Informix Product Family
Informix
Version 12.10

IBM Informix Administrator's Guide

<||IH







Informix Product Family
Informix
Version 12.10

IBM Informix Administrator's Guide

..lli




Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page B-1)

Edition
This edition replaces SC27-4506-02.
This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.




Contents

Introduction . - Xvii
In this introduction . xvii
About this publication . . xvii
Types of users . . . xvii
Software dependencies . . xvii
Assumptions about your locale . xvii
Demonstration databases . . xviii
What's new in administration for Informlx Versmn 12 10 . Xviii
Example code conventions. . Xxiv
Additional documentation . . XXV
Compliance with industry standards . XXV
Syntax diagrams .o . XXV
How to read a command llne syntax dlagram . . Xxvi
Keywords and punctuation . . Xxxvii
Identifiers and names . . Xxviii
How to provide documentation feedback . Xxviii
Part 1. The database server
Chapter 1. Overview of database server configuration and administration 1-1
Database server concepts .11
Environment configuration . .12
Database server configuration . . 13
Storage space creation and management . 1-4
Automatic performance tuning . 1-6
Feature configuration . .17
Connectivity configuration . . 18
Automate startup and shutdown on UNIX . .19
Automate startup on Windows . . 1-10
Database server maintenance tasks . . 1-10
Database server monitoring . 1-11
Chapter 2. Client/server communication . . 2-1
Client/server architecture . 2-1
Network protocol . . . 2-1
Network programming 1nterface . .22
Windows network domain . .22
Database server connections . . 2-3
Supporting multiplexed connections . . 2-3
Connections that the database server supports . 2-5
Local connections . . . . 2-6
Shared-memory connectlons (UNIX) . 2-6
Stream-pipe connections (UNIX and Linux) .27
Named-pipe connections (Windows) . . 2-8
Local-loopback connections . .28
Communication support services . . 29
Connectivity files . . .. 29
Network-configuration flles . 2-10
Network security files . . 2-12
The sqlhosts file and the SQLHOSTS reg1stry key . 2-17
The sqlhosts information . 2-19
IANA standard service names and port numbers in the sqlhosts std flle . 2-20
sqlhosts connectivity information . 2-20
Group information . 2-32
© Copyright IBM Corp. 1996, 2014 iii



Alternatives for TCP/IP connections . 2-34
Informix support for IPv6 addresses . . 2-37
Configuration parameters related to connectivity . 2-38

Connection information set in the DBSERVERNAME conflguratlon parameter . 2-38

Connection information set in the DBSERVERALIASES configuration parameter. . 2-39

Connection information set in the LIMITNUMSESSIONS configuration parameter . . 2-40

Connection information set in the NETTYPE configuration parameter . 2-40

Name service maximum retention time set in the NS_CACHE configuration parameter . 2-41

Connection information set in the NUMFDSERVERS configuration parameter . 2-42

Connection information set in the HA_ALIAS configuration parameter . . 2-42
Environment variables for network connections. . 2-43
Automatically terminating idle connections . . . 2-43
Distributed Relational Database Architecture (DRDA) commumcatrons . 2-44

Overview of DRDA . . 2-44

Configuring connectivity between Informlx database servers and IBM Data Server chents .. 245

Allocating poll threads for an interface/protocol combination with the NETTYPE configuration parameter 2-47

Specify the size of the DRDA communication buffer with the DRDA_COMMBUFFSIZE configuration

parameter . e e . 2-47

The DRDAEXEC thread and querles from chents . . 2-47

SQL and supported and unsupported data types . 2-48

Display DRDA connection information . 2-48

Display DRDA session information . . 2-49
Examples of client/server configurations . . 2-49

A network connection . 2-50

Multiple connection types . . . 2-50

Accessing multiple database servers . 2-51
IBM Informix MaxConnect. . 2-52
Chapter 3. Database server initialization . . 31
Types of initialization . .31
Initializing disk space. .31
Initialization process . . .32

Configuration file used durmg m1t1ahzat10n 3-3

Create shared-memory portions 3-3

Initialize or restart shared—memory . 34

Initialize disk space . . 3-4

Start all required virtual processors . 3-5

Make necessary conversions . 35

Start fast recovery . .35

Start a checkpoint . . . . 35

Document configuration changes . . 3-5

Create the oncfg_servername.servernum f11e . .35

Drop Temporary Tblspaces . . 3-6

Set forced residency if specified . 3-6

Return control to user . 3-6

Create sysmaster database and prepare SMI tables . . 3-6

Create the sysutils database. . . 37

Create the sysuser database. . 37

Create the sysadmin database . . 3-7

Monitor maximum number of user connectlons . . 37
Database server operating modes . . 37
Change database server operating modes . . 3-8

Users permitted to change modes. . . 39

Command-line options for changing modes . . . 3-10

Specify administration mode users with the ADMIN MODE USERS conflguratron parameter . . 3-13
Part 2. Disk, memory, and process management
Chapter 4. Virtual processors and threads . . 441
Virtual processors . 41

iV IBM Informix Administrator's Guide



Threads . .
Advantages of vrrtual processors .

How virtual processors service threads .
Control structures .
Context switching .
Stacks .
Queues
Mutexes .o

Virtual processor classes .
CPU virtual processors . .
User-defined classes of virtual processors
Tenant virtual processor class.
Java virtual processors .
Disk I/0 virtual processors
Network virtual processors .
Communications support module v1rtua1 processor
Encrypt virtual processors .
Audit virtual processor . .
Miscellaneous virtual processor .
Basic text search virtual processors .
MQ messaging virtual processor.
Web feature service virtual processor .
XML virtual processor .

Chapter 5. Manage virtual processors .
Set virtual-processor configuration parameters
Start and stop virtual processors . .
Add virtual processors in online mode .
Drop CPU and user-defined virtual processors
Monitor virtual processors .
Monitor virtual processors with command lme utrhtres
Monitor virtual processors with SMI tables

Chapter 6. Shared memory
Shared memory.
Shared-memory use .
Shared-memory allocation .
Shared-memory size .
Action to take if SHMTOTAL is exceeded
Processes that attach to shared memory.
How a client attaches to the communications portron (UNIX)
How utilities attach to shared memory .
How virtual processors attach to shared memory
Resident portion of shared memory .
Shared-memory header .
Logical-log buffer .
Physical-log buffer
High-Availability Data-Rephcatron buffer
Lock table . .o
Buffer pool portion of shared memory
Virtual portion of shared memory .
Management of the virtual portion of shared memory
Components of the virtual portion of shared memory
Data-distribution cache . .
Communications portion of shared memory (UNIX)
Virtual-extension portion of shared memory .
Concurrency control .
Shared-memory mutexes
Shared-memory buffer locks . .
Database server thread access to shared buffers

. 42
. 4-5
. 45
. 4-5

. 47
. 4-8
. .49
. 4-11
. 4-14
. 4-16
. 4-16
. 417
. 4-21
. 427
. 4-27
. 4-28
. 4-28
. 4-28
. 4-28
. 4-29
. 4-29

. 5-1
.51
. 51
.52
. 5-3
. 5-3

. 54

. 6-1
.61
.61
.62

. 64
. 6-4
. 6-4
. 6-5
. 65
. 6-8
. 6-9
. .69
. 6-10
. 6-10
. 6-10
. 6-11
. 6-13
. 6-13
. 6-14
. 6-18
. 6-19
. 6-20
. 6-20
. 6-20
. 620
. 6-21

Contents

A\



FIFO/LRU queues

Read-ahead operations .

Database server thread access to buffer pages
Flush data to disk .

Flush buffer-pool buffers

Flush before-images first

Flush the physical-log buffer .

Synchronize buffer flushing

Types of writes during flushing .

Flush the logical-log buffer
Buffer large-object data .

Write simple large objects .

Access smart large objects .
Memory use on 64-bit platforms.

Chapter 7. Manage shared memory .

Set operating-system shared-memory configuration parameters .

Maximum shared-memory segment size
Semaphores (UNIX) .
Set database server shared-memory conﬁguratlon parameters
Set SQL statement cache parameters .
Set up shared memory .
Turn residency on or off for re31dent shared memory .
Turn residency on or off in online mode

Turn residency on or off when restarting the database server

Add a segment to the virtual portion of shared memory .
Reserve memory for critical activities .
Configure the server response when memory is cr1t1ca11y low
Scenario for maintaining a targeted amount of memory
Monitor shared memory . .
Monitor shared-memory segments .
Monitor the shared-memory profile and latches .
Monitor buffers.
Deleting shared memory segments after a server fallure

Chapter 8. Data storage .

Chunks . .
Disk allocation for chunks .
Extendable chunks.
Partitions and offsets .

Pages .

Blobpages.

Sbpages

Extents

Dbspaces . .
Control of where s1mple large ob]ect data is stored
Root dbspace . .
Temporary dbspaces

Blobspaces . .

Sbspaces.
Advantages of usmg sbspaces
Sbspaces and Enterprise Replication
Metadata, user data, and reserved area .
Control of where smart large object data is stored
Storage characteristics of sbspaces . .
Levels of inheritance for sbspace Characterlstlcs
More information about sbspaces
Temporary sbspaces .

Plogspace

Extspaces

Vi  IBM Informix Administrator's Guide

. 6-21
. 6-25
. 6-25
. 6-26
. 6-26
. 6-26
. 6-26
. 627
. 6-27
. 6-28
. 6-29
. 6-29
. 6-31
. 6-32

. 7-3

. 7-6

.77

.78

711

. 84

. 810
. 811
. 812
. 8-13
. 813
. 813
. 8-14
. 8-14
. 815
. 8-16
. 8-18
. 8-19
. 820
. 822
. 822



Databases
Tables
Damaged tables
Table types for Informix
Standard permanent tables
RAW tables.
Temp tables. .
Properties of table types
Temporary tables .
Tblspaces .
Maximum number of tblspaces ina table
Table and index tblspaces .
Extent interleaving .
Table fragmentation and data storage .
Amount of disk space needed to store data .
Size of the root dbspace .
Amount of space that databases requlre
The storage pool .
Disk-layout guidelines .
Dbspace and chunk guldehnes
Table-location guidelines
Sample disk layouts . . .
Sample layout when performance is hlghest pr10r1ty
Sample layout when availability is hlghest pr10r1ty
Logical-volume manager . . .

Chapter 9. Manage disk space

Allocate disk space
Specify an offset
Allocating cooked file spaces on UNIX
Allocating raw disk space on UNIX .

Create symbolic links to raw devices (UNIX) .
Allocating NTFS file space on Windows
Allocating raw disk space on Windows .

Specify names for storage spaces and chunks .

Specify the maximum size of chunks . .
Specify the maximum number of chunks and storage spaces
Back up after you change the physmal schema

Monitor storage spaces -

Manage dbspaces . .
Creating a dbspace that uses the default page size .
Creating a dbspace with a non-default page size
Improving the performance of cooked-file dbspaces by usrng dlrect I/ O
Storing multiple named fragments in a single dbspace .o
Creating a temporary dbspace .

What to do if you run out of disk space .
Adding a chunk to a dbspace or blobspace .
Rename dbspaces.

Managing automatic locatlon and fragmentatlon

Manage blobspaces .
Creating a blobspace. .
Prepare blobspaces to store TEXT and BYTE data .
Determine blobpage size

Manage sbspaces .
Creating an sbspace .
Size sbspace metadata .
Adding a chunk to an sbspace . .
Alter storage characteristics of smart large ob]ects
Creating a temporary sbspace

Manage the plogspace .

Automatic space management

. 823
. 8-24
. 825
. 825
. 8-26
. 8-26
. 827
. 827
. 8-28
. 831
. 831
. 831
. 8-32
. 833
. 8-34
. 8-35
. 8-36
. 8-36
. 837
. 837
. 8-38
. 8-39
. 840
. 841
. 842

. 9-1
. 9-1
.92
. 93
. 93
. 94
. 94
. 95
. 9-5
. 9-6
. 9-6
. 9-6
. 9-6
. 97
. 97

. 9-10

Contents

. 9-11
. 9-11
. 9-13
. 9-13
. 9-14
. 9-14
. 9-15
. 9-16
. 9-17
. 9-18
. 9-18
. 9-19
. 9-19
. 9-20
. 9-20
. 9-21
. 9-21
. 9-22
. 9-23

vii



Creating and managing storage pool entries .

Marking a chunk as extendable or not extendable .

Modifying the sizes of an extendable storage space

Changing the threshold and wait time for the automatic addltlon of more space
Configuring the frequency of the monitor low storage task .

Manually expanding a space or extending an extendable chunk .

Example of minimally configuring for and testing the automatic addition of more space .

Example of configuring for the automatic addition of more space.

Drop a chunk .

Verify whether a chunk is empty .
Drop a chunk from a dbspace with onspaces
Drop a chunk from a blobspace .

Drop a chunk from an sbspace with onspaces

Drop a storage space
Preparation for dropping a storage space
Drop a mirrored storage space
Drop a storage space with onspaces
Back up after dropping a storage space

Creating a space or chunk from the storage pool

Returning empty space to the storage pool

Manage extspaces
Create an extspace
Drop an extspace .

Skip inaccessible fragments .
The DATASKIP configuration parameter .
The dataskip feature of onspaces
Use onstat to check dataskip status .

The SQL statement SET DATASKIP.

Effect of the dataskip feature on transactions
Determine when to use dataskip.

Monitor fragmentation use

Display databases
SMI tables .

Monitor disk usage .

Monitor chunks

Monitor tblspaces and extents .
Monitor simple large objects in a blobspace .
Monitor sbspaces .

Multitenancy
Creating a tenant database
Managing tenant databases

Storage optimization.

Storage optimization methods
Scheduling data optimization .
Example: Optimizing data storage on demand
Partition defragmentation .
Compression
Load data into a table

Chapter 10. Moving data with external tables
External tables.
Defining external tables.
Map columns to other columns . .
Load data from and unload to a named pipe

Loading data with named pipes .

FIFO virtual processors . .

Unloading data with named plpes .

Copying data from one instance to another usmg the PIPE optlon
Monitor the load or unload operations.

Monitor frequent load and unload operatlons

Monitor FIFO virtual processors .

viili IBM Informix Administrator's Guide

. 9-24
. 925
. 9-26
. 927
. 9-27
. 9-28
. 9-29
. 9-30
. 9-31
. 9-31
. 9-32
. 9-32
. 9-32
. 9-33
. 9-33
. 9-33
. 9-33
. 9-34
. 9-34
. 9-35
. 9-36
. 9-36
. 9-37
. 9-37
. 9-37
. 9-37
. 9-37
. 9-37
. 9-38
. 9-38
. 9-39
. 9-39
. 9-39
. 9-40
. 9-40
. 943
. 943
. 9-45
. 9-49
. 9-51
. 9-52

9-53

. 9-55
. 9-57
. 9-58

9-59

. 9-60
. 9-67

. 10-1
. 10-1
. 10-2
. 10-3
. 10-3
. 10-4
. 10-4
. 10-4
. 10-5
. 10-6
. 10-6
. 10-7



External tables in high-availability cluster environments . . 10-8
System catalog entries for external tables . . . 10-8
Performance considerations when using external tables . . 10-9
Manage errors from external table load and unload operations .. 109
Reject files. .o . 10-10
External table error messages . . 10-11
Recoverability of table types for external tables . 10-11

Part 3. Logging and log administration
Chapter 11. Logging . . 1141
Database server processes that require logging . . 11-1
Transaction logging . . . 11-2
Logging of SQL statements and database server acthlty . 11-3
Activity that is always logged . . 11-3
Activity logged for databases with transactlon loggmg . 11-5
Activity that is not logged . e . 11-6
Database-logging status. . . 11-7
Unbuffered transaction loggmg . . 11-8
Buffered transaction logging . . 11-8
ANSI-compliant transaction logging . 11-8
No database logging . . 119
Databases with different log buffermg status . 119
Database logging in an X/Open DTP environment. . 11-9
Settings or changes for logging status or mode . . 11-9
Chapter 12. Manage the database-logglng mode . . 121
Change the database-logging mode. . . 12-1
Modify the database-logging mode with ondblog . 12-2
Change the buffering mode with ondblog L1222
Cancel a logging mode change with ondblog L1222
End logging with ondblog . . . 1222
Make a database ANSI compliant w1th ondblog . . 123
Changing the logging mode of an ANSI-compliant database . 12-3
Modify the database logging mode with ontape . 12-3
Turn on transaction logging with ontape . . 12-3
End logging with ontape . 12-3
Change buffering mode with ontape . . 12-4
Make a database ANSI compliant with ontape . . 12-4
Modify the table-logging mode . S . 12-4
Alter a table to turn off logging . . 124
Alter a table to turn on logging . . 12-4
Disable logging on temporary tables . 12-5
Monitor transactions. . . 12-5
Monitor the logging mode of a database . . 12-5
Monitor the logging mode with SMI tables . . 12-5
Chapter 13. Logical log . . 13-1
What is the logical log?. . 131
Location of logical-log files . 13-1
Identification of logical-log files . . 132
Status flags of logical-log files . 132
Size of the logical-log file . . 13-3
Number of logical-log files. . 13-3
Performance considerations . 13-4
Dynamic log allocation . . 13-4
Freeing of logical-log files . . . . 13-5
Action if the next logical-log file is not free . . . 135
Action if the next log file contains the last checkpoint . 13-5
Log blobspaces and simple large objects . . 13-6
Contents  iX



Switch log files to activate blobspaces .
Back up log files to free blobpages .

Back up blobspaces after inserting or deletlng TEXT and BYTE data.

Log sbspaces and smart large objects .

Sbspace logging . .

Smart-large-object log records .

Prevent long transactions when logging smart large ob]ect data
Logging process .

Dbspace logging .

Blobspace logging

Chapter 14. Manage logical-log files
Estimate the size and number of log files .
Estimate the log size when logging smart large ob]ects
Estimate the number of logical-log files
Back up logical-log files
Backing up blobspaces .
Back up sbspaces .
Switch to the next logical-log f11e
Free a logical-log file
Delete a log file with status D
Free a log file with status U
Freeing a log file with status U-B or F
Freeing a log file with status U-C or U-C-L .
Free a log file with status U-B-L .
Monitor logging activity . .
Monitor the logical log for fullness .
Monitor temporary logical logs .
SMI tables .
Monitor log-backup status
Allocate logical log files .
Dynamically add a logical-log f11e to prevent transactron blockrng
Dynamically add logical logs for performance .
Adding logical-log files manually .
Dropping logical-log files. .
Change the size of logical-log files.
Move logical-log files . .
Display logical-log records . .
Set high-watermarks for rolling back long transactlons
Long-transaction high-watermark (LTXHWM) .
Exclusive access, long-transaction high-watermark (LTXEHWM)
Adjust the size of log files to prevent long transactions .
Recovering from a long transaction hang

Chapter 15. Physical Iogglng, checkpomts, and fast recovery .

Critical sections
Physical logging .
Fast recovery use of phys1cally-logged pages
Backup use of physically-logged pages .
Database server activity that is physically logged .
Size and location of the physical log .
Strategy for estimating the size of the phys1ca1 log .
Physical-log overflow when transaction logging is turned off .
Checkpoints
LRU values for flushlng a buffer pool between checkpomts
Checkpoints durlng backup S
Fast recovery . .
Need for fast recovery .
Situations when fast recovery is 1n1t1ated
Fast recovery after a checkpoint .

X  IBM Informix Administrator's Guide

. 13-6
. 13-6
. 13-7
. 13-7
. 13-7
. 139
. 139
. 139
. 139
. 139

. 14-1
. 14-1
. 14-3
. 143
. 143
. 14-4
. 144
. 14-4
. 145
. 145
. 145
. 145
. 14-6
. 14-6
. 14-6
. 14-6
. 14-7
. 14-7
. 14-8
. 148

.. 149
. 14-12
. 14-12
. 14-13
. 14-14
. 14-14
. 14-15
. 14-15
. 14-16
. 14-16
. 14-16
. 14-16

. 15-1
. 15-1
. 15-1
. 15-1
. 15-2
. 15-2
. 152
. 153
. 154
. 154
. 15-6
. 15-6
. 15-6
. 15-7
. 15-7
. 15-8



Chapter 16. Manage the physical log . . 16-1
Change the physical-log location and size . 16-1
Monitor physical and logical-logging actrvrty . 162
Monitor checkpoint information . . 16-3
Turn checkpoint tuning on or off . le-4
Force a checkpoint . . lo-4
Server-provided Checkpomt statlstlcs . 16-5
SMI tables . . . 16-5
Turn automatic LRU tunmg on or off . 16-5
Part 4. Fault tolerance
Chapter 17. errorlng . 171
Mirroring . 17-1
Benefits of mlrrormg . 17-1
Costs of mirroring o . 171
Consequences of not mirroring . . 17-2
Data to mirror . . . 17-2
Alternatives to mlrrormg . . 17-2
Mirroring process. . 17-3
Creation of a mirror chunk . 17-3
Mirror status flags . 17-4
Recovery o . 17-4
Actions during processing . . 17-4
Result of stopping mirroring . . 17-5
Structure of a mirror chunk . 17-5
Chapter 18. Using mirroring. . 18-1
Preparing to mirror data . 18-1
Enable the MIRROR configuration parameter . 181
Allocate disk space for mirrored data . . 182
Link chunks (UNIX) . . . 182
Relink a chunk to a device after a dlsk farlure . . 182
Using mirroring . . 182
Mirroring the root dbspace durmg 1n1t1ahzat10n . 18-3
Change the mirror status . 183
Manage mirroring . . 18-3
Start mirroring for unmlrrored storage spaces . 18-3
Start mirroring for new storage spaces. . 18-4
Add mirror chunks . . 184
Take down a mirror chunk . 18-4
Recover a mirror chunk. . 18-5
End mirroring . . 18-5
Chapter 19. Consistency checking . . 191
Perform periodic consistency checking. . 19-1
Verify consistency . . 191
Monitor for data inconsistency . 19-3
Retain consistent level-0 backups . 194
Deal with corruption . . 19-4
Find symptoms of corruption. . 19-4
Fix index corruption . . 19-5
Fix 1I/0O errors on a chunk . . 19-5
Collect diagnostic information . 19-6
Disable 1/0 errors . . 19-6
Monitor the database server for dlsabhng I/ O errors . . 19-7
The message log to monitor disabling I/O errors . . 19-7
Event alarms to monitor disabling I/O errors . 19-8
No bad-sector mapping. . 198

Contents

xi



Part 5. High availability and scalability

Chapter 20. Strategies for high availability and scalablllty .

Components supporting high availability and scalability.

Advantages of data replication .
Transparent scaling and workload balancing strategles
High availability strategies.

Chapter 21. High-availability cluster configuration

Plan for a high-availability cluster .

Configuring clusters . .
Hardware and operatlng—system requlrements for clusters .
Database and data requirements for clusters . .
Database server configuration requirements for clusters .
Configuring secure connections for high-availability clusters

Starting HDR for the First Time .

Decrease setup time using the ontape STDIO feature

Remote standalone secondary servers. .
Comparison of RS secondary servers and HDR secondary servers .
Index page logging . . .

Server Multiplexer Group (SMX) connectlons .
Starting an RS secondary server for the first time. .o
Converting an offline primary server to an RS secondary server .
Delayed application of log records. S
Flow control for remote standalone secondary servers .
Shared disk secondary servers .
SD secondary server .
Disk requirements for SD secondary servers
Setting up a shared disk secondary server .
Obtain SD secondary server statistics . S
Promote an SD secondary server to a primary server
Convert a primary server to a standard server.
SD secondary server security o
Flow control for shared-disk secondary servers

Chapter 22. Cluster administration .

How data replication works .
How data initially replicates . .
Replication of primary-server data to secondary servers .
Data replication configuration examples .
Troubleshooting high-availability cluster enV1ronrnents
Design data replication group clients .

Performing basic administration tasks .
Changing the configuration parameters for an HDR rephcatlon palr
Back up storage spaces and logical-log files.
Changing the logging mode of databases
Add and drop chunks and storage spaces .
Renaming chunks . .
Saving chunk status on the secondary database server .
Use and change mirroring of chunks .
Manage the physical log .
Manage the logical log
Manage virtual processors
Manage shared memory . .
Set the wait time for SMX act1v1ty between servers .
Replicate an index to an HDR secondary database server .
Encrypting data traffic between HDR database servers .
Adjust LRU flushing and automatic tuning in HDR server pa1rs
Cloning a primary server. S o
Database updates on secondary servers .

xil  IBM Informix Administrator's Guide

. 20-1

. 20-1

. 20-3
. 20-5
. 20-8

. 211

. 2141

. 21-1
. 212
. 212
. 21-3
. 21-6
.. 21-7
. 21-10
. 21-11
. 21-12
. 2112
. 21-13
. 21-13
. 21-16
. 21-16
. 21-19
. 21-20
. 21-20
. 21-21
. 21-21
. 21-23
. 21-23
. 21-24
. 21-24
. 21-24

. 2241
. 22-1
. 22-1
. 222

.. 22-8
. 22-20
. 22-22
. 22-23
. 22-23
. 22-23
. 22-24
. 22-24
. 22-24
. 22-25
. 22-25
. 22-26
. 22-26
. 22-26
. 22-26
. 22-26
. 22-27
. 22-28
. 22-29
. 22-30
. 22-32



Backup and restore with high-availability clusters . 22-37
Change the database server mode . . 22-37
Changing the database server type . . 22-38
Prevent blocking checkpoints on HDR servers . . 22-39
Monitor HDR status . 22-40
Obtain RS secondary server statrstlcs . 22-41
Remove an RS secondary server . 22-41
RS secondary server security . .o . 22-41
Create or change a password on an RS secondary server . 22-42
Transaction completion during cluster failover. . . 22-42
Configuring the server so that transactions complete after fallover . . 22-43
Chapter 23. Connection management through the Connection Manager . . 23-1
Configuring connection management . .o . . 232
Creating Connection Manager configuration frles . . .. 233
Configuring environments and setting configuration parameters for connectlon management . 23-37
Defining sqlhosts information for connection management . . 23-38
Creating a password file for connecting to database servers on untrusted networks . 23-59
Starting Connection Managers on UNIX and Linux . . 23-62
Starting Connection Managers on Windows . 23-62
Stopping connection management . e . 23-63
Monitoring and troubleshooting connection management . . 23-63
Strategies for increasing availability with Connection Managers . . 23-64
Configuration examples for connection management . . 23-65
Example of configuring connection management for a hrgh-avallablhty cluster . 23-65
Example of configuring connection management for a grid or replicate set . . 23-69
Example of configuring connection management for a high-availability replication system . . 23-72
Example: Configuring connection management for untrusted networks . . 23-75
Example of configuring connection management for prioritizing connections and network mon1tor1ng . . 23-78
Chapter 24. Cluster failover, redirection, and restoration . 241
Failover configuration for high-availability clusters . 24-1
Failover with ISV cluster management software . 24-1
I/0 fencing for shared file systems . . 242
Cluster failures . . . 243
Redirection and connectivity for data rephcatron chents . . . 24-6
Redirecting clients automatically with the DBPATH environment varrable . 24-6
Redirecting clients with the connectivity information . .. 247
Redirecting clients with the INFORMIXSERVER environment Varlable . 24-10
Redirecting clients with application code L . 24-11
Comparison of redirection methods . 24-12
Recover HDR and RS clusters after failure . . 24-13
Recovering a cluster after critical data is damaged . 24-14
Restarting HDR or RS clusters after a network failure . . 24-15
Restarting HDR or RS clusters if the secondary server fails ... . 24-16
Recovering an HDR cluster after the secondary server became the prlmary server. . 24-16
Restart if the primary server fails . . 24-17
Recovering a shared-disk cluster after data is damaged . 24-19
Critical data is damaged . . 24-19
Critical data is not damaged. . . 24-19
Recovering an SD cluster after the secondary server became the prlmary server . 24-20

Part 6. Distributed data
Chapter 25. Multiphase commit protocols . . 25-1
Transaction managers . . 25-1
TP/XA Library with a transactlon manager . . 25-1
Microsoft Transaction Server (MTS/XA) . . 25-2
Informix transaction support for XA-compliant, external data sources . 252
XA in high-availability clusters . 253
Contents  Xiii



Loosely-coupled and tightly-coupled modes . . 255
Two-phase commit protocol . 25-6
When the two-phase commit protocol is used . 25-6
Two-phase commit concepts . . . 25-6
Phases of the two-phase commit protocol .o . 25-7
How the two-phase commit protocol handles failures. . 258
Presumed-end optimization . 259
Independent actions . . 259
Situations that initiate 1ndependent actlon . . 259
Possible results of independent action . 25-10
The heuristic rollback scenario . . 25-11
The heuristic end-transaction scenario . 25-13
Monitor a global transaction. . 25-15
Two-phase commit protocol errors. . . 25-17
Two-phase commit and logical-log records . . 25-17
Logical-log records when the transaction commits . 25-18
Logical-log records written during a heuristic rollback . . 25-19
Logical-log records written after a heuristic end transaction . 25-20
Configuration parameters used in two-phase commits . . 25-21
Function of the DEADLOCK_TIMEOUT parameter . . 25-22
Function of the TXTIMEOUT parameter . . . 25-22
Heterogeneous commit protocol . . . 25-22
Gateways that can participate in a heterogeneous commlt transactlon . . 25-23
Enable and disable of heterogeneous commit . . 25-23
How heterogeneous commit works . 25-24
Implications of a failed heterogeneous commit. . 25-25
Chapter 26. Manually recovering from failed two-phase commit . 26-1
Determine if manual recovery is required. .o . . 26-1
Determine if a transaction was implemented 1nc0n51stently . 26-1
Determine if the distributed database contains inconsistent data . . 262
Decide if action is needed to correct the situation . . 26-4
Example of manual recovery . . 264
Part 7. Overview of automatic monitoring and corrective actions
Chapter 27. The Scheduler . 271
Scheduler tables . . 272
Built-in tasks and sensors . .. 273
Creating a task . . 27-10
Creating a sensor . . 27-11
Actions for task and sensors. . 27-13
Creating a group . 27-15
Creating a threshold . 27-16
Creating an alert. . 27-17
Monitor the scheduler . . 27-18
Modifying the scheduler . . 27-19
Chapter 28. Remote administration with the SQL administration API . 28-1
SQL administration API admin() and task() functions. . 28-1
Viewing SQL administration APT history . . 282
Controlling the size of the command_history table . 283
Chapter 29. Query drill-down . . 29-1
Specifying startup SQL tracing information by using the SQLTRACE conﬁguratron parameter . . 29-3
Disable SQL tracing globally or for a session. R . e . 294
Enable SQL tracing . . . 29-4
Enable global SQL tracing for a session . 29-5

Xiv  IBM Informix Administrator's Guide



Part 8. Appendixes

Appendix. Accessibility . .
Accessibility features for IBM Informix products
Accessibility features.
Keyboard navigation . .
Related accessibility 1nformat10n
IBM and accessibility.
Dotted decimal syntax diagrams .

Notices .

Privacy policy considerations .
Trademarks .

Index .

Contents

. A-1
S A1

. A-1
A1
A1
. Al

. B-1
. B3
. B3

XV



Xvi  IBM Informix Administrator's Guide



Introduction

In this introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication

This publication describes concepts and procedures for configuring, administering,

and using IBM® Informix®.

A companion volume, the IBM Informix Administrator’s Reference, contains reference
material for using IBM Informix database servers. If you need to tune the
performance of your database server and SQL queries, see your IBM Informix
Performance Guide.

Types of users
This publication is written for the following users:
* Database users
* Database administrators
* Database server administrators
* Performance engineers
* Programmers in the following categories
— Application developers
— DataBlade® module developers
— Authors of user-defined routines

This publication is written with the assumption that you have the following
background:

* A working knowledge of your computer, your operating system, and the utilities
that your operating system provides

* Some experience working with relational databases or exposure to database
concepts

* Some experience with computer programming

* Some experience with database server administration, operating-system
administration, or network administration

Software dependencies

This publication is written with the assumption that you are using IBM Informix
Version 12.10 as your database server.

Assumptions about your locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

© Copyright IBM Corp. 1996, 2014 xvii



The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as ¢, O, and .

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration databases

The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:

¢ The stores_demo database illustrates a relational schema with information about
a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

* The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %SINFORMIXDIR%\bin
directory in Windows environments.

What's new in administration for Informix, Version 12.10

xviii

This publication includes information about new features and changes in existing
functionality.

For a complete list of what's new in this release, go to |http://pic.dhe.ibm.com/ |
finfocenter /informix /v121/topic/com.ibm.po.doc/new_features_ce. htm|

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm

Table 1. What's new in the IBM Informix Administrator's Guide for 12.10.xC4

Overview

Reference

Multitenancy in Informix

You can now deploy an Informix server that supports
multiple tenants. A tenant is a set of users in a client
organization that needs to access the same data and
system resources. You create a dedicated tenant database,
and assign storage and processing resources for that
database based on the service-level agreements with the
client organization. For example, you can provide services
to multiple companies that run efficiently in a single
Informix instance.

[“Multitenancy” on page 9-49

Faster storage optimization

You can now compress, uncompress, and repack data or

indexes faster by including the new parallel option with

the table, fragment, or index argument of the admin() or
task() SQL administration command.

“Example: Optimizing data storage on demand” on page]
9-58

Limit the size of extendable storage spaces

You can prevent an extendable storage space from
growing indefinitely by setting a maximum size for the
space. Run the admin() or task() SQL administration
command with the modify space sp_sizes argument and
supply a value as the max_size argument, in KB. If you
omit the max_size argument, or if you set it to 0, the size
of the storage space can grow indefinitely. Limiting the
size of storage spaces is useful especially in a
multitenancy environment because you can use storage
provisioning to automatically expand the spaces that are
used by a tenant, but limit the space according to the
service level agreement with the tenant.

“Modifying the sizes of an extendable storage space” on|
[page 9-26|

PAM password authentication for DRDA® connections

You can implement password authentication through a
pluggable authentication module (PAM) for Distributed

™

Relational Database Architecture (DRDA) connections.

[“Overview of DRDA” on page 2-44|

Introduction ~ XiX



Table 2. What's new in the IBM Informix Administrator's Guide for 12.10.xC3

Overview

Reference

Automatic resource tuning for performance

You can configure the database server to adjust resources
to improve performance:

* Increase the size of the buffer pool: Include the
extendable=1 option in the BUFFERPOOL
configuration parameter value to make the buffer pool
extendable. Use the new memory field to specify the
size of the buffer pool in units of memory, such as MB
or GB, instead of units of pages. Buffer pools are now
stored in the buffer pool segment of shared memory.

* Increase the number of logical log files: Set the
AUTO_LLOG configuration parameter to 1, the name
of the dbspace for logical logs, and optionally the
maximum size of all logical log files.

¢ Increase the number of CPU and AIO virtual
processors: Include the autotune=1 option in the
VPCLASS configuration parameter values for the CPU
and AIO virtual processor settings. Optionally include
a maximum number of CPU VPs.

¢ Increase the size of the physical log size: Create a
plogspace storage space to store the physical log by
running the onspaces -c -P command. The plogspace is
extendable by default.

If you create a server during installation, the buffer pool,
logical log, and physical log are configured for automatic
expansion. The number of expected users that you specify
in the installation program sets the value of the
AUTO_TUNE_SERVER_SIZE configuration parameter,
which controls the sizes of the buffer pool, the dbspace
for the logical log, the plogspace, and other automatically
created storage spaces.

|“Buffer pool portion of shared memory” on page 6-11|

“Dynamically add logical logs for performance” on paged

14-12

|“Plogspace” on page 8-22|

“Determine the number of CPU virtual processors
needed” on page 4-11]

[“AIO virtual processors” on page 4-19)

Automatic location and fragmentation

In previous releases, the default location for new
databases was the root dbspace. The default location for
new tables and indexes was in the dbspace of the
corresponding database. By default new tables were not
fragmented. As of 12.10.xC3, you can enable the database
server to automatically choose the location for new
databases, tables, and indexes. The location selection is
based on an algorithm that gives higher priority to
non-critical dbspaces and dbspaces with an optimal page
size. New tables are automatically fragmented in
round-robin order in the available dbspaces.

Set the AUTOLOCATE configuration parameter or session
environment option to the number of initial round-robin
fragments to create for new tables. By default, all
dbspaces are available. More fragments are added as
needed when the table grows. You can manage the list of
dbspaces for table fragments by running the admin() or
task() SQL administration API command with one of the
autolocate datatabase arguments.

“Managing automatic location and fragmentation” on|

page 9—15|

XX  IBM Informix Administrator's Guide



Table 2. What's new in the IBM Informix Administrator's Guide for 12.10.xC3 (continued)

Overview

Reference

Improvements to Connection Manager

If you use Connection Manager to manage client
connections, you can use the following new POLICY
values in a service-level agreement:

¢ Use the ROUNDROBIN policy to direct client
connection requests in a repeating, ordered fashion
(round-robin) to a group of servers.

* Use the SECAPPLYBACKLOG policy to redirect
connections away from secondary, high-availability
cluster servers that have apply backlogs over a specific
threshold.

If failover processing in a high-availability cluster cannot
complete, the Connection Manager now automatically
retries failover processing at 1-minute intervals. The
RETRY attribute of the Connection Manager FOC
parameter is ignored because that attribute is not
supported as of this fix pack.

“SLA Connection Manager configuration parameter” on|

page 23-24

Shard data across Enterprise Replication servers

Using Enterprise Replication, Informix can now
horizontally partition (shard) a table or collection across
multiple database servers. When you create a sharding
definition through the cdr utility, rows from a table or
documents from a collection can be distributed across the
nodes of an Enterprise Replication system, reducing the
number of rows or documents and the size of the index
on each node. When you distribute data across database
servers, you also distribute performance across hardware.
As your database grows in size, you can scale up by
adding more database servers.

“Components supporting high availability and)|
scalability” on page 20-1]|

Easier configuration and cloning of a server for
replication

If you create a server during installation, you can easily
create an Enterprise Replication domain or a
high-availability cluster. Previously, you had to configure
connectivity manually on each server.

Run the ifxclone command with the -autoconf option to
clone a server, configure connectivity, and start
replication. You can now create HDR and shared-disk
secondary servers with the ifxclone utility.

|“Creating a clone of a primary server” on page 22-30|

Introduction  XXi



Table 3. What's new in the IBM Informix Administrator's Guide for 12.10.xC1

Overview

Reference

Automatic space management for Enterprise Replication

If you have a storage pool, storage spaces are created
automatically if needed when you define a replication
server. Also, the CDR_DBSPACE and
CDR_QDATA_SBSPACE configuration parameters are set
automatically in the onconfig file. In earlier versions of
Informix, you had to create the required spaces and set
the configuration parameters before you could define a
replication server.

|“Automatic space management” on page 9-23|

Configuring log flow control for shared-disk secondary
servers

You can limit log activity on the primary server so that
shared-disk (SD) secondary servers in the cluster can
catch up. This configuration can improve performance
over congested or intermittent networks. You use the
SDS_FLOW_CONTROL configuration parameter to set
thresholds that start and stop flow control.

“Flow control for shared-disk secondary servers” on page|

21—24_1|

Improved transactional consistency for HDR
synchronization

Use improved HDR synchronization options to balance
system performance and data protection in your
high-availability cluster. Set the new HDR_TXN_SCOPE
configuration parameter or environment option to choose
between fully synchronous mode, asynchronous mode, or
nearly synchronous mode. The three synchronization
modes control when transaction commits are returned to
client applications: after being processed on the primary
server, after being sent to the HDR secondary server, or
after being processed on the HDR secondary server. HDR
synchronization can be set at the instance or session level.

“Fully synchronous mode for HDR replication” on page|
22-4

“Nearly synchronous mode for HDR replication” on pagel
22-5]

|“Asynchronous mode for HDR replication” on page 22-6|

Dynamically configure the database server

You can dynamically configure the database server in the
following ways:

* Dynamically modify many configuration parameters by
using the onmode command, OAT, or the SQL
administration API commands.

* Dynamically export and import configuration
parameters.

* Use the new AUTO_TUNE configuration parameter to
enable or disable all automatic tuning.

You can view more information about parameters,
including current values, valid ranges, and parameter
descriptions, with onstat commands.

|“Database server configuration” on page 1-3|

“Configuration file used during initialization” on page]
3-

xxil  IBM Informix Administrator's Guide



Table 3. What's new in the IBM Informix Administrator's Guide for 12.10.xC1 (continued)

Overview

Reference

Improve space utilization by compressing, repacking, and
shrinking B-tree indexes

You can use SQL administration API commands or
CREATE INDEX statements to save disk space by
compressing B-tree indexes. You can also use SQL
administration API commands to consolidate free space in
a B-tree index, return this free space to the dbspace, and
estimate the amount of space that is saved by
compressing the indexes.

|“B-tree index compression” on page 9-63|

Save disk space by compressing simple large objects in
dbspaces

You can use SQL administration API commands to save
disk space by compressing simple large objects (TEXT
and BYTE data types) that are stored in the same
partition in the same dbspace as the table in which they
are referenced. When you run an SQL administration API
compress or uncompress command, the database server
compresses both the table row data and the referenced
simple large objects. You can choose to compress or
uncompress only the table row data or only the
referenced simple large objects.

|“Data that you can compress” on page 9-61|

Save disk space by enabling automatic data compression

You can use the COMPRESSED keyword with the
CREATE TABLE statement to enable the automatic
compression of large amounts of in-row data when the
data is loaded into a table or table fragment. Then, when
2,000 or more rows of data are loaded, the database
server automatically creates a compression dictionary and
compresses the new data rows that are inserted into the
table.

Also, when you run SQL administration API create
dictionary and compress commands on existing tables
and fragments, you enable the automatic compression of
subsequent data loads that contain 2,000 or more rows of
data. If you run an uncompress command, you disable
automatic compression.

In addition to saving space, automatic compression saves
time because you do not have to compress the data after
you load it.

|“Storage optimization methods” on page 9-55

Improved network failover support

You can configure the Connection Manager to monitor
application network connections and to initiate failover
when a network failure occurs. In earlier releases, the
Connection Manager initiated failover only when the
primary server failed.

“LOCAL_IP Connection Manager configuration|
arameter” on page 23-1§'FOC Connection Manager]
configuration parameter” on page 23-11|

Introduction  Xxiii



Table 3. What's new in the IBM Informix Administrator's Guide for 12.10.xC1 (continued)

Overview Reference

Managing server connections on Windows operating “The sqlhosts file and the SQLHOSTS registry key” on|

systems [page 2—1Z|

On Windows operating systems, you now configure
connectivity information for Informix servers by using the
sqlhosts file, not the Windows registry. The file is
installed in $INFORMIXDIR%\etc\sqlhosts.
%INFORMIXSERVER%, and it uses the same format as the
sqlhosts file on UNIX operating systems. The
sync_registry Scheduler task automatically converts the
connection information between the sqlhosts file format
and the Windows registry format. The task runs every 15
minutes. You can manually convert the connection
information between the sqlhosts file format and the
Windows registry format by running the syncsqlhosts
utility.

Temporary table projection optimization for views and “Temporary tables that the database server creates” on|

derived tables [page 8—30|

Applications and analytic tools can define a query in
which a derived table contains multiple views joined with
base tables, potentially including hundreds of columns.
The database server materializes this query in a
system-generated temporary table. The parent query,
however, might project only a few columns.

The database server creates internally generated
temporary tables that include only the columns that are
specified in the Projection list, the WHERE clause, the
ORDER BY clause, and in other clauses of the immediate
parent query. By excluding unnecessary columns from the
temporary table, the database server uses storage
resources efficiently and avoids 1/O operations on the
columns that do not contribute to the query result.

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL

XXiv  IBM Informix Administrator's Guide



at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation

Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http:/ /www.ibm.com /software /data/sw-library /|

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

Syntax diagrams

Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 4. Syntax Diagram Components

Component represented in PDF

Component represented in HTML

Meaning

>
»»

Statement begins.

v

Statement continues on next
line.

A\ 4

Statement continues from
previous line.

A\
A

Statement ends.

SELECT

Required item.

LOCAL

Optional item.

