value in the SLA is used,
rather than the value in the Connection Manager's host sqlhosts file.

POLICY Specifies how the Connection Manager redirects client connection requests to the
servers specified in the DBSERVER attribute.

Redirection policy applies to the ANY keyword, the SDS and RSS cluster
keywords, and to a group of values that are enclosed in parentheses. Parentheses
within parentheses are ignored.

The default value is WORKLOAD.

Workload, apply-failure, and transaction-latency policies can be given relative
weights.

SERVICE Specifies a database server's port number or service name. The value in the SLA is
used, rather than the value in the Connection Manager's host sqlhosts file.

SQLHOSTSOPT Specifies connectivity options for a database server that is specified in a SLA.
Enclose all connectivity options in a single pair of quotation marks. The value in
the SLA is used, rather than the value in the Connection Manager's host sqlhosts
file.

USEALIASES Specifies whether the Connection Manager can redirect client connection requests
to database server aliases specified by the DBSERVERALIASES configuration
parameter.

The default value is ON.

WORKERS Specifies the number of worker threads that are allocated to the SLA. When a
service-level agreement is specified, the Connection Manager creates an SLA
listener process to intercept client connection requests. The SLA listener process
can have one or more worker threads.

The default value is 4.

DBSERVERS attribute values

Table 23-9. Values of the DBSERVERS attribute.

Attribute value Value

ANY Specifies that connection requests can be sent to any available database server in the specified
cluster, grid, or replicate set.

For a SERVERSET connection unit, ANY specifies that connection requests can be sent to any
available database server specified by the SERVERSET connection-unit's INFORMIXSERVER
parameter.

You do not need to enclose ANY in parentheses to apply a redirection policy to it. If no
redirection policy is specified, ANY uses the workload redirection policy.

group Specifies a group entry in the Connection Manager's host sqlhosts file. Connection requests
can be sent to the members of the group.

HDR Is a cluster keyword that specifies that connection requests can be sent to the high-availability
data replication server. HDR is supported only by CLUSTER connection units.

23-26 IBM Informix Administrator's Guide

Table 23-9. Values of the DBSERVERS attribute. (continued)

Attribute value Value

PRI or PRIMARY Is a cluster keyword that specifies that connection requests can be sent to the primary
database server. PRI and PRIMARY are supported only by CLUSTER connection units.

RSS Is a cluster keyword that specifies that connection requests can be sent to remote standalone
secondary servers. RSS is supported only by CLUSTER connection units.

You do not need to enclose RSS in parentheses to apply a redirection policy to the servers it
specifies. If no redirection policy is specified, RSS uses the workload redirection policy.

SDS Is a cluster keyword that specifies that connection requests can be sent to shared-disk
secondary servers. SDS is supported only by CLUSTER connection units.

You do not need to enclose SDS in parentheses to apply a redirection policy to the servers it
specifies. If no redirection policy is specified, SDS uses the workload redirection policy.

server Specifies server or alias entry in the Connection Manager's host sqlhosts file. Connection
requests can be sent to the server.

MODE attribute values

Table 23-10. Values of the MODE attribute.

Attribute value Value

PROXY Specifies that the Connection Manager acts as a proxy server for client connections.

Use proxy mode for the following cases:

v A firewall is preventing a client application from connecting to database servers.

v You do not want to recompile applications are compiled with Data Server Driver for JDBC
and SQLJ version 3.5.1 or before, or with Informix Client SDK 3.00 or before.

Because a proxy-server Connection Manager handles all client/server communication,
configure multiple Connection Manager instances, to avoid a Connection Manager becoming a
single point of failure.

Note: For proxy mode, you must set your operating system to allow the maximum number of
file descriptors.

For example, use the ulimit command on UNIX operating systems.

REDIRECT (default) Specifies that client connections use redirect mode, which configures the Connection Manager
to return the appropriate database server name, IP address, and port number to the
requesting client application. The client application then uses the returned IP address and port
number to connect to the specified database server.

Redirection-policy SLAs do not support connections from application that are compiled with
Data Server Driver for JDBC and SQLJ version 3.5.1 or before, or with Informix Client SDK
3.00 or before.

Chapter 23. Connection management through the Connection Manager 23-27

POLICY attribute values

Table 23-11. Values of the POLICY attribute.

Attribute value Value

FAILURE Specifies that connection requests are directed or proxied to the
replication server with the fewest apply failures.

The apply-failure policy is supported by the following connection
units:

v REPLSET

v GRID

To use the apply-failure policy, you must enable quality of data
(QOD) monitoring by running the cdr define qod and cdr start qod
commands. To use the apply-failure policy for a grid, the grid must
have a replication-enabled table.

LATENCY Specifies that connection requests are directed or proxied to the
replication server with the lowest transaction latency.

The transaction-latency policy is supported by the following
connection units:

v REPLSET

v GRID

The attribute value does not indicate a specific transaction latency
period; the Connection Manager uses a formula with relative values
to decide where to redirect client connection requests.

To use the transaction-latency policy, you must enable quality of data
monitoring by running the cdr define qod and cdr start qod
commands. To use the transaction-latency policy for a grid, the grid
must have a replication-enabled table.

23-28 IBM Informix Administrator's Guide

Table 23-11. Values of the POLICY attribute. (continued)

Attribute value Value

ROUNDROBIN Specifies that connection requests are directed or proxied in a
repeating, ordered fashion (round-robin) to a group of servers.

If you use a round-robin policy, the DBSERVERS attribute values are
used to create round-robin groups. Servers that are specified more
than one time in a DBSERVERS-attribute group value are treated as
single participants in a round-robin group. For example, if a SLA has
the following definition:

SLA sla_1 DBSERVERS=(server_1,server_3,server_1,server_2) \
POLICY=ROUNDROBIN

The round-robin group participants are:

v server_1

v server_2

v server_3

The round-robin policy is supported by the following connection
units:

v CLUSTER

v REPLSET

v GRID

v SERVERSET

The round-robin policy is supported by the following software:

v All IBM Informix Server versions.

v Connection Managers from IBM Informix Client SDK 3.70.xC8 and
later, and 4.10xC2 and later.

SECAPPLYBACKLOG:number_of_pages Specifies that if a secondary server's apply backlog exceeds
number_of_pages, the Connection Manager does not redirect or proxy
new connections to server. For example:

SLA sla_1 DBSERVERS=(server_1,server_2,server_3) \
POLICY=SECAPPLYBACKLOG:500

The Connection Manager sends connection requests to whichever of
server_1, server_2, or server_3 has an apply backlog below 500 pages
and the lowest workload.

To view the apply backlogs of all servers in a cluster, run the onstat -g
cluster command.

To view the apply backlog for a specific secondary server, run one of
the following commands:

v onstat -g dri

v onstat -g sds

v onstat -g rss

The apply-backlog policy is supported by CLUSTER connection units.

The apply-backlog policy is supported by the following software:

v IBM Informix Server versions 11.70.xC8 and later, and 12.10.xC2
and later.

v Connection Managers from IBM Informix Client SDK 3.70.xC8 and
later, and 4.10xC2 and later.

Chapter 23. Connection management through the Connection Manager 23-29

Table 23-11. Values of the POLICY attribute. (continued)

Attribute value Value

WORKLOAD (default) Specifies that connection requests are directed or proxied to the
database server with the lowest workload.

Workload calculations are based on the number of virtual processors a
server has and the number of threads in the server's ready queue.

The WORKLOAD policy is supported by the following connection
units:

v CLUSTER

v GRID

v REPLSET

v SERVERSET

USEALIASES attribute values

Table 23-12. Values of the USEALIASES attribute.

Attribute value Value

ON (default) Specifies that the Connection Manager can direct client connection requests to server aliases
specified by a database server's DBSERVERALIASES configuration parameter.

OFF Specifies that the Connection Manager cannot direct client connection requests to server
aliases specified by a database server's DBSERVERALIASES configuration parameter.

HOST attribute values

Table 23-13. Values of the HOST attribute.

Attribute value Value

host_name Specifies a host name or host alias for a database server.

ip_address Specifies a TCP/IP address for a database server.

NETTYPE attribute values

Table 23-14. Values of the NETTYPE attribute.

Attribute value Value

drsocssl Specifies secured sockets layer (SSL) protocol for Distributed Relational Database Architecture
(DRDA).

drsoctcp Specifies TCP/IP protocol for Distributed Relational Database Architecture

onsocssl Specifies secured sockets layer protocol.

onsoctcp Specifies sockets with TCP/IP protocol.

SERVICE attribute values

Table 23-15. Values of the SERVICE attribute.

Attribute value Value

port_number Specifies a port number.

service_name Specifies a service name.

23-30 IBM Informix Administrator's Guide

Usage

The SLA parameter is optional, and is supported by the following connection units:
v CLUSTER
v GRID
v REPLSET
v SERVERSET

Client applications use the SLA name to connect to the database servers or
database-server types that are specified by the value of the DBSERVERS attribute.
For each SLA, a listener thread is installed at the specified port on the server to
detect incoming client requests. The SLA parameter can be specified multiple times
in the same configuration file; however, each SLA name must be unique.

Example 1: Connection request redirection from a service-level agreement

The following example shows a simple Connection Manager configuration. The
configuration specifies a single SLA.
NAME my_connection_manager_1

CLUSTER my_cluster_1
{

INFORMIXSERVER my_server_group_1
SLA sla_1 DBSERVERS=SDS,HDR,PRI

}

CONNECT TO @sla_1 connection requests as are directed in the following way:
1. Connect to any available SD secondary servers.
2. If SD secondary servers are unavailable, connect to the HDR secondary server.
3. If the HDR secondary server is unavailable, connect to the primary server.

Example 2: Defining multiple service-level agreements

The following example shows a simple Connection Manager configuration. The
configuration specifies two SLAs.
NAME my_connection_manager_2

CLUSTER my_cluster_2
{

INFORMIXSERVER my_server_group_2
SLA sla_1 DBSERVERS=server_1
SLA sla_2 DBSERVERS=server_2,server_3

}

This example configures the Connection Manager for a high-availability cluster and
defines two SLAs:
v CONNECT TO @sla_1 connection requests are directed to server_1.
v CONNECT TO @sla_2 connection requests are directed to server_2. If server_2 is

not available, connection requests are directed to server_3.

Example 3: Redirection policies in service-level agreements

The following example shows a Connection Manager configuration that uses a
workload-balancing redirection policy. The configuration specifies a single SLA.

Chapter 23. Connection management through the Connection Manager 23-31

NAME my_connection_manager_3

CLUSTER my_cluster_3
{

INFORMIXSERVER my_server_group_3
SLA sla_1 DBSERVERS=(server_1,server_2) \

POLICY=WORKLOAD
SLA sla_2 DBSERVERS=(server_3,server_4,server_5) \

POLICY=ROUNDROBIN
SLA sla_3 DBSERVERS=(server_6,server_7,server_8) \

POLICY=ROUNDROBIN+SECAPPLYBACKLOG:400

}

v CONNECT TO @sla_1 connection requests are directed to whichever of server_1
and server_2 has the lowest workload. WORKLOAD is the default redirection
policy, so specifying POLICY=WORKLOAD in the SLA is not required.

v CONNECT TO @sla_2 connection requests are directed round-robin to server_3,
server_4 and server_5.

v CONNECT TO @sla_3 connection requests are directed round-robin to server_6,
server_7 and server_8. If a server's apply backlog is 400 pages or greater, that
server is ignored in the round-robin order and does not receive connection
requests until its apply backlog falls below 400 pages.

Example 4: Proxy and redirect mode in service-level agreements

In redirect mode, the Connection Manager responds to client redirection requests
by returning a specified database server's IP address and port number to the client
application. The client application then uses the IP address and port number to
connect to the database server. In proxy mode, the Connection Manager acts as a
proxy server, and client requests are routed through the Connection Manager.
Redirect mode is the default if no SLA mode is specified.
NAME my_connection_manager_4

CLUSTER my_cluster_4
{

INFORMIXSERVER my_server_group_4
SLA sla_1 DBSERVERS=ANY \

MODE=REDIRECT #Default value, so is not required for the SLA definition
SLA sla_2 DBSERVERS=ANY \

MODE=PROXY
}

v CONNECT TO @sla_1 connection requests result in the Connection Manager
returning the IP address and port number for a cluster server to the client
application.

v CONNECT TO @sla_2 connection requests are directed through the Connection
Manager to a cluster server.

Example 5: Adjusting timeout values for the Connection Manager and cluster
servers

The following example shows a Connection Manager configuration where default
timeout values are changed:
NAME my_connection_manager_5
CM_TIMEOUT 300
EVENT_TIMEOUT 45
SECONDARY_EVENT_TIMEOUT 50

CLUSTER my_cluster_5
{

23-32 IBM Informix Administrator's Guide

INFORMIXSERVER my_server_group_5
SLA sla_1 DBSERVERS=ANY
FOC ORDER=SDS,HDR,RSS

}

v If a cluster does not receive any events from the Connection Manager within 300
seconds, the primary server of the cluster promotes the next available
Connection Manager to the role of failover arbitrator.

v If the Connection Manager does not receive any events from the primary server
within 45 seconds, the Connection Manager begins failover processing, and
attempts to promote a secondary server to the primary server.

v If the Connection Manager does not receive any events from a secondary server
within 50 seconds, the Connection Manager disconnects from the secondary
server.

Example 6: Macros and workload balancing in service-level agreements

The following example shows a Connection Manager configuration that uses
defined macros in SLAs.
NAME my_connection_manager_6
MACRO CA=ca_server_1,ca_server_2,ca_server_3
MACRO NY=ny_server_1,ny_server_2,ny_server_3

REPLSET my_replicate_set_1
{

INFORMIXSERVER my_er_group_1,my_er_group_2
SLA sla_1 DBSERVERS=${CA}
SLA sla_2 DBSERVERS=(${NY}) \

POLICY=ROUNDROBIN
}

In this example, two macros are defined:
v CA, which is composed of ca_server_1, ca_server_2, and ca_server_3.
v NY, which is composed of ny_server_1, ny_server_2, and ny_server_3.

The Connection Manager redirects client connection requests as follows:
v CONNECT TO @sla_1 connection requests are directed to ca_server_1. If

ca_server_1 is unavailable, connection requests are directed to ca_server_2. If
ca_server_2 is also unavailable, connection requests are directed to ca_server_3.

v CONNECT TO @sla_2 connection requests are directed round-robin to ny_server_1,
ny_server_2, and ny_server_3.

Example 7: Quality of data redirection policies in service-level agreements

The following example shows a Connection Manager configuration that uses
transaction-latency and apply-failure redirection policies to direct connection
requests in a grid. Quality-of-data (QOD) monitoring is turned on with the cdr
define qod and cdr start qod commands.
NAME my_connection_manager_7

GRID my_grid_1
{

INFORMIXSERVER my_server_group_1,my_server_group_2,my_server_group_3
SLA sla_1 DBSERVERS=ANY \

POLICY=LATENCY
SLA sla_2 DBSERVERS=ANY \

Chapter 23. Connection management through the Connection Manager 23-33

POLICY=FAILURE
SLA sla_3 DBSERVERS=ANY \

POLICY=2*Failure+LATENCY
}

v CONNECT TO @sla_1 connection requests are directed to the server with the lowest
transaction latency.

v CONNECT TO @sla_2 connection requests are directed to the server with the lowest
number of apply failures.

v CONNECT TO @sla_3 connection requests are directed to the server with the lowest
number of apply failures and lowest transaction latency. The smallest
apply-failure count is twice as important as low transaction latency in the
Connection Manager's calculations.

Example 8: sqlhosts connectivity information in service-level agreements

The following example shows a Connection Manager configuration that uses
attribute values instead of the values in its host sqlhosts file for directing
connection requests.
NAME my_connection_manager_8

SERVERSET my_server_set
{

INFORMIXSERVER server_1,server_2,server_3
SLA sla_1 DBSERVERS=server_1 \

NETTYPE=onsoctcp
HOST=host_1 \
SERVICE=port_1 \

SLA sla_2 DBSERVERS=server_2 \
NETTYPE=onsoctcp
HOST=host_2 \
SERVICE=port_2 \

}

The Connection Manager uses the values of the HOST, SERVICE, and NETTYPE
attributes, rather than the values in its host sqlhosts file for directing connection
requests.

Example 9: Controlling connection-requests with aliases

The following example shows a Connection Manager configuration that specifies
which database-server aliases SLAs can use.

The onconfig file for server_1 has the following parameter setting:
DBSERVERALIASES server_1_alias_1,server_1_alias_2

The sqlhosts file that server_1 uses has the following entries:
#dbservername nettype hostname servicename options
my_group_9 group - - e=server_1_alias_2
server_1 onsoctcp my_host_1 my_port_1 g=my_group_9
server_1_alias_1 onsoctcp my_host_1 my_port_2 g=my_group_9
server_1_alias_2 onsoctcp my_host_1 my_port_3 g=my_group_9

The Connection Manager configuration file for server_1 has the following entries:
NAME my_connection_manager_9

SERVERSET my_server_set_2
{

INFORMIXSERVER my_group_9
SLA sla_1 DBSERVERS=server_1

23-34 IBM Informix Administrator's Guide

SLA sla_2 DBSERVERS=server_1 \
USEALIASES=OFF

SLA sla_3 DBSERVERS=server_1_alias_1
SLA sla_4 DBSERVERS=server_1_alias_1 \

USEALIASES=OFF
}

The Connection Manager directs client requests in the following ways:
v CONNECT TO @sla_1 and CONNECT TO @sla_3 requests can be directed to server_1,

through my_port_1, my_port_2, or my_port_3.
v CONNECT TO @sla_2 requests are directed to server_1 through my_port_1 only.
v CONNECT TO @sla_4 requests are directed to server_1 through my_port_2 only.
Related reference:
“Group information” on page 2-32

SQLHOSTS Connection Manager configuration parameter:

The SQLHOSTS parameter specifies where a Connection Manager can search for
database servers that are specified by the INFORMIXSERVER parameter and
DBSERVERS attribute.

Syntax:

LOCAL+REMOTE
SQLHOSTS = LOCAL

REMOTE

Table 23-16. Values for the SQLHOSTS Connection Manager configuration parameter

SQLHOSTS parameter
value Description

LOCAL The Connection Manager searches the local sqlhosts file for
requested database server instances.

REMOTE The Connection Manager searches for requested database server
instances in remote sqlhosts files. The Connection Manager
searches the sqlhosts files of database servers that are specified
by a connection-unit's INFORMIXSERVER parameter.

LOCAL+REMOTE (default) The Connection Manager searches the local sqlhosts file for
requested database server instances. If a database server cannot
be found, the Connection Manager searches the sqlhosts files of
database servers that are specified by a connection-unit's
INFORMIXSERVER parameter.

Usage

The SQLHOSTS parameter is optional, and applies to the following connection
units:
v CLUSTER
v GRID
v REPLSET
v SERVERSET

The SQLHOSTS option is useful when you want to restrict client applications from
accessing one or more database servers in a high-availability cluster.

Chapter 23. Connection management through the Connection Manager 23-35

Example

In the following example, the SQLHOSTS parameter is used to limit the servers
that the Connection Manager connects to.
NAME my_connection_manager
SQLHOSTS LOCAL

CLUSTER my_cluster
{

INFORMIXSERVERS my_servers
SLA my_sla DBSERVERS=server_1,server_2,server_3,server_4

}

The local sqlhosts file has the following entries:
#dbservername nettype hostname servicename options
my_servers group - - c=1,e=server_3
server_1 onsoctcp host_1 port_1 g=my_servers
server_2 onsoctcp host_2 port_2 g=my_servers
server_3 onsoctcp host_3 port_3 g=my_servers

Remote database-server sqlhosts files have the following entries:
#dbservername nettype hostname servicename options
my_servers group - - c=1,e=server_4
server_1 onsoctcp host_1 port_1 g=my_servers
server_2 onsoctcp host_2 port_2 g=my_servers
server_3 onsoctcp host_3 port_3 g=my_servers
server_4 onsoctcp host_3 port_3 g=my_servers

server_4 is not defined in the local sqlhosts file, and the Connection Manager is
configured to not search remote sqlhosts files, so the Connection Manager does
not send connection requests to server_4.
Related reference:
“Group information” on page 2-32

Modifying Connection Manager configuration files
Use the oncmsm utility to load a modified configuration file into a Connection
Manager and change the Connection Manager's configuration.

If you are using multiple Connection Managers, you can run the onstat -g cmsm
command to display the names of Connection Manager instances.
1. Modify the existing Connection Manager configuration file. The default location

of the configuration file is the $INFORMIXDIR/etc directory.
2. On the Connection Manager's host, run the oncmsm utility with the r

parameter and the name of the Connection Manager instance. For example:
oncmsm -r connection_manager_name

Because multiple instances of the Connection Manager can be active at the
same time, you must specify the name of the Connection Manager instance.

After you reload a Connection Manager's configuration file, the new configuration
immediately takes effect.
Related reference:

The oncmsm utility (Administrator's Reference)

onstat -g cmsm command: Print Connection Manager information
(Administrator's Reference)

23-36 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1130.htm#ids_adr_1130
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1130.htm#ids_adr_1130

Converting older formats of the Connection Manager
configuration file to the current format
The Connection Manager configuration file in versions of IBM Informix Client
Software Development Kit (Client SDK) before version 3.70.xC3 are incompatible
with the current version of the Connection Manager. You must convert
configuration files from versions before 3.70.xC3 by running the oncmsm utility.

If you have multiple configuration files to convert, combine related SLA definitions
into a single configuration file.

You can convert Connection Manager configuration files, even if a Connection
Manager is running.

To convert a Connection Manager file to the current format:
1. Log on to the computer on which the updated Client SDK is installed.
2. Run the oncmsm utility, specifying old and new configuration file names.

After the configuration file is converted, it can be loaded into a Connection
Manager.

Example: Converting a configuration file and loading it into a
Connection Manager

For the following example:
v You are using a UNIX operating system.
v You updated a Connection Manager from 3.50.xC9 to 4.10xC1, and must update

your configuration file.
v The Connection Manager was using a configuration file that is named

configuration_file_old and located in $INFORMIXDIR/etc.
v You want to convert the file to the new format and rename the file to

configuration_file_new.

Run the following commands:
1. oncmsm -c configuration_file_old -n configuration_file_new

2. oncmsm -c configuration_file_new

Related reference:

The oncmsm utility (Administrator's Reference)

Configuring environments and setting configuration
parameters for connection management

Before you start a Connection Manager, you must configure its environment.

To set environment variables:
v For UNIX C use the appropriate shell command. The following examples use C

shell (csh).
v For Windows, use the Environment tab of the setnet32 utility.
1. If clients or Connection Managers are installed on hosts where database servers

are not installed, set each host's INFORMIXDIR environment variable to the
directory the client or Connection Manager is installed in. Run the following
command:
setenv INFORMIXDIR path

Chapter 23. Connection management through the Connection Manager 23-37

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128

2. If clients or Connection Managers are installed on hosts where database servers
are not installed, set each host's INFORMIXSQLHOSTS environment variable to the
location of the sqlhosts file that the host uses. Run the following command:
setenv INFORMIXSQLHOSTS path_and_filename

3. If a Connection Manager's configuration file is in a directory other than
$INFORMIXDIR/etc, set the CMCONFIG environment variable to the directory. Run
the following command:
setenv CMCONFIG path_and_filename

4. If Connection Managers control failover for a high-availability cluster, set the
onconfig file DRAUTO configuration parameter to 3 on all managed cluster
database servers. For example:
DRAUTO 3

5. If Connection Managers control failover for a high-availability cluster, set the
onconfig file HA_FOC_ORDER configuration parameter on the primary server
of each cluster to a failover order. For example:
HA_FOC_ORDER SDS,HDR,RSS

6. On each database server that uses multiple ports, set the onconfig file
DBSERVERALIASES configuration parameter to the alias names listed in
Connection Manager and database server sqlhosts file entries. For example:
A Connection Manager's host has the following sqlhost file entries:
#dbservername nettype hostname servicename options
my_servers group - - c=1,e=server_3
server_1 onsoctcp host_1 port_1 s=6,g=my_servers
server_2 onsoctcp host_2 port_2 s=6,g=my_servers
server_3 onsoctcp host_3 port_3 s=6,g=my_servers

my_aliases group - - c=1,e=a_server_3
a_server_1 onsoctcp host_1 port_4 g=my_aliases
a_server_2 onsoctcp host_2 port_5 g=my_aliases
a_server_3 onsoctcp host_3 port_6 g=my_aliases

In the onconfig file for server_1, set the following value:
DBSERVERALIASES a_server_1

In the onconfig file for server_2, set the following value:
DBSERVERALIASES a_server_2

In the onconfig file for server_3, set the following value:
DBSERVERALIASES a_server_3

Related reference:

INFORMIXDIR environment variable (SQL Reference)

INFORMIXSQLHOSTS environment variable (SQL Reference)

CMCONFIG environment variable (SQL Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

DRAUTO configuration parameter (Administrator's Reference)

HA_FOC_ORDER configuration parameter (Administrator's Reference)

Defining sqlhosts information for connection management
You must define sqlhosts network-connectivity information for client applications
that connect to Connection Managers, Connection Managers that connect to
database servers, and database servers that are part of a Connection Manager
connection unit.

23-38 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_264.htm#ids_sqr_264
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_420.htm#ids_sqr_420
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0056.htm#ids_adr_0056
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1158.htm#ids_adr_1158

If Connection Managers or clients are installed on hosts where database servers are
not installed, you must create a sqlhosts file on each host.

Entries in an sqlhosts file can specify connection information for the following
connection-unit components:
v Database servers
v Aliases for database servers that are using secure ports
v Connection Manager service-level agreements (SLAs)
v Groups that can contain database servers, database-server aliases, or SLAs.

All database servers that a Connection Manager connects to must be listed in the
sqlhosts file that the Connection Manager uses. If the Connection Manager is
monitoring a high-availability cluster, the sqlhosts file the Connection Manager
uses must contain entries for all cluster servers.
1. Create entries in each database server's host sqlhosts file. You can modify one

sqlhosts file, and then distribute it to the hosts of other database servers.
2. Create entries in each Connection Manager's host sqlhosts file. You can create

one sqlhosts file, and then distribute it to the hosts of other Connection
Managers.

3. Create entries in each client application's host sqlhosts file. You can create one
sqlhosts file, and then distribute it to the hosts of other client applications.

4. If a host has multiple database servers that are installed on it, if the sqlhosts
file is in a directory other than $INFORMIXDIR/etc, or if you are using a
network-connectivity file other than $INFORMIXDIR/etc/sqlhosts, set the host's
INFORMIXSQLHOSTS environment variable to the location of the sqlhosts file.

If sqlhosts file entries use the s=6 option to define secure ports, use the
information in the sqlhosts file to create a password file.
Related concepts:
“The sqlhosts information” on page 2-19
Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

Defining sqlhosts information for connection management of
high-availability clusters
You must define sqlhosts network-connectivity information for connection
management of high-availability clusters.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.
1. On the host of each Connection Manager and database server, create sqlhosts

file entries for each database server in the cluster. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_2 port_2
server_3 onsoctcp host_3 port_3

2. On the host of each Connection Manager, add a group entry that contains each
database server in the cluster, and add group options to the database-server
entries. Use the c=1 group-entry option, so that connection-attempt starting

Chapter 23. Connection management through the Connection Manager 23-39

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268

points in the list of group members is random. Use the e=last_member
group-entry option so that the entire sqlhosts is not scanned for group
members. For example:
#dbservername nettype hostname servicename options
my_servers - - c=1,e=server_3
server_1 onsoctcp host_1 port_1 g=my_servers
server_2 onsoctcp host_2 port_2 g=my_servers
server_3 onsoctcp host_3 port_3 g=my_servers

3. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:
NAME connection_manager_1

CLUSTER my_cluster
{

INFORMIXSERVER my_servers
SLA sla_primary_1 DBSERVERS=PRI
SLA sla_secondaries_1 DBSERVERS=SDS,HDR

}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

CLUSTER my_cluster
{

INFORMIXSERVER my_servers
SLA sla_primary_2 DBSERVERS=PRI
SLA sla_secondaries_2 DBSERVERS=SDS,HDR

}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_primary_1 onsoctcp cm_host_1 cm_port_1
sla_primary_2 onsoctcp cm_host_2 cm_port_2

sla_secondaries_2 onsoctcp cm_host_1 cm_port_3
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4

4. On the host of each client application, create sqlhosts file entries for each
group of SLA entries, and add group options to the SLA entries. Use the c=1
group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members.
#dbservername nettype hostname servicename options
g_primary group - - c=1,e=sla_primary_2
sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

g_secondaries group - - c=1,e=sla_secondaries_2
sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

Client connection requests to @g_primary are directed to one of the Connection
Managers. If connection_manager_1 receives the request, it uses sla_primary_1 to
provide the client application with connection information for the primary server.
If connection_manager_2 receives the request, it uses sla_primary_2 to provide the
client application with connection information for the primary server.
Related concepts:
“The sqlhosts information” on page 2-19
Related reference:
“Group information” on page 2-32

23-40 IBM Informix Administrator's Guide

INFORMIXSQLHOSTS environment variable (SQL Reference)

Defining sqlhosts information for connection management of
high-availability clusters that use secure ports
You must define sqlhosts network-connectivity information for connection
management of high-availability clusters. If Connection Managers, database
servers, or client applications are outside of a trusted network, you must also
create an encrypted password file for security.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.
1. On the host of each Connection Manager and database server, create sqlhosts

file entries for each database server in the cluster, and specify the s=6
secure-port option. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
server_2 onsoctcp host_2 port_2 s=6
server_3 onsoctcp host_3 port_3 s=6

2. On the host of each Connection Manager and database server, create sqlhosts
file alias entries for each database server. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
a_server_1 onsoctcp host_1 port_4

server_2 onsoctcp host_2 port_2 s=6
a_server_2 onsoctcp host_2 port_5

server_3 onsoctcp host_3 port_3 s=6
a_server_3 onsoctcp host_3 port_6

3. On the host of each Connection Manager, add a group entry the individual
entries. Add group options to the database server and database server alias
entries. Use the c=1 group-entry option, so that connection-attempt starting
points in the list of group members is random. Use the e=last_member
group-entry option so that the entire sqlhosts is not scanned for group
members. For example:
#dbservername nettype hostname servicename options
my_servers group - - c=1,e=a_server_3
server_1 onsoctcp host_1 port_1 s=6,g=my_servers
a_server_1 onsoctcp host_1 port_4 g=my_servers
server_2 onsoctcp host_2 port_2 s=6,g=my_servers
a_server_2 onsoctcp host_2 port_5 g=my_servers
server_3 onsoctcp host_3 port_3 s=6,g=my_servers
a_server_3 onsoctcp host_3 port_6 g=my_servers

A password file that is encrypted through the onpassword utility is required
for connectivity through secure ports. The entries in the previously shown
sqlhosts file are represented in the following password file.
my_servers a_server_1 user_1 my_password_1
my_servers a_server_2 user_2 my_password_2
my_servers a_server_3 user_3 my_password_3

server_1 a_server_1 user_1 my_password_1
server_2 a_server_2 user_2 my_password_2
server_3 a_server_3 user_3 my_password_3

a_server_1 a_server_1 user_1 my_password_1
a_server_2 a_server_2 user_2 my_password_2
a_server_3 a_server_3 user_3 my_password_3

Chapter 23. Connection management through the Connection Manager 23-41

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268

4. In each database server's onconfig file, set the DBSERVERALIASES parameter
to that database server's alias.
The onconfig file entry for server_1:
DBSERVERALIASES a_server_1

The onconfig file entry for server_2:
DBSERVERALIASES a_server_2

The onconfig file entry for server_3:
DBSERVERALIASES a_server_3

5. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:
NAME connection_manager_1

CLUSTER my_cluster
{

INFORMIXSERVER my_servers
SLA sla_primary_1 DBSERVERS=PRI
SLA sla_secondaries_1 DBSERVERS=SDS,HDR

}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

CLUSTER my_cluster
{

INFORMIXSERVER my_servers
SLA sla_primary_2 DBSERVERS=PRI
SLA sla_secondaries_2 DBSERVERS=SDS,HDR

}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_primary_1 onsoctcp cm_host_1 cm_port_1
sla_primary_2 onsoctcp cm_host_2 cm_port_2

sla_secondaries_2 onsoctcp cm_host_1 cm_port_3
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4

6. On the host of each client application, create sqlhosts file group entries for
each group of SLA entries, and add group options to the SLA entries. Use the
c=1 group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members.
#dbservername nettype hostname servicename options
g_primary group - - c=1,e=sla_primary_2
sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

g_secondaries group - - c=1,e=sla_secondaries_2
sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

Client connection requests to @g_primary are directed to one of the Connection
Managers. If connection_manager_1 receives the request, it uses sla_primary_1 to
provide the client application with connection information for the primary server.
If connection_manager_2 receives the request, it uses sla_primary_2 to provide the
client application with connection information for the primary server.
Related concepts:
“The sqlhosts information” on page 2-19

23-42 IBM Informix Administrator's Guide

Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

Defining sqlhosts information for high-availability clusters that
use Distributed Relational Database Architecture (DRDA)
Connection Managers support Distributed Relational Database Architecture
(DRDA) connections for high-availability clusters. You must define sqlhosts
network-connectivity information for connection management of high-availability
clusters that use DRDA.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.
1. On the host of each Connection Manager and database server, create sqlhosts

file entries for each database server in the cluster. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_3 port_2
server_3 onsoctcp host_5 port_3

2. In each database server's onconfig file, set the DBSERVERALIASES parameter
to specify an alias for the server.
The onconfig file entry for server_1:
DBSERVERALIASES drda_1

The onconfig file entry for server_2:
DBSERVERALIASES drda_2

The onconfig file entry for server_3:
DBSERVERALIASES drda_3

3. On the host of each Connection Manager, add entries for the DRDA aliases. Use
a DRDA protocol for the nettype value. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_2 port_2
server_3 onsoctcp host_3 port_3

drda_1 drsoctcp host_1 port_4
drda_2 drsoctcp host_2 port_5
drda_3 drsoctcp host_3 port_6

4. On the host of each Connection Manager, add a group entry for the group of
database server and add a group entry for the group of DRDA aliases. Add
group options to the database server and DRDA alias entries. Use the c=1
group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:
#dbservername nettype hostname servicename options
my_servers group - - c=1,e=server_3
server_1 onsoctcp host_1 port_1 g=my_servers
server_2 onsoctcp host_2 port_2 g=my_servers
server_3 onsoctcp host_3 port_3 g=my_servers

drda_aliases group - - c=1,e=drda_3
drda_1 drsoctcp host_1 port_4 g=drda_aliases
drda_2 drsoctcp host_2 port_5 g=drda_aliases
drda_3 drsoctcp host_3 port_6 g=drda_aliases

Chapter 23. Connection management through the Connection Manager 23-43

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

5. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:
NAME connection_manager_1

CLUSTER my_cluster
{

INFORMIXSERVER my_servers
SLA sla_primary_1 DBSERVERS=PRI
SLA sla_primary_drda_1 DBSERVERS=PRI
SLA sla_secondaries_1 DBSERVERS=SDS,HDR
SLA sla_secondaries_drda_1 DBSERVERS=SDS,HDR

}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

CLUSTER my_cluster
{

INFORMIXSERVER my_servers
SLA sla_primary_2 DBSERVERS=PRI
SLA sla_primary_drda_2 DBSERVERS=PRI
SLA sla_secondaries_2 DBSERVERS=SDS,HDR
SLA sla_secondaries_drda_2 DBSERVERS=SDS,HDR

}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_primary_1 onsoctcp cm_host_1 cm_port_1
sla_primary_2 onsoctcp cm_host_2 cm_port_2

sla_secondaries_2 onsoctcp cm_host_1 cm_port_3
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4

sla_primary_1_drda drsoctcp cm_host_1 cm_port_5
sla_primary_2_drda drsoctcp cm_host_2 cm_port_6

sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7
sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8

6. On the host of each client application, create sqlhosts file group entries for
each group of SLA entries, and add group options to the SLA entries. Use the
c=1 group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members.

#dbservername nettype hostname servicename options
g_primary group - - c=1,e=sla_primary_2
sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

g_secondaries group - - c=1,e=sla_secondaries_2
sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

g_primary_drda group - - c=1,e=sla_primary_2_drda
sla_primary_1_drda drsoctcp cm_host_1 cm_port_5 g=g_primary_drda
sla_primary_2_drda drsoctcp cm_host_2 cm_port_6 g=g_primary_drda

g_secondaries_drda group - - c=1,e=sla_secondaries_2_drda
sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7 g=g_secondaries_drda
sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8 g=g_secondaries_drda

Client connection requests to @g_primary_drda are sent by drsoctcp protocol to
one of the Connection Managers. If connection_manager_1 receives the request, it
uses sla_primary_1_drda to provide the client application with connection

23-44 IBM Informix Administrator's Guide

information for the primary server. If connection_manager_2 receives the request,
it uses sla_primary_2_drda to provide the client application with connection
information for the primary server.
Related concepts:
“The sqlhosts information” on page 2-19
Related tasks:
“Configuring connectivity between Informix database servers and IBM Data Server
clients” on page 2-45
Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

Defining sqlhosts information for high-availability clusters that
use Distributed Relational Database Architecture (DRDA) and
secure ports
Connection Managers support Distributed Relational Database Architecture
(DRDA) connections for high-availability clusters. You must define sqlhosts
network-connectivity information for connection management of high-availability
clusters that use DRDA. If Connection Managers, database servers, or client
applications are outside of a trusted network, you must also create an encrypted
password file for security.

The Connection Manager's sqlhosts file must contain entries for all database
servers that it connects to.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.
1. On the host of each Connection Manager and database server, create sqlhosts

file entries for each database server in the cluster, and specify the s=6
secure-port option. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
server_2 onsoctcp host_3 port_2 s=6
server_3 onsoctcp host_5 port_3 s=6

2. On the host of each Connection Manager and database server, add DRDA alias
entries. Use a DRDA protocol for the nettype value, and specify the s=6
secure-port option. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
server_2 onsoctcp host_2 port_2 s=6
server_3 onsoctcp host_3 port_3 s=6

drda_1 drsoctcp host_1 port_4 s=6
drda_2 drsoctcp host_2 port_5 s=6
drda_3 drsoctcp host_3 port_6 s=6

3. On the host of each Connection Manager and database server, create sqlhosts
file alias entries for each database server and each DRDA alias. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
a_server_1 onsoctcp host_1 port_7

server_2 onsoctcp host_2 port_2 s=6
a_server_2 onsoctcp host_2 port_8

Chapter 23. Connection management through the Connection Manager 23-45

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

server_3 onsoctcp host_3 port_3 s=6
a_server_3 onsoctcp host_3 port_9

drda_1 drsoctcp host_1 port_4 s=6
a_drda_1 drsoctcp host_1 port_10

drda_2 drsoctcp host_2 port_5 s=6
a_drda_2 drsoctcp host_2 port_11

drda_3 drsoctcp host_3 port_6 s=6
a_drda_3 drsoctcp host_3 port_12

4. On the host of each Connection Manager, add group entries for the groups of
database servers and DRDA entries. Add group options to the individual
entries. Use the c=1 group-entry option, so that connection-attempt starting
points in the list of group members is random. Use the e=last_member
group-entry option so that the entire sqlhosts is not scanned for group
members. For example:
#dbservername nettype hostname servicename options
g_servers group - - c=1,e=a_server_3
server_1 onsoctcp host_1 port_1 s=6,g=g_servers
a_server_1 onsoctcp host_1 port_7 g=g_servers
server_2 onsoctcp host_2 port_2 s=6,g=g_servers
a_server_2 onsoctcp host_2 port_8 g=g_servers
server_3 onsoctcp host_3 port_3 s=6,g=g_servers
a_server_3 onsoctcp host_3 port_9 g=g_servers

g_drda group - - c=1,e=a_drda_3
drda_1 drsoctcp host_1 port_4 s=6,g=g_drda
a_drda_1 drsoctcp host_1 port_10 g=g_drda
drda_2 drsoctcp host_2 port_5 s=6,g=g_drda
a_drda_2 drsoctcp host_2 port_11 g=g_drda
drda_3 drsoctcp host_3 port_6 s=6,g=g_drda
a_drda_3 drsoctcp host_3 port_12 g=g_drda

A password file that is encrypted through the onpassword utility is required
for connectivity through secure ports. The entries in the previously shown
sqlhosts file are represented in the following password file.
g_servers a_server_1 user_1 password_1
g_servers a_server_2 user_2 password_2
g_servers a_server_3 user_3 password_3

server_1 a_server_1 user_1 password_1
server_2 a_server_2 user_2 password_2
server_3 a_server_3 user_3 password_3

a_server_1 a_server_1 user_1 password_1
a_server_2 a_server_2 user_2 password_2
a_server_3 a_server_3 user_3 password_3

g_drda a_drda_1 user_1 password_1
g_drda a_drda_2 user_2 password_2
g_drda a_drda_3 user_3 password_3

drda_1 a_drda_1 user_1 password_1
drda_2 a_drda_2 user_2 password_2
drda_3 a_drda_3 user_3 password_3

a_drda_1 a_drda_1 user_1 password_1
a_drda_2 a_drda_2 user_2 password_2
a_drda_3 a_drda_3 user_3 password_3

5. In each database server's onconfig file, set the DBSERVERALIASES parameter
to that database server's aliases.
The onconfig file entry for server_1:

23-46 IBM Informix Administrator's Guide

DBSERVERALIASES a_server_1,drda_1,a_drda_1

The onconfig file entry for server_2:
DBSERVERALIASES a_server_2,drda_2,a_drda_2

The onconfig file entry for server_3:
DBSERVERALIASES a_server_3,drda_3,a_drda_3

6. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:
NAME connection_manager_1

CLUSTER my_cluster
{

INFORMIXSERVER g_servers,g_drda
SLA sla_primary_1 DBSERVERS=PRI
SLA sla_primary_drda_1 DBSERVERS=PRI
SLA sla_secondaries_1 DBSERVERS=SDS,HDR
SLA sla_secondaries_drda_1 DBSERVERS=SDS,HDR

}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

CLUSTER my_cluster
{

INFORMIXSERVER g_servers,g_drda
SLA sla_primary_2 DBSERVERS=PRI
SLA sla_primary_drda_2 DBSERVERS=PRI
SLA sla_secondaries_2 DBSERVERS=SDS,HDR
SLA sla_secondaries_drda_2 DBSERVERS=SDS,HDR

}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_primary_1 onsoctcp cm_host_1 cm_port_1
sla_primary_2 onsoctcp cm_host_2 cm_port_2

sla_secondaries_2 onsoctcp cm_host_1 cm_port_3
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4

sla_primary_1_drda drsoctcp cm_host_1 cm_port_5
sla_primary_2_drda drsoctcp cm_host_2 cm_port_6

sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7
sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8

7. On the host of each client application, create sqlhosts file group entries for
each group of SLA entries, and add group options to the SLA entries. Use the
c=1 group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members.

#dbservername nettype hostname servicename options
g_primary group - - c=1,e=sla_primary_2
sla_primary_1 onsoctcp cm_host_1 cm_port_1 g=g_primary
sla_primary_2 onsoctcp cm_host_2 cm_port_2 g=g_primary

g_secondaries group - - c=1,e=sla_secondaries_2
sla_secondaries_2 onsoctcp cm_host_1 cm_port_3 g=g_secondaries
sla_secondaries_2 onsoctcp cm_host_2 cm_port_4 g=g_secondaries

g_primary_drda group - - c=1,e=sla_primary_2_drda
sla_primary_1_drda drsoctcp cm_host_1 cm_port_5 g=g_primary_drda
sla_primary_2_drda drsoctcp cm_host_2 cm_port_6 g=g_primary_drda

Chapter 23. Connection management through the Connection Manager 23-47

g_secondaries_drda group - - c=1,e=sla_secondaries_2_drda
sla_secondaries_2_drda drsoctcp cm_host_1 cm_port_7 g=g_secondaries_drda
sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8 g=g_secondaries_drda

Client connection requests to @g_primary_drda are sent by drsoctcp protocol to
one of the Connection Managers. If connection_manager_1 receives the request, it
uses sla_primary_1_drda to provide the client application with connection
information for the primary server. If connection_manager_2 receives the request,
it uses sla_primary_2_drda to provide the client application with connection
information for the primary server.
Related concepts:
“The sqlhosts information” on page 2-19
Related tasks:
“Configuring connectivity between Informix database servers and IBM Data Server
clients” on page 2-45
Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

Defining sqlhosts information for connection management of
grids and replicate sets
You must define sqlhosts network-connectivity information for connection
management of replicate sets or grids.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.
1. On the host of each Connection Manager and replication server, create sqlhosts

file entries for each replication server. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_2 port_2
server_3 onsoctcp host_3 port_3
server_4 onsoctcp host_4 port_4

2. On the host of each Connection Manager and replication server, create a
sqlhosts file group entry for each replication server. Add group options to each
replication-server entry. Use the i=unique_number group-entry option to assign
an identifier to the group for Enterprise Replication. Use the e=last_member
group-entry option so that the entire sqlhosts is not scanned for group
members. For example:
#dbservername nettype hostname servicename options
g_server_1 group - - i=1,e=server_1
server_1 onsoctcp host_1 port_1 g=g_server_1

g_server_2 group - - i=2,e=server_2
server_2 onsoctcp host_2 port_2 g=g_server_2

g_server_3 group - - i=3,e=server_3
server_3 onsoctcp host_3 port_3 g=g_server_3

g_server_4 group - - i=4,e=server_4
server_4 onsoctcp host_4 port_4 g=g_server_4

3. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

23-48 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

NAME connection_manager_1

REPLSET my_replset
{

INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
SLA sla_1 DBSERVERS=ANY

}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

REPLSET my_replset
{

INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
SLA sla_2 DBSERVERS=ANY

}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_1 onsoctcp cm_host_1 cm_port_1
sla_2 onsoctcp cm_host_2 cm_port_2

4. On the host of each client application, create sqlhosts file group entries for
each group of SLA entries, and add group options to the SLA entries. Use the
c=1 group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:
#dbservername nettype hostname servicename options
g_sla onsoctcp - - c=1,e=sla_2
sla_1 onsoctcp cm_host_1 cm_port_1 g=g_sla
sla_2 onsoctcp cm_host_2 cm_port_2 g=g_sla

Client connection requests to @g_sla are directed to one of the Connection
Managers. If connection_manager_1 receives the request, it uses sla_1 to provide
the client application with connection information for the primary server. If
connection_manager_2 receives the request, it uses sla_2 to provide the client
application with connection information for a replication server.
Related concepts:
“The sqlhosts information” on page 2-19
Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

Defining sqlhosts information for connection management of
grids and replicate sets that use secure ports
You must define sqlhosts network-connectivity information for connection
management of replicate sets or grids. If Connection Managers, database servers,
or client applications are outside of a trusted network, you must also create an
encrypted password file for security.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.
1. On the host of each Connection Manager and replication server, create sqlhosts

file entries for each replication server, and specify the s=6 secure-port option.
For example:

Chapter 23. Connection management through the Connection Manager 23-49

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268

#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
server_2 onsoctcp host_2 port_3 s=6
server_3 onsoctcp host_3 port_5 s=6
server_4 onsoctcp host_4 port_7 s=6

2. On the host of each Connection Manager and replication server, create a
sqlhosts file alias entry for each replication server. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
a_server_1 onsoctcp host_1 port_2

server_2 onsoctcp host_2 port_3 s=6
a_server_2 onsoctcp host_2 port_4

server_3 onsoctcp host_3 port_5 s=6
a_server_3 onsoctcp host_3 port_6

server_4 onsoctcp host_4 port_7 s=6
a_server_4 onsoctcp host_4 port_8

The aliases are used by the cdr utility, which cannot connect to a secure port.
3. On the host of each Connection Manager and replication server, create a

sqlhosts file group entry for each replication server and alias pair. Use the
i=unique_number group-entry option to assign an identifier to the group for
Enterprise Replication. Add group options to each replication server and alias
entry. Use the e=last_member group-entry option so that the entire sqlhosts is
not scanned for group members. For example:
#dbservername nettype hostname servicename options
g_server_1 group - - i=1,e=a_server_1
server_1 onsoctcp host_1 port_1 g=g_server_1,s=6
a_server_1 onsoctcp host_1 port_2 g=g_server_1

g_server_2 group - - i=2,e=a_server_2
server_2 onsoctcp host_2 port_3 g=g_server_2,s=6
a_server_2 onsoctcp host_2 port_4 g=g_server_2

g_server_3 group - - i=3,e=a_server_3
server_3 onsoctcp host_3 port_5 g=g_server_3,s=6
a_server_3 onsoctcp host_3 port_6 g=g_server_3

g_server_4 group - - i=4,e=a_server_4
server_4 onsoctcp host_4 port_7 g=g_server_4,s=6
a_server_4 onsoctcp host_4 port_8 g=g_server_4

A password file that is encrypted through the onpassword utility is required
for connectivity through secure ports. The entries in the previously shown
sqlhosts file are represented in the following password file.
g_server_1 a_server_1 user_1 my_password_1
server_1 a_server_1 user_1 my_password_1
a_server_1 a_server_1 user_1 my_password_1

g_server_2 a_server_2 user_2 my_password_2
server_2 a_server_2 user_2 my_password_2
a_server_2 a_server_2 user_2 my_password_2

g_server_3 a_server_3 user_3 my_password_3
server_3 a_server_3 user_3 my_password_3
a_server_3 a_server_3 user_3 my_password_3

g_server_4 a_server_4 user_4 my_password_4
server_4 a_server_4 user_4 my_password_4
a_server_4 a_server_4 user_4 my_password_4

23-50 IBM Informix Administrator's Guide

4. In each replication server's onconfig file, set the DBSERVERALIASES parameter
to that database server's aliases.
The onconfig file entry for server_1:
DBSERVERALIASES a_server_1

The onconfig file entry for server_2:
DBSERVERALIASES a_server_2

The onconfig file entry for server_3:
DBSERVERALIASES a_server_3

The onconfig file entry for server_4:
DBSERVERALIASES a_server_4

5. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:
NAME connection_manager_1

REPLSET my_replset
{

INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
SLA sla_1 DBSERVERS=ANY

}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

REPLSET my_replset
{

INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
SLA sla_2 DBSERVERS=ANY

}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_1 onsoctcp cm_host_1 cm_port_1
sla_2 onsoctcp cm_host_2 cm_port_2

6. On the host of each client application, create sqlhosts file group entries for
each group of SLA entries, and add group options to the SLA entries. Use the
c=1 group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:
#dbservername nettype hostname servicename options
g_sla group - - c=1,e=sla_2
sla_1 onsoctcp cm_host_1 cm_port_1 g=g_sla
sla_2 onsoctcp cm_host_2 cm_port_2 g=g_sla

Client connection requests to @g_sla are directed to one of the Connection
Managers. If connection_manager_1 receives the request, it uses sla_1 to provide
the client application with connection information for the primary server. If
connection_manager_2 receives the request, it uses sla_2 to provide the client
application with connection information for the primary server.
Related concepts:
“The sqlhosts information” on page 2-19
Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

Chapter 23. Connection management through the Connection Manager 23-51

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

Defining sqlhosts information for connection management
high-availability replication systems
You must define sqlhosts network-connectivity information for connection
management of high-availability replication systems.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.