Introduction XXV


http://www.ibm.com/software/data/sw-library/

Table 4. Syntax Diagram Components (continued)

Component represented in PDF

Component represented in HTML

Meaning

ALL e ALL-mmmmmm P Required item with choice.
+--DISTINCT===-- + Only one item must be
—— DISTINCT—— ' ~UNIQUE---~- X present.
—— UNIQUE ——
e P Optional items with choice
— FOR UPDATE i‘ +--FOR UPDATE----- + are shown below the main
L FOR READ ONLY '--FOR READ ONLY--' line, one of which you might
specify.
NEXT o NEXTmmmmmemee The values below the main
et R line are optional, one of
PRIOR +---PRIOR---==--- + which you might specify. If
—— PRIO '---PREVIOUS----- ' you do not specify an item,
— PREVIOUS—— the value above the line is
used by default.
‘ eees S Optional items. Several items
l | v are allowed; a comma must
m et R precede each repetition.
index_name +---index_name---+
table_name '---table_name---"

»—iTabIe Reference H

>>-| Table Reference |-><

Reference to a syntax
segment.

Table Reference

I view |
table

synonym ———

Table Reference

S m— 4o
EEEEEEE table------ +
'----synonym------ '

Syntax segment.

How to read a command-line syntax diagram

Command-line syntax diagrams use similar elements to those of other syntax

diagrams.

Some of the elements are listed in the table in|Syntax Diagrams}

Creating a no-conversion job

»»—onpladm create job—job

»— -t—table

I— -p—pr'oject—|

-n— -d—device— -D—database——>

Yy

>«

(1)

C -S—serverJ C -T—targetJ I Setting the Run Mode —

XXVl  IBM Informix Administrator's Guide



Notes:

1 See page Z-1

This diagram has a segment that is named “Setting the Run Mode,” which
according to the diagram footnote is on page Z-1. If this was an actual
cross-reference, you would find this segment on the first page of Appendix Z.
Instead, this segment is shown in the following segment diagram. Notice that the
diagram uses segment start and end components.

Setting the run mode:

[T
I I I I I I AR |

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Include onpladm create job and then the name of the job.
2. Optionally, include -p and then the name of the project.
3. Include the following required elements:
* -n
* -d and the name of the device
* -D and the name of the database
¢ -t and the name of the table

4. Optionally, you can include one or more of the following elements and repeat
them an arbitrary number of times:

* -S and the server name
e -T and the target server name

¢ The run mode. To set the run mode, follow the Setting the Run Mode
segment diagram to include -f, optionally include d, p, or a, and then
optionally include 1 or u.

5. Follow the diagram to the terminator.

Keywords and punctuation

Keywords are words that are reserved for statements and all commands except
system-level commands.

A keyword in a syntax diagram is shown in uppercase letters. When you use a
keyword in a command, you can write it in uppercase or lowercase letters, but you

must spell the keyword exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Introduction  XXVii



Identifiers and names

Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in other syntax diagrams. A variable in a syntax diagram, an
example, or text, is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

»>—SELECT—column_name—FROM—table_name

A\
A

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback

XXViii

You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:

* Send email to|docinf@us.ibm.com|

¢ In the Informix information center, which is available online at
|http: / /www.ibm.com /software/data/sw-library/| |, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, complete the
form, and submit your feedback.

* Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at |http://www.ibm.com/planetwide/|

We appreciate your suggestions.

IBM Informix Administrator's Guide


mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Part 1. The database server

© Copyright IBM Corp. 1996, 2014



IBM Informix Administrator's Guide



Chapter 1. Overview of database server configuration and
administration

After you install IBM Informix, you configure the database server system and start
administering the database server.

When you install IBM Informix, follow the installation instructions to ensure that
all prerequisites are met (for example, the permissions of all key files and
directories are set appropriately). The installation instructions are in the IBM
Informix Installation Guide for UNIX, Linux, and Mac OS X and the IBM Informix
Installation Guide for Windows.

You must have the correct permissions to administer the database server. For most
administration tasks, you need the following permissions:

* On UNIX, you must be logged in as user root, user informix, or the owner of
the non-root installation. If role separation is enabled, you must be granted the
DBSA role.

* On Windows, you must be a member of the Informix-Admin group.

You have various options to choose from when you configure the database server.
Configuration includes customizing your environment and the database server.
You can control how the database server runs and what function is available.

You must configure connectivity to connect to client administration tools and
applications.

You must do some initial administration tasks to finish setting up your database
server system. After you configure the database server, your administration
responsibilities include a set of routine tasks.

Database server concepts

To administer the database server, you must understand key concepts around
storage, configuration, logging, CPU use, shared memory use, and automation.

Root dbspace
The root dbspace is the initial dbspace, or storage space, that the database
server creates. The root dbspace contains reserved pages and internal tables
that describe and track all physical and logical units of storage. The root
dbspace is the default location for logical logs, the physical log, databases,
and temporary tables. The database server cannot run without the root
dbspace.

Configuration (onconfig) file
The database server requires a configuration file. Typically, the name of the
configuration file is onconfig.server_name. The onconfig file contains
configuration parameters that control database server properties. The
database server reads the onconfig file during startup, shutdown, and for
some operations while the server is running. Many configuration
parameters can also be set dynamically while the database server is
running.

© Copyright IBM Corp. 1996, 2014 1-1



Virtual processors
A virtual processor runs multiple threads to perform queries and other
tasks. The operating system schedules virtual processors as CPU processes.
Multiple virtual processors run multiple threads in parallel. Virtual
processors are divided into classes where each class is dedicated to
processing a specific type of thread.

Logical logs
The database server contains several logical log files that record data
manipulation operations for logged databases, data definition operations
for all databases, and administrative information such as checkpoint
records and additions and deletions of chunks. A logical log is similar to a
transaction log in other relational database management systems.

Physical log
The physical log stores the before-images of pages. "Before images" are
images of pages that are taken before the database server records the
changed pages on disk. The unmodified pages are available in case the
database server fails or a backup procedure requires the pages to provide
an accurate snapshot of the database server data.

Buffer pool
The buffer pool contains buffers that cache pages from disk in shared
memory. Operations on pages that are cached run faster than operations on
pages that must be retrieved from disk.

Caches
The database server uses caches to store information in shared memory
instead of performing a disk read or another operation to obtain the
information. Caching information improves performance for multiple
queries that access the same tables.

Scheduler
The Scheduler is a subsystem that runs a set of tasks at predefined times
or as determined internally by the server. Tasks are SQL statements can
either collect information or run a specific operation. Some tasks are
internal to the database server and run automatically. You can enable other
tasks, if appropriate. You can also create your own tasks and schedule
when they are run.

System databases
The system databases contain information about the database server. The
sysmaster database contains the system-monitoring interface (SMI) tables.
The SMI tables provide information about the state of the database server.
The sysadmin database contains the tables that contain and organize the
Scheduler tasks and sensors, store data that is collected by sensors, and
record the results of Scheduler jobs and SQL administration API functions.

Environment configuration

You configure your environment by setting environment variables and creating or
modifying files that relate to the environment variables. You can control whether
environment variables are set at the environment level, for a specific user, or for a
database session. You must set environment variables for the database server
environment and for the client environments.

1-2  IBM Informix Administrator's Guide



If you choose to create a database server instance during installation, the
installation program sets the mandatory environment variables. Otherwise, you
must set environment variables before you start the database server. The following
environment variables are mandatory:

¢ The INFORMIXDIR environment variable specifies the directory where you
installed the database server.

¢ The INFORMIXSERVER environment variable specifies the name of the database
server.

* The ONCONFIG environment variable specifies the name of the onconfig file in the
INFORMIXDIR/etc directory.

* The PATH environment variable must include the INFORMIXDIR/bin directory.

To configure the database server environment, you can set other environment
variables:

* If you plan to create an sqlhosts file with a non-default name or location, set the
INFORMIXSQLHOSTS environment variable to the name and path of your sqlhosts
file.

 If you plan to use the DB-Access utility to run SQL statements, specify terminal
properties with the INFORMIXTERM or a similar environment variable.

* If you need Global Language Support (GLS), set GLS environment variables.

* If you want to enable other functionality, set the appropriate environment
variables. Some environment variables control functionality that is also
controlled by configuration parameters. Environment variables override
configuration parameter settings.

To configure client environments, you can set the environment variables that are
supported by your client API. For more information, see your client AP manual.

You can choose from multiple methods for setting environment variables. For
example, you can run the SET ENVIRONMENT statement to set environment
variables for the current session. You can add environment variable settings to log
in scripts, at the command prompt, or in a configuration file.

Related concepts:

[ [Environment variables (SQL Reference)]
Related reference:

[# [GLS-related environment variables (GLS User's Guide)

[ [Environment variables for clients (Client Products Installation Guide)|

[+ [Environment variable changes by version (Migration Guide)|

Database server configuration

You must customize the database server properties and features by setting
configuration parameters, create storage spaces, and configure connectivity. You
can automate startup.

You customize the database server properties by setting or modifying configuration
parameters in the onconfig file. You can use the IBM OpenAdmin Tool (OAT) for
Informix to monitor and update your configuration. OAT provides suggestions for
configuration parameter values to optimize your database server configuration.
The current version of IBM Informix does not use some configuration parameters
that are used in earlier versions of the server.

Chapter 1. Overview of database server configuration and administration ~ 1-3


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_179.htm#ids_sqr_179
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.glsug.doc/ids_gug_063.htm#ids_gug_063
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.cpi.doc/ids_ev_003.htm#ids_ev_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.mig.doc/ids_mig_212.htm#ids_mig_212

1-4

When you start the database server for the first time, disk space is initialized and
the initial chunk of the root dbspace is created. Any existing data in that disk space
is overwritten. Shared memory that the database server requires is also initialized.
When you subsequently start the database server, only shared memory is
initialized. When you install the database server, only the root dbspace is created.
Although the root dbspace is the default location of log files and databases, you
can store log files and databases in other storage spaces to prevent the root
dbspace from running out of space.

Related concepts:

(Chapter 3, “Database server initialization,” on page 3-1|
Related tasks:

[ [Modifying the onconfig file (Administrator's Reference)|

[ |Starting the database server (Installation Guide (UNIX))|

[ [Starting the database server from the Control Panel (Installation Guide|

|g Windows) )]

(& [Starting the database server from the command line (Installation Guid¢|
|! Windows) )I

Related reference:

[ [Configuration parameter changes by version (Migration Guide)|

Storage space creation and management

You can create multiple storage spaces to store different types of objects, such as,
data, indexes, logs, temporary objects, instead of storing everything in the root
dbspace. The way that you distribute the data on disks affects the performance of
the database server. You can configure the database server to both automatically
minimize the storage space that data requires and automatically expand storage
space as needed. You can segregate storage and processing resources among
multiple client organization by configuring multitenancy.

A storage space is composed of one or more chunks. The maximum chunk size is 4
TB. You can have up to 32766 chunks in an instance.

After the database server is initialized, you can create storage spaces such as
dbspaces and sbspaces. Use the IBM OpenAdmin Tool (OAT) for Informix or the
onspaces utility to create storage spaces and chunks.

The following storage spaces are the most common:

dbspace
Stores databases, tables, logical-log files, and the physical log file.

Temporary dbspaces store temporary tables.

sbspace
Stores smart large objects. Smart large objects consist of CLOB (character
large object) and BLOB (binary large object) data types. User-defined data
types can also use sbspaces. Some features of Informix require sbspaces,
such as Enterprise Replication, J/Foundation, spatial data types, and basic
text search queries. In some cases, sbspaces are created automatically when
needed.

Temporary sbspaces store temporary smart large objects without logging
metadata or user data.

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0010.htm#ids_adr_0010
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igul.doc/ids_in_017x.htm#ids_in_017
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_cw_015x.htm#ids_cw_015
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_cw_015x.htm#ids_cw_015
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_cw_018x.htm#ids_cw_018
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_cw_018x.htm#ids_cw_018
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.mig.doc/ids_mig_213.htm#ids_mig_213

plogspace
Stores the physical log. If you do not create a plogspace, the physical log is
stored in a dbspace.

Other types of storage spaces store specialized types of data.

If you create a server during installation, some storage spaces are created
automatically.

Automatically minimizing storage space

You can minimize the amount of space that data needs by configuring automatic
data compression and consolidation. You can compress data, consolidate and
return free space, and merge extents. You can specify how frequently each of the
operations occurs.

You can automatically rotate message logs to limit the amount of space for the
logs.

Automatically extending storage space

After you create storage spaces, you can configure the server to automatically
extend each storage space as needed. You create a storage pool of entries for
available raw devices, cooked files, and directories, and you make sure that the
SP_AUTOEXPAND configuration parameter set to the default value of 1. All types
of storage spaces except external spaces (extspaces) are automatically expanded.

Automatically managing the location of data

You can automate the process of deciding where to locate databases, tables, and
indexes. You can enable the database server to choose the most optimal location for
databases, table, and indexes, and to automatically fragment tables. Instead of
creating a new database in the root dbspace by default, the database server chooses
the location by favoring non-critical spaces, spaces that have the most efficient
page size, and other factors. The database server fragments new tables by
round-robin and adds more fragments when necessary as the table grows.

You can override the automatic behavior by specifying a location for a database or
table.

Multitenancy

You can create multiple tenant databases in a single Informix instance to segregate
data, storage space, and processing resources among multiple client organizations.

Related concepts:

“Managing automatic location and fragmentation” on page 9-15|

Chapter 8, “Data storage,” on page 8-1

Chapter 9, “Manage disk space,” on page 9-1|

“ Automatic space management” on page 9-23|

[ [Manage message logs in an embedded environment (Embeddability Guide)

[“Storage optimization” on page 9-53|

[“Multitenancy” on page 9-49|

Chapter 1. Overview of database server configuration and administration ~ 1-5


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.embed.doc/ids_emb_053.htm#ids_emb_053

1-6

Automatic performance tuning

You can set configuration parameters and Scheduler tasks to enable the database
server to automatically adjust values that affect performance. By default, many
automatic tuning configuration parameters and Scheduler tasks are set to solve
common performance issues.

You can configure the database server to adjust resources to improve performance:

Increase the number of CPU virtual processors (VPs), up to the number of CPU
processors or the number that you specify. Set the VPCLASS configuration
parameter for the cpu class to autotune=1.

Increase the number of AIO VPs. Set the VPCLASS configuration parameter for
the aio class to autotune=1.

Increase the size of the buffer pool. Set the BUFFERPOOL configuration
parameter to enable the automatic extension of the buffer pool.

Increase or decrease the size of private memory caches for CPU VPs. Set the
VP_MEMORY_CACHE_KB configuration parameter to the initial size of the
private memory caches.

Increase the number of logical log files to improve performance. Set the
AUTO_LLOG configuration parameter to 1, plus the name of the dbspace in
which to add log files, and an optional maximum number of KB for all logical
log files.

Increase the size of the physical log as needed to improve performance. Create
the plogspace to store the physical log.

If you created a server during installation, the buffer pool, logical log, and physical
log are configured for automatic extension.

The following automatic tuning options are enabled by default. You can control
whether the options are enabled.

Increase the number of CPU virtual processors to half the number of CPU
processors to ensure optimum performance. Control with the
auto_tune_cpu_vps task in the Scheduler.

Increase the number of AIO virtual processors and page cleaner threads increase
I/0 capability. Control with the AUTO_TUNE configuration parameter.

Process read-ahead requests to reduce the time to wait for disk I/O. Control
with the AUTO_TUNE configuration parameter.

Trigger checkpoints as frequently as necessary and add logical log files as
needed to avoid the blocking of transactions. Control with the AUTO_TUNE and
the DYNAMIC_LOGS configuration parameters.

Tune LRU flushing to improve transaction throughput. Control with the
AUTO_TUNE configuration parameter.

Reoptimize SPL routines and reprepare prepared objects after the schema of a
table is changed to prevent manual processes and errors. Control with the
AUTO_TUNE configuration parameter.

Updates statistics that are stale or missing at scheduled intervals to improve
query performance. Control with Auto Update Statistics tasks in the Scheduler
and the AUTO_TUNE configuration parameter.

Run light scans on compressed tables, tables with rows that are larger than a
page, and tables with VARCHAR, LVARCHAR, and NVARCHAR data. Control
with the BATCHEDREAD_TABLE configuration parameter.

Fetch a set of keys from an index buffer to reduce the number of times that a
buffer is read. Control with the BATCHREAD_INDEX configuration parameter.

IBM Informix Administrator's Guide



* Increase shared memory caches to improve query performance. Control with the
DS_POOLSIZE, PC_POOLSIZE, PLCY_POOLSIZE, and USRC_POOLSIZE
configuration parameters.

Related reference:

[“Built-in tasks and sensors” on page 27-3

[ [Database configuration parameters (Administrator's Reference)|

[ [onspaces -c -P: Create a plogspace (Administrator's Reference)|

Feature configuration

You can configure the database server to support the types of optional
functionality that you need.

The following features are often enabled:

Parallel database queries
You can control the resources that the database server uses to perform
decision-support queries in parallel. You must balance the requirements of
decision-support queries against the requirements of online transaction
processing (OLTP) queries. The resources that you must consider include
shared memory, threads, temporary table space, and scan bandwidth.

Data replication
Data replication is the process of representing database objects at more
than one distinct site.

High-availability cluster configurations consist of a primary server and one
or more secondary servers that contain the same data as the primary
server. High-availability clusters can provide redundancy, failover,
workload balancing, and scalability. You can direct connections from
applications to cluster servers with Connection Manager.

Enterprise Replication replicates all or a specified subset of the data
between geographically distributed database servers. You can define set of
replication servers as a grid to administer and run queries across the
servers. You can combine a high-availability cluster and Enterprise
Replication on the same database server.

Auditing
If you enabled role separation when you installed the database server, you
can audit selected activities. To use database server auditing, you must
specify where audit records are stored, how to handle error conditions, and
other configuration options. You also might want to change how users are
audited if you suspect that they are abusing their access privileges.

Security
You can keep your data secure by preventing unauthorized viewing and
altering of data or other database objects. Use network encryption to
encrypt data that is transmitted between servers and clients, and between
servers. You can use column-level encryption to store sensitive data in an
encrypted format. You create secure connections to the database server
with authentication and authorization processes. Discretionary access
control verifies whether the user who is attempting to perform an
operation is granted the required privileges to perform that operation. You
can use label-based access control (LBAC) to control who has read access
and who has write access to individual rows and columns of data.

Chapter 1. Overview of database server configuration and administration ~ 1-7


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0007.htm#ids_adr_0007
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1182.htm#ids_adr_1182

1-8

Distributed queries
You can use the database server to query and update multiple databases
across multiple database servers or within the same database server
instance. IBM Informix uses a two phase commit protocol to ensure that
distributed queries are uniformly committed or rolled back across multiple
database servers.

Disk mirroring
When you use disk mirroring, the database server writes data to two
locations. Mirroring eliminates data loss due to storage device failures. If
mirrored data becomes unavailable for any reason, the mirror of the data is
available immediately and transparently to users.

Warehousing
You can create data warehouse applications and optimize your data
warehouse queries. Informix Warehouse Accelerator is an in-memory
database that boosts performance for analytic queries on operational and
historical data. Informix Warehouse Accelerator uses a columnar,
in-memory approach to accelerate complex warehouse and operational
queries without application changes or tuning.

Related concepts:

[ [Paralle]l database query (PDQ) (Performance Guide)
[Part 5, “High availability and scalability”|
(Chapter 17, “Mirroring,” on page 17-1]

[ [Overview of Informix Warehouse Accelerator (Informix Warehouse Accelerator]
Guide)|
[ [[BM Informix Enterprise Replication technical overview (Enterprise Replication|
Guide)|

Related reference:

[ [Distributed queries (Database Design Guide)|
Related information:

[# [Auditing data security (Security Guide)]

[ [Securing data (Security Guide)|

Connectivity configuration

The connectivity information allows a client application to connect to the database
server on the network. You must prepare the connectivity information even if the
client application and the database server are on the same computer or node.

Informix client/server connectivity information, the sqlhosts information, includes
the database server name, the type of connection that a client can use to connect to
the database server, the host name of the computer or node on which the database
server runs, and the service name by which it is known. You do not need to
specify all possible network connections in the sqlhosts information before you
start the database server. However, to make a new connection available you must
shut down the database server and then restart it.

The sqlhosts file contains connectivity information. You might also need to modify
other connectivity and security files, depending on your needs.

When the database server is online, you can connect client applications and begin
to create databases. Before you can access information in a database, the client

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_577.htm#ids_prf_577
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/ids_acc_011.htm#ids_wh_011
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/ids_acc_011.htm#ids_wh_011
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_008.htm#ids_erp_008
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_008.htm#ids_erp_008
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_141.htm#ids_ddi_141
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_sec_019.htm#ids_sec_019
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_sec_018.htm#ids_sec_018

application must connect to the database server environment. To connect to and
disconnect from a database server, you can issue SQL statements from the client
programs that are included in the IBM Informix Client Software Development Kit
(Client SDK), such as OpenAdmin Tool (OAT) for Informix, DB-Access, or API
drivers.

Related reference:

[“Connectivity files” on page 2-9|

Automate startup and shutdown on UNIX

You can modify startup and shutdown scripts on UNIX to automatically start and
shut down the database server.

UNIX startup script

Modify the UNIX startup script to start the database server automatically when
your computer enters multiuser mode.

1. Add UNIX and database server utility commands to the UNIX startup script so

that the script performs the following actions:

* Sets the INFORMIXDIR environment variable to the full path name of the
directory in which the database server is installed.

* Sets the PATH environment variable to include the $INFORMIXDIR/bin directory.

* Sets the INFORMIXSERVER environment variable so that the sysmaster database
can be updated (or created, if necessary).

¢ Runs the oninit command, which starts the database server and leaves it in
online mode.

2. If you plan to start multiple versions of the database server (multiple
residency), you must add commands in the script to set the ONCONFIG and
INFORMIXSERVER environment variables and run the oninit command for each
instance of the database server.

3. If different versions of the database server are installed in different directories,
you must add commands to the script to set the INFORMIXDIR environment
variable and repeat the preceding steps for each version.

UNIX shutdown script

Modify your UNIX shutdown script to shut down the database server in a
controlled manner whenever UNIX shuts down. The database server shutdown
commands run after all client applications complete transactions and exit.

1. Add UNIX and database server utility commands to the UNIX shutdown script

so that the script performs the following tasks:

* Sets the INFORMIXDIR environment variable to the full path name of the
directory in which the database server is installed.

* Sets the PATH environment variable to include the $INFORMIXDIR/bin directory.

* Sets the ONCONFIG environment variable to the appropriate configuration file.

* Runs the onmode -ky command, which initiates an immediate shutdown
and takes the database server offline.

2. If you are running multiple versions of the database server (multiple
residency), you must add commands in the script to set the ONCONFIG
environment variable and run the onmode -ky command for each instance.

Chapter 1. Overview of database server configuration and administration ~ 1-9



3. If different versions of the database server are installed in different directories,
you must add commands to the script to set the INFORMIXDIR environment
variable and repeat the preceding steps for each version.

Related concepts:

[+ [Environment variables in Informix products (SQL Reference)|

Related reference:

[ [Database configuration parameters (Administrator's Reference)|

[ [The oninit utility (Administrator's Reference)

Automate startup on Windows

You can automate startup of the database server on Windows.

To start the database server automatically when Windows starts:

1. From the Service control application window, select the IBM Informix service
and click Startup.

2. Select Automatic in the Status Type dialog box.

3. In the Log On As dialog box, select This Account and verify that informix is
in the text box.

To stop automatic startup, clear the Automatic property.

Database server maintenance tasks

1-10

In addition to monitoring the database server for potential problems, regularly
perform routine maintenance tasks to keep the server running smoothly and with
optimum performance.

You can use the IBM OpenAdmin Tool (OAT) for Informix or Informix
command-line utilities to perform the following tasks. Not all of the following
tasks are appropriate for every installation.

Backup data and logical log files
To ensure that you can recover your databases in the event of a failure,
make frequent backups of your storage spaces and logical logs. You can
create backups with the ON-Bar utility or the ontape utility. You can
automate backups with OAT.

Check data for consistency
To ensure that data is consistent, perform occasional checks.

Manage logical logs
To ensure database server performance, perform logical-log administration
tasks, such as, backing up logical-log files, adding, freeing, and resizing
logical-log files, and specifying high-watermarks. The database server
dynamically allocates logical-log files while online to prevent long
transactions from blocking user transactions.

Manage the physical log
To ensure database server performance, make sure that you allocate
enough space for the physical log. You can change the size and location of
the physical log. When the database server starts, it checks whether the
physical log is empty because that implies that the server shut down in a
controlled fashion. If the physical log is not empty, the database server
automatically performs a fast recovery. Fast recovery automatically restores

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_199.htm#ids_sqr_199
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0007.htm#ids_adr_0007
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0395.htm#ids_adr_0395

the databases to a state of physical and logical consistency after a system
failure that might have left one or more transactions uncommitted.

Manage shared memory
To ensure that the database server has the appropriate amount of shared
memory to maintain performance goals, perform the following tasks:

¢ Changing the size or number of buffers (by changing the size of the
logical-log or physical-log buffer, or changing the number of buffers in
the shared-memory buffer pool)

¢ Changing shared-memory parameter values

* Changing forced residency (on or off, temporarily or for a session)
* Tuning checkpoint intervals

* Adding segments to the virtual portion of shared memory

* Configuring the SQL statement cache to reduce memory usage and
preparation time for queries

Manage virtual processors
To ensure database server performance, configure enough virtual
processors (VPs). The configuration and management of VPs has a direct
affect on the performance of a database server. The optimal number and
mix of VPs for your database server depends on your hardware and on the
types of applications that your database server supports.

Manage the database server message log
To ensure that message log space does not fill, monitor the size of the
database server message log. The database server appends new entries to
this file. You can enable the automatic rotating of the database server
message log to limit the total size of the log files.

Related concepts:

[Chapter 19, “Consistency checking,” on page 19-1]

(Chapter 13, “Logical log,” on page 13-1|

(Chapter 15, “Physical logging, checkpoints, and fast recovery,” on page 15-1]

(Chapter 6, “Shared memory,” on page 6-1

(Chapter 4, “Virtual processors and threads,” on page 4-1|

[+ [Tasks that automatically rotate message log files (Embeddability Guide)|

Related reference:

[ [Overview of backup and restore (Backup and Restore Guide)|

Database server monitoring

You can use various tools to monitor database server activity. In addition to tools
and utilities that are provided with Informix, you can use tools that are provided
by the operating system.

IBM OpenAdmin Tool (OAT) for Informix
OAT is a web application for administering and analyzing the performance
of IBM Informix database servers. You can administer multiple database
server instances from a single OAT installation on a web server. You can
access the web server through any browser to administer all your database
servers. The IBM Informix Health Advisor Plug-in for OpenAdmin Tool
(OAT) analyzes the state of the Informix database server. The Health
Advisor plug-in gathers information about the database server, the
databases, and the operating system, and creates a report that contains the
results and recommendations.

Chapter 1. Overview of database server configuration and administration ~ 1-11


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.embed.doc/ids_emb_057.htm#ids_emb_057
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.bar.doc/ids_bar_168.htm#ids_bar_168

1-12

You can check the status and performance of one or more Informix
database servers from your mobile device with the IBM Mobile
OpenAdmin Tool for Informix.

Event alarms

You can enable event alarms to report situations that require your
immediate attention. To use the event-alarm feature, set the
ALARMPROGRAM configuration parameter to the full path name of an
executable file that performs the necessary administrative actions. You can
monitor event alarms in OAT or configure how to receive the alarms.

Database server message log

The database server message log is an operating-system file. The messages
that are contained in the database server message log do not usually
require immediate action. If the database server experiences a failure, the
message log serves as an audit trail for retracing the events that led to an
unanticipated problem. Often the message log provides the exact nature of
the problem and the suggested corrective action.

Monitor the message log once or twice a day to ensure that processing is
proceeding normally and that events are being logged as expected. You can
view the message log in OAT.

Alternatively, run the onstat -m command to obtain the name of the
message log and the 20 most recent entries, or read the complete message
log in a text editor. Run an operating-system command, such as the UNIX
command tail -f, to see the messages as they occur. To view additional
information about a message, use the finderr utility.

onstat utility

The onstat utility provides commands to monitor the database server from
the command line. The onstat utility reads data from shared memory and
reports statistics that are accurate for the instant during which the
command runs. That is, onstat provides information that changes
dynamically during processing, including changes in buffers, locks,
indexes, and users. You can run onstat commands at the command line or
in OAT.

SMI tables

The system-monitoring interface (SMI) tables contain dynamic information
about the state of the database server. You can use SELECT statements on
SMI tables to determine almost anything you might want to know about
your database server. SMI tables are in the sysmaster database.

System console

The database server sends messages that are useful to the database server
administrator by way of the system console. By default, the system console
is set to online.con. To change the destination path name of console
messages, set the CONSOLE configuration parameter.

Windows only: A database server system administrator can log in to the
console from any node to perform system management and monitoring
tasks.

Related concepts:

[+ [Event Alarms (Administrator's Reference)|

[+ [The sysmaster database (Administrator's Reference)|

Related reference:

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0668.htm#ids_adr_0668
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0199.htm#ids_adr_0199

[** [The finderr utility (Administrator's Reference)]

[** [The onstat utility (Administrator's Reference)]

UNIX operating-system tools

The database server relies on the operating system of the host computer to provide
access to system resources such as the CPU, memory, and various unbuffered disk
I/0 interfaces and files. Each operating system has its own set of utilities for
reporting how system resources are used. Different operating-systems might have
monitoring utilities with the same name but different options and informational
displays.

The following table shows typical UNIX operating-system resource-monitoring
utilities. For information about how to monitor your operating-system resources,
consult your system administration guide.

UNIX utility Description

vmstat Displays virtual-memory statistics.

iostat Displays I/0O utilization statistics.

sar Displays various resource statistics.

ps Displays active process information.

cron Captures the status of system resources by a system scheduler that runs
a command or program at regular intervals. You also can use other
scheduling tools that are available with your operating system.

Windows administrative utilities
You can use IBM Informix utilities and Windows utilities to administer and
monitor the database server on Windows operating systems.

The following Informix utilities simplify administration of the database server on
Windows.

Utility

Description and usage

ixpasswd.exe

Changes the logon password for all services that log on as user informix. You can change
the password interactively or on the command line by running the -y option. Using this
utility, you are not required to manually change the password for each service whenever
you change the informix password.

If you are logged on locally and run ixpasswd, it changes the password for services that
log on as the local informix user. If you are logged on domain and run ixpasswd, it changes
the password for services that log on as domain\informix

Usage: ixpasswd [-y new_password]

Chapter 1. Overview of database server configuration and administration ~ 1-13


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1149.htm#ids_adr_1149
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0488.htm#ids_adr_0488

Utility

Description and usage

ixsu.exe

Opens a command line window that runs as the specified user. The user is a local user
unless you specify a domain name. If you do not specify a user name, the default user is
informix. You no longer are required to log off as the current user and log on as informix
to do DBA tasks that must be run as informix.

The ixsu utility requires Advanced User Rights:
* Act as part of the operating system
* Increase quotas

¢ Replace a process-level token
For information about setting Advanced User Rights, see your Windows documentation.

Usage: ixsu [[domain\]username]

ntchname.exe

Changes the registry entries for IBM Informix from the old host name to the new host
name. Run ntchname after you change the host name. This utility does not change user
environment variables.

After you run ntchname, edit the SINFORMIXDIR%\%INFORMIXSERVER%.cmd file and change the
INFORMIXSQLHOSTS entry to the new host name.

Usage: ntchname old_name new_name

Windows Event Viewer

The Event Viewer shows informational, warning, and error messages for the
operating system, other applications, and the database server.

To show database server messages, from the Administrative Tools window, choose
Event Viewer > Security. Double-click any event for a detailed message.

Windows Performance Monitor

The Windows Performance Monitor (perfmon.exe) shows resources such as
processor, memory, cache, threads, and processes. The Performance Monitor also
creates charts, alerts, and reports. You can save information to log files for later
analysis.

To show the Performance Monitor, from the Administrative Tools window, choose
Performance.

1-14 1BM Informix Administrator's Guide



Chapter 2. Client/server communication

These topics explain the concepts and terms that you must understand in order to
configure client/server communication.

Related tasks:
[“Changing client connectivity information” on page 24-8|

Client/server architecture

IBM Informix products conform to the client/server software-design model.
Application or clients can be on the computer housing the database server or on a
different computer. Client applications issue requests for services and data from
the database server. The database server responds by providing the services and
data that the client requested.

You use a network protocol together with a network programming interface to connect
and transfer data between the client and the database server.

Network protocol

A network protocol is a set of rules that govern how data is transferred between
applications and, in this context, between a client and a database server.

The rules of a protocol are implemented in a network driver. A network driver
contains the code that formats the data when it is sent from client to database
server and from database server to client.

Clients and database servers gain access to a network driver by way of a network
programming interface. A network programming interface contains system calls or
library routines that provide access to network-communications facilities. An
example of a network programming interface for UNIX is TLI (Transport Layer
Interface). An example of a network programming interface for Windows is
WINSOCK (sockets programming interface).

The power of a network protocol lies in its ability to enable client/server
communication even though the client and database server are on different
computers with different architectures and operating systems.

You can configure the database server to support more than one protocol, but
consider this option only if some clients use TCP/IP.

Related concepts:

“The sqlhosts file and the SQLHOSTS registry key” on page 2-17
“Database server connections” on page 2-3|

Related tasks:

[“Connections that the database server supports” on page 2-5

Related reference:

[“Network-configuration files” on page 2-10|

© Copyright IBM Corp. 1996, 2014 2-1



2-2

Network programming interface

A network programming interface is an application programming interface (API) that
contains a set of communications routines or system calls. An application can call
these routines to communicate with another application that is on the same or on
different computers. In the context of this explanation, the client and the database
server are the applications that call the routines in the TLI or sockets API. Clients
and database servers both use network programming interfaces to send and
receive the data according to a communications protocol.

Both client and database server environments must be configured with the same
protocol if client/server communication is to succeed. However, some network
protocols can be accessed through more than one network programming interface.
For example, TCP/IP can be accessed through either TLI or sockets, depending on
which programming interface is available on the operating-system platform.

Related concepts:

[“Communication support services” on page 2-9|

[“Network security files” on page 2-12|

Related reference:

[“A network connection” on page 2-5(|

Windows network domain

Windows network technology enables you to create network domains. A domain is
a group of connected Windows computers that share user account information and
a security policy. A domain controller manages the user account information for all
domain members.

The domain controller facilitates network administration. By managing one account
list for all domain members, the domain controller relieves the network
administrator of the requirement to synchronize the account lists on each of the
domain computers. In other words, the network administrator who creates or
changes a user account must update only the account list on the domain controller
rather than the account lists on each of the computers in the domain.

To log in to a Windows database server, a user on another Windows computer
must belong to either the same domain or a trusted domain. A trusted domain is
one that establishes a trust relationship with another domain. In a trust relationship,
user accounts are only in the trusted domain.

A user who attempts to log in to a Windows computer that is a member of a
domain can do so either by using a local login and profile or a domain login and
profile. However, if the user is listed as a trusted user or the computer from which
the user attempts to log in is listed as a trusted host, the user can be granted login
access without a profile.

Important: A client application can connect to the database server only if there is
an account for the user ID in the Windows domain in which the database server
runs. This rule also applies to trusted domains.

If you specify a user identifier but no domain name for a connection to a
workstation that expects both a domain name and a user name (domain\user), the
database server checks only the local workstation and the primary domain for the
user account. If you explicitly specify a domain name, that domain is used to
search for the user account. The attempted connection fails with error -951 if no
matching domain\user account is found on the local workstation.

IBM Informix Administrator's Guide



Use the CHECKALLDOMAINSFORUSER configuration parameter to configure
how the database server searches for user names in a networked Windows
environment.

Table 2-1. Locations Informix searches for user names specified either alone or with a
domain name.

Domain and user User name only
specified specified
CHECKALLDOMAINSFORUSER is unset Searches in the Searches on the local
specified domain host only
only
CHECKALLDOMAINSFORUSER=0 Searches in the Searches on the local
specified domain host only
only
CHECKALLDOMAINSFORUSER=1 Searches in the Searches in all
specified domain domains
only

Important: The database server's trusted client mechanism is unrelated to the trust
relationship that you can establish between Windows domains. Therefore, even if a
client connects from a trusted Windows domain, the user must have an account in
the domain on which the database server is running.

Related reference:

[* [CHECKALLDOMAINSFORUSER configuration parameter (Administrator'y

|!3eference)|

Database server connections

A client application establishes a connection to a database server with either the
CONNECT or DATABASE SQL statement. For example, an application might
contain the following CONNECT statement to connect to the database server
named my_server:

CONNECT TO '@my_server'

Tip: The database server's internal communications facility is called Association
Services Facility (ASF). If you see an error message that includes a reference to
ASF, you have a problem with your connection.

Related reference:

[“Network protocol” on page 2-1|
[+ [CONNECT statement (SQL Syntax)|
[ [DATABASE statement (SQL Syntax)|

Supporting multiplexed connections

Some applications connect multiple times to the same database server on behalf of
one user. A multiplexed connection uses a single network connection between the
database server and a client to handle multiple database connections from the
client. Client applications can establish multiple connections to a database server to
access more than one database on behalf of a single user. If the connections are not
multiplexed, each database connection establishes a separate network connection to
the database server. Each additional network connection uses additional computer
memory and processor time, even for connections that are not active. Multiplexed

Chapter 2. Client/server communication 2-3



http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1064.htm#ids_adr_1064
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1064.htm#ids_adr_1064
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0344.htm#ids_sqs_0344
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0652.htm#ids_sqs_0652

2-4

connections enable the database server to create multiple database connections
without using up the additional computer resources that are required for
additional network connections.

To configure the database server to support multiplexed connections:

1. Define an alias using the DBSERVERALIASES configuration parameter. For
example, specify:
DBSERVERALIASES ifx_mux

2. Add an sqlhosts file entry for the alias using onsqlmux as the nettype entry.

The hostname and servicename, must have entries, but the entries are ignored.
Dashes (-) can be used as entries. For example:

#dbservername nettype hostname servicename options
ifx_mux onsqlmux - -

3. Enable multiplexing for the selected connection types by specifying m=1 in the
sqlhosts entry that the client uses for the database server connection. For
example:

#dbservername nettype hostname servicename options
menlo ontlitcp valley Jfkl m=1

4. On Windows platforms, you must also set the IFX_SESSION_MUX
environment variable.

The following example shows both onconfig file and sqThosts file entries.

onconfig file:

DBSERVERNAME web_tT1i
DBSERVERALIASES web_mux

sqlhosts file:

#dbservername nettype hostname servicename options
web_tli ontlitcp  nodeb svch m=1
web_mux onsqlmux - -

You are not required to change the sqlhosts information that the database server
uses. The client program does not require any special SQL calls to enable
connections multiplexing. Connection multiplexing is enabled automatically when
the onconfig file and the sqlhosts entries are configured appropriately and the
database server starts.

Multiplexed connections do not support:

¢ Multithreaded client connections

* Shared-memory connections

* Connections to subordinate database servers (for distributed queries or data
replication, for example)

If any of these conditions exist when an application attempts to establish a
connection, the database server establishes a standard connection. The database
server does not return an SQL error.

The Informix ESQL/C sqlbreak() function is not supported during a multiplexed
connection.

Related concepts:
[“The sqlhosts file and the SQLHOSTS registry key” on page 2-17

[ [Multiplexed connections and CPU utilization (Performance Guide)|

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_127.htm#ids_prf_127

Related reference:
[“sqlhosts file and SQLHOSTS registry key options” on page 2-24|

[ [DBSERVERNAME configuration parameter (Administrator's Reference)|
[ [DBSERVERALIASES configuration parameter (Administrator's Reference)|

Connections that the database server supports

The database server supports the following types of connections with client

application.

Connection type Windows UNIX Local Network
Sockets X X X X
TLI (TCP/IP) X X X
Shared memory X X

Secure Sockets Layer X X X
(SSL)

Stream pipe X X

Named pipe X X

Secure Sockets Layer (SSL) connections use encryption for data communication
between two points over a network.

When configuring connectivity, consider setting the LISTEN_TIMEOUT and
MAX_INCOMPLETE_CONNECTION configuration parameters. These parameters
enable you to reduce the risk of a hostile denial-of-service (DOS) attack by making
it more difficult to overwhelm the Listener VP that handles connections.

UNIX only: On many UNIX platforms, the database server supports multiple
network programming interfaces. The machine notes show the interface/protocol
combinations that the database server supports for your operating system.

To set up a client connection:

1. Specify connectivity and connection configuration parameters in your onconfig
file.

2. Set up appropriate entries in the connectivity files on your platform.

3. Specify connectivity environment variables in your UNIX start-up scripts or the
local and domain-wide Windows registries.

4. Add an sqlhosts entry to define a dbserver group for your database server.
Related concepts:

[ [Secure sockets layer protocol (Security Guide)|

[ [Limiting denial-of-service flood attacks (Security Guide)|

[“The sqlhosts information” on page 2-19|

Related reference:

[ [NETTYPE configuration parameter (Administrator's Reference)

[“Network protocol” on page 2-1|
[+ [LISTEN_TIMEOUT configuration parameter (Administrator's Reference)|

Chapter 2. Client/server communication 2-5


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0045.htm#ids_adr_0045
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_ssl_001.htm#ids_ssl_001
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_034.htm#ids_am_034
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0114.htm#ids_adr_0114
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0093.htm#ids_adr_0093

[+ [MAX_INCOMPLETE_CONNECTIONS configuration parameter]|
[(Administrator's Reference)|

[‘Connectivity files” on page 2-9|

“Configuration parameters related to connectivity” on page 2-3§

“Environment variables for network connections” on page 2-43|

“sqlhosts connectivity information” on page 2-20|

Local connections

2-6

A local connection is a connection between a client and the database server on the
same computer. The following topics describe different types of local connections.

Shared-memory connections (UNIX)

A shared-memory connection uses an area of shared-memory as the channel through
which the client and database server communicate with each other. A client cannot
have more than one shared-memory connection to a database server.

The following figure illustrates a shared-memory connection.

Shared .
memory \\Dat;meweserver'
Client
application ‘)

\ Computer /

Figure 2-1. Client application and a database server communication through a
shared-memory connection.

Shared memory provides fast access to a database server, but it poses some
security risks. Errant or malicious applications might delete or view message
buffers of their own or of other local users. Shared-memory communication is also
vulnerable to programming errors if the client application performs explicit
memory addressing or over-indexes data arrays. Such errors do not affect the
database server if you use network communication or stream pipes.

Example of a shared-memory connection

The following figure shows a shared-memory connection on the computer named
river.

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0106.htm#ids_adr_0106
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0106.htm#ids_adr_0106

river

/ river_shm \

Shared
memory Database server

]
Comn )’
N Y,

Figure 2-2. A shared-memory connection between a client application and a database server
named river_shm.

The onconfig file for this installation includes the following line:
DBSERVERNAME river_shm

The sqlhosts file for this installation includes the following lines:

#dbservername nettype hostname servicename options
river_shm onipcshm river rivershm

The client application connects to this database server using the following
statement:

CONNECT TO '@river_shm'

For a shared-memory connection, no entries in network configuration files are
required. Use arbitrary values for the hostname and servicename fields of the
sqlhosts file.

Related concepts:

[“Communications portion of shared memory (UNIX)” on page 6-19

[“How a client attaches to the communications portion (UNIX)” on page 6-4|

Related reference:

[“Examples of client/server configurations” on page 2-49)|

Stream-pipe connections (UNIX and Linux)

A stream pipe is a UNIX interprocess communication (IPC) facility that allows
processes on the same computer to communicate with each other.

Stream-pipe connections have the following advantages:

* Unlike shared-memory connections, stream pipes do not pose the security risk of
being overwritten or read by other programs that explicitly access the same
portion of shared memory.

* Unlike shared-memory connections, stream-pipe connections allow distributed
transactions between database servers that are on the same computer.

Stream-pipe connections have the following disadvantages:

* Stream-pipe connections might be slower than shared-memory connections on
some computers.

 Stream pipes are not available on all platforms.

* When you use shared memory or stream pipes for client/server
communications, the hostname entry is ignored.

Chapter 2. Client/server communication 2-7



2-8

Related reference:

[“sqlhosts connectivity information” on page 2-20|

Named-pipe connections (Windows)

Named pipes are application programming interfaces (APIs) for bidirectional
interprocess communication (IPC) on Windows. Named-pipe connections provide a
high-level interface to network software by making transport-layer operations
transparent. Named pipes store data in memory and retrieve it when requested, in
a way that is similar to reading from and writing to a file system.

Local-loopback connections

A network connection between a client application and a database server on the
same computer is called a local-loopback connection. The networking facilities used
are the same as if the client application and the database server were on different
computers. You can make a local-loopback connection provided your computer is
equipped to process network transactions. Local-loopback connections are not as
fast as shared-memory connections, but they do not pose the security risks of
shared memory.

In a local-loopback connection, data seems to pass from the client application, out
to the network, and then back in again to the database server. The internal
connection processes send the information directly between the client and the
database server and do not put the information out on the network.

An example of a local-loopback connection

The following figure shows a local-loopback connection that uses sockets and
TCP/IP.

river
\ TCP/IP network
river_soc programming
: interface
\\=‘«
S0C - TCP

Figure 2-3. A local-loopback connection between a client and a database server named
river_soc on a computer named river.

The sqThosts file for this installation includes the following lines:

#dbservername nettype hostname servicename options
river_soc onsoctcp river riverol

If the network connection uses TLI instead of sockets, only the nettype entry in
this example changes. In that case, the nettype entry is ontlitcp instead of
onsoctcp.

The onconfig file for this installation includes the following lines:
DBSERVERNAME river_soc

This example assumes that an entry for river is in the hosts file and an entry for
riverol is in the services file.

IBM Informix Administrator's Guide



Related reference:

[‘Examples of client/server configurations” on page 2-49)|

Communication support services

Communication support services include connectivity-related services such as:

* Authentication, which is the process of verifying the identity of a user or an
application. The most common form of authentication is to require the user to
enter a name and password to obtain access to a computer or an application.

* Message integrity, which ensures that communication messages are intact and
unaltered when they arrive at their destination.

* Message confidentiality, which protects messages from unauthorized viewing,
usually through encryption and decryption, during transmission.

Communication support services can also include other processing such as data
compression or traffic-based accounting.

The database server provides extra security-related communication support
services through plug-in software modules called Communication Support
Modules (CSM). The database server uses the default authentication policy when
you do not specify a communications support module.

Related concepts:

[“Network programming interface” on page 2-2|

[“Network security files” on page 2-12|

[ [Communication support modules for data transmission encryption (Security|
Guide)|

[ [Single sign-on authentication (Security Guide)

[ [Simple password encryption (Security Guide)|

Connectivity files

The connectivity files contain the information that enables client/server
communication and enable a database server to communicate with another
database server.

The connectivity configuration files can be divided into three groups:
* Network-configuration files

* Network security files

* The sqlhosts file

Windows: On the database server, the connectivity information is stored in the
sqlhosts file; however, on clients the connectivity information is stored in the
SQLHOSTS registry.

Related tasks:
[“Connections that the database server supports” on page 2-§

Related reference:

[“Connectivity configuration” on page 1-§

Chapter 2. Client/server communication 2-9


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_en_003.htm#ids_en_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_en_003.htm#ids_en_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_sso_001.htm#ids_sso_001
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_027.htm#ids_am_027

2-10

Network-configuration files

These topics identify and explain the use of network-configuration files on TCP/IP
networks.

Related reference:

[“Network protocol” on page 2-1|

TCP/IP connectivity files

When you configure the database server to use the TCP/IP network protocol, you
use information from the hosts and services files to prepare the sqlhosts
information.

The hosts file requires a single entry for each network-controller card that connects
a computer running an IBM Informix client/server product on the network. Each
entry in the file contains the IP address (or ethernet card address) and host name.
You can also include the host alias. Although the length of the host name is not
limited in the hosts file, the IBM Informix database server limits the host name to
256 bytes.

The following example has two entries.

#address hostname alias
98.555.43.21 odyssey
12.34.56.555 illiad sales

The services file contains an entry for each service available through TCP/IP.
Each entry is a single line that contains the following information:

¢ Service name

IBM Informix products use this name to determine the port number and
protocol for making client/server connections. The service name is limited to 128
bytes.

* Port number and connection protocol, separated by a forward slash ( /)
character

The port number is the computer port, and the protocol for TCP/IP is tcp.

The operating system imposes restrictions on the port number. User informix
must use a port number equal to or greater than 1024. Only root users are
allowed to use a port number lower than 1024.

* Host Aliases (optional)

The service name and port number are arbitrary. However, they must be unique
within the context of the file and must be identical on all the computers running
IBM Informix client/server products. The following example has one entry:

#servicename  port/protocol
server2 1526/tcp

This entry makes server2 known as the service name for TCP port 1526. A
database server can then use this port to service connection requests.

Important: For database servers that communicate with other database servers,
you must define either a TCP/IP connection or an IPCSTR (interprocess
communications stream pipe) connection for the DBSERVERNAME configuration
parameter. You can also define at least one DBSERVERALIASES configuration
parameter setting with the appropriate connection protocol for connectivity
between the coordinator and the subordinate servers. For cross-server transactions,
each participating server must support a TCP/IP or an IPCSTR connection with
the coordinator, even if both database server instances are on the same

IBM Informix Administrator's Guide



workstation.

You typically include a separate NETTYPE parameter for each connection type that
is associated with a dbserver name. You list dbserver name entries in the
DBSERVERNAME and DBSERVERALIASES configuration parameters. You
associate connection types with dbserver names through entries in the sqlhosts
file or registry.

The hosts and services files must be available to each computer that runs an IBM
Informix client/server product.

UNIX:

* The hosts and services files are in the /etc directory.

* On systems that use NIS, the hosts and services files are maintained on the
NIS server. The hosts and services files that are on your local computer might
not be used and might not be up to date. To view the contents of the NIS files,
enter the following commands on the command line:

ypcat hosts
ypcat services

Windows:
* The hosts and services files are in $WINDIR%\system32\drivers\etc\.

* You might want to configure TCP/IP to use the Domain Name Service (DNS)
for host name resolutions.

¢ The Dynamic Host Configuration Product (DHCP) dynamically assigns IP
addresses from a pool of addresses instead of using IP addresses that are
explicitly assigned to each workstation. If your system uses DHCP, Windows
Internet Name Service (WINS) is required. DHCP is transparent to the database
server.

Related reference:

[“sqlhosts connectivity information” on page 2-20|

Client and server actions when a TCP/IP connection is opened:
When a TCP/IP connection is opened, the following information is read on the
client side:

¢ The INFORMIXSERVER environment variable.

* The hosts file information (INFORMIXSQLHOSTS environment variable,
$INFORMIXDIR/etc/sqlhosts file and services file information

¢ Other environment variables

e Resource files

The following information is read on the server side:
¢ The DBSERVERNAME configuration parameter
* The DBSERVERALIASES configuration parameter

* Server environment variables and configuration parameters, including any
NETTYPE configuration parameter setting that manages TCP/IP connections.

Related reference:

[ [NETTYPE configuration parameter (Administrator's Reference)
Multiple TCP/IP ports

To take advantage of multiple ethernet cards:

* Make an entry in the services file for each port the database server uses, as in
the following example:

Chapter 2. Client/server communication 2-11


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0114.htm#ids_adr_0114

2-12

#servicename  port/protocol alias

socl 21/tcp

soc2 22/tcp

Each port of a single IP address must be unique. Separate ethernet cards can use
unique or shared port numbers. You might want to use the same port number
on ethernet cards connecting to the same database server. (In this scenario, the
service name is the same.)

* DPut one entry per ethernet card in the hosts file with a separate IP address, as in
the following example:
#address hostname alias
192.147.104.19  svc8
192.147.104.20  svc8l

* In the onconfig file, set DBSERVERNAME configuration parameter for one of the
ethernet cards and the DBSERVERALIASES configuration parameter for the other
ethernet card. The following lines show sample entries in the onconfig file:
DBSERVERNAME chicagol
DBSERVERALIASES chicago2

* Add one sqlhosts entry for each ethernet card. That is, make an entry for the
DBSERVERNAME and another entry for the DBSERVERALIASES.
#dbservername nettype hostname servicename options

chicagol onsoctcp svc8 socl
chicago?2 onsoctcp svc8l soc2

After this configuration is in place, the application communicates through the
ethernet card assigned to the dbserver name that the INFORMIXSERVER environment
variable provides.

Related reference:

(& [[NFORMIXSERVER environment variable (SQL Reference)|

Network security files

IBM Informix products follow standard security procedures that are governed by
information contained in the network security files. For a client application to
connect to a database server on a remote computer, the user of the client
application must have a valid user ID on the remote computer.

Related concepts:

[‘Network programming interface” on page 2-2|

[“Communication support services” on page 2-9|

Related reference:

[ [REMOTE_SERVER_CFG configuration parameter (Administrator's Reference)|
[ [REMOTE_USERS_CFG configuration parameter (Administrator's Reference)

[ [S6_USE_REMOTE_SERVER_CFG configuration parameter (Administrator's|
|Eeference)|

Trusted-host information
Users on trusted hosts are allowed to access the local system without supplying a
password. You can include an optional user name to limit the authentication to a
specific user on a specific host.

Use one of the following trusted-hosts files to specify remote hosts for rlogin, rsh,
rcp, and remd remote-authentication:

* hosts.equiv

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_266.htm#ids_sqr_266
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1123.htm#ids_adr_1123
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1124.htm#ids_adr_1124
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141

* The file that is specified by a database server's REMOTE_SERVER_CFG
configuration parameter

Use trusted-hosts information only for client applications that do not supply a user
account or password. If a client application supplies an invalid account name and
password, the database server rejects the connection even if the trusted-host
information contains an entry for the client computer.

To use trusted-host information for authentication, specify the s=1 or s=3 options in
sqlhosts file entries. If you do not specify an s option, s=3 is the default.

On Windows, the trusted-host file is in the \%WINDIR%\system32\drivers\etc
directory.

On Linux and UNIX systems, the trusted-host file is in the $INFORMIXDIR/etc/
directory.

The hosts.equiv file has the following requirements:
* It must be owned by user informix
* It belong to group informix
* Permissions on the file must be restricted so that only user informix can modify
the file. Using octal permissions, one of the following values is appropriate:
- 644
- 640
- 444
- 440

If you are using the hosts.equiv file and you use the rlogind daemon, you can
execute the following statement on the client computer to determine whether the
client is trusted:

rlogin hostname

If you log-in successfully without receiving a password prompt, the client is
trusted. This method of determining if a client is trusted does not work when the
file specified by the REMOTE_SERVER_CFG configuration parameter is used

Trusted-host file entries

To avoid an extra DNS lookup, specify the host name both with and without the
domain name. For example, if the trusted host is named hostl and it is in the
domain example.com, then add the following entries to the trusted-host file:
#trustedhost username

hostl informix
hostl.example.com informix

On some networks, the host name that a remote host uses to connect to a
particular computer might not be the same as the host name that the computer
uses to refer to itself. For example, the network host with the fully qualified
domain name (FQDN) host2.example.com might refer to itself with the local host
name viking. If this situation occurs, specify both host-name formats:
#trustedhost

host2.example.com
viking

Chapter 2. Client/server communication 2-13



2-14

Using the file specified by the REMOTE_SERVER_CFG configuration
parameter instead of the hosts.equiv file

In the following situations, use the REMOTE_SERVER_CFG configuration
parameter and the file that the parameter specifies:

* You need different trusted hosts for the database server than those listed for the
OS.

¢ The security policies at your installation do not allow the use of hosts.equiv.

* You are a user of a non-root server instance and need to control which hosts are
trusted.

To add entries to the file specified by the REMOTE_SERVER_CFG configuration
parameter, you can manually enter the information or you can run the admin() or
task() function with the cdr add trustedhost argument. If you run cdr add
trustedhost argument with the admin() or task() function on a server in a
high-availability cluster, the trusted-host information is added to the trusted-host
files of all database servers in the cluster. Do not run the admin() or task() function
with the cdr Tist trustedhost argument if you have manually entered
trusted-host information on any of the database servers in a high-availability
cluster or Enterprise Replication domain.

Related concepts:

[ [Creating sqlhost group entries for replication servers (Enterprise Replication|
Guide)|

[“Redirecting clients with the connectivity information” on page 24-7|
Related tasks:

[“Configuring secure connections for high-availability clusters” on page 21-6|

Related reference:
[“sqlhosts file and SQLHOSTS registry key options” on page 2-24]

[# INFORMIXSERVER environment variable (SQL Reference)]

[ [DBPATH environment variable (SQL Reference)|

[ [REMOTE_SERVER_CFG configuration parameter (Administrator's Reference)|
[* [S6_USE_REMOTE_SERVER_CFG configuration parameter (Administrator'y

|!3eference)|

Trusted-user information

In their .rhosts file, a user can list hosts from which they can connect as a trusted
user. The .rhosts file is located in the user's home directory on the computer
housing the database server. To enable the trusted user authentication, specify s=2
or s=3 in the options in the sqlhosts entry. If you do not specify an s option, s=3 is
the default.

There may be reasons why a user’s .rhosts file cannot be used. For example, a
non-root installation might not have read access to a specific user’s .rhosts file.
You can specify an alternate filename by setting the REMOTE_USERS_CFG
configuration parameter. If you set this parameter, the database server only has a
single trusted-user file for all users.

Each line of the .rhosts file is a host from which the user can connect. You must
specify server names both with and without domain names to avoid performing an
extra DNS lookup. For example:

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_112.htm#ids_erp_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_112.htm#ids_erp_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_266.htm#ids_sqr_266
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_221.htm#ids_sqr_221
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1123.htm#ids_adr_1123
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1141.htm#ids_adr_1141

#trustedusers
XXX .example.com
XXX

yyy.example.com
yyy

The file specified by the REMOTE_USERS_CFG configuration parameter must be a
combination of individual .rhosts files. Each single-line entry of the file has the
following format:

hostname username

For example, suppose the following two .rhosts files existed for users John and
Fred:

~john/.rhosts

#trustedhosts
XXX.example.com
XXX

yyy.example.com
yyy

~fred/.rhosts

#trustedhosts
XXX.example.com
XXX

zzz.example.com
77z

John does not trust zzz.example.com or zzz, and Fred does not trust
yyy.example.com or yyy.

The .rhosts files could be combined into a single file with the following format:

#trustedhost username
xxx.example.com  john
XXX john

yyy.example.com  john
yyy john

xxx.example.com  fred
XXX fred

zzz.example.com fred
722 fred

Windows: A home directory is not automatically assigned when the Windows
administrator creates a user identity. The administrator can add a home directory
to a user's profile with the User Manager application.

Related concepts:

[ [Creating sqlhost group entries for replication servers (Enterprise Replication|

Euide)|

[“Redirecting clients with the connectivity information” on page 24-7|

Related reference:
[“sqlhosts file and SQLHOSTS registry key options” on page 2-24

[ [[NFORMIXSERVER environment variable (SQL Reference)|

Chapter 2. Client/server communication 2-15


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_112.htm#ids_erp_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_112.htm#ids_erp_112
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_266.htm#ids_sqr_266

2-16

[ [DBPATH environment variable (SQL Reference)|

[ [REMOTE_USERS_CFG configuration parameter (Administrator's Reference)

The netrc information

The netrc information is optional information that specifies identity data. A user
who does not have authorization to access the database server or is not on a
computer that is trusted by the database server can use this file to supply a name
and password that are trusted. A user who has a different user account and
password on a remote computer can also provide this information.

UNIX: The netrc information is in the .netrc file in the user's home directory. Use
any standard text editor to prepare the .netrc file. The format of a netrc entry is:

machine machine_name login user_name password user_password
Windows: Use the Host Information tab of setnet32 to edit the netrc information.

If you do not explicitly provide the user password in an application for a remote
server (that is, through the USER clause of the CONNECT statement or the user
name and password prompts in DB-Access), the client application looks for the
user name and password in the netrc information. If the user explicitly specified
the password in the application, or if the database server is not remote, the netrc
information is not consulted.

The database server uses the netrc information regardless of whether it uses the
default authentication policy or a communications support module.

For information about the specific content of this file, see your operating system
documentation.

Windows only: On Windows, a home directory is not automatically assigned
when the Windows administrator creates a user identity. The administrator can
add a home directory to a user's profile with the User Manager application

Related reference:
[“sqlhosts file and SQLHOSTS registry key options” on page 2-24]

User impersonation:

For certain client queries or operations, the database server must impersonate the
client to run a process or program on behalf of the client. In order to impersonate
the client, the database server must receive a password for each client connection.
Clients can provide a user ID and password through the CONNECT statement or
netrc information.

The following examples show how you can provide a password to impersonate a
client.

netrc
machine trngpc3 login bruce password imdgolf

CONNECT statement
CONNECT TO ol_trngpc3 USER bruce USING "im4golf"

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_221.htm#ids_sqr_221
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1124.htm#ids_adr_1124

The sqlhosts file and the SQLHOSTS registry key

IBM Informix client/server connectivity information, the sqlhosts information,
contains information that enables a client application to find and connect to any
IBM Informix database server on the network.

The default location of the sqThosts file is:
UNIX: $INFORMIXDIR/etc/sqlhosts

Windows:
%INFORMIXDIR%\etc\sqlhosts.%INFORMIXSERVER%

If you store the information in another location, you must set the INFORMIXSQLHOSTS
environment variable.

If you set up several database servers to use distributed queries, use one of the
following ways to store the sqlhosts information for all the databases:

* In one sqlhosts file, pointed to by the INFORMIXSQLHOSTS environment variable
* In separate sqlhosts files in each database server directory
Related concepts:

[“Redirecting clients with the connectivity information” on page 24-7]
Related tasks:
[“Supporting multiplexed connections” on page 2-3|

Related reference:

[“Network protocol” on page 2-1|

Creating the sqlhosts file with a text editor

The sqlhosts file is located, by default, in the $INFORMIXDIR/etc directory. As an
alternative, you can set the INFORMIXSQLHOSTS environment variable to the full path
name and file name of a file that contains the sqlhosts information. Each
computer that hosts a database server or a client must have an sqlhosts file.

Open any standard text editor to create the sqlhosts file.

Note:
» Use white space (spaces, tabs, or both) to separate the fields.
* Do not include any spaces or tabs within a field.

* To put comments in the sqlhosts file, start a line with the comment character
(#). You can also leave lines blank for readability.

Sample sqlhosts file

The following code block shows a sample sqlhosts file.

#dbservername nettype hostname servicename options
menlo onipcshm valley menlo

newyork ontlitcp hill dynsrvr2 s=2,b=5120
payroll onsoctcp dewar pyl

asia group - - e=asia.3
asia.l ontTitcp node6 svc8 g=asia
asia.2 onsoctcp node0 svcl g=asia
portland drsocss] dewar portland_serv

Setting up the SQLHOSTS registry key with Setnet32 (Windows)

A client application connects to an Informix database server that is running on a
computer that can be reached through the network. To establish the connection,

Chapter 2. Client/server communication 2-17



2-18

use Setnet32 to specify the location of the Informix database server on the network
and the network communications protocol to use. You must obtain this information
from the administrator of the database server you want to use.

If you specify a shared SQLHOSTS registry key, you must set the
INFORMIXSQLHOSTS environment variable on your local computer to the name
of the Windows computer that stores the registry. The database server first looks
for the SQLHOSTS registry key on the INFORMIXSQLHOSTS computer. If the
database server does not find an SQLHOSTS registry key on the
INFORMIXSQLHOSTS computer, or if INFORMIXSQLHOSTS is not set, the
database server looks for an SQLHOSTS registry key on the local computer.

You must comply with Windows network-access conventions and file permissions
to ensure that the local computer has access to the shared SQLHOSTS registry key.
For information about network-access conventions and file permissions, see your
Windows documentation.

1. Double-click Setnet32 in the folder that contains the Client SDK products.
The Informix Setnet32 window opens.

2. Click the Server Information tab to display the Server Information page,
which has the following elements:

¢ Informix Server

Select an existing Informix database server or type the name of a new
database server.

* Host Name

Select the host computer with the database server that you want to use or
type the name of a new host computer.

* Protocol Name

Select a network protocol from a list of protocols that the installation
procedure provides.

* Service Name
Specify the service name that is associated with a specific database server.
Type either the service name or the port number that is assigned to the
database server on the host computer. You must obtain this information from
the database server administrator.

Requirement: If you enter a service name, it must be defined on the client
computer in the services file in the Windows installation directory. This file
is in system32\drivers\etc\services. The service definition must match the
definition on the database server host computer.

* Options
Enter options specific to the database server. For more information, see the
IBM Informix Administrator’s Guide.

* Make Default Server

Sets the INFORMIXSERVER environment variable to the name of the current
database server to make it the default database server.
* Delete Server

Deletes the definition of a database server from the Windows registry. It also
deletes the host name, protocol name, and service name associated with that
database server.

3. Click OK to save the values.

IBM Informix Administrator's Guide



The sqlhosts information

Each computer that hosts a database server or a client must include connectivity

information.

The sqThosts information contains connectivity information for each database
server. The sqThosts information also contains definitions for groups. The database
server looks up the connectivity information when you start the database server,
when a client application connects to a database server, or when a database server
connects to another database server.

In the sqlhosts file, each row contains the connectivity information for one
database server, or the definition for one group.

¢ The connectivity information for each database server includes four fields of
required information and one field for options.

* The group definition contains information in only three of the fields.

In the registry, the database server name is assigned to a key in the SQLHOSTS

registry key, and the other fields are values of that key.

The following table summarizes the fields that are used for the SQLHOSTS

information.

Field name in the
sqlhosts file

Field name in the
SQLHOSTS registry key

Description of connectivity
information

Description of group
information

dbservername Database server name key or | Database server name Database server group name
database server group key

nettype PROTOCOL Connection type The keyword group

hostname HOST Host computer for the No information. Use a dash
database server as a placeholder in this field.

servicename SERVICE Alias for the port number No information. Use a dash

as a placeholder in this field.
options OPTIONS Options that describe or limit | Group options

the connection

UNIX: If you install IBM Informix Enterprise Gateway with DRDA in the same
directory as the database server, your sqlhosts file also contains entries for the
Gateway and non-Informix database servers. However, this section covers only the
entries for the database server. For information about other entries in the sqlhosts
file, see the IBM Informix Enterprise Gateway with DRDA User Manual.

Related concepts:

[“Strategies for increasing availability with Connection Managers” on page 23-64|

Related tasks:

“Defining sqlhosts information for connection management” on page 23-38

“Configuring connection management” on page 23-2

“Connections that the database server supports” on page 2-5

“Configuring connectivity between Informix database servers and IBM Data Server|

clients” on page 2-45|

“Defining sqlhosts information for connection management of high-availabilityl|

clusters” on page 23-39

Chapter 2. Client/server communication

2-19



2-20

“Defining sqlhosts information for connection management of high-availability|

clusters that use secure ports” on page 23-41]

“Defining sqlhosts information for high-availability clusters that use Distributed|

Relational Database Architecture (DRDA)” on page 23-43|

“Defining sglhosts information for high-availability clusters that use Distributed|

Relational Database Architecture (DRDA) and secure ports” on page 23-45

“Defining sqlhosts information for connection management of grids and replicate]

sets” on page 23-48]

“Defining sqlhosts information for connection management of grids and replicate|

sets that use secure ports” on page 23-49

“Defining sqlhosts information for connection management high-availability]

replication systems” on page 23-52|

“Defining sqglhosts information for connection management of high—availability|

replication systems that use secure ports” on page 23-54

“Defining sqlhosts information for connection management of server sets” on paged

P3-58|

Related reference:

[+ [The syncsqlhosts utility (Embeddability Guide)|

IANA standard service names and port numbers in the
sqlhosts.std file

The Internet Assigned Numbers Authority (IANA) assigned the following service
names and port numbers for IBM Informix database servers:

Port/service TANA code Description

sqlexec 9088 /tcp IBM Informix SQL Interface

sqlexec-ssl 9089 /tcp IBM Informix SQL Interface -
Encrypted

These service names are created in the sqlhosts.std file of IBM Informix. You are
not required to change installed Informix systems, because they continue to work
with existing port numbers and service names. (Also, there is no guarantee that
some other system is not already using the service names or port numbers
assigned to Informix.)

Organizations that have policies for following standards can use these service
names and port numbers if they want the database server to be in compliance with
the JANA standard. If another application that is installed on the same workstation
already uses one of the service names or port numbers, you can ask the publisher
of the non-compliant application to register for an IANA port number assignment
to avoid the conflict. When applications are noncompliant, you can run Informix
using non-standard ports.

For more information, see the IANA organization website.

sqlhosts connectivity information

Fields in the sqThosts file or SQLHOSTS registry key describe connectivity
information.

Syntax

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.embed.doc/ids_emb_072.htm#ids_emb_072

»—dbservername—E

Notes:

group

connection_type—l—hostname—servicename ><
— (1)
Options

'—

1 See [“sqlhosts file and SQLHOSTS registry key options” on page 2-24|

Element

Purpose

Restrictions

dbservername

Names the database server for
which the connectivity information
is being specified.

If specified with the group
keyword instead of the connection
type, names a group to treat
multiple, related database server
entries as one logical entry. You can
use groups to establish or change
client/server connections, or to
simplify the redirection of
connections to database servers.

The name must begin with a
lowercase letter, and can contain
lowercase letters, numbers, and
underscore (_) symbols. The field
length is limited to 128 bytes.

The database server must exist. Its
name must be specified by the
DBSERVERNAME or
DBSERVERALIASES configuration
parameter in the onconfig file.

A database server group cannot be
nested inside another database
server group. Database servers can
be members of one group.

connection_type

Describes the type of connection
that is made between the database
server and the client application or
another database server.

hostname Specifies the computer where the | The field length is limited to 256
database server is located. bytes.
If the group keyword is specified,
must be null (-).
servicename Specifies the alias for the port The field length is limited to 128

number. The interpretation of the
service name field depends on the
type of connection in the
connection-type field.

bytes.

If the group keyword is specified,
must be null (-).

dbservername field

Each database server across all of your associated networks must have a unique
database server name.

If an sqlhosts file has multiple entries with the same dbservername, only the first

one is used.

Connection-type field

The connection-type field is called nettype in the sqThosts file and PROTOCOL in
the SQLHOSTS registry key.

The following table summarizes the possible connection-type values for database

server connections on different operating systems.

Chapter 2. Client/server communication

2-21



Table 2-2. Summary of connection-types

Values for UNIX Values for Windows | Description Connection type

drsocss] drsocss] Secured Sockets Layer (SSL) protocol for DRDA. | Network

You must configure a new server alias in the
sqlhosts file or SQLHOSTS registry that uses
drsoctcp connection protocol.

drsoctcp drsoctcp Distributed Relational Database Architecture Network
(DRDA) - connection for IBM Data Server Client.

You must configure a new server alias in the
sqlhosts file or SQLHOSTS registry that uses
drsoctcp connection protocol.

drtlitcp drtlitcp Distributed Relational Database Architecture Network
(DRDA) - connection for IBM Data Server Client.

You must configure a new server alias in the
sqlhosts file or SQLHOSTS registry that uses
drtlitcp connection protocol.

onipcshm Shared-memory communication. Requires the cfd | IPC
option in the sqlhosts file if used for a non-root
installation where the server and client are in
different locations.

onipcstr Stream-pipe communication. Requires the cfd IPC
option in the sqlhosts file if used for a non-root
installation where the server and client are in
different locations.

onipcnmp Named-pipe communication IPC
ontlitcp TLI with TCP/IP protocol Network
onsocssl onsocss] Secured Sockets Layer (SSL) protocol Network
onsoctcp onsoctcp Sockets with TCP/IP protocol Network
onsocimc Sockets with TCP/IP protocol for communication | Network

with Informix MaxConnect

ontTiimc TLI with TCP/IP protocol for communication Network
with Informix MaxConnect

onsqlmux onsqlmux Multiplexed connection Network

Note: The connection-type values that begin with "on" can use "ol" in the place of
"on". For example, either onipcshm or olipcshm specify shared-memory connections
if used in the sqlhosts information.

Host name field

The host name is entered in the hostname field in the sqlhosts file, and in the
HOST registry key.

If the connection type is onsqImux, the hostname field must not be empty, but any
specific value entered in it is ignored.

Following is an explanation of how client applications derive the values that are
used in the host name field.

2-22  IBM Informix Administrator's Guide



Network communication with TCP/IP
When you use the TCP/IP connection protocol, the host name field is a key
to the hosts file, which provides the network address of the computer. The
name that you use in the hostname field must correspond to the name in
the hosts file. In most cases, the host name in the hosts file is the same as
the name of the computer.

In some situations, you might want to use the actual Internet IP address in
the host name field.

UNIX: Shared-memory and stream-pipe communication
When you use shared memory or stream pipes for client/server
communications, the hostname field must contain the actual host name of
the computer on which the database server is located.

Multiplexed connections
When you use onsqlmux as the connection type, the hostname field must
have an entry, but the entry is ignored. Dashes (-) can be used as entries.

Service name field

Network communication with TCP/IP
The service name field is called servicename on the UNIX operating system
and SERVICE on the Windows operating system. When you use the
TCP/IP connection protocol, the service name entry must correspond with
the name in the services file. The port number in the services file tells
the network software how to find the database server on the specified host.

The following figure shows the relationship between the sqlhosts
information and the hosts file, and the relationship of sqlhosts
information to the services file.

sqlhosts entry to connect by TCP/IP

dbservername nettype hostname servicename options ‘

sales onsoctcp knight sales_ol ‘

hosts file l

‘ IP address hostname alias
137.1.183.92 knight

services file
service name pori#/protocol
sales_ol 1543/tcp

Figure 2-4. Relationship of sqlhosts information to hosts and services files

In some cases, you might use the actual TCP listen-port number in the
service name field.

Windows: Named-pipe communication
For a named-pipe connection (onipcnmp), the SERVICE entry can be any
short group of letters that is unique in the environment of the host
computer where the database server is located.

UNIX: Shared-memory and stream-pipe communication
For a shared-memory connection (onipcshm) or a stream-pipe connection

Chapter 2. Client/server communication 2-23



2-24

(onipcstr), the database server uses the value in the servicename entry
internally to create a file that supports the connection. For both onipcshm
and onipcstr connections, the servicename can be any short group of letters
that is unique in the environment of the host computer where the database
server is located.

Tip: Use the dbservername as the servicename for stream-pipe connections.

Multiplexed connections
For multiplexed connections (onsqlmux), the hostname field must have an
entry, but the entry is ignored. Dashes (-) can be used as entries.
Related tasks:

[“Configuring secure connections for high-availability clusters” on page 21-6|

“Changing client connectivity information” on page 24-§|

“Connections that the database server supports” on page 2-5

Related reference:

[“Configuration parameters related to connectivity” on page 2-38

[“Group information” on page 2-32|

[“Stream-pipe connections (UNIX and Linux)” on page 2-7

[“Specifying Network Connections” on page 4-21|

[“IBM Informix MaxConnect” on page 2-52|
[“TCP/IP connectivity files” on page 2-10|
{“Alternatives for TCP/IP connections” on page 2-34|

(& [Connectivity protocols (Client Products Installation Guide)|

sqlhosts file and SQLHOSTS registry key options
You can include server options and group options in the sqlhosts file or
SQLHOSTS registry key.

The following syntax fragments show the server options. The syntax fragment for
group options is described in a section after the server options.

Important: Options must be separated by commas, but the first option that is
listed in each sqlhosts entry must not have a comma before it.

Server options:

|
I I—a—=—token—| ﬁb_=_$i26J | |__| cfd—= fiZepath—|

». »

el R | R

: T 0 T

L‘ Lookup options ’J L‘ PAM options ’J L‘ CSM options |J

CJ°°

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.cpi.doc/ids_cpi_034.htm#ids_cpi_034

Lookup options:

T

w

,_
L
,_|__|

N = O
Ll

PAM options:

}—D—s=4,—pam_serv—= (—name—) ,—pamauth—= (—[cha1 1 engU ) |
password

B

CSM options:

|—L—|—csm—= ( GSSCSM

L_C_z_[é]_

SPWDCSM

L_i_=_[éjJ

L_p_= Lol

ENCCSM.

Table 2-3. Server options in the sqlhosts file and SQLHOSTS registry key.

Element Purpose Restrictions
a Stores the authentication token that is | Important: Do not manually change
required for connecting to the this option.
Informix Warehouse Accelerator. This
entry is created by Informix during
Informix Warehouse Accelerator
connection setup.
b Specifies, in bytes, the size of the The maximum buffer size supported
communications buffer space for is 32 KB.
TCP/IP connections.
c Enables confidentiality service for the |« <=1 enables the service (default)
Generic Security Services CSM, which . .
. . * ¢=0 disables the service
supports single sign-on (SS0O).
Data transmitted to and from the
SSO-authenticated user is encrypted
and can be viewed only by the user
that is logged in with the authorized
credentials.
cfd Indicates the storage location for The length of the cfd path is
communication files that are used in | restricted to 70 bytes. Relative-path
shared-memory and stream-pipe byte lengths include $INFORMIXDIR.
connections.
csm Describes the communication support | CSM entries must be specified in the

module (CSM) for each database
server that uses a CSM.

concsm.cfg file.

Chapter 2. Client/server communication 2-25



Table 2-3. Server options in the sqlhosts file and SQLHOSTS registry key. (continued)

operating-system security-file
lookups to control the way that a
client (user) gains access to a
database server. The s option
identifies database server-side
settings, and the r option identifies
client-side settings.

Element Purpose Restrictions

ENCCSM The name of the encryption The ENCCSM must be specified in
communication support module. the concsm.cfg file.

You cannot use an ENCCSM with

* Enterprise Replication and
high-availability clusters

* A multiplexed connection

* A simple password CSM
(SPWDCSM)

g Specifies the name of the group to The group must be defined.
which the database server belongs.

GSSCSM The name of the generic security The GSSCSM must be specified in the
services communications support concsm.cfg file. Cannot be used for
module for single sign-on (SSO) Enterprise Replication and
authentication. high-availability clusters.

i Enables the integrity service for the « i=1 enables the service (default)
Generic Security Services CSM, which . . .

. . * i=0 disables the service
supports single sign-on (SSO).

k Enables the network service to check |Only available for TCP/IP
periodically whether the connection | connections.
between the client and server is still
active. If the connection is found to
be broken the network service frees
resources.

m Enables the database server to create |. \fultithreaded client connections,
multiple database connections shared-memory connections, and
without using up the additional connections to subordinate
;:omputer resourlc(es that are required database servers are not supported.

t ti .
OF More NETWOTk connections * The Informix ESQL/C sqlbreak()
function is not supported.
* Cannot be used with a CSM.

P Enables and disables the simple « p=0 password is not required

password CSM, which provides (default)
d tion.
passworc encryption * p=1 password is required

r Enables the control of The database server ignores r
operating-system security-file settings.
lookups to control the way that a
client (user) gains access to a
database server. The s option
identifies database server-side
settings, and the r option identifies
client-side settings.

s Enables the control of A client ignores s settings.

2-26  IBM Informix Administrator's Guide




Table 2-3. Server options in the sqlhosts file and SQLHOSTS registry key. (continued)

Element Purpose Restrictions
pam_serv Gives the name of a PAM service that | Must be used with s=4 option.
a database is using.
pamauth Describes the authorization method | Must be used with s=4 option.
that is used by the PAM service.
SPWDCSM The name of the simple password The SPWDCSM must be specified in

communication support module the concsm.cfg file.

You cannot use an SPWDCSM with

* Enterprise Replication and
high-availability clusters

* A multiplexed connection
* An encryption CSM (ENCCSM)

The following syntax fragment shows the group options in the sqlhosts file.

Group options:

| | |
| L:_=_|:(1]:|J , e—=—ser‘ver‘—| Lm—i —=—7identifie r_l !

Table 2-4. Group options in the sqlhosts file and SQLHOSTS registry key.

Element

Purpose Restrictions

C

Controls connection redirection.
Indicates the order in which client
applications choose database servers,
or the aliases within a database
server group.

Specifies a database server name that
marks the end of a database server

group.

Assigns an identifying number to a | The identifier must be a positive
database server group. integer from 1 through 32767 and
must be unique within your network
environment. The i option is required
for Enterprise Replication.

Usage

When you change option values in an sqlhosts entry, those changes affect the next
connection that a client application makes. The server automatically recognizes any
changes that are made.

The database server evaluates the options entries as a series of columns. A comma
or white space in an options entry represents an end of a column. Client and
database server applications check each column to determine whether the option is
supported.

You can combine multiple options in each entry, and you can include them in any
order. The maximum length for an options entry is 256 bytes.

Chapter 2. Client/server communication 2-27



Attention: Unsupported or incorrect options do not trigger a notification.
Buffer option (b)

The b option applies only to connections that use the TCP/IP connection protocol.
Other types of connections ignore the b option.

You can adjust the buffer size to use system and network resources more
efficiently; however, if the buffer size is set too high, the user receives a
connection-reject error because no memory can be allocated. For example, if you
set b=16000 on a system that has 1000 users, the system might require 16
megabytes of memory for the communications buffers. This setting might exhaust
the memory resources of the computer. The default buffer size for the database
server for TCP/IP is 4096 bytes.

If your network includes several different types of computers, be careful when you
change the size of the communications buffer.

Tip: Use the default size for the communications buffer. If you choose to set the
buffer size to a different value, set the client-side communications buffer and the
database server-side communications buffer to the same size.

Group connection-redirection option (c)
The ¢ option is valid only for servers that are assigned to a server group.

Use the ¢ option to:

* Balance the load across multiple database server instances.

* Set High-Availability Data Replication (HDR) to transfer over to a backup
database server in the event of a failure.

Table 2-5. Settings for the connection-redirection option.

Setting Result

c=0 This is the default setting.

Client applications connect to the first
database server instance listed in the server
group in the sqlhosts information. If the
client cannot connect to the first instance, it
attempts to connect to the second instance,
and so on.

c=1 Client applications choose a random starting
point from which to connect to a database
server instance in a server group.

Communication files directory option (cfd)

You can use the communication files directory option to store shared-memory or
stream-pipe connection communication files in a new location. Specifying the
communication files directory option for non-root installations of Informix is
necessary if the server and client are in different locations, and increases system
performance if the server and client are in the same location.

The cfd option can define an absolute path or a path relative to $INFORMIXDIR for
storing communication files:

2-28  IBM Informix Administrator's Guide



* cfd=/location defines an absolute path
* cfd=location defines a path relative to $INFORMIXDIR

The length of the cfd path is restricted to 70 bytes. Relative-path byte lengths
include $INFORMIXDIR.

Non-root installations of Informix do not have permission to write to the
/INFORMIXTMP directory, so shared-memory and stream-pipe connection
communication files are written to the $INFORMIXDIR/etc directory if no
communication files directory is specified as an option in the sqThosts information.

Important: This option must be defined for non-root installations of Informix,
where the server and client are in different locations, or the connection fails.

Communication support module option (csm)
The format of the CSM option is ecsm=(name,options).
The value of name must match a name entry in the concsm.cfg file.

CSM options that are defined in the sqlhosts file override options that are
specified in the concsm.cfg file. CSM encryption options cannot be specified in the
sqlhosts information.

If you do not specify the csm option, the database server uses the default
authentication policy for that database server.

Note: The s=7 option is deprecated and not required for the Single Sign-On (SSO)
CSM.

End of group option (e)

If no e option is specified for a group, but all sqlhosts entries specify either
groups or group members, the network must scan the entire file. You can use the e
option to specify the end of a server group, and improve system performance. The
network layer scans the sqThosts file until the entry specified by the e option is
read.

If no end-of-group option is specified for a group, the group members are assumed
to be contiguous. The end of the group is determined when an entry is reached
that does not belong to the group, or at the end of file, whichever comes first.

In the following example, the e option specifies entry Ix3, so entry 1x4 is not
scanned by the network layer.

#dbservername nettype hostname servicename options

g_xl group - - i=10,e=1x3
1x1 onsoctcp apolloll 9810 g=g_ x1

1x2 onsoctcp apollol2 9820 g=g_x1

1x3 onsoctcp apollol3 9830 g=g_x1

1x4 onsoctcp apollold 9840

Keep-alive option (k)

This option enables the network service to check periodically whether the
connection between the client and server is still active. If the receiving end of the

Chapter 2. Client/server communication 2-29



2-30

connection does not respond within the time that is specified by the parameters of
your operating system, the network service immediately detects the broken
connection and frees resources.

Table 2-6. Settings for the keep-alive option

Setting Result
k=0 Disables this service
k=1 Enables this service (default)

Multiplex option (m)

This option enables the database server to create multiple database connections to
client applications without using up the additional computer resources that are
required for more network connections. You must restart the server after you
enable this service.

Table 2-7. Settings for the multiplex option

Setting Result
m=0 Disables this service (default)
m=1 Enables this service

PAM options (pam_serv, pam_auth, s=4)

The database server provides an interface to use pluggable authentication modules
(PAM) for session authentication. To configure this interface, supply the PAM
service name and the authentication method. Authentication can be the connection
password or a user challenge that requires the user to answer a question.

Informix PAM authentication calls the pam_authenticate() and pam_acct_mgmt()
functions.

Table 2-8. Settings for PAM services

Option Description Settings
pam_serv The name of the PAM service | PAM services typically are in
that the database server is the /usr/Tib/security
using. directory and parameters are
listed in the /etc/pam.conf
file.

In Linux, the /etc/pam.conf
file can be replaced with a
directory called /etc/pam.d,
where there is a file for each
PAM service. If /etc/pam.d
exists, /etc/pam.conf is
ignored by Linux.

IBM Informix Administrator's Guide



Table 2-8. Settings for PAM services (continued)

Option Description Settings

pamauth The method of authentication | pamauth=password uses the
that is used by the PAM connection request password
service. for authentication.
An application must be pamauth=challenge
designed to respond to the authentication requires a
challenge prompt correctly correct user reply to a
before connecting to the question or prompt
database server.

s=4 Enables PAM authentication.

Trusted-host and trusted-user lookup options (s)

With these security options, you can specifically enable or disable the use of either
or both files.

Table 2-9. Settings for trusted-host and trusted-user lookup.

Setting Result

s=0 Disables trusted-hosts lookup in hosts.equiv or the file specified by
the REMOTE_SERVER_CFG configuration parameter.

Disables trusted-user lookup in rhosts files or the file specified by the
REMOTE_USERS_CFG configuration parameter.

Only incoming connections with passwords are accepted. Cannot be
used for distributed database operations.

s=1 Enables trusted-hosts lookup in hosts.equiv or the file specified by the
REMOTE_SERVER_CFG configuration parameter.

Disables trusted-user lookup in rhosts files or the file specified by the
REMOTE_USERS_CFG configuration parameter.

s=2 Disables trusted-hosts lookup in hosts.equiv or the file specified by
the REMOTE_SERVER_CFG configuration parameter.

Enables trusted-user lookup in rhosts files or the file specified by the
REMOTE_USERS_CFG configuration parameter.

Cannot be used for distributed database operations.

s=3 Enables trusted-hosts lookup in hosts.equiv or the file specified by the
REMOTE_SERVER_CFG configuration parameter.

Enables trusted-user lookup in rhosts files or the file specified by the
REMOTE_USERS_CFG configuration parameter.(default)

Secure connections for clusters option (s=6)

The s=6 option in the sqlhosts information ensures that the connections between
cluster servers are trusted. Secure ports that are listed in the sqlhosts information
can be used only for cluster communication. Client applications cannot connect to
secure ports.

Chapter 2. Client/server communication 2-31



2-32

Table 2-10. The secure connection option for clusters.

Setting Result

s=6 Configures Enterprise Replication and High
Availability Connection Security. Cannot be
used with any other s option.

netrc lookup options (r)

With r options, you can enable or disable netrc lookup.

Table 2-11. Settings for netrc lookup options.