For this example, you are setting up Enterprise Replication between the primary
servers of three high-availability clusters.

Cluster 1:
v server_1 (primary)
v server_2 (SD secondary)
v server_3 (HDR secondary)
v server_4 (RS secondary)

Cluster 2:
v server_5 (primary)
v server_6 (SD secondary)
v server_7 (HDR secondary)
v server_8 (RS secondary)

Cluster 3:
v server_9 (primary)
v server_10 (SD secondary)
v server_11 (HDR secondary)
v server_12 (RS secondary)
1. On the host of each Connection Manager and database server, create sqlhosts

file entries for each server. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_1 port_2
server_3 onsoctcp host_2 port_3
server_4 onsoctcp host_3 port_4

server_5 onsoctcp host_4 port_5
server_6 onsoctcp host_4 port_6
server_7 onsoctcp host_5 port_7
server_8 onsoctcp host_6 port_8

server_9 onsoctcp host_7 port_9
server_10 onsoctcp host_7 port_10
server_11 onsoctcp host_8 port_11
server_12 onsoctcp host_9 port_12

2. On the host of each Connection Manager and database server, create a sqlhosts
file group entry for each replication-server entry and each cluster. Add group
options to each database server entry. Use the i=unique_number group-entry
option to assign an identifier to the group for Enterprise Replication. Use the
c=1 group-entry option for cluster groups, so that connection-attempt starting
points in the list of group members is random. Use the e=last_member
group-entry option so that the entire sqlhosts is not scanned for group
members. For example:

23-52 IBM Informix Administrator's Guide

#dbservername nettype hostname servicename options
cluster_1 group - - i=1,c=1,e=server_4
server_1 onsoctcp host_1 port_1 g=cluster_1
server_2 onsoctcp host_1 port_2 g=cluster_1
server_3 onsoctcp host_2 port_3 g=cluster_1
server_4 onsoctcp host_3 port_4 g=cluster_1

cluster_2 group - - i=2,c=1,e=server_8
server_5 onsoctcp host_4 port_5 g=cluster_2
server_6 onsoctcp host_4 port_6 g=cluster_2
server_7 onsoctcp host_5 port_7 g=cluster_2
server_8 onsoctcp host_6 port_8 g=cluster_2

cluster_3 group - - i=3,c=1,e=server_12
server_9 onsoctcp host_7 port_9 g=cluster_3
server_10 onsoctcp host_7 port_10 g=cluster_3
server_11 onsoctcp host_8 port_11 g=cluster_3
server_12 onsoctcp host_9 port_12 g=cluster_3

3. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

REPLSET my_replset
{

INFORMIXSERVER cluster_1,cluster_2,cluster_3
SLA sla_1 DBSERVERS=ANY

}

CLUSTER my_cluster_1
{

INFORMIXSERVER cluster_1
FOC ORDER=ENABLED \

PRIORITY=1
}

CLUSTER my_cluster_2
{

INFORMIXSERVER cluster_2
FOC ORDER=ENABLED \

PRIORITY=1
}

CLUSTER my_cluster_3
{

INFORMIXSERVER cluster_3
FOC ORDER=ENABLED \

PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

REPLSET my_replset
{

INFORMIXSERVER cluster_1,cluster_2,cluster_3
SLA sla_2 DBSERVERS=ANY

}

CLUSTER my_cluster_1
{

INFORMIXSERVER cluster_1
FOC ORDER=ENABLED \

PRIORITY=2
}

Chapter 23. Connection management through the Connection Manager 23-53

CLUSTER my_cluster_2
{

INFORMIXSERVER cluster_2
FOC ORDER=ENABLED \

PRIORITY=2
}

CLUSTER my_cluster_3
{

INFORMIXSERVER cluster_3
FOC ORDER=ENABLED \

PRIORITY=2
}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_1 onsoctcp cm_host_1 cm_port_1
sla_2 onsoctcp cm_host_2 cm_port_2

4. On the host of each client application, create sqlhosts file group entries for
each group of SLA entries, and add group options to the SLA entries. Use the
c=1 group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:
#dbservername nettype hostname servicename options
g_sla onsoctcp - - c=1,e=sla_2
sla_1 onsoctcp cm_host_1 cm_port_1 g=g_sla
sla_2 onsoctcp cm_host_2 cm_port_2 g=g_sla

Client connection requests to @g_sla are directed to one of the Connection
Managers. If connection_manager_1 receives the request, it uses sla_1 to provide
the client application with connection information for the primary server. If
connection_manager_2 receives the request, it uses sla_2 to provide the client
application with connection information for a replication server.
Related concepts:

High-availability replication systems (Enterprise Replication Guide)
“The sqlhosts information” on page 2-19
Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

Defining sqlhosts information for connection management of
high-availability replication systems that use secure ports
You must define sqlhosts network-connectivity information for connection
management of high-availability replication systems. If Connection Managers,
database servers, or client applications are outside of a trusted network, you must
also create an encrypted password file for security.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.

For this example, you are setting up Enterprise Replication between the primary
servers of two high-availability clusters.

Cluster 1:
v server_1 (primary)
v server_2 (SD secondary)

23-54 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_154.htm#ids_erp_154
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268

v server_3 (HDR secondary)
v server_4 (RS secondary)

Cluster 2:
v server_5 (primary)
v server_6 (SD secondary)
v server_7 (HDR secondary)
v server_8 (RS secondary)
1. On the host of each Connection Manager and database server, create sqlhosts

file entries for each database server. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
server_2 onsoctcp host_1 port_2 s=6
server_3 onsoctcp host_2 port_3 s=6
server_4 onsoctcp host_3 port_4 s=6

server_5 onsoctcp host_4 port_5 s=6
server_6 onsoctcp host_4 port_6 s=6
server_7 onsoctcp host_5 port_7 s=6
server_8 onsoctcp host_6 port_8 s=6

2. On the host of each Connection Manager and database server, create a sqlhosts
file alias entry for each database server. For example:
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
a_server_1 onsoctcp host_1 port_9

server_2 onsoctcp host_1 port_2 s=6
a_server_2 onsoctcp host_1 port_10

server_3 onsoctcp host_2 port_3 s=6
a_server_3 onsoctcp host_2 port_11

server_4 onsoctcp host_3 port_4 s=6
a_server_4 onsoctcp host_3 port_12

server_5 onsoctcp host_4 port_5 s=6
a_server_5 onsoctcp host_4 port_13

server_6 onsoctcp host_4 port_6 s=6
a_server_6 onsoctcp host_4 port_14

server_7 onsoctcp host_5 port_7 s=6
a_server_7 onsoctcp host_5 port_15

server_8 onsoctcp host_6 port_8 s=6
a_server_8 onsoctcp host_6 port_16

The aliases are used by the cdr utility, which cannot connect to a secure port.
3. On the host of each Connection Manager and database server, create a sqlhosts

file group entry for each cluster. Add group options to each database server
entry. Use the i=unique_number group-entry option to assign an identifier to the
group for Enterprise Replication. Use the c=1 group-entry option for cluster
groups, so that connection-attempt starting points in the list of group members
is random. Use the e=last_member group-entry option so that the entire
sqlhosts is not scanned for group members. For example:

#dbservername nettype hostname servicename options
cluster_1 group - - i=1,c=1,e=a_server_4
server_1 onsoctcp host_1 port_1 s=6,g=cluster_1
a_server_1 onsoctcp host_1 port_9 g=cluster_1

Chapter 23. Connection management through the Connection Manager 23-55

server_2 onsoctcp host_1 port_2 s=6,g=cluster_1
a_server_2 onsoctcp host_1 port_10 g=cluster_1
server_3 onsoctcp host_2 port_3 s=6,g=cluster_1
a_server_3 onsoctcp host_2 port_11 g=cluster_1
server_4 onsoctcp host_3 port_4 s=6,g=cluster_1
a_server_4 onsoctcp host_3 port_12 g=cluster_1

cluster_2 group - - i=1,c=1,e=a_server_8
server_5 onsoctcp host_4 port_5 s=6,g=cluster_2
a_server_5 onsoctcp host_4 port_13 g=cluster_2
server_6 onsoctcp host_4 port_6 s=6,g=cluster_2
a_server_6 onsoctcp host_4 port_14 g=cluster_2
server_7 onsoctcp host_5 port_7 s=6,g=cluster_2
a_server_7 onsoctcp host_5 port_15 g=cluster_2
server_8 onsoctcp host_6 port_8 s=6,g=cluster_2
a_server_8 onsoctcp host_6 port_16 g=cluster_2

A password file that is encrypted through the onpassword utility is required
for connectivity through secure ports. The entries in the previously shown
sqlhosts file are represented in the following password file.
cluster_1 a_server_1 user_1 password_1
cluster_1 a_server_2 user_2 password_2
cluster_1 a_server_3 user_3 password_3
cluster_1 a_server_4 user_4 password_4

cluster_2 a_server_5 user_5 password_5
cluster_2 a_server_6 user_6 password_6
cluster_2 a_server_7 user_7 password_7
cluster_2 a_server_8 user_8 password_8

server_1 a_server_1 user_1 password_1
server_2 a_server_2 user_2 password_2
server_3 a_server_3 user_3 password_3
server_4 a_server_4 user_4 password_4
server_5 a_server_5 user_5 password_5
server_6 a_server_6 user_6 password_6
server_7 a_server_7 user_7 password_7
server_8 a_server_8 user_8 password_8

a_server_1 a_server_1 user_1 password_1
a_server_2 a_server_2 user_2 password_2
a_server_3 a_server_3 user_3 password_3
a_server_4 a_server_4 user_4 password_4
a_server_5 a_server_5 user_5 password_5
a_server_6 a_server_6 user_6 password_6
a_server_7 a_server_7 user_7 password_7
a_server_8 a_server_8 user_8 password_8

4. In each database server's onconfig file, set the DBSERVERALIASES parameter
to that database server's aliases. For example:
The onconfig file entry for server_1:
DBSERVERALIASES a_server_1

5. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:
NAME connection_manager_1

REPLSET my_replset
{

INFORMIXSERVER cluster_1,cluster_2
SLA sla_1 DBSERVERS=ANY

}

CLUSTER my_cluster_1

23-56 IBM Informix Administrator's Guide

{
INFORMIXSERVER cluster_1
FOC ORDER=ENABLED \

PRIORITY=1
}

CLUSTER my_cluster_2
{

INFORMIXSERVER cluster_2
FOC ORDER=ENABLED \

PRIORITY=1
}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2

REPLSET my_replset
{

INFORMIXSERVER cluster_1,cluster_2
SLA sla_2 DBSERVERS=ANY

}

CLUSTER my_cluster_1
{

INFORMIXSERVER cluster_1
FOC ORDER=ENABLED \

PRIORITY=2
}

CLUSTER my_cluster_2
{

INFORMIXSERVER cluster_2
FOC ORDER=ENABLED \

PRIORITY=2
}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_1 onsoctcp cm_host_1 cm_port_1
sla_2 onsoctcp cm_host_2 cm_port_2

6. On the host of each client application, create sqlhosts file group entries for
each group of SLA entries, and add group options to the SLA entries. Use the
c=1 group-entry option, so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:
#dbservername nettype hostname servicename options
g_sla onsoctcp - - c=1,e=sla_2
sla_1 onsoctcp cm_host_1 cm_port_1 g=g_sla
sla_2 onsoctcp cm_host_2 cm_port_2 g=g_sla

Client connection requests to @g_sla are directed to one of the Connection
Managers. If connection_manager_1 receives the request, it uses sla_1 to provide
the client application with connection information for the primary server. If
connection_manager_2 receives the request, it uses sla_2 to provide the client
application with connection information for a replication server.
Related concepts:

High-availability replication systems (Enterprise Replication Guide)
“The sqlhosts information” on page 2-19
Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

Chapter 23. Connection management through the Connection Manager 23-57

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_154.htm#ids_erp_154
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268

DBSERVERALIASES configuration parameter (Administrator's Reference)

Defining sqlhosts information for connection management of
server sets
You must define sqlhosts network-connectivity information for connection
management of server sets.

The Connection Manager's sqlhosts file must contain entries for all database
servers that it connects to.

To use a file other than $INFORMIXDIR/etc/sqlhosts on a specific host, set the host's
INFORMIXSQLHOSTS environment variable to the alternative file.
1. On the host of each Connection Manager and database server, create sqlhosts

file entries for each database server. For example:
#dbservername nettype hostname servicename options
standalone_1 onsoctcp host_1 port_1

standalone_2 onsoctcp host_2 port_2

standalone_3 onsoctcp host_3 port_3

2. On the host of each client application, create an sqlhosts file entry for each
service-level agreement (SLA) in each Connection Manager configuration file.
The first Connection Manager's configuration file has the following entries:
NAME connection_manager_1
MACRO servers=standalone_1,standalone_2,standalone_3

SERVERSET ${servers}
{

INFORMIXSERVER ${servers}
SLA sla_1a DBSERVERS=standalone_1
SLA sla_2a DBSERVERS=standalone_2
SLA sla_3a DBSERVERS=standalone_3

}

The second Connection Manager's configuration file has the following entries:
NAME connection_manager_2
MACRO servers=standalone_1,standalone_2,standalone_3

SERVERSET ${servers}
{

INFORMIXSERVER ${servers}
SLA sla_1b DBSERVERS=standalone_1
SLA sla_2b DBSERVERS=standalone_2
SLA sla_3b DBSERVERS=standalone_3

}

Add the following entries to each client application's host sqlhosts file:
#dbservername nettype hostname servicename options
sla_1a onsoctcp cm_host_1 cm_port_1
sla_1b onsoctcp cm_host_2 cm_port_2

sla_2a onsoctcp cm_host_1 cm_port_3
sla_2b onsoctcp cm_host_2 cm_port_4

sla_3a onsoctcp cm_host_1 cm_port_5
sla_3b onsoctcp cm_host_2 cm_port_6

3. On the host of each client application, create sqlhosts file group entries for
each group of SLA entries, and add group options to the SLA entries. Use the
c=1 group-entry option so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:

23-58 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

#dbservername nettype hostname servicename options
sla_1 group - - c=1,e=sla_1b
sla_1a onsoctcp cm_host_1 cm_port_1 g=sla_1
sla_1b onsoctcp cm_host_2 cm_port_2 g=sla_1

sla_2 group - - c=1,e=sla_2b
sla_2a onsoctcp cm_host_1 cm_port_3 g=sla_2
sla_2b onsoctcp cm_host_2 cm_port_4 g=sla_2

sla_3 group - - c=1,e=sla_3b
sla_3a onsoctcp cm_host_1 cm_port_5 g=sla_3
sla_3b onsoctcp cm_host_2 cm_port_6 g=sla_3

Client connection requests to @sla_1 are directed to one of the Connection
Managers. If connection_manager_1 receives the request, it uses sla_1a to provide
the client application with connection information for the primary server. If
connection_manager_2 receives the request, it uses sla_1b to provide the client
application with connection information for a replication server.
Related concepts:
“The sqlhosts information” on page 2-19
Related reference:
“Group information” on page 2-32

INFORMIXSQLHOSTS environment variable (SQL Reference)

Creating a password file for connecting to database servers
on untrusted networks

If a client, Connection Manager, or any of the database servers that a Connection
Manager connects to are on an untrusted network, you can create encrypted
password files to verify connection requests.

In certain situations, an encrypted password file is required for trusted network
environments, such as when a local system account attempts to connect to a
database server in a high-availability cluster or Enterprise Replication domain, or
when the user ID does not exist on a database server. The password file provides
the correct system-level access, so that a local system account or a Windows
account can connect directly to a remote server.

The password file has separate entries for the following items:
v Each Enterprise Replication group
v Each High-availability cluster group
v Each High-availability cluster server
v Each Enterprise Replication server that is in a group that is also configured for

high-availability
v Each database server's alternative server alias, if the database server is using a

secure port for communication

A password file entry contains the following information:
v The name of an alternative server to connect to if a connection cannot be made

to the listed server or group. For example, alternative_server_name is used when
server_or_group_name uses a secure port, as specified by the s=6 option in an
sqlhosts file entry.

v The user ID for a database server or the database servers in a group. User IDs
must have the following privileges:

Chapter 23. Connection management through the Connection Manager 23-59

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268

– Permission to connect to the sysadmin database
– CONNECT permission on the remote servers
– On UNIX operating systems, membership in the group informix DBSA group
– On Windows operating systems, membership in the Informix-Admin DBSA

group

Only user informix has all of these privileges by default
v The password for a server
1. On a Connection Manager host, use a text editor to create an ASCII text file to

be used as a password file. Save the file to the $INFORMIXDIR/tmp directory. If
you have a high-availability replication system, your password file contains
password information for replication servers and cluster servers.

Note: The password file must not contain comments.
The replication-server entries of the password file have the following format:

group_name database_server_alias user_name database_server_password
database_server_name database_server_alias user_name database_server_password
database_server_alias database_server_alias user_name database_server_password

For example:
group_1 unsecure_server_alias_1 user_1 password_1
server_1 unsecure_server_alias_1 user_1 password_1
alias_1 unsecure_server_alias_1 user_1 password_1

group_2 unsecure_server_alias_2 user_2 password_2
server_2 unsecure_server_alias_2 user_2 password_2
alias_2 unsecure_server_alias_2 user_2 password_2

group_n unsecure_server_alias_n user_n password_n
server_n unsecure_server_alias_n user_n password_n
alias_n unsecure_server_alias_n user_n password_n

The cluster-server entries of the password file have the following format:
alias_group_name db_server_alias user_name db_server_password

db_server_name db_server_alias user_name db_server_password

For example:
alias_group_1 unsecure_alias_1 user_1 password_1
alias_group_1 unsecure_alias_2 user_2 password_2
alias_group_1 unsecure_alias_n user_n password_n

alias_group_2 unsecure_alias_1 user_1 password_1
alias_group_2 unsecure_alias_2 user_2 password_2
alias_group_2 unsecure_alias_n user_n password_n

alias_group_n unsecure_alias_1 user_1 password_1
alias_group_n unsecure_alias_2 user_2 password_2
alias_group_n unsecure_alias_n user_n password_n

server_1 unsecure_alias_1 user_1 password_1
server_2 unsecure_alias_2 user_2 password_2
server_n unsecure_alias_n user_n password_n

2. Encrypt the password file with the onpassword utility and an encryption key.
For example, if your password file is $INFORMIXDIR/tmp/my_passwords.txt, and
the encryption key you want to use is my_secret_encryption_key_efgh, run the
following command:
onpassword -k my_secret_encryption_key_efgh -e my_passwords.txt

This example creates the encrypted passwd_file file in the $INFORMIXDIR/etc
directory. To later decrypt the password file, you must enter the same key that
was used to encrypt the password file. If you lose the encryption key that was

23-60 IBM Informix Administrator's Guide

used to encrypt a password file, re-encrypt the original ASCII text password
file. If the ASCII text password file was deleted, you must create a new one.

3. Distribute $INFORMIXDIR/etc/passwd_file to all the database servers that
Connection Managers or the cdr utility connects to, and to all Connection
Managers.

Note: An encrypted password file that is created on one type of operating
system is not supported on a different type of operating system. On each
operating system, you must run the onpassword utility with the same text file
and encryption key.

Related tasks:
“Example: Configuring connection management for untrusted networks” on page
23-75
Related reference:

The onpassword utility (Administrator's Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

Modifying encrypted password information
Modify the information in the encrypted passwd_file file by running the
onpassword utility.

Modify the encrypted passwd_file file when the following events occur:
v Database servers are added to or removed from a high-availability cluster or

replication domain
v sqlhosts file server aliases or groups change
v User IDs or server passwords change
v You want to change your encryption key
1. Decrypt the passwd_file file by running onpassword utility, specifying the

previously used encryption key and a name for the output file. For example, if
you previously encrypted the file, and used my_secret_encryption_key_asdf as
the encryption key, run the following command:
onpassword -k my_secret_encryption_key_asdf -d my_passwords.txt

The onpassword utility creates the ASCII text my_passwords.txt output file in
the $INFORMIXDIR/etc directory.

2. Optional: Open the file with a text editor, and modify the information in the
file.

3. Encrypt the password file with the onpassword utility, specifying an encryption
key and the name of the text file. For example:
onpassword -k my_secret_encryption_key_lmnop -e my_passwords.txt

This example uses the new encryption key, my_secret_encryption_key_lmnop,
and creates the encrypted passwd_file file in the $INFORMIXDIR/etc directory.

4. Redistribute passwd_file to all the database servers that the Connection
Manager or cdr utility connects to, replacing the previous $INFORMIXDIR/etc/
passwd_file files. If you update the passwd_file on multiple operating systems,
you must run the onpassword utility on each type of operating system, and
use the same text file and encryption key.

Related reference:

The onpassword utility (Administrator's Reference)

Chapter 23. Connection management through the Connection Manager 23-61

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0620.htm#ids_adr_0620
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0620.htm#ids_adr_0620

Starting Connection Managers on UNIX and Linux
Use the oncmsm utility to start a Connection Manager.

A Connection Manager can be started before the database servers it manages are
started. If a connection unit is managed by a Connection Manager, the Connection
Manager connects to database servers in the connection unit after the database
servers start.

If the database servers of a connection unit are online before a Connection
Manager is initialized, start the Connection Manager, and then direct client
application requests to the Connection Manager instead of the database servers.
1. Start the Connection Manager by running the oncmsm utility with the c

parameter and the name of the Connection Manager configuration file.
oncmsm -c configuration_file

The default location for the configuration file is the $INFORMIXDIR/etc directory.
2. If you enabled Connection Manager logging by setting the LOG and LOGFILE

parameters in the Connection Manager's configuration file, check the log to
verify that the Connection Manager successfully started. The following message
displays is the Connection Manager started:
Connection Manager started successfully

After a Connection Manager initializes, it attempts to connect to the database
servers or groups of database servers that are specified by the INFORMIXSERVER
parameter in the Connection Manager's configuration file. The Connection
Manager then searches for and connects to all the database servers that are in each
specified server's cluster, grid, or replicate set.
Related reference:

The oncmsm utility (Administrator's Reference)

Starting Connection Managers on Windows
Use the oncmsm utility to start a Connection Manager.

A Connection Manager can be started before the database servers it manages are
started. If a connection unit is managed by a Connection Manager, the Connection
Manager connects to database servers in the connection unit after the database
servers start.

If the database servers of a connection unit are online before a Connection
Manager is initialized, start the Connection Manager, and then direct client
application requests to the Connection Manager instead of the database servers.
1. Install the Connection Manager as a service by running the oncmsm utility

with the i parameter, the c parameter, and the name of the Connection Manager
configuration file.
oncmsm -i -c configuration_file

The default location for the configuration file is the %INFORMIXDIR%\etc
directory.

2. Initialize the Connection Manager by running the oncmsm utility with the
name of the Connection Manager that is specified in the Connection Manager
configuration file.
oncmsm connection_manager_name

23-62 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128

The following message is displayed:
Specify the user and password to run this service.
Press <ENTER> to run Connection Manager as ’localsystem’

3. Enter the informix user ID and password, or press Enter to automatically
create an informix-admin group and assign it access rights.

4. If you enabled Connection Manager logging by setting the LOG and LOGFILE
parameters in the Connection Manager's configuration file, check the log to
verify that the Connection Manager successfully started. The following message
displays if the Connection Manager started:
Connection Manager started successfully

After a Connection Manager initializes, it attempts to connect to the database
servers or groups of database servers that are specified by the INFORMIXSERVER
parameter in the Connection Manager's configuration file. The Connection
Manager then searches for and connects to all the database servers that are in each
specified server's cluster, grid, or replicate set.
Related reference:

The oncmsm utility (Administrator's Reference)

Stopping connection management
When you no longer want a Connection Manager to manage connection units, run
the oncmsm utility to stop the Connection Manager instance.

If you are using multiple Connection Managers, you can run onstat -g cmsm to
display the names of Connection Manager instances.
1. Log on to the computer on which the Connection Manager instance is running.
2. Run the oncmsm utility with the -k parameter. For example:

oncmsm -k connection_manager_name

3. If quality of data (QOD) monitoring is turned on, and you want to stop it, run
the cdr stop qod command on the master server. For example:
cdr stop qod -c server_1

The Connection Manager stops.

To unistall a stopped Connection Manager from a Windows operating system, run
the following command on the computer that the Connection Manager is installed
on:
oncmsm -u connection_manager_name

Related reference:

The oncmsm utility (Administrator's Reference)

Monitoring and troubleshooting connection management
Tools are available to monitor connection management, and help you diagnose
potential problems.

The following options are available for connection management monitoring and
troubleshooting:
v Use the IBM OpenAdmin Tool (OAT) for Informix to monitor connection

management.

Chapter 23. Connection management through the Connection Manager 23-63

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128

v Set the LOG and LOGFILE parameters in Connection Manager configuration
files. Log files contain information about service level agreements, failover
configuration, and status information. The location of the log file is displayed
when the Connection Manager is started.

v Run onstat -g cmsm to display information about Connection Manager
instances.

v Set the CMALARMPROGRAM parameter in Connection Manager configuration
files, and configure the cmalarmprogram script to handle event alarms.

v If the Connection Manager raises an event alarm:
– The INFORMIXCMNAME environment variable stores the name of the Connection

Manager instance that raised the alarm.
– TheINFORMIXCMCONUNITNAME environment variable stores the name of the

Connection Manager connection unit that raised the alarm.
Related concepts:

Managing client connections (Informix Replication Plug-in for OAT)
Related reference:

The oncmsm utility (Administrator's Reference)

onstat -g cmsm command: Print Connection Manager information
(Administrator's Reference)

Strategies for increasing availability with Connection Managers
You can increase the resiliency of your client/server communication environment.

Install multiple network-interface cards (NICs) on client,
Connection Manager, and database-server hosts

You can prevent a network-connectivity failure by installing multiple NICs on each
host in a connection-management domain. If a NIC fails, the host can use other
available NICs.

Install multiple Connection Managers

You can prevent a Connection Manager from becoming a single point of failure in
your system by installing multiple Connection Managers to manage a domain.

Install Connection Managers separate from database servers

To prevent simultaneous Connection Manager and database server failure if a host
fails, install Connection Managers on hosts that are not running database servers.

Use keywords in Connection Manager service-level-agreements

If a Connection Manager manages a high-availability cluster, you can use the
cluster keywords to maintain connection consistency after failover. If database
servers in a cluster switch roles after failover, the Connection Manager can use
cluster keywords to continue directing client connection requests to the appropriate
cluster-server type.

The cluster keywords are:
v HDR - High-availability data replication server
v RSS - Remote standalone secondary server

23-64 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.oat_er.doc/ids_oer_115.htm#ids_oer_115.dita
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1130.htm#ids_adr_1130
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1130.htm#ids_adr_1130

v SDS - Shared-disk secondary server
v PRI - Primary server
v PRIMARY - Primary server

Use group entries in sqlhosts files and Connection Manager
configuration files

Create database-server groups in the host sqlhosts file of each Connection
Manager that manages a high-availability cluster. Then, specify sqlhosts groups,
rather than individual server names, in Connection Manager configuration files. If
you specify database server names for a connection unit's INFORMIXSERVER
parameter, and those specified servers are offline when a Connection Manager
restarts, the Connection Manager is unable to reconnect to the cluster. If you
specify a sqlhosts group for a connection unit's INFORMIXSERVER parameter,
and at least one of the group's database servers is online when a Connection
Manager restarts, the Connection Manager can reconnect to the cluster.

Specify the c=1 option for sqlhosts group entries so that the connection-attempt
starting point for a list of group members is random. For example:
#dbservername nettype hostname servicename options
my_servers - - c=1
server_1 onsoctcp host_1 port_1 g=my_servers
server_2 onsoctcp host_2 port_2 g=my_servers
server_3 onsoctcp host_3 port_3 g=my_servers

Related concepts:
“The sqlhosts information” on page 2-19
Related reference:
“Group information” on page 2-32

HA_FOC_ORDER configuration parameter (Administrator's Reference)

Configuration examples for connection management
The following examples show steps for setting up connection management for
various connection units and various systems.

You can use these examples as a basis for developing your own
connection-management system.

Example of configuring connection management for a
high-availability cluster

This example shows steps that are required to configure connection management
for a high-availability cluster.

For this example, you have a high-availability cluster on a trusted network. The
cluster consists of three servers:
v A primary server (server_1)
v A shared-disk secondary server (server_2)
v An HDR secondary server (server_3)

The cluster supports the following application services:
v Online transaction processing (OLTP), which runs only on the primary server
v Payroll services, which can run on the primary server or HDR secondary server

Chapter 23. Connection management through the Connection Manager 23-65

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1158.htm#ids_adr_1158

v Reporting services, which can run on any of the secondary servers

Your system has the following needs:
v The database servers' workloads are balanced.
v The Connection Managers control failover.
v If failover occurs, the SD secondary server takes priority over the HDR

secondary server.
v If the primary server fails, the Connection Managers can still connect to the

cluster after restarting.
v The system can withstand the failure of a Connection Manager.
v The system can withstand a network-interface card (NIC) failure on each host.

To configure connection management:
1. Install at least two network interface cards on each host. This prevents the

failure of a network interface card from causing Connection Manager or
database server failure.

2. Install two Connection Managers. Install each Connection Manager onto a
different host, and do not install the Connection Managers onto the hosts that
database servers are installed on. This installation strategy prevents a
Connection Manager from becoming a single point of failure, and prevents the
simultaneous failure of database servers and Connection Managers if a host
fails.
You can install Connection Managers on application-server hosts if you want
to prioritize an application server's connectivity to the primary cluster server.

3. On each host Connection Manager host, set the INFORMIXDIR environment to
the directory the Connection Manager was installed into. Run the following
command:
setenv INFORMIXDIR path

4. Create a configuration file in each Connection Manager installation's
$INFORMIXDIR/etc directory.
The first Connection Manager's configuration file is named cm_1.cfg and has
the following entries:
NAME connection_manger_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm1_log.log
LOCAL_IP 192.0.2.0,192.0.2.1

CLUSTER cluster_1
{

INFORMIXSERVER servers_1
SLA oltp_1 DBSERVERS=primary
SLA payroll_1 DBSERVERS=(PRI,HDR) \

POLICY=WORKLOAD
SLA report_1 DBSERVERS=(SDS,HDR) \

POLICY=WORKLOAD
FOC ORDER=ENABLED \

PRIORITY=1
CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh

}

The second Connection Manager's configuration file is named cm_2.cfg and
has the following entries:
NAME connection_manger_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm2_log.log
LOCAL_IP 192.0.2.2,192.0.2.3

23-66 IBM Informix Administrator's Guide

CLUSTER cluster_1
{

INFORMIXSERVER cluster_1
SLA oltp_2 DBSERVERS=primary
SLA payroll_2 DBSERVERS=(PRI,HDR)\

POLICY=WORKLOAD
SLA report_2 DBSERVERS=(SDS,HDR) \

POLICY=WORKLOAD
FOC ORDER=ENABLED \

PRIORITY=2
CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh

}

The configuration file specifies the following information and behavior:
v Logging is enabled, and the log files are $INFORMIXDIR/tmp/my_cm1_log.log

and $INFORMIXDIR/tmp/my_cm2_log.log.
v connection_manager_1 monitors 192.0.2.0 and 192.0.2.1 and

connection_manager_2 monitors 192.0.2.2 and 192.0.2.3 for network failure.
v When the Connection Managers start, they each search their sqlhosts files

for cluster_1 entry, and then connect to the servers in that group.
v CONNECT TO @oltp_1 and CONNECT TO @oltp_2 connection requests are

directed to the primary server.
v CONNECT TO @payroll_1 and CONNECT TO @payroll_2 connection requests are

directed to whichever of the primary and HDR secondary servers has the
lowest workload.

v CONNECT TO @report_1 and CONNECT TO @report_2 connection requests are
directed to the secondary server that has the lowest workload.

v The connection between connection_manager_1 and the primary server is
prioritized over the connection between connection_manager_2 and the
primary server. Failover that would break the connectivity between
connection_manager_1 and the primary server is blocked.

v If failover processing fails after eight attempts, $INFORMIXDIR/etc/
CMALARMPROGRAM.sh is called.

Certain parameters and attributes are not included in this configuration file,
so the Connection Manager has the following default behavior:
v The EVENT_TIMEOUT parameter is not set, so the Connection Managers

wait 60 seconds for primary-server events before failover processing begins.
v The MODE attributes of the SLA parameters are not set, so the Connection

Managers return connection information for server_1, server_2, and
server_3 to client applications, rather than acting as proxy servers.

v The SECONDARY_EVENT_TIMEOUT parameter is not set, so the
Connection Managers wait 60 seconds for secondary-server events before
the Connection Manager disconnects from the secondary server.

v The HOST, NETTYPE, SERVICE, and SQLHOSTSOPT attributes of the SLA
parameters are not set, so each Connection Manager uses connection
information in local and remote sqlhosts files.

v The SQLHOSTS parameter is not set, so each Connection Manager first
searches its local sqlhosts file, and then remote database server sqlhosts
files for connectivity information related to server_1, server_2, and server_3.

v The WORKERS attributes of the SLA parameters are not set, so four
worker threads are allocated to each of the SLAs.

5. Set the onconfig file DRAUTO configuration parameter on all database servers
to 3

Chapter 23. Connection management through the Connection Manager 23-67

DRAUTO 3

This setting specifies that a Connection Manager controls failover arbitration.
6. Set the onconfig file HA_FOC_ORDER configuration parameter on server_1 to

SDS,HDR

HA_FOC_ORDER SDS,HDR

After the Connection Managers start, and connect to server_1, the
HA_FOC_ORDER value replaces the value of the ORDER attributes in each
Connection Manager's configuration file.
If server_1 fails, the Connection Managers attempt failover to the SD
secondary server. If the SD secondary server is also unavailable, the
Connection Managers attempt failover to the HDR secondary server.

7. Optional: Configure the cmalarmprogram script on each Connection Manager
host. Event alarms can be sent to specified email addresses.

8. Add entries to the sqlhosts files on server_1 and server_2's host and on
server_3's host.
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1
server_2 onsoctcp host_1 port_2
server_3 onsoctcp host_2 port_3

9. Create a sqlhosts file on each Connection Manager.
#dbservername nettype hostname servicename options
cluster_1 group - - c=1,e=server_3
server_1 onsoctcp host_1 port_1 g=cluster_1
server_2 onsoctcp host_1 port_2 g=cluster_1
server_3 onsoctcp host_2 port_3 g=cluster_1

If a Connection Manager restarts after a primary-server failure, it is able to
connect to other database servers in the cluster because the cluster_1 group is
defined.

10. Create a sqlhosts file on each client host.
#dbservername nettype hostname servicename options
oltp group - - c=1,e=oltp_2
oltp_1 onsoctcp cm_host_1 cm_port_1 g=oltp
oltp_2 onsoctcp cm_host_2 cm_port_2 g=oltp

report group - - c=1,e=report_2
report_1 onsoctcp cm_host_1 cm_port_3 g=report
report_2 onsoctcp cm_host_2 cm_port_4 g=report

payroll group - - c=1,e=payroll_2
payroll_1 onsoctcp cm_host_1 cm_port_5 g=payroll
payroll_2 onsoctcp cm_host_2 cm_port_6 g=payroll

If a Connection Manager fails, client applications can still connect to the other
Connection Manager because the oltp, report, and payroll groups are defined.
v CONNECT TO @oltp connection requests are directed through one of the

Connection Managers to the primary server.
v CONNECT TO @payroll connection requests are directed through one of the

Connection Managers to whichever of the primary and HDR secondary
servers has the lowest workload.

v CONNECT TO @report connection requests are directed through one of the
Connection Managers to the secondary server that has the lowest workload.

11. Set each INFORMIXSQLHOSTS environment variable to the sqlhosts file location
by running the setenv command on each Connection Manager and client host.
setenv INFORMIXSQLHOSTS path_and_file_name

23-68 IBM Informix Administrator's Guide

12. Run the oncmsm utility on each Connection Manager host, to start each
Connection Manager.
On the host of connection_manager_1:
oncmsm -c cm_1.cfg

On the host of connection_manager_2:
oncmsm -c cm_2.cfg

13. Check each Connection Manager's log file to verify that the Connection
Manager started correctly.

Related reference:
“Group information” on page 2-32

The oncmsm utility (Administrator's Reference)

HA_FOC_ORDER configuration parameter (Administrator's Reference)

INFORMIXSQLHOSTS environment variable (SQL Reference)

Example of configuring connection management for a grid or
replicate set

You can use a Connection Manager to route client connections for the replication
servers of a grid or replicate set.

For this example, you have a replicate set that consists of four replication servers:
v server_1

v server_2

v server_3

v server_4

The replication set supports reporting services, which can run on any of the
replication servers.

Your system has the following needs
v Client requests are directed to the replication server with the fewest apply

failures.
v The system can withstand the failure of a Connection Manager.
v The system can withstand a network-interface card (NIC) failure on each host.

To configure connection management:
1. Install at least two network interface cards on each host. This prevents the

failure of a network interface card from causing Connection Manager or
database server failure.

2. Install two Connection Managers. Install each Connection Manager onto a
different host, and do not install the Connection Managers onto the hosts that
database servers are installed on. This installation strategy prevents a
Connection Manager from becoming a single point of failure, and prevents the
simultaneous failure of database servers and Connection Managers if a host
fails.

3. On each Connection Manager host, set the INFORMIXDIR environment to the
directory the Connection Manager was installed into. Run the following
command:
setenv INFORMIXDIR path

Chapter 23. Connection management through the Connection Manager 23-69

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1158.htm#ids_adr_1158
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268

4. Create a configuration file in each Connection Manager installation's
$INFORMIXDIR/etc directory.
The first Connection Manager's configuration file is named cm_1.cfg and has
the following entries:
NAME connection_manger_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm1_log.log

REPLSET replicate_set_1
{
INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
SLA report_1 DBSERVERS=ANY \

POLICY=FAILURE
}

The second Connection Manager's configuration file is named cm_2.cfg and
has the following entries:
NAME connection_manger_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm2_log_.log

REPLSET replicate_set_1
{
INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
SLA report_2 DBSERVERS=ANY \

POLICY=FAILURE
}

The configuration file specifies the following information and behavior:
v Logging is enabled, and the log files are $INFORMIXDIR/tmp/my_cm1_log.log

and $INFORMIXDIR/tmp/my_cm2_log.log.
v When the Connection Managers start, they each search their sqlhosts files

for g_server_1, g_server_2, g_server_3, and g_server_4 entries, and then
connect to the servers server_1, server_2, server_3, and server_4 that are in
those groups.

v CONNECT TO @report_1 and CONNECT TO @report_2 connection requests are
directed to the replication server that has the fewest apply failures.

Certain parameters and attributes are not included in this configuration file,
so the Connection Manager has the following default behavior:
v The MODE attributes of the SLA parameters are not set, so the Connection

Managers return connection information for server_1, server_2, server_3,
and server_4 to client applications, rather than acting as proxy servers.

v The HOST, NETTYPE, SERVICE, and SQLHOSTSOPT attributes of the SLA
parameters are not set, so each Connection Manager uses connection
information in local and remote sqlhosts files.

v The SQLHOSTS parameter is not set, so each Connection Manager first
searches its local sqlhosts file, and then remote database server sqlhosts
files for connectivity information related to server_1, server_2, server_3, and
server_4.

v The WORKERS attributes of the SLA parameters are not set, so four
worker threads are allocated to each of the SLAs.

5. Add entries to thesqlhosts files on the hosts of each database server,
connection_manger_1, and connection_manger_2.
#dbservername nettype hostname servicename options
g_server_1 group - - i=1,e=server_1
server_1 onsoctcp host_1 port_1 g=g_server_1

23-70 IBM Informix Administrator's Guide

g_server_2 group - - i=2,e=server_2
server_2 onsoctcp host_2 port_2 g=g_server_2

g_server_3 group - - i=3,e=server_3
server_3 onsoctcp host_3 port_3 g=g_server_3

g_server_4 group - - i=4,e=server_4
server_4 onsoctcp host_4 port_4 g=g_server_4

6. Create a sqlhosts file on each client host.
#dbservername nettype hostname servicename options
report group - - c=1,e=report_2
report_1 onsoctcp cm_host_1 cm_port_3 g=report
report_2 onsoctcp cm_host_2 cm_port_4 g=report

If a Connection Manager fails, client applications can still connect to the other
Connection Manager because the report group is defined.
CONNECT TO @report connection requests are directed through one of the
Connection Managers to the replication server that has the fewest apply
failures.

7. Set each INFORMIXSQLHOSTS environment variable to the sqlhosts file location
by running the setenv command on each Connection Manager and client host.
setenv INFORMIXSQLHOSTS path_and_file_name

8. Turn on quality of data (QOD) monitoring by running the cdr define qod
command.
cdr define qod -c server_1 --start

The command connects to server_1, defines server_1 as a master server for
monitoring data, and then turns on quality of data monitoring.
server_1 maintains a failed-transaction count for the servers in the replicate
set. The failed-transaction count determines which replication server the
Connection Managers send a client connection requests to.

9. Run the oncmsm utility on each Connection Manager host, to start each
Connection Manager.
On the host of connection_manager_1:
oncmsm -c cm_1.cfg

On the host of connection_manager_2:
oncmsm -c cm_2.cfg

10. Check each Connection Manager's log file to verify that the Connection
Manager started correctly.

Related reference:
“Group information” on page 2-32

The oncmsm utility (Administrator's Reference)

HA_FOC_ORDER configuration parameter (Administrator's Reference)

INFORMIXSQLHOSTS environment variable (SQL Reference)

cdr define qod (Enterprise Replication Guide)

cdr start qod (Enterprise Replication Guide)

Chapter 23. Connection management through the Connection Manager 23-71

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1158.htm#ids_adr_1158
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_539.htm#ids_erp_539
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_540.htm#ids_erp_540

Example of configuring connection management for a
high-availability replication system

You can use a Connection Manager to route client connections for the participants
of a replicate set and to control failover for high-availability clusters that
participate in Enterprise Replication.

For this example, you have a grid that consists of four nodes. One of the nodes is a
primary server in a high-availability cluster that consists of a primary server, an
SD secondary server, an HDR secondary server, and an RS secondary server:
v server_1a - ER Node 1, primary server
v server_1b - SD secondary server
v server_1c - HDR secondary server
v server_1d - RS secondary server
v server_2 - ER Node 2
v server_3 - ER Node 3
v server_4 - ER Node 4

The grid supports reporting services, which can run on any of the ER nodes.

Your system has the following needs
v Client requests are directed to the ER node with the lowest transaction latency.
v The system can withstand the failure of a Connection Manager.
v The system can withstand a network-interface card (NIC) failure on each host.
v The Connection Managers control failover for the cluster.
v If failover occurs, it the SD secondary server takes priority over the HDR

secondary server. The HDR secondary server takes priority over the RS
secondary server.

v If the primary server fails, the Connection Managers can still connect to the
cluster after restarting.

To configure connection management:
1. Install at least two network interface cards on each host. This prevents the

failure of a network interface card from causing Connection Manager or
database server failure.

2. Install two Connection Managers. Install each Connection Manager onto a
different host, and do not install the Connection Managers onto the hosts that
database servers are installed on. This installation strategy prevents a
Connection Manager from becoming a single point of failure, and prevents the
simultaneous failure of database servers and Connection Managers if a host
fails.

3. On each Connection Manager host, set the INFORMIXDIR environment to the
directory the Connection Manager was installed into. Run the following
command:
setenv INFORMIXDIR path

4. Create a configuration file in each Connection Manager installation's
$INFORMIXDIR/etc directory.
The first Connection Manager's configuration file is named cm_1.cfg and has
the following entries:
NAME connection_manger_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm1_log.log

23-72 IBM Informix Administrator's Guide

LOCAL_IP 192.0.0.2,192.0.2.1

REPLSET replicate_set_1
{
INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
SLA report_1 DBSERVERS=ANY \

POLICY=LATENCY
}

CLUSTER cluster_1
{

INFORMIXSERVER g_server_1
FOC ORDER=ENABLED \

PRIORITY=1
CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh

}

The second Connection Manager's configuration file is named cm_2.cfg and
has the following entries:
NAME connection_manger_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm2_log_.log
LOCAL_IP 192.0.2.2,192.0.2.3

REPLSET replicate_set_1
{
INFORMIXSERVER g_server_1,g_server_2,g_server_3,g_server_4
SLA report_2 DBSERVERS=ANY \

POLICY=LATENCY
}
CLUSTER cluster_1
{

INFORMIXSERVER g_server_1
FOC ORDER=ENABLED \

PRIORITY=2
CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh

}

The configuration file specifies the following information and behavior:
v Logging is enabled, and the log files are $INFORMIXDIR/tmp/my_cm1_log.log

and $INFORMIXDIR/tmp/my_cm2_log.log.
v connection_manager_1 monitors 192.0.2.0 and 192.0.2.1 and

connection_manager_2 monitors 192.0.2.2 and 192.0.2.3 for network failure.
v When the Connection Managers start, they each search their sqlhosts files

for g_server_1, g_server_2, g_server_3, and g_server_4 entries, and then
connect to the servers server_1a, server_1b, server_1c, server_1d,server_2,
server_3, and server_4 that are in those groups.

v CONNECT TO @report_1 and CONNECT TO @report_2 connection requests are
directed to the replication server that has the lowest transaction latency.

v The connection between connection_manager_1 and the primary server is
prioritized over the connection between connection_manager_2 and the
primary server. Failover that would break the connectivity between
connection_manager_1 and the primary server is blocked.

v If failover processing fails after eight attempts, $INFORMIXDIR/etc/
CMALARMPROGRAM.sh is called.

Certain parameters and attributes are not included in this configuration file,
so the Connection Manager has the following default behavior:
v The EVENT_TIMEOUT parameter is not set, so the Connection Managers

wait 60 seconds for primary-server events before failover processing begins.
The SECONDARY_EVENT_TIMEOUT parameter is not set, so the

Chapter 23. Connection management through the Connection Manager 23-73

Connection Managers wait 60 seconds for secondary-server events before
the Connection Manager disconnects from the secondary server.

v The HOST, NETTYPE, SERVICE, and SQLHOSTSOPT attributes of the SLA
parameters are not set, so each Connection Manager uses connection
information in local and remote sqlhosts files.

v The SQLHOSTS parameter is not set, so each Connection Manager first
searches its local sqlhosts file, and then remote database server sqlhosts
files for connectivity information related to server_1, server_2, server_3, and
server_4.

v The WORKERS attributes of the SLA parameters are not set, so four
worker threads are allocated to each of the SLAs.

5. Set the onconfig file DRAUTO configuration parameter on server_1a,
server_1b, server_1c, and server_1d to 3

DRAUTO 3

This setting specifies that a Connection Manager controls failover arbitration.
6. Set the onconfig file HA_FOC_ORDER configuration parameter on server_1a

to SDS,HDR,RSS

HA_FOC_ORDER SDS,HDR,RSS

After the Connection Managers start, and connect to server_1a, the
HA_FOC_ORDER value replaces the value of the ORDER attributes in each
Connection Manager's configuration file.
If server_1a fails, the Connection Managers attempt failover to the SD
secondary server. If the SD secondary server is also unavailable, the
Connection Managers attempt failover to the HDR secondary server. If the
HDR secondary server is also unavailable, the Connection Managers attempt
failover to the RS secondary server.