Setting Result
r=0 netrc lookup is disabled.
r=1 netrc lookup is enabled (default)

Related concepts:

[“Trusted-host information” on page 2-12|

[“Trusted-user information” on page 2-14|

[ [Pluggable authentication modules (UNIX or Linux) (Security Guide)|

[ [Communication support modules for data transmission encryption (Security|
Guide)|

[+ [Simple password encryption (Security Guide)|

Related tasks:

[“Supporting multiplexed connections” on page 2-3|

[“Configuring secure connections for high-availability clusters” on page 21-6|

(& [Configuring an IBM Informix instance for SSO (Security Guide)|

[# [Configuring secure ports for connections between replication server
g g p P
[(Enterprise Replication Guide)|

Related reference:

[“Group information’]

[‘The netrc information” on page 2-16

Group information

You define server groups in the sqlhosts file or SQLHOSTS registry key. When
you create a server group, you can treat multiple related database server or
Connection Manager SLA entries as a single entity for client connections to
simplify connection redirection to database servers or Connection Managers. You
must create group entries for database servers that participate in Enterprise
Replication.

You can use the name of a group instead of the database server name in the
following environment variables, or in the SQL CONNECT command:

* The value of the INFORMIXSERVER environment variable for a client application
can be the name of a group. However, you cannot use a group name as the
value of the INFORMIXSERVER environment variable for a database server or
database server utility.

* The value of the DBPATH environment variable can contain the names of groups.

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_002.htm#ids_am_002
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_en_003.htm#ids_en_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_en_003.htm#ids_en_003
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_027.htm#ids_am_027
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_sso_004.htm#ids_sso_004
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_110.htm#ids_erp_110
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_110.htm#ids_erp_110

Use a dash (-) character (ASCII 45) for hostname and server/port values when you
specify a connection information for a group.

High-availability cluster groups

A high-availability cluster groups sqlhosts have the following format:

#dbservername nettype hostname servicename options

group_name group

- - c=1,e=member_name_n

member_name_1 protocol host_name_1 service or_port_1 g=group_name
member_name_2 protocol host_name_2 service_or_port_2 g=group_name
member_name_n protocol host_name_n service_or_port_n g=group_name

C=1 is optional, and specifies that a random starting point in the list of group
members is used for connection attempts. e=member_name is optional, and specifies
the final entry for group members, so that the entire file is not scanned. The
g=group_name option is required for group members, and specifies the group that
the member belongs to.

Enterprise Replication server groups
All database servers that participate in replication must be a member of a database

server group. Each database server in the enterprise must have a unique identifier.
Enterprise Replication node groups have the following sqlhosts format:

#dbservername nettype hostname servicename options

group_name_I  group

- - i=identifier_1,e=member_name_l

member_name_1 protocol host _name 1 service or_port_ 1 g=group_name 1

group_name_2 -

i=identifier_2,e=member_name 2

member_name_2 protocol host_name_2 service_or_port_2 g=group_name_2

group_name_n -

- i=identifier_n,e=member_name_n

member_name_n protocol host_name_n service_or_port_n g=group_name_n

#dbservername
SLA_1_group_name

SLA _name_1_from _CM_1
SLA_name_1_from_CM_2
SLA name_1_from CM_n

SLA 2 group_name

SLA_name_2_from_CM_1
SLA _name_2_from_CM_2
SLA _name_2_from_CM_n

SLA_n_group_name

SLA_name_n_from_CM_1
SLA_name_n_from_CM_2
SLA_name_n_from_CM_n

The i=identifier is required for Enterprise Replication. e=member_name is optional,
and specifies the final entry for group members, so that the entire file is not
scanned. The g=group_name option is required for group members, and specifies the
group that the member belongs to.

Connection Manager service-level agreement groups

Connection Manager SLA groups have the following sqlhosts format:

nettype hostname servicename options

group - - c=1,e=SLA_name_1_from_CM_n
protocol CM_1_host C(M_1_port or _service_1 g=SLA_1_group_name
protocol CM_2_host CM_2 port_or_service_1 g=SLA_I_group_name
protocol CM_n_host CM_n_port or service 1 g=SLA 1 group_name

group - - c=1,e=SLA name_2 from CM n
protocol CM_1_host CM_1_port_or_service 2 g=SLA_2 group_name
protocol CM_2 _host (M_2 port or_service 2 g=SLA_2 group_name
protocol CM_n_host CM_n_port or_service 2 g=SLA_2 group_name

group - - c=1,e=SLA name_n_from CM _n
protocol CM_1_host CM_1_port_or_service_n ¢=SLA_n_group_name
protocol CM_2 host CM_2 port_or_service_n g=SLA_n_group_name
protocol CM_n_host C(M_n_port or_service_n g=SLA_n_group_name

C=1 is optional, and specifies that a random starting point in the list of group
members is used for connection attempts. e=member_name is optional, and specifies

the final entry for group members, so that the entire file is not scanned. The

Chapter 2. Client/server communication 2-33



g=group_name option is required for group members, and specifies the group that
the member belongs to.

Related reference:

[“sqlhosts connectivity information” on page 2-20|
[“sqlhosts file and SQLHOSTS registry key options” on page 2-24

Creating a group in the sqlhosts file
You can define a group and the members of the group by adding entries to the
sqlhosts file.

To create a database server group in the sqlhosts file:
1. Add an entry to define the database server group:
dbservername
The name of the group. The name must begin with a lowercase letter,

and can contain lowercase letters, numbers, and underscore (_)
symbols.

nettype
The word group.

hostname
A dash (-) character (ASCII 45), to indicate that the field value is null.

servicename
A dash (-) character (ASCII 45), to indicate that the field value is null.
options
The ¢, e, or i options, as appropriate.
2. Add one or more entries for members of the group. Include the g=group option.

Example

The following example shows definition of a group named g_asia. The group
contains four members.

#dbservername nettype hostname servicename options

g_asia group - - c=1,e=manilla
tokyo onsoctcp node 1 service 1 g=g_asia
beijing onsoctcp node_ 2 service_2 g=g_asia
seoul onsoctcp node_3 service_4 g=g_asia
manilla onsoctcp node_4 service_b5 g=g_asia

Alternatives for TCP/IP connections

The following topic describes some ways to bypass port and IP address lookups
for TCP/IP connections.

IP addresses for TCP/IP connections

For TCP/IP connections (both TLI and sockets), you can use the actual IP address
in the hostname field instead of the host name or alias found in the hosts file. The
following example shows sample IP addresses and hosts from a hosts file.
#address hostname alias

555.12.12.12  smoke

98.555.43.21 odyssey
12.34.56.555  knight sales

Using the IP address for knight from the table, the following two sqlhosts entries
are equivalent:

2-34  IBM Informix Administrator's Guide



#dbservername nettype hostname servicename options

sales ontlitcp 12.34.56.789  sales_ol
#dbservername nettype hostname servicename options
sales ontTitcp  knight sales_ol

Using an IP address might speed up connection time in some circumstances.
However, because computers are usually known by their host name, using IP
addresses in the host name field makes it less convenient to identify the computer
with which an entry is associated.

UNIX: You can find the IP address in the net address field of the hosts file, or you
can use the UNIX arp or ypmatch command.

Windows: You can configure Windows to use either of the following mechanisms
to resolve a domain to an IP address:

¢ Windows Internet Name Service

* Domain Name Server
Wildcard addressing for TCP/IP connections

You can use wildcard addressing in the hostname field of the hosts file when both
of the following conditions are met:

* You are using TCP/IP connections.

* The computer where the database server is located uses multiple
network-interface cards (NICs).

If the preceding conditions are met, you can use an asterisk (*) as a wildcard in the
hostname field that the database server uses. When you enter a wildcard in the
hostname field, the database server can accept connections at any valid IP address
on its host computer.

Each IP address is associated with a unique host name. When a computer uses
multiple NICs, as in the following table, the hosts file must have an entry for each
interface card. For example, the hosts file for the texas computer with two NICs
might include these entries.

#address hostname  alias

123.45.67.81  texasl
123.45.67.82  texas2

If the client application and database server share the sqlhosts information, you
can specify both the wildcard and a host name or IP address in the hostname field
(for example, *texasl or *123.45.67.81). The client application ignores the
wildcard and uses the host name (or IP address) to make the connection, and the
database server uses the wildcard to accept a connection from any IP address.

The wildcard format allows the listen thread of the database server to wait for a
client connection using the same service port number on each of the valid
network-interface cards. However, waiting for connections at multiple IP addresses
might require more processor time than waiting for connections with a specific
host name or IP address.

The following figure shows a database server on a computer named texas that has

two network-interface cards. The two client sites use different network cards to
communicate with the database server.

Chapter 2. Client/server communication 2-35



2-36

iowa

texas

texas_srvr

H

kansas

/
- Y,
o ) e—"
Network
\ pfo\évr(;rmming

interfaces

Figure 2-5. Using multiple network-interface cards

The following examples show potential sqlhosts connectivity information for the
texas_srvr database server.

#dbservername nettype hostname servicename options
texas_srvr ontlitcp  =*texasl pdl_on
#dbservername nettype hostname servicename options
texas_srvr ontlitcp *123.45.67.81 pdl_on
#dbservername nettype hostname servicename options
texas_srvr ontlitcp  *texas2 pdl_on
#dbservername nettype hostname servicename options
texas_srvr ontlitcp  %123.45.67.82 pdl_on
#dbservername nettype hostname servicename options
texas_srvr ontlitcp = pdl_on

If the connectivity information corresponds to any of the preceding lines, the
texas_srvr database server can accept client connections from either of the network
cards. The database server finds the wildcard in the hostname field and ignores
the explicit host name.

Tip: For clarity and ease of maintenance, include a host name when you use the
wildcard in the host name field (that is, use *host instead of *).

The connectivity information used by a client application must contain an explicit
host name or IP address. The client applications on iowa can use any of the
following host names: texasl, *texasl, 123.45.67.81, or *123.45.67.81. If there is
a wildcard (*) in the hostname field, the client application ignores it.

The client application on kansas can use any of the following host names: texas2,
*texas2, 123.45.67.82, or *123.45.67.82.

IBM Informix Administrator's Guide



Port numbers for TCP/IP connections

For the TCP/IP network protocol, you can use the actual TCP listen port number
in the service name field.

For example, if the port number for the sales database server in the services file is
1543, you can write an entry in the sqlhosts file as follows:

#dbservername nettype hostname servicename options
sales ontlitcp  knight 1543

Using the actual port number might save time when you make a connection in
some circumstances. However, as with the IP address in the hostname field, using
the actual port number might make administration of the connectivity information
less convenient.

Related reference:

[“sqlhosts connectivity information” on page 2-20|

Informix support for IPv6 addresses

On all platforms, IBM Informix recognizes Internet Protocol Version 6 (IPv6)
addresses, which are 128 bits long, and Internet Protocol Version 4 (IPv4)
addresses, which are 32 bits long.

Beginning with Informix 10.00.xC4 and Client SDK 2.90.xC4, the database server
checks, on startup, whether IPv6 is supported in the underlying operating system.
If IPv6 is supported it is used. If the underlying operating system does not support
IPv6, the IPv4 address is used. Informix and Client SDK retrieve the IP address
from the name service.

You can treat Informix that runs on a host with both IPv4 and IPv6 addresses the

same way you treat a server running on a multi-homed host. You can configure

Informix on a host with both IPv4 and IPv6 addresses in either of the following

ways:

¢ Create aliases (using the DBSERVERALIASES configuration parameter) and
assign an IPv6 address to one of them and an IPv4 address to the other.

¢ Instruct the Informix to listen on all the IP addresses configured on the host by
using a wild-carded hostname in the sqlhosts file.

For example:

#dbservername nettype hostname servicename options
olserverl onsoctcp  *myhost onservicel

Starting with Informix Version 10.0, the host name entry in the SQLHOSTS file
maps to an IPv6 address if the host has a configured IPv6 address. If the host

does not have a configured IPv6 address, the hostname entry maps to an IPv4
address.

Disabling IPv6 Support

Informix also provides a way to disable IPv6 support when working in IPv4
environments.

To disable IPv6 support for all database instances and client applications:
* Create an empty file $INFORMIXDIR/etc/IFX_DISABLE_IPV6.

Chapter 2. Client/server communication 2-37



The file must have read permission for user informix. The file is not read from or
written to, and is not required to contain any data.

To disable IPv6 support for a single database instance or for a single client

application:

* On the database server instance, or on the workstation on which applications are
run, create an environment variable named IFX_DISABLE_IPV6 and set its value
to yes, as in:

IFX_DISABLE_IPV6=yes

Configuration parameters related to connectivity

2-38

Some of the configuration parameters in the onconfig file specify information
related to connectivity.

When you restart the database server, the restart procedure uses the values that
you set in these configuration parameters.

The following configuration parameters are related to connectivity:
* DBSERVERNAME

» DBSERVERALIASES

* LIMITNUMSESSIONS

* NETTYPE

* NS_CACHE

* NUMFDSERVER

*+ HA_ALIAS

UNIX: When you configure connectivity, also consider setting the
LISTEN_TIMEOUT and MAX_INCOMPLETE_CONNECTIONS configuration
parameters. These parameters can reduce the risk of a hostile denial-of-service
(DOS) attack by making it more difficult to overwhelm the Listener VP that
handles connections. For more information, see the IBM Informix Security Guide.

Related tasks:
[‘Connections that the database server supports” on page 2-3

Related reference:

[“sqlhosts connectivity information” on page 2-20|

Connection information set in the DBSERVERNAME
configuration parameter

When a client application connects to a database server, it must specify the name
for the database server. The sqlhosts information that is associated with the
specified database server name describes the type of connection between the
application and the database server.

For example, to assign the name nyc_research to a database server, set the
DBSERVERNAME value in the onconfig file or Windows registry key:

DBSERVERNAME nyc_research

Client applications specify the name of the database server in one of the following
places:

e In the INFORMIXSERVER environment variable

IBM Informix Administrator's Guide



* In SQL statements such as CONNECT, DATABASE, CREATE TABLE, and
ALTER TABLE, which specify a database environment

e In the DBPATH environment variable

The DBSERVERNAME must specify either the database server name or one of the
database server aliases. The name must begin with a lowercase letter and can
contain other lowercase letters, digits, and underscores. The name must not include
uppercase characters, a field delimiter (space or tab), or a new line character. Other
characters from the basic ASCII code set are not necessarily reliable. For example, a
hyphen or minus sign can create problems and a colon might not work reliably.
The @ character is reserved to separate the database from the server (as in
dbase@server).

For onimcsoc or onsoctcp protocols, you can update the DBSERVERNAME
configuration parameter to include the number of multiple listen threads for the
database server aliases in your sqlhosts information, as follows:

DBSERVERNAME name-number _of multiple listen threads

You can configure DBSERVERALIASES connections as SSL connections, and you
can have a mix of SSL and non-SSL connections.

Related reference:

[ [DBSERVERNAME configuration parameter (Administrator's Reference)|

Connection information set in the DBSERVERALIASES
configuration parameter

The DBSERVERALIASES configuration parameter lets you assign additional
dbserver names to the same database server.

The maximum number of aliases is 32. The following example shows entries in an
onconfig configuration file that assign three dbserver names to the same database
server instance.

DBSERVERNAME sockets_srvr
DBSERVERALIASES ipx_srvr,shm_srvr

Because each dbserver name has a corresponding sqlhosts entry, you can associate
multiple connection types with one database server.

shm_srvr onipcshm my_host my_shm
sockets_srvr onsoctcp my_host portl
ipx_srvr ontlispx nw_file_server ipx_srvr

Using the sqlhosts file shown in the previous example, a client application uses
the following statement to connect to the database server using shared-memory
communication:

CONNECT TO '@shm_srvr'

A client application can initiate a TCP/IP sockets connection to the same database
server using the following statement:

CONNECT TO '@sockets_srvr!'

DBSERVERALIASES must begin with a lowercase letter and can contain other
lowercase letters, digits, and underscores. DBSERVERALIASES must not include
uppercase characters, a field delimiter (space or tab), or a new line character. Other
characters from the basic ASCII code set are not necessarily reliable. For example, a

Chapter 2. Client/server communication 2-39


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0045.htm#ids_adr_0045

2-40

hyphen or minus sign can create problems and a colon might not work reliably.
The @ character is reserved to separate the database from the server (as in
dbase@server).

In the previous examples, the @shm_srvr statement connects to an unidentified
database at that server; alternatively, you can connect to dbasel@shm_srvr.

For onimcsoc or onsoctcp protocols, you can update the DBSERVERALIASES
configuration parameter to include the number of multiple listen threads for the
database server aliases in your sqlhosts information, as follows:

DBSERVERALIASESname-number ,name-number

You can configure DBSERVERALIASES connections as SSL connections, and you
can have a mix of SSL and non-SSL connections.

Related reference:

(& [DBSERVERALIASES configuration parameter (Administrator's Reference)|

Connection information set in the LIMITNUMSESSIONS
configuration parameter

The LIMITNUMSESSIONS configuration parameter is an optional parameter that
specifies the maximum number of sessions that you want connected to IBM
Informix. If you specify a maximum number, you can also specify whether you
want Informix to print messages to the onTine.log file when the number of
sessions approaches the maximum number.

Distributed queries against a server are counted against the limit.

You might be required to dynamically increase or temporarily turn off the
LIMITNUMSESSIONS configuration parameter to allow administrative utilities to
run if the database server is reaching the limit. Use onmode -wf or onmode -wm
to dynamically increase or turn off LIMITNUMSESSIONS.

If the LIMITNUMSESSIONS configuration parameter is enabled and sessions are
restricted because of this limit, both regular user threads and DBSA user threads
connecting to any database count against the limit. However, a DBSA user is
allowed to connect to the server even after the limit is reached.

The LIMITNUMSESSIONS configuration parameter is not intended to be used as a
means to adhere to license agreements.

Example
The following example specifies that you want a maximum of 100 sessions to

connect to the database server and you want to print a warning message when the
number of connected sessions approaches 100: LIMITNUMSESSIONS 160,1

Connection information set in the NETTYPE configuration
parameter

The NETTYPE configuration parameter lets you adjust the number and type of
virtual processors the database server uses for communication. Each type of
network connection (for example, ipcshm or soctcp) can have a separate NETTYPE
entry in the configuration file.

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

Recommendation: Although the NETTYPE parameter is not a required parameter,
you must set NETTYPE if you use two or more connection types. After the
database server is running for some time, you can use the NETTYPE configuration
parameter to tune the database server for better performance.

For more information about NETTYPE, see [‘Network virtual processors” on pagel
For information about the NETTYPE configuration parameter, see the IBM
Informix Administrator’s Reference.

Name service maximum retention time set in the NS_CACHE
configuration parameter

The NS_CACHE configuration parameter defines the maximum retention time for
an individual entry in the host name/IP address cache, the service cache, the user
cache, and the group cache. If you specify maximum retention times, the database
server gets host, service, user, and group database server information from the
cache.

Each cache entry expires either after the time configured for the specific cache or
when the time is reconfigured.

Usually the network name service provider (for example, DNS) is on a remote
computer. To avoid spending the time required to return information from the
network name service provider, you can use the NS_CACHE configuration
parameter to specify the maximum retention times for obtaining information from
one of the internal caches. Then Informix looks for information in the cache. If the
information is not there, the database server queries the operating system for the
information.

You can avoid many of these operating system lookups by using the Informix
name service caching mechanism, which can keep and reuse each retrieved piece
of information for a configurable amount of time.

The server can get information from the cache faster than it does when querying
the operating system. However, if you disable one or more of these caches by
setting the retention time to 0, the database server queries the operating system for
the host, service, user, or group information.

As a DBA, you might want to modify the NS_CACHE configuration parameter
settings if the network name service provider runs on a remote computer or the
MSC VP is running with a large amount of processor usage.

For example, you can run the onstat -g glo command to check the msc VP usage in
the Individual virtual processors portion of the output. In the following ouput
sample, the msc processor usage, shown in the usercpu and syscpu columns is
high. If you suspect the usage is high because the DNS call takes too much time,
you can confirm the high usage with an operating system command and then
modify the NS_CACHE configuration parameter settings.

Individual virtual processors:

vp pid class usercpu  syscpu total Thread Eff
1 2036 cpu 76.95 7.14 84.09 99.08 84%
2 2149 adm 0.00 0.00 0.00 0.00 0%
3 2151 LIC 0.00 0.00 0.00 0.00 0%
4 2260 lio 0.00 0.00 0.00 0.03 0%
5 2442 pio 0.00 0.00 0.00 0.00 0%

Chapter 2. Client/server communication 2-41



2-42

6 2443 aio 0.00 0.01 0.01 0.11 8%
7 2444 msc 14.18 14.64 28.82 199.91 14%
8 2446 fifo 0.00 0.00 0.00 0.00 0%

You might also want to specify NS_CACHE information, if your operating system
does not have a name service (NS) cache or if you disabled the operating system
NS cache.

Example

To define the maximum retention time for your host and service connections as 600
seconds, and to disable the maximum retention limit for your user and group
database server connections, specify:

NS_CACHE host=600,service=600,user=0,group=0

Connection information set in the NUMFDSERVERS
configuration parameter

For network connections on UNIX, use the NUMFDSERVERS configuration
parameter to specify the maximum number of poll threads to handle network
connections migrating between Informix virtual processors (VPs).

Specifying NUMFDSERVERS information is useful if Informix has a high rate of
new connect and disconnect requests or if you find a high amount of contention
between network shared file (NSF) locks.

Related reference:

[+ [NUMFDSERVERS configuration parameter (Administrator's Reference)

Connection information set in the HA_ALIAS configuration
parameter

The HA_ALIAS configuration parameter is an optional parameter that defines a
network alias for a secondary server. The network alias that is specified by the
HA_ALIAS configuration parameter is used when you specify a secondary server
in onmode -d commands.

When a database server's HA_ALIAS configuration parameter is set, all
server-to-server communication with other high-availability cluster nodes occurs
through the specified network alias.

If the primary server in a high-availability cluster fails, the Connection Manager
identifies a secondary server to promote to a primary server. If the secondary
server's HA_ALIAS configuration parameter is set, then the HA_ALIAS network
alias is used to identify the new primary. The HA_ALIAS configuration parameter
only affects RS Secondary and SD Secondary server types.

The value of the HA_ALIAS configuration parameter must be one of the name
values specified in either the DBSERVERNAME or the DBSERVERALIASES
configuration parameter. The network alias must have a connection type that is a
TCP network protocol.

Related reference:

[ [HA_ALIAS configuration parameter (Administrator's Reference)|

(& [onmode -d: Set data-replication types (Administrator's Reference)|

(& [DBSERVERALIASES configuration parameter (Administrator's Reference)|

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1120.htm#ids_adr_1120
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0087.htm#ids_adr_0087
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0413.htm#ids_adr_0413
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044

[ [DBSERVERNAME configuration parameter (Administrator's Reference)|

Environment variables for network connections

The INFORMIXCONTIME (connect time) and INFORMIXCONRETRY (connect retry)
environment variables affect the behavior of the client when it is trying to connect
to a database server. Use these environment variables to minimize connection
errors caused by busy network traffic.

If the client application explicitly attaches to shared-memory segments, you might
be required to set INFORMIXSHMBASE (shared-memory base).

You can use the INFORMIXSERVER environment variable to specify a default dbserver
name to which your clients connect.

Related concepts:

[“How a client attaches to the communications portion (UNIX)” on page 6-4
Related tasks:

[“Connections that the database server supports” on page 2-5

Related reference:

[ [[NFORMIXCONTIME environment variable (SQL Reference)|
(& [[NFORMIXCONRETRY environment variable (SQL Reference)|

(& [[INFORMIXSHMBASE environment variable (UNIX) (SQL Reference)|
(& [[NFORMIXSERVER environment variable (SQL Reference)|

Automatically terminating idle connections

You can automatically terminate sessions with clients that have been idle for a
specified time by enabling the idle_user_timeout Scheduler task.

You must be connected to the sysadmin database as user informix or another
authorized user.

To enable the idle_user_timeout task, run the following statement:

UPDATE ph_task
SET tk_enable
WHERE tk_name

Itl
"idle_user_timeout';

By default, the idle_user_timeout task terminates user sessions that are idle for
longer than 60 minutes. Sessions owned by user informix are not terminated. The
idle_user_timeout task starts checking for idle sessions after two hours, which is
the default frequency for the task.

Tip: When the system time changes on the database server computer, the amount
of time user sessions have been idle is no longer accurate. For example, if a user
session last did work at 3:14 PM and at 3:15 PM the system clock is moved
forward by one hour, then to the database server, the user session has been idle for
over an hour.

To change the idle timeout period, update the frequency of running the task and
the value of the threshold. The shortest idle timeout period allowed is 5 minutes.
For example, to change the timeout period to 5 minutes, run the following
statements:

Chapter 2. Client/server communication 2-43


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0045.htm#ids_adr_0045
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_262.htm#ids_sqr_262
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_261.htm#ids_sqr_261
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_267.htm#ids_sqr_267
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_266.htm#ids_sqr_266

UPDATE ph_task
SET tk_frequency = INTERVAL (5) MINUTE TO MINUTE
WHERE tk _name = 'idle user_timeout';

UPDATE ph_threshold
SET value = '5'
WHERE task_name = 'idle_user_timeout';

Distributed Relational Database Architecture (DRDA) communications

2-44

This section contains information about how to configure IBM Informix to use the
Distributed Relational Database Architecture (DRDA), which is a set of protocols
that enables multiple database systems and application programs to work together.

Overview of DRDA

Distributed Relational Database Architecture (DRDA) is a set of protocols that
enable communication between applications and database systems on disparate
platforms, and enables relational data to be distributed among multiple platforms.

Any combination of relational database management products that use DRDA can
be connected to form a distributed relational database management system. DRDA
coordinates communication between systems by defining what is exchanged and
the exchange method.

You can configure the database server to use DRDA to respond to requests from a
common API, such as the IBM Data Server JDBC Driver or the IBM Data Server
.NET Provider.

Connection Managers support DRDA, so you can use connection management to
redirect client connection requests to appropriate database servers. Connection
Managers can also provide automatic failover for high-availability clusters using
DRDA.

Enterprise Replication, data replication, and Informix utilities, such as DB-Access,
require standard Informix connections. Enterprise Replication utilities do not
operate over DRDA connections. However, Enterprise Replication connections can
coexist with DRDA connections.

You can secure DRDA connections between a common client API and Informix in
the following ways:

* Encrypted password security or an encrypted user ID and encrypted password
security

* Secure Sockets Layer (SSL) protocol to encrypt data in end-to-end
* Password authentication through a pluggable authentication module

Related concepts:

Chapter 23, “Connection management through the Connection Manager,” on page|

23-1

[ [Secure sockets layer protocol (Security Guide)|
Related tasks:

[ [Configuring a connection to use PAM (Security Guide)|

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_ssl_001.htm#ids_ssl_001
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_am_008.htm#ids_am_008

Configuring connectivity between Informix database servers
and IBM Data Server clients
IBM Data Server Client and an applicable driver must be installed.

To configure Informix to connect to an IBM Data Server Client:

1. On each Connection Manager and database server host, add sqlhosts file
entries for each server: For example:

#dbservername
server_1
server_2
server_3

nettype

onsoctcp
onsoctcp
onsoctcp

hostname
host_1
host_2
host_3

servicename options
port_1
port_2
port_3

2. In each database server's onconfig file, set the DBSERVERALIASES parameter
to specify an alias for the server.

The onconfig file entry for server_1:
DBSERVERALIASES drda_1
The onconfig file entry for server_2:
DBSERVERALIASES drda_2
The onconfig file entry for server_3:
DBSERVERALIASES drda_3

3. On each Connection Manager's host, add sqThosts file entries for DRDA
aliases. Specify a drtlitcp or drsoctcp protocol and specify a port for DRDA
communication. For example:

#dbservername
server_1
server_2
server_3

drda_1
drda_2
drda_3

nettype

onsoctcp
onsoctcp
onsoctcp

drsoctcp
drsoctcp
drsoctcp

hostname
host_1
host_2
host_3

host_1
host 2
host_3

servicename options
port_1
port_2
port_3

drda_port_1
drda_port_2
drda_port_3

4. On the host of each Connection Manager, add a group entry for the group of
database server and add a group entry for the group of DRDA aliases. Add
group options to the database server and DRDA alias entries. Use the c=1
group-entry option so that connection-attempt starting points in the list of
group members is random. Use the e=last_member group-entry option so that
the entire sqlhosts is not scanned for group members. For example:

#dbservername
my_servers
server_1
server_2
server_3

drda_aliases
drda_1
drda_2
drda_3

nettype
group
onsoctcp
onsoctcp
onsoctcp

group
drsoctcp
drsoctcp
drsoctcp

hostname
host_1
host_2
host_3

host_1
host_2
host_3

servicename options
- c=1,e=server_3

port_1 g=my_servers
port_2 g=my_servers
port_3 g=my_servers
- c=1,e=drda_3
port_4 g=drda_aliases
port_5 g=drda_aliases
port_6 g=drda_aliases

5. Add the DRDA service-level agreements to your Connection Managers'
configuration files. For example:

The first Connection Manager's configuration file has the following entries:

NAME connection_manager_1

CLUSTER my_cTuster

{

INFORMIXSERVER my_servers
SLA sTa_primary_1

DBSERVE

RS=PRI

Chapter 2. Client/server communication

2-45



#dbservername
g_primary
sla_primary 1
sla_primary_2

g_secondaries
sla_secondaries_2
sla_secondaries_2

g_primary_drda
sla_primary_1_drda
sla_primary_2_drda

g_secondaries_drda

SLA sla_primary_drda_1 DBSERVERS=PRI

SLA sla_secondaries_1 DBSERVERS=SDS,HDR

SLA sla_secondaries_drda_1 DBSERVERS=SDS,HDR
}

The second Connection Manager's configuration file has the following entries:

NAME connection_manager_2

CLUSTER my_cTuster

{
INFORMIXSERVER my_servers

SLA sla_primary 2 DBSERVERS=PRI
SLA sTa_primary_drda_2 DBSERVERS=PRI
SLA sla_secondaries_2 DBSERVERS=SDS,HDR

SLA sTa_secondaries_drda_2 DBSERVERS=SDS,HDR
}

6. On the host of each IBM Data Server client, create sqlhosts file entries for each
service-level agreement (SLA) in each Connection Manager configuration file.
Create group entries for each group of SLA entries, and add group options to
the SLA entries.

For example:

nettype hostname servicename options

group - - c=1,e=sla_primary_2
onsoctcp cm_host 1 cm_port 1 g=g_primary
onsoctcp cm_host_2 cm_port_2 g=g_primary

group - - c=1,e=sla_secondaries_2
onsoctcp  cm_host_1 cm_port_3 g=g_secondaries
onsoctcp cm_host 2 cm_port 4 g=g_secondaries

group - - c=1,e=sla_primary 2 drda
drsoctcp cm_host_1 cm_port_5 g=g_primary_drda
drsoctcp cm_host_2 cm_port_6 g=g_primary_drda

group - - c=1,e=sla_secondaries_2_drda

sla_secondaries_2 drda drsoctcp cm_host 1 cm_port 7 g=g_secondaries_drda
sla_secondaries_2_drda drsoctcp cm_host_2 cm_port_8 g=g_secondaries_drda

In the previous example, IBM Data Server client connection requests to
@g_primary_drda are sent by drsoctcp protocol to one of the Connection
Managers. The Connection Manager that receives the request uses an SLA to
provide the client application with connection information for the primary server.

If you receive error -23104 when accessing the server through the DRDA protocol,
the client application might be trying to bind a value that has an encoding
different from the code page or code set of the database locale. Set the GL_USEGLU
environment variable to 1 before you start the Informix instance. This setting
enables the server to initialize the appropriate Unicode converters that are required
to handle the code set conversions.

Related concepts:

[“The sqlhosts information” on page 2-19|
Related tasks:

“Defining sqglhosts information for high-availability clusters that use Distributed|
Relational Database Architecture (DRDA)” on page 23-43)

“Defining sglhosts information for high-availability clusters that use Distributed|
Relational Database Architecture (DRDA) and secure ports” on page 23-45

Related reference:

[ |[GL_USEGLU environment variable (GLS User's Guide)

2-46 IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.glsug.doc/ids_gug_090.htm#ids_gug_090

Allocating poll threads for an interface/protocol combination
with the NETTYPE configuration parameter

The NETTYPE configuration parameter configures poll threads for each connection
type that your instance of the database server supports. You can use this
configuration parameter to allocate more than one poll thread for an
interface/protocol combination.

Set the NETTYPE configuration parameter as follows:
1. Specify SQLI, drtlitcp, or drsoctcp as the connection protocol.

2. Add information about the number of poll threads, the number of connections,
and the virtual processor class.

For example, specify:
NETTYPE drtlitcp,3,2,CPU

A NETTYPE entry can handle multiple database server aliases on the same
protocol type. Thus, when DRDA is in use, the network listener thread (NETTYPE
drtlitcp or drsoctcp) typically has at least two sockets open and listening for
connections. One socket is open for SQLI connections and another is open for
DRDA connections. Additional sockets might be open if many separate server
aliases are configured.

For more information about the NETTYPE configuration parameter, see the IBM
Informix Administrator’s Reference.

Specify the size of the DRDA communication buffer with the
DRDA_COMMBUFFSIZE configuration parameter

Use the DRDA_COMMBUFFSIZE configuration parameter to specify the size of
the DRDA communications buffer. The minimum size is 4 KB, the maximum size is
2 megabytes, and the default value is 32 KB.

You can specify a one megabyte buffer as 1M, 1Im, 1024K, 1024k, or 1024. IBM
Informix automatically resets values that are less than 4 KB as 32 KB.

When a DRDA session is established, the session allocates a communication buffer
of the current buffer size.

You can use the isgetdrdacommbuffsize() function to return the current value of
DRDA_COMMBUFFSIZE.

You cannot use the onmode -wm command to change the setting while the
database server is running.

The DRDAEXEC thread and queries from clients

For every DRDA client, IBM Informix creates a session and a DRDAEXEC thread,
which is the equivalent of an SQLEXEC thread, to process and run the queries.
This thread also formats the results of the queries in the DRDA protocol format
and sends the results back to the client computer.

Queries issued from a DRDA client run in parallel if PDQPRIORITY is set and the

query can run in parallel. Queries run from DRDAEXEC threads can also run in
parallel.

Chapter 2. Client/server communication 2-47



2-48

SQL and supported and unsupported data types
When using DRDA, IBM Informix syntax is supported over the common APL

The following data types are supported over the common API:
* BIGINT

* BIGSERIAL

» BLOB

* BOOLEAN

* BYTE

+ CHAR(32k)

+ CLOB

+ DATE

* DATETIME

+ DECIMAL

* FLOAT

« INT

* INT8

» INTERVAL

* LVARCHAR(32k)
* MONEY

* NCHAR(32k)

* NVARCHAR(255)
* SERIAL

+ SERIALS

¢ SMALLFLOAT
* SMALLINT

* TEXT

* VARCHAR(255)

When using DRDA connections, Informix rounds decimal and money values to
32-digit precision for all data retrieval operations on decimal or money data types.

Informix DATETIME values are mapped to DATE, TIME, or TIMESTAMP values.

The following data types are supported for use with database server host variables:
+ CHAR

* DATE

* INT

* SMALLINT

* VCHAR

Display DRDA connection information

Use the following onstat and onmode commands to display information that
includes the DRDA thread name and an indicator that distinguishes SQLI and
DRDA sessions:

* onstat -g ses
* onstat -g sql

IBM Informix Administrator's Guide



* onstat -g ath
* onstat -g stk
* onstat -u

* onstat -x

* onstat -G

* onstat -g ddr
* onstat -g env
* onstat -g stm
* onstat -g ssc
* onmode -D

e onmode -Z

For example, the onstat output might show "drdaexec" as the threadname.

Display DRDA session information

Use the syssesappinfo table in the sysmaster database to view DRDA client
session information. The table shows the client session ID, session application
name, and a session value in the sesapp_sid, sesapp_name, and sesapp_value
columns.

For example, the table might show the following information:
* sesapp_sid: 6

* sesapp_name: Accting

* sesapp_value: db2jcc_application

You can also display client session information using the onstat -g ses command.
Related concepts:

[+ [The sysmaster Database (Administrator's Reference)|

Related reference:

[ [syssesappinfo (Administrator's Reference)|

[ [onstat -g ses command: Print session-related information (Administrator's|

|[3eference)|

Examples of client/server configurations

The next several sections show the correct sqThosts entries for several
client/server connections. You can assume that the network-configuration files
hosts and services have been correctly prepared even if they are not explicitly
mentioned. The following examples are included:

* Using a network connection

* Using multiple connection types

* Accessing multiple database servers

Examples of shared-memory and local-loopback connections can be found with the
explanation of shared memory and local-loopback connections.

Related reference:

“Shared-memory connections (UNIX)” on page 2-6

“Local-loopback connections” on page 2-8|

Chapter 2. Client/server communication 2-49


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0200.htm#ids_adr_0200
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0253.htm#ids_adr_0253
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0574.htm#ids_adr_0574
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0574.htm#ids_adr_0574

A network connection

The following figure shows a configuration in which the client application is on
host river and the database server is on host valley.

river

sqlhosts entry on river

dbservername nettype hostname servicename options

valley ds onsoctcp valley valleyol

SOC - TCP

——  TLI-TCP
sqlhosts entry on valley

'

valley_ds

dbservername nettype hostname  servicename options

Database server valley ds ontlitcp valley valleyol

|

valley

Figure 2-6. An example of a network client/server configuration

An sqlhosts entry for the valley_ds database server is defined on both computers.

Both computers are on the same TCP/IP network, but the host river uses sockets
for its network programming interface, while the host valley uses TLI for its
network programming interface. The nettype field must reflect the type of network
programming interface used by the computer on which sqlhosts is located. In this
example, the nettype field for the valley_ds database server on host river is
onsoctcp, and the nettype field for the valley_ds database server on host valley is
ontTitcp.

Related concepts:

[“Network programming interface” on page 2-2|

Multiple connection types

A single instance of the database server can provide more than one type of
connection. The following figure illustrates such a configuration. The database
server is on host river. Client A connects to the database server with a
shared-memory connection because shared memory is fast. Client B must use a
network connection because the client and server are on different computers.

When you want the database server to accept more than one type of connection,
you must take the following actions:

* Add DBSERVERNAME and DBSERVERALIASES entries in the onconfig file.

* Add an sqlhosts entry for each database server/connection type pair.

For the configuration in the following figure, the database server has two dbserver
names: river_net and river_shm. The onconfig file includes the following entries:

DBSERVERNAME river_net
DBSERVERALIASES river_shm

2-50 IBM Informix Administrator's Guide



river

e

sqlhosts entries on river

Shared -
dbservername nettype hostname  servicename options
memory
river_shm onipcshm  river riverA
river_net onsoctcp river riveron
Database server A
SOC - TCP
——  TLI- TCP .
sqlhosts entries on valley
dbservername nettype hostname  servicename options
Client B river_net ontlitcp river riveron

Figure 2-7. An example of a UNIX client/server configuration that uses multiple connection types

The dbserver name used by a client application determines the type of connection
that is used. Client A uses the following statement to connect to the database

server:
CONNECT TO '@river_shm'

In the sqlhosts file, the nettype associated with the name river_shm specifies a
shared-memory connection, so this connection is a shared-memory connection.

Client B uses the following statement to connect to the database server:

CONNECT TO '@river_net'

In the sqlhosts file, the nettype value associated with river_net specifies a
network (TCP/IP) connection, so Client B uses a network connection.

Accessing multiple database servers

The following figure shows a configuration with two database servers on host
river. When more than one database server is active on a single computer, it is

known as multiple residency.

2-51

Chapter 2. Client/server communication



river

/ Shared memory riverA_shm \

> +(Database server A
/J

SOC - TCP riverB_soc

|

Database server B

i[l

sglhosts entries on river

dbservername nettype hostname  servicename options
riverA_shm onipcshm river riverA

riverB_soc onsoctcp river riveron

Figure 2-8. Multiple database servers on UNIX

For the configuration in previous example, you must prepare an onconfig file for
database server A and another one for database server B. The sqlhosts file
includes the connectivity information for both database servers.

The onconfig file for database server A includes the following line:
DBSERVERNAME riverA_shm

The onconfig file for database server B includes the following line:
DBSERVERNAME riverB_soc
Related tasks:

[# [Multiple residency (Installation Guide (Windows))|

[ [Setting up multiple residency (Installation Guide (UNIX))

IBM Informix MaxConnect

2-52

IBM Informix MaxConnect is a networking product for IBM Informix database
server environments on UNIX. Informix MaxConnect manages large numbers
(from several hundred to tens of thousands) of client/server connections. Informix
MaxConnect multiplexes connections so that the ratio of client connections to
database connections can be 200:1 or higher. Informix MaxConnect increases
system scalability to many thousands of connections and saves system resources,
reducing response times and processor requirements. Informix MaxConnect is best
for OLTP data transfers and should not be used for large multimedia data
transfers.

Install Informix MaxConnect separately from your IBM Informix database server
and client applications. For maximum performance benefit, install Informix
MaxConnect either on a separate computer to which IBM Informix clients connect
or on the client application server. You can install Informix MaxConnect in the
following configurations:

* On a dedicated server to which IBM Informix clients connect
* On the client application server

* On the database server computer

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igmsw.doc/ids_iw_018x.htm#ids_iw_018
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.igul.doc/ids_in_045x.htm#ids_in_045

Two protocols for multiplexing connections, ontliimc and onsocimc, are available
for Informix MaxConnect users. You can use the ontliimc and onsocimc protocols
in the following two configurations:

* To connect Informix MaxConnect to the database server.
In this configuration, the client connections are multiplexed and use packet
aggregation.

* To connect the client applications directly to the database server without going
through Informix MaxConnect.

In this configuration, the client does not get the benefits of connection
multiplexing or packet aggregation. Choose this configuration when the client
application is transferring simple- or smart-large-object data, because a direct
connection to the database server is best.

For more information about how to configure Informix MaxConnect and monitor it
with the onstat -g imc and imcadmin commands, see the IBM Informix MaxConnect
User’s Guide.

Important: Informix MaxConnect and the IBM Informix MaxConnect User’'s Guide
ship separately from the IBM Informix database server.

Related reference:

[“sqlhosts connectivity information” on page 2-20|

Chapter 2. Client/server communication 2-53



2-54  IBM Informix Administrator's Guide



Chapter 3. Database server initialization

The database server requires both disk-space initialization and shared-memory
initialization.

Related concepts:

|“Database server configuration” on page 1—3|

Types of initialization

Initialization of the database server is composed of two related activities:
shared-memory initialization and disk-space initialization.

Shared-memory initialization, or starting the server, establishes the contents of
database server shared memory as follows: internal tables, buffers, and the
shared-memory communication area. Shared memory is initialized every time the
database server starts. You use the oninit utility from the command line to
initialize database server shared memory and bring the database server online.

Shared-memory initialization also occurs when you restart the database server.

One key difference distinguishes shared-memory initialization from disk-space
initialization:
Shared-memory initialization has no effect on disk-space allocation or layout.
No data is deleted.

Disk-space initialization uses the values stored in the configuration file to create the
initial chunk of the root dbspace on disk. When you initialize disk space, the
database server automatically initializes shared memory as part of the process.
Disk space is initialized the first time the database server starts. It is only
initialized thereafter during a cold restore or at the request of the database server
administrator.

Warning: When you initialize disk space, you overwrite whatever is on that disk
space. If you reinitialize disk space for an existing database server, all the data in
the earlier database server becomes inaccessible and, in effect, is deleted.

Initializing disk space

You initialize disk space for the root dbspace when you are starting a database
server for the first time or you want to remove all dbspaces and their associated
data. When you install the database server and choose to initialize a new instance
of the database server, the database server is initialized automatically.

Warning: When you initialize the database server, all existing data in the database
server disk space is deleted.

Prerequisites:
¢ UNIX, Linux, or Mac OS X: You must be logged in as user root or informix.
* Windows: You must be a member of the Administrators or Power Users group.

© Copyright IBM Corp. 1996, 2014 3-1



Before you reinitialize a root dbspace that is already being used by the database

server:

* Back up existing data by performing a level-0 backup.

* Stop the database server by running the onmode -k command.
* Set the FULL_DISK_INIT configuration parameter to 1.

To initialize the database server:

UNIX, Linux, or Mac OS X: Run the oninit -iy command.

Windows: Use one of the following methods:

* In the Services control application, choose the database server service and type
-iy in the Startup parameters field. Then click Start.

e Use the starts command from the command line with the database server name
and the -iy options: starts dbservername -iy

After initialization is complete, you can perform a level-0 restore.

Related reference:

[+ [The oninit utility (Administrator's Reference)

[+ [onmode -k, -m, -s, -u, -j: Change database server mode (Administrator's|

|I3 eference ZI

[ [FULL_DISK_INIT configuration parameter (Administrator's Reference)|

Initialization process

When you start the database server or initialize disk space, the database server
performs a set of steps. You can see the results of each step in the message log.

Disk-space initialization always includes the initialization of shared memory.
However, some activities that normally take place during shared-memory
initialization, such as recording configuration changes, are not required during disk
initialization because those activities are not relevant with a newly initialized disk.

The following table shows the main tasks completed during the two types of
initialization. The following sections explain each step.

Table 3-1. Initialization steps

Shared-memory initialization

Disk initialization

Process configuration file.

Process configuration file.

Create shared-memory segments.

Create shared-memory segments.

Initialize shared-memory structures.

Initialize shared-memory structures.

Initialize disk space.

Start all required virtual processors.

Start all required virtual processors.

Make necessary conversions.

Initiate fast recovery.

Initiate a checkpoint.

Initiate a checkpoint.

Document configuration changes.

Update oncfg_servername.servernum file.

Update oncfg_servername.servernum file.

Change to quiescent mode.

Change to quiescent mode.

3-2  IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0395.htm#ids_adr_0395
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0422.htm#ids_adr_0422
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0422.htm#ids_adr_0422
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1099.htm#ids_adr_1099

Table 3-1. Initialization steps (continued)

Shared-memory initialization Disk initialization

Drop temporary tblspaces (optional).

Set forced residency, if requested. Set forced residency, if specified.
Change to online mode and return control to user. Change to online mode and return control to user.
If the SMI tables are not current, update the tables. Create sysmaster database that contains the SMI tables.

Create the sysutils database.

Create the sysuser database

Create the sysadmin database

Monitor maximum number of user connections at each Monitor maximum number of user connections at each
checkpoint. checkpoint.

Configuration file used during initialization

The database server uses configuration parameters to allocate shared-memory
segments during initialization and restart. If you modify a shared-memory
configuration parameter, you must shut down and restart the database server for
the change to take effect.

The ONCONFIG environment variable, which specifies the onconfig file that contains
your configuration parameters, must be set before you initialize or restart the
database server.

During initialization, the database server looks for configuration values in the

following files:

e If the ONCONFIG environment variable is set, the database server reads values
from the onconfig file.

If the ONCONFIG environment variable is set, but the database server cannot access
the specified onconfig file, the server returns an error message.

e If the ONCONFIG environment variable is not set, the database server reads the
values from the onconfig file.

If you omit any configuration parameters in your onconfig file, the database server
uses the default values that are built in the server.

The restart process compares the values in the current configuration file with the
previous values, if any, that are stored in the root dbspace reserved page,
PAGE_CONFIG. When differences exist, the database server uses the values from
the current onconfig configuration file when the database server is restarted.

Related reference:

[+ [Database configuration parameters (Administrator's Reference)|

[+ [ONCONFIG environment variable (SQL Reference)|

Create shared-memory portions

The database server uses the configuration values to calculate the required size of
the database server resident shared memory. In addition, the database server
computes additional configuration requirements from internal values. Space
requirements for overhead are calculated and stored.

Chapter 3. Database server initialization 3-3


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0007.htm#ids_adr_0007
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_286.htm#ids_sqr_286

3-4

To create shared memory, the database server acquires the shared-memory space
from the operating system for three different types of memory:

* Resident portion, used for data buffers and internal tables
* Virtual portion, used for most system and user-session memory requirements
¢ IPC communication portion, used for IPC communication

The database server allocates this portion of shared memory only if you
configure an IPC shared-memory connection.

Next, the database server attaches shared-memory segments to its virtual address
space and initializes shared-memory structures. For more information about
shared-memory structures, see [“Virtual portion of shared memory” on page 6-13.]

After initialization is complete and the database server is running, it can create
additional shared-memory segments as necessary. The database server creates
segments in increments of the page size.

Initialize or restart shared-memory

After the database server attaches to shared memory;, it clears the shared-memory
space of uninitialized data. Next the database server lays out the shared-memory
header information and initializes data in the shared-memory structures. The
database server lays out the space required for the logical-log buffer, initializes the
structures, and links together the three individual buffers that form the logical-log
buffer. For more information about these structures, see the onstat utility section in
the IBM Informix Administrator’s Reference.

After the database server remaps the shared-memory space, it registers the new
starting addresses and sizes of each structure in the new shared-memory header.

During shared-memory initialization, disk structures and disk layout are not
affected. The database server reads essential address information, such as the
locations of the logical and physical logs, from disk and uses this information to
update pointers in shared memory.

Initialize disk space

This procedure is performed only during disk-space initialization, not when the
database server is restarted. After shared-memory structures are initialized, the
database server begins initializing the disk. The database server initializes all the
reserved pages that it maintains in the root dbspace on disk and writes page zero
control information to the disk.

The FULL_DISK_INIT configuration parameter specifies whether oninit -i can run
on your instance when a page zero exists at the root path location (at the first page
of the first chunk location). Use this configuration parameter to prevent an
accidental disk reinitialization of an existing server instance.

The default setting of the FULL_DISK_INIT configuration parameter is 0. When
the configuration parameter is set to0 , the oninit -i command runs only if there is
not a page zero at the root path location.

If a page zero exists at the root path location, initialization occurs only if the
FULL_DISK_INIT configuration parameter is set to 1. The database server
automatically resets the FULL_DISK_INIT configuration parameter to 0 after the
initialization.

Related reference:

IBM Informix Administrator's Guide



[ [The oninit utility (Administrator's Reference)|

Start all required virtual processors

The database server starts all the virtual processors that it requires. The parameters
in the onconfig file influence what processors are started. For example, the
NETTYPE parameter can influence the number and type of processors started for
making connections. For more information about virtual processors, see
[processors” on page 4-1)

Make necessary conversions

The database server checks its internal files. If the files are from an earlier version,
it updates these files to the current format. For information about database
conversion, see the IBM Informix Migration Guide.

Start fast recovery

The database server checks if fast recovery is required and, if so, starts it. For more
information about fast recovery, see [“Fast recovery” on page 15-6]

Fast recovery is not performed during disk-space initialization because there is not
yet anything to recover.

Start a checkpoint

After fast recovery completes, the database server executes a checkpoint to verify
that all recovered transactions are flushed to disk so the transactions are not
repeated.

As part of the checkpoint procedure, the database server writes a
checkpoint-complete message in the message log. For more information about
checkpoints, see [“Checkpoints” on page 15-4.]

The database server now moves to quiescent mode or online mode, depending on
how you started the initialization or database-server restart process.

Document configuration changes

The database server compares the current values stored in the configuration file
with the values previously stored in the root dbspace reserved page
PAGE_CONFIG. When differences exist, the database server notes both values (old
and new) in a message to the message log.

This task is not performed during disk-space initialization or restart.

Create the oncfg_servername.servernum file

The database server creates the oncfg_servername.servernum file and updates it
every time that you add or delete a dbspace, blobspace, logical-log file, or chunk.
You are not required to manipulate this file in any way, but you can see it listed in
your $INFORMIXDIR/etc directory on UNIX or in your %INFORMIXDIR%\etc directory
on Windows. The database server uses the oncfg_servername.servernum file during
a full-system restore for salvaging the logical log.

For more information about the oncfg_servername.servernum file, see the section
on files that the database server uses in the IBM Informix Administrator’s Reference.

Chapter 3. Database server initialization 3-5


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0395.htm#ids_adr_0395

3-6

Drop Temporary Tbispaces

The database server searches through all dbspaces for temporary tblspaces. (If you
use the -p option of oninit to initialize the database server, the database server
skips this step.) These temporary tblspaces, if any, are tblspaces left by user
processes that died prematurely and were unable to perform appropriate cleanup.
The database server deletes any temporary tblspaces and reclaims the disk space.
For more information about temporary tblspaces, see |“Temporary tables” on page|

This task is performed when the database server is restarted; it is not performed
during disk-space initialization.

Set forced residency if specified

If the value of the RESIDENT configuration parameter is -1 or a number greater
than 0, the database server tries to enforce residency of shared memory. If the host
computer system does not support forced residency, the initialization procedure
continues. Residency is not enforced, and the database server sends an error
message to the message log. For more information about the RESIDENT
configuration parameter, see the IBM Informix Administrator’s Reference.

Return control to user

The database server writes the IBM Informix Dynamic Server initialized -
complete disk initialized message in the message log only if initialization, not
database-server restart, occurred. The database server also dynamically allocates a
virtual shared-memory segment.

At this point, control returns to the user. Any error messages generated by the
initialization procedure are displayed in the following locations:

¢ The command line

* The database server message log file, specified by the MSGPATH configuration
parameter

For more information about the MSGPATH parameter, see the IBM Informix
Administrator’s Reference.

You can use the oninit -w utility to force the server to return to a command
prompt within a configurable timeout. The oninit -w utility is useful for
troubleshooting initialization failures. For syntax and information about oninit, see
the IBM Informix Administrator’s Reference.

Create sysmaster database and prepare SMI tables

Even though the database server has returned control to the user, it has not
finished its work. The database server now checks the system-monitoring interface
(SMI) tables. If the SMI tables are not current, the database server updates the
tables. If the SMI tables are not present, as is the case when the disk is initialized,
the database server creates the tables. After the database server builds the SMI
tables, it puts the message sysmaster database built successfully in the message
log. The database server also recreates the sysmaster database during conversion
and reversion. For more information about SMI tables, see the chapter on the
sysmaster database in the IBM Informix Administrator’s Reference.

If you shut down the database server before it finishes building the SMI tables, the
process of building the tables stops. This condition does not damage the database
server. The database server builds the SMI tables the next time that you bring the

IBM Informix Administrator's Guide



database server online. However, if you do not allow the SMI tables to finish
building, you cannot run any queries against those tables, and you cannot use
ON-Bar for backups.

After the SMI tables have been created, the database server is ready for use. The
database server runs until you stop it or, possibly, until a malfunction.

Recommendation: Do not try to stop the database server by stopping a virtual
processor or ending another database server process. For more information, see
[“Start and stop virtual processors” on page 5-1]

Create the sysutils database

The database server drops and recreates the sysutils database during disk
initialization, conversion, or reversion. ON-Bar stores backup and restore
information in the sysutils database. Wait until the message sysutils database
built successfully displays in the message log. For more information, see the
IBM Informix Backup and Restore Guide.

Create the sysuser database

The sysuser database is used for Pluggable Authentication Module (PAM)
authentication in IBM Informix server to server communication.

Create the sysadmin database

The sysadmin database provides remote administration and scheduler API features
in IBM Informix.

Monitor maximum number of user connections

At each checkpoint, the database server prints the maximum number of user
connections in the message log: maximum server connections number. You can
monitor the number of users who have connected to the database server since the
last restart or disk initialization.

The number displayed is reset when the customer reinitializes the database server.

Database server operating modes

You can determine the current database server mode by running the onstat utility
from the command line. The onstat header displays the mode.

The table shows the principal modes of operation of the database server.

Table 3-2. Operating modes

Operating mode

Description

Users allowed access

Offline mode

The database server is not running. Shared
memory is not allocated.

Only the administrator (user informix) can
change from this mode to another mode.

Quiescent mode

Database-server processes are running and
shared-memory resources are allocated.

Administrators use this mode to perform
maintenance functions that do not require
the execution of SQL and DDL statements.

Only the administrator (user informix) can
access the database server.

Other users can view database-server status
information, but they cannot access the
database server.

Chapter 3. Database server initialization ~ 3=7



Table 3-2. Operating modes (continued)

Operating mode

Description

Users allowed access

Administration mode

This mode is an intermediary mode

Administrators use this mode to perform
any maintenance task, including tasks
requiring the execution of SQL and DDL
statements. Administrators can also
perform all other functions available in
Online mode.

between Quiescent mode and Online mode.

The following users can connect to the
database server in administration mode:

* User informix
* Users who have the DBSA role

Set the
ADMIN_USER_MODE_WITH_DBSA
configuration parameter to 1 if you want
users who are members of the DBSA
group (in addition to user informix) to
connect to the database server in
administration mode.

* One or more users who have
administration mode access

User informix or a DBSA can
dynamically give one or more specific
users the ability to connect to the
database server in administration mode
through the onmode -j command, the
oninit -U command, or the
ADMIN_MODE_USERS configuration
parameter.

Other users can view database-server status
information, but they cannot access the
database server.

Online mode

This is the normal operating mode of the
database server.

Any authorized user can connect with the
database server and perform all database
activities.

User informix or user root can use the
command-line utilities to change many
database server ONCONFIG parameter
values.

In addition, the database server can also be in one of the following modes:

* Read-only mode is used by the secondary database server in a data replication

environment. An application can query a secondary database server that is in
read-only mode, but the application cannot write to a read-only database.

Recovery mode is transitory. It occurs when the database server performs fast
recovery or recovers from a system archive or system restore. Recovery occurs
during the change from offline to quiescent mode.

Shutdown mode is transitory. It occurs when the database server is moving from
online to quiescent mode or from online (or quiescent) to offline mode. For the
current users access the system, but no new users are allowed access.

After shutdown mode is initiated, it cannot be canceled.

Change database server operating modes

This section describes how to change from one database server operating mode to
another with the oninit and onmode utilities. It also contains information about
using the ADMIN_MODE_USERS configuration parameter to specify which users
can connect to the server in administration mode.

3-8 IBM Informix Administrator's Guide



Users

Windows only: In Windows, the database server runs as a service. Windows
provides a service control application (also called the Services tool) to start, stop,
and pause a service. The service control application is located in the Control Panel
program group. The service name for the database server includes the database
server name (the value of DBSERVERNAME in the onconfig file). For example, the
IBM Informix service for the newyork database server is:

IBM Informix Database Server - newyork

To change mode with the Services tool, start the tool and select the database server
service. Then choose the appropriate option in the Services window. The tables
shown later in these topics explain which option you select for each mode.

To start and stop the database server, you can use other Windows tools, such as
the NET command and the Server Manager tool. For more information about these
methods, consult your Windows operating-system documentation.

Tip: After you change the mode of your database server, run the onstat command
to verify the current server status.

permitted to change modes
UNIX only

Users who are logged in as root or informix and members of the DBSA group can
change the operating mode of the database server.

If you want users with the DBSA group to connect to the database server in
administration mode, set the ADMIN_USER_MODE_WITH_DBSA configuration parameter
to 1. If this parameter is set to zero, then access is restricted to user informix only.
If the parameter is missing from $ONCONFIG, it is treated as ©.

User informix or a DBSA can dynamically give one or more specific users the
ability to connect to the database server in administration mode, using the onmode
utility, the oninit utility, or the ADMIN_MODE_USERS configuration parameter.

Note: For a member of the DBSA group, the permissions on $INFORMIXDIR/bin/
oninit must be changed to allow public execute permission - root:informix:6755
in a standard IBM Informix installation.

Windows only

[Table 3-2 on page 3-7|shows which users can change the operating mode of the
database server in Windows. Apache as user informix. The Apache server runs as
a member of the Informix-Admin group.

Table 3-3. Changing operating modes in windows

Changing operating mode Administrators group Informix-Admin group
command-line utilities such as starts X
services control panel X

Chapter 3. Database server initialization 3-9



Command-line options for changing modes

[Table 3-2 on page 3-7| contains descriptions of each mode and shows which users
can access the database server when the server is in each mode. These topics
contain information about commands for changing modes and information about
how mode changes effect user sessions.

Also see|”SpecifV administration mode users with the ADMIN_MODE_USERS|
lconfiguration parameter” on page 3-13.|

Change from offline to quiescent mode

When the database server changes from offline mode to quiescent mode, the
database server initializes shared memory. Only administrators can access the
database server to perform maintenance functions that do not involve the
execution of SQL and DDL statements.

Operating system Action

UNIX Run oninit -s.

Windows On the command line, use the starts
dbservername -s command.

Change from offline to online mode
When you move the database server from offline to online mode, the database
server initializes shared memory and is available for all user sessions.

Operating system Action
UNIX Run oninit.
Windows With the Services tool, select the database

server service and click Start.

On the command line, use the starts
dbservername command.

Change from offline to administration mode

When you move the database server from offline to administration mode, you
move the server into a mode that only administrators can use to perform database
server functions and maintenance functions, including those involving the
execution of SQL and DDL statements.

Operating system Action

UNIX or Windows Run oninit -j.

User informix or a DBSA can use the oninit -U command to specify a list of
administration mode users, as shown in this example:

oninit -U mark,ajay,carol

Users specified in the oninit -U list can connect for the period of time in which the
server instance is active or until you run the onmode -j -U command to change the
list of users who can connect to the server. Run the onmode -j -U command with a
blank space instead of a name to remove all users in the list, as shown in this
example:

oninit -U " "

3-10 IBM Informix Administrator's Guide



Also see [“Specify administration mode users with the ADMIN_MODE_USERS|
fconfiguration parameter” on page 3-13.|

Change from quiescent to online mode
When you take the database server from quiescent mode to online mode, all
sessions gain access.

If you have already taken the database server from online mode to quiescent mode
and you are now returning the database server to online mode, any users who
were interrupted in earlier processing must reselect their database and redeclare
their cursors.

Operating system Action

UNIX or Windows Run onmode -m.

Windows only With the Services tool, choose the database
server service and click Continue.

Change gracefully from online to quiescent mode
Take the database server gracefully from online mode to quiescent mode to restrict
access to the database server without interrupting current processing.

After you perform this task, the database server sets a flag that prevents new
sessions from gaining access to the database server. The current sessions are
allowed to finish processing.

After you initiate the mode change, it cannot be canceled. During the mode change
from online to quiescent, the database server is considered to be in Shutdown
mode.

Operating system Action

UNIX or Windows Run onmode -s or onmode -sy.

Windows only With the Services tool, choose the database
server service and click Pause.

Change immediately from online to quiescent mode

Take the database server immediately from online mode to quiescent mode to
restrict access to the database server as soon as possible. Work in progress can be
lost.

A prompt asks for confirmation of the immediate shutdown. If you confirm, the
database server sends a disconnect signal to all sessions that are attached to shared
memory. If a session does not receive the disconnect signal or is not able to comply
automatically within 10 seconds, the database server terminates the session.

The database server users receive either error message -459 indicating that the
database server was shut down or error message -457 indicating that their session

was unexpectedly terminated.

The database server cleans up all sessions that the database server terminated.
Active transactions are rolled back.

Chapter 3. Database server initialization ~ 3-11



Operating system Action

UNIX or Windows Run onmode -u or onmode -uy

The -y option eliminates the requirement to
confirm the prompt.

Change from quiescent or online to administration mode
When you move the database server from quiescent or online to administration
mode, you move the server into a mode that only administrators can use.

If you begin in online mode, the database server automatically disconnects any
users who are connected with any user ID that is not user informix and the users
receive an error message. If a connection is terminated during a transaction, the
database server rolls back the transaction.

Change to administration mode when you want to run SQL and DLL commands
when no other users are connected.

Operating system Action

UNIX or Windows Run onmode -j.

User informix or a DBSA can use the onmode -j -U option to grant individual
users access to the database server in administration mode.

For example, run the following command to enable three individual users to
connect to the database server and have database server access until the database
server mode changes to offline, quiescent or online mode:

onmode -j -U mark,ajay,carol

After connecting, these individual users can run any SQL or DDL commands.
When the server is changed to administration mode, all sessions for users not
identified in the onmode -j -U command lose their database server connection.

After initially running the onmode -j -U command, you can remove individuals by
running onmode -j -U and removing individual user names from the new list of
names in the command, for example, by running:

onmode -j -U mark,carol

Run the onmode -j -U command with a blank space instead of a name to remove
all users in the list, as shown in this example:

oninit -U " "

Also see[“Specify administration mode users with the ADMIN_MODE_USERS|
lconfiguration parameter” on page 3-13 |

Change from administration to online mode
When you move the database server from administration to online mode, all users
can access the database server.

3-12

Operating system

Action

UNIX or Windows

Run onmode -m.

IBM Informix Administrator's Guide



Change from administration to quiescent mode

When you move the database server from administration to quiescent mode, you
move the server into a mode that only administrators can use to perform
maintenance functions that do not involve the execution of SQL and DDL

statements.
Operating system Action
UNIX or Windows Run onmode -s.

Change from any mode immediately to offline mode
You can take the database server immediately from any mode to offline mode.

A prompt asks for confirmation to go offline. If you confirm, the database server
initiates a checkpoint request and sends a disconnect signal to all sessions that are
attached to shared memory. If a session does not receive the disconnect signal or is
not able to comply automatically within 10 seconds, the database server terminates
this session.

The database server users receive either error message -459 indicating that the
database server was shut down or error message -457 indicating that their session
was unexpectedly terminated.

After you take the database server to offline mode, restart the database server in
quiescent, administration, or online mode. When you restart the database server, it
performs a fast recovery to ensure that the data is logically consistent.

The database server cleans up all sessions that were terminated by the database
server. Active transactions are rolled back.

Operating system Action

UNIX or Windows Run onmode -k or onmode -ky. The -y
option eliminates the automatic prompt that
confirms an immediate shutdown.

Windows only With the Services tool, choose the database
server service and click Stop.

If the onmode command fails to shut down the database server, you can use the
onclean utility to force an immediate shutdown. For more information about the
onclean utility, see the IBM Informix Administrator’s Reference.

Specify administration mode users with the
ADMIN_MODE_USERS configuration parameter

The ADMIN_MODE_USERS configuration parameter enables you to specify which
users can connect to the database server in administration mode. Unlike the oninit
and onmode commands that enable you to specify administration mode users until
the server changes to offline, quiescent, or online mode, the
ADMIN_MODE_USERS configuration parameter preserves a list of administration
mode users indefinitely.

To create a list of administration mode users that is preserved in the onconfig file,

specify a comma-separated list of users as ADMIN_MODE_USERS configuration
parameter values, for example, mark,ajay,carol.

Chapter 3. Database server initialization ~ 3-13



To override ADMIN_MODE_USERS during a session, use the onmode -wf
command, as shown in this example:

onmode -wf ADMIN MODE_USERS=sharon,kalpana
The effect of the ADMIN_MODE_USERS configuration parameter is to add to the

list of people permitted to access the server in administration mode. Those people
listed in the onmode command line override those listed in the onconfig file.

3-14 1BM Informix Administrator's Guide



Part 2. Disk, memory, and process management

© Copyright IBM Corp. 1996, 2014



IBM Informix Administrator's Guide



Chapter 4. Virtual processors and threads

These topics describe virtual processors, explain how threads run within the virtual
processors, and explain how the database server uses virtual processors and
threads to improve performance.

Related reference:

[“Database server maintenance tasks” on page 1-10|

Virtual processors

Database server processes are called virtual processors because the way they
function is similar to the way that a CPU functions in a computer. Just as a CPU
runs multiple operating-system processes to service multiple users, a database
server virtual processor runs multiple threads to service multiple SQL client
applications.

A virtual processor is a process that the operating system schedules for processing.
The following figure illustrates the relationship of client applications to virtual

processors. A small number of virtual processors serve a much larger number of
client applications or queries.

Client applications

V' A 7N

T — |

ALA 4

E Virtual processors ]

CPU1 CPU 2 CPU 3 CPU 4

Figure 4-1. Virtual processors

Threads

A thread is a task for a virtual processor in the same way that the virtual processor
is a task for the CPU. The virtual processor is a task that the operating system
schedules for execution on the CPU; a database server thread is a task that the

© Copyright IBM Corp. 1996, 2014 4-1



4-2

virtual processor schedules internally for processing. Threads are sometimes called
lightweight processes because they are like processes, but they make fewer demands
on the operating system.

Database server virtual processors are multithreaded because they run multiple
concurrent threads.

The nature of threads is as follows.

Operating system Action

UNIX A thread is a task that the virtual processor
schedules internally for processing.

Windows A thread is a task that the virtual processor
schedules internally for processing. Because
the virtual processor is implemented as a
Windows thread, database server threads run
within Windows threads.

Important: Throughout these topics, all references to thread refer to the threads
created, scheduled, and deleted by the database server. All references to “Windows
threads” refer to the threads created, scheduled, and deleted by Windows.

A virtual processor runs threads on behalf of SQL client applications (session
threads) and also to satisfy internal requirements (internal threads). In most cases,
for each connection by a client application, the database server runs one session
thread. The database server runs internal threads to accomplish, among other
things, database 1/0, logging 1/0, page cleaning, and administrative tasks. For
cases in which the database server runs multiple session threads for a single client,
see [“Parallel processing” on page 4-3.

A user thread is a database server thread that services requests from client
applications. User threads include session threads, called sqlexec threads, which
are the primary threads that the database server runs to service client applications.

User threads also include a thread to service requests from the onmode utility,
threads for recovery, B-tree scanner threads, and page-cleaner threads.

To display active user threads, use onstat -u. For more information about
monitoring sessions and threads, see IBM Informix Performance Guide.

Advantages of virtual processors

Compared to a database server process that services a single client application, the
dynamic, multithreaded nature of a database server virtual processor provides the
following advantages:

* Virtual processors can share processing.
* Virtual processors save memory and resources.
* Virtual processors can perform parallel processing.

* You can start additional virtual processors and terminate active CPU virtual
processors while the database server is running.

* You can bind virtual processors to CPUs.

The following topics describe these advantages.

IBM Informix Administrator's Guide



Shared processing

Virtual processors in the same class have identical code and share access to both
data and processing queues in memory. Any virtual processor in a class can run
any thread that belongs to that class.

Generally, the database server tries to keep a thread running on the same virtual
processor because moving it to a different virtual processor can require some data
from the memory of the processor to be transferred on the bus. When a thread is
waiting to run, however, the database server can migrate the thread to another
virtual processor because the benefit of balancing the processing load outweighs
the amount of overhead incurred in transferring the data.

Shared processing within a class of virtual processors occurs automatically and is
transparent to the database user.

Save memory and resources

The database server is able to service many clients with a small number of server
processes compared to architectures that have one client process to one server
process. It does so by running a thread, rather than a process, for each client.

Multithreading permits more efficient use of the operating-system resources
because threads share the resources allocated to the virtual processor. All threads
that a virtual processor runs have the same access to the virtual-processor memory,
communication ports, and files. The virtual processor coordinates access to
resources by the threads. Individual processes, though, each have a distinct set of
resources, and when multiple processes require access to the same resources, the
operating system must coordinate the access.

Generally, a virtual processor can switch from one thread to another faster than the
operating system can switch from one process to another. When the operating
system switches between processes, it must stop one process from running on the
processor, save its current processing state (or context), and start another process.
Both processes must enter and exit the operating-system kernel, and the contents
of portions of physical memory might require replacement. Threads, though, share
the same virtual memory and file descriptors. When a virtual processor switches
from one thread to another, the switch is from one path of execution to another.
The virtual processor, which is a process, continues to run on the CPU without
interruption. For a description of how a virtual processor switches from one thread
to another, see [“Context switching” on page 4-5)

Parallel processing
In the following cases, virtual processors of the CPU class can run multiple session
threads, working in parallel, for a single client:

* Index building

e Sorting

* Recovery

¢ Scanning

* Joining

* Aggregation

* Grouping

» User-defined-routine (UDR) execution

For more information about parallel UDR execution, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

Chapter 4. Virtual processors and threads 4-3



4-4

The following figure illustrates parallel processing. When a client initiates index
building, sorting, or logical recovery, the database server creates multiple threads
to work on the task in parallel, using as much of the computer resources as
possible. While one thread is waiting for I/O, another can be working.

Indexing

recovery

1]
)

Virtual processors

CPU1 CPU 2 CPU 3 CPU 4

Figure 4-2. Parallel processing

Add and drop virtual processors in online mode

You can add virtual processors to meet increasing demands for service while the
database server is running. For example, if the virtual processors of a class become
compute bound or I/O bound (meaning that CPU work or I/O requests are
accumulating faster than the current number of virtual processors can process
them), you can start additional virtual processors for that class to distribute the
processing load further.

You can add virtual processors for any of the classes while the database server is
running. For more information, see [“Add virtual processors in online mode” on|
page 5-2,

Windows only: In Windows, you cannot drop a virtual processor of any class.

While the database server is running, you can drop virtual processors of the CPU
or a user-defined class. For more information, see I“Set virtual—processoﬂ
lconfiguration parameters” on page 5-1.

Bind virtual processors to CPUs
You can use some multiprocessor systems to bind a process to a particular CPU.
This feature is called processor affinity.

On multiprocessor computers for which the database server supports processor
affinity, you can bind CPU virtual processors to specific CPUs in the computer.
When you bind a CPU virtual processor to a CPU, the virtual processor runs
exclusively on that CPU. This operation improves the performance of the virtual
processor because it reduces the amount of switching between processes that the
operating system must do. Binding CPU virtual processors to specific CPUs also
enables you to isolate database work on specific processors on the computer,
leaving the remaining processors free for other work. Only CPU virtual processors
can be bound to CPUs.

For information about how to assign CPU virtual processors to hardware
processors, see [“Processor affinity” on page 4-13/

IBM Informix Administrator's Guide



How virtual processors service threads

At a given time, a virtual processor can run only one thread. A virtual processor
services multiple threads concurrently by switching between them. A virtual
processor runs a thread until it yields. When a thread yields, the virtual processor
switches to the next thread that is ready to run. The virtual processor continues
this process, eventually returning to the original thread when that thread is ready
to continue. Some threads complete their work, and the virtual processor starts
new threads to process new work. Because a virtual processor continually switches
between threads, it can keep the CPU processing continually. The speed at which
processing occurs produces the appearance that the virtual processor processes
multiple tasks simultaneously and, in effect, it does.

Running multiple concurrent threads requires scheduling and synchronization to
prevent one thread from interfering with the work of another. Virtual processors
use the following structures and methods to coordinate concurrent processing by
multiple threads:

* Control structures
* Context switching
* Stacks

* Queues

* Mutexes

These topics describe how virtual processors use these structures and methods.

Control structures

When a client connects to the database server, the database server creates a session
structure, which is called a session control block, to hold information about the
connection and the user. A session begins when a client connects to the database
server, and it ends when the connection terminates.

Next, the database server creates a thread structure, which is called a thread-control
block (TCB) for the session, and initiates a primary thread (sqlexec) to process the
client request. When a thread yields—that is, when it pauses and allows another
thread to run—the virtual processor saves information about the state of the thread
in the thread-control block. This information includes the content of the process
system registers, the program counter (address of the next instruction to execute),
and the stack pointer. This information constitutes the context of the thread.

In most cases, the database server runs one primary thread per session. In cases
where it performs parallel processing, however, it creates multiple session threads
for a single client, and, likewise, multiple corresponding thread-control blocks.

Context switching

A virtual processor switches from running one thread to running another one by
context switching. The database server does not preempt a running thread, as the
operating system does to a process, when a fixed amount of time (time-slice)
expires. Instead, a thread yields at one of the following points:

* A predetermined point in the code

* When the thread can no longer execute until some condition is met

When the amount of processing required to complete a task would cause other
threads to wait for an undue length of time, a thread yields at a predetermined

Chapter 4. Virtual processors and threads 4-5



4-6

point. The code for such long-running tasks includes calls to the yield function at
strategic points in the processing. When a thread performs one of these tasks, it
yields when it encounters a yield function call. Other threads in the ready queue
then get a chance to run. When the original thread next gets a turn, it resumes
executing code at the point immediately after the call to the yield function.
Predetermined calls to the yield function allow the database server to interrupt
threads at points that are most advantageous for performance.

A thread also yields when it can no longer continue its task until some condition
occurs. For example, a thread yields when it is waiting for disk I/O to complete,
when it is waiting for data from the client, or when it is waiting for a lock or other
resource.

When a thread yields, the virtual processor saves its context in the thread-control
block. Then the virtual processor selects a new thread to run from a queue of
ready threads, loads the context of the new thread from its thread-control block,
and begins executing at the new address in the program counter. The following
figure illustrates how a virtual processor accomplishes a context switch.

Thread-control blocks

t0 prgm ctr t1 prgm ctr
registers registers
stack ptr stack ptr
etc. etc.
Save Restore

Time

: —
/‘ % J
4

\/

Thread t0 Context switch Thread t1

Figure 4-3. Context switch: how a virtual processor switches from one thread to another

Stacks

The database server allocates an area in the virtual portion of shared memory to
store nonshared data for the functions that a thread executes. This area is called
the stack. For information about how to set the size of the stack, see

The stack enables a virtual processor to protect the nonshared data of a thread
from being overwritten by other threads that concurrently execute the same code.
For example, if several client applications concurrently perform SELECT
statements, the session threads for each client execute many of the same functions
in the code. If a thread did not have a private stack, one thread might overwrite
local data that belongs to another thread within a function.

IBM Informix Administrator's Guide



When a virtual processor switches to a new thread, it loads a stack pointer for that
thread from a field in the thread-control block. The stack pointer stores the
beginning address of the stack. The virtual processor can then specify offsets to the
beginning address to access data within the stack. The figure illustrates how a
virtual processor uses the stack to segregate nonshared data for session threads.

mojololo

Thread-control blocks
t3 | prgm ctr

t2_[prom ctr Stack Stack Stack Stack
t1__Jprgm ctr|
t0 | prgm ctr

registers /

stack ptr

etc.

»( \/irtual processor

Figure 4-4. Virtual processors segregate nonshared data for each user

Queues

The database server uses three types of queues to schedule the processing of
multiple, concurrently running threads.

Virtual processors of the same class share queues. This fact, in part, enables a
thread to migrate from one virtual processor in a class to another when necessary.

Ready queues

Ready queues hold threads that are ready to run when the current (running)
thread yields. When a thread yields, the virtual processor picks the next thread
with the appropriate priority from the ready queue. Within the queue, the virtual
processor processes threads that have the same priority on a first-in-first-out (FIFO)
basis.

On a multiprocessor computer, if you notice that threads are accumulating in the
ready queue for a class of virtual processors (indicating that work is accumulating
faster than the virtual processor can process it), you can start additional virtual
processors of that class to distribute the processing load. For information about
how to monitor the ready queues, see|“Monitor virtual processors” on page 5-3.|
For information about how to add virtual processors while the database server is
in online mode, see [*Add virtual processors in online mode” on page 5-2

Sleep queues
Sleep queues hold the contexts of threads that have no work to do at a particular
time. A thread is put to sleep either for a specified period of time or forever.

The administration class (ADM) of virtual processors runs the system timer and
special utility threads. Virtual processors in this class are created and run

automatically. No configuration parameters affect this class of virtual processors.

The ADM virtual processor wakes up threads that have slept for the specified time.
A thread that runs in the ADM virtual processor checks on sleeping threads at

Chapter 4. Virtual processors and threads ~— 4-7



4-8

one-second intervals. If a sleeping thread has slept for its specified time, the ADM
virtual processor moves it into the appropriate ready queue. A thread that is
sleeping for a specified time can also be explicitly awakened by another thread.

A thread that is sleeping forever is awakened when it has more work to do. For
example, when a thread that is running on a CPU virtual processor must access a
disk, it issues an I/O request, places itself in a sleep queue for the CPU virtual
processor, and yields. When the I/O thread notifies the CPU virtual processor that
the I/0O is complete, the CPU virtual processor schedules the original thread to
continue processing by moving it from the sleep queue to a ready queue. The
following figure illustrates how the database server threads are queued to perform
database 1/0.

€ Threads t5
CPU Ready queve and t3, ready
Virtual processors VPH 5 to contir}ue
Processing » processing
1/0 request for 13 when thread t1
g 1
thread t2 — yields
Ready queue
V0 requests Sleep queue Partially
for threads t4 t4 executed
and t6 2 threads, t2, 4,
t6 and 6, waiting
7 t4 for completion
of their disk I/0
16 requests

Figure 4-5. How database server threads are queued to perform database I/O

Wait queues

Wait queues hold threads that must wait for a particular event before they can
continue to run. For example, wait queues coordinate access to shared data by
threads. When a user thread tries to acquire the logical-log latch but finds that the
latch is held by another user, the thread that was denied access puts itself in the
logical-log wait queue. When the thread that owns the lock is ready to release the
latch, it checks for waiting threads, and, if threads are waiting, it wakes up the
next thread in the wait queue.

Mutexes

A mutex (mutually exclusive), also called a latch, is a latching mechanism that the
database server uses to synchronize access by multiple threads to shared resources.
Mutexes are similar to semaphores, which some operating systems use to regulate
access to shared data by multiple processes. However, mutexes permit a greater
degree of parallelism than semaphores.

A mutex is a variable that is associated with a shared resource such as a buffer. A
thread must acquire the mutex for a resource before it can access the resource.
Other threads are excluded from accessing the resource until the owner releases it.
A thread acquires a mutex, after a mutex becomes available, by setting it to an

IBM Informix Administrator's Guide



in-use state. The synchronization that mutexes provide ensures that only one
thread at a time writes to an area of shared memory.

For information about monitoring mutexes, see[“Monitor the shared-memory|
fprofile and latches” on page 7-8

Related concepts:

[“Buffer pool portion of shared memory” on page 6-11|

Virtual processor classes

Each class of virtual processor is dedicated to processing certain types of threads.

The following table shows the classes of virtual processors and the types of
processing that they do.

The number of virtual processors of each class that you configure depends on the
availability of physical processors (CPUs), hardware memory, and the database
applications in use.

Table 4-1. Virtual-processor classes

Virtual-

processor

class Category Purpose

ADM Administrative Performs administrative functions.

ADT Auditing Performs auditing functions.

AIO Disk I/0 Performs nonlogging disk 1/0. If KAIO is used, AIO virtual processors
perform I/O to cooked disk spaces.

BTS Basic text searching Runs basic text search index operations and queries.

CPU Central processing Runs all session threads and some system threads. Runs thread for
kernel asynchronous I/O (KAIO) where available. Can run a single poll
thread, depending on configuration.

CSM Communications Support | Performs communications support service operations.

Module

dwavp Data warehousing Runs the administrative functions and procedures for Informix
Warehouse Accelerator on a database server that is connected to Informix
Warehouse Accelerator.

Encrypt Encryption Used by the database server when encryption or decryption functions are
called.

On Windows systems, the number of encrypt virtual processors is
always set to 1, regardless of the value that is set in the onconfig file.

IDSXMLVP XML publishing Runs XML publishing functions.

JVP Java™ UDR Runs Java UDRs. Contains the Java Virtual Machine (JVM).

LIO Disk I/0 Writes to the logical-log files (internal class) if they are in cooked disk
space.

MQ MQ messaging Performs MQ messaging transactions.

MSC Miscellaneous Services requests for system calls that require a very large stack.

PIO Disk I/0 Writes to the physical-log file (internal class) if it is in cooked disk space.

SHM Network Performs shared memory communication.

SOC Network Uses sockets to perform network communication.

Chapter 4. Virtual processors and threads 4-9



Table 4-1. Virtual-processor classes (continued)

Virtual-

processor

class Category Purpose

tenant Multitenancy Runs session threads for tenant databases. Tenant virtual processors are a
special case of user-defined processors that are specific to tenant
databases.

TLI Network Uses the Transport Layer Interface (TLI) to perform network
communication.

WESVP Web feature service Runs web feature service routines.

classname User defined Runs user-defined routines in a thread-safe manner so that if the routine
fails, the database server is unaffected.

The following figure illustrates the major components and the extensibility of the
database server.

'y

Client applications

L L= |

Threads ———— Virtual processors
vV /

AlO ( User define

. oPU
CPU ) CPU )

User defined

Database server

N
L DataBlade API
[<b) D [<b) D [<b)
g5 (B (5 (B
[an] [aa] [an] o [an]
il st s st il
[a~] < < < <
[} o o o [}
[
Date & Time o Audio Graphics
Numbers  yigep ~ Spatial  Documents

Figure 4-6. Database server
Related concepts:

4-10 I1BM Informix Administrator's Guide



[‘Start and stop virtual processors” on page 5-1|

Related reference:

[ [VPCLASS configuration parameter (Administrator's Reference)|

CPU virtual processors

The CPU virtual processor runs all session threads (the threads that process
requests from SQL client applications) and some internal threads. Internal threads
perform services that are internal to the database server. For example, a thread that
listens for connection requests from client applications is an internal thread.

Each CPU virtual processor can have a private memory cache associated with it.
Each private memory cache block consists of 1 to 32 memory pages, where each
memory page is 4096 bytes. The database server uses the private memory cache to
improve access time to memory blocks. Use the VP_MEMORY_CACHE_KB
configuration parameter to enable a private memory cache and specify information
about the memory cache. For more information, see the IBM Informix
Administrator’s Reference and the IBM Informix Performance Guide.

Determine the number of CPU virtual processors needed

The right number of CPU virtual processors is the number at which they are all
kept busy but not so busy that they cannot keep pace with incoming requests. You
must not allocate more CPU virtual processors than the number of hardware
processors in the computer.

When the database server starts, the number of CPU virtual processors is
automatically increased to half the number of CPU processors on the database
server computer, unless the SINGLE_CPU_VP configuration parameter is enabled.
However, you can adjust the number of CPU VPs based on your system.

You can configure the database server to automatically add CPU VPs when
needed, up to the number of CPU processors.

To evaluate the performance of the CPU virtual processors while the database
server is running, repeat the following command at regular intervals over a set
period:

onstat -g glo

If the accumulated usercpu and syscpu times, taken together, approach 100 percent
of the actual elapsed time for the period of the test, add another CPU virtual
processor if you have a CPU available to run it.

Use the VPCLASS configuration parameter to specify the following information
about CPU virtual processors:

* The number of virtual processors to start initially for a class

¢ The maximum number of virtual processors to run for the class

* Processor affinity for CPU class virtual processors

* Disabling of priority aging, if applicable

* Whether the database server automatically adds CPU virtual processors as
needed

In addition to considering the number of CPUs in the computer and the number of
users who connect to the database server, also consider that user-defined routines

Chapter 4. Virtual processors and threads ~ 4-11


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189

4-12

and DataBlade modules, which are collections of user-defined routines, run on
either CPU virtual processors or user-defined virtual processors.

Note: Use the VPCLASS configuration parameter instead of the following
discontinued configuration parameters: AFF_SPROC, AFFNPROCS, NOAGE,
NUMCPUVPS, and NUMAIOVPS.

Related reference:

[ [VPCLASS configuration parameter (Administrator's Reference)|

“Run poll threads on CPU or network virtual processors” on page 4-21|

“Assign a UDR to a user-defined virtual-processor class” on page 4-15|

[ [onstat -g glo command: Print global multithreading information|
[(Administrator's Reference)

Run on a multiprocessor computer

If you are running multiple CPU virtual processors on a multiprocessor computer,
set the MULTIPROCESSOR parameter in the onconfig file to 1. When you set
MULTIPROCESSOR to 1, the database server performs locking in a manner that is
appropriate for a multiprocessor computer. For information about setting
multiprocessor mode, see the chapter on configuration parameters in the IBM
Informix Administrator’s Reference.

Run on a single-processor computer

If you are running the database server on a single-processor computer, set the
MULTIPROCESSOR configuration parameter to 0. To run the database server with
only one CPU virtual processor, set the SINGLE_CPU_VP parameter to 1.

Setting MULTIPROCESSOR to 0 enables the database server to bypass the locking
that is required for multiple processes on a multiprocessor computer. For
information about the MULTIPROCESSOR configuration parameter, see the IBM
Informix Administrator’s Reference.

Setting SINGLE_CPU_VP to 1 allows the database server to bypass some of the
mutex calls that it normally makes when it runs multiple CPU virtual processors.
For information about setting the SINGLE_CPU_VP parameter, see the IBM
Informix Administrator’s Reference.

Important: Setting VPCLASS num to 1 and SINGLE_CPU_VP to 0 does not reduce
the number of mutex calls, even though the database server starts only one CPU
virtual processor. You must set SINGLE_CPU_VP to 1 to reduce the amount of
latching that is performed when you run a single CPU virtual processor.

Setting the SINGLE_CPU_VP parameter to 1 imposes two important restrictions on
the database server, as follows:

* Only one CPU virtual processor is allowed.

You cannot add CPU virtual processors while the database server is in online
mode.