7. Add entries to thesqlhosts files on the hosts of each database server and
Connection Manager.
#dbservername nettype hostname servicename options
g_server_1 group - - i=1,c=1,e=server_1d
server_1a onsoctcp host_1 port_1 g=g_server_1
server_1b onsoctcp host_1 port_2 g=g_server_1
server_1c onsoctcp host_2 port_3 g=g_server_1
server_1d onsoctcp host_3 port_4 g=g_server_1

g_server_2 group - - i=2,e=server_2
server_2 onsoctcp host_4 port_5 g=g_server_2

g_server_3 group - - i=3,e=server_3
server_3 onsoctcp host_5 port_6 g=g_server_3

g_server_4 group - - i=4,e=server_4
server_4 onsoctcp host_6 port_7 g=g_server_4

8. Create a sqlhosts file on each client host.
#dbservername nettype hostname servicename options
report group - - c=1,e=report_2
report_1 onsoctcp cm_host_1 cm_port_3 g=report
report_2 onsoctcp cm_host_2 cm_port_4 g=report

If a Connection Manager fails, client applications can still connect to the other
Connection Manager because the report group is defined.
CONNECT TO @report connection requests are directed through one of the
Connection Managers to the replication server that has the lowest transaction
latency.

23-74 IBM Informix Administrator's Guide

9. Set each INFORMIXSQLHOSTS environment variable to the sqlhosts file location
by running the setenv command on each Connection Manager and client host.
setenv INFORMIXSQLHOSTS path_and_file_name

10. Turn on quality of data (QOD) monitoring by running the cdr define qod
command.
cdr define qod -c server_1a --start

The command connects to server_1a, defines server_1a as a master server for
monitoring data, and then turns on quality of data monitoring.
server_1a monitors transaction latency for the replication servers in the grid.

11. Run the oncmsm utility on each Connection Manager host, to start each
Connection Manager.
On the host of connection_manager_1:
oncmsm -c cm_1.cfg

On the host of connection_manager_2:
oncmsm -c cm_2.cfg

12. Check each Connection Manager's log file to verify that the Connection
Manager started correctly.

Related reference:
“Group information” on page 2-32

The oncmsm utility (Administrator's Reference)

HA_FOC_ORDER configuration parameter (Administrator's Reference)

INFORMIXSQLHOSTS environment variable (SQL Reference)

cdr define qod (Enterprise Replication Guide)

cdr start qod (Enterprise Replication Guide)

Example: Configuring connection management for untrusted
networks

This example shows steps that are required to configure connection management
for an untrusted network.

For this example, you have a high-availability cluster on an untrusted network. All
hosts use UNIX operating systems. The cluster consists of four servers:
v A primary server (server_1)
v A shared-disk secondary server (server_2)
v An HDR secondary server (server_3)
v An RS secondary server (server_4)

To configure connection management:
1. Install at least two network interface cards on each host.
2. Install at least two Connection Managers. Install each Connection Manager

onto a different host, and do not install the Connection Managers onto the
hosts that database servers are installed on.

3. On each host Connection Manager host, set the INFORMIXDIR environment to
the directory the Connection Manager was installed into. Run the following
command:
setenv INFORMIXDIR path

Chapter 23. Connection management through the Connection Manager 23-75

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1158.htm#ids_adr_1158
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_539.htm#ids_erp_539
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_540.htm#ids_erp_540

4. Create a configuration file in each Connection Manager installation's
$INFORMIXDIR/etc directory.
The first Connection Manager's configuration file is named cm_1.cfg and has
the following entries:
NAME connection_manger_1
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm1_log.log
LOCAL_IP 192.0.2.0,192.0.2.1

CLUSTER cluster_1
{

INFORMIXSERVER cluster_1
SLA oltp_1 DBSERVERS=primary
SLA payroll_1 DBSERVERS=(PRI,HDR) \

POLICY=WORKLOAD
SLA report_1 DBSERVERS=(SDS,HDR,RSS) \

POLICY=WORKLOAD
FOC ORDER=ENABLED \

PRIORITY=1
CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh

}

The second Connection Manager's configuration file is named cm_2.cfg and
has the following entries:
NAME connection_manger_2
LOG 1
LOGFILE $INFORMIXDIR/tmp/my_cm2_log.log
LOCAL_IP 192.0.2.2,192.0.2.3

CLUSTER cluster_1
{

INFORMIXSERVER cluster_1
SLA oltp_2 DBSERVERS=primary
SLA payroll_2 DBSERVERS=(PRI,HDR)\

POLICY=WORKLOAD
SLA report_2 DBSERVERS=(SDS,HDR,RSS) \

POLICY=WORKLOAD
FOC ORDER=ENABLED \

PRIORITY=2
CMALARMPROGRAM $INFORMIXDIR/etc/CMALARMPROGRAM.sh

}

5. Set the onconfig file DRAUTO configuration parameter on all database servers
to 3, to specify that Connection Managers control failover arbitration.
DRAUTO 3

6. Set the onconfig file HA_FOC_ORDER configuration parameter on server_1 to
SDS,HDR,RSS

HA_FOC_ORDER SDS,HDR,RSS

7. Optional: Configure the cmalarmprogram script on each Connection Manager
host.

8. Add entries to thesqlhosts files on server_1 and server_2's host, server_3's
host, and server_4's host.
#dbservername nettype hostname servicename options
server_1 onsoctcp host_1 port_1 s=6
a_server_1 onsoctcp host_1 port_2

server_2 onsoctcp host_1 port_3 s=6
a_server_2 onsoctcp host_1 port_4

server_3 onsoctcp host_2 port_5 s=6
a_server_3 onsoctcp host_2 port_6

23-76 IBM Informix Administrator's Guide

server_4 onsoctcp host_3 port_7 s=6
a_server_4 onsoctcp host_3 port_8

9. Create a sqlhosts file on each Connection Manager's host.
#dbservername nettype hostname servicename options
cluster_1 group - - c=1,e=a_server_4
server_1 onsoctcp host_1 port_1 s=6,g=cluster_1
a_server_1 onsoctcp host_1 port_2 g=cluster_1
server_2 onsoctcp host_1 port_3 s=6,g=cluster_1
a_server_2 onsoctcp host_1 port_4 g=cluster_1
server_3 onsoctcp host_2 port_5 s=6,g=cluster_1
a_server_3 onsoctcp host_2 port_6 g=cluster_1
server_4 onsoctcp host_3 port_7 s=6,g=cluster_1
a_server_4 onsoctcp host_3 port_8 g=cluster_1

10. In each database server's onconfig file, set the DBSERVERALIASES parameter
to that database server's alias.
The onconfig file entry for server_1:
DBSERVERALIASES a_server_1

The onconfig file entry for server_2:
DBSERVERALIASES a_server_2

The onconfig file entry for server_3:
DBSERVERALIASES a_server_3

The onconfig file entry for server_4:
DBSERVERALIASES a_server_4

11. On one of the Connection Manager hosts, use a text editor to create an
ASCII-text password file that contains security information. Save the file to the
$INFORMIXDIR/tmp directory. For example, my_passwords.txt has the following
entries:
cluster_1 a_server_1 user_1 password_1
cluster_1 a_server_2 user_2 password_2
cluster_1 a_server_3 user_3 password_3
cluster_1 a_server_4 user_4 password_4

server_1 a_server_1 user_1 password_1
server_2 a_server_2 user_2 password_2
server_3 a_server_3 user_3 password_3
server_4 a_server_4 user_4 password_4

a_server_1 a_server_1 user_1 password_1
a_server_2 a_server_2 user_2 password_2
a_server_3 a_server_3 user_3 password_3
a_server_4 a_server_4 user_4 password_4

12. On the host where the password file is saved, run the onpassword utility with
a specified encryption key to encrypt the password and create passwd_file in
the $INFORMIXDIR/etc directory. For example, run the following command,
specifying my_secret_encryption_key_456 as your encryption key:
onpassword -k my_secret_encryption_key_456 -e my_passwords.txt

13. Store the original text file and encryption key in a safe place.
14. Distribute $INFORMIXDIR/etc/passwd_file to all the database servers that

Connection Managers connect to, and to all Connection Managers. For
systems that use Enterprise Replication, also distribute $INFORMIXDIR/etc/
passwd_file to all the database servers that the cdr utility connects to.

15. Create a sqlhosts file on each client host.
#dbservername nettype hostname servicename options
oltp group - - c=1,e=oltp_2
oltp_1 onsoctcp cm_host_1 cm_port_1 g=oltp

Chapter 23. Connection management through the Connection Manager 23-77

oltp_2 onsoctcp cm_host_2 cm_port_2 g=oltp

report group - - c=1,e=report_2
report_1 onsoctcp cm_host_1 cm_port_3 g=report
report_2 onsoctcp cm_host_2 cm_port_4 g=report

payroll group - - c=1,e=payroll_2
payroll_1 onsoctcp cm_host_1 cm_port_5 g=payroll
payroll_2 onsoctcp cm_host_2 cm_port_6 g=payroll

16. Set each INFORMIXSQLHOSTS environment variable to the sqlhosts file location
by running the setenv command on each Connection Manager and client host.
setenv INFORMIXSQLHOSTS path_and_file_name

17. Run the oncmsm utility on each Connection Manager host, to start each
Connection Manager.
On the host of connection_manager_1:
oncmsm -c cm_1.cfg

On the host of connection_manager_2:
oncmsm -c cm_2.cfg

18. Check each Connection Manager's log file to verify that the Connection
Manager started correctly.

Related tasks:
“Creating a password file for connecting to database servers on untrusted
networks” on page 23-59
Related reference:
“Group information” on page 2-32

The onpassword utility (Administrator's Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

Example of configuring connection management for
prioritizing connections and network monitoring

You can install Connection Managers on the hosts of application servers, and then
prioritize the connections between specific application servers and the primary
server of a high-availability cluster. This configuration allows the highest priority
application server to maintain its connection to the cluster's primary server if a
portion of the network fails.

You can configure failover for the following conditions:
v When the primary server becomes inoperative.
v When an application server loses network connectivity with the primary server.

If network monitoring and failover priority are enabled and a network failure
occurs, an application server that loses connectivity to the primary server but
maintains connectivity to a secondary server can, through a shared-host
Connection Manager, initiate failover to the secondary server. If, however, failover
would cause an application server with more priority to lose connectivity to the
primary server, the Connection Managers block failover.

Network monitoring and failover priority are enabled by setting the following
parameters and attributes in each Connection Manager's configuration file:
v The Connection Manager's LOCAL_IP parameter
v A CLUSTER connection-unit's SLA parameters

23-78 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0620.htm#ids_adr_0620
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

v A CLUSTER connection-unit's FOC parameter
v The FOC parameter's ORDER attribute
v The FOC parameter's PRIORITY attribute
1. Install at least two network interface cards on each host. This method prevents

the failure of a network interface card from causing client, Connection Manager,
or database server connectivity failure.

2. Install and configure Connection Managers on each application server's host.
a. Set the LOCAL_IP parameter in each Connection Manager configuration file

to the IP addresses of the host's NIC cards. For example:
The first Connection Manager's configuration file is named cm_1.cfg and
has the following entries:
NAME connection_manager_1
LOCAL_IP 192.0.2.0,192.0.2.1

The second Connection Manager's configuration file is named cm_2.cfg and
has the following entries:
NAME connection_manager_2
LOCAL_IP 192.0.2.2,192.0.2.3

b. Create service-level agreements for each Connection Manager. For example:
cm_1.cfg now has the following entries:
NAME connection_manager_1
LOCAL_IP 192.0.2.0,192.0.2.1

CLUSTER my_cluster

{
INFORMIXSERVER my_servers
SLA sla_1 DBSERVERS=PRI
SLA sla_2 DBSERVERS=SDS,HDR,RSS

}

cm_2.cfg now has the following entries:
NAME connection_manager_1
LOCAL_IP 192.0.2.2,192.0.2.3

CLUSTER my_cluster

{
INFORMIXSERVER my_servers
SLA sla_3 DBSERVERS=PRI
SLA sla_4 DBSERVERS=SDS,HDR,RSS

}

c. Specify each application server's priority by setting the FOC parameter's
PRIORITY attribute for each shared-host Connection Manager. A PRIORITY
value must be a positive integer and unique among all the Connection
Managers that are configured to manage a specific cluster. If you specify a
PRIORITY value in a connection-unit definition, you must set the ORDER
attribute to ENABLED, and specify the failover order in the primary server's
HA_FOC_ORDER configuration parameter. For example:
The primary server has the following onconfig file entry:
HA_FOC_ORDER SDS,HDR,RSS

cm_1.cfg now has the following entries:
NAME connection_manager_1
LOCAL_IP 192.0.2.0,192.0.2.1

CLUSTER my_cluster

{

Chapter 23. Connection management through the Connection Manager 23-79

INFORMIXSERVER my_servers
SLA sla_1 DBSERVERS=PRI
SLA sla_2 DBSERVERS=SDS,HDR,RSS
FOC ORDER=ENABLED PRIORITY=1

}

cm_2.cfg now has the following entries:
NAME connection_manager_2
LOCAL_IP 192.0.2.2,192.0.2.3

CLUSTER my_cluster

{
INFORMIXSERVER my_servers
SLA sla_3 DBSERVERS=PRI
SLA sla_4 DBSERVERS=SDS,HDR,RSS
FOC ORDER=ENABLED PRIORITY=2

}

3. Create sqlhosts files that contain network connectivity information for each
Connection Manager and database server host.

4. Optional: Create a password file if you configure secure ports for database
servers.

5. Run the oncmsm utility on each Connection Manager host, to start each
Connection Manager.
On the host of connection_manager_1:
oncmsm -c cm_1.cfg

On the host of connection_manager_2:
oncmsm -c cm_2.cfg

6. Check each Connection Manager's log file to verify that the Connection
Manager started correctly.

The Connection Managers now initiate failover if a network failure occurs, and
failover would not cause a higher-priority application server to lose its connectivity
to the cluster's primary server.
Related reference:
“Group information” on page 2-32

The oncmsm utility (Administrator's Reference)

HA_FOC_ORDER configuration parameter (Administrator's Reference)
“FOC Connection Manager configuration parameter” on page 23-11
“LOCAL_IP Connection Manager configuration parameter” on page 23-18

23-80 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1128.htm#ids_adr_1128
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1158.htm#ids_adr_1158

Chapter 24. Cluster failover, redirection, and restoration

To maintain availability, you must plan for the failover of primary servers,
redirecting client connections from unavailable servers, and restoring the cluster to
its original configuration after a failure.

Failover configuration for high-availability clusters
A failure in a high-availability cluster means that one of the servers is no longer
available. If a primary server fails, you must promote a secondary server to the
role of primary server. Connection Managers can be configured to perform
automatic failover.

You must set the DRAUTO configuration parameter to specify how failover is
performed, and then use one of the following failover options:
v Connection Manager
v ISV cluster management software
v Manual switchover
Related concepts:
Chapter 23, “Connection management through the Connection Manager,” on page
23-1
Related reference:

DRAUTO configuration parameter (Administrator's Reference)

Failover with ISV cluster management software
You can use independent software vendor (ISV) cluster management software
instead of the Connection Manager to manage failover processing in
high-availability cluster environments.

If the primary server in a high-availability cluster encounters a problem that
requires a secondary server to assume the role of the primary, it is important that,
before performing the actual failover, disk I/O is prohibited on the failed primary
server and is allowed on the new primary server. In addition, network access to
the failed primary server must be prevented. This is especially true for SD
secondary servers, where disk corruption can occur if these steps are not done
correctly.

The mechanism for enabling disk I/O operations from a server in a
high-availability cluster environment is known as I/O Fencing. I/O Fencing is
configured using a callback script. When a failure of the primary server occurs, the
failover process executes a callback script on the secondary server before the
secondary server assumes the role of the primary server. The script calls any I/O
specific commands to enable or disable disk access. The script enables write access
to the shared disk on the server that is to become the primary server, and disables
write access to the shared disk on the failed server.

Use the FAILOVER_CALLBACK configuration parameter to specify the name of
the script to run when a database server transitions from a secondary server to a
primary server, or from a secondary server to a standard server. A template script
named ifx_failover_callback.sh (UNIX) or ifx_failover_callback.bat (Windows) is

© Copyright IBM Corp. 1996, 2014 24-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0056.htm#ids_adr_0056

provided in the $INFORMIXDIR/etc directory. When configured, the script specified
by FAILOVER_CALLBACK is executed before the secondary server is switched to
a primary or standard server.

You can test the failover script by performing one of the following actions,
depending on your type of high-availability cluster:
v Converting an SD secondary server into a primary server.
v If the DRAUTO configuration parameter is set to 0, shutting down the primary

server and convert the HDR secondary server to standard mode.
v If the DRAUTO configuration parameter is set to 1, shutting down the primary

server in an HDR pair.
v Shutting down the primary server in a remote stand-alone cluster and

converting the RS secondary server to standard mode.

An Invoking Failover Callback message is in the online.log listing the path and
file name of the failover script after it is run.

See the information about the FAILOVER_CALLBACK configuration parameter in
the IBM Informix Administrator's Reference.

If the script specified by FAILOVER_CALLBACK fails (that is, if it returns a
non-zero exit code), the failover of the secondary to the primary (or standard)
server also fails. In this case, the DBA must manually perform the failover.

I/O fencing for shared file systems
You can configure I/O fencing to protect shared resources in a high-availability
cluster environment.

A software or hardware malfunction might cause unresolved operations to be
written to shared storage devices. I/O fencing can be used to isolate a server and
prevent it from accessing shared storage. I/O fencing must be used if maintenance
or testing is being performed on a server in a high-availability cluster. If a problem
is detected on a server or within an application, the cluster manager can detect the
problem and prevent the server from connecting to the shared data.

You can configure a script to run when a primary server fails. Fencing commands
are called by setting the FAILOVER_CALLBACK configuration parameter, which
runs a script when a failover is initiated.

Although I/O fencing is not required in order to use Informix database software,
configuring I/O fencing must be used to protect shared-disk systems from
inadvertent loss

Types of I/O fencing

Several types of I/O fencing are available, including:
v Power fencing - Powers off nodes if a problem is detected.
v Fibre Channel Switch Fencing (requires SCSI-3 persistent group reservation) -

Blocks a port on the fibre channel device by removing the problem node's
reservation.

Perhaps the most common method of implementing I/O fencing is to use fibre
channel fencing. The fibre channel switch supports the industry-standard SCSI-3
persistent group reservation (PR) technology. PR technology allows a set of

24-2 IBM Informix Administrator's Guide

systems to have temporary registrations with the disk and to coordinate a
write-exclusive reservation with the disk containing the data.

In most cases, cluster manager software must be installed. The cluster manager
software provides the drivers and utilities required to issue commands to the fibre
channel switch. For example, the Linux Cluster Suite provides a script named
fence_scsi. Sun Cluster provides a command named scdidadm.

Other fencing methods are also available depending on the cluster manger
software used and different hardware capabilities.

The General Parallel File System (GPFS) is a high performance shared disk
clustered file system developed by IBM. The file system is available for use with
AIX, Linux, and Windows platforms. The file system can be used with the IBM
HACMP™ Cluster Management Software. GPFS uses the SCSI PR fencing
mechanism to support I/O fencing. Fencing issues must be resolved by the IBM
GPFS support team.

Implementing I/O fencing

I/O fencing can be configured on several platforms, including:
v Linux
v Solaris
v AIX
v Windows

see the documentation provided by the manufacturer of your equipment for
specific information about configuring I/O fencing.
Related reference:

FAILOVER_CALLBACK configuration parameter (Administrator's Reference)

Cluster failures
A high-availability cluster failure is a loss of connection between the database
servers in a cluster that can be caused by several different situations.

Any of the following situations might cause a cluster failure:
v Equipment failure or destruction
v A network failure
v An excessive processing delay on one of the database servers

The database server interprets either of the following conditions as a cluster
failure:
v The DRTIMEOUT configuration parameter value was exceeded without

confirmation of communication with other cluster servers.
v A database server in the cluster does not respond to the periodic messaging

attempts over the network. Cluster servers ping each other even if the primary
server does not send records to the secondary database servers.
A cluster server pings other cluster servers at the interval specified by its
DRTIMEOUT configuration parameter.

After a database server detects a cluster failure, it writes a message to its message
log (for example, DR: receive error) and turns off data replication. If a cluster

Chapter 24. Cluster failover, redirection, and restoration 24-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0084.htm#ids_adr_0084

failure occurs, the connection between the two database servers is dropped and the
secondary database server remains in read-only mode.

You can configure automatic switchover for HDR replication pairs by setting the
DRAUTO configuration parameter to 1 or 2.

You can configure automatic failover for a high-availability cluster by configuring
Connection Managers. Connection Managers have many advantages over
automatic switchover, and can manage failover to SD and RS secondary servers, as
well.
Related concepts:
“Replication of primary-server data to secondary servers” on page 22-2

Automatic switchover
If the primary server in a HDR-availability system fails, the HDR secondary server
can be automatically converted to either a standard or primary database server.

If automatic switchover occurs, the HDR secondary server to rolls back open
transactions, and then switches to online mode as either a primary or standard
database server. Automatic switchover does not redirect client applications the new
primary or standard database server.

Automatic switchover can be a better option than manual failover, but using
Connection Managers to control failover for a high-availability cluster has even
more advantages.

Automatic switchover requires a very stable network, and works only with
primary servers and HDR secondary servers. Connection Managers can be
configured to be tolerant of network instability, and can perform failover to HDR,
RS, and SD secondary servers. Connection Managers can also prioritize
connections between application servers and the primary server if a network
failure occurs.

Automatic switchover does not redirect client connections from the old primary
server to the new standard or primary server. Connection Managers can redirect
clients to whichever secondary server becomes the primary server.

If you use automatic switchover, you must ensure that logical-log files are backed
up, and that the HDR server has enough logical-log disk space to allow processing
to continue without backing up logical-log files.

To configure automatic switchover or Connection Manager failover, you must set
the DRAUTO configuration parameter on all database servers of a high-availability
cluster.
Related concepts:
“Redirection and connectivity for data-replication clients” on page 24-6
“Automatic switchover without a reliable network”
Related reference:
“Restart if the primary server fails” on page 24-17

Automatic switchover without a reliable network
Although automatic switchover might seem to be the best solution, it is not
appropriate for all environments.

24-4 IBM Informix Administrator's Guide

Consider what might happen if the primary database server does not actually fail,
but the secondary database server registers that the primary has failed. For
example, if the secondary database server does not receive responses when it
signals (pings) the primary database server because of a slow or unstable network,
the secondary server assumes that the primary database server failed and switches
automatically to the standard type. If the primary database server also does not
receive responses when it signals the secondary database server, it assumes that
the secondary database server failed and turns off data replication but remains in
online mode. Now the primary database server and the secondary database server
(switched to the standard type) are both in online mode.

If clients can update the data on both database servers independently, the database
servers in the pair reach a state in which each database server has the logical-log
records that are required by the other. In this situation, you must start again and
perform initial data replication with a level-0 dbspace backup of one entire
database server, as described in “Starting HDR for the First Time” on page 21-7.
Therefore, if your network is not entirely stable, you might not want to use
automatic switchover. HDR cannot be reinstated without the risk of losing
transactions on the previous secondary server.
Related concepts:
“Automatic switchover” on page 24-4

Manual switchover
Manual switchover means that the administrator of the secondary database server
changes the type of the secondary database server to standard.

The secondary database server rolls back any open transactions and then comes
into online mode as a standard database server, so that it can accept updates from
client applications.
Related concepts:
“Changing the database server type” on page 22-38

Connecting offline servers to the new primary server
After failover, you must reconnect any offline secondary servers to the new
primary server.

If the primary server in a high-availability cluster fails, all online secondary servers
are notified of the failure. The secondary servers connect to the new primary
server and continue to operate. However, RS secondary servers and HDR
secondary servers that are not online at the time of the failover do not receive the
failover notification, and attempts to connect to the original (failed) primary server
when the servers are back online. In this case, the primary server must be
manually reset on those secondary servers.

Run the following commands on secondary servers that were offline when the
failover occurred.
v For HDR secondary servers:

oninit -PHY
onmode -d secondary new_primary

new_primary indicates the name of the current primary server.
v For RS secondary servers:

oninit -PHY
onmode -d RSS new_primary

Chapter 24. Cluster failover, redirection, and restoration 24-5

new_primary indicates the name of the current primary server.

Redirection and connectivity for data-replication clients
When any server in a high-availability cluster becomes unavailable, any client
connections to it should be redirected to an available server. The best way to
handle connection redirection is to use Connection Manager to automatically
reconnect client connections to the servers that you specify in service level
agreements. Alternatively, you can control connection redirection with environment
variables or connection information.

If you do not use Connection Manager, you can automatically redirect clients to
different database servers in a cluster by configuring applications to connect to the
server group to which the servers belong. When you create a connection to a
server group, by default the connection is made to the current primary server in
the group. If replication is down because one of the servers failed, the connection
is made to the server which is online (in Standard mode or Primary mode without
a secondary server). You can also automate this action from within the application.
Some of the client connectivity drivers included in the IBM Informix Client
Software Development Kit (Client SDK) have specific mechanisms for automating
redirection. For details, see the IBM Informix Client Software Development Kit
(Client SDK) documentation.

When you design client applications, you must make some decisions on redirection
strategies. Specifically, you must decide whether to handle redirection within the
application and which redirection mechanism to use. The three different redirection
mechanisms are as follows:
v Automatic redirection with the DBPATH environment variable
v Administrator-controlled redirection with the connectivity information
v User-controlled redirection with the INFORMIXSERVER environment variable

The mechanism that you employ determines which CONNECT syntax you can use
in your application.
Related concepts:
Chapter 23, “Connection management through the Connection Manager,” on page
23-1
“Automatic switchover” on page 24-4

Redirecting clients automatically with the DBPATH
environment variable

You can use the DBPATH environment variable in applications to redirect
connections.

What the administrator must do

Administrators take no action to redirect clients, but they might be required to
attend to the type of the database server.

What the user must do

If your applications contain code that tests if a connection has failed and issues a
reconnect statement if necessary, redirection is handled automatically. The user has
no responsibilities.

24-6 IBM Informix Administrator's Guide

If your applications do not include such code, users who are running clients must
quit and restart all applications.

How the DBPATH redirection method works
When an application does not explicitly specify a database server in the
CONNECT statement, and the database server that the INFORMIXSERVER
environment variable specifies is unavailable, the client uses the DBPATH
environment variable to locate the database (and database server).

If one of the database servers in a replication pair is unusable, applications that use
that database server are not required to reset their INFORMIXSERVER environment
variable if their DBPATH environment variable is set to the other database server in
the pair. Their INFORMIXSERVER environment variable must always contain the name
of the database server that they use regularly, and their DBPATH environment
variable must always contain the name of the alternative database server in the
pair.

For example, if applications normally use a database server called cliff_ol, and the
database server paired with cliff_ol in a replication pair is called beach_ol, the
environment variables for those applications would be as follows:
INFORMIXSERVER cliff_ol
DBPATH //beach_ol

Because the DBPATH environment variable is read only (if required) when an
application issues a CONNECT statement, applications must restart in order for
redirection to occur.

An application can contain code that tests whether a connection has failed and, if
so, attempts to reconnect. If an application has this code, you are not required to
restart it.

You can use the CONNECT TO database statement with this method of redirection.
For this method to work, you cannot use any of the following statements:
v CONNECT TO DEFAULT
v CONNECT TO database@dbserver

v CONNECT TO @dbserver

The reason for this restriction is that an application does not use DBPATH if a
CONNECT statement specifies a database server. For more information about
DBPATH, see the IBM Informix Guide to SQL: Reference.

Redirecting clients with the connectivity information
You can redirect client connections to the new primary server by using sqlhosts
information.

The connectivity information-redirection method relies on the fact that when an
application connects to a database server, it uses the connectivity information to
find that database server.

If one of the database servers in a replication pair is unusable, an administrator
can change the definition of the unavailable database server in the connectivity
information. As described in “Changing client connectivity information” on page
24-8, the fields of the unavailable database server (except for the dbservername
field) are changed to point to the remaining database server in the replication pair.

Chapter 24. Cluster failover, redirection, and restoration 24-7

Because the connectivity information is read when a CONNECT statement is
issued, applications might be required to restart for redirection to occur.
Applications can contain code that tests whether a connection failed and that
issues a reconnect statement, if necessary. If a connection failed, redirection is
automatic, and you are not required to restart applications for redirection to occur.

Applications can use the following connectivity statements to support this method
of redirection:
v CONNECT TO database@dbserver

v CONNECT TO @dbserver

Applications can also use the following connectivity statements, provided that the
INFORMIXSERVER environment variable always remains set to the same database
server name and the DBPATH environment variable is not set:
v CONNECT TO DEFAULT
v CONNECT TO database

On UNIX, the INFORMIXSQLHOSTS environment variable specifies the full path name
and file name of the connection information in $INFORMIXDIR/etc/sqlhosts. For
more information about INFORMIXSQLHOSTS, see the IBM Informix Guide to SQL:
Reference.

On Windows, the connectivity information is in a key in the Windows registry.
Related concepts:
“The sqlhosts file and the SQLHOSTS registry key” on page 2-17
“Trusted-host information” on page 2-12
“Trusted-user information” on page 2-14

Changing client connectivity information
To use the connectivity information to redirect clients, you must change the
connectivity information for the clients and change other connectivity files, if
necessary.

To change the connectivity information about the client computer:
1. In the sqlhosts file or registry, comment out the entry for the failed database

server.
2. Add an entry that specifies the dbservername of the failed database server in

the servername field and information for the database server to which you are
redirecting clients in the nettype, hostname, and servicename fields.

3. Use the following options in the sqlhosts file or registry to redirect
applications to another database server if a failure occurs:
a. Connection-redirection option
b. End-of-group option
c. Group option

4. Edit the /etc/hosts file on UNIX or hosts file on Windows to add an entry, if
necessary, for the hostname of the computer that is running the database server
to which you are redirecting clients.

5. Edit the /etc/services file on UNIX or services file on Windows to add an
entry, if necessary, for the servicename of the database server to which you are
redirecting clients.

24-8 IBM Informix Administrator's Guide

The following figure shows how connectivity values might be modified to redirect
clients.

You are not required to change entries in the connectivity information on either of
the computers that is running the database servers.

Related concepts:
Chapter 2, “Client/server communication,” on page 2-1
Related tasks:
“Configuring secure connections for high-availability clusters” on page 21-6
Related reference:
“sqlhosts connectivity information” on page 2-20

cliff beach

marsh delta

cliff

river

/etc/hosts
beach

/etc/services
ol_bc

Before failure of cliff_ol

After failure of cliff_ol

Client

Client
Client Client

beach

delta rivermarsh

Client
Client

Client
Client

beach_o onsoctcp beach ol_bccliff_ol onsoctc cliff ol_cl

cliff_ol beach_ol

beach_olcliff_ol

cliff_ol onsoctcp cliff ol_cl
beach_ onsoctcp beach ol_bc

#cliff_ol onsoctcp cliff ol_cl
cliff_ol onsoctcp beach ol_bc

#cliff_ol onsoctcp cliff ol_cl
beach_ol onsoctcp beach ol_bc
cliff_ol onsoctcp beach ol_bc

Figure 24-1. Connectivity values before and after a failure of the cliff_ol database server

Chapter 24. Cluster failover, redirection, and restoration 24-9

Connecting to the database server
After the administrator changes the connectivity information and other
connectivity files (if required), clients connect to the database server to which the
administrator redirects them when they issue their next CONNECT statement.

If your applications contain code that tests if a connection has failed and issues a
reconnect statement if necessary, redirection is handled automatically. The user has
no responsibilities. If your applications do not include such code, users who are
running clients must quit and restart all applications.

Automatic redirection with server groups
You can use the group option in the sqlhosts file to specify a server group to
which applications connect instead of an individual database server. To make
connection redirection automatic, add a database server definition for both the
primary and secondary servers to the server group definition. By default, when a
connection request is made to an HDR server group, the connection is routed to
the primary server. If the primary server is unavailable, then the connection
request is routed to the secondary server that gets promoted to the primary server
after failover processing.

For example, the following sqlhosts entries represent an HDR server group,
g_hdr, with a primary server definition, hdr_prim, and a secondary server
definition, hdr_sec.
#dbservername nettype hostname servicename options
g_hdr group - - i=1
hdr_prim ontlitcp machine1pri port1 g=g_hdr
hdr_sec ontlitcp machine1sec port1 g=g_hdr

Applications can use the following connectivity statements to support this method
of redirection:
v CONNECT TO database@dbserver_group

v CONNECT TO @dbserver_group

If your applications contain code that tests if a connection has failed and issues a
reconnect statement if necessary, redirection is handled automatically. The user has
no responsibilities. If your applications do not include such code, users who are
running clients must quit and restart all applications.

Redirecting clients with the INFORMIXSERVER environment
variable

The INFORMIXSERVER environment variable redirection method can be used when an
application does not explicitly specify a database server in the CONNECT
statement, so that the client connects to the database server that the
INFORMIXSERVER environment variable specifies.

If one of the database servers in a cluster is unusable, applications that use that
database server can reset their INFORMIXSERVER environment variable to the another
database server in the cluster to access the same data.

Applications read the value of the INFORMIXSERVER environment variable only when
they start. Therefore, applications must be restarted to recognize a change in the
environment variable.

To support this method of redirection, you can use the following connectivity
statements:

24-10 IBM Informix Administrator's Guide

v CONNECT TO DEFAULT
v CONNECT TO database

You cannot use the CONNECT TO database@dbserver or CONNECT TO @dbserver
statements for this method. When a database server is explicitly named, the
CONNECT statement does not use the INFORMIXSERVER environment variable to
find a database server.

Administrators take no action to redirect the clients, but they might be required to
change the type of the database server.

Users who are running client applications must perform the following three steps
when they decide to redirect clients with the INFORMIXSERVER environment variable.

To redirect clients with the INFORMIXSERVER environment variable:
1. Quit their applications.
2. Change their INFORMIXSERVER environment variable to hold the name of the

other database server in the replication pair.
3. Restart their applications.

Redirecting clients with application code
If you use the DBPATH environment variable or connectivity information to redirect
connections, you can include in your clients a routine that handles errors when
clients encounter a cluster failure. The routine can call another function that
contains a loop that tries repeatedly to connect to the other database server in the
cluster. This routine redirects clients without requiring the user to exit the
application and restart it.

The following example shows an example of a function in a client application
using the DBPATH redirection mechanism that loops as it attempts to reconnect.
After it establishes a connection, it also tests the type of the database server to
make sure it is not a secondary database server. If the database server is still a
secondary type, it calls another function to alert the user (or database server
administrator) that the database server cannot accept updates.
/* The routine assumes that the INFORMIXSERVER environment
* variable is set to the database server that the client
* normally uses and that the DBPATH environment variable
* is set to the other database server in the pair.
*/

#define SLEEPTIME 15
#define MAXTRIES 10

main()
{

int connected = 0;
int tries;
for (tries = 0;tries < MAXTRIES && connected == 0;tries++)
{

EXEC SQL CONNECT TO "superstores";
if (strcmp(SQLSTATE,"00000"))
{

if (sqlca.sqlwarn.sqlwarn6 != ’W’)
{

notify_admin();
if (tries < MAXTRIES - 1)

sleep(SLEEPTIME);
}

Chapter 24. Cluster failover, redirection, and restoration 24-11

else connected =1;
}

}
return ((tries == MAXTRIES)? -1:0);
}

This example assumes the DBPATH redirection mechanism and uses a form of the
CONNECT statement that supports the DBPATH redirection method. If you used the
connectivity information to redirect, you might have a different connection
statement, as follows:
EXEC SQL CONNECT TO "superstores@cliff_ol";

In this example, superstores@cliff_ol is a database on a database server that the
client computer recognizes. For redirection to occur, the administrator must change
the connectivity information to make that name refer to a different database server.
You might be required to adjust the amount of time that the client waits before it
tries to connect or the number of tries that the function makes. Provide enough
time for an administrative action on the database server (to change the connectivity
information or change the type of the secondary database server to standard).

Comparison of redirection methods
The different redirection methods have different requirements.

The following tables summarize the differences among redirection mechanisms:

Table 24-1. Redirection methods for DBPATH connectivity

DBPATH Automatic redirection User redirection

When is a client redirected? When the client next tries to
connect with a specified
database

When the client next tries to
connect with a specified
database

Do clients require being
restarted to be redirected?

No Yes

What is the scope of the
redirection?

Individual clients redirected Individual clients redirected

Are changes to environment
variables required?

No No

Table 24-2. Redirection methods for Connectivity information

Connectivity information Automatic redirection User redirection

When is a client redirected? After the administrator
changes the connectivity
information, when the client
next tries to establish a
connection with a database
server

After the administrator
changes the connectivity
information, when the client
next tries to establish a
connection with a database
server

Do clients require being
restarted to be redirected?

No Yes

What is the scope of the
redirection?

All clients that use a given
database server redirected

Individual clients redirected

Are changes to environment
variables required?

No No

24-12 IBM Informix Administrator's Guide

Table 24-3. Redirection methods for INFORMIXDIR connectivity

INFORMIXDIR Automatic redirection

When is a client redirected? When the client restarts and reads a new
value for the INFORMIXSERVER environment
variable

Do clients require being restarted to be
redirected?

Yes

What is the scope of the redirection? Individual clients redirected

Are changes to environment variables
required?

Yes

Table 24-4. Redirection methods for Connection Manager connectivity

Connection Manager Automatic redirection

When is a client redirected? When the configured service level agreement (SLA) is
attained.

Do clients require being restarted to be redirected? No

What is the scope of the redirection? Individual clients redirected

Are changes to environment variables required? No

Recover HDR and RS clusters after failure
When you restore the HDR or RS cluster back to the original configuration, you
might need to restore critical media, as well as restart and configure servers in the
cluster.

The result of a disk failure depends on whether the disk failure occurs on the
primary or the secondary database server, whether the chunks on the disk contain
critical media (the root dbspace, a logical-log file, or the physical log), and whether
the chunks are mirrored.

If chunks are mirrored, you can perform recovery just as you would for a standard
database server that used mirroring.

If chunks are not mirrored, the procedure for restoring a primary database server
depends on whether the disk that failed contains critical media:
v If the disk contains critical media, the primary database server fails. You must

perform a full restore using the primary dbspace backups (or the secondary
dbspace backups if a secondary database server was switched to standard mode
and activity redirected).

v If the disk does not contain critical media, you can restore the affected dbspaces
individually with a warm restore. A warm restore consists of two parts: first a
restore of the failed dbspace from a backup and next a logical restore of all
logical-log records written since that dbspace backup. You must back up all
logical-log files before you perform the warm restore.

If chunks are not mirrored, a secondary database server fails if the disk contains
critical media but remains online if the disk does not contain critical media. In both
cases, you must perform a full restore using the dbspace backups on the primary
database server. In the second case, you cannot restore selected dbspaces from the

Chapter 24. Cluster failover, redirection, and restoration 24-13

secondary dbspace backup because they might now deviate from the
corresponding dbspaces on the primary database server. You must perform a full
restore.
Related reference:
“Recovering a cluster after critical data is damaged”

Recovering a cluster after critical data is damaged
If one of the database servers in a high-availability cluster experiences a failure
that damages the root dbspace, the dbspace that contains logical-log files, or the
dbspace that contains the physical log, you must treat the failed database server as
if it has no data on the disks as is being started for the first time. Use the
functioning database server with the intact disks as the database server with the
data.

Primary server failure

For the following steps, assume that the configuration consists of a primary server
named srv_A and an HDR secondary server named srv_B. The steps for restarting
an RS cluster are the similar.

To restart HDR after a critical media failure:
1. The DRAUTO configuration parameter on srv_B affects what you do next

v If it is set to 0, then you must convert the server to the primary server by
running the onmode -d make primary command.

v If it is set to 1, then convert the server to the primary server by running the
onmode -d make primary command.

v If it is set to 2, the secondary database server becomes a primary database
server as soon as the connection ends when the old primary server fails.

2. Restore srv_A (the primary database server) from the last dbspace backup.
3. Use the onmode -d command to set srv_A to an HDR secondary database

server and to start HDR.
The onmode -d command starts a logical recovery from the logical-log files on
srv_B. If logical recovery cannot complete because you backed up and freed
logical-log files on srv_B, HDR does not start until you perform the next step.

4. Apply the logical-log files from srv_B (the new primary database server), which
were backed up to tape. The HDR pair is now operational; however the roles of
srv_A and srv_B are swapped. To swap srv_A and srv_B back to their original
roles, follow the instructions: “Recovering an HDR cluster after the secondary
server became the primary server” on page 24-16.

Table 24-5. Steps for restarting HDR after a critical media failure on the primary database
server

Step
On the primary database server
(svr_A) On the secondary database server (svr_B)

1. onmode command

onmode -d make primary srv_A

24-14 IBM Informix Administrator's Guide

Table 24-5. Steps for restarting HDR after a critical media failure on the primary database
server (continued)

Step
On the primary database server
(svr_A) On the secondary database server (svr_B)

2. ontape command

ontape -p

ON-Bar command

onbar -r -p

3. onmode command

onmode -d secondary srv_B

4. ontape command

ontape -l

ON-Bar command

onbar -r -l

Secondary server failure

If the secondary database server suffers a critical media failure, recover the cluster
by following the steps for starting a cluster for the first time.

Primary and secondary server failure

In the unfortunate event that both of the computers that are running database
servers in a replication pair experience a failure that damages the root dbspace, the
dbspaces that contain logical-log files or the physical log, you must restart the
cluster.

To restart a high-availability cluster after a critical media failure on both database
servers:
1. Restore the primary database server from the storage space and logical-log

backup.
2. After you restore the primary database server, treat the other failed database

server as if it had no data on the disks and you were starting the
high-availability cluster for the first time.

Related concepts:
“Recover HDR and RS clusters after failure” on page 24-13
Related tasks:
“Starting HDR for the First Time” on page 21-7

Restarting HDR or RS clusters after a network failure
After a network failure, the HDR or RS cluster might need to be restarted. After a
network failure, the primary database server is in online mode, and the secondary
database server is in read-only mode. Replication is turned off on both database
servers (state = off).

Chapter 24. Cluster failover, redirection, and restoration 24-15

Restarting the cluster might not be necessary because the primary database server
attempts to reconnect every 10 seconds and displays a message regarding the
inability to connect every 2 minutes.

If the cluster does not restart automatically, when the connection is reestablished,
you can restart the cluster by running the following commands on the secondary
server:
v onmode -d secondary primary_name to make it the primary server.

Restarting HDR or RS clusters if the secondary server fails
If you must restart HDR or an RS cluster after a failure of a secondary server, in
addition to starting the secondary server, you might need to perform a logical log
restore on the secondary server.

The steps assume that you have been backing up logical-log files on the primary
database server as necessary since the failure of the secondary database server.

Table 24-6. Steps in restarting after a failure on the secondary database server

Step On the primary On the secondary

1. The primary database server must be
in online mode.

oninit

If you receive the following message in the
message log, continue with step 2:DR: Start
Failure recovery from tape

2. ontape command

ontape -l

ON-Bar command

onbar -r -l

Recovering an HDR cluster after the secondary server became
the primary server

If a secondary server in an HDR cluster became the primary server after the
original primary server failed, you can use a script to reestablish the original
primary and convert the current primary server back to a secondary server.

Suppose the primary server, named srv_pri, has encountered an error that has
caused it to fail over to an HDR secondary server named srv_hdr_sec. At this
point, the primary server is srv_hdr_sec, and any other secondary servers in the
cluster are now pointing to srv_hdr_sec.

To restore the cluster to the way it was before srv_pri failed over, follow these
steps:
1. Initialize srv_pri as the HDR secondary server by running the appropriate

command:
UNIX systems:
$INFORMIXDIR/bin/hdrmksec.sh srv_hdr_sec

Windows systems:
hdrmksec.bat srv_hdr_sec

2. Change srv_pri to the primary server by running:
onmode -d make primary srv_pri

24-16 IBM Informix Administrator's Guide

This command makes srv_pri the primary server, and redirects any other
secondary servers in the cluster to point to the new primary server. The
command also shuts down the old HDR primary (srv_hdr_sec) because only a
single primary server can exist in a high-availability environment.

3. Initialize srv_hdr_sec as the HDR secondary server by running the following
command:
On UNIX systems:
$INFORMIXDIR/bin/hdrmksec.sh srv_pri

On Windows systems:
hdrmksec.bat srv_pri

Restart if the primary server fails
The process for restarting an HDR or RS cluster after the primary server fails
depends on whether a secondary server became the primary server, and the
method by which the secondary server became the primary server.

The secondary database server was not changed to a standard
database server

If you must restart an HDR or RS cluster after a failure of the primary database
server if the secondary database server is not changed to standard, start the
primary database server by using the oninit command.

The secondary database server was changed to a standard
database server manually

If you must restart an HDR or RS cluster after a failure of the primary database
server, and you have manually changed the secondary database server to be a
standard database server, complete the steps in the following table.

Table 24-7. Steps to restart if you changed the secondary database server to standard

Step On the primary database server On the secondary database server

1. onmode -s

This step takes the secondary database
server (now standard) to quiescent
mode. All clients that are connected to
this database server must disconnect.
Applications that perform updates
must be redirected to the primary.

2. onmode -d secondary prim_name

Chapter 24. Cluster failover, redirection, and restoration 24-17

Table 24-7. Steps to restart if you changed the secondary database server to standard (continued)

Step On the primary database server On the secondary database server

3. oninit

If all the logical-log records that were written to the secondary
database server are still on the secondary database server disk, the
primary database server recovers these records from that disk
when you issue the oninit command.

If you have backed up and freed the logical-log files on the
secondary, the records in these files are no longer on disk. In this
case, you are prompted to recover these logical-log files from tape
(step 4).

For ontape users:

If you want to read the logical-log records over the network, set
the logical-log tape device to a device on the computer that is
running the secondary database server.

4. If you are prompted to recover logical-log records from tape,
perform this step.

ontape command

ontape -l

ON-Bar command

onbar -r -l

The secondary database server was changed to a standard
database server automatically

If you must restart an HDR or RS cluster after a failure of the primary database
server, and the secondary database server was automatically changed to a standard
database server, complete the steps shown in the following table.

Table 24-8. Steps to restart if you changed the secondary database server to standard automatically

Step On the primary database server On the secondary database server

1. % oninit

If DRAUTO = 1, the type of this database server is set to primary.

If DRAUTO = 2, the type of this database server is set to secondary
when it is restarted.

If all the logical-log records that were written to the secondary
database server are still on the secondary database server disk, the
primary database server recovers these records from that disk
when you issue the oninit command.

If logical-log files that you have backed up and freed are on the
secondary database server, the records in these files are no longer
on disk. In this case, you are prompted to recover these logical-log
files from tape (step 2).

For ontape users:

v Set the logical-log tape device to a device on the computer
running the secondary database server.

If DRAUTO = 1, the secondary
database server automatically goes
through graceful shutdown when you
bring the primary back up. This
ensures that all clients are
disconnected. The type is then
switched back to secondary. Any
applications that perform updates
must be redirected back to the primary
database server.

If DRAUTO = 2, the secondary
database server switches automatically
to primary. The old primary database
server becomes a secondary database
server after it restarts and connects to
the other server and determines that it
is now a primary database server.

24-18 IBM Informix Administrator's Guide

Table 24-8. Steps to restart if you changed the secondary database server to standard automatically (continued)

Step On the primary database server On the secondary database server

2. If you are prompted to recover logical-log records from tape,
perform this step.

ontape command

% ontape -l

ON-Bar command

onbar -r -l

Related concepts:
“Automatic switchover” on page 24-4

Recovering a shared-disk cluster after data is damaged
If a shared-disk cluster fails, you must perform a restore of affected dbspaces. The
type of restore that you need to perform depends on whether critical data is
damaged.
Related concepts:
“Backup and restore with high-availability clusters” on page 22-37

Critical data is damaged
If the primary server experiences a failure that damages the root dbspace, the
dbspace that contains logical-log files, or the dbspace that contains the physical
log, you must treat the failed database server as if it has no data on the disks. You
must perform a full restore of the primary server. In this situation, the primary
server and the SD secondary servers are offline.

To recover a shared-disk cluster after critical media failure:
1. Perform a full restore of the primary server. Run one of the following

commands, depending on whether the backup was performed with ON-Bar or
the ontape utility:
v onbar -r

v ontape -r

The primary server restarts after the restore is complete.
2. Restart the SD secondary servers.

Alternatively, you can perform a cold restore of the critical dbspaces on the
primary server, restart the SD secondary servers, and then perform a warm restore
of non-critical dbspaces.

Critical data is not damaged
If a disk that does not contain critical media fails, you can restore the affected
dbspaces with a warm restore. In this situation the primary server and the SD
secondary servers are online.

To recover non-critical data in a shared-disk cluster:
1. Shut down and restart the SD secondary servers.

Chapter 24. Cluster failover, redirection, and restoration 24-19

2. Perform a warm restore of the affected dbspaces. Run one of the following
commands, depending on whether the backup was performed with ON-Bar or
the ontape utility:
v onbar -r with the names of the dbspaces to restore
v ontape -r -D with the names of the dbspaces to restore

Recovering an SD cluster after the secondary server became the
primary server

If a secondary server in an SD cluster became the primary server after the original
primary server failed, you can use a script to reestablish the original primary and
convert the current primary server back to a secondary server.

In this example, the primary server, named srv_pri, has failed over to an SD
secondary server named srv_sds_sec. At this point, the primary server is
srv_sds_sec, and any other secondary servers in the cluster are now pointing to
srv_sds_sec. To restore the cluster to the way it was before srv_pri failed over,
follow these steps:
1. If necessary, set the following parameters in the onconfig file of srv_pri:

SDS_ENABLE 1
SDS_PAGING <path 1>,<path 2>
SDS_TEMPDBS <dbsname>,<dbspath>,<pagesize>,<offset>,<size>

The dbsname value must be unique. In addition, the dbsname must be unique
among all existing dbspaces, blobspaces, and sbspaces, including those
(possibly disabled) temporary spaces that are inherited from a primary server.
If you have multiple SD secondary servers, the dbsname value must be unique
for each server and not shared with any other SD secondary server or the
primary server. See “Setting up a shared disk secondary server” on page 21-21
for more information about setting these parameters.

2. Initialize srv_pri as an SD secondary server by running the oninit command on
srv_pri.

3. Perform a manual failover of srv_pri to make it the primary server:
onmode –d make primary srv_pri

The previous command removes srv_sds_sec from the cluster and makes
srv_pri the primary server.

4. Restore srv_sds_sec as an SD secondary server by running the oninit command
on srv_sds_sec.

24-20 IBM Informix Administrator's Guide

Part 6. Distributed data

© Copyright IBM Corp. 1996, 2014

IBM Informix Administrator's Guide

Chapter 25. Multiphase commit protocols

A two-phase commit protocol ensures that transactions are uniformly committed or
rolled back across multiple database servers. You can use IBM Informix database
servers with IBM Informix Enterprise Gateway products or transaction managers
to manipulate data in non-Informix databases. Distributed queries across IBM
Informix database servers support two-phase commit.

The heterogeneous commit protocol ensures that updates to one or more IBM Informix
databases and one non-Informix database in a single transaction are uniformly
committed or rolled back.

These topics contain information about the use of the two-phase commit protocol.
For information about recovering manually from a failed two-phase commit
transaction, see Chapter 26, “Manually recovering from failed two-phase commit,”
on page 26-1.

These topics also contain information about using transaction support for
XA-compliant, external data sources, which can participate in two-phase commit
transactions. See “Informix transaction support for XA-compliant, external data
sources” on page 25-2.

Transaction managers
Transaction managers support two-phase commit and roll back. For example, if
your database is IBM Informix, your accounting system is Oracle, and your
remittance system is Sybase, you can use a transaction manager to communicate
between the different databases. You also can use transaction managers to ensure
data consistency between IBM Informix or non-Informix databases by using
distributed transactions instead of Enterprise Replication or High-Availability Data
Replication.

TP/XA Library with a transaction manager
A global transaction is a distributed query where more than one database server is
involved in the query. A global transaction environment has the following parts:
v The client application
v The resource manager (IBM Informix database server)
v The transaction manager (vendor software)

TP/XA is a library of functions that lets the database server act as a resource
manager in the X/Open DTP environment. Install the TP/XA library as part of
IBM Informix ESQL/C to enable communication between a third-party transaction
manager and the database server. The X/Open environment supports large-scale,
high-performance OLTP applications.

Use TP/XA when your database has the following characteristics:
v Data is distributed across multivendor databases
v Transactions include IBM Informix and non-Informix data
Related concepts:
“XA in high-availability clusters” on page 25-3

© Copyright IBM Corp. 1996, 2014 25-1

Microsoft Transaction Server (MTS/XA)
The database server supports the Microsoft Transaction Server (MTS/XA) as a
transaction manager in the XA environment. To use MTS/XA, install IBM Informix
Client Software Development Kit, the latest version of IBM Informix ODBC Driver,
and MTS/XA. MTS/XA works on Windows. For more information, contact IBM
Informix Technical Support, and see the IBM Informix Client Products Installation
Guide and the MTS/XA documentation.
Related concepts:
“XA in high-availability clusters” on page 25-3

Informix transaction support for XA-compliant, external data
sources

The IBM Informix Transaction Manager, which is an integral part of Informix, not a
separate module, recognizes XA-compliant, external data sources. These data
sources can participate in two-phase commit transactions.

The transaction manager runs support routines for each XA-compliant, external
data source that participates in a distributed transaction at a particular
transactional event, such as prepare, commit, or rollback. This interaction conforms
to X/Open XA interface standards.

Transaction support for XA-compliant, external data sources, which are also called
resource managers, enables you to:
v Create XA-compliant, external data source types and instances of XA-compliant,

external data sources.
v Create or modify a user-defined routine (UDR), virtual table interface, or virtual

index interface to enable XA-compliant data sources to provide data access
mechanisms for external data from XA-compliant data sources.
The MQ DataBlade Module is an example of a set of UDRs that provide this
type of external data access.

v Register XA-compliant, external data sources with Informix.
v Unregister XA-compliant, external data sources.
v Use multiple XA-compliant, external data sources within the same global

transaction.

The transaction coordination with an XA-compliant, external data source is
supported only in IBM Informix logged databases and ANSI-compliant databases,
since these databases support transactions. Transaction coordination with an
XA-compliant, external data source is not supported in non-logged databases.

You can use the following DDL statements, which are extensions to SQL statements
to manage XA data source types and data sources:

Statement Description

CREATE XADATASOURCE TYPE Creates a type of XA-compliant, external data source

CREATE XADATASOURCE Creates an instance of an XA-compliant, external data
source

DROP XADATASOURCE Deletes an instance of an XA-compliant, external data
source

DROP XADATASOURCE TYPE Deletes a type of XA-compliant, external data source

25-2 IBM Informix Administrator's Guide

For more information about these statements, see the IBM Informix Guide to SQL:
Syntax.

The interaction between IBM Informix and an XA-compliant, external data source
occurs through a set of user-defined XA-support routines, such as xa_open,
xa_end, xa_commit, and xa_prepare. You create these support routines before
using the CREATE XADATASOURCE TYPE statement. For more information, see
the IBM Informix DataBlade API Programmer's Guide.

After you create an external XA-compliant data source, you can register the data
source to a current transaction and you can unregister the data source using the
mi_xa_register_xadatasource() or ax_reg() and mi_xa_unregister_xadatasource() or
ax_unreg() functions. In a distributed environment, you must register a data source
at the local, coordinator server. Registration is transient, lasting only for the
duration of the transaction. For more information about using these functions, see
the IBM Informix DataBlade API Function Reference and the IBM Informix DataBlade
API Programmer's Guide.

Use the following onstat options to display information about transactions
involving XA-compliant data sources:

The onstat option
What XA-compliant data source information this command
displays

onstat -x Displays information about XA participants in a transaction.

onstat -G Displays information about XA participants in a global
transaction.

onstat -g ses session id Displays session information, including information about XA
data sources participating in a transaction.

The IBM Informix MQ DataBlade Module provides external data access
mechanisms for XA data sources. For information about this DataBlade Module,
see the IBM Informix Database Extensions User's Guide.
Related concepts:
“XA in high-availability clusters”

XA in high-availability clusters
The X/Open Distributed Transaction Processing (DTP) Model allows an updatable
secondary server in a high-availability cluster to serve as a resource manager in a
distributed transaction.

There are three types of participants in any XA global transaction:
v Application Program (AP): Defines transaction boundaries and specifies actions

that constitute the transaction branch.
v Resource Manager (RM): Provides access to the resources, such as databases.
v Transaction Manager (TM): Assigns identifier (XID) to transaction branches,

monitors transaction progress, coordinates the transaction branches into
completion and failure recovery.

In a high-availability cluster, sessions are able to create or attach to a transaction
branch from any server in the cluster. For example, a transaction branch detached
from server_1 can be attached from server_2. The application can connect to the
cluster using the Connection Manager without tracking the server on which the
transaction began. The transaction manager can also connect to the cluster using

Chapter 25. Multiphase commit protocols 25-3

the Connection Manager to complete an XA transaction by committing the
transaction, rolling it back, or forgetting it, for both loosely and tightly coupled
transactions (see “Loosely-coupled and tightly-coupled modes” on page 25-5).

All global transaction branches started from a secondary server are redirected to
the primary server using the existing proxy interface. The primary server starts
and maintains all transaction branches and performs all requested work associated
with the branches.

When an XA transaction is started on an updatable secondary server, a
corresponding XA transaction is started on the primary server. The XA transaction
on the primary server executes the full life cycle of an XA transaction (start, end,
prepare, and commit or roll back). XA transactions on secondary servers are used
to support queries that are not redirected to the primary server. When a call to the
xa_end() function is issued, the XA transaction is freed and the user session is
detached from the XA transaction. All XA transaction requests and all write
operations issued within the XA transaction are redirected to the primary server.

The following features are specific to the Informix XA implementation:
v All XA interface requests are available on updatable secondary servers (see

“Database updates on secondary servers” on page 22-32.
v Starting, preparing, and committing or rolling back XA transactions from an

updatable secondary server is supported.
v The xa_recover() function, which obtains a list of prepared transaction branches

from a resource manager, is supported.
v XA transaction branch migration among high-availability cluster servers is

supported. Any server in a cluster can attach to an XA transaction branch
irrespective of whether the transaction branch was originated from it.

v XA clients and the Transaction Manager can connect to any high-availability
cluster server using the Connection Manager (see Chapter 23, “Connection
management through the Connection Manager,” on page 23-1).

v Redirection of XA requests from secondary servers to the primary server is
supported.

v Transaction survival is supported for XA transactions (see “Transaction
completion during cluster failover” on page 22-42).

v If a secondary server on which a redirected XA transaction is running fails, the
transaction is rolled back.

v Support is provided for SQL transactions that run within the XA environment
but which are outside the XA transaction

The following restrictions exist for XA transactions running on secondary servers:
v Resuming a suspended global transaction branch from a different user session

(on the same or different secondary server) is not supported.
v A user session cannot attach to a global transaction branch that is associated

with a different user session on another secondary server.
v XA transactions have the same restrictions as other data on secondary servers.

See “Database updates on secondary servers” on page 22-32.
v XA transactions cannot be started on read-only secondary servers. If an

application attempts to create a new XA transaction on a read-only secondary
server, it receives XA error code XAER_RMERR. In addition, running
xa_prepare(), xa_commit(), or xa_rollback() on a read-only secondary server
returns error code XA_NOTA (-4).

25-4 IBM Informix Administrator's Guide

v The following XA APIs are supported on read-only secondary servers:
– xa_open()
– xa_close()

Important: If you are using the .NET Framework with the Microsoft Transaction
Server to manage XA transactions on a high availability cluster, you must use the
TransactionScope class instead of the ServiceConfig class. The TransactionScope
class is available in .NET Framework 3.5.
Related concepts:
Part 5, “High availability and scalability”
“Database updates on secondary servers” on page 22-32
Related reference:
“TP/XA Library with a transaction manager” on page 25-1
“Microsoft Transaction Server (MTS/XA)” on page 25-2
“Informix transaction support for XA-compliant, external data sources” on page
25-2
“Loosely-coupled and tightly-coupled modes”

Loosely-coupled and tightly-coupled modes
The database server supports XA global transactions in loosely coupled and tightly
coupled modes:
v Loosely coupled mode means that the different database servers coordinate

transactions, but do not share resources. The records from all branches of the
transactions display as separate transactions in the logical log.

v Tightly coupled mode means that the different database servers coordinate
transactions and share resources such as locking and logging. The records from
all branches of the transactions display as a single transaction in the logical log.

The Tuxedo Transaction Manager, provided by BEA systems, supports loosely
coupled mode. Tuxedo operates on both UNIX and Windows.

Windows only: The MTS/XA Transaction Manager, which operates only on
Windows, supports the tightly coupled mode. MTS tightly coupled transaction
support on the database server includes:
v Support for application programs with two tiers (a business-logic layer and a

data-access layer).
v Connection pooling and session pooling.

MTS tightly coupled transaction support does not affect existing loosely
coupled-transaction support. The same database server can use both loosely
coupled and tightly coupled transaction support at the same time.

MTS tightly coupled transaction support has the following restrictions:
v Temporary tables are limited to one transaction branch. Different transaction

branches within one global transaction cannot share a temporary table.
v Different transaction branches within one global transaction cannot share

cursors.
v Different transaction branches within one global transaction cannot share an

isolation level or lock-wait mode. The isolation level and lock-wait mode of each
transaction branch must be set individually or set to the default level. If you

Chapter 25. Multiphase commit protocols 25-5

want the same isolation level for all transaction branches, you must use SQL to
specify this information for each transaction branch.

For a complete list of supported transaction managers, contact your marketing
representative.
Related concepts:
“XA in high-availability clusters” on page 25-3

Two-phase commit protocol
The two-phase commit protocol provides an automatic recovery mechanism in case
a system or media failure occurs during execution of the transaction. The
two-phase commit protocol ensures that all participating database servers receive
and implement the same action (either to commit or to roll back a transaction),
regardless of local or network failure.

If any database server is unable to commit its portion of the transaction, all
database servers participating in the transaction must be prevented from
committing their work.

When the two-phase commit protocol is used
A database server automatically uses the two-phase commit protocol for any
transaction that modifies data on multiple database servers.

For example, suppose three database servers that have the names australia, italy,
and france, are connected, as shown in the following figure.

If you run the commands shown in the following example, the result is one update
and two inserts at three different database servers.
CONNECT TO stores_demo@italy
BEGIN WORK

UPDATE stores_demo:manufact SET manu_code = ’SHM’ WHERE manu_name = ’Shimara’
INSERT INTO stores_demo@france:manufact VALUES (’SHM’, ’Shimara’, ’30’)
INSERT INTO stores_demo@australia:manufact VALUES (’SHM’, ’Shimara’, ’30’)

COMMIT WORK

Two-phase commit concepts
Every global transaction has a coordinator and one or more participants, defined as
follows:
v The coordinator directs the resolution of the global transaction. It decides

whether the global transaction must be committed or stopped.
The two-phase commit protocol always assigns the role of coordinator to the
current database server. The role of coordinator cannot change during a single
transaction. In the sample transaction in “When the two-phase commit protocol

italy

france australia

Figure 25-1. Connected database servers

25-6 IBM Informix Administrator's Guide

is used” on page 25-6, the coordinator is italy. If you change the first line in this
example to the following statement, the two-phase commit protocol assigns the
role of coordinator to france:
CONNECT TO stores_demo@france

Use the onstat -x option to display the coordinator for a distributed transaction.
For more information, see “Monitor a global transaction” on page 25-15.

v Each participant directs the execution of one transaction branch, which is the part
of the global transaction involving a single local database. A global transaction
includes several transaction branches when:
– An application uses multiple processes to work for a global transaction
– Multiple remote applications work for the same global transaction
In “When the two-phase commit protocol is used” on page 25-6, the participants
are france and australia. The coordinator database server, italy, also functions as
a participant because it is also doing an update.

The two-phase commit protocol relies on two kinds of communication, messages
and logical-log records:
v Messages pass between the coordinator and each participant. Messages from the

coordinator include a transaction identification number and instructions (such as
prepare to commit, commit, or roll back). Messages from each participant
include the transaction status and reports of action taken (such as can commit or
cannot commit, committed, or rolled back).

v Logical-log records of the transaction are kept on disk or tape to ensure data
integrity and consistency, even if a failure occurs at a participating database
server (participant or coordinator).
For more details, see “Two-phase commit and logical-log records” on page 25-17.

Phases of the two-phase commit protocol
In a two-phase commit transaction, the coordinator sends all the data modification
instructions (for example, inserts) to all the participants. Then, the coordinator
starts the two-phase commit protocol. The two-phase commit protocol has two
parts, the precommit phase and the postdecision phase.

Precommit phase
During the precommit phase, the coordinator and participants perform the
following dialog:

Coordinator
The coordinator directs each participant database server to prepare to
commit the transaction.

Participants
Every participant notifies the coordinator whether it can commit its
transaction branch.

Coordinator
The coordinator, based on the response from each participant, decides
whether to commit or roll back the transaction. It decides to commit only if
all participants indicate that they can commit their transaction branches. If
any participant indicates that it is not ready to commit its transaction
branch (or if it does not respond), the coordinator decides to end the global
transaction.

Chapter 25. Multiphase commit protocols 25-7

Postdecision phase
During the postdecision phase, the coordinator and participants perform the
following dialog:

Coordinator
The coordinator writes the commit record or rollback record to the
coordinator's logical log and then directs each participant database server
to either commit or roll back the transaction.

Participants
If the coordinator issued a commit message, the participants commit the
transaction by writing the commit record to the logical log and then
sending a message to the coordinator acknowledging that the transaction
was committed. If the coordinator issued a rollback message, the
participants roll back the transaction but do not send an acknowledgment
to the coordinator.

Coordinator
If the coordinator issued a message to commit the transaction, it waits to
receive acknowledgment from each participant before it ends the global
transaction. If the coordinator issued a message to roll back the transaction,
it does not wait for acknowledgments from the participants.

How the two-phase commit protocol handles failures
The two-phase commit protocol is designed to handle system and media failures in
such a way that data integrity is preserved across all the participating database
servers. The two-phase commit protocol performs an automatic recovery if a
failure occurs.

Types of failures that automatic recovery handles
The following events can cause the coordinating thread or the participant thread to
terminate or hang, thereby requiring automatic recovery:
v System failure of the coordinator
v System failure of a participant
v Network failure
v Termination of the coordinating thread by the administrator
v Termination of the participant thread by the administrator

Administrator's role in automatic recovery
The only role of the administrator in automatic recovery is to bring the coordinator
or participant (or both) back online after a system or network failure.

Important: A slow network cannot trigger automatic recovery. None of the
recovery mechanisms described here go into effect unless a coordinator system
fails, a network fails, or the administrator terminates the coordinating thread.

Automatic-recovery mechanisms for coordinator failure
If the coordinating thread fails, each participant database server must decide
whether to initiate automatic recovery before it commits or rolls back the
transaction or after it rolls back a transaction. This responsibility is part of the
presumed-end optimization. (See “Presumed-end optimization” on page 25-9.)

Automatic-recovery mechanisms for participant failure
Participant recovery occurs whenever a participant thread precommits an item of
work that is terminated before the two-phase commit protocol can be completed.

25-8 IBM Informix Administrator's Guide

The goal of participant recovery is to complete the two-phase commit protocol
according to the decision reached by the coordinator.

Participant recovery is driven by either the coordinator or the participant,
depending on whether the coordinator decided to commit or to roll back the global
transaction.

Important: To support automatic recovery after a subordinate server is shut down
or restarted while a cross-server transaction is open, the sqlhosts file must include
an entry for every database server from which distributed operations might be
initiated. During automatic recovery, the name of the coordinator is recovered from
the logical logs, and the subordinate server reconnects with the coordinator to
complete the transaction. Because the coordinator always identifies itself to the
participants using the name that is in the DBSERVERNAME configuration
parameter in its own onconfig file, the DBSERVERNAME setting of the
coordinator must be an Internet protocol connection name known to the
participants, but you can also define at least one DBSERVERALIASES setting with
the correct connection protocol for connectivity between the coordinator and the
subordinate servers. The subordinate server must be able to connect to the
coordinator using either the DBSERVERNAME setting or a DBSERVERALIASES
setting of the coordinator.

Presumed-end optimization
Presumed-end optimization is a term that describes how the two-phase commit
protocol handles the rollback of a transaction.

Rollback is handled in the following manner. When the coordinator determines
that the transaction must be rolled back, it sends a message to all the participants
to roll back their piece of work. The coordinator does not wait for an
acknowledgment of this message, but proceeds to close the transaction and remove
it from shared memory. If a participant tries to determine the status of this
transaction—that is, find out whether the transaction was committed or rolled back
(during participant recovery, for example)—it does not find any transaction status
in shared memory. The participant must interpret this as meaning that the
transaction was rolled back.

Independent actions
An independent action in the context of two-phase commit is an action that occurs
independently of the two-phase commit protocol. Independent actions might or
might not be in opposition to the actions that the two-phase commit protocol
specifies. If the action is in opposition to the two-phase commit protocol, the action
results in an error or a heuristic decision. Heuristic decisions can result in an
inconsistent database and require manual two-phase commit recovery. Manual
recovery is an extremely complicated administrative procedure that you must try
to avoid. (For an explanation of the manual-recovery process, see Chapter 26,
“Manually recovering from failed two-phase commit,” on page 26-1.)

Situations that initiate independent action
Independent action during a two-phase commit protocol is rare, but it can occur in
the following situations:
v The participant's piece of work develops into a long-transaction error and is

rolled back.

Chapter 25. Multiphase commit protocols 25-9

v An administrator stops a participant thread during the postdecision phase of the
protocol with onmode -z.

v An administrator ends a participant transaction (piece of work) during the
postdecision phase of the protocol with onmode -Z.

v An administrator ends a global transaction at the coordinator database server
with onmode -z or onmode -Z after the coordinator issued a commit decision
and became aware of a participant failure. This action always results in an error,
specifically error -716.

Possible results of independent action
As mentioned earlier, not all independent actions are in opposition to the
two-phase commit protocol. Independent actions can yield the following three
possible results:
v Successful completion of the two-phase commit protocol
v An error condition
v A heuristic decision

If the action is not in opposition to the two-phase protocol, the transaction either
commits or rolls back normally. If the action ends the global transaction
prematurely, an error condition results. Ending the global transaction at the
coordinator is not considered a heuristic decision. If the action is in opposition to
the two-phase commit protocol, a heuristic decision results. All these situations are
explained in the sections that follow.

Independent actions that allow transactions to complete
successfully
Independent actions are not necessarily in opposition to the two-phase commit
protocol. For example, if a piece of work at a participant database server is rolled
back because it developed into a long transaction, and the coordinator issues a
decision to roll back the global transaction, the database remains consistent.

Independent actions that result in an error condition
If you, as administrator at the coordinator database server, run either onmode -z
(stop the coordinator thread) or onmode -Z (stop the global transaction) after the
coordinator issues its final commit decision, you are removing all knowledge of the
transaction from shared memory at the coordinator database server.

This action is not considered a heuristic decision because it does not interfere with
the two-phase protocol; it is either acceptable, or it interferes with participant
recovery and causes an error.

The action is acceptable any time that all participants are able to commit the
transaction without difficulty. In this case, your action to end the transaction
forcibly is superfluous. The indication that you ran onmode -Z reaches the
coordinator only when the coordinator is preparing to terminate the transaction.

In practice, however, you would probably consider running onmode -z or onmode
-Z at the coordinator database server only if you were attempting to hasten the
conclusion of a global transaction that has remained open for an unusually long
period. In this scenario, the source of the problem is probably a failure at some
participant database server. The coordinator has not received acknowledgment that
the participant committed its piece of work, and the coordinator is attempting to
establish communication with the participant to investigate.

25-10 IBM Informix Administrator's Guide

If you run either onmode -z or onmode -Z while the coordinator is actively trying
to reestablish communication, the coordinating thread obeys your instruction to
die, but not before it writes error -716 into the database server message log. The
action is considered an error because the two-phase commit protocol was forcibly
broken, preventing the coordinator from determining whether the database is
consistent.

Stopping a global transaction at a coordinator database server is not considered a
heuristic decision, but it can result in an inconsistent database. For example, if the
participant eventually comes back online and does not find the global transaction
in the coordinator shared memory, it rolls back its piece of work, thereby causing a
database inconsistency.

Independent actions that result in heuristic decisions
Some independent actions can develop into heuristic decisions when both of the
following conditions are true:
v The participant database server already sent a can commit message to the

coordinator and then rolls back.
v The coordinator's decision is to commit the transaction.

When both conditions are true, the net result is a global transaction that is
inconsistently implemented (committed by one or more database servers and rolled
back by another). The database becomes inconsistent.

The following two heuristic decisions are possible:
v Heuristic rollback (described in “The heuristic rollback scenario”)
v Heuristic end transaction (described in “The heuristic end-transaction scenario”

on page 25-13)

After a heuristic rollback or end transaction occurs, you might be required to
perform manual recovery, a complex and time-consuming process. you must
understand heuristic decisions fully in order to avoid them. Always be wary of
running onmode -z or onmode -Z within the context of two-phase commit.

The heuristic rollback scenario
In a heuristic rollback, either the database server or the administrator rolls back a
piece of work that has already sent a can commit message.

Conditions that result in a heuristic rollback
The following two conditions can cause a heuristic rollback:
v The logical log fills to the point defined by the LTXEHWM configuration

parameter. (See the topics about configuration parameters in the IBM Informix
Administrator's Reference.) The source of the long-transaction condition is a piece
of work being performed on behalf of a global transaction.

v An administrator executes onmode -z session_id to stop a database server
thread that is executing a piece of work being performed on behalf of a global
transaction.

In either case, if the piece of work has already sent a can commit message to its
coordinator, the action is considered a heuristic decision.

Condition 1: Logical log fills to a high-watermark:
Under two-phase commit, a participant database server that is waiting for
instructions from the coordinator is blocked from completing its transaction.

Chapter 25. Multiphase commit protocols 25-11

Because the transaction remains open, the logical-log files that contain records
associated with this transaction cannot be freed. The result is that the logical log
continues to fill because of the activity of concurrent users.

If the logical log fills to the value of the long-transaction high-watermark
(LTXHWM) while the participant is waiting, the database server directs all
database server threads that own long transactions to begin rolling them back. If a
piece of work that is precommitted is the offending long transaction, the database
server has initiated a heuristic rollback. That is, this database server is rolling back
a precommitted piece of work without the instruction or knowledge of the
coordinator.

Under two-phase commit, the logical-log files that contain records associated with
the piece of work are considered open until an ENDTRANS logical-log record is
written. This type of transaction differs from a transaction involving a single
database server where a rollback actually closes the transaction.

The logical log might continue to fill until the exclusive high-watermark is reached
(LTXEHWM). If this happens, all user threads are suspended except those that are
currently rolling back or currently committing. In the two-phase commit scenario,
the open transaction prevents you from backing up the logical-log files and freeing
space in the logical log. Under these specific circumstances, the logical log can fill
completely. If this happens, the participant database server shuts down, and you
must perform a data restore.

Condition 2: System administrator executes onmode -z:
You, as administrator, can decide to initiate a heuristic rollback of a precommitted
piece of work by running onmode -z. You might make this decision because you
want to free the resources that are held by the piece of work. (If you stop the
participant thread by running onmode -z, you free all locks and shared-memory
resources that are held by the participant thread even though you do not end the
transaction.)

Results of a heuristic rollback
These topics describe what happens at both the coordinator and participant when a
heuristic rollback occurs and how this process can result in an inconsistent
database:
1. At the participant database server where the rollback occurred, a record is

placed in the database server logical log (type HEURTX). Locks and resources
held by the transaction are freed. The participant thread writes the following
message in the database server message log, indicating that a long-transaction
condition and rollback occurred:
Transaction Completed Abnormally (rollback):

tx=address flags=0xnn

2. The coordinator issues postdecision phase instructions to commit the
transaction.
The participant thread at the database server where the heuristic rollback
occurred returns error message -699 to the coordinator as follows:
-699 Transaction heuristically rolled back.

This error message is not returned to the application at this point; it is an
internal notification to the coordinator. The coordinator waits until all
participants respond to the commit instruction. The coordinator does not
determine database consistency until all participants report.

25-12 IBM Informix Administrator's Guide

3. The next steps depend on the actions that occur at the other participants. Two
situations are possible.

Situation 1: Coordinator issues a commit and all participants report heuristic
rollbacks:
The coordinator gathers all responses from participants. If every participant reports
a heuristic rollback, the following events occur as a consequence:
1. The coordinator writes the following message to its own database-server

message log:
Transaction heuristically rolled back.

2. The coordinator sends a message to all participants to end the transaction.
3. Each participant writes an ENDTRANS record in its logical-log buffer. (The

transaction entry is removed from the transaction table.)
4. The coordinator returns error -699 to the application, as follows:

-699 Transaction heuristically rolled back.

5. In this situation, all databases remain consistent.

Situation 2: Coordinator issued a commit; one participant commits and one
reports a heuristic rollback:
The coordinator gathers all responses from participants. If at least one participant
reports a heuristic rollback and at least one reports an acknowledgment of a
commit, the result is called a mixed-transaction result. The following events occur as
a consequence:
1. The coordinator writes the following message to its own database server

message log:
Mixed transaction result. (pid=nn user=userid)

The pid value is the user-process identification number of the coordinator
process. The user value is the user ID associated with the coordinator process.
Associated with this message are additional messages that list each of the
participant database servers that reported a heuristic rollback. The additional
messages take the following form:
Participant database server dbservername heuristically rolled back.

2. The coordinator sends a message to each participant that heuristically rolled
back its piece of work, directing each one to end the transaction.

3. Each participant writes an ENDTRANS message in its logical-log buffer. (The
transaction entry is removed from the transaction table.)

4. The coordinator writes an ENDTRANS message in its logical-log buffer. (The
transaction entry is removed from the shared-memory transaction table.)

5. The coordinator returns error -698 to the application, as follows:
-698 Inconsistent transaction. Number and names of servers rolled back.

6. Associated with this error message is the list of participant database servers
that reported a heuristic rollback. If many database servers rolled back the
transaction, this list might be truncated. The complete list is always included in
the message log for the coordinator database server.

In this situation, examine the logical log at each participant database server site
and determine whether your database system is consistent. (See “Determine if a
transaction was implemented inconsistently” on page 26-1.)

The heuristic end-transaction scenario
A heuristic end transaction is an independent action taken by the administrator to
roll back a piece of work and remove all information about the transaction from

Chapter 25. Multiphase commit protocols 25-13

the transaction table. The heuristic end-transaction process is initiated when the
administrator executes the onmode -Z address command.

Whenever you initiate a heuristic end transaction by running onmode -Z, you
remove critical information required by the database server to support the
two-phase commit protocol and its automatic-recovery features. If you run onmode
-Z, it becomes your responsibility to determine whether your networked database
system is consistent.

When to perform a heuristic end transaction
You must run the onmode -Z option to initiate a heuristic end transaction in only
one, rare, situation. This situation occurs when a piece of work that has been
heuristically rolled back remains open, preventing your logical-log files from
becoming free. As a result, the logical log is dangerously close to full.

In general, the coordinator issues its commit-or-rollback decision within a
reasonable period of time. However, if the coordinator fails and does not return
online to end a transaction that was heuristically rolled back at your participant
database server, you might face a serious problem.

The problem scenario begins in this way:
1. The participant thread that is executing a piece of work on behalf of a global

transaction has sent a can commit response to the coordinator.
2. The piece of work waits for instructions from the coordinator.
3. While the piece of work is waiting, the logical log fills past the long-transaction

high-watermark.
4. The piece of work that is waiting for instructions is the source of the long

transaction. The participant database server directs the executing thread to roll
back the piece of work. This action is a heuristic rollback.

5. The participant continues to wait for the coordinator to direct it to end the
transaction. The transaction remains open. The logical log continues to fill.

If the coordinator contacts the participant and directs it to end the transaction in a
reasonable period of time, no problem develops. The serious problem arises if the
heuristic rollback occurs at a participant database server and subsequently the
coordinator fails, preventing the coordinator from directing the participant to end
the transaction.

As a consequence, the transaction remains open. The open transaction prevents
you from backing up logical-log files and freeing space in the logical log. As the
logical log continues to fill, it might reach the point specified by the
exclusive-access, long-transaction high-watermark (LTXEHWM). If this point is
reached, normal processing is suspended. At some point after the high-watermark
is reached, you must decide if the open transaction is endangering your logical log.
The danger is that if the logical log fills completely, the database server shuts
down, and you must perform a data restore.

You must decide whether to end the transaction and protect your system against
the possibility of filling the logical log, despite all the problems associated with
running onmode -Z, or to wait and see if communication with the coordinator can
be reestablished in time to end the transaction before the logical log fills.

How to use onmode -Z
The onmode -Z address command is intended for use only if communication
between the coordinator and the participant is broken. To ensure that

25-14 IBM Informix Administrator's Guide

communication is really broken, the onmode -Z command does not run unless the
thread that was executing the piece of work has been dead for the amount of time
specified by TXTIMEOUT. For more information about this option, see the IBM
Informix Administrator's Reference.

The address parameter is obtained from onstat -x output. For more information
about the onstat -x option, see the IBM Informix Administrator's Reference.

Action when the transaction is ended heuristically
When you run onmode -Z, you direct the onmode utility to remove the participant
transaction entry, which is located at the specified address, from the transaction
table.

Two records are written in the logical log to document the action. The records are
type ROLLBACK and ENDTRANS, or if the transaction was already heuristically
rolled back, ENDTRANS only. The following message is written to the participant
database server message log:

(time_stamp) Transaction Completed Abnormally (endtx): tx=address flags:0xnn user username tty ttyid

The coordinator receives an error message from the participant where the onmode
-Z occurred, in response to its COMMIT instruction. The coordinator queries the
participant database server, which no longer has information about the transaction.
The lack of a transaction-table entry at the participant database server indicates
that the transaction committed. The coordinator assumes that the acknowledgment
message was sent from the participant, but somehow it was not received. Because
the coordinator does not know that this participant's piece of work did not
commit, it does not generate messages indicating that the global transaction was
inconsistently implemented. Only the administrator who ran the onmode -Z
command is aware of the inconsistent implementation.

Monitor a global transaction
Use the onstat -x command to track open transactions and determine whether they
have been heuristically rolled back.

For example, in the output, an H flag in the flags field identifies a heuristic
rollback, the G flag identifies a global transaction, the L flag indicates loosely
coupled mode, and the T flag indicates tightly coupled mode.

The curlog and logposit fields provide the exact position of a logical-log record. If
a transaction is not rolling back, curlog and logposit describe the position of the
most recently written log record. When a transaction is rolling back, these fields
describe the position of the most recently “undone” log record. As the transaction
rolls back, the curlog and logposit values decrease. In a long transaction, the rate
at which the logposit and beginlg values converge can help you estimate how
much longer the rollback is going to take.

For more information about and an example of onstat -x output, see the IBM
Informix Administrator's Reference.

You also can use the onstat -u and onstat -k commands to track transactions and
the locks that they hold. For details, see the monitoring transactions topics in your
IBM Informix Performance Guide. For a description of the fields that onstat -x
displays, see the IBM Informix Administrator's Reference.

Chapter 25. Multiphase commit protocols 25-15

On a secondary server, when transaction completion after failover is enabled (by
setting the FAILOVER_TX_TIMEOUT configuration parameter), it is possible that
two global transactions might have the same global transaction identifier: one is a
local temporary global transaction, and the other is the global transaction that
belongs to the recovery thread. A quick way to tell the real global transaction from
the temporary transaction is that the real transaction has a B flag if the transaction
has performed any operations. You can also check the owner of the transaction by
using the onstat -g ath command. The temporary global transaction on the
secondary server is deleted after the xa_end() function is called.

The following onstat utility example output illustrates XA transaction support on
both primary and secondary servers in a high-availability cluster environment. The
onstat -x, onstat -G, and onstat -ath commands are separately documented, but
output from the combined onstat -xG command is of special interest for global
transactions. The examples show each state of a redirected transaction.

In the examples, the global transaction shown running on the secondary server is a
temporary transaction. The temporary transaction is used to support the SQL
statements performed on the secondary server (not transactions redirected to the
primary server). The temporary transaction is only shown when a user thread is
actively associated with the global transaction branch.

The following example shows output from the onstat -xG command run on a
secondary server after an xa_start() function:
Transactions

est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d4190 AT--G 7000000104a7b68 0 - - LC - 0
7000000104d8bd0 ALB-G 7000000104a5aa8 1 180:0x0 180:0x4eb018 DIRTY 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d4190 AT--G COMMIT 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000
7000000104d8bd0 ALB-G DIRTY 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

Output from onstat -g ath run on the secondary server:
Threads:
tid tcb rstcb prty status vp-class name
317 7000001500902c8 7000000104a7b68 1 cond wait netnorm 1cpu sqlexec
84 7000001403a7dc0 7000000104a5aa8 3 sleeping secs: 1 5cpu xchg_2.0

Output from onstat -xG run on the primary server:
Transactions

est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d9e60 ATB-M 7000000104a8bc8 2 180:0x4ea018 180:0x4eb018 COMMIT 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d9e60 AT--M COMMIT 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

The M flag in the previous example indicates that the global transaction was
started from a secondary server. Global transactions started on the primary server
display a G flag. The M flag is displayed only on the primary server.

Output from the onstat -g ath|grep 7000000104a8bc8 command:
196 70000013012d3a8 7000000104a8bc8 1 sleeping secs: 1 4cpu proxyTh

The following example shows output from the onstat -xG command run on
secondary server after the xa_end() function:
Transactions

est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d8bd0 ALB-G 7000000104a5aa8 1 180:0x0 180:0x4ee018 DIRTY 0:00 0

25-16 IBM Informix Administrator's Guide

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d8bd0 ALB-G DIRTY 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

Output from the onstat -xG command run on the primary server:
Transactions

est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d9e60 -TB-M 0 2 180:0x4ea018 180:0x4ee018 COMMIT 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d9e60 -T--M COMMIT -1 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

Output from the onstat -xG command run on the secondary server after running
the xa_prepare() function:
Transactions

est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d8bd0 ALX-G 7000000104a5aa8 1 180:0x0 180:0x4ef018 DIRTY 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d8bd0 ALX-G DIRTY 0 5067085 15 4 000102030405060708090A0B0C0D0E0F000000

Output from the onstat -xG command run on the primary server:
Transactions

est.
address flags userthread locks begin_logpos current logpos isol rb_time retrys coord
7000000104d9e60 -TX-M 0 2 180:0x4ea018 180:0x4ef018 COMMIT 0:00 0

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
7000000104d9e60 -TX-M COMMIT -1 5067085 15 4 0

Two-phase commit protocol errors
The following two-phase commit protocol errors require special attention from the
administrator.

Error number
Description

-698 If you receive error -698, a heuristic rollback has occurred and has caused
an inconsistently implemented transaction. The circumstances leading up
to this event are described in “Results of a heuristic rollback” on page
25-12. For an explanation of how the inconsistent transaction developed
and to learn the options available to you, see this information.

-699 If you receive error -699, a heuristic rollback has occurred. The
circumstances leading up to this event are described in “Results of a
heuristic rollback” on page 25-12. For an explanation of how the
inconsistent transaction developed, see this information.

-716 If you receive error -716, the coordinating thread has been terminated by
administrator action after it issued its final decision. This scenario is
described under “Independent actions that result in an error condition” on
page 25-10.

Two-phase commit and logical-log records
The database server uses logical-log records to implement the two-phase commit
protocol. You can use these logical-log records to detect heuristic decisions and, if
necessary, to help you perform a manual recovery. (See Chapter 26, “Manually
recovering from failed two-phase commit,” on page 26-1.)

Chapter 25. Multiphase commit protocols 25-17

The following logical-log records are involved in distributed transactions:
v BEGPREP
v PREPARE
v TABLOCKS
v HEURTX
v ENDTRANS

For information about these logical-log records, see the chapter on interpreting the
logical log in the IBM Informix Administrator's Reference.

This section examines the sequence of logical-log records that are written during
the following database server scenarios:

Logical-log records when the transaction commits
The following figure illustrates the writing sequence of the logical-log records
during a successful two-phase commit protocol that results in a committed
transaction.

Some of the logical-log records must be flushed from the logical-log buffer
immediately; for others, flushing is not critical.

Start protocol

End protocol

Coordinator:
Writes log record: BEGPREP.
Sends message: precommit.

All participants:
Write log record: TABLOCKS.
Write and flush log record: PREPARE.
Send message: can commit.

Coordinator:
Writes log record: COMMIT.
Flushes logical-log buffer.
Sends message: commit

All participants:
Writes log record: COMMIT.
Flushes logical-log buffer.
Send message: committed.

Coordinator:
Writes log record: ENDTRANS.

P2 P3P1

C

P2 P3P1

C

C

Figure 25-2. Logical-log records written during a committed transaction

25-18 IBM Informix Administrator's Guide

The coordinator's commit-work record (COMMIT record) contains all information
required to initiate the two-phase commit protocol. It also serves as the starting
point for automatic recovery in the event of a failure on the coordinator's host
computer. Because this record is critical to recovery, it is not allowed to remain in
the logical-log buffer. The coordinator must immediately flush the COMMIT
logical-log record.

The participants in the preceding figure must immediately flush both the
PREPARE and the COMMIT logical-log records. Flushing the PREPARE record
ensures that, if the participant's host computer fails, fast recovery is able to
determine that this participant is part of a global transaction. As part of recovery,
the participant might query the coordinator to learn the final disposition of this
transaction.

Flushing the participant's COMMIT record ensures that, if the participant's host
computer fails, the participant has a record of what action it took regarding the
transaction. To understand why this information is crucial, consider the situation in
which a participant crashes after the PREPARE record is written but before the
COMMIT record flushes. After fast recovery, the PREPARE record is restored, but
the COMMIT record is lost (because it was in the logical-log buffer at the time of
the failure). The existence of the PREPARE record would initiate a query to the
coordinator about the transaction. However, the coordinator would know nothing
of the transaction, because it ended the transaction after it received the
participant's acknowledgment that the commit occurred. In this situation, the
participant would interpret the lack of information as a final direction to roll back
the transaction. The two-phase commit protocol requires the participant's COMMIT
record to be flushed immediately to prevent this kind of misunderstanding.

Logical-log records written during a heuristic rollback
The following figure illustrates the sequence in which the database server writes
the logical-log records during a heuristic rollback. Because a heuristic rollback only
occurs after the participant sends a message that it can commit and the coordinator
sends a message to commit, the first phase of this protocol is the same as that
shown in Figure 25-2 on page 25-18. When a heuristic rollback occurs, the rollback
is assumed to be the consequence of a long-transaction condition that occurs at the
Participant 1 (P1) database server. The end result is a transaction that is
inconsistently implemented. See “The heuristic rollback scenario” on page 25-11.

Chapter 25. Multiphase commit protocols 25-19

Logical-log records written after a heuristic end transaction
The following figure illustrates the writing sequence of the logical-log records
during a heuristic end transaction. The event is always the result of a database
server administrator ending a transaction (see information about the onmode
utility in the IBM Informix Administrator's Reference) at a participant database server
after the participant has sent a can commit message. In the following figure, the
heuristic end transaction is assumed to have occurred at the Participant 1 (P1)
database server. The result is an inconsistently implemented transaction. See “The
heuristic end-transaction scenario” on page 25-13.

Start protocol

End protocol

Coordinator:
Writes log record: BEGPREP.
Sends message: precommit.

All Participants:
Write log record: TABLOCKS.
Write log record: PREPARE.
Flush logical log.
Send message: commit ok.
Within P1 participant’s environment:
The database server detects long
transaction condition. Rollback starts.
Writes log record: HEURTX.
Writes log record: ROLLBACK.
Message written in message log.

Participant 1:
Writes log record: ENDTRANS.
Sends message: Transaction ended.

Participant 1:
Sends message:

Write and flush log record: COMMIT.
Send message:

Transaction heuristically rolled back. Cannot commit.

committed.

Participants 2 and 3:

Coordinator:
Writes log record: COMMIT.
Flushes log record.
Sends message: commit.

Coordinator:
Writes message in message log (-698).
Sends message to Participant 1: end-transaction.

Coordinator:
Writes log record: ENDTRANS.
Returns error message to user: Error -698.

P2 P3P1

C

P2 P3P1

C

C

P2 P3P1

C

Figure 25-3. Logical-log records written during a heuristic rollback

25-20 IBM Informix Administrator's Guide

Configuration parameters used in two-phase commits
The following two configuration-file parameters are specific to distributed
environments:
v DEADLOCK_TIMEOUT
v TXTIMEOUT

Although both parameters specify timeout periods, the two are independent. For
more information about these configuration parameters, see the IBM Informix
Administrator's Reference.

Participant 1:
Sends message back to the coordinator.transaction status unknown

Start protocol

End protocol

Coordinator:
Writes log record: BEGPREP.
Sends message: precommit.

All participants:
Write log record: TABLOCKS.
Write and flush log record: PREPARE.
Send message:

Transaction is killed.
Writes log record: ROLLBACK.
Writes log record: ENDTRANS.
Message is written in the database server message log.

can commit.
P1 participant’s environment:

Coordinator:
Writes log record: COMMIT.
Flushes logical-log buffer.
Sends message: commit.
Participant 1:
Returns error message.

Participants 2 and 3:
Write log record: COMMIT.
Flush logical-log buffer.
Send message: committed.

Coordinator:
Receives error message from P1.
Establishes new connection to P1 and sends message to P1.TX Inquire

Coordinator:
Assumes means
Writes log record: ENDTRANS.

unknown status committed.

P2 P3P1

P2 P3P1

C

C

C

P2 P3P1

C

Figure 25-4. Logical-log records written during a heuristic end transaction

Chapter 25. Multiphase commit protocols 25-21

Function of the DEADLOCK_TIMEOUT parameter
If a distributed transaction is forced to wait longer than the number of seconds
specified by DEADLOCK_TIMEOUT for a shared-memory resource, the thread
that owns the transaction assumes that a multiserver deadlock exists. The
following error message is returned:
-154 ISAM error: deadlock timeout expired - Possible deadlock.

The default value of DEADLOCK_TIMEOUT is 60 seconds. Adjust this value
carefully. If you set it too low, individual database servers end transactions that are
not deadlocks. If you set it too high, multiserver deadlocks might reduce
concurrency.

Function of the TXTIMEOUT parameter
The TXTIMEOUT configuration parameter is specific to the two-phase commit
protocol. It is used only if communication between a transaction coordinator and
participant has been interrupted and must be reestablished.

The TXTIMEOUT parameter specifies a period of time that a participant database
server waits to receive a commit instruction from a coordinator database server
during a distributed transaction. If the period of time specified by TXTIMEOUT
elapses, the participant database server checks the status of the transaction to
determine if the participant must initiate automatic participant recovery.

TXTIMEOUT is specified in seconds. The default value is 300 (five minutes). The
optimal value for this parameter varies, depending on your specific environment
and application. Before you modify this parameter, read the explanation “How the
two-phase commit protocol handles failures” on page 25-8.

Heterogeneous commit protocol
Used in the context of IBM Informix database servers, the term heterogeneous
environment is a group of database servers in which at least one of the database
servers is not an IBM Informix database server. Heterogeneous commit ensures the
all-or-nothing basis of distributed transactions in a heterogeneous environment.

Unlike the two-phase commit protocol, the heterogeneous commit protocol
supports the participation of a non-Informix participant. The non-Informix
participant, called a gateway participant, must communicate with the coordinator
through an IBM Informix gateway.

The database server uses heterogeneous commit protocol when the following
criteria are met:
v Heterogeneous commit is enabled. (That is, the HETERO_COMMIT

configuration parameter is set to 1.)
v The coordinator of the commit is a Version 7.2 or later IBM Informix.
v The non-Informix participant communicates with the IBM Informix database

server through an IBM Informix gateway.
v At most, one non-Informix participant performs an update within a single

transaction.

The following figure illustrates this scenario.

25-22 IBM Informix Administrator's Guide

Gateways that can participate in a heterogeneous commit
transaction

A gateway acts as a bridge between an IBM Informix application (in this case, a
database server) and a non-Informix database server. You can use a gateway to use
an IBM Informix application to access and modify data that is stored in a database
that is not IBM Informix.

The following table lists the gateways and corresponding database servers that can
participate in a transaction in which the database server uses the heterogeneous
commit protocol.

Table 25-1. Gateways and corresponding database servers/heterogeneous commit
transaction

Gateway Database servers

IBM Informix Enterprise Gateway with DRDA IBM DB2®, OS/400®, SQL/DS

IBM Informix Enterprise Gateway for EDA/SQL EDA/SQL

IBM Informix Enterprise Gateway Manager Any database server with ODBC
connectivity

Enable and disable of heterogeneous commit
Use a text editor to change the HETERO_COMMIT configuration parameter which
enables or disables heterogeneous commit: The change takes effect when you shut
down and restart the database server.

When you set HETERO_COMMIT to 1, the transaction coordinator checks for
distributed transactions that require the use of heterogeneous commit. When the
coordinator detects such a transaction, it automatically executes the heterogeneous
commit protocol.

If you set HETERO_COMMIT to 0 or any number other than 1, the transaction
coordinator disables the heterogeneous commit protocol. The following table
summarizes which protocol the transaction coordinator uses, heterogeneous
commit or two-phase commit, to ensure the integrity of a distributed transaction.

Informix client

Database server

Coordinator

Non-InformixInformix
gateway

Database server

Informix participants

Database server

Gateway server

Figure 25-5. Configuration that requires heterogeneous commit for distributed transactions

Chapter 25. Multiphase commit protocols 25-23

HETERO_COMMIT
setting Gateway participant updated Database server protocol

Disabled No Two-phase commit

Disabled Yes Two-phase commit

Enabled No Two-phase commit

Enabled Yes Heterogeneous commit

How heterogeneous commit works
The heterogeneous commit protocol is a modified version of the standard
two-phase commit protocol. The postdecision phase in the heterogeneous commit
protocol is identical to the postdecision phases in the two-phase commit protocol.
The precommit phase contains a minor modification, and a new phase, called the
gateway commit phase, is added to the heterogeneous commit protocol.

The following topics explain the modification to the precommit phase and the
gateway commit phase. For a detailed explanation of the postdecision phases, see
“Postdecision phase” on page 25-8.

Precommit phase
The coordinator directs each update participant (except the gateway participant) to
prepare to commit the transaction.