* No user-defined classes are allowed. (However, users can still define routines
that run directly on the CPU VP))

For more information, see ["Add virtual processors in online mode” on page 5-2

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0533.htm#ids_adr_0533
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0533.htm#ids_adr_0533

Add and drop CPU virtual processors in online mode
You can add or drop CPU class virtual processors while the database server is
online. For instructions on how to do this, see|“Add virtual processors in online|

mode” on page 5-2|and ["Drop CPU and user-defined virtual processors” on page|
5-3.

Prevent priority aging

Some operating systems lower the priority of long-running processes as they
accumulate processing time. This feature of the operating system is called priority
aging. Priority aging can cause the performance of database server processes to
decline over time. In some cases, however, you can use the operating system to
disable this feature and keep long-running processes running at a high priority.

To determine if priority aging is available on your computer, check the machine
notes file that comes with your installation and is described in the Introduction to
this guide.

If you can disable priority aging through the operating system, you can disable it
by specifying noage for the priority entry in the VPCLASS configuration parameter.
For more information, see the IBM Informix Administrator’s Reference.

Processor affinity

The database server supports automatic binding of CPU virtual processors to
processors on multiprocessor computers that support processor affinity. Your
database server distribution includes a machine notes file that contains information
about whether your database server version supports this feature. When you
assign a CPU virtual processor to a specific CPU, the virtual processor runs only
on that CPU, but other processes also can run on that CPU.

Use the VPCLASS configuration parameter with the aff option to implement
processor affinity on multiprocessor computers that support it.

The following figure illustrates the concept of processor affinity.

CPU virtual processors

Virtual processor

Virtual processor Virtual processor

Starting CPU =1

\ \ \

CPUO CPU1 CPU 2 CPU 3

Number of virtual processors = 3

Figure 4-7. Processor affinity

UNIX only: To see if processor affinity is supported on your UNIX platform, see
the machine notes file.

Set processor affinity with the VPCLASS configuration parameter:

Chapter 4. Virtual processors and threads 4-13



4-14

To set processor affinity with the VPCLASS configuration parameter, you can
specify individual processors or ranges of processors that you want to assign the
virtual processors. When specifying a range of processors, you can also specify an
incremental value with the range that indicates which CPUs in the range are
assigned to the virtual processors. For example, you can specify that the virtual
processors are assigned to every other CPU in the range 0-6, starting with CPU 0.

VPCLASS CPU,num=4,aff=(0-6/2)
The virtual processors are assigned to CPUs 0, 2, 4, 6.

If you specify VPCLASS CPU,num=4,aff=(1-10/3), the virtual processors are assigned
to every third CPU in the range 1-10, starting with CPU 1. The virtual processors
are assigned to CPUs 1, 4, 7, 10.

When you specify more than one value or range, the values and ranges are not
required to be incremental or in any particular order. For example you can specify
aff=(8,12,7-9,0-6/2).

The database server assigns CPU virtual processors to CPUs in a circular pattern,
starting with the first processor number that you specify in the aff option. If you
specify a larger number of CPU virtual processors than physical CPUs, the
database server continues to assign CPU virtual processors starting with the first
CPU. For example, suppose you specify the following VPCLASS settings:

VPCLASS cpu,num=8,aff=(4-7)

The database server makes the following assignments:
* CPU virtual processor number 0 to CPU 4
* CPU virtual processor number 1 to CPU 5
* CPU virtual processor number 2 to CPU 6
* CPU virtual processor number 3 to CPU 7
* CPU virtual processor number 4 to CPU 4
* CPU virtual processor number 5 to CPU 5
* CPU virtual processor number 6 to CPU 6
e CPU virtual processor number 7 to CPU 7

For more information, see the VPCLASS configuration parameter in the IBM
Informix Administrator’s Reference.

User-defined classes of virtual processors

You can define special classes of virtual processors to run user-defined routines or
to run a DataBlade module . User-defined routines are typically written to support
user-defined data types. If you do not want a user-defined routine to run in the
CPU class, which is the default, you can assign it to a user-defined class of virtual
processors (VPs). User-defined classes of virtual processors are also called extension
virtual processors.

These topics provide the following information about user-defined virtual
processors:

* When to run a C-language UDR in a user-defined VP instead of in the CPU VP
* How to assign a C-language UDR to a particular user-defined VP class

* How to add and drop user-defined VPs when the database server is in online
mode

IBM Informix Administrator's Guide



Determine the number of user-defined virtual processors needed
You can specify as many user-defined virtual processors as your operating system
allows. If you run many UDRs or parallel PDQ queries with UDRs, you must
configure more user-defined virtual processors.

User-defined virtual processors

User-defined classes of virtual processors protect the database server from
ill-behaved user-defined routines. An ill-behaved user-defined routine has at least
one of the following characteristics:

* Does not yield control to other threads
* Makes blocking operating-system calls
* Modifies the global VP state

A well-behaved C-language UDR has none of these characteristics. Run only
well-behaved C-language UDRs in a CPU VP.

Warning: Execution of an ill-behaved routine in a CPU VP can cause serious
interference with the operation of the database server, possibly causing it to fail or
behave erratically. In addition, the routine itself might not produce correct results.

To ensure safe execution, assign any ill-behaved user-defined routines to a
user-defined class of virtual processors. User-defined VPs remove the following
programming restrictions on the CPU VP class:

* The requirement to yield the processor regularly
* The requirement to eliminate blocking I/O calls

Functions that run in a user-defined virtual-processor class are not required to
yield the processor, and they might issue direct file-system calls that block further
processing by the virtual processor until the I/O is complete.

The normal processing of user queries is not affected by ill-behaved traits of a
C-language UDR because these UDRs do not execute in CPU virtual processors.
For a more detailed explanation of ill-behaved routines, see the IBM Informix
DataBlade API Programmer’s Guide.

Specify user-defined virtual processors

The VPCLASS parameter with the vpclass option defines a user-defined VP class.
You also can specify a nonyielding user-defined virtual processor. For more
information, see[’Set virtual-processor configuration parameters” on page 5-1|and
the topics about configuration parameters in the IBM Informix Administrator’s
Reference.

Assign a UDR to a user-defined virtual-processor class
The SQL CREATE FUNCTION statement registers a user-defined routine. For
example, the following CREATE FUNCTION statement registers the user-defined
routine, GreaterThanEqual(), and specifies that calls to this routine are executed by
the user-defined VP class named UDR:
CREATE FUNCTION GreaterThanEqual(ScottishName, ScottishName)

RETURNS booTean

WITH (CLASS = UDR )

EXTERNAL NAME '/usr/1ib/objects/udrs.so'
LANGUAGE C

To execute this function, the onconfig file must include a VPCLASS parameter that
defines the UDR class. If not, calls to the GreaterThanEqual function fail.

Chapter 4. Virtual processors and threads 4-15



4-16

Tip: The CLASS routine modifier can specify any name for the VP class. This class
name is not required to exist when you register the UDR. However, when you try
to run a UDR that specifies a user-defined VP class for its execution, this class
must exist and have virtual processors assigned to it.

To configure the UDR class, include a line similar to the following one in the
onconfig file. This line configures the UDR class with two virtual processors and
with no priority aging.

VPCLASS UDR ,num=2,noage

The preceding line defines the UDR VP class as a yielding VP class; that is, this VP
class allows the C-language UDR to yield to other threads that must access to the
UDR VP class. For more information about how to use the VPCLASS configuration
parameter, see the IBM Informix Administrator’s Reference.

For more information about the CREATE FUNCTION statement, see the IBM
Informix Guide to SQL: Syntax.

Related reference:

[“‘Determine the number of CPU virtual processors needed” on page 4-11|

Add and drop user-defined virtual processors in online mode
You can add or drop virtual processors in a user-defined class while the database
server is online. For instructions on how to do this, see|“Add virtual processors in|
online mode” on page 5-2|and [“Drop CPU and user-defined virtual processors” onl

page 5—3.|

Tenant virtual processor class

Tenant virtual processor classes are specific to tenant databases. If you configure
multitenancy for your Informix instance, you can specify that session threads for
tenant databases that are run in tenant virtual processors instead of in the available
CPU virtual processors.

You can create a tenant virtual processor class by defining the class and the
number of virtual processors when you create a tenant database. You can assign
the same tenant virtual processor class to more than one tenant database. Follow
the same guidelines for determining the correct number of CPU virtual processors
to determine the correct number of tenant virtual processors to create.

A tenant virtual processor class is automatically dropped when all tenant databases
that include the virtual processor class in their definitions are dropped.

Related concepts:

|”Multitenancy” on page 9—49|

Related reference:

[ [tenant create arcument: create a tenant database (SQL Administration API)|
[(Administrator's Reference)

Java virtual processors

Java UDRs and Java applications run on specialized virtual processors, called Java
virtual processors (JVPs). A JVP embeds a Java virtual machine (JVM) in its code. A
JVP has the same capabilities as a CPU VP in that it can process complete SQL
queries.

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_163.htm#ids_sapi_163
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_163.htm#ids_sapi_163

You can specify as many JVPs as your operating system allows. If you run many
Java UDRs or parallel PDQ queries with Java UDRs, you must configure more
JVPs. For more information about UDRs written in Java, see [/Foundation
Developer’s Guide.

Use the VPCLASS configuration parameter with the jvp keyword to configure
JVPs. For more information, see the configuration parameters chapter in the IBM
Informix Administrator’s Reference.

Disk /O virtual processors
The following classes of virtual processors perform disk I/0O:
* PIO (physical-log 1/0)
* LIO (logical-log 1/0O)
* AIO (asynchronous 1/0)
* CPU (kernel-asynchronous 1/0)

The PIO class performs all I/O to the physical-log file, and the LIO class performs
all I/0 to the logical-log files, unless those files are in raw disk space and the
database server has implemented KAIO.

On operating systems that do not support KAIO, the database server uses the AIO
class of virtual processors to perform database 1/O that is not related to physical
or logical logging.

The database server uses the CPU class to perform KAIO when it is available on a
platform. If the database server implements KAIO, a KAIO thread performs all I/O
to raw disk space, including I/O to the physical and logical logs.

UNIX only: To find out if your UNIX platform supports KAIO, see the machine
notes file.

Windows only: Windows supports KAIO.

For more information about nonlogging 1/0, see [Asynchronous I/O” on page|
- -18,

I/O priorities

In general, the database server prioritizes disk I/O by assigning different types of
I/0 to different classes of virtual processors and by assigning priorities to the
nonlogging 1/O queues. Prioritizing ensures that a high-priority log 1/0, for
example, is never queued behind a write to a temporary file, which has a low
priority. The database server prioritizes the different types of disk I/O that it
performs, as the table shows.

Table 4-2. How database server prioritizes disk I/O

Priority Type of 1/O VP class

1st Logical-log 1/0O CPU or LIO
2nd Physical-log 1/0 CPU or PIO
3rd Database 1/0 CPU or AIO
3rd Page-cleaning 1/0O CPU or AIO
3rd Read-ahead I/0 CPU or AIO

Chapter 4. Virtual processors and threads ~ 4-17



4-18

Logical-log 1/0
The LIO class of virtual processors performs I/O to the logical-log files in the
following cases:

* KAIO is not implemented.
* The logical-log files are in cooked disk space.

Only when KAIO is implemented and the logical-log files are in raw disk space
does the database server use a KAIO thread in the CPU virtual processor to
perform I/0O to the logical log.

The logical-log files store the data that enables the database server to roll back
transactions and recover from system failures. I/O to the logical-log files is the
highest priority disk I/O that the database server performs.

If the logical-log files are in a dbspace that is not mirrored, the database server
runs only one LIO virtual processor. If the logical-log files are in a dbspace that is
mirrored, the database server runs two LIO virtual processors. This class of virtual
processors has no parameters associated with it.

Physical-log I/0
The PIO class of virtual processors performs I/O to the physical-log file in the
following cases:

* KAIO is not implemented.
* The physical-log file is stored in buffered-file chunks.

Only when KAIO is implemented and the physical-log file is in raw disk space
does the database server use a KAIO thread in the CPU virtual processor to
perform I/0O to the physical log. The physical-log file stores before-images of
dbspace pages that have changed since the last checkpoint. (For more information
about checkpoints, see [“Checkpoints” on page 15-4)) At the start of recovery, before
processing transactions from the logical log, the database server uses the
physical-log file to restore before-images to dbspace pages that have changed since
the last checkpoint. I/O to the physical-log file is the second-highest priority 1/0O
after I/0O to the logical-log files.

If the physical-log file is in a dbspace that is not mirrored, the database server runs
only one PIO virtual processor. If the physical-log file is in a dbspace that is
mirrored, the database server runs two PIO virtual processors. This class of virtual
processors has no parameters associated with it.

Asynchronous 1/0

The database server performs database I/O asynchronously, meaning that I/0O is
queued and performed independently of the thread that requests the I/0O.
Performing 1/0 asynchronously allows the thread that makes the request to
continue working while the I/0O is being performed.

The database server performs all database I/O asynchronously, using one of the
following facilities:

* AIO virtual processors
* KAIO on platforms that support it

Database 1/0 includes I/O for SQL statements, read-ahead, page cleaning, and
checkpoints.

IBM Informix Administrator's Guide



Kernel-asynchronous I/0: The database server uses KAIO when the following
conditions exist:

* The computer and operating system support it.
* A performance gain is realized.
e The I/0O is to raw disk space.

The database server implements KAIO by running a KAIO thread on the CPU
virtual processor. The KAIO thread performs I/O by making system calls to the
operating system, which performs the I/O independently of the virtual processor.
The KAIO thread can produce better performance for disk I/O than the AIO
virtual processor can, because it does not require a switch between the CPU and
AIO virtual processors.

UNIX only: IBM Informix implements KAIO when Informix ports to a platform
that supports this feature. The database server administrator does not configure
KAIO. To see if KAIO is supported on your platform, see the machine notes file.

Linux only: Kernel asynchronous I/O (KAIO) is enabled by default. You can
disable this by specifying that KAIOOFF=1 in the environment of the process that
starts the server.

On Linux, there is a system-wide limit of the maximum number of parallel KAIO
requests. The /proc/sys/fs/aio-max-nr file contains this value. The Linux system
administrator can increase the value, for example, by using this command:

# echo new_value > /proc/sys/fs/aio-max-nr

The current number of allocated requests of all operating system processes is
visible in the /proc/sys/fs/aio-nr file.

By default, Dynamic Version allocates half of the maximum number of requests
and assigns them equally to the number of configured CPU virtual processors. You
can use the environment variable KAIOON to control the number of requests
allocated per CPU virtual processor. Do this by setting KAIOON to the required
value before starting Informix.

The minimum value for KAIOON is 100. If Linux is about to run out of KAIO
resources, for example when dynamically adding many CPU virtual processors,
warnings are printed in the online.Tog file. If this happens, the Linux system
administrator must add KAIO resources as described previously.

AIO virtual processors:

If the platform does not support KAIO or if the I/O is to buffered-file chunks, the
database server performs database 1/O through the AIO class of virtual processors.
All AIO virtual processors service all I/O requests equally within their class.

The database server assigns each disk chunk a queue, sometimes known as a gfd
queue, which is based on the file name of the chunk. The database server orders
I/0 requests within a queue according to an algorithm that minimizes disk-head
movement. The AIO virtual processors service queues that have pending work in
round-robin fashion. All other non-chunk I/0O is queued in the AIO queue.

Use the VPCLASS parameter with the aio keyword to specify the number of AIO
virtual processors that the database server starts initially. You can start additional

Chapter 4. Virtual processors and threads 4-19



4-20

AIO virtual processors while the database server is in online mode. You cannot
drop AIO virtual processors while the database server is in online mode.

You can enable the database server to add AIO virtual processors and flusher
threads when the server detects that AIO VPs are not keeping up with the I/O
workload. Include the autotune=1 keyword in the VPCLASS configuration
parameter setting.

Manually controlling the number of AIO VPs

The goal in allocating AIO virtual processors is to allocate enough of them so that
the lengths of the I/O request queues are kept short; that is, the queues have as
few I/0 requests in them as possible. When the gfd queues are consistently short,
it indicates that I/O to the disk devices is being processed as fast as the requests
occur.

The onstat-g ioq command shows the length and other statistics about I/O queues.
You can use this command to monitor the length of the gfd queues for the AIO
virtual processors.

One AIO virtual processor might be sufficient:

* If the database server implements kernel asynchronous I/0 (KAIO) on your
platform and all of your dbspaces are composed of raw disk space

* If your file system supports direct I/O for the page size that is used for the
dbspace chunk and you use direct I/O

Allocate two AIO virtual processors per active dbspace that is composed of
buffered file chunks.

* If the database server implements KAIO, but you are using some buffered files
for chunks

* IF KAIO is not supports by the system for chunks.

If KAIO is not implemented on your platform, allocate two AIO virtual processors
for each disk that the database server accesses frequently.

If you use cooked files and if you enable direct I/O using the DIRECT_IO
configuration parameter, you might be able to reduce the number of AIO virtual
processors.

If the database server implements KAIO and you enabled direct I/O using the
DIRECT_IO configuration parameter, IBM Informix attempts to use KAIO, so you
probably do not require more than one AIO virtual processor. However, even when
direct I/O is enabled, if the file system does not support either direct I/O or
KAIQO, you still must allocate two AIO virtual processors for every active dbspace
that is composed of buffered file chunks or does not use KAIO.

Temporary dbspaces do not use direct I/O. If you have temporary dbspaces, you
probably require more than one AIO virtual processors.

Allocate enough AIO virtual processors to accommodate the peak number of 1/O
requests. Generally, it is not detrimental to allocate too many AIO virtual
processors.

Related reference:

[ [VPCLASS configuration parameter (Administrator's Reference)|

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189

Network virtual processors

As explained in [Chapter 2, “Client/server communication,” on page 2-1a client
can connect to the database server in the following ways:

¢ Through a network connection
* Through a pipe
* Through shared memory

The network connection can be made by a client on a remote computer or by a
client on the local computer mimicking a connection from a remote computer
(called a local-loopback connection).

Specifying Network Connections

In general, the DBSERVERNAME and DBSERVERALIASES parameters define
dbservernames that have corresponding entries in the sqlhosts file or registry. Each
dbservername parameter in sqlhosts has a nettype entry that specifies an
interface/protocol combination. The database server runs one or more poll threads
for each unique nettype entry.

The NETTYPE configuration parameter provides optional configuration
information for an interface/protocol combination. You can use it to allocate more
than one poll thread for an interface/protocol combination and also designate the
virtual-processor class (CPU or NET) on which the poll threads run.

For a complete description of the NETTYPE configuration parameter, see the IBM
Informix Administrator’s Reference.

Related reference:

[“sqlhosts connectivity information” on page 2-20|

Run poll threads on CPU or network virtual processors

Poll threads can run either on CPU virtual processors or on network virtual
processors. In general, and particularly on a single-processor computer, poll
threads run more efficiently on CPU virtual processors. This might not be true,
however, on a multiprocessor computer with many remote clients.

The NETTYPE parameter has an optional entry, called vp class, which you can use
to specify either CPU or NET, for CPU or network virtual-processor classes,
respectively.

If you do not specify a virtual processor class for the interface/protocol
combination (poll threads) associated with the DBSERVERNAME variable, the class
defaults to CPU. The database server assumes that the interface/protocol
combination associated with DBSERVERNAME is the primary interface/protocol
combination and that it is the most efficient.

For other interface/protocol combinations, if no vp class is specified, the default is
NET.

While the database server is in online mode, you cannot drop a CPU virtual
processor that is running a poll or a listen thread.

Important: You must carefully distinguish between poll threads for network
connections and poll threads for shared memory connections, which run one per
CPU virtual processor. TCP connections must only be in network virtual
processors, and you must only have the minimum required to maintain

Chapter 4. Virtual processors and threads ~ 4-21



4-22

responsiveness. Shared memory connections must only be in CPU virtual
processors and run in every CPU virtual processor.

Related reference:

[‘Determine the number of CPU virtual processors needed” on page 4-11|

Specify the number of networking virtual processors

Each poll thread requires a separate virtual processor, so you indirectly specify the
number of networking virtual processors when you specify the number of poll
threads for an interface/protocol combination and specify that they are to be run
by the NET class. If you specify CPU for the vp class, you must allocate a
sufficient number of CPU virtual processors to run the poll threads. If the database
server does not have a CPU virtual processor to run a CPU poll thread, it starts a
network virtual processor of the specified class to run it.

For most systems, one poll thread and consequently one virtual processor per
network interface/protocol combination is sufficient. For systems with 200 or more
network users, running additional network virtual processors might improve
throughput. In this case, you must experiment to determine the optimal number of
virtual processors for each interface/protocol combination.

Specify listen and poll threads for the client/server connection
When you start the database server, the oninit process starts an internal thread,
called a listen thread, for each dbservername that you specify with the
DBSERVERNAME and DBSERVERALIASES parameters in the onconfig file. To
specify a listen port for each of these dbservername entries, assign it a unique
combination of hostname and service name entries in sqlhosts. For example, the
sqlhosts file or registry entry shown in the following table causes the database
server soc_ol1 to start a listen thread for portl on the host, or network address,
myhost.

Table 4-3. A listen thread for each listen port

dbservername nettype hostname service name

soc_oll onsoctcp myhost portl

The listen thread opens the port and requests one of the poll threads for the
specified interface/protocol combination to monitor the port for client requests.
The poll thread runs either in the CPU virtual processor or in the network virtual
processor for the connection that is being used. For information about the number
of poll threads, see [“Specify the number of networking virtual processors.”|

For information about how to specify whether the poll threads for an
interface/protocol combination run in CPU or network virtual processors, see
fpoll threads on CPU or network virtual processors” on page 4-21|and to the
NETTYPE configuration parameter in the IBM Informix Administrator’s Reference.

When a poll thread receives a connection request from a client, it passes the
request to the listen thread for the port. The listen thread authenticates the user,
establishes the connection to the database server, and starts an sqlexec thread, the
session thread that performs the primary processing for the client. The following
figure illustrates the roles of the listen and poll threads in establishing a connection
with a client application.

IBM Informix Administrator's Guide



Request

i Client
connection

Receive Poll Receive Listen _

connect thread connect thread Start

request request sglexec

thread

Accept client

Pass request to

connection
listen thread Key
D rver )
atabase serve Data Thread
process

Figure 4-8. The roles of the poll and the listen threads in connecting to a client

A poll thread waits for requests from the client and places them in shared memory
to be processed by the sqlexec thread. For network connections, the poll thread
places the message in a queue in the shared-memory global pool. The poll thread
then wakes up the sqlexec thread of the client to process the request. Whenever
possible, the sqlexec thread writes directly back to the client without the help of
the poll thread. In general, the poll thread reads data from the client, and the
sqlexec thread sends data to the client.

UNIX only: For a shared-memory connection, the poll thread places the message
in the communications portion of shared memory.

The following figure illustrates the basic tasks that the poll thread and the sqlexec
thread perform in communicating with a client application.

Chapter 4. Virtual processors and threads 4-23



Process

Client

— Read data

Send
data
to client

Pass request
and data
to sqlexec sqlexec Process
3 thread

Poll
thread

Read data
from client

Wait for client
request

Key

Database server

A’_\ -
Application  Thread kﬁzta\
process process

Figure 4-9. The roles of the poll and sqlexec threads in communicating with the client
application

Fast polling

You can use the FASTPOLL configuration parameter to enable or disable fast
polling of your network, if your operating-system platform supports fast polling.
Fast polling is beneficial if you have many connections. For example, if you have
more than 300 concurrent connections with the database server, you can enable the
FASTPOLL configuration parameter for better performance. You can enable fast
polling by setting the FASTPOLL configuration parameter to 1.

If your operating system does not support fast polling, IBM Informix ignores the
FASTPOLL configuration parameter.

Multiple listen threads
You can improve service for connection requests by using multiple listen threads.

If the database server cannot service connection requests satisfactorily for a given
interface/protocol combination with a single port and corresponding listen thread,
you can improve service for connection requests in the following ways:

* By adding listen threads for additional ports.

4-24  1BM Informix Administrator's Guide



* By adding listen threads to the same port if you have the onimcsoc or onsoctcp
protocol

* By adding another network-interface card.

* By dynamically starting, stopping, or restarting listen threads for a SOCTCP or
TLITCP network protocol, using SQL administration API or onmode -P
commands.

If you have multiple listen threads for one port for the onsoctcp protocol, the
database server can accept new connections if a CPU VP connection is busy.

Add listen threads:

When you start the database server, the oninit process starts a listen thread for
servers with the server names and server alias names that you specify with the
DBSERVERNAME and DBSERVERALIASES configuration parameters. You can
add listen threads for additional ports.

You can also set up multiple listen threads for one service (port) for the onimcsoc
or onsoctcp protocol.

To add listen threads for additional ports, you must first use the
DBSERVERALIASES parameter to specify dbservernames for each of the ports. For
example, the DBSERVERALIASES parameter in the following figure defines two
additional dbservernames, soc_ol2 and soc_ol3, for the database server instance
identified as soc_ol1.

DBSERVERNAME soc_oll
DBSERVERALIASES  soc_ol2,soc_ol3

After you define additional dbservernames for the database server, you must
specify an interface/protocol combination and port for each of them in the
sqlhosts file or registry. Each port is identified by a unique combination of
hostname and servicename entries. For example, the sqlhosts entries shown in the
following table cause the database server to start three listen threads for the
onsoctcp interface/protocol combination, one for each of the ports defined.

Table 4-4. The sqlhosts entries to listen to multiple ports for a single interface/protocol
combination

dbservername nettype hostname service name
soc_oll onsoctcp myhost portl
soc_ol2 onsoctcp myhost port2
soc_ol3 onsoctcp myhost port3

If you include a NETTYPE parameter for an interface/protocol combination, it
applies to all the connections for that interface/protocol combination. In other
words, if a NETTYPE parameter exists for onsoctcp in the previous table, it applies
to all of the connections shown. In this example, the database server runs one poll
thread for the onsoctcp interface/protocol combination unless the NETTYPE
parameter specifies more. For more information about entries in the sqlhosts file
or registry, see [’Connectivity files” on page 2-9.|

Chapter 4. Virtual processors and threads 4-25



Setting up multiple listen threads for one port for the onimcsoc or onsoctcp
protocol

To set up multiple listen threads for one service (port) for the onimcsoc or
onsoctcp protocol, specify DBSERVERNAME and DBSERVERALIASES information
as follows:

* DBSERVERNAME <name>-<n>

e DBSERVERALIASES <namel>-<n>,<name2>

For example:

* To bring up two listen threads for the server with the DBSERVERNAME of ifx,
specify:
DBSERVERNAME ifx-2

* To bring up two listen threads for DBSERVERALIASES ifx_a and ifx_b, specify:
DBSERVERALIASES ifx_a-2,ifx_b-2

Add a network-interface card:

You can add a network-interface card to improve performance or connect the
database server to multiple networks.

You might want to improve performance if the network-interface card for the host
computer cannot service connection requests satisfactorily.

To support multiple network-interface cards, you must assign each card a unique
hostname (network address) in sqlhosts.

For example, using the same dbservernames shown in [“Add listen threads” on|
the sqlhosts file or registry entries shown in the following table cause
the database server to start three listen threads for the same interface/protocol
combination (as did the entries in [“Add listen threads” on page 4-25). In this case,

however, two of the threads are listening to ports on one interface card (myhostl),
and the third thread is listening to a port on the second interface card (myhost2).

Table 4-5. Example of sqlhosts entries to support two network-interface cards for the
onsoctcp interface/protocol combination

dbservername nettype hostname service name
soc_oll onsoctcp myhostl portl
soc_ol2 onsoctcp myhostl port2
soc_ol3 onsoctcp myhost2 portl

Dynamically starting, stopping, or restarting a listen thread:

You can dynamically start, stop, or stop and start a listen thread for a SOCTCP or
TLITCP network protocol without interrupting existing connections. For example,
you might want to stop listen threads that are unresponsive and then start new
ones in situations when other server functions are performing normally and you
do not want to shut down the server.

The listen thread must be defined in the sqlhosts file for the server. If necessary,
before start, stop, or restart a listen thread, you can revise the sqlhosts entry.

To dynamically start, stop, or restart listen threads:

4-26 IBM Informix Administrator's Guide



1. Run one of the following onmode -P commands:
* onmode -P start server_name
* onmode -P stop server_name
e onmode -P restart server_name

2. Alternatively, if you are connected to the sysadmin database, either directly or
remotely, you can run one of the following commands:

* An admin() or task() command with the start 1isten argument, using the
format
EXECUTE FUNCTION task("start listen", "server_name");

* An admin() or task() command with the stop Tisten argument, using the
format
EXECUTE FUNCTION task("stop listen" ,"server name");

* An admin() or task() command with the restart 1isten argument, using the
format
EXECUTE FUNCTION task("restart listen", "server_name");

For example, either of the following commands starts a new listen thread for a
server named ifx_serv2:

onmode -P start ifx_serv2

EXECUTE FUNCTION task("start Tlisten", "ifx_serv2");

Communications support module virtual processor

The communications support module (CSM) class of virtual processors performs
communications support service and communications support module functions.

The database server starts the same number of CSM virtual processors as the
number of CPU virtual processors that it starts, unless the communications support
module is set to GSSCSM to support single sign-on. When the communications
support module is GSSCSM, the database server starts only one CSM virtual
processor.

For more information about the communications support service, see [Chapter 2,
[“Client/server communication,” on page 2-1]

Encrypt virtual processors
If the encrypt option of the VPCLASS parameter is not defined in the onconfig
configuration file, the database server starts one ENCRYPT VP the first time that
any encryption or decryption functions defined for column-level encryption are
called. You can define multiple ENCRYPT VPs if necessary to decrease the time
required to start the database server.

Use the VPCLASS configuration parameter with the encrypt keyword to configure
encryption VPs. For example, to add five ENCRYPT VPs, add information in the
onconfig file as follows:

VPCLASS encrypt,num=5

You can modify the same information using the onmode utility, as follows:
onmode -p 5 encrypt

For more information, see the configuration parameters and the onmode utility

topics in the IBM Informix Administrator’s Reference. For more information about
column-level encryption, see the IBM Informix Security Guide.

Chapter 4. Virtual processors and threads ~ 4-27



4-28

Audit virtual processor

The database server starts one virtual processor in the audit class (ADT) when you
turn on audit mode by setting the ADTMODE parameter in the onconfig file to 1.
For more information about database server auditing, see the IBM Informix Security
Guide.

Miscellaneous virtual processor

The miscellaneous virtual processor services requests for system calls that might
require a very large stack, such as fetching information about the current user or
the host-system name. Only one thread runs on this virtual processor; it executes
with a stack of 128 KB.

Basic text search virtual processors

A basic text search virtual processor is required to run basic text search queries.

A basic text search virtual processor is added automatically when you create a
basic text search index.

A basic text search virtual processor runs without yielding; it processes one index
operation at a time. To run multiple basic text search index operations and queries
simultaneously, create additional basic text search virtual processors.

Use the VPCLASS configuration parameter with the BTS keyword to configure
basic text search virtual processors. For example, to add five BTS virtual
processors, add the following line to the onconfig and restart the database server:
VPCLASS bts,num=5

You can dynamically add BTS virtual processors by using the onmode -p
command, for example:

onmode -p 5 bts
Related reference:

[+ [VPCLASS configuration parameter (Administrator's Reference)|

[+ [onmode -p: Add or drop virtual processors (Administrator's Reference)|

[ [Basic Text Search (Database Extensions Guide)|

MQ messaging virtual processor

An MQ virtual processor is required to use MQ messaging.

When you perform MQ messaging transactions, an MQ virtual processor is created
automatically.

An MQ virtual processor runs without yielding; it processes one operation at a
time. To perform multiple MQ messaging transactions simultaneously, create
additional MQ virtual processors.

Use the VPCLASS configuration parameter with the MQ keyword to configure MQ
virtual processors. For example, to add five MQ virtual processors, add the
following line to the onconfig and restart the database server:

VPCLASS mq,noyield,num=5

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0432.htm#ids_adr_0432
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dbext.doc/ids_dbxt_175.htm#ids_dbxt_175

For more information about the VPCLASS configuration parameter, see the IBM
Informix Administrator’s Reference. For more information about MQ messaging, see
the IBM Informix Database Extensions User’s Guide.

Web feature service virtual processor

A web feature service virtual processor is required to use web feature service for
geospatial data.

When you run a WES routine, a WES virtual processor is created automatically.

A WES virtual processor runs without yielding; it processes one operation at a
time. To run multiple WES routines simultaneously, create additional WFS virtual
processors.

Use the VPCLASS configuration parameter with the WFSVP keyword to configure
WES virtual processors. For example, to add five WFS virtual processors, add the
following line to the onconfig and restart the database server:

VPCLASS wfsvp,noyield,num=5

For more information about the VPCLASS configuration parameter, see the IBM
Informix Administrator’s Reference. For more information about WFES, see the IBM
Informix Database Extensions User’s Guide.

XML virtual processor
An XML virtual processor is required to perform XML publishing.

When you run an XML function, an XML virtual processor is created automatically.

An XML virtual processor runs one XML function at a time. To run multiple XML
functions simultaneously, create additional XML virtual processors.

Use the VPCLASS configuration parameter with the IDSXMLVP keyword to
configure XML virtual processors. For example, to add five XML virtual processors,
add the following line to the onconfig and restart the database server:

VPCLASS idsxmlvp,num=5

You can dynamically add XML virtual processors by using the onmode -p
command, for example:

onmode -p 5 idsxmlvp
For more information about the VPCLASS configuration parameter and the

onmode utility, see the IBM Informix Administrator’s Reference. For more information
about XML publishing, see the IBM Informix Database Extensions User’s Guide.

Chapter 4. Virtual processors and threads 4-29



4-30 IBM Informix Administrator's Guide



Chapter 5. Manage virtual processors

These topics describe how to set the configuration parameters that affect database
server virtual processors, and how to start and stop virtual processors.

For descriptions of the virtual-processor classes and for advice on how many
virtual processors you must specify for each class, see |Chapter 4, ”Virtual|

[processors and threads,” on page 4-1/

Set virtual-processor configuration parameters

Use the VPCLASS configuration parameter to designate a class of virtual
processors (VPs), create a user-defined virtual processor, and specify options such
as the number of VPs that the server starts, the maximum number of VPs allowed
for the class, and the assignment of VPs to CPUs if processor affinity is available.

The table lists the configuration parameters that are used to configure virtual
processors.

Table 5-1. Configuration parameters for configuring virtual processors

Parameter Description

MULTIPROCESSOR Set to 1 to support multiple CPU virtual processors, or to 0 for only a
single CPU VP

NETTYPE Specifies parameters for network protocol threads and virtual

processors

SINGLE_CPU_VP

Set to 0 to enable user-defined CPU VPs, or to any other setting for
only a single CPU VP

VPCLASS Each defines a VP class and its properties, such as how many VPs of
this class start when the server starts
VP_MEMORY_CACHE_KB Speeds access to memory blocks by creating a private memory cache

for each CPU virtual processor

Related reference:

(& [VPCLASS configuration parameter (Administrator's Reference)|

[ [MULTIPROCESSOR configuration parameter (Administrator's Reference)|

[ [SINGLE_CPU_VP configuration parameter (Administrator's Reference)|

[ IVP_MEMORY_CACHE_KB configuration parameter (Administrator's|

|[3eference )]

Start and stop virtual processors

When you start the database server, the oninit utility starts the number and types
of virtual processors that you specify directly and indirectly.

You configure virtual processors primarily through configuration parameters and,
for network virtual processors, through parameters in the sqlhosts information.

You can use the database server to start a maximum of 1000 virtual processors.

© Copyright IBM Corp. 1996, 2014 5-1


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0113.htm#ids_adr_0113
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0161.htm#ids_adr_0161
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0188.htm#ids_adr_0188
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0188.htm#ids_adr_0188

5-2

After the database server is in online mode, you can start more virtual processors
to improve performance, if necessary.

While the database server is in online mode, you can drop virtual processors of the
CPU and user-defined classes.

To shut down the database server and stop all virtual processors, use the onmode
-k command.

Related concepts:

[“Virtual processor classes” on page 4-9|

Related reference:

[ [onmode -k, -m, -s, -u, -j: Change database server mode (Administrator'sl

|!3eference)|

Add virtual processors in online mode

While the database server is in online mode, you can start additional virtual
processors for the following classes: CPU, AIO, PIO, LIO, SHM, STR, TLI, SOC,
JVD, and user-defined. The database server automatically starts one virtual
processor each in the LIO and PIO classes unless mirroring is used, in which case
it starts two.

You can start these additional virtual processors with the -p option of the onmode
utility.

You can also start additional virtual processors for user-defined classes to run
user-defined routines. For more information about user-defined virtual processors,
see [“Assign a UDR to a user-defined virtual-processor class” on page 4-15|

Add virtual processors in online mode with onmode

Use the -p option of the onmode command to add virtual processors while the
database server is in online mode. Specify the number of virtual processors that
you want to add with a positive number. As an option, you can precede the
number of virtual processors with a plus sign (+). Following the number, specify
the virtual processor class in lowercase letters. For example, either of the following
commands starts four additional virtual processors in the AIO class:

onmode -p 4 aio

onmode -p +4 aio
The onmode utility starts the additional virtual processors immediately.

You can add virtual processors to only one class at a time. To add virtual
processors for another class, you must run onmode again.

Add network virtual processors
When you add network virtual processors, you add poll threads, each of which
requires its own virtual processor to run.

If you try to add poll threads for a protocol while the database server is in online
mode, and you specify in the NETTYPE configuration parameter that the poll
threads run in the CPU class, the database server does not start the new poll
threads if CPU virtual processors are not available to run them.

In the following example, the poll threads handle a total of 240 connections:

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0422.htm#ids_adr_0422
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0422.htm#ids_adr_0422

NETTYPE ipcshm,4,60,CPU # Configure poll thread(s) for nettype

For ipcshm, the number of poll threads correspond to the number of memory
segments. For example, if NETTYPE is set to 3,100 and you want one poll thread,
set the poll thread to 1,300.

Drop CPU and user-defined virtual processors

While the database server is in online mode, you can use the -p option of the
onmode utility to drop, or terminate, virtual processors of the CPU and
user-defined classes.

Drop CPU virtual processors

Following the onmode command, specify a negative number that is the number of
virtual processors that you want to drop, and then specify the CPU class in
lowercase letters. For example, the following command drops two CPU virtual
processors:

% onmode -p -2 cpu

If you attempt to drop a CPU virtual processor that is running a poll thread, you
receive the following message:

onmode: failed when trying to change the number of cpu virtual processor by -number.

For more information, see [“Run poll threads on CPU or network virtuall
fprocessors” on page 4-21)

Drop user-defined virtual processors

Following the onmode command, specify a negative number that is the number of
virtual processors that you want to drop, and then specify the user-defined class in
lowercase letters. For example, the following command drops two virtual
processors of the class usr:

onmode -p -2 usr

Windows only: In Windows, you can have only one user-defined virtual processor
class at a time. Omit the number parameter in the onmode -p vpclass command.

For information about how to create a user-defined class of virtual processors and

assign user-defined routines to it, see|“User-defined classes of virtual processors”|
on page 4-14.

Monitor virtual

processors

Monitor the virtual processors to determine if the number of virtual processors
configured for the database server is optimal for the current level of activity. For
more information about these onstat -g options, see the topics on the effect of
configuration on CPU utilization in the IBM Informix Performance Guide.

For examples of output for the onstat -g commands, see information about the
onstat utility in the IBM Informix Administrator’s Reference.

Monitor virtual processors with command-line utilities

You can use the following onstat -g options to monitor virtual processors:

Chapter 5. Manage virtual processors 5-3



The onstat -g ath command
The onstat -g ath command displays information about system threads and the
virtual-processor classes.

The onstat -g glo command

Use the onstat -g glo command to display information about each virtual processor
that is currently running, and cumulative statistics for each virtual processor class.
For an example of onstat -g glo output, see information about the onstat utility in
the IBM Informix Administrator’s Reference.

The onstat -g ioq command

Use the onstat -g ioq option to determine whether you must allocate additional
virtual processors. The command onstat -g ioq displays the length and other
statistics about I/O queues.

If the length of the I/O queue is growing, I/O requests are accumulating faster
than the AIO virtual processors can process them. If the length of the I/O queue
continues to show that I/O requests are accumulating, consider adding AIO virtual
processors.

For an example of onstat -g ioq output, see information in the IBM Informix
Administrator’s Reference.

The onstat -g rea command

Use the onstat -g rea option to monitor the number of threads in the ready queue.
If the number of threads in the ready queue is growing for a class of virtual
processors (for example, the CPU class), you might be required to add more virtual
processors to your configuration.

For an example of onstat -g rea output, see information in the IBM Informix
Administrator’s Reference.

Monitor virtual processors with SMI tables

Query the sysvpprof table to obtain information about the virtual processors that
are currently running. This table contains the following columns.

Column Description

vpid Virtual-processor ID number
class Virtual-processor class
usercpu Minutes of user CPU used
syscpu Minutes of system CPU used

5-4 IBM Informix Administrator's Guide



Chapter 6. Shared memory

These topics describe the content of database server shared memory, the factors
that determine the sizes of shared-memory areas, and how data moves into and
out of shared memory. For information about how to change the database server
configuration parameters that determine shared memory allocations, see
[‘Manage shared memory,” on page 7-1.|

Related reference:

[“Database server maintenance tasks” on page 1-10|

Shared memory

Shared memory is an operating-system feature that allows the database server
threads and processes to share data by sharing access to pools of memory. The
database server uses shared memory for the following purposes:

* To reduce memory usage and disk I/O
* To perform high-speed communication between processes

Shared memory enables the database server to reduce overall memory usage
because the participating processes, in this case, virtual processors, do not require
maintaining private copies of the data that is in shared memory.

Shared memory reduces disk 1/O, because buffers, which are managed as a
common pool, are flushed on a database server-wide basis instead of a per-process
basis. Furthermore, a virtual processor can often avoid reading data from disk
because the data is already in shared memory as a result of an earlier read
operation. The reduction in disk I/O reduces execution time.

Shared memory provides the fastest method of interprocess communication,
because it processes read and write messages at the speed of memory transfers.

Shared-memory use

The database server uses shared memory for the following purposes:
* To enable virtual processors and utilities to share data

* To provide a fast communications channel for local client applications that use
IPC communication

The following figure illustrates the shared-memory scheme.

© Copyright IBM Corp. 1996, 2014 6-1



6-2

Virtual processor A Virtual processor B

memory space memory space
Unallocated space Unallocated space
Shared-memory
segments
Private data Private data
—> —
Program text Program text

Data Client applications (UNIX)

Figure 6-1. How the database server uses shared memory

Shared-memory allocation

The database server creates portions in shared memory to handle different
processes.

The database server creates the following portions of shared memory:
¢ The resident portion

* The buffer pool portion

* The virtual portion

* The IPC communications or message portion

If the sqlhosts file specifies shared-memory communications, the database
server allocates memory for the communications portion.

* The virtual-extension portion

The database server adds operating-system segments, as required, to the virtual
and virtual-extension portions of shared memory.

For more information about shared-memory settings for your platform, see the
machine notes. The following figure shows the contents of each portion of shared
memory.

All database server virtual processors have access to the same shared-memory
segments. Each virtual processor manages its work by maintaining its own set of
pointers to shared-memory resources such as buffers, locks, and latches. Virtual

IBM Informix Administrator's Guide



Shared memory header

Lock table

Physical-log buffer

processors attach to shared memory when you take the database server from
offline mode to quiescent, administration, or online. The database server uses locks
and latches to manage concurrent access to shared-memory resources by multiple
threads.

Buffer-header table LRU queues

Resident portion
Logical-log buffer

Buffer pool Buffer pool portion
Chunk table Mirrored-chunk table
Dbspace table Page-cleaner table
Thispace table Transaction table User table
Session structures Thread structures Dictionary cache
UDR cache SQL statement cache Sorting pool
— Virtual portion
Thread stacks Thread heaps
Big buffers
Global pool

Unallocated memory

Client/server IPC messages ———IPC communications

portion (UNIX only)

Thread heaps Virtual-
for DataBlade modules and
user-defined routines

Figure 6-2. Contents of database server shared memory

Shared-memory size

Each portion of the database server shared memory consists of one or more
operating-system segments of memory, each one divided into a series of blocks
that are 4 KB in size and managed by a bitmap.