If the updates satisfy all deferred constraints, all participants (except the gateway
participant) return messages to the coordinator indicating that they can commit
their piece of work.

Gateway commit phase
If all participants successfully return a message indicating that they are prepared to
commit, the coordinator sends a commit message to the gateway. The gateway in
turn sends a response to the coordinator indicating whether the gateway
committed its piece of the transaction. If the gateway commits the transaction, the
coordinator decides to commit the entire transaction. The following figure
illustrates this process.

25-24 IBM Informix Administrator's Guide

If the gateway fails to commit the transaction, the coordinator rolls back the entire
transaction, as the previous figure illustrates.

Heterogeneous commit optimization
The database server optimizes the heterogeneous commit protocol when the only
participant that receives an update is a non-Informix database. In this case, the
coordinator sends a single commit message to all participants without invoking the
heterogeneous commit protocol.

Implications of a failed heterogeneous commit
At any time during a distributed transaction that the database server processes
using heterogeneous commit, the coordinator or any number of participants can
fail. The database server handles these failures in the same way as in the
two-phase commit protocol, except in certain instances. The following topics
examine these special instances in detail.

Database server coordinator failure
The consistency of data after a coordinator failure depends on the point in the
heterogeneous commit process at which the coordinator fails. If the coordinator
fails before sending the commit message to the gateway, the entire transaction is
stopped upon recovery, as is the case with two-phase commit.

If the coordinator fails after it writes the commit log record, the entire transaction
is committed successfully upon recovery, as is the case with two-phase commit.

If the coordinator fails after it sends the commit message to the gateway but before
it writes the commit log record, the remote IBM Informix database server sites in
the transaction are stopped upon recovery. This can result in inconsistencies if the
gateway received the commit message and committed the transaction.

The following table summarizes these scenarios.

Start gateway commit phase

Coordinator
Sends a message to the gateway participant.commit

Gateway Participant:
Commits the work. Returns message: committed.GP

C

C

Coordinator
Receives gateway message.committed

End gateway commit phase

Gateway

Gateway

Figure 25-6. Heterogeneous commit phase that results in a committed transaction

Chapter 25. Multiphase commit protocols 25-25

Point of database server coordinator failure Expected result

After the coordinator writes the PREPARE log
record and before the gateway commit phase

Data consistency is maintained.

After the coordinator sends a commit message to
the gateway but before it receives a reply

Data is probably inconsistent. No
indication of probable data inconsistency
from the coordinator.

After gateway commit phase but before the
coordinator writes a COMMIT record to the
logical log

Data consistency is lost. No indication of
data inconsistency from the coordinator.

Participant failure
Whenever a participant in a distributed transaction that uses the heterogeneous
protocol fails, the coordinator sends the following error message:
-441 Possible inconsistent data at the target DBMS name due to an
aborted commit.

In addition, the database server sends the following message to the message log:
Data source accessed using gateway name might be in an inconsistent state.

A participant failure is not limited to the failure of a database server or gateway. In
addition, a failure of the communication link between the coordinator and the
gateway is considered a gateway failure. The gateway terminates if a link failure
occurs. The gateway must terminate because it does not maintain a transaction log
and therefore cannot reestablish a connection with the coordinator and resume the
transaction. Because of this restriction, some scenarios exist in which a gateway
failure might leave data in an inconsistent state. The following table summarizes
these scenarios.

Point of participant failure Expected result

After participant receives commit
transaction message from coordinator, but
before participant performs commit

Data consistency is maintained.

After participant receives commit
transaction message from coordinator and
commits the transaction, but before the
participant replies to coordinator

Data is inconsistent.

After participant commits the transaction and
sends a reply to coordinator

If the communications link fails before the
coordinator receives the reply, then data is
inconsistent. If the coordinator receives the
reply, then data is consistent (provided the
coordinator does not fail before writing the
COMMIT record).

The recovery procedure that the database server follows when a participant fails is
identical to the procedure that is followed in two-phase commit. For more
information about this procedure, see “How the two-phase commit protocol
handles failures” on page 25-8.

Interpretation of heterogeneous commit error messages
When the database server fails to process a distributed transaction using
heterogeneous commit, it returns one of the two error messages that are explained
in the following topics.

25-26 IBM Informix Administrator's Guide

Application attempts to update multiple gateway participants:
If your client application attempts to update data at more than one gateway
participant when HETERO_COMMIT is set to 1, the coordinator returns the
following error message:
-440 Cannot update more than one non-Informix DBMS within a transaction.

If you receive this error message, rewrite the offending application so that it
updates at most one gateway participant in a single distributed transaction.

Failed attempt to commit distributed transaction using heterogeneous commit:
The database server can fail to commit a distributed transaction while it is using
the heterogeneous protocol for one or more of the following reasons:
v Communication error
v Site failure
v Gateway failure
v Other unknown error

When such a failure occurs, the coordinator returns the following message:
-441 Possible inconsistent data at the target DBMS name due to
an aborted commit.

After the database server sends this message, it rolls back all update sites that are
participating in the transaction, with the possible exception of the work done at the
site of the gateway participant. The gateway participant might have committed its
updates if the failure occurred after the gateway participant processed the commit
message. If the gateway participant committed the updates, you must manually
roll back these updates.

Chapter 25. Multiphase commit protocols 25-27

25-28 IBM Informix Administrator's Guide

Chapter 26. Manually recovering from failed two-phase
commit

Distributed transactions follow the two-phase commit protocol. Certain actions
occur independently of the two-phase commit protocol and cause the transaction
to be inconsistently implemented. (See “Independent actions” on page 25-9.) In
these situations, it might be necessary to recover manually from the transaction.

Determine if manual recovery is required
The following topics outline the steps in the procedure to determine database
consistency and to correct the situation if required.

Each of these steps is described in the following topics.

Determine if a transaction was implemented inconsistently
Your first task is to determine whether the transaction was implemented
inconsistently as a result of an independent action.

Global transaction ended prematurely
If you ran an onmode -z command to end the global transaction on the
coordinator, the transaction might be inconsistently implemented. (For an
explanation of how this situation can arise, see “Independent actions that result in
an error condition” on page 25-10.) You can check for an inconsistent transaction
by first examining the database server message log for the coordinator. Look for
the following error message:
-716 Possible inconsistent transaction.
Unknown servers are server-name-list.

This message lists all the database servers that were participants. Examine the
logical log of each participant. If at least one participant performed a commit and
one performed a rollback, the transaction was inconsistently implemented.

Heuristic end transaction
If you ran an onmode -Z address command to end a piece of work performed by a
participant, and the coordinator decided to commit the transaction, the transaction
is implemented inconsistently. (For a description of this scenario, see “The heuristic
end-transaction scenario” on page 25-13.) Examine the logical log of each
participant. If at least one participant performed a commit and one performed a
rollback, the transaction was inconsistently implemented.

Heuristic rollback
You can determine the specific database server participants affected by a heuristic
decision to roll back a transaction in the following ways:
v Examine the return code from the COMMIT WORK statement in the application.

The following message indicates that one of the participants performed a
heuristic rollback:
-698 Inconsistent transaction. Number and names of servers rolled back.

v Examine the messages in the database server message-log file.

© Copyright IBM Corp. 1996, 2014 26-1

If a database inconsistency is possible because of a heuristic decision at a
participating database server, the following message is in the database server
message-log file of the coordinator:
Mixed transaction result. (pid=nn user=user_id)

This message is written whenever error -698 is returned. Associated with this
message is a list of the participant database servers where the transaction was
rolled back. This is the complete list. The list that is created with the -698 error
message might be truncated if many participants rolled back the transaction.

v Examine the logical log for each participant.
If at least one participant rolls back its piece of work and one participant
commits its piece of work, the transaction is implemented incorrectly.

Determine if the distributed database contains inconsistent
data

If you determine that a transaction was inconsistently implemented, you must
determine what this situation means for your distributed database system.
Specifically, you must determine if data integrity has been affected.

A transaction that is inconsistently implemented causes problems whenever the
piece of work rolled back by one participant is dependent on a piece of work that
was updated by another participant. It is impossible to define these dependencies
with SQL because distributed transactions do not support constraints that reference
data at multiple database servers. The pieces of work are independent (no
dependencies exist) only if the data could have been updated in two independent
transactions. Otherwise, the pieces of work are considered to be dependent.

Before you proceed, consider the transaction that caused the error. Are the pieces
of data that were updated and rolled back dependent on one another? Multiple
updates might be included in a single transaction for reasons other than
maintaining data integrity. For example, three possible reasons are as follows:
v Reduced transaction overhead
v Simplified coding
v Programmer preference

Verify also that every participant database server that is assumed to have
committed the transaction actually modified data. A read-only database server
might be listed as a participant that committed a transaction.

If an inconsistent transaction does not lead to a violation of data integrity, you can
quit the procedure at this point.

Obtaining information from the logical log
To determine if data integrity has been affected by an inconsistently implemented
global transaction, you must reconstruct the global transaction and determine
which parts of the transaction were committed and which were rolled back. Use
the onlog utility to obtain the necessary information. The procedure is as follows:
1. Reconstruct the transaction at the participant that contains the HEURTX record.

a. A participant database server logical log is the starting point for your
information search. Each record in the log has a local transaction
identification number (xid). Obtain the xid of the HEURTX record.

b. Use the local xid to locate all associated log records that rolled back as part
of this piece of work.

26-2 IBM Informix Administrator's Guide

2. Determine which database server acted as coordinator for the global
transaction.
a. Look for the PREPARE record on the participant that contains the same

local xid. The PREPARE record marks the start of the two-phase commit
protocol for the participant.

b. Use the onlog -l option to obtain the long output of the PREPARE record.
This record contains the global transaction identifier (GTRID) and the name
of the coordinating database server. For information about GTRID, see
“Obtain the global transaction identifier.”

3. Obtain a list of the other participants from the coordinator log.
a. Examine the log records on the coordinator database server. Find the

BEGPREP record.
b. Examine the long output for the BEGPREP record. If the first 32 bytes of the

GTRID in this record match the GTRID of the participant, the BEGPREP
record is part of the same global transaction. Note the participants
displayed in the ASCII part of the BEGPREP long output.

4. Reconstruct the transaction at each participant.
a. At each participant database server, read the logical log to find the

PREPARE record that contains the GTRID associated with this transaction
and obtain the local xid for the piece of work performed by this participant.

b. At each participant database server, use the local xid to locate all logical-log
records associated with this transaction (committed or rolled back).

After you follow this procedure, you know what all the participants for the
transaction were, which pieces of work were assigned to each participant, and
whether each piece of work was rolled back or committed. From this information,
you can determine if the independent action affected data integrity.

Obtain the global transaction identifier
When a global transaction starts, it receives a unique identification number called a
global transaction identifier (GTRID). The GTRID includes the name of the
coordinator. The GTRID is written to the BEGPREP logical-log record of the
coordinator and the PREPARE logical-log record of each participant.

To see the GTRID, use the onlog -l option. The GTRID is offset 20 bytes into the
data portion of the record and is 144 bytes long. The following example shows the
onlog -l output for a BEGPREP record. The coordinator is chrisw.
4a064 188 BEGPREP 4 0 4a038 0 1

000000bc 00000043 00000004 0004a038C8
00087ef0 00000002 63687269 73770000 ..~..... chrisw..
00000000 00000000 00000000 00087eeb~.
00006b16 00000000 00000000 00000000 ..k.....
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000001 6a756469 74685f73 judith_s
6f630000 736f6374 63700000 oc..soct cp..

The first 32 bytes of the GTRID are identical for the BEGPREP record on the
coordinator and the PREPARE records on participants, which are part of the same
global transaction. For example, compare the GTRID for the PREPARE record in
the following example with that of the BEGPREP record in the previous example.

Chapter 26. Manually recovering from failed two-phase commit 26-3

c7064 184 PREPARE 4 0 c7038 chrisw
000000b8 00000044 00000004 000c7038Dp8
00005cd6 00000002 63687269 73770000 chrisw..
00000000 00000000 00000069 00087eebi..~.
00006b16 00000000 00000010 00ba5a10 ..k.....Z.
00000002 00ba3a0c 00000006 00000000:.
00ba5a10 00ba5a1c 00000000 00000000 ..Z...Z.
00ba3a0e 00254554 00ba2090 00000001 ..:..%ET
00000000 00ab8148 0005fd70 00ab8148H ...p...H
0005fe34 0000003c 00000000 00000000 ...4...<
00000000 00ab80cc 00000000 00ab80c4
00ba002f 63687269 73770000 00120018 .../chrisw......
00120018 00ba0000

Decide if action is needed to correct the situation
If an inconsistent transaction creates an inconsistent database, the following three
options are available to you:
v Leave the networked database in its inconsistent state.
v Remove the effects of the transaction wherever it was committed, thereby rolling

back the entire transaction.
v Reapply the effects of the transaction wherever it was rolled back, thereby

committing the transaction.

You can leave the database in its inconsistent state if the transaction does not
significantly affect database data. You might encounter this situation if the
application that is performing the transaction can continue as it is, and you decide
that the price (in time and effort) of returning the database to a consistent state by
either removing the effects or reapplying the transaction is too high.

You are not required to make this decision immediately. You can use the methods
described in the following paragraphs to determine what data the transaction was
updating and which records are affected.

As you make your decision, consider that no automatic process or utility can
perform a rollback of a committed transaction or can commit part of a transaction
that has been rolled back. The following paragraphs describe how to look through
the database server message log and the logical log to locate affected records.
Without detailed knowledge of the application, messages are not enough to
determine what has happened. Based on your knowledge of your application and
your system, you must determine whether to roll back or to commit the
transaction. You must also program the compensating transaction that performs the
rollback or the commit.

Example of manual recovery
This example illustrates the kind of work that is involved in manual recovery. The
following SQL statements were executed by user nhowe. Error -698 was returned.
dbaccess
CREATE DATABASE tmp WITH LOG;
CREATE TABLE t (a int);
CLOSE DATABASE;
CREATE DATABASE tmp@apex WITH LOG;
CREATE TABLE t (a int);
CLOSE DATABASE;
DATABASE tmp;
BEGIN WORK;

26-4 IBM Informix Administrator's Guide

INSERT INTO t VALUES (2);
INSERT INTO tmp@apex:t VALUES (2);
COMMIT WORK;
return code -698

The following excerpt is taken from the logical log at the current database server:
addr len type xid id link
.....
17018 16 CKPOINT 0 0 13018 0

18018 20 BEGIN 2 1 0 08/27/91 10:56:57
3482 nhowe

1802c 32 HINSERT 2 0 18018 1000018 102
4

1804c 40 CKPOINT 0 0 17018 1

begin xid id addr user

1 2 1 1802c nhowe

19018 72 BEGPREP 2 0 1802c 6d69 1

19060 16 COMMIT 2 0 19018 08/27/91 11:01:38

1a018 16 ENDTRANS 2 0 19060 580543

The following excerpt is taken from the logical log at the database server apex:
addr len type xid id link
.....
16018 20 BEGIN 2 1 0 08/27/91

10:57:07 3483 pault

1602c 32 HINSERT 2 0 16018 1000018 102
4

1604c 68 PREPARE 2 0 1602c eh

17018 16 HEURTX 2 0 1604c 1

17028 12 CLR 2 0 1602c

17034 16 ROLLBACK 2 0 17018 08/27/91 11:01:22

17044 40 CKPOINT 0 0 15018 1

begin xid id addr user
1 2 1 17034 --------

18018 16 ENDTRANS 2 0 17034 8806c3
....

First, you would try to match the transactions in the current database server log
with the transactions in the apex database server log. The BEGPREP and PREPARE
log records each contain the GTRID. You can extract the GTRID by using onlog -l
and looking at the data portion of the BEGPREP and PREPARE log records. The
GTRID is offset 22 bytes into the data portion and is 68 bytes long. A more simple,
though less precise, approach is to look at the time of the COMMIT or ROLLBACK
records. The times must be close, although there is a slight delay because of the
time taken to transmit the commit (or rollback) message from the coordinator to
the participant. (This second approach lacks precision because concurrent

Chapter 26. Manually recovering from failed two-phase commit 26-5

transactions can commit at the same time although concurrent transactions from
one coordinator would probably not commit at the same time.)

To correct this sample situation
1. Find all records that were updated.
2. Identify their type (insert, delete, update) using onlog and the table of record

types.
3. Use the onlog -l output for each record to obtain the local xid, the tblspace

number, and the rowid.
4. Map the tblspace number to a table name by comparing the tblspace number to

the value in the partnum column of the systables system catalog table.
5. Using your knowledge of the application, determine what action is required to

correct the situation.

In this example, the time stamps on the COMMIT and ROLLBACK records in the
different logs are close. No other active transactions introduce the possibility of
another concurrent commit or rollback. In this case, an insert (HINSERT) of
assigned rowid 102 hex (258 decimal) was committed on the current database
server. Therefore, the compensating transaction is as follows:
DELETE FROM t WHERE rowid = 258

26-6 IBM Informix Administrator's Guide

Part 7. Overview of automatic monitoring and corrective
actions

You can use the SQL administration API, the Scheduler, and drill-down queries to
manage automatic maintenance, monitoring, and administrative tasks.

These components of IBM Informix simplify the collection of information and
maintenance of the server in complex systems.

SQL administration API
The SQL administration API performs remote administration through SQL
functions. Because SQL administration API operations occur entirely in
SQL, these functions can be used in client tools to administer the database
server.

Scheduler
The Scheduler is a set of tasks that execute SQL statements at predefined
times or as determined internally by the server. The SQL statements can
either collect information or monitor and adjust the server.

Query Drill-Down
Query drill-down provides statistical information about recently executed
SQL statements to track the performance of individual SQL statements and
analyze statement history.

You can use the SQL administration API and the Scheduler on the primary server
of an HDR pair of servers.

Each of these tools requires additional disk space to store information.

You can also use a PHP-based web browser administration tool, the OpenAdmin
Tool (OAT) for Informix (OAT), to administer multiple database server instances
from a single location. Some tasks that you can perform with OAT include:
v Defining and managing automated tasks through the SQL administration API

and the Scheduler
v Creating and displaying performance histograms for analysis and tuning of SQL

statements
Related concepts:
Chapter 27, “The Scheduler,” on page 27-1
Chapter 29, “Query drill-down,” on page 29-1
Related tasks:
“Viewing SQL administration API history” on page 28-2
Related reference:
Chapter 28, “Remote administration with the SQL administration API,” on page
28-1

© Copyright IBM Corp. 1996, 2014

IBM Informix Administrator's Guide

Chapter 27. The Scheduler

You can use the Scheduler to create jobs to run administrative tasks or collect
information at predictable times. The Scheduler uses SQL statements instead of
operating system job scheduling tools.

The Scheduler is controlled by a set of tables in the sysadmin database.

The Scheduler has four different job types that you can choose from:

Task Runs an action at a specific time and frequency.

Sensor
Runs an action at a specific time and frequency to collect data, create a
results table, store the data in the results table, and purge old data after a
specified time.

Startup task
A task that runs only when the server moves from quiescent mode to
online mode.

Startup sensor
A sensor that runs only when the server moves from quiescent mode to
online mode.

The action of a task or sensor can be one or more SQL statements, user-defined
routines, or stored procedures.

In addition to defining an action for a task or sensor, you can also use the
Scheduler to:
v Associate tasks and sensors into functional groups
v Track the execution time and return value each time a task or sensor is run
v Define alerts with varying severity
v Define thresholds to control when tasks or sensors are run

The Scheduler contains built-in tasks and sensors that run automatically. You can
modify the built-in tasks and sensors and define your own tasks and sensors.

Disk space requirements

The Scheduler tables and sensor results tables can use significant amounts of disk
space.

You can use the following formula to estimate the disk usage for one sensor:

Number of rows collected * size of the row collected * the frequency of data collection per
day * the retention period

Repeat this estimate for all sensors and you can determine a close estimate of the
space required.

You can reduce the amount of data stored by decreasing the frequency of data
collection or shortening the retention period by updating the ph_task table.

© Copyright IBM Corp. 1996, 2014 27-1

You can move the sysadmin database to a different dbspace by using the SQL
administration API, however, all existing data in the database will be lost.

For more information about the sysadmin database, see the IBM Informix
Administrator's Reference.
Related concepts:
Part 7, “Overview of automatic monitoring and corrective actions”
Related tasks:
“Scheduling data optimization” on page 9-57
Related reference:

The Scheduler tables (Administrator's Reference)

Scheduler tables
The Scheduler tables are located in the sysadmin database and contain information
about tasks and sensors.

The sysadmin database contains the Scheduler tables listed in the following table.
The ph_task table has a direct relationship with each of the other tables.

Table 27-1. Scheduler tables

Table Description

ph_alert Contains a list of errors, warnings, or
information messages associated with tasks
that must be monitored. The ph_alert table
contains built-in alerts that the database
server uses automatically. You can add your
own alerts.

ph_group Contains a list of group names. Each task
and sensor is a member of a group. The
ph_group table contains built-in groups that
the database server uses. You can add your
own groups.

ph_run Contains information about how and when
each task and sensor was run.

ph_task Lists tasks and sensors and contains
information about how and when the
database server runs them. The ph_task
table contains built-in tasks and sensors that
the database server uses automatically. You
can add your own tasks and sensors.

ph_threshold Contains a list of thresholds that are
associated with tasks or sensors. If a
threshold is met, the associated task can
perform an action, such as inserting an alert
in the ph_alert table. The ph_threshold table
contains built-in thresholds that the database
server uses. You can add your own
thresholds.

results Multiple tables that contain historical data
collected by sensors. The structure of these
tables is determined by the CREATE TABLE
statement in the sensor definition in the
ph_task table.

27-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1079.htm#ids_adr_1079

For details about these tables, see the IBM Informix Administrator's Reference.
Related reference:

The Scheduler tables (Administrator's Reference)

Built-in tasks and sensors
The Scheduler contains built-in tasks and sensors that run automatically.

The following table shows the built-in Scheduler tasks and sensors. Sensors have
results tables to store the information they collect, and retention periods to
determine how long that information is stored. You can change task and sensor
properties, for example, the frequency, by updating the ph_task table. Some tasks
are triggered by thresholds. You can change thresholds by updating the
ph_threshold table. You can disable a task or sensor by changing the value of the
tk_enable column in the ph_task table to f.

You can determine how long tasks take by querying the run_duration column in
the ph_task table.

Table 27-2. Built-in tasks and sensors

Task or sensor Description Results table Frequency Retention

add_storage This task add more storage
space automatically when
automatic space management
is configured.

As needed

Alert Cleanup This task removes all alert
entries from the ph_alert
table that are older than the
threshold of 15 days. The
threshold is named ALERT
HISTORY RETENTION in
the ph_threshold table.

Once a day

auto_compress This task compresses tables
that are configured for
automatic compression.

auto_crsd This task compresses,
shrinks, repacks, and
defragments tables and
fragments.

By default, this task is
disabled. You must enable it
by updating the ph_task
table.

Each of the operations has 2
rows in the ph_threshold
table: one to control whether
it is enabled and one to
control its threshold.

For more information, see
“Scheduling data
optimization” on page 9-57.

Once a week

Chapter 27. The Scheduler 27-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1079.htm#ids_adr_1079

Table 27-2. Built-in tasks and sensors (continued)

Task or sensor Description Results table Frequency Retention

autoreg exe This task registers database
extensions when they are
first used.

As necessary

autoreg migrate-console Internal. This task checks
every database with a
logging option of log or
buffered log, and, if
necessary, migrates all
built-in database extensions
to the correct version for the
database server. This task
creates sub-tasks for
individual databases, as
necessary.

At server
startup

autoreg vp This task creates a
specialized virtual processor
for a database extension as
necessary.

As necessary

auto_tune_cpu_vps This task automatically adds
CPU virtual processors if the
number of allocated VPs is
less than half the number of
CPU processors on the
computer.

At server
startup

Auto Update Statistics
Evaluation

This task analyzes all the
tables in all logged
databases, identifies the
tables whose distributions
must be updated, and
generates UPDATE
STATISTICS statements for
those tables, based on the
current automatic update
statistics (AUS) policies. The
AUS policies are set by
thresholds in the
ph_threshold table:

v AUS_AGE: statistics are
updated after 30 days.

v AUS_CHANGE: statistics
are updated after 10
percent of the data is
changed.

v AUS_AUTO_RULES:
guidelines are followed for
updating statistics.

v AUS_SMALL_TABLES:
tables containing fewer
than 100 rows always have
their statistics updated.

For more information, see
Automatic Update Statistics.

Once a day

27-4 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_742.htm#ids_prf_742.dita

Table 27-2. Built-in tasks and sensors (continued)

Task or sensor Description Results table Frequency Retention

Auto Update Statistics Refresh This task runs the UPDATE
STATISTICS statements
generated by the Auto
Update Statistics Evaluation
task. The PDQ priority for
updating statistics is set to 10
by the threshold named
AUS_PDQ in the
ph_threshold table.

Saturday and
Sunday
between 1:00
AM and 5:00
AM

bad_index_alert This task checks for
corrupted indexes. If any
corrupted indexes are found,
a warning alert is added to
the ph_alert table.

For more information, see
Validate indexes.

Once a day

bar_act_log_rotate This task rotates the ON-Bar
activity log file that is
specified in the
BAR_ACT_LOG
configuration parameter.

When the ON-Bar activity
log rotates, the server
switches to a new online
message log file and
increments the ID numbers
for the previous log files by
one. When the maximum
number of log files is
reached, the log file with the
highest ID is deleted.

The threshold for the
maximum logs to rotate is
specified in the ph_threshold
table.

3 A.M. every
30 days (with
a maximum
of 12 log files)

Chapter 27. The Scheduler 27-5

Table 27-2. Built-in tasks and sensors (continued)

Task or sensor Description Results table Frequency Retention

bar_debug_log_rotate This task rotates the ON-Bar
debug log file that is
specified in the
BAR_DEBUG_LOG
configuration parameter.

When the ON-Bar debug log
rotates, the server switches to
a new online message log file
and increments the ID
numbers for the previous log
files by one. When the
maximum number of log
files is reached, the log file
with the highest ID is
deleted.

The threshold for the
maximum logs to rotate is
specified in the ph_threshold
table.

3 A.M. every
30 days (with
a maximum
of 12 log files)

check_backup This task checks to ensure
that backups have run since
the time specified by
thresholds in the
ph_threshold table:

v REQUIRED LEVEL
BACKUP: maximum of 2
days between backups of
any level

v REQUIRED LEVEL 0
BACKUP: maximum of 2
days between level-0
backups

If a backup has not occurred,
a warning alert is added to
the ph_alert table.

Once a day

check_for_ipa This task adds an entry in
the ph_alert table for each
table that has one or more
outstanding in-place alter
operations.

Once a week

idle_user_timeout This task terminates user
sessions that have been idle
for longer than 60 minutes.

By default, this task is
disabled. You must enable it
by updating the ph_task
table.

For more information, see
“Automatically terminating
idle connections” on page
2-43.

Every 2 hours

27-6 IBM Informix Administrator's Guide

Table 27-2. Built-in tasks and sensors (continued)

Task or sensor Description Results table Frequency Retention

ifx_ha_monitor_log_replay_task This task monitors the
high-availability cluster
replay position.

Not set

ifx_TrickleFeed_load_ID This task continuously
refreshed the data in a data
mart. The name of the data
mart and accelerator are
listed in the task description.
This task appears in the
Scheduler after trickle feed is
enabled for a data mart. Each
data mart for which trickle
feed is enabled has a
separate task. The ID in the
task name is unique.

For more information, see
ifx_setupTrickleFeed()
function.

Every number
of seconds
that are
specified
when trickle
feed is
enabled

Job runner This task runs server tasks
for the OpenAdmin Tool
(OAT) for Informix in the
background with a private
dbWorker thread. For
internal use by the
OpenAdmin Tool (OAT) for
Informix only.

As necessary

Job results clean up This task removes
OpenAdmin Tool (OAT) for
Informix job results entries
that are older than the
threshold of 30 days. For
internal use by the
OpenAdmin Tool (OAT) for
Informix only.

Once a day

mon_checkpoint This sensor saves information
about checkpoints.

mon_checkpoint Every hour 7 days

mon_chunk This sensor saves general
information about chunk
usage and I/O chunk
performance.

mon_chunk Every hour 30 days

mon_command_history This task deletes rows from
the command_history table
that are older than the
threshold of 30 days. The
threshold is named
COMMAND HISTORY
RETENTION in the
ph_threshold table.

Once a day

mon_compression_estimates This sensor saves information
about how much space might
be saved if the data is
compressed.

mon_compression_
estimates

Once a week 30 days

Chapter 27. The Scheduler 27-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/ids_acc_095.htm#ids_acc_095
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/ids_acc_095.htm#ids_acc_095

Table 27-2. Built-in tasks and sensors (continued)

Task or sensor Description Results table Frequency Retention

mon_config This sensor saves the most
recent value for each
configuration parameter in
the onconfig file.

mon_config Once a day

mon_config_startup This sensor saves the value
for each configuration
parameter in the onconfig
file when the server starts.

mon_config At server
startup

99 days

mon_iohistory This sensor saves
performance information
about chunk I/O. You can
change the
IO_SAMPLES_PER_HOUR
parameter in the
ph_threshold table to collect
information more frequently.

Every hour 30 days

mon_low_storage This task scans the list of
dbspaces to find spaces that
fall below the threshold
specified by the
SP_THRESHOLD
configuration parameter.
Then, the task expands the
spaces by extending chunks
or adding chunks using
entries in the storage pool.

For more information, see
“Automatic space
management” on page 9-23.

mon_low_storage Every hour 7 days

mon_memory_system This sensor collects
information about the
amount of memory the
server uses.

mon_memory_system Every hour 7 days

mon_page_usage This sensor saves information
about the pages that are used
and free in storage spaces.

mon_page_usage Once a day 7 days

mon_profile This sensor saves server
profile information.

mon_prof Every 4 hours 30 days

mon_sysenv This startup sensor saves
information about the
environment when the
database server starts.

mon_sysenv At server
startup

60 days

mon_table_names This sensor saves table
names along with their
creation time.

mon_table_names Once a day 30 days

mon_table_profile This sensor saves table
profile information, including
the total number of update,
insert, and delete operations
that occurred on this table.

mon_table_profile Once a day 7 days

mon_users This sensor saves profile
information about each user.

mon_users Every 4 hours 7 days

27-8 IBM Informix Administrator's Guide

Table 27-2. Built-in tasks and sensors (continued)

Task or sensor Description Results table Frequency Retention

mon_vps This sensor collects virtual
processor information.

mon_vps Every 4 hours 15 days

online_log_rotate This task rotates the online
message log file that is
specified in the MSGPATH
configuration parameter.

When the online message log
rotates, the server switches to
a new online message log file
and increments the ID
numbers for the previous log
files by one. When the
maximum number of log
files is reached, the log file
with the highest ID is
deleted.

The threshold for the
maximum logs to rotate is
specified in the ph_threshold
table.

3 A.M. every
30 days (with
a maximum
of 12 log files)

post_alarm_message This task posts alerts. Every hour

purge_tables This task identifies rolling
window tables whose purge
policies have been exceeded.
It discards or detaches
qualifying fragments,
according to each purge
policy, until that policy is
satisfied, or until no more
fragments can be removed.

Daily at 00:45

Save SQL Trace This sensor saves the current
SQL History Trace buffer
contents to a table when
enabled by the user in the
OpenAdmin Tool (OAT) for
Informix. For internal use by
the OpenAdmin Tool (OAT)
for Informix only.

sql_savesnap Every 15
minutes

1 day

SET tk_enable This task enables the tasks
that rotate message log files.

3 A.M. every
30 days

sync_registry This task automatically
converts the connection
information between the
sqlhosts file format and the
Windows registry format.

Every 15
minutes

Related concepts:
“Automatic performance tuning” on page 1-6
Related tasks:
“Modifying the scheduler” on page 27-19
Related reference:

Chapter 27. The Scheduler 27-9

The Scheduler tables (Administrator's Reference)

Creating a task
You can create a Scheduler task to perform a specific action at specific times.

You must be connected to the sysadmin database as user informix or another
authorized user.

To create a task, use an INSERT statement to add a row into the ph_task table:
1. Include values for the following columns:

a. tk_name: Give the task a unique name.
b. tk_type: Change the job type to TASK or STARTUP TASK.
c. tk_description: Add a description of the action the task performs.
d. tk_execute: Add the action that the task performs. The action can be a

user-defined function, a single SQL statement, or a multiple-statement
prepared object that was created using the PREPARE SQL to enable the
assembly of one or more SQL statements at runtime. The length of the
command is limited to 2048 bytes.

2. Optional: Change the default values for the following columns:
v tk_start_time: The default start time is 8:00:00. For a startup task, set the start

time to NULL.
v tk_stop_time: The default stop time is 19:00:00. For a startup task, set the

stop time to NULL.
v tk_frequency: The default frequency once a day. For a startup task, set the

frequency to NULL.
v tk_group: The default group is MISC.
v tk_monday through tk_sunday: The default is to run every day.

The task runs at the specified start time and subsequently at the time calculated
from the frequency.

Example

The following task uses the SQL administration API to take a checkpoint every two
minutes between the hours of 8:00 A.M. and 7:00 P.M. on Mondays, Wednesdays,
and Fridays.
INSERT INTO ph_task
(tk_name,
tk_description,
tk_type,
tk_group,
tk_execute,
tk_start_time,
tk_stop_time,
tk_frequency,
tk_Monday,
tk_Tuesday,
tk_Wednesday,
tk_Thursday,
tk_Friday,
tk_Saturday,
tk_Sunday)
VALUES
("Example Checkpoint",
"Example to do a checkpoint every 2 minutes.",

27-10 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1079.htm#ids_adr_1079

"TASK",
"EXAMPLES",
"EXECUTE FUNCTION admin(’checkpoint’)",
DATETIME(08:00:00) HOUR TO SECOND,
DATETIME(19:00:00) HOUR TO SECOND,
INTERVAL (2) MINUTE TO MINUTE,
’t’,
'f’,
’t’,
'f’,
’t’,
'f’,
'f’);

The following example shows the code for a task that runs once a day at 2:00 A.M.
to ensure that the command_history table contains only recent data. In this
example, the definition of recent data is stored in a Command History Interval
column in the ph_threshold table.
INSERT INTO ph_task
(
tk_name,
tk_group,
tk_description,
tk_type,
tk_execute,
tk_start_time,
tk_frequency
)
VALUES
(
"mon_command_history",
"TABLES",
"Monitor how much data is kept in the command history table",
"TASK",
"delete from command_history where cmd_exec_time < (

select current - value::INTERVAL DAY to SECOND
from ph_threshold
where name = ’COMMAND HISTORY INTERVAL’) ",

"2:00:00",
"1 0:00:00"
);

Related concepts:
“Actions for task and sensors” on page 27-13
Related tasks:
“Modifying the scheduler” on page 27-19

Creating a sensor
You can create a Scheduler sensor to collect and store data about the database
server.

You must be connected to the sysadmin database as user informix or another
authorized user.

To create a sensor, use an INSERT statement to add a row into the ph_task table:
1. Include values for the following columns:

v tk_name: Give the task a unique name.
v tk_description: Add a description of the action the task performs.

Chapter 27. The Scheduler 27-11

v tk_result_table: Add the name of the table that holds the data that the sensor
gathers.

v tk_create: Add a CREATE statement to create the results table. The results
table must have an INTEGER column named ID to hold the sensor ID. You
can add other columns to the table.

v tk_execute: Add the action that the sensor performs. The action can be a
user-defined function, a single SQL statement, or a multiple-statement
prepared object that was created using the PREPARE SQL to enable the
assembly of one or more SQL statements at runtime.

2. Optionally change the default values for the following columns:
v tk_type: The default value is SENSOR. For a startup sensor, change the value

to STARTUP SENSOR.
v tk_delete: The default interval after which to delete sensor data is one day.
v tk_start_time: The default start time is 8:00:00. For a startup sensor, set the

start time to NULL.
v tk_stop_time: The default stop time is 19:00:00. For a startup sensor, set the

stop time to NULL.
v tk_frequency: The default frequency once a day. For a startup sensor, set the

frequency to NULL.
v tk_group: The default group is MISC.
v tk_monday through tk_sunday: The default is to run every day.
v

The sensor runs at the specified start time and subsequently at the time calculated
from the frequency.

Examples

The following example shows the code for a sensor that tracks the startup
environment of the database server. The $DATA_SEQ_ID variable is the current
execution of the sensor.
INSERT INTO ph_task
(
tk_name,
tk_type,
tk_group,
tk_description,
tk_result_table,
tk_create,
tk_execute,
tk_stop_time,
tk_start_time,
tk_frequency,
tk_delete
)
VALUES
(
"mon_sysenv",
"STARTUP SENSOR",
"SERVER",
"Tracks the database servers startup environment.",
"mon_sysenv",
"create table mon_sysenv (ID integer, name varchar(250), value lvarchar(1024))",
"insert into mon_sysenv select $DATA_SEQ_ID, env_name, env_value
FROM sysmaster:sysenv",
NULL,

27-12 IBM Informix Administrator's Guide

NULL,
NULL,
"60 0:00:00"
);

The following example shows the code for a sensor that collects information about
the amount of memory that is being used and stores the information in the
mon_memory_system table. If that table does not exist, the task creates it. This
task, which runs every 30 minutes, deletes any data in the mon_memory_system
table that has existed for more than 30 days.
INSERT INTO ph_task
(
tk_name,
tk_group,
tk_description,
tk_result_table,
tk_create,
tk_execute,
tk_stop_time,
tk_start_time,
tk_frequency,
tk_delete
)
VALUES
("mon_memory_system",
"MEMORY",
"Server memory consumption",
"mon_memory_system",
"create table mon_memory_system (ID integer, class smallint, size int8,

used int8, free int8)",
"insert into mon_memory_system select $DATA_SEQ_ID, seg_class, seg_size,

seg_blkused, seg_blkfree FROM sysmaster:sysseglst",
NULL,
NULL,
INTERVAL (30) MINUTE TO MINUTE,
INTERVAL (30) DAY TO DAY
);

Related concepts:
“Actions for task and sensors”
Related tasks:
“Modifying the scheduler” on page 27-19

Actions for task and sensors
The action for a task or sensor is an SQL statement or routine that performs one or
more operations.

SQL statements are useful if the action consists of a single operation. A stored
procedure or a user-defined routine written in C or Java is useful if the action
consists of multiple operations. The action is stored in the tk_execute column of
the ph_task table.

You have a great deal of flexibility when you create an action. Possible types of
operations include:
v Perform a DML operation. You can use a sensor to insert or update data in a

table. You can use a task to delete older data from a table.
v Perform an administrative operation. You can use a task to run an SQL

administration API function to administer the database server. For example, you
can create a task to take checkpoints every two minutes.

Chapter 27. The Scheduler 27-13

v Perform an operation based on a threshold. You can use a threshold from the
ph_threshold table to determine if a task action must be run. For example, you
can create a task that adds a shared memory segment if the amount of available
shared memory falls below a threshold value.

v Create an alert to report an operation or warn of a potential problem. For
example, you can create a task to terminate idle users that inserts a row into the
ph_alert table when a user session is terminated. You can also create a task to
monitor backups and insert a warning into the ph_alert table when a backup
has not occurred.

Use the following variables in your task or sensor action:
v $DATA_TASK_ID: Use to indicate the current task or sensor. This variable

corresponds to the value of the tk_id field in the ph_task table.
v $DATA_SEQ_ID: Use to indicate the current execution of the task or sensor. This

variable corresponds to the value of the tk_sequence field in the ph_task table
and the run_task_sequence field in the ph_run table.

Examples

The following action is an SQL statement that the built-in mon_command_history
task uses to remove older rows from the command_history table.
DELETE FROM command_history
WHERE cmd_exec_time < (
SELECT CURRENT - value::INTERVAL DAY to SECOND
FROM ph_threshold
WHERE name = ’COMMAND HISTORY RETENTION’)

The following example is an SQL statement that the built-in mon_vps sensor uses
to add data to the mon_vps result table:
INSERT INTO mon_vps
SELECT $DATA_SEQ_ID, vpid, num_ready,
class, usecs_user, usecs_sys
FROM sysmaster:sysvplst

The following example is a stored procedure that terminates user sessions that are
idle for longer than a value set by a threshold, and then adds an alert to the
ph_alert table.

/*
**
* Create a function that will find all users that have
* been idle for the specified time. Call the SQL admin API to
* terminate those users. Create an alert to track which
* users have been terminated.
**
*/

CREATE FUNCTION idle_timeout(task_id INT, task_seq INT)
RETURNING INTEGER

DEFINE time_allowed INTEGER;
DEFINE sys_hostname CHAR(16);
DEFINE sys_username CHAR(257);
DEFINE sys_sid INTEGER;
DEFINE rc INTEGER;

{*** Get the maximum amount of time to be idle ***}
SELECT value::integer
INTO time_allowed
FROM ph_threshold

WHERE name = "IDLE TIMEOUT";

27-14 IBM Informix Administrator's Guide

{*** Find all users who are idle longer than the threshold ***}
FOREACH SELECT admin("onmode","z",A.sid), A.username, A.sid, hostname

INTO rc, sys_username, sys_sid, sys_hostname
FROM sysmaster:sysrstcb A , sysmaster:systcblst B,

sysmaster:sysscblst C
WHERE A.tid = B.tid
AND C.sid = A.sid
AND lower(name) in ("sqlexec")
AND CURRENT - DBINFO("utc_to_datetime",last_run_time) > time_allowed UNITS MINUTE
AND lower(A.username) NOT IN("informix", "root")

{*** If a user is successfully terminated, log ***}
{*** the information into the alert table. ***}
IF rc > 0 THEN

INSERT INTO ph_alert
(
ID, alert_task_id,alert_task_seq,
alert_type, alert_color,
alert_state,
alert_object_type, alert_object_name,
alert_message,
alert_action
) VALUES (
0,task_id, task_seq,
"INFO", "GREEN",
"ADDRESSED",
"USER","TIMEOUT",

"User "||TRIM(sys_username)||"@"||TRIM(sys_hostname)||
" sid("||sys_sid||")"||

" terminated due to idle timeout.",
NULL
);

END IF

END FOREACH;

RETURN 0;

END FUNCTION;

Related tasks:
“Creating a task” on page 27-10
“Creating a sensor” on page 27-11
“Creating a threshold” on page 27-16
“Creating an alert” on page 27-17

Creating a group
You can create a group to organize Scheduler tasks and sensors.

You must be connected to the sysadmin database as user informix or another
authorized user.

When you create a task or sensor, you can specify a group name from the
ph_group table in the tk_group column of the ph_task table.

To create a group:

Use an INSERT statement to add a row into the ph_group table in the sysadmin
database. You must include a name for the group for the group_name column and
a description of the group for the group_description column. The database server
generates an ID for the group in the group_id column.

Chapter 27. The Scheduler 27-15

Example

The following example adds a group named TABLES:
INSERT INTO ph_group
(
group_name,
group_description
)
VALUES
(
"TABLES",
"Tasks that trim history and results tables."
);

Creating a threshold
You can create a threshold to determine under what conditions a Scheduler task or
sensor is run.

You must be connected to the sysadmin database as user informix or another
authorized user.

A threshold specifies a value that can be compared to a current value to determine
whether a task or sensor must be run.

To create a threshold:
1. Use an INSERT statement to add values for the following columns in the

ph_threshold table:
v name: the name of the threshold
v task_name: the name of the task from the ph_task table
v value: the value of the threshold
v value_type: the data type of the threshold (STRING or NUMERIC)
v description: a description of what the threshold does

2. Write the task or sensor action to use the threshold.

Example

The following example adds a threshold named IDLE TIMEOUT for a task named
Idle_timeout:
INSERT INTO ph_threshold
(
name,
task_name,
value,
value_type,
description
)
VALUES
(
"IDLE TIMEOUT",
"Idle_timeout",
"60",
"NUMERIC",
"Maximum amount of time in minutes for non-informix users to be idle."
);

The task action subtracts the time of the last user action from the current time and
compare that value with the value column in the ph_threshold table.

27-16 IBM Informix Administrator's Guide

Related concepts:
“Actions for task and sensors” on page 27-13

Creating an alert
You can create an alert as part of the action of a Scheduler task or sensor.

You must be connected to the sysadmin database as user informix or another
authorized user.

To create an alert:

Use an INSERT statement to add a row to the ph_alert table. Include values for the
following columns:
v ID: System generated; use 0 for the value.
v alert_task_id: Must reference the job ID from the ph_task table.
v alert_task_seq: Must reference the job sequence number from the ph_task table.
v alert_type: Choose INFO, WARNING, or ERROR.
v alert_color: Choose GREEN, YELLOW, or RED.
v alert_state: Choose NEW, IGNORED, ACKNOWLEDGED, ADDRESSED.
v alert_object_type: The type of object the alert describes, for example, SERVER.
v alert_object_name: The name of the object.
v alert_message: The message describing the alert.
v alert_action: An SQL statement or function that performs a corrective action, or

NULL.

Example

The following example adds an alert to warn that a backup has not been taken.
This code snippet is part of a stored procedure that takes task_id and task_seq as
its arguments.
INSERT INTO ph_alert
(
ID,
alert_task_id,
alert_task_seq,
alert_type,
alert_color,
alert_state,
alert_object_type,
alert_object_name,
alert_message,
alert_action
)
VALUES
(
0,
task_id,
task_seq,
"WARNING",
"RED",
"NEW",
"SERVER",
"dbspace_name",

Chapter 27. The Scheduler 27-17

"Dbspace ["||trim(dbspace_name)|| "] has never had a level-0 backup.
Recommend taking a level-0 backup immediately.",

NULL
);

Related concepts:
“Actions for task and sensors” on page 27-13

Monitor the scheduler
You can monitor Scheduler threads that are in progress with the onstat -g dbc
command. You can view information about tasks and sensors that have completed
in the ph_run table.

The Scheduler uses two types of threads while it is running:
v dbWorker: These threads are running scheduled tasks and sensors.
v dbScheduler: This thread prepares the next task or sensor that is scheduled to

be run.

To view information about currently running tasks and sensor, and the next task or
sensor that is run, use the onstat -g dbc command.

To view information about tasks and sensor that have completed, query the
ph_run table in the sysadmin database. You must be connected to the sysadmin
database as user informix or another authorized user.

Examples

The following output from the onstat -g dbc command shows two dbWorker
threads and the dbScheduler thread:
Worker Thread(0) 46fa6f10
=====================================
Task: 47430c18
Task Name: mon_config_startup
Task ID: 3
Task Type: STARTUP SENSOR
Last Error

Number -310
Message Table (informix.mon_onconfig)

already exists in database.
Time 09/11/2007 11:41
Task Name mon_config_startup

Task Execution: onconfig_save_diffs

WORKER PROFILE
Total Jobs Executed 10
Sensors Executed 8
Tasks Executed 2
Purge Requests 8
Rows Purged 0

Worker Thread(1) 46fa6f80
=====================================
Task: 4729fc18
Task Name: mon_sysenv
Task ID: 4
Task Type: STARTUP SENSOR
Task Execution: insert into mon_sysenv select 1, env_name,

env_value FROM sysmaster:sysenv

27-18 IBM Informix Administrator's Guide

WORKER PROFILE
Total Jobs Executed 3
Sensors Executed 2
Tasks Executed 1
Purge Requests 2
Rows Purged 0

Scheduler Thread 46fa6f80
=====================================
Run Queue

Empty
Run Queue Size 0
Next Task 7
Next Task Waittime 57

The following output shows the history of four Scheduler jobs from the ph_run
table:
SELECT * FROM ph_run;

RUN_ID 1
RUN_TASK_ID 2
RUN_TASK_SEQ 1
RUN_RETCODE 0
RUN_TIME 2009-07-20 13:04:59
RUN_DURATION 0.131850300007433
RUN_ZTIME 1248109468
RUN_BTIME 1248109468
RUN_MTIME 1248109499

RUN_ID 2
RUN_TASK_ID 3
RUN_TASK_SEQ 1
RUN_RETCODE 0
RUN_TIME 2009-07-20 13:04:59
RUN_DURATION 0.120845244247991
RUN_ZTIME 1248109468
RUN_BTIME 1248109468
RUN_MTIME 1248109499

RUN_ID 3
RUN_TASK_ID 4
RUN_TASK_SEQ 1
RUN_RETCODE 0
RUN_TIME 2009-07-20 13:04:59
RUN_DURATION 0.00254887164461759
RUN_ZTIME 1248109468
RUN_BTIME 1248109468
RUN_MTIME 1248109499

RUN_ID 2087
RUN_TASK_ID 7
RUN_TASK_SEQ 742
RUN_RETCODE 0
RUN_TIME 2009-09-09 11:09:51
RUN_DURATION 0.00489335523104662
RUN_ZTIME 1248109468
RUN_BTIME 1248109468
RUN_MTIME 1252508991

Modifying the scheduler
You can modify the properties of Scheduler tasks, sensors, alerts, thresholds, or
groups. You can modify both built-in properties and properties that you added.

Chapter 27. The Scheduler 27-19

You must be connected to the sysadmin database as user informix or another
authorized user.

To modify Scheduler properties:

Use an UPDATE statement for the appropriate Scheduler table in the sysadmin
database.