The header-line output by the onstat utility contains the size of the database server
shared memory, expressed in KB. You can also use onstat -g seg to monitor how
much memory the database server allocates for each portion of shared memory.
For information about how to use onstat, see the IBM Informix Administrator’s
Reference.

You can set the SHMTOTAL parameter in the onconfig file to limit the amount of
memory overhead that the database server can place on your computer or node.
The SHMTOTAL parameter specifies the total amount of shared memory that the
database server can use for all memory allocations. However, certain operations
might fail if the database server requires more memory than the amount set in
SHMTOTAL. If this condition occurs, the database server displays the following
message in the message log:

size of resident + virtual segments x + y > z
total allowed by configuration parameter SHMTOTAL

In addition, the database server returns an error message to the application that
initiated the offending operation. For example, if the database server requires more

Chapter 6. Shared memory ~ 6-3



memory than you specify in SHMTOTAL while it tries to perform an operation
such as an index build or a hash join, it returns an error message to the application
that is similar to one of the following messages:

-567 Cannot write sorted rows.
-116 ISAM error: cannot allocate memory.

After the database server sends these messages, it rolls back any partial results
performed by the offending query.

Internal operations, such as page-cleaner or checkpoint activity, can also cause the
database server to exceed the SHMTOTAL ceiling. When this situation occurs, the
database server sends a message to the message log. For example, suppose that the
database server attempts and fails to allocate additional memory for page-cleaner
activity. As a consequence, the database server sends information to the message
log that is similar to the following messages:

17:19:13 Assert Failed: WARNING! No memory available for page cleaners
17:19:13 Who: Thread(11l, flush_sub(0), 9a8444, 1)

17:19:13 Results: Database server may be unable to complete a checkpoint
17:19:13 Action: Make more virtual memory available to database server
17:19:13 See Also: /tmp/af.cd

After the database server informs you about the failure to allocate additional
memory, it rolls back the transactions that caused it to exceed the SHMTOTAL
limit. Immediately after the rollback, operations no longer fail from lack of
memory, and the database server continues to process transactions as usual.

Action to take if SHMTOTAL is exceeded

When the database server requires more memory than SHMTOTAL allows, a
transient condition occurs, perhaps caused by a burst of activity that exceeds the
normal processing load. Only the operation that caused the database server to run
out of memory temporarily fails. Other operations continue to be processed in a
normal fashion.

If messages indicate on a regular basis that the database server requires more
memory than SHMTOTAL allows, you have not configured the database server
correctly. Lowering DS_TOTAL_MEMORY or the buffers value in the
BUFFERPOOL configuration parameter is one possible solution; increasing the
value of SHMTOTAL is another.

Processes that attach to shared memory

6-4

The following processes attach to the database server shared memory:

* Client-application processes that communicate with the database server through
the shared-memory communications portion (ipcshm)

* Database server virtual processors

e Database server utilities

The following topics describe how each type of process attaches to the database
server shared memory.

How a client attaches to the communications portion (UNIX)

Client-application processes that communicate with the database server through
shared memory (nettype ipcshm) attach transparently to the communications
portion of shared memory. System-library functions that are automatically
compiled into the application enable it to attach to the communications portion of

IBM Informix Administrator's Guide



shared memory. For information about specifying a shared-memory connection, see
Chapter 2, “Client/server communication,” on page 2-1)and ["Network virtuall
processors” on page 4-21]

If the INFORMIXSHMBASE environment variable is not set, the client application
attaches to the communications portion at an address that is platform-specific. If
the client application attaches to other shared-memory segments (not database
server shared memory), the user can set the INFORMIXSHMBASE environment variable
to specify the address at which to attach the database server shared-memory
communications segments. When you specify the address at which to address the
shared-memory communications segments, you can prevent the database server
from colliding with the other shared-memory segments that your application uses.
For information about how to set the INFORMIXSHMBASE environment variable, see
the IBM Informix Guide to SQL: Reference.

Related reference:

[“Shared-memory connections (UNIX)” on page 2-6

[“Environment variables for network connections” on page 2-43)|

How utilities attach to shared memory

Database server utilities such as onstat, onmode, and ontape attach to shared
memory through one of the following files.

Operating system File
UNIX $INFORMIXDIR/etc/.infos.servername
Windows %INFORMIXDIR%\etc\.infos.servername

The variable servername is the value of the DBSERVERNAME parameter in the
onconfig file. The utilities obtain the servername portion of the file name from the
INFORMIXSERVER environment variable.

The oninit process reads the onconfig file and creates the file .infos.servername
when it starts the database server. The file is removed when the database server
terminates.

How virtual processors attach to shared memory

The database server virtual processors attach to shared memory during setup.
During this process, the database server must satisfy the following two
requirements:

* Ensure that all virtual processors can locate and access the same shared-memory
segments

* Ensure that the shared-memory segments are located in physical memory
locations that are different than the shared-memory segments assigned to other
instances of the database server, if any, on the same computer

The database server uses two configuration parameters, SERVERNUM and
SHMBASE, to meet these requirements.

When a virtual processor attaches to shared memory, it performs the following
major steps:

* Accesses the SERVERNUM parameter from the onconfig file
¢ Uses SERVERNUM to calculate a shared-memory key value
* Requests a shared-memory segment using the shared-memory key value

Chapter 6. Shared memory ~ 6-5



6-6

The operating system returns the shared-memory identifier for the first
shared-memory segment.

* Directs the operating system to attach the first shared-memory segment to its
process space at SHMBASE

* Attaches additional shared-memory segments, if required, to be contiguous with
the first segment

The following topics describe how the database server uses the values of the
SERVERNUM and SHMBASE configuration parameters in the process of attaching
shared-memory segments.

Obtain key values for shared-memory segments

The values of the SERVERNUM configuration parameter and shmkey, an internally
calculated number, determine the unique key value for each shared-memory
segment.

To see the key values for shared-memory segments, run the onstat -g seg
command. For more information, see the sections on SHMADD and the buffer pool
in your IBM Informix Performance Guide.

When a virtual processor requests that the operating system attach the first
shared-memory segment, it supplies the unique key value to identify the segment.
In return, the operating system passes back a shared-memory segment identifier
associated with the key value. Using this identifier, the virtual processor requests
that the operating system attach the segment of shared memory to the
virtual-processor address space.

Specify where to attach the first shared-memory segment

The SHMBASE parameter in the onconfig file specifies the virtual address where
each virtual processor attaches the first, or base, shared-memory segment. Each
virtual processor attaches to the first shared-memory segment at the same virtual
address. This situation enables all virtual processors within the same database
server instance to reference the same locations in shared memory without
calculating shared-memory addresses. All shared-memory addresses for an instance
of the database server are relative to SHMBASE.

Warning: Do not change the value of SHMBASE.

The value of SHMBASE is sensitive for the following reasons:

* The specific value of SHMBASE depends on the platform and whether the
processor is a 32-bit or 64-bit processor. The value of SHMBASE is not an
arbitrary number and is intended to keep the shared-memory segments safe
when the virtual processor dynamically acquires additional memory space.

* Different operating systems accommodate additional memory at different virtual
addresses. Some architectures extend the highest virtual address of the
virtual-processor data segment to accommodate the next segment. In this case,
the data segment might grow into the shared-memory segment.

* Some versions of UNIX require the user to specify an SHMBASE parameter of
virtual address zero. The zero address informs the UNIX kernel that the kernel
picks the best address at which to attach the shared-memory segments.
However, not all UNIX architectures support this option. Moreover, on some
systems, the selection that the kernel makes might not be the best selection.

For information about SHMBASE, see your IBM Informix machine notes.

IBM Informix Administrator's Guide



Attach additional shared-memory segments

Each virtual processor must attach to the total amount of shared memory that the
database server has acquired. After a virtual processor attaches each
shared-memory segment, it calculates how much shared memory it has attached
and how much remains. The database server facilitates this process by writing a
shared-memory header to the first shared-memory segment. Sixteen bytes into the
header, a virtual processor can obtain the following data:

* The total size of shared memory for this database server
* The size of each shared-memory segment

To attach additional shared-memory segments, a virtual processor requests them
from the operating system in much the same way that it requested the first
segment. For the additional segments, however, the virtual processor adds 1 to the
previous value of shmkey. The virtual processor directs the operating system to
attach the segment at the address that results from the following calculation:

SHMBASE + (seg_size x number of attached segments)

The virtual processor repeats this process until it has acquired the total amount of
shared memory.

Given the initial key value of (SERVERNUM * 65536) + shmkey, the database server
can request up to 65,536 shared-memory segments before it can request a
shared-memory key value used by another database server instance on the same
computer.

Define the shared-memory lower-boundary address

If your operating system uses a parameter to define the lower boundary address
for shared memory, and the parameter is set incorrectly, it can prevent the
shared-memory segments from being attached contiguously.

The following figure illustrates the problem. If the lower-boundary address is less
than the ending address of the previous segment plus the size of the current
segment, the operating system attaches the current segment at a point beyond the
end of the previous segment. This action creates a gap between the two segments.
Because shared memory must be attached to a virtual processor so that it looks
like contiguous memory, this gap creates problems. The database server receives
errors when this situation occurs.

To correct the problem, check the operating-system kernel parameter that specifies

the lower-boundary address or reconfigure the kernel to allow larger
shared-memory segments.

Chapter 6. Shared memory 6-7



Operating-system memory

Virtual processor

< SHMBASE
Shared-memory
segment
- The next segment of shared
memory should attach here.
Gap
= When lower boundary is too large,
Shared-memory the next segment attaches here.
segment

Figure 6-3. Shared-memory lower-boundary address overview

Resident portion of shared memory

6-8

The operating system, as it switches between the processes that run on the system,
normally swaps the contents of portions of memory to disk. When a portion of
memory is designated as resident, however, it is not swapped to disk. Keeping
frequently accessed data resident in memory improves performance because it
reduces the number of disk I/O operations that would otherwise be required to
access that data.

The database server requests that the operating system keep the virtual portions in
physical memory when the following two conditions exist:

e The operating system supports shared-memory residency.

* The RESIDENT parameter in the onconfig file is set to -1 or a value that is
greater than 0.

Warning: You must consider the use of shared memory by all applications when
you consider whether to set the RESIDENT parameter to -1. Locking all shared
memory for the use of the IBM Informix database server can adversely affect the
performance of other applications, if any, on the same computer.

The resident portion of the database server shared memory stores the following
data structures that do not change in size while the database server is running;:

* Shared-memory header
* Logical-log buffer

* Physical-log buffer

* Lock table

Related reference:

[+ [RESIDENT configuration parameter (Administrator's Reference)|

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0140.htm#ids_adr_0140

Shared-memory header

The shared-memory header contains a description of all other structures in shared
memory, including internal tables and the buffer pool.

The shared-memory header also contains pointers to the locations of these
structures. When a virtual processor first attaches to shared memory, it reads
address information in the shared-memory header for directions to all other
structures.

The size of the shared-memory header is about 200 KB, but the size varies
depending on the computer platform. You cannot tune the size of the header.

Logical-log buffer

The database server uses the logical log to store a record of changes to the
database server data since the last dbspace backup. The logical log stores records
that represent logical units of work for the database server. The logical log contains
the following five types of log records, in addition to many others:

* SQL data definition statements for all databases

* SQL data manipulation statements for databases that were created with logging
* Record of a change to the logging status of a database

* Record of a checkpoint

¢ Record of a change to the configuration

The database server uses only one of the logical-log buffers at a time. This buffer is
the current logical-log buffer. Before the database server flushes the current
logical-log buffer to disk, it makes the second logical-log buffer the current one so
that it can continue writing while the first buffer is flushed. If the second
logical-log buffer fills before the first one finishes flushing, the third logical-log
buffer becomes the current one. This process is illustrated in the following figure.

Logical-log buffers

Writes performed by
Current N user thread
logical-log buffer
(now filling) — @
Current -
logical-log .
Logical-log U
buffer (ready to
accept data) — —‘:ee—'ﬁh

logical-log

—’ . [ —_
Logical-log file fr—
buffer @
(flushing) — Free -

logical-log -

Figure 6-4. The logical-log buffer and its relation to the logical-log files on disk

TTT

For a description of how the database server flushes the logical-log buffer, see
[“Flush the logical-log buffer” on page 6-28)

The LOGBUFF configuration parameter specifies the size of the logical-log buffers.
Small buffers can create problems if you store records larger than the size of the
buffers (for example, TEXT or BYTE data in dbspaces). The recommended value

Chapter 6. Shared memory ~ 6-9



6-10

for the size of a logical log buffer is 64 KB. Whenever the setting is less than the
recommended value, the database server suggests a value during server startup.
For the possible values that you can assign to this configuration parameter, see the
IBM Informix Administrator’s Reference.

For information about the affect of TEXT and BYTE data on shared memory
buffers, see [“Buffer large-object data” on page 6-29.)

Physical-log buffer

The database server uses the physical-log buffer to hold before-images of some of
the modified dbspace pages. The before-images in the physical log and the
logical-log records enable the database server to restore consistency to its databases
after a system failure.

The physical-log buffer is actually two buffers. Double buffering permits the
database server processes to write to the active physical-log buffer while the other
buffer is being flushed to the physical log on disk. For a description of how the
database server flushes the physical-log buffer, see|“Flush the physical-log buffer’]
on page 6-26] For information about monitoring the physical-log file, see |“Monitor|

physical and logical-logging activity” on page 16-2.|

The PHYSBUFF parameter in the onconfig file specifies the size of the physical-log
buffers. A write to the physical-log buffer writes exactly one page. If the specified
size of the physical-log buffer is not evenly divisible by the page size, the database
server rounds the size down to the nearest value that is evenly divisible by the
page size. Although some operations require the buffer to be flushed sooner, in
general the database server flushes the buffer to the physical-log file on disk when
the buffer fills. Thus, the size of the buffer determines how frequently the database
server must flush it to disk.

The default value for the physical log buffer size is 512 KB. If you decide to use a
smaller value, the database server displays a message indicating that optimal
performance might not be attained. Using a physical log buffer smaller than 512
KB affects performance only, not transaction integrity.

For more information about this configuration parameter, see the IBM Informix
Administrator’s Reference.

High-Availability Data-Replication buffer

Data replication requires two instances of the database server, a primary instance
and a secondary instance, running on two computers. If you implement data
replication for your database server, the primary database server holds logical-log
records in the data replication buffers before it sends them to the secondary
database server. A data replication buffer is always the same size as the logical-log
buffer. For information about the size of the logical-log buffer, see the preceding
topic,l“Logical-log buffer” on page 6-9] For more information about how the data
replication buffer is used, see ["How data replication works” on page 22-1|

Lock table

Alock is created when a user thread writes an entry in the lock table. The lock
table is the pool of available locks. A single transaction can own multiple locks. For
an explanation of locking and the SQL statements associated with locking, see the
IBM Informix Guide to SQL: Tutorial.

IBM Informix Administrator's Guide



The following information, which is stored in the lock table, describes the lock:
* The address of the transaction that owns the lock
* The type of lock (exclusive, update, shared, byte, or intent)
* The page or rowid that is locked
* The table space where the lock is placed
* Information about the bytes locked (byte-range locks for smart large objects):
— Smart-large-object ID
— Offset into the smart large object where the locked bytes begin
— The number of bytes locked, starting at the offset

To specify the initial size of the lock table, set the LOCKS configuration parameter.
For information about using the LOCKS configuration parameter to specify the
number of locks for a session, see the topics about configuration parameters in the
IBM Informix Administrator’s Reference and the topics about configuration effects on
memory utilization in your IBM Informix Performance Guide.

If the number of locks allocated by sessions exceeds the value specified in the
LOCKS configuration parameter, the database server doubles the size of the lock
table, up to 15 times. The database server increases the size of the lock table by
attempting to double the lock table on each increase. However, the amount added
during each increase is limited to a maximum value. For 32-bit platforms, a
maximum of 100,000 locks can be added during each increase. Therefore, the total
maximum locks allowed for 32-bit platforms is 8,000,000 (maximum number of
starting locks) + 99 (maximum number of dynamic lock table extensions) x 100,000
(maximum number of locks added per lock table extension). For 64-bit platforms, a
maximum of 1,000,000 locks can be added during each increase. Therefore, the
total maximum locks allowed is 500,000,000 (maximum number of starting locks) +
99 (maximum number of dynamic lock table extensions) x 1,000,000 (maximum
number of locks added per lock table extension).

Use the DEF_TABLE_LOCKMODE configuration parameter to set the lock mode to
page or row for new tables.

Locks can prevent sessions from reading data until after a concurrent transaction is
committed or rolled back. For databases created with transaction logging, you can
use the USELASTCOMMITTED configuration parameter in the onconfig file to
specify whether the database server uses the last committed version of the data.
The last committed version of the data is the version of the data that existed before
any updates occurred. The value you set with the USELASTCOMMITTED
configuration parameter overrides the isolation level that is specified in the SET
ISOLATION TO COMMITTED READ statement of SQL. For more information
about using the USELASTCOMMITTED configuration parameter, see the topics
about configuration parameters in the IBM Informix Administrator’s Reference.

For more information about using and monitoring locks, see the topics about
locking in your IBM Informix Performance Guide and the IBM Informix Guide to SQL:
Tutorial.

Buffer pool portion of shared memory

The buffer pool portion of shared memory contains the buffers that store dbspace
pages that are read from disk.

Chapter 6. Shared memory 6-11



6-12

The following figure illustrates the shared-memory header and the buffer pool.

Shared-memory ‘ Buffer table ‘
header
+ Hash table
‘ Buffer pool

Figure 6-5. Shared-memory buffer pool

You use the BUFFERPOOL configuration parameter to specify information about a
buffer pool, including the number of buffers in the buffer pool or the overall size
of the buffer pool. Each buffer is the size of one database server page. Too few
buffers can severely affect performance. You can set the BUFFERPOOL
configuration parameter to allow the database server to automatically increase the
number of buffers as needed to improve performance. Otherwise, you must
monitor the database server and tune the number of buffers to determine an
acceptable value.

A buffer pool manages one size of pages. You need a different buffer pool for each
page size that is used by storage spaces in the database server. The database server
automatically creates the required buffer pools. For example, if you create the first
dbspace that has a page size of 6 KB, the database server creates a buffer pool to
cache the default number of 6 KB pages in memory. You can control the properties
of buffer pools with the BUFFERPOOL configuration parameter.

If the database server is in online, quiescent, or administration mode, you can also
use the onparams -b command to add a buffer pool of a different size. When you
use the onparams -b command, the information that you specify is transferred
automatically to the onconfig file as a new entry of the BUFFERPOOL
configuration parameter.

In general, the database server performs I/O in full-page units, the size of a buffer.
The exceptions are I/O performed from big buffers, from blobspace buffers, or
from lightweight I/O buffers.

Automatic LRU (least recently used) tuning affects all buffer pools and adjusts the
Iru_min_dirty and Iru_max_dirty values that can be explicitly set by the
BUFFERPOOL configuration parameter.

The status of the buffers is tracked through the buffer table. Within shared
memory, buffers are organized into FIFO/LRU buffer queues. Buffer acquisition is
managed by mutexes and lock-access information.

The onstat -b command shows information about the buffers.
Related concepts:

IBM Informix Administrator's Guide



[ [The BUFFERPOOL configuration parameter and memory utilization|
[(Performance Guide)|

[‘Thread data” on page 6-17]
[‘Mutexes” on page 4-§

Related reference:

[ [BUFFERPOOL configuration parameter (Administrator's Reference)|

[ [onstat -b command: Print buffer information for buffers in use (Administrator's
Reference)|

“Creation of blobpage buffers” on page 6-30|

[ [onparams -b: Add a buffer pool (Administrator's Reference)

Virtual portion of shared memory

The virtual portion of shared memory is expandable by the database server and
can be paged out to disk by the operating system. As the database server executes,
it automatically attaches additional operating-system segments, as necessary, to the
virtual portion.

Management of the virtual portion of shared memory

The database server uses memory pools to track memory allocations that are similar
in type and size. Keeping related memory allocations in a pool helps to reduce
memory fragmentation. It also enables the database server to free a large allocation
of memory at one time, as opposed to freeing each piece that makes up the pool.

All sessions have one or more memory pools. When the database server requires
memory, it looks first in the specified pool. If insufficient memory is available in a
pool to satisfy a request, the database server adds memory from the system pool. If
the database server cannot find enough memory in the system pool, it dynamically
allocates more segments to the virtual portion.

The database server allocates virtual shared memory for each of its subsystems
(session pools, stacks, heaps, control blocks, system catalog, SPL routine caches,
SQL statement cache, sort pools, and message buffers) from pools that track free
space through a linked list. When the database server allocates a portion of
memory, it first searches the pool free-list for a fragment of sufficient size. If it finds
none, it brings new blocks into the pool from the virtual portion. When memory is
freed, it goes back to the pool as a free fragment and remains there until the pool
is deleted. When the database server starts a session for a client application, for
example, it allocates memory for the session pool. When the session terminates, the
database server returns the allocated memory as free fragments.

Size of the virtual portion of shared memory

Use configuration parameters to specify the initial size of the virtual portion of
shared memory, the size of segments to be added later, and the amount of memory
available for PDQ queries.

To specify the initial size of the virtual shared-memory portion, set the
SHMVIRTSIZE configuration parameter. To specify the size of segments that are
added later to the virtual shared memory, set the SHMADD and the EXTSHMADD
configuration parameter.

Chapter 6. Shared memory 6-13


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_138.htm#ids_prf_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_138.htm#ids_prf_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0029.htm#ids_adr_0029
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0500.htm#ids_adr_0500
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0500.htm#ids_adr_0500
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0458.htm#ids_adr_0458

6-14

To specify the amount of memory available for PDQ queries, set the
DS_TOTAL_MEMORY parameter.

If you want to increase the amount of memory that is available for a query that is
not a PDQ query and the PDQ priority is set to 0 (zero), you can change the
amount in any of the following ways:

* Set the DS_NONPDQ_QUERY_MEM configuration parameter
¢ Run the onmode -wm or the onmode -wf command

For example, if you use the onmode utility, specify a value as shown in the
following example:

onmode -wf DS_NONPDQ_QUERY_MEM=500

The minimum value for DS_NONPDQ_QUERY_MEM is 128 KB. The maximum
supported value is 25 percent of the value of DS_TOTAL_MEMORY.

Related reference:

[“Add a segment to the virtual portion of shared memory” on page 7-6|
(& [DS_TOTAL_MEMORY configuration parameter (Administrator's Reference)|
[& [DS_ NONPDQ QUERY_MEM configuration parameter (Administrator's|

|!3eference )I

[ [SHMVIRTSIZE configuration parameter (Administrator's Reference)

[ [SHMADD configuration parameter (Administrator's Reference)|

[ [EXTSHMADD configuration parameter (Administrator's Reference)|

Components of the virtual portion of shared memory

The virtual portion of shared memory stores the following data:
* Internal tables

* Big bulffers

* Session data

* Thread data (stacks and heaps)
* Data-distribution cache

* Dictionary cache

* SPL routine cache

* SQL statement cache

* Sorting pool

* Global pool

Shared-memory internal tables
The database server shared memory contains seven internal tables that track
shared-memory resources. The shared-memory internal tables are as follows:

* Buffer table

* Chunk table

* Dbspace table

* Page-cleaner table
* Tblspace table

* Transaction table
» User table

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0066.htm#ids_adr_0066
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0064.htm#ids_adr_0064
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0064.htm#ids_adr_0064
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0160.htm#ids_adr_0160
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0155.htm#ids_adr_0155
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0083.htm#ids_adr_0083

Buffer table: The buffer table tracks the addresses and status of the individual
buffers in the shared-memory pool. When a buffer is used, it contains an image of
a data or index page from disk. For more information about the purpose and
content of a disk page, see[“Pages” on page 8-5]

Each buffer in the buffer table contains the following control information, which is
required for buffer management:

Buffer status
Buffer status is described as empty, unmodified, or modified. An
unmodified buffer contains data, but the data can be overwritten. A
modified (dirty) buffer contains data that must be written to disk before it
can be overwritten.

Current lock-access level
Buffers receive lock-access levels depending on the type of operation that
the user thread is executing. The database server supports two buffer
lock-access levels: shared and exclusive.

Threads waiting for the buffer
Each buffer header maintains a list of the threads that are waiting for the
buffer and the lock-access level that each waiting thread requires.

Each database server buffer has one entry in the buffer table.

For information about the database server buffers, see|[“Resident portion of shared)|
memory” on page 6-8) For information about how to monitor the buffers, see
“Monitor buffers” on page 7-9)

The database server determines the number of entries in the buffer-table hash
table, based on the number of allocated buffers. The maximum number of hash
values is the largest power of 2 that is less than the value of buffers, which is
specified in one of the BUFFERPOOL configuration parameter fields.

Chunk table: The chunk table tracks all chunks in the database server. If
mirroring has been enabled, a corresponding mirror chunk table is also created
when shared memory is set up. The mirror chunk table tracks all mirror chunks.

The chunk table in shared memory contains information that enables the database
server to locate chunks on disk. This information includes the number of the initial
chunk and the number of the next chunk in the dbspace. Flags also describe chunk
status: mirror or primary; offline, online, or recovery mode; and whether this
chunk is part of a blobspace. For information about monitoring chunks, see
[“Monitor chunks” on page 9-40.

The maximum number of entries in the chunk table might be limited by the
maximum number of file descriptors that your operating system allows per
process. You can usually specify the number of file descriptors per process with an
operating-system kernel-configuration parameter. For details, consult your
operating-system manuals.

Dbspace table: The dbspace table tracks storage spaces in the database server.
The dbspace-table information includes the following information about each
dbspace:

* Dbspace number
* Dbspace name and owner

* Dbspace mirror status (mirrored or not)

Chapter 6. Shared memory 6-15



6-16

* Date and time that the dbspace was created

If the storage space is a blobspace, flags indicate the media where the blobspace is
located: magnetic or removable. If the storage space is an sbspace, it contains
internal tables that track metadata for smart large objects and large contiguous
blocks of pages containing user data.

For information about monitoring dbspaces, see [‘Monitor disk usage” on page]
-—40.

Page-cleaner table: The page-cleaner table tracks the state and location of each of
the page-cleaner threads. The number of page-cleaner threads is specified by the
CLEANERS configuration parameter in the onconfig file. For advice on how many
page-cleaner threads to specify, see the chapter on configuration parameters in the
IBM Informix Administrator’s Reference.

The page-cleaner table always contains 128 entries, regardless of the number of
page-cleaner threads specified by the CLEANERS parameter in the onconfig file.

For information about monitoring the activity of page-cleaner threads, see
information about the onstat -F option in the IBM Informix Administrator’s Reference.

Tblspace table: The tblspace table tracks all active tblspaces in a database server
instance. An active tblspace is one that is currently in use by a database session.
Each active table accounts for one entry in the tblspace table. Active tblspaces
include database tables, temporary tables, and internal control tables, such as
system catalog tables. Each tblspace table entry includes header information about
the tblspace, the tblspace name, and pointers to the tblspace tblspace in dbspaces
on disk. (The shared-memory active tblspace table is different from the tblspace
tblspace.) For information about monitoring tblspaces, see [‘Monitor tblspaces and|
fextents” on page 9-43

The database server manages one tblspace table for each dbspace.

Transaction table: The transaction table tracks all transactions in the database
server.

Tracking information derived from the transaction table is shown in the onstat -x
display. For an example of the output that onstat -x displays, see monitoring
transactions in your IBM Informix Performance Guide.

The database server automatically increases the number of entries in the
transaction table, up to a maximum of 32,767, based on the number of current
transactions.

For more information about transactions and the SQL statements that you use with
transactions, see the IBM Informix Guide to SQL: Tutorial, the IBM Informix Guide to
SQL: Reference, and the IBM Informix Guide to SQL: Syntax.

UNIX only: The transaction table also specifically supports the X/Open
environment. Support for the X/Open environment requires TP /XA.

User table: The user table tracks all user threads and system threads. Each client
session has one primary thread and zero-to-many secondary threads, depending on

IBM Informix Administrator's Guide



the level of parallelism specified. System threads include one to monitor and
control checkpoints, one to process onmode commands, the B-tree scanner threads,
and page-cleaner threads.

The database server increases the number of entries in the user table as necessary.
You can monitor user threads with the onstat -u command.

Big buffers

A big buffer is a single buffer that is made up of several pages. The actual number
of pages is platform-dependent. The database server allocates big buffers to
improve performance on large reads and writes.

The database server uses a big buffer whenever it writes to disk multiple pages
that are physically contiguous. For example, the database server tries to use a big
buffer to perform a series of sequential reads (light scans) or to read into shared
memory simple large objects that are stored in a dbspace.

Users do not have control over the big buffers. If the database server uses light
scans, it allocates big buffers from shared memory.

For information about monitoring big buffers with the onstat command, see the
topics about configuration effects on I/O activity in your IBM Informix Performance
Guide.

Session data

When a client application requests a connection to the database server, the
database server begins a session with the client and creates a data structure for the
session in shared memory called the session-control block. The session-control block
stores the session ID, the user ID, the process ID of the client, the name of the host
computer, and various status flags.

The database server allocates memory for session data as necessary.

Thread data

When a client connects to the database server, in addition to starting a session, the
database server starts a primary session thread and creates a thread-control block for
it in shared memory.

The database server also starts internal threads on its own behalf and creates
thread-control blocks for them. When the database server switches from running
one thread to running another one (a context switch), it saves information about
the thread— such as the register contents, program counter (address of the next
instruction), and global pointers—in the thread-control block. For more information
ﬁut the thread-control block and how it is used, see [“Context switching” on page
4-5.

The database server allocates memory for thread-control blocks as necessary.
Related concepts:

[“Buffer pool portion of shared memory” on page 6-11|

Stacks: Each thread in the database server has its own stack area in the virtual
portion of shared memory. For a description of how threads use stacks, see
[“Stacks” on page 4-6.|For information about how to monitor the size of the stack
for a session, see monitoring sessions and threads section in your IBM Informix
Performance Guide.

Chapter 6. Shared memory 6-17



6-18

The size of the stack space for user threads is specified by the STACKSIZE
parameter in the onconfig file. You can change the size of the stack for all user
threads, if necessary, by changing the value of STACKSIZE.

You can use the INFORMIXSTACKSIZE environment variable to override the STACKSIZE
value in the server configuration file. Set INFORMIXSTACKSIZE in the environment
and recycle the instance.

Related reference:

[ [STACKSIZE configuration parameter (Administrator's Reference)|

Heaps: Each thread has a heap to hold data structures that it creates while it is
running. A heap is dynamically allocated when the thread is created. The size of
the thread heap is not configurable.

Data-distribution cache

The database server uses distribution statistics generated by the UPDATE
STATISTICS statement in the MEDIUM or HIGH mode to determine the query
plan with the lowest cost. When the database server accesses the distribution
statistics for a specific column the first time, it reads the distribution statistics from
the sysdistrib system catalog table on disk and stores the statistics in the
data-distribution cache. These statistics can then be read for the optimization of
subsequent queries that access the column.

Performance improves if these statistics are efficiently stored and accessed from the
data-distribution cache. You can configure the size of the data-distribution cache
with the DS_HASHSIZE and DS_POOLSIZE configuration parameters. For
information about changing the default size of the data-distribution cache, see the
topics about queries and the query optimizer in your IBM Informix Performance
Guide.

Dictionary cache

When a session executes an SQL statement that requires access to a system catalog
table, the database server reads data from the system catalog tables. The database
server stores the catalog data for each queried table in structures that it can access
more efficiently during subsequent queries on that table. These structures are
created in the virtual portion of shared memory for use by all sessions. These
structures constitute the dictionary cache.

You can configure the size of the dictionary cache with the DD_HASHSIZE and
DD_HASHMAX configuration parameters. For more information about these
parameters, see the chapter on configuration effects on memory in your IBM
Informix Performance Guide.

SQL statement cache
The SQL statement cache reduces memory usage and preparation time for queries.

The database server uses the SQL statement cache to store optimized SQL
statements that a user runs. When users run a statement that is stored in the SQL
statement cache, the database server does not optimize the statement again, so
performance improves.

For more information, see ['Set SQL statement cache parameters” on page 7-5] For
details on how these parameters affect the performance of the SQL statement
cache, see the IBM Informix Performance Guide.

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0165.htm#ids_adr_0165

Sort memory

The following database operations can use large amounts of the virtual portion of

shared memory to sort data:

* Decision-support queries that involve joins, groups, aggregates and sort
operations

* Index builds
 UPDATE STATISTICS statement in SQL

The amount of virtual shared memory that the database server allocates for a sort
depends on the number of rows to be sorted and the size of the row, along with
other factors.

For information about parallel sorts, see your IBM Informix Performance Guide.

SPL routine and the UDR cache

The database server converts an SPL routine to executable format and stores the
routine in the UDR cache, where it can be accessed by any session.

When a session is required to access an SPL routine or other user-defined routine
for the first time, the database server reads the definition from the system catalog
tables and stores the definition in the UDR cache.

You can configure the size of the UDR cache with the PC_HASHSIZE and
PC_POOLSIZE configuration parameters. For information about changing the
default size of the UDR cache, see the chapter on queries and the query optimizer
in your IBM Informix Performance Guide.

Global pool

The global pool stores structures that are global to the database server. For
example, the global pool contains the message queues where poll threads for
network communications deposit messages from clients. The sqlexec threads pick
up the messages from the global pool and process them.

For more information, see the sections on network buffer pools and virtual portion
of shared memory in your IBM Informix Performance Guide.

Communications portion of shared memory (UNIX)

The database server allocates memory for the IPC communication portion of
shared memory if you configure at least one of your connections as an IPC
shared-memory connection. The database server performs this allocation when you
set up shared memory. The communications portion contains the message buffers
for local client applications that use shared memory to communicate with the
database server.

The size of the communications portion of shared memory equals approximately
12 KB multiplied by the expected number of connections required for
shared-memory communications (nettype ipcshm). If nettype ipcshm is not present,
the expected number of connections defaults to 50. For information about how a
client attaches to the communications portion of shared memory, see
lattaches to the communications portion (UNIX)” on page 6-4.|

Related reference:

[“Shared-memory connections (UNIX)” on page 2-6

Chapter 6. Shared memory 6-19



Virtual-extension portion of shared memory

The virtual-extension portion of shared memory contains additional virtual
segments and virtual-extension segments.

Virtual-extension segments contain thread heaps for DataBlade modules and
user-defined routines that run in user-defined virtual processors.

The EXTSHMADD configuration parameter sets the size of virtual-extension
segments. The SHMADD and SHMTOTAL configuration parameters apply to the
virtual-extension portion of shared memory, just as they do to the other portions of
shared memory.

Concurrency control

The database server threads that run on the same virtual processor and on separate
virtual processors share access to resources in shared memory. When a thread
writes to shared memory, it uses mechanisms called mutexes and locks to prevent
other threads from simultaneously writing to the same area. A mutex gives a
thread the right to access a shared-memory resource. A lock prevents other threads
from writing to a buffer until the thread that placed the lock is finished with the
buffer and releases the lock.

Shared-memory mutexes

The database server uses mutexes to coordinate threads as they attempt to modify
data in shared memory. Every modifiable shared-memory resource is associated
with a mutex. Before a thread can modify a shared-memory resource, it must first
acquire the mutex associated with that resource. After the thread acquires the
mutex, it can modify the resource. When the modification is complete, the thread
releases the mutex.

If a thread tries to obtain a mutex and finds that it is held by another thread, the
incoming thread must wait for the mutex to be released.

For example, two threads can attempt to access the same slot in the chunk table,
but only one can acquire the mutex associated with the chunk table. Only the
thread that holds the mutex can write its entry in the chunk table. The second
thread must wait for the mutex to be released and then acquire it.

For information about monitoring mutexes (which are also called latches), see
[“Monitor the shared-memory profile and latches” on page 7-8)

Shared-memory buffer locks

A primary benefit of shared memory is the ability of database server threads to
share access to disk pages stored in the shared-memory buffer pool. The database
server maintains thread isolation while it achieves this increased concurrency
through a strategy for locking the data buffers.

Types of buffer locks
The database server uses two types of locks to manage access to shared-memory
buffers:

e Share locks
¢ Exclusive locks

6-20 IBM Informix Administrator's Guide



Each of these lock types enforces the required level of thread isolation during
execution.

Share lock: A buffer is in share mode, or has a share lock, if multiple threads
have access to the buffer to read the data but none intends to modify the data.

Exclusive lock: A buffer is in exclusive mode, or has an exclusive lock, if a thread
demands exclusive access to the buffer. All other thread requests that access the
buffer are placed in the wait queue. When the executing thread is ready to release
the exclusive lock, it wakes the next thread in the wait queue.

Database server thread access to shared buffers

Database server threads access shared buffers through a system of queues, using
mutexes and locks to synchronize access and protect data.

FIFO/LRU queues

A bulffer holds data for the purpose of caching. The database server uses the
least-recently used (LRU) queues to replace the cached data. IBM Informix also has
a first-in first-out (FIFO) queue. When you set the number of LRU queues, you are
actually setting the number of FIFO/LRU queues.

Use the BUFFERPOOL configuration parameter to specify information about the
buffer pool, including information about the number of LRU queues to create
when database server shared memory is set up and values for lIru_min_dirty and

Iru_max_dirty, which control how frequently the shared-memory buffers are
flushed to disk.

To improve transaction throughput, increase the lru_min_dirty and lru_max_dirty
values. However, do not change the gap between the Iru_min_dirty and
Iru_max_dirty values. If the AUTO_LRU_TUNING configuration parameter is
enabled, the values of the Iru_max_dirty and Iru_min_dirty fields are reset
automatically as needed to improve performance.

Related reference:
[+ [AUTO_LRU_TUNING configuration parameter (Administrator's Reference)|
[ [BUFFERPOOL configuration parameter (Administrator's Reference)|

Components of LRU queue

Each LRU queue is composed of a pair of linked lists, as follows:

* FLRU (free least-recently used) list, which tracks free or unmodified pages in the
queue

* MLRU (modified least-recently used) list, which tracks modified pages in the
queue

The free or unmodified page list is called the FLRU queue of the queue pair, and
the modified page list is called the MLRU queue. The two separate lists eliminate
the task of searching a queue for a free or unmodified page. The following figure
illustrates the structure of the LRU queues.

Chapter 6. Shared memory 6-21


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0025.htm#ids_adr_0025
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0029.htm#ids_adr_0029

6-22

Least-recently used <--> most-recently used

FLRU 1
\ LRU queue
(composed of two
MLRU 1 queues)
I
Pointerto a Pointer to an Pointer to an

modified page  unmodified page  empty page

Figure 6-6. LRU queue

Pages in least-recently used order

When the database server processes a request to read a page from disk, it must
decide which page to replace in memory. Rather than select a page randomly, the
database server assumes that recently referenced pages are more likely to be
referenced in the future than pages that it has not referenced for some time. Thus,
rather than replacing a recently accessed page, the database server replaces a
least-recently accessed page. By maintaining pages in least-recently to
most-recently used order, the database server can easily locate the least-recently
used pages in memory.

LRU queues and buffer-pool management

Before processing begins, all page buffers are empty, and every bulffer is
represented by an entry in one of the FLRU queues. The buffers are evenly
distributed among the FLRU queues. To calculate the number of buffers in each
queue, divide the total number of buffers by the number of LRU queues. The
number of buffers and LRU queues are specified in the BUFFERPOOL
configuration parameter.

When a user thread is required to acquire a buffer, the database server randomly
selects one of the FLRU queues and uses the oldest or least-recently used entry in
the list. If the least-recently used page can be latched, that page is removed from
the queue.

If the FLRU queue is locked, and the end page cannot be latched, the database
server randomly selects another FLRU queue.

If a user thread is searching for a specific page in shared memory, it obtains the
LRU-queue location of the page from the control information stored in the buffer
table.

After an executing thread finishes its work, it releases the buffer. If the page has
been modified, the buffer is placed at the most-recently used end of an MLRU
queue. If the page was read but not modified, the buffer is returned to the FLRU
queue at its most-recently used end. For information about how to monitor LRU
queues, see [“Monitor buffers” on page 7-9.|

Number of LRU queues to configure

Multiple LRU queues reduce user-thread contention and allow multiple cleaners to
flush pages from the queues so that the percentage of dirty pages is maintained at
an acceptable level.

IBM Informix Administrator's Guide



You specify the number of LRU queues by setting the Irus value in the
BUFFERPOOL configuration parameter. The default number of LRU queues
depends on the number of CPUs on your computer:

* If you have a uniprocessor computer, the default value of the lrus field is 8.

* If you have a multiprocessor computer and the MULTIPROCESSOR
configuration parameter is enabled, the default value of the Irus field is the
greater of 8 or the number of CPU virtual processors.

After you provide an initial value for the Irus field in the BUFFERPOOL
configuration parameter, monitor your LRU queues with the onstat -R command.
If you find that the percentage of dirty LRU queues consistently exceeds the value
of the Iru_max_dirty field in the BUFFERPOOL configuration parameter, increase
the value of the lrus field to add more LRU queues.

For example, if the value of the Iru_max_dirty field is 70 and your LRU queues are
consistently 75 percent dirty, you can increase the value of the lrus field. If you
increase the number of LRU queues, you shorten the length of the queues, which
reduces the work of the page cleaners. However, you must allocate enough page
cleaners with the CLEANERS configuration parameter.

Related concepts:

[ [LRU tuning (Performance Guide)|
Related reference:

[+ [BUFFERPOOL configuration parameter (Administrator's Reference)

Number of cleaners to allocate

In general, you must configure one cleaner for each disk that your applications
update frequently. However, you must also consider the length of your LRU
queues and frequency of checkpoints, as explained in the following paragraphs.

In addition to insufficient LRU queues, another factor that influences whether page
cleaners keep up with the number of pages that require cleaning is whether you
have enough page-cleaner threads allocated. The percent of dirty pages might
exceed the BUFFERPOOL value specified for lru_max_dirty in some queues
because no page cleaners are available to clean the queues. After a while, the page
cleaners might be too far behind to catch up, and the buffer pool becomes dirtier
than the percent that you specified in lru_max_dirty.

For example, suppose that the CLEANERS parameter is set to 8, and you increase
the number of LRU queues from 8 to 12. You can expect little in the way of a
performance gain because the 8 cleaners must now share the work of cleaning an
additional 4 queues. If you increase the number of CLEANERS to 12, each of the
now-shortened queues can be more efficiently cleaned by a single cleaner.

Setting CLEANERS too low can cause performance to suffer whenever a
checkpoint occurs because page cleaners must flush all modified pages to disk
during checkpoints. If you do not configure a sufficient number of page cleaners,
checkpoints take longer, causing overall performance to suffer.

For more information, see [“Flush buffer-pool buffers” on page 6-26.

Number of pages added to the MLRU queues

Periodically, the page-cleaner threads flush the modified buffers in an MLRU
queue to disk. To specify the point at which cleaning begins, use the
BUFFERPOOL configuration parameter to specify a value for Iru_max_dirty.

Chapter 6. Shared memory 6-23


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_276.htm#ids_prf_276
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0029.htm#ids_adr_0029

6-24

By specifying when page cleaning begins, the lru_max_dirty value limits the
number of page buffers that can be appended to an MLRU queue. The initial
setting of Iru_max_dirty is 60.00, so page cleaning begins when 60 percent of the
buffers managed by a queue are modified.

In practice, page cleaning begins under several conditions, only one of which is
when an MLRU queue reaches the value of Iru_max_dirty. For more information
about how the database server performs buffer-pool flushing, see
[disk” on page 6-26|

The following example shows how the value of Iru_max_dirty is applied to an
LRU queue to specify when page cleaning begins and thereby limit the number of
buffers in an MLRU queue.

Buffers specified as 8000

Trus specified as 8
Tru_max_dirty specified as 60 percent

Page cleaning begins when the number of buffers in the MLRU
queue is equal to Tru_max_dirty.