Examples

The following example stops a task named task1 from running:
UPDATE ph_task

SET tk_enable = "F"
WHERE tk_name = "task1";

The following example changes the amount of time that data collected by the
built-in sensor mon_profile to 99 days:
UPDATE ph_task
SET tk_delete = "INTERVAL (99) DAY TO DAY"
WHERE tk_name = "mon_profile";

The following example changes the threshold named COMMAND HISTORY
RETENTION to 20 so that the command_history table retains information about
SQL administration API commands for 20 days:
UPDATE ph_threshold SET value = "20 0:00:00"
WHERE name = "COMMAND HISTORY RETENTION";

Related tasks:
“Creating a task” on page 27-10
“Creating a sensor” on page 27-11
Related reference:
“Built-in tasks and sensors” on page 27-3

27-20 IBM Informix Administrator's Guide

Chapter 28. Remote administration with the SQL
administration API

You can use the SQL administration API to perform remote administration tasks by
using SQL statements.

The SQL administration API functions take one or more arguments that define the
task. Many of the tasks are ones that you can also complete with command-line
utilities. The advantage of using the SQL administration API functions is that you
can run them remotely from other database servers. You must be directly
connected to the database server when you run command-line utility commands.

You can perform the following types of administrative tasks with the SQL
administration API:
v Control data compression
v Update configuration parameters
v Check data, partitions, and extents consistency, control the B-tree scanner, and

force a checkpoint
v Set up and administer Enterprise Replication
v Set up and administer high-availability clusters
v Control logging and logical logs
v Control shared-memory and add buffer pools
v Control mirroring
v Control decision-support queries
v Change the server mode
v Add, drop, and configure storage spaces
v Control the SQL statement cache
v Control and configure SQL tracing
v Start and stop the listen control threads dynamically
v Perform other tasks, such as moving the sysadmin database, terminating a

session, or adding a virtual processor

For more information about the SQL administration API, see the IBM Informix
Administrator's Reference.
Related concepts:
Part 7, “Overview of automatic monitoring and corrective actions”
Related reference:

SQL Administration API Overview (Administrator's Reference)

SQL administration API admin() and task() functions
The SQL administration API consists of two functions: admin() and task() that are
defined in the sysadmin database.

These functions perform the same tasks, but return results in different formats. The
task() function returns a string that describes the results of the command. The
admin() function returns an integer.

© Copyright IBM Corp. 1996, 2014 28-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_001.htm#ids_sapi_001

By default, only user informix, can connect to the sysadmin database. If user root
or a member of the DBSA group is granted privileges to connect to the sysadmin
database, user root or a member of the DBSA group can also run the SQL
administration API task() and admin() functions.

Run the task() or admin() function in a transaction that does not include any other
statements.

You can use EXECUTE FUNCTION statement to execute the admin() and task()
functions. For example, the following SQL statement, which is equivalent to the
oncheck -ce command, instructs the database server to check the extents:
BEGIN WORK;
EXECUTE FUNCTION admin("check extents");
END WORK;

You use SQL administration API functions in your Scheduler task actions. For
example, you can define a task that creates a dbspace by using the following
statement in the task action:
EXECUTE FUNCTION admin("create dbspace","dbspace2","/work/dbspace2","20 MB");

Related reference:

SQL Administration API Overview (Administrator's Reference)

Viewing SQL administration API history
You can view the history of all the SQL administration API functions that the were
run in the previous 30 days in the command_history table in the sysadmin
database.

You must be connected to the sysadmin database as user informix or another
authorized user.

The command_history table shows if an administrative task was executed through
an admin() or task() function and displays information about the user who ran the
command, the time the command was run, the command, and the message
returned when the database server completed running the command.

To display command history:

Use a SELECT statement to return the data from the command_history table.

The following example displays all command history for the past 30 days:
SELECT * FROM command_history;

The following table shows sample commands and the associated results in a
sample command_history table. For a description of all information in the
command_history table, see the IBM Informix Administrator's Reference.

Table 28-1. Example of some information in a command_history table

Command Sample returned messages

set sql tracing on SQL tracing on with 1000 buffers of 2024
bytes.

create dbspace Space 'space12' added.

checkpoint Checkpoint completed.

28-2 IBM Informix Administrator's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_001.htm#ids_sapi_001

Table 28-1. Example of some information in a command_history table (continued)

Command Sample returned messages

add log Added 3 logical logs to dbspace logdbs.

Related concepts:
Part 7, “Overview of automatic monitoring and corrective actions”
Related reference:

The command_history table (Administrator's Reference)

Controlling the size of the command_history table
You can reduce the retention period or remove rows from the command_history
table to prevent it from becoming too large.

You must be connected to the sysadmin database as user informix or another
authorized user.

By default, rows in the command_history table are automatically removed after a
30 days. The retention period is controlled by the COMMAND HISTORY
RETENTION row in the ph_threshold table.

To reduce the retention period:

Use an UPDATE statement to modify the value of the COMMAND HISTORY
RETENTION row in the ph_threshold table.

The following example sets the retention period to 25 days:
UPDATE ph_threshold
SET value = "25"
WHERE name = "COMMAND HISTORY RETENTION";

You can use SQL commands like DELETE or TRUNCATE TABLE to manually
remove data from this table. You can also create a task in the ph_task table to
purge data from the command_history table.

The following example shows a task that monitors the amount of data in the
command_history table and purges data when it becomes too old.
INSERT INTO ph_task
(tk_name, tk_type, tk_group, tk_description, tk_execute,
tk_start_time, tk_stop_time, tk_frequency)
VALUES
("mon_command_history",
"TASK",
"TABLES",
"Monitor how much data is kept in the command history table",
"delete from command_history where cmd_exec_time < (

select current - value::INTERVAL DAY to SECOND
from ph_threshold
where name = ’COMMAND HISTORY RETENTION’) ",

DATETIME(02:00:00) HOUR TO SECOND,
NULL,
INTERVAL (1) DAY TO DAY);

Related reference:

The command_history table (Administrator's Reference)

Chapter 28. Remote administration with the SQL administration API 28-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0278.htm#ids_adr_0278
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0278.htm#ids_adr_0278

28-4 IBM Informix Administrator's Guide

Chapter 29. Query drill-down

You can use query drill-down, or SQL tracing, to gather statistical information
about each SQL statement that was run and to analyze statement history.

SQL tracing helps you answer questions such as:
v How long do SQL statements take?
v How many resources are individual statements using?
v How long did statement execution take?
v How much time was involved waiting for each resource?

The statistical information is stored in a circular buffer, which is an in-memory
pseudo table, called syssqltrace, that is stored in the sysmaster database. You can
dynamically resize the circular buffer.

By default SQL tracing turned off, but you can turn it on for all users or for a
specific set of users. When SQL tracing is enabled with its default configuration,
the database server tracks the last 1000 SQL statements that ran, along with the
profile statistics for those statements. You can also disable SQL tracing globally or
for a particular user.

The memory required by SQL tracing is large if you plan to keep much historical
information. The default amount of space required for SQL tracing is two
megabytes. You can expand or reduce the amount of storage according to your
requirements.

Information displayed includes:
v The user ID of the user who ran the command
v The database session ID
v The name of the database
v The type of SQL statement
v The duration of the SQL statement execution
v The time this statement completed
v The text of the SQL statement or a function call list (also called stack trace) with

the statement type, for example:
procedure1() calls procedure2() calls procedure3()

v Statistics including the:
– Number of buffer reads and writes
– Number of page reads and writes
– Number of sorts and disk sorts
– Number of lock requests and waits
– Number of logical log records
– Number of index buffer reads
– Estimated number of rows
– Optimizer estimated cost
– Number of rows returned

v Database isolation level.

© Copyright IBM Corp. 1996, 2014 29-1

You can also specify escalating levels of information to include in the tracing, as
follows:
v low-level tracing, which is enabled by default, captures the information shown

in the example below. This information includes statement statistics, statement
text, and statement iterators.

v Medium level tracing captures all of the information included in low-level
tracing, plus the list of table names, database name and stored procedure stacks.

v high-level tracing captures all of the information included in medium-level
tracing, plus host variables.

The amount of information traced affects the amount of memory required for this
historical data.

You can enable and disable the tracing at any point in time, and you can change
the number and size of the trace buffers while the database server is running. If
you resize the trace buffer, the database server attempts to maintain the content of
the buffer. If the parameters are increased, data is not truncated. However, if the
number or the size of the buffers are reduced, the data in the trace buffers might
be truncated or lost.

The number of buffers determines how many SQL statements are traced. Each
buffer contains the information for a single SQL statement. By default, an
individual trace buffer is a fixed size. If the text information stored in the buffer
exceeds the size of the trace buffer, then the data is truncated.

The following example shows SQL tracing information:
select * from syssqltrace where sql_id = 5678;

sql_id 5678
sql_address 4489052648
sql_sid 55
sql_uid 2053
sql_stmttype 6
sql_stmtname INSERT
sql_finishtime 1140477805
sql_begintxtime 1140477774
sql_runtime 30.86596333400
sql_pgreads 1285
sql_bfreads 19444
sql_rdcache 93.39127751491
sql_bfidxreads 5359
sql_pgwrites 810
sql_bfwrites 17046
sql_wrcache 95.24815205913
sql_lockreq 10603
sql_lockwaits 0
sql_lockwttime 0.00
sql_logspace 60400
sql_sorttotal 0
sql_sortdisk 0
sql_sortmem 0
sql_executions 1
sql_totaltime 30.86596333400
sql_avgtime 30.86596333400
sql_maxtime 30.86596333400
sql_numiowaits 2080
sql_avgiowaits 0.014054286131
sql_totaliowaits 29.23291515300
sql_rowspersec 169.8958799132
sql_estcost 102
sql_estrows 1376

29-2 IBM Informix Administrator's Guide

sql_actualrows 5244
sql_sqlerror 0
sql_isamerror 0
sql_isollevel 2
sql_sqlmemory 32608
sql_numiterators 4
sql_database db3
sql_numtables 3
sql_tablelist t1
sql_statement insert into t1 select {+ AVOID_FULL(sysindices) } 0, tabname

For an explanation of all table rows, see information about the syssqltrace table in
the sysmaster database section of the IBM Informix Administrator's Reference.
Related concepts:
Part 7, “Overview of automatic monitoring and corrective actions”

Specifying startup SQL tracing information by using the SQLTRACE
configuration parameter

Use the SQLTRACE configuration parameter to control the default tracing behavior
when the database server starts. By default, this parameter is not set. The
information you set includes the number of SQL statements to trace and the
tracing mode.

Any user who can modify the onconfig file can modify the value of the
SQLTRACE configuration parameter and effect the startup configuration. However,
only user informix, root, or a DBSA who has been granted connect privileges to
the sysadmin database can use SQL administration API commands to modify the
runtime status of the SQL tracing.

To specify SQL tracing information when the database server starts:
1. Set the SQLTRACE configuration parameter in the onconfig file.
2. Restart the database server.

Example

The following setting in the onconfig file specifies that the database server gathers
low-level information about up to 2000 SQL statements executed by all users on
the system and allocates approximately four megabytes of memory (2000 * two
KB).
SQLTRACE level=LOW,ntraces=2000,size=2,mode=global

If you use only a percentage of the allocated buffer space (for example, 42 percent
of the buffer space), the amount of memory that is allocated is still two KB.

If you do not want to set the SQLTRACE configuration parameter and restart the
server, you can run the following SQL administration API command, which
provides the same function as setting SQLTRACE for the current session:
EXECUTE FUNCTION task("set sql tracing on", 100,"1k","med","user");

After enabling the SQL tracing system in user mode, you can then enable tracing
for each user. See “Enable SQL tracing” on page 29-4.

For more information about using task() and admin() functions, see the IBM
Informix Administrator's Reference.

Chapter 29. Query drill-down 29-3

For more information about the SQLTRACE configuration parameter, including
minimum and maximum values for some fields, see the IBM Informix
Administrator's Reference.

Disable SQL tracing globally or for a session
Even if the mode specified in the SQLTRACE configuration parameter is global or
user, you can disable SQL tracing if you want to completely turn off all user and
global tracing and deallocate resources currently in use by SQL tracing. By default,
SQL tracing is off for all users.

You must be connected to the sysadmin database as user informix or another
authorized user.

To disable global SQL tracing, run the SQL administration API task() or admin()
function with the set sql tracing off argument.

To disable SQL tracing for a particular session, run the SQL administration API
task() or admin() function with set sql tracing off as the first argument and the
session identification number as the second argument.

Examples

The following example disables SQL tracing globally:
EXECUTE FUNCTION task(’set sql tracing off’);
(expression) SQL tracing off.

1 row(s) retrieved.

The following example disables SQL tracing for the session with an ID of 47:
EXECUTE FUNCTION task(“set sql user tracing off”,47);

For more information about using task() or admin() functions, see the IBM Informix
Guide to SQL: Syntax.

Enable SQL tracing
After you specify user as the mode in the SQLTRACE configuration parameter,
you must run the SQL administration API task() or admin() function to turn SQL
history tracing on for a particular user.

You must be connected to the sysadmin database as user informix or another
authorized user.

Global SQL tracing is not required to be enabled to allow SQL tracing for a
particular user.

To enable SQL tracing for a particular user, run the SQL administration API task()
or admin() function with set sql tracing on as the first argument and the user
session ID as the second argument.

To enable user SQL tracing for all users except root or informix, you can run a
task() or admin() function with the set sql tracing on argument and information
that defines the users.

29-4 IBM Informix Administrator's Guide

Example

The following example enables SQL tracing for the user with the session ID of 74:
EXECUTE FUNCTION task("set sql user tracing on", 74);

The following example enables the tracing of SQL statements of users who are
currently connected to the system as long as they are not logged in as user root or
informix.
dbaccess sysadmin -<<END
execute function task("set sql tracing on", 1000, 1,"low","user");
select task("set sql user tracing on", sid)
FROM sysmaster:syssessions
WHERE username not in ("root","informix");

END

For more information about the task() and admin() functions, see the IBM Informix
Administrator's Reference.

Enable global SQL tracing for a session
You can enable global SQL tracing for the current session by running the SQL
administration API task() or admin() function.

You must be connected to the sysadmin database as user informix or another
authorized user.

By default, global SQL tracing is not enabled. You can set the SQLTRACE
configuration parameter to permanently enable global tracing.

To enable global user SQL history tracing for the current database server session,
run the SQL administration API task() or admin() function with the set sql
tracing on argument.

Example

The following example enables global low-level SQL tracing for all users:
EXECUTE FUNCTION task("set sql tracing on", 1000, 1,"low","global");

If a new user logs on to the system after your statement runs, you can enable
tracing for the new user. See “Enable SQL tracing” on page 29-4.

For more information about the task() and admin() functions, see the IBM Informix
Guide to SQL: Syntax.

Chapter 29. Query drill-down 29-5

29-6 IBM Informix Administrator's Guide

Part 8. Appendixes

© Copyright IBM Corp. 1996, 2014

IBM Informix Administrator's Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http://www.ibm.com/able.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2014 A-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

A-2 IBM Informix Administrator's Guide

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Administrator's Guide

Notices

This information was developed for products and services offered in the U.S.A.
This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1996, 2014 B-1

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

B-2 IBM Informix Administrator's Guide

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices B-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

B-4 IBM Informix Administrator's Guide

Index

Special characters
/etc/services file entry 2-10
.rhosts file 2-14
(*), asterisk 2-34

wildcard in hostname field 2-34

Numerics
64-bit addressing

defined 6-32
memory use 6-32

A
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

Adding
virtual processors 4-7

ADM. 4-7
ADMIN_MODE_USERS configuration parameter 3-7, 3-13
ADMIN_USER_MODE_WITH_DBSA configuration

parameter 3-7, 3-9
admin() functions

scheduler lmm disable argument 7-7
scheduler lmm enable argument 7-7

Administration
overview 1-1

administration mode 3-7, 3-13
Administration mode 3-10, 3-12

for HDR pair 22-37
Administration virtual processor class 4-7
Administrative tasks

assigning storage 8-10
consistency checking 19-1
routine tasks 1-10

ADT. 4-28
ADTMODE configuration parameter 4-28
Advanced User Rights 1-13
Affinity

setting processor affinity 4-13
Aggregate

parallel processing 4-3
AIO

virtual processors 4-19
AIO virtual processors

how many 4-19
alert

generating from Scheduler 27-17
ALL keyword

DATASKIP 9-39
ALLOCATE COLLECTION statement 11-6
ALLOCATE DESCRIPTOR statement 11-6
ALLOCATE ROW statement 11-6
Allocating disk space

cooked file space 9-3
extent 8-8
initial chunk 9-4

Allocating disk space (continued)
metadata 9-19
mirrored data 18-2
procedure 9-1
sbspaces 8-19
UNIX

cooked files 9-3
raw files 9-3

Windows
logical drive 9-5
NTFS files 9-4
physical drive 9-5

ALTER ACCESS_METHOD statement 11-3
ALTER FRAGMENT statement 11-3
ALTER FUNCTION statement 11-3
ALTER INDEX statement 11-3
ALTER PROCEDURE statement 11-3
ALTER ROUTINE statement 11-3
ALTER SECURITY LABEL COMPONENT statement 11-3
ALTER SEQUENCE statement 11-3
ALTER TABLE statement 11-3

changing logging mode 8-26
changing table type 8-27
connecting to clients 2-38

ALTER TRUSTED CONTEXT statement 11-3
ALTER USER statement 11-3
ANSI-compliant database

changing logging mode 12-3
ondblog utility 12-3
ontape utility 12-4

Apache server 3-9
Assertion failure

data corruption 19-4
defined 19-1
determining cause 19-6
during consistency checking 19-3
during processing of user request 19-4
message log format 19-3

Assertion failure file
af.xxx 19-3
gcore.xxx 19-3
list 19-3
shmem.xxx 19-3

Asterisk (*) 2-34
wildcard in hostname field 2-34

Asynchronous I/O
defined 4-18
kernel (KAIO) 4-17

Attaching to shared memory 6-4
database server utilities 6-5
virtual processors 6-5

Audit virtual processor 4-28
Auditing

audit mode 4-28
introduction 1-7

Authentication
default policy 2-9
defined 2-9

AUTO_CKPTS configuration parameter 15-4
AUTO_LLOG

configuration parameter 14-12

© Copyright IBM Corp. 1996, 2014 X-1

AUTO_LRU_TUNING configuration parameter 16-5
AUTO_READAHEAD configuration parameter 6-25
AUTOLOCATE configuration parameter 9-15
Automatic performance tuning 1-6
Automatic recovery, two-phase commit 25-8
Automatic redirection 24-10
Availability

critical data 8-10
goal in efficient disk layout 8-37
sample disk layout 8-39

Average size, smart large object 9-19
AVG_LO_SIZE tag 8-17, 9-19

B
B-tree index

cleaner thread 6-16
B-tree indexes

compressing 9-63
storage optimization 9-55

Backup and restore
secondary servers 22-37

Backups
adding log files 14-12
blobspaces 9-17
changing database logging 9-6
checkpoints 15-6
chunks 9-14
converting table type 9-6
dbspaces 9-7
defined 1-10
deleted log files 14-13
freeing a log file 14-5
log files 9-6, 14-3
physical log 9-6
raw tables 8-27
RAW tables 8-26, 8-28
reducing size 8-12
sbspaces 8-19, 9-19, 14-4
STANDARD tables 8-26
TEXT and BYTE data 8-13

Bad-sector mapping, absence 19-8
Basic Text Search virtual processors 4-28
Before image

defined 15-1
during fast recovery after a checkpoint 15-8
flushing 6-26
physical log buffer 6-26

BEGIN WORK statement 11-5
beginlg field 25-15
Big buffers, defined 6-17
Binding CPU virtual processors 4-4
Bitmap page

index tblspace 8-31
tblspace 8-31

BLOB data type 8-13
Blobpage

defined 8-6
freeing deleted pages 13-6
fullness

determining 9-43
oncheck -pB display 9-43
physical logging 15-2
relationship to chunk 8-6
sizing recommendations 9-18
storage statistics 9-18
writes, bypassing shared memory 6-30

blobspace
automatically expanding 9-23
expanding 9-23

Blobspaces
activating 13-6
adding with

onspaces 9-17
backing up 9-6, 9-17
buffers 6-30
creating with

onspaces 9-17
defined 8-13
dropping with

initial tasks 9-33
onspaces 9-33

free-map page
tracking blobpages 6-30

logging tasks 8-13, 13-6
names 9-17
obtaining the number of free blobpages 9-40, 9-41
restrictions

adding logs 14-12
storage statistics 9-18
writing data to 6-29
writing TEXT and BYTE data 8-13

Block device 8-3
bts virtual processor 4-28
Buffer pools 6-12

bypassed by blobspace data 6-30
contents 6-12
creating to correspond to non-default page sizes 9-10
defined 6-12
for non-default page sizes 9-10
LRU queues management 6-22
minimum requirement 6-12
monitoring activity 7-9
read-ahead 6-25
size of buffer 6-12
smart large objects 6-31
synchronizing buffer flushing 6-27

buffer size
option 2-24

Buffered transaction logging
when flushed 11-8

BUFFERING tag, in onspaces -c -Df option 8-17
BUFFERPOOL configuration parameter 6-12, 6-21, 15-6

and smart large objects 6-31
Buffers

big buffers 6-17
blobpage buffer 6-30
concurrent access 6-25
current lock-access level 6-15
data replication 6-10
dirty 6-26
exclusive mode 6-21
flushing 6-26
how a thread

accesses a buffer page 6-25
acquires 6-22

least-recently used 6-22
lock types 6-20
logical-log buffer 6-9
monitoring statistics and use 7-9
most-recently used 6-22
not dirty 6-26
physical-log buffer 6-10
share lock 6-21

X-2 IBM Informix Administrator's Guide

Buffers (continued)
smart large objects 6-31, 8-17
synchronizing flushing 6-26, 6-27
table, defined 6-15
threads waiting 6-15
write types during flushing 6-27

Built-in data types
cluster 20-4

Byte-range locking 6-10, 8-18

C
Cache

data distribution 6-18, 7-3
monitoring shared-memory buffer 7-9
SPL routine cache

hash size 7-3
pool size 7-3

SQL statement cache
enabling 7-5
specifying size 7-5

Calculating size
blobpages 9-18
metadata 8-19, 9-20
page size 9-18
root dbspace 8-35
smart large objects 8-17

Cascading deletes 11-1
CDR_QDATA_SBSPACE configuration parameter 8-14
Central registry

sqlhosts 2-17
cfd option 2-24
Changing

chunk status 22-25
database server type, HDR 22-38
logging mode, ANSI database 12-3

Checkpoint
chunk writes 6-28
data replication 22-25
flushing of regular buffers 6-26
forced 22-25
last available log 13-5
light appends 9-33
logical-log buffer 6-9
maximum connections 3-7
physical log buffer 6-26
starting 3-5
step in shared-memory initialization 3-7

Checkpoints
automatic 15-4
automatic tuning 16-4
backup considerations 15-6
blocking 15-4
defined 15-4
Fast recovery after 15-8
flushing buffer pool between 15-6
forcing 16-4
manual 15-4
monitoring activity 16-3
nonblocking 15-4
role in fast recovery 15-8
statistics 16-5
transaction blocking 15-3, 15-4

CHKADJUP log record 9-20, 9-49
CHRESERV log record 9-20
Chunk

extending its size 9-28

Chunk (continued)
marking as extendable 9-25
marking as not extendable 9-25

Chunks
activity during mirror recovery 17-4
adding to

dbspace 9-14
mirrored dbspace 18-4
sbspaces 8-19, 9-20

allocating initial 9-4
automatically extending 9-23
backing up 9-14
checking status 9-40, 9-41, 19-5
concepts 8-2
defined 1-4
disk layout guidelines 8-37
dropping from

blobspace 9-32
dbspace 9-32
sbspaces 9-32

exceeding size limits with LVM 8-42
extendable 8-4
extending 9-23
extents 8-8
I/O errors during processing 19-5
linking to the path name 9-3, 9-4, 18-2
maximum number 1-4, 8-2, 9-6
maximum size 1-4, 8-2, 9-6
monitoring 9-40, 9-41, 19-5
name, when allocated as raw device 8-3
saving status on secondary server 22-25
specifying metadata area 9-20
table, defined 6-15
write

checkpoints 6-28
monitoring 7-9

CKPTINTVL configuration parameter 15-4
Classes

virtual processor 4-9
CLEANERS configuration parameter

purpose 6-16
client application

connection type field 2-20
host name field 2-20
options field 2-20, 2-24

Client application
attaching to shared memory 6-4
beginning a session 6-17
configuring connectivity 1-8, 2-9
configuring stack size 6-17
connecting to a host 2-17
connecting to primary or secondary server 20-4
connections supported 2-5
defined 2-1
global transaction 25-1
local-loopback connection 2-8
multiplexed connections 2-3
network security files 2-12
redirecting in data replication 24-6
remote hosts 2-12, 2-14
shared-memory connection 2-6
specifying a dbserver name 2-38
sqlhosts entries 2-17, 2-19, 2-34
using data replication 20-3
wildcard addressing 2-34
Windows network domains 2-2

Index X-3

Client/server
configuration

listen and poll threads 4-22
local loopback 2-8
shared memory 2-6

configuration example
multiple connection types 2-50
multiple database servers 2-51
multiple residency 2-51
network connection 2-50

Client/server architecture 2-1
CLOSE DATABASE statement 11-3
CLOSE statement 11-6
Cluster

data types that are replicated 20-4
failover 24-1

Cluster transaction coordination 21-5
Cluster transaction scope 21-5
CLUSTER_TXN_SCOPE 21-5
command_history table 28-2, 28-3
Commit

heterogeneous 25-22, 25-24
Commit protocol

heterogeneous 25-1
two-phase 25-1, 25-6

COMMIT statement 11-8
COMMIT WORK statement 11-5
communication files directory option 2-24
communication support module

sqlhosts option field 2-24
Communication Support Module

configuration file 2-9
network security 2-9

Communication support services
defined 2-9
message confidentiality and integrity 2-9

Communications
shared memory

defined 6-19
how client attaches 6-4
size 6-19

Communications Support Module
virtual processor 4-27

compliance with standards xxv
Compressing

data 9-58
fragment data 9-58
fragments 9-58, 9-60, 9-62
indexes 9-63
table data 9-58
tables 9-58, 9-60, 9-62

Compression
auot_crsd task 9-57
automatic 9-57
benefits 9-60
data types 9-61
Defragment partitions

automatic 9-57
dictionaries 9-65
estimates of saved space 9-63
information in sysmaster tables 9-66
methods 9-55
moving data 9-65
overview 9-53, 9-58, 9-60
restrictions 9-62
scenario 9-58
viewing information 9-66

Concurrency
control 6-20

Confidentiality of communication messages 2-9
Configuration

database server environment 1-1
estimating required disk space 8-36
features 1-7
multiple ports 2-11
requirements 1-1

Configuration file
connectivity 2-9

configuration parameters
DBSERVERNAME 2-20

Configuration parameters
AUTO_CKPTS 15-4
AUTO_LRU_TUNING 16-5
AUTO_READAHEAD configuration parameter 6-25
BUFFERPOOL 6-12
CDR_QDATA_SBSPACE 8-14
CKPTINTVL 15-4
Configuration parameters

ENCRYPT_SWITCH 22-28
DATASKIP 9-37
DBSERVERALIASES 2-39
DBSERVERNAME 2-38
DBSPACETEMP 8-37, 9-13
DEADLOCK_TIMEOUT 25-22
DEF_TABLE_LOCKMODE 6-10
DELAY_APPLY 21-19
diagnostic information 19-6
DIRECT_IO 9-11
DRAUTO 24-4
DRIDXAUTO 22-27
DRLOSTFOUND 22-7
DRTIMEOUT 22-27
DS_HASHSIZE 6-18, 7-3
DS_NONPDQ_QUERY_MEM 6-13
DS_POOLSIZE 6-18, 7-3
DS_TOTAL_MEMORY 6-13
DUMPCNT 19-6
DUMPCORE 19-6
DUMPDIR 19-3, 19-6
DUMPGCORE 19-3, 19-6
DUMPSHMEM 19-3, 19-6
DYNAMIC_LOGS 14-10, 14-12
ENCRYPT_CIPHERS 22-28
ENCRYPT_HDR 22-28
ENCRYPT_MAC 22-28
ENCRYPT_MAFILEC 22-28
ENCRYPT_SWITCH configuration parameter 22-28
EXTSHMADD 6-13
FASTPOLL 4-24
HA_ALIAS 2-42
HETERO_COMMIT 25-23
initial chunk of root dbspace 8-11
LIMITNUMSESSIONS 2-40
LOG_STAGING_DIR 21-18
LOGBUFF 6-9
LOW_MEMORY_RESERVE 7-6
LTAPEBLK 21-4
LTAPESIZE 21-4
LTXEHWM 14-16, 25-11
LTXHWM 14-16, 25-11
MIRROR 18-1
MIRROROFFSET 8-11, 9-2
MIRRORPATH 8-11
MULTIPROCESSOR 4-12

X-4 IBM Informix Administrator's Guide

Configuration parameters (continued)
NETTYPE 2-41
NS_CACHE 2-41
NUMFDSERVERS 2-42
PC_HASHSIZE 6-19, 7-3
PC_POOLSIZE 6-19, 7-3
PHYSBUFF 6-10
PLOG_OVERFLOW_PATH 15-7
RESIDENT 7-6
ROOTNAME 8-11
ROOTOFFSET 8-11, 9-2
RSS_FLOW_CONTROL 21-20
RTO_SERVER_RESTART 15-3, 15-4
SBSPACENAME 8-15, 8-20, 9-19
SBSPACETEMP 8-20, 9-21

smart LO 9-19
SDS_FLOW_CONTROL 21-24
SERVERNUM 6-5, 6-6
shared memory 7-1
SHMADD 6-13
SHMBASE 6-5, 6-6
SHMTOTAL 6-3
SHMVIRTSIZE 6-13
SINGLE_CPU_VP 4-12
SMX_PING_INTERVAL 22-27
SMX_PING_RETRY 22-27
SP_THRESHOLD 9-27
SP_WAITTIME 9-27
SQLTRACE 29-3
STACKSIZE 6-17
STMT_CACHE 7-5
STMT_CACHE_HITS 7-5
STMT_CACHE_NOLIMIT 7-5
STMT_CACHE_NUMPOOL 7-5
STMT_CACHE_SIZE 7-5
STOP_APPLY 21-19
TAPEBLK 21-4
TAPEDEV 21-10, 21-16
TAPESIZE 21-4
TBLTBLFIRST 8-11, 9-8
TBLTBLNEXT 2-34, 8-11, 9-8
TXTIMEOUT 25-14, 25-22
used for connectivity 2-38
USELASTCOMMITTED 6-10
VP_MEMORY_CACHE_KB 4-11
VPCLASS 4-11, 4-13, 4-16, 5-1

Configuration Parameters
ADMIN_MODE_USERS 3-7, 3-13
ADMIN_USER_MODE_WITH_DBSA 3-7, 3-9

CONNECT statement 2-38, 11-6
example 2-39

Connection management
cdr commands

cdr define qod 23-24, 23-69, 23-72
cdr reset qod 23-24, 23-69, 23-72
cdr start qod 23-24, 23-69, 23-72
cdr stop qod 23-24, 23-63

Configuration
Examples 23-3, 23-5, 23-11, 23-24, 23-37, 23-39, 23-41,

23-43, 23-45, 23-48, 23-49, 23-52, 23-54, 23-58, 23-65,
23-69, 23-72, 23-75, 23-78

Connection Manager
Configuring 23-3, 23-5, 23-7, 23-8, 23-9, 23-10, 23-11,

23-16, 23-18, 23-19, 23-20, 23-21, 23-22, 23-23, 23-24,
23-35, 23-39, 23-41, 23-43, 23-45, 23-48, 23-49, 23-52,
23-54, 23-58

Converting old formats 23-37

Connection management (continued)
Connection Manager (continued)

Dynamically reconfiguring 23-36
Installing 23-62
Monitoring 23-7, 23-63
Prioritizing connections 23-1, 23-11, 23-18, 23-78
Restarting 23-36
Starting 23-62, 23-65, 23-69, 23-72, 23-75, 23-78
Stopping 23-63
Uninstalling 23-63

Connection redirection
Service-level agreements (SLAs) 23-1, 23-24, 23-39,

23-41, 23-43, 23-45, 23-48, 23-49, 23-52, 23-54, 23-58,
23-65, 23-69, 23-72, 23-75, 23-78

Setting up 23-1, 23-24, 23-39, 23-41, 23-43, 23-45, 23-48,
23-49, 23-52, 23-54, 23-58, 23-65, 23-69, 23-72, 23-75,
23-78

Connection units
Grids 23-1, 23-16, 23-48, 23-49, 23-52, 23-54, 23-69,

23-72
High-availability clusters 23-1, 23-5, 23-9, 23-39, 23-41,

23-43, 23-45, 23-52, 23-54, 23-65, 23-72, 23-78
High-availability replication systems 23-9, 23-52, 23-54,

23-72
Replicate sets 23-1, 23-22, 23-48, 23-49, 23-52, 23-54,

23-69, 23-72
Server sets 23-1, 23-23, 23-58

Enterprise Replication
cdr define qod 23-2, 23-24
cdr reset qod 23-24
cdr start qod 23-2, 23-24
cdr stop qod 23-24
Quality of data (QOD) monitoring 23-2, 23-24
Setting up 23-16, 23-22, 23-24, 23-48, 23-49, 23-52, 23-54

environment variables
CMCONFIG 23-2, 23-3, 23-37
INFORMIXDIR 23-2, 23-37, 23-39, 23-41, 23-43, 23-45,

23-48, 23-49, 23-52, 23-54, 23-58
INFORMIXSQLHOSTS 23-2, 23-37, 23-39, 23-41, 23-43,

23-45, 23-48, 23-49, 23-52, 23-54, 23-58
Failover configuration

Setting up 23-1, 23-7, 23-8, 23-10, 23-11, 23-18, 23-22,
23-65, 23-72, 23-75, 23-78

files
cmalarmprogram 23-2, 23-7, 23-11, 23-63
Connection Manager Configuration File 23-2, 23-3,

23-5, 23-7, 23-8, 23-9, 23-10, 23-11, 23-16, 23-18, 23-19,
23-20, 23-21, 23-22, 23-23, 23-24, 23-35, 23-36, 23-37,
23-39, 23-41, 23-43, 23-45, 23-48, 23-49, 23-52, 23-54,
23-58, 23-62

onconfig 23-2, 23-11, 23-37, 23-41, 23-43, 23-45, 23-49,
23-54

passwd_file 23-59, 23-61, 23-75
Password file 23-59, 23-61, 23-75
sqlhosts 23-2, 23-16, 23-24, 23-35, 23-39, 23-41, 23-43,

23-45, 23-48, 23-49, 23-52, 23-54, 23-58, 23-59, 23-61,
23-65, 23-69, 23-72, 23-75, 23-78

Monitoring
Event alarms 23-2, 23-7, 23-63
Logs 23-10, 23-18, 23-19, 23-63
Quality of data (QOD) 23-2, 23-24

Network configuration
Distributed Relational Database Architecture

(DRDA) 23-1, 23-43, 23-45
Secure ports 23-41, 23-45, 23-49, 23-54, 23-59, 23-61,

23-75

Index X-5

Connection management (continued)
Network configuration (continued)

Service-level agreements (SLAs) 23-1, 23-24, 23-39,
23-41, 23-43, 23-45, 23-48, 23-49, 23-52, 23-54, 23-58,
23-65, 23-69, 23-72, 23-75, 23-78

sqlhosts 23-2, 23-16, 23-24, 23-39, 23-41, 23-43, 23-45,
23-48, 23-49, 23-52, 23-54, 23-58, 23-59, 23-61, 23-65,
23-69, 23-72, 23-75, 23-78

onconfig parameters
DBSERVERALIASES 23-2, 23-37, 23-41, 23-43, 23-45,

23-49, 23-54, 23-75
DRAUTO 23-2, 23-37, 23-65, 23-72, 23-75, 23-78
HA_FOC_ORDER 23-2, 23-11, 23-37, 23-64, 23-65,

23-72, 23-75, 23-78
Proxy server

Setting up 23-1, 23-24
Security

passwd_file 23-41, 23-45, 23-49, 23-54, 23-59, 23-61,
23-75

Password file 23-2, 23-41, 23-45, 23-49, 23-54, 23-59,
23-61, 23-75

Secure ports 23-2, 23-41, 23-45, 23-49, 23-54, 23-59,
23-61, 23-75

Untrusted networks 23-2, 23-41, 23-45, 23-49, 23-54,
23-59, 23-61, 23-75

utilities
oncmsm 23-2, 23-36, 23-37, 23-62, 23-63, 23-65, 23-69,

23-72, 23-75, 23-78
onpassword 23-59, 23-61, 23-75
onstat -g cmsm 23-63

Connection Manager
configuration parameters

CLUSTER 23-5, 23-9, 23-65, 23-72, 23-75, 23-78
CM_TIMEOUT 23-5, 23-8
CMALARMPROGRAM 23-5, 23-7, 23-63
DEBUG 23-5, 23-10
EVENT_TIMEOUT 23-5, 23-10
FOC 23-5, 23-11, 23-18, 23-78
GRID 23-5, 23-16
INFORMIXSERVER 23-5, 23-16, 23-39, 23-41, 23-43,

23-45, 23-48, 23-49, 23-52, 23-54, 23-58
LOCAL_IP 23-5, 23-11, 23-18, 23-78
LOG 23-5, 23-18, 23-19
LOGFILE 23-5, 23-10, 23-18, 23-19
MACRO 23-5, 23-20
NAME 23-21
REPLSET 23-5, 23-22, 23-69, 23-72
SECONDARY_EVENT_TIMEOUT 23-5, 23-22
SERVERSET 23-5, 23-23
SLA 23-5, 23-24, 23-39, 23-41, 23-43, 23-45, 23-48, 23-49,

23-52, 23-54, 23-58
SQLHOSTS 23-5, 23-35

configuring 23-5
Enterprise Replication 23-69
failover 24-1
FOC attributes

ORDER 23-5, 23-11
PRIORITY 23-5, 23-11, 23-78
TIMEOUT 23-5, 23-11

mode
Proxy 23-1, 23-5, 23-24, 23-69, 23-72
Redirect 23-1, 23-5, 23-24, 23-69, 23-72

MODE attribute values
PROXY 23-5, 23-24
REDIRECT 23-5, 23-24

ORDER attribute values
DISABLED 23-5, 23-11

Connection Manager (continued)
ORDER attribute values (continued)

ENABLED 23-5, 23-11, 23-64
HDR 23-5, 23-11, 23-64
RSS 23-5, 23-11, 23-64
SDS 23-5, 23-11, 23-64

POLICY attribute values
FAILURE 23-5, 23-24, 23-69, 23-72
LATENCY 23-5, 23-24, 23-69, 23-72
ROUNDROBIN 23-5, 23-24, 23-69, 23-72
SECAPPLYBACKLOG 23-5, 23-24, 23-69, 23-72
WORKLOAD 23-5, 23-24, 23-69, 23-72

redirection policy
Apply backlog 23-1, 23-5, 23-24, 23-69, 23-72
Apply failure 23-1, 23-5, 23-24, 23-69, 23-72
Round-robin 23-1, 23-5, 23-24, 23-69, 23-72
Transaction latency 23-1, 23-5, 23-24, 23-69, 23-72
Workload 23-1, 23-5, 23-24, 23-69, 23-72

SLA attributes
DBSERVERS 23-5, 23-24, 23-39, 23-41, 23-43, 23-45,

23-48, 23-49, 23-52, 23-54, 23-58
HOST 23-5, 23-24
MODE 23-5, 23-24
NETTYPE 23-5, 23-24
POLICY 23-5, 23-24
SERVICE 23-5, 23-24
USEALIASES 23-5, 23-24
WORKERS 23-5, 23-24

connection-redirection option 2-24
connections

type field 2-20
Connections

automatically terminating 2-43
between client applications and the server 2-5
database versus network 2-3
defined 4-22
IPCSTR 2-10
local loopback

defined 2-8
methods 4-21
multiple

connection types, example 2-50
multiplexed 2-3
network, example 2-50
security restrictions 2-12
shared memory, defined 2-6
TCP/IP 2-10, 2-12, 2-14

Connectivity
ASF 2-3
configuration parameters 2-38
configuring 1-8
files, defined 2-9

Consistency checking
corruption of data 19-4
data and overhead 19-1
extents 19-2
index corruption 19-5
indexes 19-2
logical logs 19-3
monitoring for data inconsistency 19-3
overview 19-1
periodic tasks 19-1
sbspaces 8-19
system catalog tables 19-2
validating metadata 19-3

Console
messages 1-11

X-6 IBM Informix Administrator's Guide

Constraints
checking, deferred 11-1

Context switching
defined 4-5
how functions when OS controls 4-3
OS versus multithreaded 4-3

Contiguous
space for physical log 16-1

Control structures
defined 4-5
queues 4-7
session control block 4-5
stacks 4-6
thread control block 4-5

Conversion
errors during a load 10-10

Conversion, during initialization 3-5
Cooked file space

allocating 9-3
compared with raw space 8-3
defined 8-3
for static data 8-3
performance using direct I/O 9-11

Coordinating database server 25-6
Copying data

using a named pipe 10-5
Core dump

contents of gcore.xxx 19-3
when useful 19-6

core file 19-3
corrupted tables 8-25
corruption 19-4
Corruption, resolving I/O errors 19-5
CPU virtual processor

adding and dropping in online mode 4-13, 4-16
binding 4-4
DataBlade modules 4-11
defined 4-11
determining number required 4-11
how many 4-11
multiprocessor computer 4-12
poll threads 4-21, 4-22
restrictions 4-15
single-processor computer 4-12
threads 4-1
types of threads run by 4-11
user-defined routine 4-11
VPCLASS configuration parameter 4-11

CREATE ACCESS_METHOD statement 11-3
CREATE AGGREGATE statement 11-3
CREATE CAST statement 11-3
CREATE DATABASE statement 8-10, 11-3
CREATE DISTINCT TYPE statement 11-3
CREATE EXTERNAL TABLE (IDS) statement

named-pipes example 10-4
CREATE EXTERNAL TABLE statement 11-3

mapping columns 10-3
named-pipes example 10-4

CREATE FUNCTION FROM statement 11-3
CREATE FUNCTION statement 4-15, 11-3
CREATE INDEX statement 11-3

defining named fragments 9-11
CREATE OPAQUE TYPE statement 11-3
CREATE OPCLASS statement 11-3
CREATE PROCEDURE FROM statement 11-3
CREATE PROCEDURE statement 11-3
CREATE ROLE statement 11-3

CREATE ROUTINE FROM statement 11-3
CREATE ROW TYPE statement 11-3
CREATE SCHEMA statement 11-3
CREATE SECURITY LABEL COMPONENT statement 11-3
CREATE SECURITY LABEL statement 11-3
CREATE SECURITY POLICY statement 11-3
CREATE SEQUENCE statement 11-3
CREATE SYNONYM statement 11-3
CREATE TABLE statement 11-3

connecting to clients 2-38
defining named fragments 9-11
IN dbspace option 8-10
specifying sbspaces in a PUT clause 8-15

CREATE TEMP TABLE statement 11-3
CREATE TRIGGER statement 11-3
CREATE TRUSTED CONTEXT statement 11-3
CREATE USER statement 11-3
CREATE VIEW statement 11-3
CREATE XADATASOURCE statement 11-3
CREATE XADATASOURCE TYPE statement 11-3
Creating

blobspaces 9-17
dbspaces 9-7
sbspaces 9-19
smart large objects 8-15, 9-19
tables with CLOB or BLOB data types 8-19
temporary dbspaces 9-13

Critical dbspaces
mirroring 8-37, 8-41
storage 8-10

Critical section of code
defined 15-1

cron
utility 1-13

Cross-server transactions 25-8
curlog field 25-15

D
Damaged tables 8-25
Data

compressible 9-61
compression 9-53, 9-58, 9-60
uncompressable 9-62

Data compression 9-55
Data consistency

fast recovery 15-6
how achieved 15-1
monitoring 19-3
symptoms of corruption 19-4
verifying 19-1

Data definition language
Statements that are logged 11-3

Data encryption
in HDR 22-28

Data replication 11-1
buffer 6-10
introduction 1-7
non-default page sizes in HDR environment 21-4
overview 1-10
read-only mode 3-7
restarting after failure 22-27
restarting after secondary-server index becomes

corrupted 22-27
using database server groups 2-32

Data Replication
DataBlade modules, installing with 22-1

Index X-7

Data Replication (continued)
how it works 22-1
how updates are replicated 22-2
initial replication 22-1
role of

log records 22-2
UDRs, installing with 22-1
UDTs, installing with 22-1

Data sources
XA-compliant 25-2

Data storage
concepts 8-1
control 8-10, 8-15
maximum chunk

size 9-2, 9-6
maximum number of chunks 9-6
maximum number of storage spaces 9-6

Data types
CLOB and BLOB 8-15
replicated by cluster 20-4
user defined 8-15

Data-distribution cache 6-18, 7-3
Data-recovery mechanisms

fast recovery 15-6
smart large objects 8-13

Database logging
backups 9-6
DTP environment 11-9
Enterprise Replication 11-1

Database logging status
ANSI-compliant 11-8

changing mode 12-3
buffered logging 11-8
canceling logging with ondblog 12-2
changes permitted 12-1
changing buffering status

using ondblog 12-2
using ontape 12-4
using SET LOG 11-9

defined 11-7
ending logging

using ondblog 12-2
using ontape 12-3

making ANSI-compliant
using ondblog 12-3
using ontape 12-4

modifying
using ondblog 12-2
using ontape 12-3

overview 1-10
setting 11-2
turning on logging with ontape 12-3
unbuffered logging 11-8

Database server
architecture 1-1
configuration 1-3

Database server group name 2-34
database server groups

creating in the sqlhosts file 2-24
database servers

groups 2-24
Database servers

database creation requirements 11-9
groups 2-32

HDR 2-32
multithreaded 4-1
remote 2-16

Database servers (continued)
setting parameters in Setnet32 2-18
starting 1-3

DATABASE statement 2-38, 11-6
Databases

ANSI compliant 11-9
asynchronous I/O 4-18
automatic location 9-15
defined 8-23
estimating size 8-36
fragmentation 8-24
location of 8-23
monitoring 9-39, 12-5
purpose of 8-23
size limits 8-23
sysutils 3-7

DataBlade API
smart large object size 8-16
smart large objects, accessing 8-13, 8-19

DataBlade modules
virtual processors 4-11

DATASKIP configuration parameter
ALL keyword 9-39
defined 9-37

dbload utility 9-67
DBPATH environment variable

dbserver group 2-32
use in automatic redirection 24-6

dbserver group 2-24
DBSERVERALIASES configuration parameter

defined 2-39
example 2-39
multiple connection types 2-50
sqlhosts file 2-20

DBSERVERNAME configuration parameter
associated protocol 4-21
defined 2-38
sqlhosts file 2-20
syntax rules 2-20
virtual processor for poll thread 4-21

dbspace
automatically expanding 9-23
expanding 9-23
modifying the create size 9-26
modifying the extend size 9-26
SQL administration API functions

modify dbspaces sp_sizes argument 9-26
dbspaces

adding
chunk 9-14
mirrored chunk 18-4

backing up 9-6, 9-7
creating 9-7, 9-10

initial dbspace 8-11
temporary 9-13
using onspaces 9-7

creating initial dbspace 1-4
defined 8-10
dropping

chunk 9-31
onspaces 9-33
overview 9-33

link between logical and physical units of storage 8-9
mirroring if logical-log files included 17-3
monitoring simple large objects 9-44
names 9-5
non-default page sizes in HDR environment 21-4

X-8 IBM Informix Administrator's Guide

dbspaces (continued)
page size, specifying 9-10
purpose of 8-10
renaming 9-14
restrictions, adding logs 14-12
restrictions, moving logs 14-14
root 8-11
root dbspace defined 8-11
shared-memory table 6-15
smart large objects 8-7
specifying page size when creating 9-10
table

defined 6-15
dropping 9-33
metadata 6-15

temporary 8-12
DBSPACETEMP configuration parameter 8-28, 9-13

defining temporary tables 8-37
load balancing 8-37

DBSPACETEMP environment variable 8-28, 9-13
DEADLOCK_TIMEOUT configuration parameter 25-22

two-phase commit protocol 25-21
DEALLOCATE COLLECTION statement 11-6
DEALLOCATE DESCRIPTOR statement 11-6
DEALLOCATE ROW statement 11-6
DECLARE statement 11-6
DEF_TABLE_LOCKMODE configuration parameter 6-10
DEFAULT keyword

with SET DATASKIP 9-37
Defaults

configuration file 3-3
Deferred checking of constraints 11-1
defragment

limitations 9-59
partitions 9-59

Defragment partitions 9-55
Defragmenting partitions 9-53
DELAY_APPLY configuration parameter 21-19
Delaying the application of log files 21-18, 21-19
DELETE statement 11-5
Deleting

log files 14-13
RAW tables 8-26
smart-large-object data 9-33
STANDARD tables 8-26

DESCRIBE statement 11-6
Device

character-special 8-3
NFS 8-3
when offsets are required 9-2

Diagnostic information
collecting 19-6
disk space restraints 19-6
parameters to set 19-6

Dictionary cache 6-18
DIRECT_IO configuration parameter 9-11
Directories

NFS 8-3
Dirty buffer, defined 6-26
Disabilities, visual

reading syntax diagrams A-1
Disability A-1
Disabling I/O error

destructive versus nondestructive 19-6
monitoring with

event alarms 19-8
message log 19-7

Disabling I/O error (continued)
when they occur 19-6

DISCONNECT statement 11-6
Disk

compression 9-60
Disk I/O

errors during processing 19-5
kernel asynchronous I/O 4-17
logical log 4-17
operating system I/O 8-3
physical log 4-17
priorities 4-17
queues 4-19
raw I/O 8-3
reads from mirror chunks 17-5
role of shared memory in reducing 6-1
smart large objects 8-13
virtual processor classes 4-17
writes to mirror chunks 17-4

Disk layout
logical volume managers 8-42
mirroring 8-37
optimum performance 8-37
sample disk layouts 8-39
table isolation 8-38
trade-offs 8-39

Disk page
before-images in physical log 6-26

Disk space
allocating

cooked file space 9-3
on Windows 9-5
raw disk space 9-3

chunk path names, offsets 9-2
chunk, maximum size 1-4, 9-6
creating a link to chunk path name 9-3, 9-4
defined 9-1
estimating size 8-34
initialization 3-1, 3-2, 3-4
layout guidelines 8-37
middle partitions 8-38
requirements 8-36
storing TEXT and BYTE data 9-18
tracking usage by tblspace 8-31

Distributed processing 25-1
Distributed queries

defined 1-10
introduction 1-7

Distributed transactions 11-1
determining if inconsistently implemented 26-2
two-phase commit protocol 25-6
unbuffered logging 11-9

Distribution statistics 6-18
Domain

Windows
controller 2-2
defined 2-2
running as the specified user 1-13
trusted 2-2
user accounts 2-2

Dotted decimal format of syntax diagrams A-1
DRAUTO configuration parameter 24-1

role in recovering from data-replication failure 24-4, 24-14
DRDA communications

connecting to clients 2-45
displaying connection information 2-48
displaying session information 2-49

Index X-9

DRDA communications (continued)
overview 2-44
setting up for 2-45
specifying buffer size using DRDA_COMMBUFFSIZE 2-

47
specifying information using NETTYPE 2-47

DRDA_COMMBUFFSIZE configuration parameter 2-47
DRDAEXEC thread 2-47
DRIDXAUTO configuration parameter 22-27
DRINTERVAL configuration parameter

setting for
asynchronous updating 22-6
fully synchronous HDR replication 22-4
nearly synchronous HDR replication 22-5

DRLOSTFOUND configuration parameter 22-7
DROP ACCESS_METHOD statement 11-3
DROP AGGREGATE statement 11-3
DROP CAST statement 11-3
DROP DATABASE statement 11-3
DROP FUNCTION statement 11-3
DROP INDEX statement 11-3
DROP OPCLASS statement 11-3
DROP PROCEDURE statement 11-3
DROP ROLE statement 11-3
DROP ROUTINE statement 11-3
DROP ROW TYPE statement 11-3
DROP SECURITY statement 11-3
DROP SEQUENCE statement 11-3
DROP SYNONYM statement 11-3
DROP TABLE statement 11-3
DROP TRIGGER statement 11-3
DROP TRUSTED CONTEXT statement 11-3
DROP TYPE statement 11-3
DROP USER statement 11-3
DROP VIEW statement 11-3
DROP XADATASOURCE statement 11-3
DROP XADATASOURCE TYPE statement 11-3
Dropping

chunk from dbspace 9-31
extspaces 9-37
sbspaces 9-32
storage spaces 9-33
tables in dbspaces 9-33

DRTIMEOUT configuration parameter 22-27
detecting data replication failures 24-3

DS_HASHSIZE configuration parameter 6-18, 7-3
DS_NONPDQ_QUERY_MEM configuration parameter 6-13
DS_POOLSIZE configuration parameter 6-18, 7-3
DS_TOTAL_MEMORY configuration parameter 6-13
DUMPCNT configuration parameter 19-6
DUMPCORE configuration parameter 19-6
DUMPDIR configuration parameter 19-3, 19-6
DUMPGCORE configuration parameter 19-3, 19-6
DUMPSHMEM configuration parameter 19-3, 19-6
Dynamic Host Configuration Product (DHCP) 2-10
Dynamic lock allocation 6-10
Dynamic log allocation

defined 14-9
event alarms and messages 14-10
location of files 14-10
log file size 14-9

DYNAMIC_LOGS configuration parameter
adding log files 14-10, 14-12
enabling and disabling 14-9

E
Embedded applications

maintaining targeted memory 7-7
Encrypt virtual processor 4-27
ENCRYPT_CIPHERS configuration parameter 22-28
ENCRYPT_HDR configuration parameter 22-28
ENCRYPT_MAC configuration parameter 22-28
ENCRYPT_MACFILE configuration parameter 22-28
Encryption

in HDR 22-28
virtual processors 4-27

end-of-group option 2-24
Enterprise Replication

database logging 11-1
RAW tables 8-26
sbspaces 8-14
specifying sbspaces 8-14
STANDARD tables 8-26
TEMP tables 8-26
using database server groups 2-32

Environment variables
affecting

multiplexed connections 2-3
DBSPACETEMP 9-13
IFX_SESSION_MUX 2-3
INFORMIXSHMBASE 6-4
INFORMIXSQLHOSTS 2-17
setting 1-3

Error messages
I/O errors on a chunk 19-5
two-phase commit protocol 25-17

Errors
load and unload 10-10
reject files 10-10

ESQL/C
accessing smart large objects 8-13, 8-19

Ethernet card address 2-10
Event alarm

defined 1-11
dynamically added logs 14-10

Event Viewer, Windows 1-13
Examples

DBSERVERALIASES configuration parameter 2-39
how page cleaning begins 6-23
multiple connection types 2-50
TCP/IP connection 2-50

Exclusive lock
buffer 6-21

EXECUTE FUNCTION statement 11-5
EXECUTE IMMEDIATE statement 11-5
EXECUTE PROCEDURE statement 11-5
EXECUTE statement 11-5
Extended data types

cluster 20-4
Extents

allocating 8-8
defined 8-8
how database server allocates 8-8
key concepts concerning 8-8
monitoring 9-43
monitoring with sysextents 9-43
purpose 8-8
relationship to chunk 8-8
sbspaces 8-7, 8-16
size 8-8
size for sbspaces 8-7, 8-16
size for tblspace tblspace 9-8

X-10 IBM Informix Administrator's Guide

Extents (continued)
size, initial 8-16, 9-8
size, next-extent 8-16, 9-8
structure 8-8, 8-16
validating 19-2

External backup
and restore

using when setting up an RS secondary server 21-13
using when setting up HDR 21-7

External tables
loading

from a named pipe 10-4
mapping columns 10-3
unloading

from a named pipe 10-4
EXTSHMADD configuration parameter 6-13
Extspace

creating 9-36
dropping with onspaces 9-37

F
Failover

secondary server 22-42
Fast polling 4-24
Fast recovery 3-5, 3-7, 11-1

after a checkpoint 15-8, 15-9
cleanup phase 14-12
defined 15-6
details of process 15-8
effects of buffered logging 15-7
how database server detects need for 15-7
no logging 15-7
physical log overflow 15-7
purpose of 15-7
rolling back uncommitted transactions 15-9
rolling logical-log records forward 15-8
sbspaces 8-13
smart large objects 8-21
table types 8-27
when occurs 15-6

Fast recovery of table types 10-11
FASTPOLL configuration parameter 4-24
Fault tolerance

data replication 20-3
fast recovery 15-6

Fencing
I/O fencing 24-2

FETCH statement 11-6
FIFO 10-3, 10-7
FIFO/LRU queues

defined 6-21
specifying information 6-21

File
first-in-first-out 10-3

Files
connectivity configuration 2-9
core 19-3
hosts.equiv 2-12
network security 2-12
NTFS 8-3
oncfg_servername.servernum 3-5
ONCONFIG 3-3
permissions 9-3
rhosts 2-14

First-in-first-out data file 10-3
Flow control 21-20, 21-24

FLRU queues
defined 6-21
how database server selects 6-22

FLUSH statement 11-5
Flushing

before-images 6-26
buffers 6-26

Forced residency
setting 3-6

Foreground write
before-image 6-26
defined 6-27
monitoring 6-27, 7-9

Formula
logical-log size 14-1

FQDN 2-12
Fragment

monitoring
disk usage 9-43
I/O requests for 9-41

over multiple disks 8-38
skipping

inaccessible fragments 9-37
selected fragments 9-39
unavailable fragments 9-39
using DATASKIP 9-37

tables and indexes 8-24
fragment compress arguments 9-58
Fragmentation 8-33

automatic 9-15
FREE statement 11-6
FREE_RE log record 9-49
Freeing log files 14-5, 14-6
fully qualified domain name (FQDN) 2-12
Functions, SQL administration API

admin() 28-1
admin() functions 28-1
scheduler lmm disable argument 7-7
scheduler lmm enable argument 7-7
task() 28-1
task() functions 28-1

G
Gateway, IBM Informix, in heterogeneous commit 25-22
gcore

file 19-3
GET DESCRIPTOR statement 11-6
GET DIAGNOSTICS statement 11-6
GL_USEGLU environment variable 2-45
Global file descriptor number 10-6
Global pool, defined 6-19
Global transaction identifier 26-2
GRANT FRAGMENT statement 11-3
GRANT statement 11-3
group

database server 2-24
Group

database server 2-32
parallel processing of 4-3

GTRID 26-3

H
HA_ALIAS configuration parameter 2-42
Hardware mirroring 17-3

Index X-11

Hash table 6-15
HDR_TXN_SCOPE configuration parameter

setting for
fully synchronous HDR replication 22-4
nearly synchronous HDR replication 22-5

hdrmkpri script 22-38
hdrmksec script 22-38
Heaps 6-18
HETERO_COMMIT configuration parameter 25-23
Heterogeneous commit 25-22, 25-23, 25-24, 25-27
Heuristic decision

independent action 25-10
types of 25-11

Heuristic end-transaction
defined 25-13
determining effects on transaction 26-1
illustration and log records 25-20
messages returned by 25-15
results of 25-15
when necessary 25-14

Heuristic rollback
defined 25-11
illustration and log records 25-19
indications that rollback occurred 26-1
long transaction 25-15
monitoring, onstat -x 25-15
results of 25-12

high availability, scalability, load balancing, failover,
redundancy 0-9

High-availability cluster
client redirection

handling within an application 24-11
compression requirements 21-2
configuring 21-1
configuring connectivity 21-3
data requirements 21-2
hardware and operating-system requirements 21-2
planning for 21-1
restarting after failure 24-17
restore SD cluster 24-20
setting up 21-1
XA support 25-3

High-Availability cluster
types of data replicated 20-4

High-availability clusters
client redirection 24-6

comparison of methods 24-12
DBPATH 24-6
INFORMIXSERVER 24-10
sqlhosts file 24-7

DRTIMEOUT configuration parameter 24-3
failover with ISV software 24-1
failures 24-3
hdrmksec.sh 24-16
manual switchover 24-4, 24-5
restarting a secondary server 24-16
restarting after failure 24-16
restoring system after media failure 24-13
TEMP tables 8-26

High-Availability data replication
fully synchronous HDR replication 22-4
nearly synchronous HDR replication 22-5

High-Availability Data Replication
administration 22-23
advantages 20-3
asynchronous updating 22-6
changing database server mode 22-37

High-Availability Data Replication (continued)
changing database server type 22-38
chunk status on secondary 22-25
defined 20-3
DRINTERVAL configuration parameter 22-4, 22-5, 22-6
DRLOSTFOUND configuration parameter 22-6
encryption options 22-28
HDR_TXN_SCOPE configuration parameter 22-4, 22-5,

22-6
hdrmkpri and hdrmksec scripts 22-38
lost-and-found transactions 22-7
monitoring status 22-40
role of

primary database server 20-4
secondary database server 20-4
temporary dbspaces 22-22

setting
database server type 22-38

starting 21-7
High-Performance Loader 8-26, 8-27
host name field

defined 2-20
multiple network interface cards 4-26
shared memory 2-20, 2-24
syntax rules 2-20
using IP addresses 2-34
wildcard addressing 2-34

Hostname
changing 1-13

hosts file 2-10
hosts.equiv file 2-12
Hot swap 17-3
HPL. 8-26

I
I/O fencing 24-2
IANA standard 2-20
IBM Informix Client Software Development Kit 25-2
IBM Informix ODBC Driver 25-2
IBM OpenAdmin Tool (OAT) for Informix 0-7
ID

in a logical log 13-2
identifier option 2-24
idsxmlvp virtual processor 4-29
ifx_lo_copy function 8-21
ifx_lo_specset_flags function 8-21, 9-21
IFX_SESSION_MUX environment variable 2-3
Ill-behaved user-defined routine 4-15
imc protocol subfield 2-20
imcadmin command 2-52
Impersonate, client 2-16
Inconsistency, detecting 19-1
Index

fragmentation 8-24
parallel building 4-3
tblspace 8-31
validating 19-2

Indexes 19-4
compressing 9-63

industry standards xxv
INF_ROLE_SEP environment variable 3-9
INFO statement 11-6
Informix database

service 1-10
informix user

changing password 1-13

X-12 IBM Informix Administrator's Guide

informix user (continued)
managing log files 14-1

Informix-Admin group
changing operating modes 3-9
managing log files 14-1

INFORMIXSERVER environment variable
client applications 2-32
use in client redirection 24-10

INFORMIXSHMBASE environment variable 6-4
INFORMIXSQLHOSTS environment variable 2-17
INFORMIXSTACKSIZE environment variable 6-17
Initial configuration

creating storage spaces 1-4
Disk contention

reducing 8-37
disk layout 8-37
guidelines for root dbspace 8-11

Initial-extent size 8-8
Initializing

checkpoint 3-7
configuration files 3-3, 3-5
conversion of internal files 3-5
disk space 3-1, 3-2, 3-4
forced residency 3-6
maximum connections 3-7
message log 3-6
shared memory 3-1, 3-2
SMI tables 3-6
steps in 3-2
sysadmin database 3-7
sysmaster database 3-6
sysuser database 3-7
sysutils database 3-7
virtual processors 3-5

Initializing the database server 3-1
INSERT statement 11-5
Inserting data

RAW tables 8-26
STANDARD tables 8-26

Installation
MaxConnect 2-52
sqlhosts registry 2-17, 2-18

Integrity of communication messages 2-9
Internet Assigned Numbers Authority 2-20
Internet protocol connection name 25-8
Internet Protocol Version 6

disabling 2-37
support for 2-37

Interprocess communications
in nettype field 2-20
shared memory 6-1

Interprocess communications stream pipe connections
(IPCSTR) 2-10

IP address
how to find 2-34
use in hostname field 2-34

ipcshm
poll threads corresponding to memory segments 5-2
processes that communicate through this 6-4
shared memory

size 6-19
IPCSTR connectivity files 2-10
IPv4 addresses 2-37
IPv6 addresses 2-37
Isolating tables 8-38
ixpasswd.exe 1-13
ixsu.exe utility 1-13

J
Java virtual processor 4-16
Join

parallel processing 4-3

K
KAIO thread 4-17, 4-19
keep-alive option 2-24
Kernel asynchronous I/O

nonlogging disk I/O 4-17
on Linux platforms 4-19
on UNIX platforms 4-19
overview of 4-19

Key value
shared memory 6-6

L
Latch 6-20

monitoring statistics 7-9
wait queue 4-8

lchwaits field 7-9
Level-0 backup

checking consistency 19-4
Levels, backup

sbspaces 14-4
Licensed users, maximum allowed 3-2, 3-7
Light appends

physical logging 9-33
RAW tables 8-26
STANDARD tables 8-26

Light scans 6-17
Lightweight I/O 8-17
Lightweight processes 4-1
LIMITNUMSESSIONS configuration parameter 2-40
Limits

chunk number 9-6
chunk size 9-6
CPU VPs 4-11
JVPs 4-16
user-defined VPs 4-14

Links
creating 9-3, 9-4

LIO virtual processors 4-18
Listen threads

adding 4-24, 4-25
defined 4-22
multiple 4-24, 4-25
multiple interface cards 4-26
restarting dynamically 4-24, 4-26
starting dynamically 4-24, 4-26
stopping dynamically 4-24, 4-26

LO_CREATE_LOG flag 8-21
LO_CREATE_NOLOG flag 8-21
LO_CREATE_TEMP flag 8-21, 9-21
LO_LOG flag 13-8
LO_NOLOG flag 13-8
Load balancing

done by virtual processors 4-3
performance goal 8-37
using DBSPACETEMP 8-37

LOAD statement 9-67, 11-5
Loading data

express mode 8-26, 8-27
methods 9-67

Index X-13

Loading data (continued)
utilities 9-67

Loading data with external tables
monitoring time for 10-6
named pipes 10-4

Local loopback
connection 2-8, 4-21
restriction 2-8

Lock table
configuration 6-10
contents of 6-10
defined 6-10

LOCK TABLE statement 11-6
Locking

sbspaces 8-18
smart large objects 8-13

Locks
defined 6-20
dynamic allocation 6-10
initial number 6-10
onstat -k 25-15
types 6-20
wait queue 4-8

Log position 25-15
Log Staging Directory

Specifying 21-18
LOG_STAGING_DIR configuration parameter 21-18
LOGBUFF configuration parameter

logical log buffers 6-9
smart large objects 6-31

LOGFILES configuration parameter
setting logical-log size 14-3

Logging
Activity 11-6
Activity for databases with transaction logging 11-5
activity that is always logged 11-3
altering a table to turn it off 12-4
altering a table to turn it on 12-4
ANSI compliant databases 12-3
buffering transaction logging 11-8
database server processes requiring 11-1
disabling on temporary tables 12-5
DTP environment 11-9
effect of buffering on logical log fill rate 13-4
Enterprise Replication 8-14, 11-1
metadata and user data 8-21
physical logging

defined 15-1
sizing guidelines 15-2
suppression in temporary dbspaces 8-12

point-in-time restore 8-26
process for

blobspace data 13-6, 13-7
dbspace data 13-9

RAW tables 8-26
role in data replication 22-2
sbspaces 8-18, 13-7
smart large objects 6-31, 8-21, 13-8
SQL statements 11-3, 11-5, 11-6
STANDARD tables 8-26
suppression for implicit tables 8-12
table types 12-4
tables

summary of 8-25
TEXT and BYTE data 13-6
transaction logging defined 11-2
using transaction logging 11-7

Logging (continued)
when to use logging tables 13-7

Logging database
RAW tables 8-26
STANDARD tables 8-26
table types supported 8-25

LOGGING tag, onspaces 8-18
Logical log

administrative tasks 1-10, 13-6
backup

checkpoints 15-6
defined 6-9, 11-1, 13-1
global transactions 25-5, 25-15
log position 25-15
logging smart large objects 14-3
monitoring for fullness using onstat 14-6
onlog utility 14-15
performance considerations 13-4
record

database server processes requiring 11-1
two-phase commit protocol 25-6, 25-17, 25-18

size guidelines 13-3, 14-1
types of records 6-9
validating 19-3

Logical log buffer
checkpoints 6-9
defined 6-9
flushing

defined 6-28
logical log buffer 6-28
nonlogging databases 6-29
synchronizing 6-26
unbuffered logging 6-29
when a checkpoint occurs 6-29
when no before-image 6-29

logical log records 6-28
monitoring 16-2

Logical log file
adding a log file

using onparams 14-12
adding log files manually 14-12
allocating disk space for 13-3
backup

adding log files 14-12
changing physical schema 9-6
effect on performance 13-4
free deleted blobpages 13-6
goals 14-3

cannot add to blobspace or sbspace 14-12
cannot add to dbspace with non-default page size 14-12,

14-14
changing size 14-14
Checkpoints to free 16-4
consequences of not freeing 13-5
defined 11-1, 13-1
deleting 14-13
dropping a log file

using onparams 14-13
dynamic allocation

defined 14-9
file size 14-9
location of files 14-10
monitoring 14-10
size 14-9

estimating number required 13-3, 14-3
event alarms 14-10
freeing files 13-5, 14-5, 14-6

X-14 IBM Informix Administrator's Guide

Logical log file (continued)
I/O to 4-17, 4-18
in fast recovery 15-8
in fast recovery after a checkpoint 15-8
LIO virtual processor 4-17, 4-18
location 13-1, 14-10
log file number 13-2
log position 25-15
Logical log file

resizing 14-12
minimum and maximum sizes 13-3
mirroring a dbspace that contains a file 17-3
moving to another dbspace 14-14
role in fast recovery 15-9
status

A 14-5, 14-12, 14-13
B 14-5, 14-6
C 14-6
D 14-5, 14-13
defined 13-2
F 14-13
L 14-6
U 14-5, 14-6, 14-13

switching 13-6, 14-4
switching to activate blobspaces 13-6
temporary 14-7
unique ID number 13-2
using SMI tables 14-7

Logical log record
SQL statements that generate 11-5

Logical logs
dynamically adding 14-12

Logical units of storage
list of 8-1

Logical volume manager
defined 8-42, 17-3

Logical volume or unit storage space
defined 1-4

Logid 13-2
logposit field 25-15
LOGSIZE configuration parameter

adding log files 14-12
increasing log size 14-14
logical-log size 14-1

Long transaction
consequences 13-5
defined 13-4
heuristic rollback 25-15
two-phase commit 25-9, 25-12, 25-14

Loosely coupled mode 25-5
LOW_MEMORY_MGR configuration parameter 7-7
LOW_MEMORY_RESERVE configuration parameter 7-6
LRU queues

buffer pool management 6-22
configuring multiple 6-23
defined 6-21
FLRU queues 6-21
MLRU queues 6-21
pages in least-recent order 6-22
specifying information 6-21

LRU tuning 16-5, 22-29
LRU write

defined 6-28
monitoring 7-9
performing 6-28
triggering 6-28

lru_max_dirty value 6-21, 6-23, 6-24

lru_max_dirty value (continued)
example of use 6-23

lru_min_dirty value 6-21, 6-24, 15-6
in page cleaning 6-24

LTAPEBLK configuration parameter 21-4
LTAPESIZE configuration parameter 21-4
LTXEHWM configuration parameter 25-11

preventing long transactions 14-16
role in heuristic rollback 25-11

LTXHWM configuration parameter
preventing long transactions 14-16
role in heuristic rollback 25-11

LVM. 8-42

M
Manual recovery

deciding if action needed 26-4
determining if data inconsistent 26-2
example 26-4
obtaining information from logical-log files 26-2
procedure to determine if necessary 26-1
use of GTRID 26-2

Mapping columns in a load 10-3
Mapping, bad sector 19-8
MaxConnect

defined 2-52
imc protocol subfield 2-20
imcadmin command 2-52
installation 2-52
monitoring 2-52
onsocimc protocol 2-20
ontliimc protocol 2-20
packet aggregation 2-52

Maximum
chunk size 9-6
number of chunks 9-6
number of storage spaces 9-6
user connections 3-2, 3-7

Media failure
detecting 17-5
recovering from 17-2

Memory
64-bit platforms 6-32
adding a segment 7-6
critical activities 7-6
reserving 7-6
targeted amount 7-7

MERGE statement 11-5
Message log 1-11

data corruption 19-4
during initialization 3-6
dynamically added logs 14-10
metadata usage 9-49
physical recovery 15-2

Metadata
allocating 9-19
calculating area 8-19, 9-20
chunks 9-20
creating 8-17
dbspace table 6-15
defined 6-31, 8-14
dropping sbspace chunks 9-32
logging 15-2
moving space from reserved area 9-49
sbspace logging 13-7
sizing 8-17, 9-20

Index X-15

Metadata (continued)
temporary sbspace 8-20
validating 19-3

mi_lo_copy() function 8-21
mi_lo_specset_flags() function 8-21, 9-21
Microsoft Transaction Server 25-2
Mirror chunk

adding 18-4
changing status of 18-3
Chunks

recovering a down chunk 18-3
creating 18-2
disk reads 17-5
disk writes 17-4
Mirror chunk

recovering 18-3
Mirroring

recovering a chunk 18-3
recovering 17-4, 17-5
structure 17-5

MIRROR configuration parameter
changing 18-1
initial configuration value 18-1

Mirror dbspace
creating 9-4
root dbspace 8-11

Mirroring
activity during processing 17-4
alternatives 17-2
benefits 17-1
changing chunk status 18-3
chunk table 6-15
chunks in HDR 22-25
costs 17-1
creating mirror chunks 18-2
defined 17-1
detecting media failures 17-5
during processing 17-4
during system initialization 18-3
enabling 18-1
ending 18-5
hardware 17-3
holding logical-log files in dbspace 17-3
hot swap 17-3
introduction 1-7
network restriction 17-1
recommended disk layout 8-37
recovery activity 17-4
split reads 17-5
starting 18-1, 18-2
status flags 17-4
steps required 18-1
when mirroring begins 17-3
when mirroring ends 17-5

MIRROROFFSET configuration parameter 8-11
when required 9-2

MIRRORPATH configuration parameter 8-11
Miscellaneous virtual processor 4-28
Mixed transaction result 25-13
mknod UNIX command 10-4
MLRU queues

defined 6-21
end of cleaning 6-24
ending page-cleaning 6-24
limiting number of pages 6-23
placing buffers 6-22

Mode
adding log files 14-12
administration 3-7, 3-13
administration to online 3-12
administration to quiescent 3-13
administration with DBSA 3-9
changing 3-8
defined 3-7
dropping log files 14-13
graceful shutdown 3-11
immediate shutdown 3-11
moving log files 14-14
offline 3-7
offline from any mode 3-13
offline to administration 3-10
offline to online 3-10
offline to quiescent 3-10
online 3-7
online to administration 3-12
online to quiescent

gracefully 3-11
immediately 3-11

quiescent 3-7
quiescent to administration 3-12
recovery 3-7
reinitializing shared memory 3-10
shutdown 3-7
taking offline 3-13

MODE ANSI keywords
database logging status 11-8

mon_low_storage task 9-27
Monitoring

database server 1-11
extents 9-43
FIFO queues 10-7
global transactions 25-15
licensed users 3-2, 3-7
loads and unloads 10-6
locks 25-15
MaxConnect usage 2-52
metadata and user-data areas 9-49
sbspaces 8-19, 9-45, 9-46
SQL statement cache 7-5
tblspaces 9-43
user activity 25-15
user connections 3-2, 3-7

Monitoring database server
blobspace storage 9-18
buffer-pool activity 7-9
buffers 7-9
checkpoints 16-3
chunks 9-40
data-replication status 22-40
databases 9-39, 12-5
disk I/O queues 4-19
extents 9-43
fragmentation disk use 9-41, 9-43
latches 7-8, 7-9
length of disk I/O queues 4-19
log files 14-6
logging status 12-5
logical-log buffers 16-2
physical-log buffer 6-10, 16-2
physical-log file 16-2
profile of activity 7-9
shared memory 7-8
simple large objects in dbspaces 9-44

X-16 IBM Informix Administrator's Guide

Monitoring database server (continued)
user threads 6-16
using SMI tables 1-11
virtual processors 5-3

Monitoring tools
UNIX 1-13
Windows Performance Logs and Alerts 1-13

MQ messaging virtual processors 4-28
mq virtual processor 4-28
MTS/XA 25-2
Multiple concurrent threads 4-5
Multiple connection types

example 2-50
sqlhosts 2-39

Multiple residency
example 2-51

Multiplexed connection 2-3
Multiprocessor computer

MULTIPROCESSOR configuration parameter 4-12
processor affinity 4-4

MULTIPROCESSOR configuration parameter 4-12, 5-1
Multitenancy 9-49

creating tenants 9-51
managing tenants 9-52
tenant virtual processors 4-16

Multithreaded processes
defined 4-1
OS resources 4-3

Mutex
defined 6-20
using 6-20

N
Name

storage spaces 9-5
Name service cache 2-41
named fragments

creating and using 9-11
creating in a fragmented table or index 9-11
creating in an existing table or index 9-11
referencing in ALTER FRAGMENT ON INDEX

statement 9-11
Named pipe

to copy data 10-5
Named pipes

creating with mknod 10-4
definition of 10-3
loading 10-4
unloading 10-4

Named-pipe connection
defined 2-5, 2-8
platforms supported 2-5

netrc file
defined 2-16
sqlhosts security options 2-24

NETTYPE configuration parameter 2-41, 2-47, 5-1
multiple network addresses 4-26
poll threads 4-21
purpose 2-41
role in specifying a protocol 4-21
VP class entry 4-21

nettype field
format 2-20
summary of values 2-20
syntax 2-20
using interface type 2-50

Network
interface cards

using 4-26
network communication

using TCP/IP 2-20
Network communication

implementing 4-22
types 4-21

Network interface cards
adding 4-26

Network protocol
defined 2-1

Network protocols 4-21
Network security

.netrc file 2-16

.rhosts 2-14
files 2-12
hosts.equiv 2-12

Network virtual processors
defined 4-21
how many 4-22
poll threads 4-21

Network-protocol driver
defined 2-1

Next-extent
size 8-8

NFS-mounted directory 8-3
Non-default page size

for a dbspace 9-10
in HDR environment 21-4

Nonlogging database
RAW tables 8-26
table types supported 8-25

Nonlogging tables 8-25
Nonyielding virtual processor 4-15
NS_CACHE configuration parameter 2-41
NSF lock contention 2-42
ntchname.exe 1-13
NTFS files 8-3
Null file

creating 9-4
NUMFDSERVERS configuration parameter 2-42

O
OAT

running utility commands 7-9
ODBC Driver 25-2
Offline mode

defined 3-7
Offset

prevent overwriting partition information 8-5, 9-2
purpose 8-5
subdividing partitions 9-2
when required 9-2

Oldest update, freeing logical-log file 13-2
oncfg_servername.servernum file 3-5
oncheck utility

-cc option 19-1
-cD option 19-2
-ce option 19-1
-cI option 19-1, 19-2
-cr option 19-1
-cR option 19-1
-cs option 9-45, 9-48, 19-3
-pB option 9-43
-pe option 9-42, 9-45, 9-47

Index X-17

oncheck utility (continued)
-pr option 14-7
-ps option 9-48, 19-1
-pS option 9-48
-pT option 9-66
blobpage information 9-43
consistency checking 19-3
monitoring metadata and user-data areas 9-48
monitoring sbspaces 9-19, 9-45, 9-47
obtaining information

blobspaces 9-41, 9-47
chunks 9-42
configuration 9-43
extents and fragmentation 9-43
logical logs 14-7
tblspaces 9-43

validating
data pages 19-1
extents 19-1, 19-2
indexes 19-2, 19-3
logs and reserved pages 19-1
metadata 19-1, 19-3
reserved pages 19-1
system catalog tables 19-2

ONCONFIG configuration file
during initialization 3-3
multiple residency 2-51

ondblog utility
changing logging mode 12-1

oninit utility
-p option 3-6, 8-21
initializing the database server 3-1
starting the database server 3-1
temporary tables 8-30

Online message log 1-10
Online mode

defined 3-7
onlog utility 9-66

displaying log records 14-15
reconstructing a global transaction 26-2

onmode -d index command 22-27
onmode utility

-a option 7-6
-c option 7-6
-d idxauto option 22-27
-e option 7-5
-O option 19-6
-P option 4-26
-W option 7-5
adding a segment 7-6
changing shared-memory residency 7-5
configuring SQL statement cache 7-5
dropping CPU virtual processors 5-3
ending

participant thread 25-11
session 26-1
transaction 25-9, 25-14

forcing a checkpoint 9-33, 16-4, 22-25
freeing a logical-log file 14-6
setting

database server type 22-37
switching logical-log files 14-4
user thread servicing requests from 4-1

onparams utility
adding logical-log file 14-12
changing physical log 16-1
dropping a logical-log file 14-13

onpladm utility 9-67
onsocimc utility 2-20
onspaces utility

-a option 9-20, 18-4
-c -b option 9-17
-c -d option 9-7
-c -S option 9-19
-c -t option 9-13
-c -x option 9-36
-ch option 8-16, 8-18, 9-21, 22-25
-cl option 9-32
-d option 9-19, 9-33
-Df tags 8-16, 9-32
-f option 9-37
-g option 9-17
-s option 8-15
-t option 8-37
-U option 9-20
adding mirror chunks 9-20
adding sbspace chunks 9-20
change chunk status 22-25
creating sbspaces 9-19
creating temporary sbspace 8-20
dropping sbspace chunks 9-32
ending mirroring 18-5
modifying DATASKIP 9-37
recovering a down chunk 18-5
taking a chunk down 18-4

onstat -g dbc 27-18
onstat utility

-d option 9-41, 9-45, 9-46
-d update option 9-40
-g ath option 5-4
-g cac option 7-5
-g dsk option 9-66
-g glo option 5-4
-g imc 2-52
-g iof option 9-41
-g ioq option 5-4
-g ppd option 9-66
-g rea option 5-4
-g smb c option 9-45
-g sql option 12-5
-g ssc options 7-5
-g stm option 12-5
-k option 25-15
-l option 14-12
-p option 7-9
-s option 7-9
-u option 4-1, 25-15
-x option 12-5, 25-14
CPU virtual processors 4-1
monitoring

blobspace 9-40
buffer use 7-9
buffer-pool 7-9
chunk status 9-40
data replication 22-40
database server profile 7-9
fragment load 9-41
latches 7-8
logical-log buffer 14-6, 16-2
logical-log files 14-12, 16-2
physical log 16-2
shared memory 7-8
SQL statement cache 7-5
SQL statements 12-5

X-18 IBM Informix Administrator's Guide

onstat utility (continued)
monitoring (continued)

transactions 5-4
virtual processors 5-4

options
-g iof 10-6
-g ioq 10-7

overview 1-11
profiling user activity 25-15
temporary sbspace flags 9-21
tracking

global transaction 25-15
locks 25-15

updating blobpage statistics 9-41
ontape utility

alternative backup method 21-10, 21-16
backing up logical-log files 13-5
changing logging mode 12-1
modifying database logging status 12-3

ontliimc protocol 2-20
OPEN statement 11-6
OpenAdmin Tool (OAT) for Informix 1-11
Operating system

32-bit and 64-bit versions 7-1
parameters 7-1
tools 1-13

options field
buffer-size option 2-24
cfd option 2-24
communication files directory option 2-24
connection-redirection 2-24
CSM option 2-24
group option 2-24
identifier option 2-24
keep-alive option 2-24
overview 2-20, 2-24
security option 2-24
syntax rules 2-24

OUTPUT statement 11-6

P
Packet aggregation 2-52
Page

defined 8-5
determining database server page size 9-18
least-recently used 6-22
most-recently used 6-22
relationship to chunk 8-5
specifying size for a standard or temporary dbspace 9-10

PAGE_CONFIG reserved page 3-4, 3-5
PAGE_PZERO reserved page 3-4
Page-cleaner table

defined 6-16
number of entries 6-16

Page-cleaner threads
alerted during foreground write 6-27
defined 6-26
flushing buffer pool 6-26
flushing of regular buffers 6-26
monitoring 6-16
role in chunk write 6-28

PAM
sqlhosts entry 2-24

pam_serv
PAM configuration 2-24

pam_serv option
sqlhosts entry 2-24

pamauth
PAM configuration 2-24

pamauth option
sqlhosts entry 2-24

Parallel database queries
DS_NONPDQ_QUERY_MEM configuration

parameter 6-13
DS_TOTAL_MEMORY configuration parameter 6-13
introduction 1-7

Parallel processing
virtual processors 4-3

Participant database server 25-7
automatic recovery 25-8

partitions
defragmenting 9-59

Passwords
changing for user informix 1-13

PC_HASHSIZE configuration parameter 6-19, 7-3
PC_POOLSIZE configuration parameter 6-19, 7-3
Performance

evaluating CPU VP 4-11
how frequently buffers are flushed 6-23
monitoring tool 1-13
read-ahead 6-25
shared memory 2-6, 4-3, 6-1
VP-controlled context switching 4-5
yielding functions 4-3

Performance tuning
amount of data logged 15-2
automatic 1-6
disk-layout guidelines 8-37
foreground writes 6-27
logical volume managers 8-42
logical-log size 13-4, 16-1
logical-log, relocating 16-1
LRU write 6-28
moving the physical log 16-1
sample disk layout for optimal performance 8-40
spreading data across multiple disks 8-42

ph_alert table 27-2, 27-17
ph_group table 27-2, 27-15
ph_run table 27-2, 27-18
ph_task table 27-1, 27-2, 27-10, 27-11
ph_threshold table 27-2, 27-16
PHYSBUFF configuration parameter 6-10
Physical consistency, defined 15-8
Physical log

backing up 9-6
buffer 6-10
changing size and location 16-1
contiguous space 16-1
creating the plogspace 9-22
I/O, virtual processors 4-18
increasing size 9-10, 16-2
monitoring 16-2
overflow 15-3, 15-4
overflow during fast recovery 15-7
overview 1-10
physical recovery messages 15-2
plogspace 8-22
role in fast recovery 15-7
role in fast recovery after a checkpoint 15-8
sizing guidelines 15-3
virtual processors 4-18
when you have non-default page sizes 9-10

Index X-19

Physical logging
activity logged 15-2
backups 15-2
defined 15-1
light appends 9-33
logging details 15-2
smart large objects 15-2

Physical recovery messages 15-2
Physical units of storage, list 8-1
Physical-log buffer

checkpoints 6-26
defined 6-10
events that prompt flushing 6-26
flushing 6-10
monitoring 16-2
number 6-10
PHYSBUFF configuration parameter 6-10

PIO virtual processors
defined 4-18

PLOG_OVERFLOW_PATH configuration parameter 15-7
plogspace

changing physical log 16-1
creating 9-22

Plogspace 8-22
Pluggable Authentication Module

see PAM 2-24
Point-in-time restore

logging 8-26
Poll threads

connection 4-21
DBSERVERNAME configuration parameter 4-22
defined 4-22
FASTPOLL configuration parameter 4-24
how many 4-21
message queues 4-22
multiple for a protocol 4-21
nettype entry 4-21
on CPU or network virtual processors 4-21

port numbers 2-20
Post-decision phase 25-7
Precommit phase 25-7
PREPARE statement 11-6
Presumed-end optimization 25-9
Primary chunk 8-2
Primary database server 20-4
Priority

aging, preventing 4-13
disk I/O 4-17

Processes
attaching to shared memory 6-4
comparison to threads 4-3
DSA versus dual process architecture 4-4

processor affinity
VPCLASS configuration parameter 4-13

Processor affinity
defined 4-13
using 4-13

Profile
statistics 7-9

Program counter and thread data 6-17
Protocol

specifying 4-21
PUT statement 11-5

Q
Query Drill-Down

overview 0-7, 29-1
Query plans 6-18
Queues

defined 4-7
disk I/O 4-17
ready 4-7
sleep 4-8
wait 4-8

Quiescent mode 3-7

R
Raw disk space

allocating on UNIX 8-3, 9-3
allocating on Windows 8-3
character-special interface 8-3
defined 8-3

RAW table
altering 12-4
backing up 8-28
backup and restore 8-27, 8-28
fast recovery 8-27
overview 8-26
recovery of 10-11
restore 8-28

Read-ahead operations
AUTO_READAHEAD configuration parameter 6-25
automatic 6-25
defined 6-25
when used 6-25

Read-only mode
defined 3-7

Ready queue
defined 4-7
moving a thread 4-7

Recommendations
allocation of disk space 8-5
consistency checking 19-1

Recovery
from media failure 17-1
mode

defined 3-7
parallel processing 4-3
RAW tables 8-26
STANDARD tables 8-26
two-phase commit protocol 25-6

Recovery point objective (RPO) policy 14-1
Recovery time objective (RTO) policy 14-1
Redundant array of inexpensive disks 17-3
Referential constraint 8-26, 11-1
Registry

changing the hostname 1-13
defining multiple network addresses 4-26

Regular buffers
events that prompt flushing 6-26

Reject files 10-10
REJECTFILE keyword 10-10
RELEASE SAVEPOINT statement 11-6
Remote

client 2-14
hosts 2-12

REMOTE_SERVER_CFG 2-12
REMOTE_USERS_CFG 2-14
RENAME COLUMN statement 11-3

X-20 IBM Informix Administrator's Guide

RENAME DATABASE statement 11-3
RENAME INDEX statement 11-3
RENAME SECURITY statement 11-3
RENAME SEQUENCE statement 11-3
RENAME TABLE statement 11-3
RENAME TRUSTED CONTEXT statement 11-3
RENAME USER statement 11-3
Renaming

dbspace 9-14
Repacking storage spaces 9-55
Requirements

configuration 1-3
Reserved area

defined 8-14
monitoring size 9-45
moving space to metadata area 9-49

Reserved pages
chunk status for secondary 22-25
validating 19-3

RESIDENT configuration parameter
during initialization 3-6
setting with onmode 7-6

Resident shared memory
defined 3-3, 6-8
internal tables 6-14

Resource manager 25-1
Resource managers 25-2
Restore

RAW tables 8-26
STANDARD tables 8-26
table types 8-28

Revectoring table 9-2
REVOKE FRAGMENT statement 11-3
REVOKE statement 11-3
Roll back

heuristic, monitoring 25-15
RAW tables 8-26
smart large objects 8-21
SQL statements logged 11-5
STANDARD tables 8-21

ROLLBACK WORK statement 11-5
Root dbspace

calculating size 8-34, 8-35
default location 8-11, 8-28
defined 8-11
location of logical-log files 13-1
mirroring 18-3
temporary tables 8-27, 8-31

ROOTNAME configuration parameter 8-11
ROOTOFFSET configuration parameter 8-11, 9-2
ROOTPATH configuration parameter 8-11
RS secondary server

password 22-42
RS Secondary Server

starting 21-13
RSS_FLOW_CONTROL configuration parameter 21-20
RTO_SERVER_RESTART configuration parameter 15-3, 15-4
RTO_SERVER_RESTART policy 16-5
ru_max_dirty value 15-6

S
SAVE EXTERNAL DIRECTIVES statement 11-3
SAVEPOINT statement 11-6
sbpage

defined 8-7
sizing recommendations 8-7

sbspace
automatically expanding 9-23
expanding 9-23

SBSPACENAME configuration parameter 8-15, 8-20, 9-19
sbspaces

adding chunks 8-19, 9-20
allocating space 8-19
altering storage characteristics 9-21
backing up 8-19, 9-19, 9-21
buffering mode 8-17
calculating metadata 8-19
characteristics 8-21
checking consistency 8-21
creating

using onspaces 9-19
defined 8-13, 8-14
defining replication server 8-14
disk structures 8-19
dropping

CLOB and BLOB columns 9-33
using onspaces 9-33

Enterprise Replication 8-14
fast recovery 8-14
incremental backups 14-4
last-access time 8-17
lightweight I/O 8-17
locking 8-18
logging 8-18, 13-7
metadata 6-31, 8-14, 8-17
mirroring 9-19
moving space from reserved area 9-49
names 9-5
recoverability 8-13
reserved area 8-14
restrictions

adding logs 14-12
sbpages 8-7
sizing metadata 9-20
specifying storage characteristics 8-16, 9-19
storing smart large objects 6-31, 8-13
temporary

adding chunks 8-21, 9-20
backup and restore 8-21
creating 9-21
defined 8-20
dropping chunks 8-21, 9-32
dropping sbpace 9-33
example 9-21
LO_CREATE_TEMP flag 9-21

user-data area 6-31, 8-14, 9-45
using onstat -g smb c 9-45

SBSPACETEMP configuration parameter 8-20, 9-21
Scans

indexes 6-25
parallel processing 4-3
sequential tables 6-25

Scheduler 14-1
actions for tasks and sensors 27-13
built-in tasks and sensors 27-3
disk space requirements 27-1
generating an alert 27-17
groups 27-15
modifying 27-20
monitoring 27-18
onstat -g dbc 27-18
overview 0-7, 27-1
ph_run table 27-18

Index X-21

Scheduler (continued)
thresholds 27-16

scheduler lmm disable argument 7-7
scheduler lmm enable argument 7-7
Screen reader

reading syntax diagrams A-1
SDS_FLOW_CONTROL configuration parameter 21-24
Secondary database server 20-4, 22-25
Secondary server

failover 22-42
Secondary servers

backup and restore operations 22-37
security

options
sqlhosts 2-24

Security
HDR encryption options 22-28
introduction 1-7
risks with shared-memory communications 2-6

Segment identifier 6-6
SELECT INTO TEMP statement 11-5
SELECT statement 11-6
Semaphores, UNIX parameters 7-3
sensor

Scheduler
creating a sensor 27-11

setting up 27-11
writing an action 27-13

sensors
modifying 27-20

Server parameters 2-18
SERVERNUM configuration parameter

defined 6-5, 6-6
using 6-5

service name field in sqlhosts
defined 2-20
shared memory 2-20
stream pipes 2-20
syntax rules 2-20

service names 2-20
services file 2-18
Session

active tblspace 6-16
control block 4-5
defined 4-5
dictionary cache 6-18
locks 6-10
primary thread 6-17
shared memory 6-17
shared-memory pool 6-13
sqlexec threads 4-1
threads 6-17
UDR cache 6-19

Session control block 4-5
defined 6-17
shared memory 6-17

Sessions
limiting them 2-40

SET AUTOFREE statement 11-6
SET COLLATION statement 11-6
SET CONNECTION statement 11-6
SET CONSTRAINTS statement 11-3
SET Database Object Mode statement 11-3
SET DATASKIP statement 9-37, 11-6
SET DEBUG FILE statement 11-6
SET DEFERRED_PREPARE statement 11-6
SET DESCRIPTOR statement 11-6

SET ENCRYPTION PASSWORD statement 11-6
SET ENVIRONMENT statement 11-6
SET EXPLAIN statement 11-6
SET INDEXES statement 11-3
SET ISOLATION statement 11-6
SET LOCK MODE statement 11-6
SET LOG statement 11-6
SET OPTIMIZATION statement 11-6
SET PDQPRIORITY statement 11-6
SET ROLE statement 11-6
SET SESSION AUTHORIZATION statement 11-6
SET STATEMENT CACHE statement 11-6
SET Transaction Mode statement 11-6
SET TRANSACTION statement 11-6
SET TRIGGERS statement 11-3
SET USER PASSWORD statement 11-6
Share lock

defined 6-21
Shared data 6-1, 21-20
shared memory

communications 2-20, 2-24
Shared memory

allocating 3-3, 6-13
attaching 6-4
attaching additional segments 6-5, 6-7
attaching utilities 6-5
blobpages 6-30
buffer allocation 6-12
buffer hash table 6-15
buffer locks 6-20
buffer pool 6-12
buffer table 6-15
changing residency with onmode 7-6
checkpoints 15-4
chunk table 6-15
communications 6-19
configuration 6-3, 6-13, 7-1
connection 4-21
contents 6-20
copying to a file 7-8
critical sections 15-1
data-distribution cache 6-18
dbspace table 6-15
defined 6-1
dictionary cache 6-18
effect of operating-system parameters 7-1
first segment 6-5
global pool 6-19
header 6-7, 6-9
heaps 6-18
identifier 6-5
initializing 3-1, 3-2
initializing or restarting 3-4
internal tables 6-14
interprocess communication 6-1
key value 6-5, 6-6
logical-log buffer 6-9
lower-boundary address problem 6-7
mirror chunk table 6-15
monitoring

onstat utility 7-8
mutex 6-20
nonresident portion 7-3
operating-system segments 6-3
overview 1-10
page-cleaner table 6-16
performance options 6-1

X-22 IBM Informix Administrator's Guide

Shared memory (continued)
physical-log buffer 6-10
pools 6-13
portions 6-2
purpose 6-1
resident portion 7-3

creating 3-3
defined 6-8

segment identifier 6-6
semaphore guidelines 7-3
SERVERNUM configuration parameter 6-5
session control block 6-17
setting up 7-5
SHMADD configuration parameter 6-13
SHMBASE configuration parameter 6-5
SHMTOTAL configuration parameter 6-3
SHMVIRTSIZE configuration parameter 6-13
size

displayed by onstat 6-3
virtual portion 6-13

smart large objects 6-31, 8-19
sorting 6-19
SQL statement cache 6-2, 6-18, 7-5
stacks 6-17
STACKSIZE configuration parameter 6-17
synchronizing buffer flushing 6-26
tables 6-14
tblspace table 6-16
thread control block 6-17
thread data 6-17
thread isolation and buffer locks 6-20
transaction table 6-16
user table 6-16
user-defined routine cache 6-19
virtual portion 6-13, 6-14, 7-6

Shared-Disk Secondary cluster
recovering after critical failure 24-19
recovering after failure 24-19

Shared-memory connection
how a client attaches 6-4
message buffers 6-19
servicename field 2-20
virtual processor 4-21

SHMADD configuration parameter 6-13
SHMBASE configuration parameter

attaching first shared-memory segment 6-5
defined 6-6

shmem file
assertion failures 19-3

shmkey
attaching additional segments 6-7
defined 6-6

SHMTOTAL configuration parameter 6-3, 6-4, 7-7
SHMVIRTSIZE configuration parameter 6-13
Shortcut keys

keyboard A-1
Shrinking storage spaces 9-55
Shutdown

graceful 3-11
immediate 3-11, 3-13
mode

defined 3-7
taking offline 3-13

Shutdown script 1-9
Simple large objects

buffers 6-30
compression 9-55

Simple large objects (continued)
creating in a blobspace 6-30
descriptor 6-30
illustration of blobspace storage 6-30
writing to disk 6-30

Single processor computer 4-12
SINGLE_CPU_VP configuration parameter 4-12, 5-1

single processor computer 4-12
Sizing guidelines

logical log 13-3, 14-1, 14-12
Skipping fragments

all fragments 9-37
all unavailable 9-38, 9-39
effect on transactions 9-38
selected fragments 9-39
using features 9-37

Sleep queues, defined 4-7
Sleeping threads

forever 4-7
types 4-7

Smart large objects
accessing in applications 8-19
AVG_LO_SIZE 8-17, 9-19
buffering 8-17

mode 6-31
recommendation 6-29

byte-range locking 6-10
calculating average LO size 8-16
calculating extent size 8-8, 9-19
creating 8-15, 13-8
data retrieval 8-13
dbspaces 8-7
defined 8-13
deleting CLOB or BLOB data 9-32
deleting, reference count of 0 9-32
Enterprise Replication use 8-14
estimated size 9-20
extents and chunks 8-8
I/O properties 8-14
last-access time 8-17
lightweight I/O 8-18
LO_CREATE_TEMP flag 8-21
locking 8-13, 8-18
logging 8-18, 13-7
memory 8-19
metadata 8-14
physical logging 15-2
sbpages 8-7
shared-memory buffer 6-31
sizing metadata area 9-49
specifying data types 8-15
storage characteristics 8-14, 8-16, 9-21
turning logging on or off 13-7
user data 8-14
using logging 13-8

SMI tables 1-11
during initialization 3-6
monitoring

buffer information 7-9
buffer pool 7-9, 16-5
buffer use 9-42
checkpoints 16-5
chunks 9-39
data replication 22-41
databases 7-9, 9-39, 12-5
extents 9-43
latches 7-9

Index X-23

SMI tables (continued)
monitoring (continued)

log buffer use 16-5
logical-log files 14-7
mutexes 7-9
shared memory 7-9
tblspaces 9-43
virtual processors 5-4
write types 7-9

preparation during initialization 3-6
sysextents 9-43
systabnames 9-43

SMX_PING_INTERVAL configuration parameter 22-27
SMX_PING_RETRY configuration parameter 22-27
socket

in nettype field 2-20
Socket 2-5
Sorting

parallel process 4-3
shared memory 6-19

SP_THRESHOLD configuration parameter 9-27
SP_WAITTIME configuration parameter 9-27
Space

expanding 9-28
SPL routines

specifying pool size 6-19
UDR cache hash size 6-19, 7-3

Split read 17-1, 17-5
SQL administration API 0-7

admin() function 28-1
command history 28-2
history tracing 29-4
remote administration 28-1
task() function 28-1

SQL administration API functions
admin() 28-1
chunk modify extend 9-28
create blobspace from storagepool 9-34
create chunk from storagepool 9-34
create dbspace from storagepool 9-34
create sbspace from storagepool 9-34
create tempdbspace from storagepool 9-34
create tempsbspace from storagepool 9-34
drop blobspace to storagepool 9-35
drop chunk to storagepool 9-35
drop dbspace to storagepool 9-35
drop sbspace to storagepool 9-35
drop tempdbspace to storagepool 9-35
drop tempsbspace to storagepool 9-35
modify chunk extend 9-28
modify space expand 9-28
scheduler lmm disable 7-7
scheduler lmm enable 7-7
storagepool add 9-24
storagepool delete 9-24
storagepool modify 9-24
storagepool purge 9-24
task() 28-1

SQL History Tracing
buffers for 29-1

SQL statement cache
configuring 7-5
defined 6-18
monitoring 7-5
shared-memory location 6-13

SQL statements
ALTER TABLE 8-8

SQL statements (continued)
always logged 11-3
create dbspace 8-15
CREATE TABLE 8-10
CREATE TABLE, PUT clause 8-15
DECLARE 11-5
logging 11-6
monitoring 12-5
never logged 11-6
parsing and optimizing 7-5
Transaction logging 11-5
UPDATE STATISTICS 6-18
using temporary disk space 8-29

SQL tracing
disabling for a session 29-4
disabling globally 29-4
enabling 29-4, 29-5
example of tracing information 29-1
level 29-3
mode 29-3
modes 29-1
overview 29-1
specifying information for 29-3

sqlexec thread
client application 4-22
role in client/server connection 4-22
user thread 4-1

sqlhosts file
cfd option 2-24
communication files directory option 2-24
connection type field 2-20
CSM option 2-20, 2-24
dbservername field 2-20, 2-32, 25-8
defined 2-24
defining multiple network addresses 4-26
entries for multiple interface cards 4-26
group option 2-24
host name field 2-20, 25-8
IANA standard port numbers 2-20
keep-alive option 2-24
multiple connection types example 2-50
multiplexed option 2-3
network connection example 2-50
options field 2-20
security options 2-24
service name field 2-20, 4-22
specifying network poll threads 4-21

sqlhosts registry
defined 2-17
INFORMIXSQLHOSTS environment variable 2-17
location 2-17

SQLTRACE configuration parameter 29-3
modes 29-1

SQLTRACE modes 29-1
Stack

and thread control block 4-6
defined 4-6, 6-17
INFORMIXSTACKSIZE environment variable 6-17
pointer 4-6
size 6-17
STACKSIZE configuration parameter 6-17
thread 6-17

STACKSIZE configuration parameter
changing the stack size 6-17
defined 6-17

Standard database server 20-4

X-24 IBM Informix Administrator's Guide

STANDARD table
backup 8-28
fast recovery 8-27
properties 8-26
recovery of 10-11
restore 8-27, 8-28

standards xxv
START VIOLATIONS TABLE statement 11-3
Starting the database server 1-3

with oninit 3-1
Startup script 1-9
STATIC table

recovery of 10-11
Status

log file
added 14-5, 14-6, 14-13
backed up 14-6, 14-13
checkpoint 14-13
current 14-5
deleted 14-6, 14-13
free 14-5, 14-13
used 14-5, 14-13

STDIO value 21-10, 21-16
STMT_CACHE configuration parameter 7-5
STMT_CACHE_HITS configuration parameter 7-5
STMT_CACHE_NOLIMIT configuration parameter 7-5
STMT_CACHE_NUMPOOL configuration parameter 7-5
STMT_CACHE_SIZE configuration parameter 7-5
STOP VIOLATIONS TABLE statement 11-3
STOP_APPLY configuration parameter 21-19
Stopping the application of log files 21-19
Storage

multitenancy 9-49
Storage characteristics

hierarchy 8-18
onspaces -ch 8-16, 9-21
onspaces -Df 9-19
sbspaces 8-16
smart large objects 8-17, 9-21

Storage optimization 9-55
overview 9-53, 9-60
scenario 9-58

Storage pool
adding an entry 9-24
creating a storage space from 9-34
deleting entries 9-24
modifying an entry 9-24
overview 8-37
returning empty space to 9-35

Storage space
automatically adding 9-29
automatically adding space 9-30
automatically expanding 9-23
configuring for storage provisioning 9-30
expanding 9-23

Storage spaces
ending mirroring 18-5
starting mirroring 18-4

Storage statistics
blobspaces 9-18

storagepool table 8-37
Stream pipe connection 2-10
stream-pipe connection

servicename field 2-20
Stream-pipe connection 2-7

advantages and disadvantages 2-7

Switching
between threads 4-6
next log file 14-4

Syntax diagrams
reading in a screen reader A-1

sysadmin database
creation 3-7
storagepool table 8-37
tables 27-2

syscompdicts view 9-66
syscompdicts_full table 9-66
sysdistrib table 6-18
sysfragments system catalog table 9-11
syslogs table 14-7
sysmaster database

creation 3-6
sysprofile table 7-9
syssesappinfo system catalog table 2-49
syssqltrace table 29-1
systables

flag values 8-25
System catalog tables

dictionary cache 6-18
location 8-23
optimal storage 8-41
sysdistrib 6-18
validating 19-2

System catalogs
syssesappinfo 2-49

System failure
effect on database 15-7

System timer 4-7
sysuser database

creation 3-7
sysutils database

creating 3-7
sysvpprof table 5-4

T
Table

creating with CLOB or BLOB data types 8-19
damaged 8-25
defined 8-24
disk-layout guidelines 8-38
dropping 9-33
extent 8-8, 8-24
fragmentation 8-26
isolating high-use 8-38
middle partitions of disks 8-41
standard 8-26
storage considerations 8-36
temporary

cleanup during restart 8-30
estimating disk space 8-35

table compress arguments 9-58
Table types

backing up before converting 9-6
fast recovery 8-27
properties 8-28
RAW 8-25, 12-4
restoring 8-28
STANDARD 8-25, 12-4
summary 8-25

tables
defragmenting 9-59

Index X-25

Tables
automatic fragmentation 9-15
fragmentation 8-33

TAPEBLK configuration parameter 21-4
TAPEDEV configuration parameter 21-10, 21-16
TAPESIZE configuration parameter 21-4
task

Scheduler
creating a task 27-10

setting up 27-10
writing an action 27-13

task() functions
scheduler lmm disable argument 7-7
scheduler lmm enable argument 7-7

tasks
modifying 27-20

Tblspace
contents of table 6-16
defined 8-31
drop temporary 3-6
monitoring

systabnames 9-43
size, extent, for tblspace tblspace 9-8
temporary, during server restart 3-6
types of pages contained 8-31

TBLTBLFIRST configuration parameter 8-11, 9-8
TBLTBLNEXT configuration parameter 2-34, 8-11, 9-8
TCP connections 4-21
TCP/IP communication protocol

host name field 2-20
listen port number 2-34
service name field 2-20
using

hosts.equiv 2-11
internet IP address 2-34
multiple ports 2-11
TCP listen port number 2-34
wildcards 2-34

TCP/IP connectivity files 2-10
TEMP table

restore 8-28
temporary dbspace

automatically expanding 9-23
expanding 9-23

Temporary dbspace
amount required for temporary tables 8-35, 22-22
creating 9-13
data replication 21-3
DBSPACETEMP 8-28
defined 9-13

Temporary logical logs 14-7
temporary sbspace

automatically expanding 9-23
expanding 9-23

Temporary sbspace
adding chunks 8-19, 9-21
backup and restore 8-21
characteristics 8-20
creating 9-21
defined 8-20
dropping chunks 8-21, 9-21
dropping sbspace 9-33
example 9-21
LO_CREATE_TEMP flag 9-21

Temporary smart large object
creating 8-21
defined 8-21

Temporary table
system-generated 8-30

Temporary tables
backup 8-28
Enterprise Replication 8-25
restore 8-27
smart large object, temporary 8-20

TEMPTAB_NOLOG configuration parameter 12-5
Tenant virtual processor 4-16
Tenants 9-49
Tenantscreating 9-51
Tenantsmanaging 9-52
TEXT and BYTE data

absence of compression 9-67
loading 9-67
monitoring in a dbspace 9-44
writing to a blobspace 6-30

Thread control block
creation 6-17
role in context switching 6-17

Thread-safe virtual processor 4-9
Threads

access to resources 4-5
accessing shared buffers 6-21
B-tree scanner 4-1
client applications 4-1
concurrency control 6-20
context 4-5
control block 4-5
defined 4-1
heaps 6-18
how virtual processors service 4-19
internal 4-1, 4-11
kernel asynchronous I/O 4-19
migrating 4-7
mirroring 4-1
multiple concurrent 4-5
onmode 4-1
page cleaner 4-1, 6-16
primary session 6-17
recovery 4-1
relationship to a process 4-1, 4-11
scheduling and synchronizing 4-5
session 4-6, 6-17
sleeping 4-7
stacks 6-17
switching between 4-5
user 4-1, 6-17
waking up 4-5
yielding 4-5

Tightly-coupled mode 25-6
TP/XA 6-16, 25-1
Transaction branch 25-6
Transaction coordination 21-5
Transaction logging

buffered 11-8
defined 11-2, 11-7
Enterprise Replication 8-14
unbuffered 11-8
when to use 11-7

Transaction manager
MTS/XA 25-1, 25-2
purpose 25-1
TP/XA 25-1

Transaction table
defined 6-16
tracking with onstat 6-16

X-26 IBM Informix Administrator's Guide

Transactions
global

defined 25-1, 25-6
determining if implemented consistently 26-1
identification number, GTRID 26-3
tracking 12-5, 25-15

loosely coupled 25-5
mixed result 25-13
monitoring 12-5, 25-6, 25-15
RAW tables 8-26
tightly coupled 25-5

transport-layer interface
in nettype field 2-20

TRUNCATE statement 11-3
Trusted

clients 2-2
database server 2-2
domain 2-2
Windows domains 2-2

Trusted domain 25-8
Trusted hosts 2-12
Trusted-host information 2-12
Two-phase commit protocol

automatic recovery 25-8
coordinator recovery 25-8
participant recovery 25-8

configuration parameters 25-21
contrast with heterogeneous commit 25-22
coordinator recovery 25-6
DEADLOCK_TIMEOUT 25-22
defined 25-6
errors messages 25-17
flushing logical log records 25-18
global transaction ended prematurely 26-1
global transaction identifier 26-2, 26-3
heuristic decisions

heuristic end-transaction 25-13
heuristic rollback 25-11
types 25-9

independent action 25-9
defined 25-9
errors 25-10
initiating 25-9
results 25-10

logical-log records 25-11
messages 25-6
participant activity 25-7
participant recovery 25-8
postdecision phase 25-8
precommit phase 25-8
presumed-end optimization 25-8, 25-9
role of current server 25-6
TXTIMEOUT configuration parameter 25-22
when used 25-6

TXTIMEOUT configuration parameter 25-14, 25-22
defined 25-22
onmode -Z 25-14
two-phase commit protocol 25-21

Types of buffer writes 6-27

U
UDR cache 6-19
Unbuffered disk access

compared to buffered 8-3
data storage 8-3

Unbuffered logging
flushing the logical-log buffer 6-29

Units of storage 8-1
UNIX devices

displaying links to a path name 9-3
ownership, permissions on

character-special 9-3
cooked files 9-3

UNIX operating system
link command 9-3
shutdown script 1-9
startup script 1-9

UNLOAD statement 11-5
Unloading data

named pipes 10-4
UNLOCK TABLE statement 11-6
UPDATE statement 11-5
UPDATE STATISTICS statement 6-18, 6-19, 8-26, 11-3
Updating data

RAW tables 8-26
STANDARD tables 8-26

USELASTCOMMITTED configuration parameter 6-10
User accounts and Windows domains 2-2
User connections

monitoring 3-7
User data

creating 2-16
defined 8-14

User impersonation 2-16
User table

defined 6-16
maximum number of entries 6-16

User thread
acquiring a buffer 6-22
critical sections 15-1
defined 4-1
monitoring 6-16
tracking 6-16

User-data area, sbspace 6-31
User-defined routines

configuring cache 6-19
ill-behaved 4-15
memory cache 6-19
nonyielding virtual processor 4-3
parallel processing 4-3
shared-memory location 4-15
virtual processors 4-11

User-defined virtual processors
how many 4-14
purpose 4-15
running UDRs 6-19
using 4-15

Utilities
attaching to shared-memory 6-4
cron 1-13
iostat 1-13
onstat utility

-d option 9-46
ps 1-13
sar 1-13
UNIX 1-13
vmstat 1-13

V
Validating

data pages 19-2

Index X-27

Validating (continued)
extents 19-3
indexes 19-3
logical logs 19-3
metadata 19-3
reserved pages 19-3
system catalog tables 19-2

Violations table
errors 10-11

Virtual portion
shared memory

adding a segment 7-6
configuration 6-14
contents 6-14
data-distribution cache 6-18
global pool 6-19
SHMVIRTSIZE configuration parameter 6-13
SQL statement cache 6-18
stacks 6-17
UDR cache 6-19
virtual extension portion 6-2

Virtual processor
defining a VP class 5-1
number in

FIFO class 10-7
Virtual processors

access to shared memory 6-2
ADM class 4-7
ADT class 4-28
advantages 4-2
AIO class 4-19, 6-5
attaching to shared memory 6-5
binding to CPUs 4-4
BTS 4-28
classes 4-3, 4-9
context switching 4-5
coordination of access to resources 4-3
CPU class 4-3
defined 4-1
determining number required 4-11
disk I/O 4-17
dropping CPU in online mode 5-1, 5-3
during initialization 3-5
encryption 4-27
IDSXMLVP 4-29
LIO class 4-18
logical-log I/O 4-18
managing 1-10
monitoring

onstat utilities 5-3
moving threads 4-1
MQ 4-28
multithreaded process 4-2
network 4-21
nonyielding 4-15
overview 4-1
parallel processing 4-3
physical log I/O 4-18
PIO class 4-7, 4-18
poll threads 4-21
ready queue 4-7
servicing threads 4-5
setting configuration parameters 5-1
sharing processing 4-3
tenant 4-16
UDR written in Java 4-16
user-defined class 4-14

Virtual processors (continued)
using stacks 4-6
WFSVP 4-29

Visual disabilities
reading syntax diagrams A-1

Volume table of contents 9-2
VP class in NETTYPE configuration parameter 4-21
VP_MEMORY_CACHE_KB configuration parameter 4-11, 5-1
VPCLASS configuration parameter 4-16, 5-1

configuring CPU VPs 4-11
JVPs 4-16
setting processor affinity 4-13
user-defined VPs 4-15

W
Wait queue

buffer locks 6-21
defined 4-8

Waking up threads 4-7
Warehousing

introduction 1-7
Warnings

oncheck -cc output 19-2
Web feature service virtual processors 4-29
wfsvp virtual processor 4-29
WHENEVER statement 11-6
Wildcard addressing

client application 2-34
example 2-34
hostname field 2-34

Windows
allocating raw disk space 9-5
automatic startup 1-10
Event Viewer 1-13
ixpasswd utility 1-13
ixsu utility 1-13
ntchname utility 1-13

Windows Instance Manager 3-1
Windows Internet Name Service 2-34
Windows Internet Name Service (WINS) 2-10
Windows Performance Logs and Alerts 1-13
Windows Registry 2-18
Write types

chunk write 6-28
foreground write 6-27
LRU write 6-28

X
X/Open

DTP environment 6-16, 11-9
XA interface standards 25-2

XA data-source types 25-2
XA support

in high-availability clusters 25-3
XA-compliant external data sources 25-2
XML virtual processors 4-29

Y
Yielding threads

conditions 4-5
defined 4-7
predetermined point 4-5
ready queue 4-7

X-28 IBM Informix Administrator's Guide

Yielding threads (continued)
switching between 4-5

Index X-29

X-30 IBM Informix Administrator's Guide

����

Printed in USA

SC27-4506-03

Sp
in
e
in
fo
rm
at
io
n:

In
fo

rm
ix

Pr
od

uc
tF

am
ily

In
fo

rm
ix

Ve
rs

io
n

12
.1

0
IB

M
In

fo
rm

ix
Ad

m
in

is
tra

to
r's

Gu
id

e
�
�

�

	Contents
	Introduction
	In this introduction
	About this publication
	Types of users
	Software dependencies
	Assumptions about your locale
	Demonstration databases

	What's new in administration for Informix, Version 12.10
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Part 1. The database server
	Chapter 1. Overview of database server configuration and administration
	Database server concepts
	Environment configuration
	Database server configuration
	Storage space creation and management
	Automatic performance tuning
	Feature configuration
	Connectivity configuration
	Automate startup and shutdown on UNIX
	Automate startup on Windows

	Database server maintenance tasks
	Database server monitoring
	UNIX operating-system tools
	Windows administrative utilities

	Chapter 2. Client/server communication
	Client/server architecture
	Network protocol
	Network programming interface
	Windows network domain
	Database server connections
	Supporting multiplexed connections

	Connections that the database server supports
	Local connections
	Shared-memory connections (UNIX)
	Stream-pipe connections (UNIX and Linux)
	Named-pipe connections (Windows)
	Local-loopback connections

	Communication support services
	Connectivity files
	Network-configuration files
	TCP/IP connectivity files
	Multiple TCP/IP ports

	Network security files
	Trusted-host information
	Trusted-user information
	The netrc information

	The sqlhosts file and the SQLHOSTS registry key
	Creating the sqlhosts file with a text editor
	Setting up the SQLHOSTS registry key with Setnet32 (Windows)

	The sqlhosts information
	IANA standard service names and port numbers in the sqlhosts.std file
	sqlhosts connectivity information
	sqlhosts file and SQLHOSTS registry key options

	Group information
	Creating a group in the sqlhosts file

	Alternatives for TCP/IP connections

	Informix support for IPv6 addresses
	Configuration parameters related to connectivity
	Connection information set in the DBSERVERNAME configuration parameter
	Connection information set in the DBSERVERALIASES configuration parameter
	Connection information set in the LIMITNUMSESSIONS configuration parameter
	Connection information set in the NETTYPE configuration parameter
	Name service maximum retention time set in the NS_CACHE configuration parameter
	Connection information set in the NUMFDSERVERS configuration parameter
	Connection information set in the HA_ALIAS configuration parameter

	Environment variables for network connections
	Automatically terminating idle connections
	Distributed Relational Database Architecture (DRDA) communications
	Overview of DRDA
	Configuring connectivity between Informix database servers and IBM Data Server clients
	Allocating poll threads for an interface/protocol combination with the NETTYPE configuration parameter
	Specify the size of the DRDA communication buffer with the DRDA_COMMBUFFSIZE configuration parameter
	The DRDAEXEC thread and queries from clients
	SQL and supported and unsupported data types
	Display DRDA connection information
	Display DRDA session information

	Examples of client/server configurations
	A network connection
	Multiple connection types
	Accessing multiple database servers

	IBM Informix MaxConnect

	Chapter 3. Database server initialization
	Types of initialization
	Initializing disk space
	Initialization process
	Configuration file used during initialization
	Create shared-memory portions
	Initialize or restart shared-memory
	Initialize disk space
	Start all required virtual processors
	Make necessary conversions
	Start fast recovery
	Start a checkpoint
	Document configuration changes
	Create the oncfg_servername.servernum file
	Drop Temporary Tblspaces
	Set forced residency if specified
	Return control to user
	Create sysmaster database and prepare SMI tables
	Create the sysutils database
	Create the sysuser database
	Create the sysadmin database
	Monitor maximum number of user connections

	Database server operating modes
	Change database server operating modes
	Users permitted to change modes
	Command-line options for changing modes
	Change from offline to quiescent mode
	Change from offline to online mode
	Change from offline to administration mode
	Change from quiescent to online mode
	Change gracefully from online to quiescent mode
	Change immediately from online to quiescent mode
	Change from quiescent or online to administration mode
	Change from administration to online mode
	Change from administration to quiescent mode
	Change from any mode immediately to offline mode

	Specify administration mode users with the ADMIN_MODE_USERS configuration parameter

	Part 2. Disk, memory, and process management
	Chapter 4. Virtual processors and threads
	Virtual processors
	Threads
	Advantages of virtual processors
	Shared processing
	Save memory and resources
	Parallel processing
	Add and drop virtual processors in online mode
	Bind virtual processors to CPUs

	How virtual processors service threads
	Control structures
	Context switching
	Stacks
	Queues
	Ready queues
	Sleep queues
	Wait queues

	Mutexes

	Virtual processor classes
	CPU virtual processors
	Determine the number of CPU virtual processors needed
	Run on a multiprocessor computer
	Run on a single-processor computer
	Add and drop CPU virtual processors in online mode
	Prevent priority aging
	Processor affinity

	User-defined classes of virtual processors
	Determine the number of user-defined virtual processors needed
	User-defined virtual processors
	Specify user-defined virtual processors
	Assign a UDR to a user-defined virtual-processor class
	Add and drop user-defined virtual processors in online mode

	Tenant virtual processor class
	Java virtual processors
	Disk I/O virtual processors
	I/O priorities
	Logical-log I/O
	Physical-log I/O
	Asynchronous I/O

	Network virtual processors
	Specifying Network Connections
	Run poll threads on CPU or network virtual processors
	Specify the number of networking virtual processors
	Specify listen and poll threads for the client/server connection
	Fast polling
	Multiple listen threads

	Communications support module virtual processor
	Encrypt virtual processors
	Audit virtual processor
	Miscellaneous virtual processor
	Basic text search virtual processors
	MQ messaging virtual processor
	Web feature service virtual processor
	XML virtual processor

	Chapter 5. Manage virtual processors
	Set virtual-processor configuration parameters
	Start and stop virtual processors
	Add virtual processors in online mode
	Add virtual processors in online mode with onmode
	Add network virtual processors

	Drop CPU and user-defined virtual processors

	Monitor virtual processors
	Monitor virtual processors with command-line utilities
	The onstat -g ath command
	The onstat -g glo command
	The onstat -g ioq command
	The onstat -g rea command

	Monitor virtual processors with SMI tables

	Chapter 6. Shared memory
	Shared memory
	Shared-memory use
	Shared-memory allocation
	Shared-memory size
	Action to take if SHMTOTAL is exceeded

	Processes that attach to shared memory
	How a client attaches to the communications portion (UNIX)
	How utilities attach to shared memory
	How virtual processors attach to shared memory
	Obtain key values for shared-memory segments
	Specify where to attach the first shared-memory segment
	Attach additional shared-memory segments
	Define the shared-memory lower-boundary address

	Resident portion of shared memory
	Shared-memory header
	Logical-log buffer
	Physical-log buffer
	High-Availability Data-Replication buffer
	Lock table

	Buffer pool portion of shared memory
	Virtual portion of shared memory
	Management of the virtual portion of shared memory
	Size of the virtual portion of shared memory

	Components of the virtual portion of shared memory
	Shared-memory internal tables
	Big buffers
	Session data
	Thread data

	Data-distribution cache
	Dictionary cache
	SQL statement cache
	Sort memory
	SPL routine and the UDR cache
	Global pool

	Communications portion of shared memory (UNIX)
	Virtual-extension portion of shared memory
	Concurrency control
	Shared-memory mutexes
	Shared-memory buffer locks
	Types of buffer locks

	Database server thread access to shared buffers
	FIFO/LRU queues
	Components of LRU queue
	Pages in least-recently used order
	LRU queues and buffer-pool management
	Number of LRU queues to configure
	Number of cleaners to allocate
	Number of pages added to the MLRU queues
	End of MLRU cleaning

	Read-ahead operations
	Database server thread access to buffer pages

	Flush data to disk
	Flush buffer-pool buffers
	Flush before-images first
	Flush the physical-log buffer
	Synchronize buffer flushing
	Types of writes during flushing
	Foreground write
	LRU write
	Chunk write

	Flush the logical-log buffer
	After a transaction is prepared or terminated in a database with unbuffered logging
	When a session that uses nonlogging databases or unbuffered logging terminates
	When a checkpoint occurs
	When a page is modified that does not require a before-image in the physical-log file

	Buffer large-object data
	Write simple large objects
	Blobpages and shared memory
	Creation of simple large objects
	Creation of blobpage buffers

	Access smart large objects

	Memory use on 64-bit platforms

	Chapter 7. Manage shared memory
	Set operating-system shared-memory configuration parameters
	Maximum shared-memory segment size
	Using more than two gigabytes of memory (Windows)
	Maximum number of shared-memory identifiers (UNIX)

	Semaphores (UNIX)

	Set database server shared-memory configuration parameters
	Set SQL statement cache parameters
	Set up shared memory
	Turn residency on or off for resident shared memory
	Turn residency on or off in online mode
	Turn residency on or off when restarting the database server

	Add a segment to the virtual portion of shared memory
	Reserve memory for critical activities
	Configure the server response when memory is critically low
	Scenario for maintaining a targeted amount of memory

	Monitor shared memory
	Monitor shared-memory segments
	Monitor the shared-memory profile and latches
	Command-line utilities to monitor shared memory and latches
	SMI tables

	Monitor buffers

	Deleting shared memory segments after a server failure

	Chapter 8. Data storage
	Chunks
	Disk allocation for chunks
	Disk access on Windows
	Unbuffered or buffered disk access on UNIX

	Extendable chunks
	Partitions and offsets

	Pages
	Blobpages
	Sbpages
	Extents
	Dbspaces
	Control of where simple large object data is stored
	Root dbspace
	Temporary dbspaces

	Blobspaces
	Sbspaces
	Advantages of using sbspaces
	Sbspaces and Enterprise Replication
	Metadata, user data, and reserved area
	Control of where smart large object data is stored
	Storage characteristics of sbspaces
	Extent sizes for sbspaces
	Average smart-large-object size
	Buffering mode
	Last-access time
	Lock mode
	Logging

	Levels of inheritance for sbspace characteristics
	More information about sbspaces
	Temporary sbspaces
	Comparison of temporary and standard sbspaces
	Temporary smart large objects

	Plogspace
	Extspaces
	Databases
	Tables
	Damaged tables

	Table types for Informix
	Standard permanent tables
	RAW tables
	Temp tables
	Properties of table types
	Loading of data into a table
	Fast recovery of table types
	Backup and restore of RAW tables

	Temporary tables
	Temporary tables that you create
	Temporary tables that the database server creates

	Tblspaces
	Maximum number of tblspaces in a table
	Table and index tblspaces
	Extent interleaving

	Table fragmentation and data storage
	Amount of disk space needed to store data
	Size of the root dbspace
	Amount of space that databases require

	The storage pool
	Disk-layout guidelines
	Dbspace and chunk guidelines
	Table-location guidelines

	Sample disk layouts
	Sample layout when performance is highest priority
	Sample layout when availability is highest priority

	Logical-volume manager

	Chapter 9. Manage disk space
	Allocate disk space
	Specify an offset
	Specify an offset for the initial chunk of root dbspace
	Specify an offset for additional chunks
	Use offsets to create multiple chunks

	Allocating cooked file spaces on UNIX
	Allocating raw disk space on UNIX
	Create symbolic links to raw devices (UNIX)
	Allocating NTFS file space on Windows
	Allocating raw disk space on Windows

	Specify names for storage spaces and chunks
	Specify the maximum size of chunks
	Specify the maximum number of chunks and storage spaces
	Back up after you change the physical schema

	Monitor storage spaces
	Manage dbspaces
	Creating a dbspace that uses the default page size
	Specifying the first and next extent sizes for the tblspace tblspace

	Creating a dbspace with a non-default page size
	Improving the performance of cooked-file dbspaces by using direct I/O
	Storing multiple named fragments in a single dbspace
	Creating a temporary dbspace
	What to do if you run out of disk space
	Adding a chunk to a dbspace or blobspace
	Rename dbspaces
	Additional actions that may be required after you rename a dbspace

	Managing automatic location and fragmentation

	Manage blobspaces
	Creating a blobspace
	Prepare blobspaces to store TEXT and BYTE data
	Determine blobpage size
	Determine database server page size
	Obtain blobspace storage statistics

	Manage sbspaces
	Creating an sbspace
	Size sbspace metadata
	Adding a chunk to an sbspace
	Alter storage characteristics of smart large objects
	Creating a temporary sbspace

	Manage the plogspace
	Automatic space management
	Creating and managing storage pool entries
	Marking a chunk as extendable or not extendable
	Modifying the sizes of an extendable storage space
	Changing the threshold and wait time for the automatic addition of more space
	Configuring the frequency of the monitor low storage task
	Manually expanding a space or extending an extendable chunk
	Example of minimally configuring for and testing the automatic addition of more space
	Example of configuring for the automatic addition of more space

	Drop a chunk
	Verify whether a chunk is empty
	Drop a chunk from a dbspace with onspaces
	Drop a chunk from a blobspace
	Drop a chunk from an sbspace with onspaces
	The -f (force) option
	Delete smart large objects without any pointers

	Drop a storage space
	Preparation for dropping a storage space
	Drop a mirrored storage space
	Drop a storage space with onspaces
	Back up after dropping a storage space

	Creating a space or chunk from the storage pool
	Returning empty space to the storage pool
	Manage extspaces
	Create an extspace
	Drop an extspace

	Skip inaccessible fragments
	The DATASKIP configuration parameter
	The dataskip feature of onspaces
	Use onstat to check dataskip status
	The SQL statement SET DATASKIP
	Effect of the dataskip feature on transactions
	Determine when to use dataskip
	Determine when to skip selected fragments
	Determine when to skip all fragments

	Monitor fragmentation use

	Display databases
	SMI tables

	Monitor disk usage
	Monitor chunks
	The onstat -d utility
	The onstat -d update option
	The onstat -D option
	Monitor chunk I/O activity with the onstat -g iof command
	The oncheck -pr command
	The oncheck -pe command
	SMI tables

	Monitor tblspaces and extents
	SMI tables

	Monitor simple large objects in a blobspace
	Determine blobpage fullness with oncheck -pB
	Monitor blobspace usage with oncheck -pe
	Monitor simple large objects in a dbspace with oncheck -pT

	Monitor sbspaces
	The onstat -d option
	The oncheck -ce and oncheck -pe options
	The oncheck -cs option
	The oncheck -ps option
	Monitoring the metadata and user-data areas

	Multitenancy
	Creating a tenant database
	Managing tenant databases

	Storage optimization
	Storage optimization methods
	Scheduling data optimization
	Example: Optimizing data storage on demand
	Partition defragmentation
	Compression
	Data that you can compress
	Data that you cannot compress
	B-tree index compression
	Compression ratio estimates
	Compression dictionaries
	Tools for moving compressed data
	Methods for viewing compression information

	Load data into a table

	Chapter 10. Moving data with external tables
	External tables
	Defining external tables
	Map columns to other columns
	Load data from and unload to a named pipe
	Loading data with named pipes
	FIFO virtual processors
	Unloading data with named pipes
	Copying data from one instance to another using the PIPE option

	Monitor the load or unload operations
	Monitor frequent load and unload operations
	Monitor FIFO virtual processors

	External tables in high-availability cluster environments
	System catalog entries for external tables
	Performance considerations when using external tables
	Manage errors from external table load and unload operations
	Reject files
	External table error messages
	Recoverability of table types for external tables

	Part 3. Logging and log administration
	Chapter 11. Logging
	Database server processes that require logging
	Transaction logging
	Logging of SQL statements and database server activity
	Activity that is always logged
	Activity logged for databases with transaction logging
	Activity that is not logged

	Database-logging status
	Unbuffered transaction logging
	Buffered transaction logging
	ANSI-compliant transaction logging
	No database logging
	Databases with different log-buffering status
	Database logging in an X/Open DTP environment

	Settings or changes for logging status or mode

	Chapter 12. Manage the database-logging mode
	Change the database-logging mode
	Modify the database-logging mode with ondblog
	Change the buffering mode with ondblog
	Cancel a logging mode change with ondblog
	End logging with ondblog
	Make a database ANSI compliant with ondblog
	Changing the logging mode of an ANSI-compliant database

	Modify the database logging mode with ontape
	Turn on transaction logging with ontape
	End logging with ontape
	Change buffering mode with ontape
	Make a database ANSI compliant with ontape

	Modify the table-logging mode
	Alter a table to turn off logging
	Alter a table to turn on logging
	Disable logging on temporary tables

	Monitor transactions
	Monitor the logging mode of a database
	Monitor the logging mode with SMI tables

	Chapter 13. Logical log
	What is the logical log?
	Location of logical-log files
	Identification of logical-log files
	Status flags of logical-log files
	Size of the logical-log file
	Number of logical-log files
	Performance considerations

	Dynamic log allocation
	Freeing of logical-log files
	Action if the next logical-log file is not free
	Action if the next log file contains the last checkpoint

	Log blobspaces and simple large objects
	Switch log files to activate blobspaces
	Back up log files to free blobpages
	Back up blobspaces after inserting or deleting TEXT and BYTE data

	Log sbspaces and smart large objects
	Sbspace logging
	Logging for smart large objects
	Logging for updated smart large objects
	Turn logging on or off for an sbspace

	Smart-large-object log records
	Prevent long transactions when logging smart-large-object data

	Logging process
	Dbspace logging
	Blobspace logging

	Chapter 14. Manage logical-log files
	Estimate the size and number of log files
	Estimate the log size when logging smart large objects
	Estimate the number of logical-log files

	Back up logical-log files
	Backing up blobspaces
	Back up sbspaces

	Switch to the next logical-log file
	Free a logical-log file
	Delete a log file with status D
	Free a log file with status U
	Freeing a log file with status U-B or F
	Freeing a log file with status U-C or U-C-L
	Free a log file with status U-B-L

	Monitor logging activity
	Monitor the logical log for fullness
	The onstat -l command
	The oncheck -pr command

	Monitor temporary logical logs
	SMI tables
	Monitor log-backup status

	Allocate logical log files
	Dynamically add a logical-log file to prevent transaction blocking
	Size and number of dynamically added log files
	Location of dynamically added logical log files
	Monitor events for dynamically added logs

	Dynamically add logical logs for performance
	Adding logical-log files manually

	Dropping logical-log files
	Change the size of logical-log files
	Move logical-log files
	Display logical-log records
	Set high-watermarks for rolling back long transactions
	Long-transaction high-watermark (LTXHWM)
	Exclusive access, long-transaction high-watermark (LTXEHWM)
	Adjust the size of log files to prevent long transactions
	Recovering from a long transaction hang

	Chapter 15. Physical logging, checkpoints, and fast recovery
	Critical sections
	Physical logging
	Fast recovery use of physically-logged pages
	Backup use of physically-logged pages
	Database server activity that is physically logged
	Physical recovery messages
	Physical logging and simple large objects
	Physical logging and smart large objects

	Size and location of the physical log
	Strategy for estimating the size of the physical log
	Physical-log overflow when transaction logging is turned off

	Checkpoints
	LRU values for flushing a buffer pool between checkpoints
	Checkpoints during backup

	Fast recovery
	Need for fast recovery
	Situations when fast recovery is initiated
	Fast recovery and buffered logging
	Possible physical log overflow during fast recovery
	Fast recovery and no logging

	Fast recovery after a checkpoint
	The server returns to the last-checkpoint state
	The server locates the checkpoint record in the logical log
	The server rolls forward logical-log records
	The server rolls back uncommitted transactions

	Chapter 16. Manage the physical log
	Change the physical-log location and size
	Monitor physical and logical-logging activity
	Monitor checkpoint information
	Turn checkpoint tuning on or off
	Force a checkpoint
	Server-provided checkpoint statistics
	SMI tables

	Turn automatic LRU tuning on or off

	Part 4. Fault tolerance
	Chapter 17. Mirroring
	Mirroring
	Benefits of mirroring
	Costs of mirroring
	Consequences of not mirroring
	Data to mirror
	Alternatives to mirroring
	Logical volume managers
	Hardware mirroring
	External backup and restore

	Mirroring process
	Creation of a mirror chunk
	Mirror status flags
	Recovery
	Actions during processing
	Disk writes to mirror chunks
	Disk reads from mirror chunks
	Detection of media failures
	Chunk recovery

	Result of stopping mirroring
	Structure of a mirror chunk

	Chapter 18. Using mirroring
	Preparing to mirror data
	Enable the MIRROR configuration parameter
	Allocate disk space for mirrored data
	Link chunks (UNIX)
	Relink a chunk to a device after a disk failure

	Using mirroring
	Mirroring the root dbspace during initialization
	Change the mirror status

	Manage mirroring
	Start mirroring for unmirrored storage spaces
	Start mirroring for unmirrored dbspaces using onspaces

	Start mirroring for new storage spaces
	Start mirroring for new spaces using onspaces

	Add mirror chunks
	Add mirror chunks using onspaces

	Take down a mirror chunk
	Take down mirror chunks using onspaces

	Recover a mirror chunk
	Recover a mirror chunk using onspaces

	End mirroring
	End mirroring using onspaces

	Chapter 19. Consistency checking
	Perform periodic consistency checking
	Verify consistency
	Validate system catalog tables
	Validate data pages
	Validate extents
	Validate indexes
	Validate logical logs
	Validate reserved pages
	Validate metadata

	Monitor for data inconsistency
	Read assertion failures in the message log and dump files
	Validate table and tblspace data

	Retain consistent level-0 backups

	Deal with corruption
	Find symptoms of corruption
	Fix index corruption
	Fix I/O errors on a chunk

	Collect diagnostic information
	Disable I/O errors
	Monitor the database server for disabling I/O errors
	The message log to monitor disabling I/O errors
	Event alarms to monitor disabling I/O errors
	No bad-sector mapping

	Part 5. High availability and scalability
	Chapter 20. Strategies for high availability and scalability
	Components supporting high availability and scalability
	Advantages of data replication
	Clustering versus mirroring
	Clustering versus two-phase commit
	Type of data replicated in clusters
	Primary and secondary database servers

	Transparent scaling and workload balancing strategies
	High availability strategies

	Chapter 21. High-availability cluster configuration
	Plan for a high-availability cluster
	Configuring clusters
	Hardware and operating-system requirements for clusters
	Database and data requirements for clusters
	Database server configuration requirements for clusters
	Database server version
	Storage space and chunk configuration
	Non-default page sizes in an HDR environment
	Mirroring
	Physical-log configuration
	Dbspace and logical-log tape backup devices
	Logical-log configuration
	HDR configuration parameters
	Cluster transaction coordination

	Configuring secure connections for high-availability clusters

	Starting HDR for the First Time
	Decrease setup time using the ontape STDIO feature

	Remote standalone secondary servers
	Comparison of RS secondary servers and HDR secondary servers
	Index page logging
	How index page logging works
	Enable or disable index page logging
	View index page logging statistics

	Server Multiplexer Group (SMX) connections
	Enable SMX encryption
	Obtain SMX statistics

	Starting an RS secondary server for the first time
	Decrease setup time through an alternative backup method

	Converting an offline primary server to an RS secondary server
	Delayed application of log records
	Specifying the log staging directory
	Delay application of log records on an RS secondary server
	Stop the application of log records

	Flow control for remote standalone secondary servers

	Shared disk secondary servers
	SD secondary server
	Disk requirements for SD secondary servers
	Setting up a shared disk secondary server
	Obtain SD secondary server statistics
	Promote an SD secondary server to a primary server
	Convert a primary server to a standard server
	SD secondary server security
	Flow control for shared-disk secondary servers

	Chapter 22. Cluster administration
	How data replication works
	How data initially replicates
	Replication of primary-server data to secondary servers
	Fully synchronous mode for HDR replication
	Nearly synchronous mode for HDR replication
	Asynchronous mode for HDR replication
	Lost-and-found transactions

	Data replication configuration examples
	Remote standalone secondary configuration examples
	Shared disk secondary configuration examples
	Enterprise Replication as part of the recoverable group
	High-availability clusters with Enterprise Replication configuration example
	Example of a complex failover recovery strategy

	Troubleshooting high-availability cluster environments
	Design data replication group clients
	Use of temporary dbspaces for sorting and temporary tables

	Performing basic administration tasks
	Changing the configuration parameters for an HDR replication pair
	Back up storage spaces and logical-log files
	Changing the logging mode of databases
	Add and drop chunks and storage spaces
	Renaming chunks
	Saving chunk status on the secondary database server
	Use and change mirroring of chunks
	Manage the physical log
	Manage the logical log
	Manage virtual processors
	Manage shared memory
	Set the wait time for SMX activity between servers
	Replicate an index to an HDR secondary database server
	Encrypting data traffic between HDR database servers
	Adjust LRU flushing and automatic tuning in HDR server pairs
	Cloning a primary server
	Creating a clone of a primary server

	Database updates on secondary servers
	Isolation levels on secondary servers
	Transient types on high-availability cluster secondary servers
	Row versioning

	Backup and restore with high-availability clusters
	Change the database server mode
	Changing the database server type
	Prevent blocking checkpoints on HDR servers
	View statistics for nonblocking checkpoints on HDR servers

	Monitor HDR status
	Command-line utilities
	SMI tables

	Obtain RS secondary server statistics
	Remove an RS secondary server
	RS secondary server security
	Create or change a password on an RS secondary server

	Transaction completion during cluster failover
	Configuring the server so that transactions complete after failover

	Chapter 23. Connection management through the Connection Manager
	Configuring connection management
	Creating Connection Manager configuration files
	Parameters and format of the Connection Manager configuration file
	Modifying Connection Manager configuration files
	Converting older formats of the Connection Manager configuration file to the current format

	Configuring environments and setting configuration parameters for connection management
	Defining sqlhosts information for connection management
	Defining sqlhosts information for connection management of high-availability clusters
	Defining sqlhosts information for connection management of high-availability clusters that use secure ports
	Defining sqlhosts information for high-availability clusters that use Distributed Relational Database Architecture (DRDA)
	Defining sqlhosts information for high-availability clusters that use Distributed Relational Database Architecture (DRDA) and
	Defining sqlhosts information for connection management of grids and replicate sets
	Defining sqlhosts information for connection management of grids and replicate sets that use secure ports
	Defining sqlhosts information for connection management high-availability replication systems
	Defining sqlhosts information for connection management of high-availability replication systems that use secure ports
	Defining sqlhosts information for connection management of server sets

	Creating a password file for connecting to database servers on untrusted networks
	Modifying encrypted password information

	Starting Connection Managers on UNIX and Linux
	Starting Connection Managers on Windows
	Stopping connection management

	Monitoring and troubleshooting connection management
	Strategies for increasing availability with Connection Managers
	Configuration examples for connection management
	Example of configuring connection management for a high-availability cluster
	Example of configuring connection management for a grid or replicate set
	Example of configuring connection management for a high-availability replication system
	Example: Configuring connection management for untrusted networks
	Example of configuring connection management for prioritizing connections and network monitoring

	Chapter 24. Cluster failover, redirection, and restoration
	Failover configuration for high-availability clusters
	Failover with ISV cluster management software
	I/O fencing for shared file systems
	Cluster failures
	Automatic switchover
	Automatic switchover without a reliable network
	Manual switchover
	Connecting offline servers to the new primary server

	Redirection and connectivity for data-replication clients
	Redirecting clients automatically with the DBPATH environment variable
	How the DBPATH redirection method works

	Redirecting clients with the connectivity information
	Changing client connectivity information
	Connecting to the database server
	Automatic redirection with server groups

	Redirecting clients with the INFORMIXSERVER environment variable
	Redirecting clients with application code
	Comparison of redirection methods

	Recover HDR and RS clusters after failure
	Recovering a cluster after critical data is damaged
	Restarting HDR or RS clusters after a network failure
	Restarting HDR or RS clusters if the secondary server fails
	Recovering an HDR cluster after the secondary server became the primary server
	Restart if the primary server fails

	Recovering a shared-disk cluster after data is damaged
	Critical data is damaged
	Critical data is not damaged

	Recovering an SD cluster after the secondary server became the primary server

	Part 6. Distributed data
	Chapter 25. Multiphase commit protocols
	Transaction managers
	TP/XA Library with a transaction manager
	Microsoft Transaction Server (MTS/XA)
	Informix transaction support for XA-compliant, external data sources
	XA in high-availability clusters
	Loosely-coupled and tightly-coupled modes

	Two-phase commit protocol
	When the two-phase commit protocol is used
	Two-phase commit concepts
	Phases of the two-phase commit protocol
	Precommit phase
	Postdecision phase

	How the two-phase commit protocol handles failures
	Types of failures that automatic recovery handles
	Administrator's role in automatic recovery
	Automatic-recovery mechanisms for coordinator failure
	Automatic-recovery mechanisms for participant failure

	Presumed-end optimization

	Independent actions
	Situations that initiate independent action
	Possible results of independent action
	Independent actions that allow transactions to complete successfully
	Independent actions that result in an error condition
	Independent actions that result in heuristic decisions

	The heuristic rollback scenario
	Conditions that result in a heuristic rollback
	Results of a heuristic rollback

	The heuristic end-transaction scenario
	When to perform a heuristic end transaction
	How to use onmode -Z
	Action when the transaction is ended heuristically

	Monitor a global transaction

	Two-phase commit protocol errors
	Two-phase commit and logical-log records
	Logical-log records when the transaction commits
	Logical-log records written during a heuristic rollback
	Logical-log records written after a heuristic end transaction

	Configuration parameters used in two-phase commits
	Function of the DEADLOCK_TIMEOUT parameter
	Function of the TXTIMEOUT parameter

	Heterogeneous commit protocol
	Gateways that can participate in a heterogeneous commit transaction
	Enable and disable of heterogeneous commit
	How heterogeneous commit works
	Precommit phase
	Gateway commit phase
	Heterogeneous commit optimization

	Implications of a failed heterogeneous commit
	Database server coordinator failure
	Participant failure
	Interpretation of heterogeneous commit error messages

	Chapter 26. Manually recovering from failed two-phase commit
	Determine if manual recovery is required
	Determine if a transaction was implemented inconsistently
	Global transaction ended prematurely
	Heuristic end transaction
	Heuristic rollback

	Determine if the distributed database contains inconsistent data
	Obtaining information from the logical log
	Obtain the global transaction identifier

	Decide if action is needed to correct the situation

	Example of manual recovery

	Part 7. Overview of automatic monitoring and corrective actions
	Chapter 27. The Scheduler
	Scheduler tables
	Built-in tasks and sensors
	Creating a task
	Creating a sensor
	Actions for task and sensors
	Creating a group
	Creating a threshold
	Creating an alert
	Monitor the scheduler
	Modifying the scheduler

	Chapter 28. Remote administration with the SQL administration API
	SQL administration API admin() and task() functions
	Viewing SQL administration API history
	Controlling the size of the command_history table

	Chapter 29. Query drill-down
	Specifying startup SQL tracing information by using the SQLTRACE configuration parameter
	Disable SQL tracing globally or for a session
	Enable SQL tracing
	Enable global SQL tracing for a session

	Part 8. Appendixes
	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