Buffers per Tru queue = (8000/8) = 1000

Max buffers in MLRU queue and point at which page cleaning
begins: 1000 x 0.60 = 600

End of MLRU cleaning

You can also specify the point at which MLRU cleaning can end. The
Iru_min_dirty value in the BUFFERPOOL configuration parameter specifies the
acceptable percentage of buffers in an MLRU queue. For example, if Iru_min_dirty
is set to 50.00, page cleaning is not required when 50 percent of the buffers in an
LRU queue are modified. In practice, page cleaning can continue beyond this
point, as directed by the page-cleaner threads.

The following example shows how the value of Iru_min_dirty is applied to the
LRU queue to specify the acceptable percent of buffers in an MLRU queue and the
point at which page cleaning ends.

Buffers specified as 8000

Trus specified as 8
Tru_min_dirty specified as 50 percent

The acceptable number of buffers in the MLRU queue and
the point at which page cleaning can end is equal
to Tru_min_dirty.

Buffers per LRU queue = (8000/8) = 1000

Acceptable number of buffers in MLRU queue and the point
at which page cleaning can end: 1000 x .50 = 500

You can use decimals for the Iru_max_dirty and the Iru_min_dirty values. For
example, if you set lru_max_dirty to 1.0333 and lru_min_dirty to 1.0, this triggers
the LRU to write at 3,100 dirty buffers and to stop at 3,000 dirty buffers.

For more information about how the database server flushes the buffer pool, see
[“Flush data to disk” on page 6-26)

IBM Informix Administrator's Guide



Read-ahead operations

The database server automatically reads several pages ahead of the current pages
that are being processed for a query, unless you disable automatic read ahead
operations. Reading ahead enables applications to run faster because they spend
less time waiting for disk 1/0.

Automatic read-ahead requests for pages to be brought into the bufferpool cache
during sequential scans of data records improves the performance of a query,
including OLTP queries and index scans, when the server detects that the query is
encountering 1/0.

By default, the database server automatically determines when to issue read-ahead

requests and when to stop based on when the query is encountering i/o from disk:

* If queries encounter 1/0, the server issues read-ahead requests to improve the
performance of the query. This performance improvement occurs because
read-ahead requests can greatly increase the speed of database processing by
compensating for the slowness of I/O processing relative to the speed of CPU
processing.

* If queries are mostly cached, the server detects that no I/O is occurring and
does not read ahead.

Use the AUTO_READAHEAD configuration parameter to change the automatic
read-ahead mode or to disable automatic read ahead for a query. You can:

¢ Dynamically change the value of the AUTO_READAHEAD configuration
parameter by running an onmode -wm or onmode -wf command.

* Run a SET ENVIRONMENT AUTO_READAHEAD statement to change the
mode or enable or disable automatic read-ahead for a session.

You can use the onstat -p command to view database server reads and writes and
monitor number of times that a thread was required to wait for a shared-memory
latch. The RA-pgsused output field shows the number of pages used that the
database server read ahead and monitor the database server use of read-ahead.

Use the onstat -g rah command to display statistics about read-ahead requests.
Related reference:

[ [AUTO_READAHEAD configuration parameter (Administrator's Reference)|

[ [onstat -p command: Print profile counts (Administrator's Reference)|

[ [onstat -g rah command: Print read-ahead request statistics (Administrator's|

|[3eference)|
Database server thread access to buffer pages

The database server uses shared-lock buffering to allow more than one database
server thread to access the same buffer concurrently in shared memory.

The database server uses two types of buffer locks to provide this concurrency
without a loss in thread isolation. The two types of lock access are share and
exclusive. (For more information, see|“Types of buffer locks” on page 6-20.)

Chapter 6. Shared memory 6-25


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1125.htm#ids_adr_1125
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0602.htm#ids_adr_0602
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1126.htm#ids_adr_1126
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1126.htm#ids_adr_1126

Flush data to disk

6-26

Writing a buffer to disk is called buffer flushing. When a user thread modifies data
in a buffer, it marks the buffer as dirty. When the database server flushes the buffer
to disk, it subsequently marks the buffer as not dirty and allows the data in the
buffer to be overwritten.

The database server flushes the following buffers:
* Buffer pool (covered in this section)
* Physical-log buffer
See [“Flush the physical-log buffer.”|
* Logical-log buffer

See [“Flush the logical-log buffer” on page 6-28]

Page-cleaner threads manage buffer flushing. The database server always runs at
least one page-cleaner thread. If the database server is configured for more than
one page-cleaner thread, the LRU queues are divided among the page cleaners for
more efficient flushing. For information about specifying how many page-cleaner
threads the database server runs, see the CLEANERS configuration parameter in
the IBM Informix Administrator’s Reference.

Flushing the physical-log buffer, the modified shared-memory page buffers, and
the logical-log buffer must be synchronized with page-cleaner activity according to
specific rules designed to maintain data consistency.

Flush buffer-pool buffers

Flushing of the buffers is initiated by any one of the following conditions:

e The number of buffers in an MLRU queue reaches the number specified by the
Iru_max_dirty value in the BUFFERPOOL configuration parameter.

¢ The page-cleaner threads cannot keep up. In other words, a user thread must
acquire a buffer, but no unmodified buffers are available.

+ The database server must execute a checkpoint. (See|“Checkpoints” on page
15-4.)

Automatic LRU tuning affects all buffer pools and adjusts the lru_min_dirty and
Iru_max_dirty values in the BUFFERPOOL configuration parameter.

Flush before-images first

The before-images of modified pages are flushed to disk before the modified pages
themselves.

In practice, the physical-log buffer is flushed first and then the buffers that contain
modified pages. Therefore, even when a shared-memory buffer page must be
flushed because a user thread is trying to acquire a buffer but none is available (a
foreground write), the buffer pages cannot be flushed until the before-image of the
page has been written to disk.

Flush the physical-log buffer

The database server temporarily stores before-images of some of the modified disk
pages in the physical-log buffer. If the before-image is written to the physical-log
buffer but not to the physical log on disk, the server flushes the physical-log buffer
to disk before flushing the modified page to disk.

IBM Informix Administrator's Guide



The database server always flushes the contents of the physical-log buffer to disk
before any data buffers.

The following events cause the active physical-log buffer to flush:
* The active physical-log buffer becomes full.

* A modified page in shared memory must be flushed, but the before-image is still
in the active physical-log buffer.

* A checkpoint occurs.

The database server uses only one of the two physical-log buffers at a time. This
buffer is the active (or current) physical-log buffer. Before the database server
flushes the active physical-log buffer to disk, it makes the other buffer the active
physical-log buffer so that the server can continue writing to a buffer while the
first buffer is being flushed.

Both the physical-log buffer and the physical log help maintain the physical and
logical consistency of the data. For information about physical logging,
checkpoints, and fast recovery, see [Chapter 15, “Physical logeing, checkpoints, and|
Ifast recovery,” on page 15-1.|

Synchronize buffer flushing

Types

When shared memory is first set up, all buffers are empty. As processing occurs,
data pages are read from disk into the buffers, and user threads begin to modify
these pages.

of writes during flushing

To provide you with information about the specific condition that prompted
buffer-flushing activity, the database server defines three types of writes and
counts how often each write occurs.

The types of writes are as follows:
* Foreground write

* LRU write

e Chunk write

To see the write counts that the database server maintains, run the onstat -F
command.

If you implement mirroring for the database server, data is always written to the
primary chunk first. The write is then repeated on the mirror chunk. Writes to a
mirror chunk are included in the counts.

Related reference:

[“Monitor buffers” on page 7-9|

[ [onstat -F command: Print counts (Administrator's Reference)|

Foreground write

Whenever an sqlexec thread writes a buffer to disk, it is termed a foreground write.
A foreground write occurs when an sqlexec thread searches through the LRU
queues on behalf of a user but cannot locate an empty or unmodified buffer. To
make space, the sqlexec thread flushes pages, one at a time, to hold the data to be
read from disk. (For more information, see [“FIFO/LRU queues” on page 6-21.)

Chapter 6. Shared memory 6-27


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0509.htm#ids_adr_0509

6-28

If the sqlexec thread must perform buffer flushing just to acquire a shared-memory
buffer, performance can suffer. Foreground writes must be avoided. To display a
count of the number of foreground writes, run onstat -F. If you find that
foreground writes are occurring on a regular basis, tune the value of the
page-cleaning parameters. Either increase the number of page cleaners or decrease
the BUFFERPOOL Iru_max_dirty value.

LRU write

Unlike foreground writes, LRU writes are performed by page cleaners rather than
by sqlexec threads. The database server performs LRU writes as background
writes that typically occur when the percentage of dirty buffers exceeds the percent
that is specified for Iru_max_dirty in the BUFFERPOOL configuration parameter.

In addition, a foreground write can trigger an LRU write. When a foreground write
occurs, the sqlexec thread that performed the write alerts a page-cleaner to wake
up and clean the LRU for which it performed the foreground write.

In an appropriately tuned system, page cleaners ensure that enough unmodified
buffer pages are available for storing pages to be read from disk. Thus, sqlexec
threads that perform a query are not required to flush a page to disk before they
read in the disk pages required by the query. This condition can result in
significant performance gains for queries that do not make use of foreground
writes.

LRU writes are preferred over foreground writes because page-cleaner threads
perform buffer writes much more efficiently than sqlexec threads do. To monitor
both types of writes, use onstat -F.

Chunk write

Chunk writes are commonly performed by page-cleaner threads during a checkpoint
or, possibly, when every page in the shared-memory buffer pool is modified.
Chunk writes, which are performed as sorted writes, are the most efficient writes
available to the database server.

During a chunk write, each page-cleaner thread is assigned to one or more chunks.
Each page-cleaner thread reads through the buffer headers and creates an array of
pointers to pages that are associated with its specific chunk. (The page cleaners
have access to this information because the chunk number is contained within the
physical page number address, which is part of the page header.) This sorting
minimizes head movement (disk seek time) on the disk and enables the
page-cleaner threads to use the big buffers during the write, if possible.

In addition, because user threads must wait for the checkpoint to complete, the
page-cleaner threads are not competing with many threads for CPU time. As a
result, the page-cleaner threads can finish their work with less context switching.

Flush the logical-log buffer

The database server uses the shared-memory logical-log buffer as temporary
storage for records that describe modifications to database server pages. From the
logical-log buffer, these records of changes are written to the current logical-log file
on disk and eventually to the logical-log backup media. For a description of logical
logging, see [Chapter 13, “Logical log,” on page 13-1

Five events cause the current logical-log buffer to flush:

* The current logical-log buffer becomes full.

IBM Informix Administrator's Guide



* A transaction is prepared or committed in a database with unbuffered logging.
* A nonlogging database session terminates.

* A checkpoint occurs.

* A page is modified that does not require a before-image in the physical log.

The following topics explain each of these events in detail.

After a transaction is prepared or terminated in a database with
unbuffered logging

The following log records cause flushing of the logical-log buffers in a database
with unbuffered logging:

+ COMMIT

* PREPARE

* XPREPARE

 ENDTRANS

For a comparison of buffered versus unbuffered logging, see the SET LOG
statement in the IBM Informix Guide to SQL: Syntax.

When a session that uses nonlogging databases or unbuffered
logging terminates

Even for nonlogging databases, the database server logs certain activities that alter
the database schema, such as the creation of tables or extents. When the database
server terminates sessions that use unbuffered logging or nonlogging databases,
the logical-log buffer is flushed to make sure that any logging activity is recorded.

When a checkpoint occurs
For a detailed description of the events that occur during a checkpoint, see
[“Checkpoints” on page 15-4)

When a page is modified that does not require a before-image in
the physical-log file

When a page is modified that does not require a before-image in the physical log,
the logical-log buffer must be flushed before that page is flushed to disk.

Buffer large-object data

Simple large objects (TEXT or BYTE data) can be stored in either dbspaces or
blobspaces. Smart large objects (CLOB or BLOB data) are stored only in sbspaces.
The database server uses different methods to access each type of storage space.
The following topics describe buffering methods for each.

Write simple large objects

The database server writes simple large objects to disk pages in a dbspace in the
same way that it writes any other data type. For more information, see [‘Flush data
fto disk” on page 6-26.

You can also assign simple large objects to a blobspace. The database server writes
simple large objects to a blobspace differently from the way that it writes other
data to a shared-memory buffer and then flushes it to disk. For a description of
blobspaces, see the chapter on disk structure and storage in the IBM Informix
Administrator’s Reference.

Chapter 6. Shared memory 6-29



6-30

Blobpages and shared memory

Blobspace blobpages store large amounts of data. Consequently, the database
server does not create or access blobpages by way of the shared-memory buffer
pool, and it does not write blobspace blobpages to either the logical or physical
logs.

If blobspace data passed through the shared-memory pool, it might dilute the
effectiveness of the pool by driving out index pages and data pages. Instead,
blobpage data is written directly to disk when it is created.

To reduce logical-log and physical-log traffic, the database server writes blobpages
from magnetic media to dbspace backup tapes and logical-log backup tapes in a
different way than it writes dbspace pages. For a description of how blobspaces are
logged, see [“Log blobspaces and simple large objects” on page 13-6)

Creation of simple large objects

When simple-large-object data is written to disk, the row to which it belongs might
not exist yet. During an insert, for example, the simple large object is transferred
before the rest of the row data. After the simple large object is stored, the data row
is created with a 56-byte descriptor that points to its location. For a description of
how simple large objects are stored physically, see the structure of a dbspace
blobpage in the disk storage and structure chapter of the IBM Informix
Administrator’s Reference.

Creation of blobpage buffers

To receive simple large object data from the application process, the database
server creates a pair of blobspace buffers, one for reading and one for writing, each
the size of one blobspace blobpage. Each user has only one set of blobspace buffers
and, therefore, can access only one simple large object at a time.

Simple large object data is transferred from the client-application process to the
database server in 1 KB segments. The database server begins filling the blobspace
buffers with the 1 KB pieces and attempts to buffer two blobpages at a time. The
database server buffers two blobpages so that it can determine when to add a
forwarding pointer from one page to the next. When it fills the first buffer and
discovers that more data remains to transfer, it adds a forward pointer to the next
page before it writes the page to disk. When no more data remains to transfer, the
database server writes the last page to disk without a forward pointer.

When the thread begins writing the first blobspace buffer to disk, it attempts to
perform the I/O based on the user-defined blobpage size. For example, if the
blobpage size is 32 KB, the database server attempts to read or write the data in
32,768-byte increments. If the underlying hardware (such as the disk controller)
cannot transfer this amount of data in a single operation, the operating-system
kernel loops internally (in kernel mode) until the transfer is complete.

The blobspace buffers remain until the thread that created them is finished. When
the simple large object is written to disk, the database server deallocates the pair of
blobspace buffers. The following figure illustrates the process of writing a simple
large object to a blobspace.

IBM Informix Administrator's Guide



Database server shared memory Database server disk space

AR

Blobspace

Virtual processor — Temporary blobpage »

| buffers |

Figure 6-7. Writing simple large object to a blobspace

Blobspace blobpages are allocated and tracked with the free-map page. Links that
connect the blobpages and pointers to the next blobpage segments are created as
necessary.

A record of the operation (insert, update, or delete) is written to the logical-log
buffer.

Related concepts:

[“Buffer pool portion of shared memory” on page 6-11]

Access smart large objects

The database server accesses smart large objects through the shared-memory
buffers, in the same way that it accesses data that is stored in a dbspace. However,
the user-data portion of a smart large object is buffered at a lower priority than
normal buffer pages to prevent flushing data of higher value out of the buffer
pool. Buffering permits faster access to smart large objects that are accessed
frequently.

A smart large object is stored in an sbspace. You cannot store simple large objects
in an sbspace, and you cannot store smart large objects in a blobspace. An sbspace
consists of a user-data area and a metadata area. The user-data area contains the
smart-large-object data. The metadata area contains information about the content
of the sbspace. For more information about sbspaces, see [“Sbspaces” on page 8-13 |

Because smart large objects pass through the shared-memory buffer pool and can
be logged, you must consider them when you allocate buffers. Use the
BUFFERPOOL configuration parameter to allocate shared-memory buffers. As a
general rule, try to have enough buffers to hold two smart-large-object pages for
each concurrently open smart large object. (The additional page is available for
read-ahead purposes.) For more information about tuning buffers for smart large
objects, see your IBM Informix Performance Guide.

Use the LOGBUFF configuration parameter to specify the size of the logical-log
buffer. For information about setting each of the following configuration
parameters, see the IBM Informix Administrator’s Reference:

* BUFFERPOOL
* LOGBUFF

The user-data area of smart large objects that are logged does not pass through the

physical log, so changing the PHYSBUFF parameter is not required for smart large
objects.

Chapter 6. Shared memory 6-31



For more information about the structure of an sbspace, see sbspace structure in
the disk structures and storage chapter of the IBM Informix Administrator’s
Reference. For information about creating an sbspace, see information about the
onspaces utility in the IBM Informix Administrator’s Reference.

Memory use on 64-bit platforms

6-32

With 64-bit addressing, you can have larger buffer pools to reduce the amount of
I/0O operations to obtain data from disks. Because 64-bit platforms allow for larger
memory-address space, the maximum values for the following memory-related
configuration parameters are larger on 64-bit platforms:

* BUFFERPOOL

* CLEANERS

* DS_MAX_QUERIES

* DS_TOTAL_MEMORY
* LOCKS

 SHMADD

* SHMVIRTSIZE

The machine notes for each 64-bit platform lists the maximum values for these
configuration parameters and platform-specific parameters such as SHMMAX. For
more information about the configuration parameters, see the IBM Informix
Administrator’s Reference and the chapter on shared memory in the IBM Informix
Performance Guide.

IBM Informix Administrator's Guide



Chapter 7. Manage shared memory

These topics inform you how to perform the following tasks, which concern
managing shared memory:

* Setting the shared-memory configuration parameters
* Setting up shared memory

* Turning residency on or off for the resident portion of the database server
shared memory

* Adding a segment to the virtual portion of shared memory
* Reserving memory for critical activities

* Maintaining a targeted amount of memory in applications with memory
limitations

* Monitoring shared memory

These topics do not cover the DS_TOTAL_MEMORY configuration parameter. This
parameter places a ceiling on the allocation of memory for decision-support

queries. For information about this parameter, see your IBM Informix Performance
Guide.

Set operating-system shared-memory configuration parameters

Several operating-system configuration parameters can affect the use of shared
memory by the database server. Parameter names are not provided because names
vary among platforms, and not all parameters exist on all platforms. The following
list describes these parameters by function:

* Maximum operating-system shared-memory segment size, expressed in bytes or
KB

* Minimum shared-memory segment size, expressed in bytes

* Maximum number of shared-memory identifiers

* Lower-boundary address for shared memory

¢ Maximum number of attached shared-memory segments per process

* Maximum amount of systemwide shared memory

UNIX only:
* Maximum number of semaphore identifiers
* Maximum number of semaphores

* Maximum number of semaphores per identifier

On UNIX, the machine notes file contains recommended values that you use to
configure operating-system resources. Use these recommended values when you
configure the operating system. For information about how to set these
operating-system parameters, consult your operating-system manuals.

For specific information about your operating-system environment, see the
machine notes file that is provided with the database server.

Related concepts:

[ [UNTIX configuration parameters that affect CPU utilization (Performance]|

|£ suide !I

© Copyright IBM Corp. 1996, 2014 7-1



http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_084.htm#ids_prf_084
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_084.htm#ids_prf_084

7-2

Related tasks:

[ [Windows configuration parameters that affect CPU utilization (Performance|

|£ 2uide)|

Maximum shared-memory segment size

When the database server creates the required shared-memory segments, it
attempts to acquire as large an operating-system segment as possible. The first
segment size that the database server tries to acquire is the size of the portion that
it is allocating (resident, virtual, or communications), rounded up to the nearest
multiple of 8 KB.

The database server receives an error from the operating system if the requested
segment size exceeds the maximum size allowed. If the database server receives an
error, it divides the requested size by two and tries again. Attempts at acquisition
continue until the largest segment size that is a multiple of 8 KB can be created.
Then the database server creates as many additional segments as it requires.

Using more than two gigabytes of memory (Windows)
The database server can access shared-memory segments larger than two gigabytes
on Windows.

For Windows version 2003 and earlier, you must enable this feature with an entry
in the Windows boot file. Enabling larger shared-memory segments is referred to
by Microsoft as 4-gigabyte tuning (4GT).

To add the entry, edit the boot.ini file (in the top level, or root directory). You can
either add a boot option or use the currently existing boot option. To enable
support for more than two gigabytes, add the following text to the end of the boot
line:

/3GB

The following example has support for more than two gigabytes enabled:

[boot loader]

timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS
[operating systems]
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows NT
Workstation Version 4.00"

/3GB

The maximum size of the shared-memory segment depends on the operating
system, but it is approximately 3 gigabytes for Windows without additional
drivers.

Maximum number of shared-memory identifiers (UNIX)
Shared-memory identifiers affect the database server operation when a virtual
processor attempts to attach to shared memory. The operating system identifies
each shared-memory segment with a shared-memory identifier. For most operating
systems, virtual processors receive identifiers on a first-come, first-served basis, up
to the limit that is defined for the operating system as a whole. For more
information about shared-memory identifiers, see ["How virtual processors attach|
fto shared memory” on page 6-5|

You might be able to calculate the maximum amount of shared memory that the
operating system can allocate by multiplying the number of shared-memory
identifiers by the maximum shared-memory segment size.

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_088.htm#ids_prf_088
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_088.htm#ids_prf_088

Semaphores (UNIX)

The database server operation requires one UNIX semaphore for each virtual
processor, one for each user who connects to the database server through shared
memory (ipcshm protocol), six for database server utilities, and sixteen for other
purposes.

Set database server shared-memory configuration parameters

You can modify the configuration parameters that affect the resident, buffer pool,
or virtual portion of shared memory.

Set parameter for buffer pool shared memory

The BUFFERPOOL configuration parameter in the onconfig file specifies
information about a buffer pool. Each page size that is used by the database server
requires a buffer pool, which is represented in the onconfig file by a
BUFFERPOOL configuration parameter entry.

Set parameters for resident shared memory

The following list contains parameters in the onconfig file that specify the
configuration of the buffer pool and the internal tables in the resident portion of
shared memory. Before any changes that you make to the configuration parameters
take effect, you must shut down and restart the database server.

LOCKS
Specifies the initial number of locks for database objects; for example, rows,
key values, pages, and tables.

LOGBUFF
Specifies the size of the logical-log buffers.

PHYSBUFF
Specifies the size of the physical-log buffers.

RESIDENT
Specifies residency for the resident portion of the database server shared
memory.

SERVERNUM
Specifies a unique identification number for the database server on the local
host computer.

SHMTOTAL
Specifies the total amount of memory to be used by the database server.

Set parameters for virtual shared memory

The following list contains the configuration parameters that you use to configure
the virtual portion of shared memory:

DS_HASHSIZE
Number of hash buckets for lists in the data-distribution cache.

DS_POOLSIZE
Maximum number of entries in the data-distribution cache.

PC_HASHSIZE
Specifies the number of hash buckets for the UDR cache and other caches that
the database server uses.

Chapter 7. Manage shared memory 7-3



7-4

PC_POOLSIZE
Specifies the number of UDRs (SPL routines and external routines) that can be
stored in the UDR cache. In addition, this parameter specifies the size of other
database server caches, such as the typename cache and the opclass cache.

SHMADD
Specifies the size of dynamically added shared-memory segments.

SHMNOACCES
Specifies a list of virtual memory address ranges that are not used to attach
shared memory. Use this parameter to avoid conflicts with other processes.

EXTSHMADD
Specifies the size of a virtual-extension segment added when a user-defined
routine or a DataBlade routine runs in a user-defined virtual processor.

SHMTOTAL
Specifies the total amount of memory to be used by the database server.

SHMVIRTSIZE
Specifies the initial size of the virtual portion of shared memory.

STACKSIZE
Specifies the stack size for the database server user threads.

Set parameters for shared-memory performance

The following configuration parameters affect shared-memory performance.

AUTO_READAHEAD
Specifies the automatic read-ahead mode or disables automatic read-ahead
operations for a query. Automatic read-ahead operations help improve query
performance by issuing asynchronous page requests when the database server
detects that the query is encountering 1/0O. Asynchronous page requests can
improve query performance by overlapping query processing with the
processing necessary to retrieve data from disk and put it in the buffer pool.

CKPTINTVL
Specifies the maximum number of seconds that can elapse before the database
server checks if a checkpoint is required and the RTO_SERVER_RESTART
configuration parameter is not set to turn on automatic checkpoint tuning.

CLEANERS
Specifies the number of page-cleaner threads that the database server is to run.

Related concepts:

[ [Shared memory (Performance Guide)
Related tasks:

[ [Modifying the onconfig file (Administrator's Reference)|

Related reference:

[ [Configuration parameters that affect memory utilization (Performance Guide)|

[ [Database configuration parameters (Administrator's Reference)|

IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_130.htm#ids_prf_130
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0010.htm#ids_adr_0010
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_136.htm#ids_prf_136
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0007.htm#ids_adr_0007

Set SQL statement cache parameters

The following table shows the different ways that you can configure the SQL
statement cache.

Table 7-1. Configure the SQL statement cache

Configuration parameter

Purpose

The onmode command

STMT_CACHE

Turns on, enables, or disables the SQL statement
cache in memory. If turned on, specifies whether
the SQL statement cache can hold a parsed and
optimized SQL statement.

onmode -e mode

STMT_CACHE_HITS

Specifies the number of hits (references) to a
statement before it is fully inserted into the SQL
statement cache.

onmode -W
STMT_CACHE_HITS

STMT_CACHE_NOLIMIT

Controls whether to insert statements into the
SQL statement cache after its size is greater than
the STMT_CACHE_SIZE value.

onmode -W
STMT_CACHE_NOLIMIT

STMT_CACHE_NUMPOOL Defines the number of memory pools for the None
SQL statement cache.
STMT_CACHE_SIZE Specifies the size of the SQL statement cache. None

Use the following onstat options to monitor the SQL statement cache:

* onstat -g ssc
* onstat -g ssc all
* onstat -g ssc pool

For more information about these configuration parameters, onstat -g options, and
onmode commands, see the IBM Informix Administrator’s Reference.

For more information about using the SQL statement cache, monitoring it with the
onstat -g options, and tuning the configuration parameters, see improving query
performance in the IBM Informix Performance Guide. For details on qualifying and
identical statements, see the IBM Informix Guide to SQL: Syntax.

Set up shared memory

To set up shared memory, take the database server offline and then online. For
information about how to take the database server from online mode to offline, see
[“Change from any mode immediately to offline mode” on page 3-13)

Turn residency on or off for resident shared memory

You can turn residency on or off for the resident portion of shared memory in

either of the following two ways:

* Use the onmode utility to reverse the state of shared-memory residency
immediately while the database server is in online mode.

¢ Change the RESIDENT parameter in the onconfig file to turn shared-memory
residency on or off for the next time that you set up the database server shared
memory.

For a description of the resident portion of shared memory, see ["Resident portion|
fof shared memory” on page 6-8

Chapter 7. Manage shared memory 7-5



Turn residency on or off in online mode

To turn residency on or off while the database server is in online mode, use the
onmode utility.

To turn on residency immediately for the resident portion of shared memory, run
the following command:% onmode -r

To turn off residency immediately for the resident portion of shared memory, run
the following command: % onmode -n

These commands do not change the value of the RESIDENT parameter in the
onconfig file. That is, this change is not permanent, and residency reverts to the
state specified by the RESIDENT parameter the next time that you set up shared
memory. On UNIX, you must be root or user informix to turn residency on or off.
On Windows, you must be a user in the Informix Admin group to turn residency
on or off.

Turn residency on or off when restarting the database server

You can use a text editor to turn residency on or off. To change the current state of
residency, use a text editor to locate the RESIDENT parameter. Set RESIDENT to 1
to turn residency on or to 0 to turn residency off, and rewrite the file to disk.
Before the changes take effect, you must shut down and restart the database server.

Add a segment to the virtual portion of shared memory

You can use the -a option of the onmode utility to add a segment of specified size
to virtual shared memory.

You are not normally required to add segments to virtual shared memory because
the database server automatically adds segments as necessary.

The option to add a segment with the onmode utility is useful if the number of
operating-system segments is limited, and the initial segment size is so low,
relative to the amount that is required, that the operating-system limit of
shared-memory segments is nearly exceeded.

Related concepts:

[‘Size of the virtual portion of shared memory” on page 6-13

Reserve memory for critical activities

7-6

You can reserve a specific amount of memory for use when critical activities (such
as rollback activities) are required and the database server has limited free
memory. This prevents the database server from crashing if the server runs out of
free memory during critical activities.

If you enable the new LOW_MEMORY_RESERVE configuration parameter by
setting it to a specified value in kilobytes, critical activities, such as rollback
activities, can complete even when a user is getting out of memory errors. If the
value of LOW_MEMORY_RESERVE is 0, the low memory reserve functionality is
turned off.

For example, 512 kilobytes is a reasonable amount of reserved memory. To reserve
512 kilobytes, specify:
LOW_MEMORY_RESERVE 512

IBM Informix Administrator's Guide



You can also use the onmode -wm or onmode -wf command to dynamically adjust
the value of the LOW_MEMORY_RESERVE configuration parameter.

Use the onstat -g seg command to monitor the LOW_MEMORY_RESERVE value.
Look for the last two lines of output, which contain the phrase "Tow memory
reserve." The first of these output lines shows the size of memory reserved in
bytes. The second of these lines shows the number times that the database server
has used this memory and the maximum memory required. Both of these values
are reset when the server is restarted.

Related reference:

(% [LOW_MEMORY_RESERVE configuration parameter (Administrator'y

|!3eference)|

[ [onstat -g seg command: Print shared memory segment statistics|
[(Administrator's Reference)

(& [onmode -wf, -wm: Dynamically change certain configuration parameters|
[(Administrator's Reference)|

Configure the server response when memory is critically low

You can configure the actions that primary or standard database server takes when
memory is critically low. You can specify the criteria for terminating sessions based
on idle time, memory usage, and other factors so that the targeted application can
continue to process. Low-memory responses are useful for embedded applications
that have memory limitations.

To set up automatic low-memory management on a primary or standard server:

* Set the LOW_MEMORY_MGR configuration parameter to 1, which enables
low-memory management when the database server starts.

* Set the threshold parameters for the amount of memory to maintain by using an
SQL administration API command with the scheduler Tmm enable argument.

* Verify that the SHMTOTAL configuration parameter is set to a positive integer
value.

To disable automatic low-memory management, run an SQL administration API
command with the scheduler Tmm disable argument.

Related reference:

[ [LOW_MEMORY_MGR configuration parameter (Administrator's Reference)

[+ [scheduler Imm enable argument: Specify automatic low memory management]
Isettings (SQL administration API) (Administrator's Reference)|

[ [scheduler Imm disable argument: Stop automatic low memory management]
[(SQL administration API) (Administrator's Reference)|

[ [onstat -g Imm command: Print low memory management information|
[(Administrator's Reference)|

Scenario for maintaining a targeted amount of memory

The scenario in this topic shows how you can maintain a targeted amount of
memory in applications that have memory limitations.

Suppose you want to specify that when the database server has 10 MB or less of
free memory, it starts running the low memory management processes that can

Chapter 7. Manage shared memory 7-7


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1122.htm#ids_adr_1122
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1122.htm#ids_adr_1122
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0573.htm#ids_adr_0573
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0573.htm#ids_adr_0573
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0439.htm#ids_adr_0439
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0439.htm#ids_adr_0439
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1136.htm#ids_adr_1136
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_137.htm#ids_sapi_137
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_137.htm#ids_sapi_137
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_138.htm#ids_sapi_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_138.htm#ids_sapi_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1135.htm#ids_adr_1135
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1135.htm#ids_adr_1135

stop applications and free memory. Suppose you also want to specify that the
server stops running the low memory management processes when the server has
20 MB or more of free memory:

1. Set the LOW_MEMORY_MGR configuration parameter to 1 and restart the
server, or run an onmode -wf command to change the value of the
LOW_MEMORY_MGR configuration parameter.

2. Run an SQL administration API command with the scheduler 1mm enable
argument and low memory parameters, as follows:
EXECUTE FUNCTION task("scheduler 1mm enable",

“LMM START THRESHOLD", "10MB",
“LMM STOP THRESHOLD", "20MB",
"LMM IDLE TIME", "300");

3. Run the onstat -g Imm command to display information about automatic low
memory management settings, including the amount of memory that the server
is attempting to maintain, the amount of memory currently used by the server,
the low memory start and stop thresholds, and other memory-related statistics.

You can also view low memory management information in the online.Tog file.

Related reference:

[ [LOW_MEMORY MGR configuration parameter (Administrator's Reference)

[+ [scheduler Imm enable argument: Specify automatic low memory management]
lsettings (SQL administration API) (Administrator's Reference)|

[ [scheduler Imm disable argument: Stop automatic low memory management|
[(SOL administration API) (Administrator's Reference)|

[ [onstat - Imm command: Print low memory management information|
[(Administrator's Reference)

Monitor shared memory

These topics describe how to monitor shared-memory segments, the
shared-memory profile, and the use of specific shared-memory resources (buffers,
latches, and locks).

You can use the onstat -o utility to capture a static snapshot of database server
shared memory for later analysis and comparison.

Monitor shared-memory segments

Monitor the shared-memory segments to determine the number and size of the
segments that the database server creates. The database server allocates
shared-memory segments dynamically, so these numbers can change. If the
database server is allocating too many shared-memory segments, you can increase
the SHMVIRTSIZE configuration parameter. For more information, see the topics
about configuration parameters in the IBM Informix Administrator’s Reference.

The onstat -g seg command lists information for each shared-memory segment,
including the address and size of the segment, and the amount of memory that is
free or in use. For an example of onstat -g seg output, see information about the
onstat utility in the IBM Informix Administrator’s Reference.

Monitor the shared-memory profile and latches

Monitor the database server profile to analyze performance and the use of
shared-memory resources.

7-8 IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1136.htm#ids_adr_1136
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_137.htm#ids_sapi_137
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_137.htm#ids_sapi_137
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_138.htm#ids_sapi_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_138.htm#ids_sapi_138
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1135.htm#ids_adr_1135
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1135.htm#ids_adr_1135

You can obtain statistics on latch use and information about specific latches. These
statistics provide a measure of the system activity.

To reset these statistics to zero, use the onstat -z option. For a description of all the
fields that onstat displays, see information about the onstat utility in the IBM
Informix Administrator’s Reference.

Command-line utilities to monitor shared memory and latches
You can use the following command-line utilities to monitor shared memory and
latches:

onstat -s
Use onstat -s command to obtain latch information.

onstat -p
Run onstat -p to display statistics on database server activity and waiting
latches (in the Ichwaits field). For an example of onstat -p output, see
information about the onstat utility in the IBM Informix Administrator’s
Reference.

SMiI tables

Query the sysprofile table to obtain shared-memory statistics. This table contains
all of the statistics available in onstat -p output except the ovbuff, usercpu, and
syscpu statistics.

Monitor buffers

You can obtain both statistics on buffer use and information about specific buffers.

The statistical information includes the percentage of data writes that are cached to
buffers and the number of times that threads were required wait to obtain a buffer.
The percentage of writes that are cached is an important measure of performance.
The number of waits for buffers gives a measure of system concurrency.

Information about specific buffers includes a listing of all the buffers in shared
memory that are held by a thread. You can use this information to track the status
of a particular buffer. For example, you can determine whether another thread is
waiting for the buffer.

You can obtain statistics that relate to buffer availability and information about the
buffers in each LRU queue. The statistical information includes the number of
times that the database server attempted to exceed the maximum number of
buffers and the number of writes to disk (categorized by the event that caused the
buffers to flush). These statistics help you determine if the number of buffers is
appropriate. Information about the buffers in each LRU queue consists of the
length of the queue and the percentage of the buffers in the queue that were
modified.

You can obtain information about buffer pool activity from the onstat utility, the
sysprofile SMI table, or the IBM OpenAdmin Tool (OAT) for Informix.

onstat commands to monitor buffers

You can use the following onstat commands to monitor buffers:

onstat -g buf
Run the onstat -g buf command to obtain statistics about how active and
efficient each buffer is. The following types of statistics are shown:

Chapter 7. Manage shared memory 7-9



7-10

¢ Page reads and writes
¢ Caching percentages
* Waits for buffers
* Flushes
* Extensions of the buffer pool
* Buffer pool segments
* Fast cache
onstat -B

Run the onstat -B command to obtain information about all of the buffers
that are not on the free-list, including;:

* The shared memory address of the buffer
* The address of the thread that currently holds the buffer
* The address of the first thread that is waiting for each buffer
* Information about buffer pools
onstat -b

Run the onstat -b command to obtain the following information about
each buffer:

* Address of each buffer that is currently held by a thread
* Page numbers for the page that is held in the buffer

* Type of page that is held in the buffer (for example, data page, tblspace
page, and so on)

* Type of lock that is placed on the buffer (exclusive or shared)
* Address of the thread that is holding the buffer

¢ Address of the first thread that is waiting for each buffer

* Information about buffer pools

You can compare the addresses of the user threads to the addresses that
are shown in the onstat -u output to obtain the session ID number.

onstat -X
Run the onstat -X command to obtain the same information as for onstat
-b, along with the complete list of all threads that are waiting for buffers,
not just the first waiting thread.

onstat -R
Run the onstat -R command to show information about buffer pools, the
number of buffers in each LRU queue, and the number and percentage of
the buffers that are modified or free.

onstat -F
Run the onstat-F command to obtain a count by write type of the writes
that are performed and the following information about the page cleaners:

¢ Page-cleaner number
* Page-cleaner shared-memory address
¢ Current state of the page cleaner

* LRU queue to which the page cleaner was assigned
The sysprofile SMI table

Query the sysprofile table to obtain statistics on cached reads and writes, write
types, and total buffer waits. The following rows are relevant.

IBM Informix Administrator's Guide



bufreads
Number of reads from buffers

bufwrites
Number of writes to buffers

buffwts
Number of times that any thread was required to wait for a buffer

chunkwrites
Number of chunk writes

dskreads
Number of reads from disk

dskwrites
Number of writes to disk

fgwrites
Number of foreground writes

lruwrites
Number of LRU writes

Related concepts:

[“Types of writes during flushing” on page 6-27]

Related reference:

[ [onstat -¢ buf command: Print buffer pool profile information (Administrator's|
[Reference)|

[ [onstat -b command: Print buffer information for buffers in use (Administrator's|
[Reference)|

[ [onstat -B command: Prints information about used buffers (Administrator's|

|l3 eference !]

[+ [onstat -X command: Print thread information (Administrator's Reference)|

[ [onstat -R command: Print LRU, FLRU, and MLRU queue information]
[(Administrator's Reference)

[+ [onstat -F command: Print counts (Administrator's Reference)

[+ [sysprofile (Administrator's Reference)|

Deleting shared memory segments after a server failure

You must close shared memory segments after a database server failure.

Important: This procedure must be performed by a DBA with experience using
IBM Informix. Consult technical support for assistance. This procedure is for UNIX
systems only.

In the event of a failure of an Informix database server instance, follow this
procedure to delete shared memory segments:

1. Log on as user informix.

2. Use the onmode -k command to take the database server to offline mode and
remove shared memory.

3. If the onmode -k command fails and the server is not offline, either run the
onclean -k command, or perform the following steps:

a. Use the onstat -g glo command to display multithreading information.

Chapter 7. Manage shared memory 7-11


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0515.htm#ids_adr_0515
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0515.htm#ids_adr_0515
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0500.htm#ids_adr_0500
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0500.htm#ids_adr_0500
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0501.htm#ids_adr_0501
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0501.htm#ids_adr_0501
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0612.htm#ids_adr_0612
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0605.htm#ids_adr_0605
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0605.htm#ids_adr_0605
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0509.htm#ids_adr_0509
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0241.htm#ids_adr_0241

b. In the output from the previous command, find the process ID (pid)
associated with the first instance of cpu in the class column. For example, in
the following output from the onstat -g glo command, there are four
occurrences of cpu in the class column, having pids of 2599, 2603, 2604, and

2605:

MT global info:

sessions threads vps Ingspins

0 49 14 1

sched calls thread switches yield 0 yield n yield forever

total: 900100 898846 1238 27763 423778
per sec: 327 325 2 12 151
Virtual processor summary:

class vps usercpu  syscpu total

cpu 4 0.92 0.10 1.02

aio 4 0.02 0.02 0.04

lio 1 0.00 0.00 0.00

pio 1 0.00 0.00 0.00

adm 1 0.00 0.01 0.01

msc 1 0.00 0.00 0.00

fifo 2 0.00 0.00 0.00

total 14 0.94 0.13 1.07

Individual virtual processors:

vp pid class usercpu  syscpu total

1 2599 cpu 0.25 0.06 0.31

2 2602 adm 0.00 0.01 0.01

3 2603 cpu 0.23 0.00 0.23

4 2604 cpu 0.21 0.03 0.24

5 2605 cpu 0.23 0.01 0.24

6 2606 lio 0.00 0.00 0.00

7 2607 pio 0.00 0.00 0.00

8 2608 aio 0.02 0.02 0.04

9 2609 msc 0.00 0.00 0.00

10 2610 fifo 0.00 0.00 0.00

11 2611 fifo 0.00 0.00 0.00

12 2612 aio 0.00 0.00 0.00

13 2613 aio 0.00 0.00 0.00

14 2614 aio 0.00 0.00 0.00

tot 0.94 0.13 1.07
c. Use the kill command to terminate (in order) process IDs 2599, 2603, 2604,

and 2605.

4. If the shared segments have not been removed then follow these steps:

a. Determine the server number. The server number can be found by
examining the onconfig file of the Informix instance

b. Add the server number to 21078. For example, if the server number is 1,
then add 1 to 21078, giving 21079.

c. Convert the sum from the previous step to hexadecimal. In the previous
example, 21079 is 5257 hexadecimal.

d. Concatenate 48 to the hex value from the previous step. For example,
525748.

e. Run the ipcs utility as root to display the shared memory segments, if any,
left open by the server. Search the key column for the number from

f. Remove each shared memory ID associated with the number from @l

For more information about the onclean utility, see the IBM Informix Administrator’s
Reference.

Consult your operating system documentation for the correct ipem syntax for your
system.

7-12  IBM Informix Administrator's Guide



Chapter 8. Data storage

The database server uses physical units of storage to allocate disk space. It stores
data in logical units. Unlike the logical units of storage whose size fluctuates, each
of the physical units has a fixed or assigned size that is determined by the disk
architecture.

The following topics define terms and explain concepts that you must understand
to manage disk space. These topics cover the following areas:

* Definitions of the physical and logical units that the database server uses to
store data on disk

* Instructions on how to calculate the amount of disk space that you require to
store your data

* Guidelines on how to lay out your disk space and where to place your
databases and tables

¢ Instructions on using external tables

The database server uses the following physical units to manage disk space:

[‘Chunks” on page 8-2|

[‘Pages” on page 8-5|

[“Blobpages” on page 8-6|

[“‘Sbpages” on page 8-7|

[“Extents” on page 8-8|

The database server stores data in the following logical units:

[‘Dbspaces” on page 8-9

[“Temporary dbspaces” on page 8-12|

[“‘Blobspaces” on page 8-13]

[“Sbspaces” on page 8-13]

[‘Temporary sbspaces” on page 8-20|

[‘Plogspace” on page 8-22|

[“Extspaces” on page 8-22|

[‘Databases” on page 8-23]
[‘Tables” on page 8-24]

[“Tblspaces” on page 8-31]

[“Partitions and offsets” on page 8-5|

The database server maintains the following storage structures to ensure
physical and logical consistency of data:

Logical log
Physical log

Reserved pages

Related concepts:

[ [Limits in Informix (Administrator's Reference)

[“Storage space creation and management” on page 1-4|

© Copyright IBM Corp. 1996, 2014

8-1


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0718.htm#ids_adr_0718

[Chapter 9, “Manage disk space,” on page 9-1|

[ [Reserved Pages (Administrator's Reference)]

Chunks

A chunk is the largest unit of physical disk dedicated to database server data
storage.

Chunks provide administrators with a significantly large unit for allocating disk
space. The maximum size of an individual chunk is 4 TB. The number of allowable
chunks is 32,766. If you have upgraded from a version before version 10.00, you
must run the onmode -BC 2 command to enable the maximum size of a chunk
and the maximum number allowable, otherwise, the maximum chunk size is 2 GB.

The following storage spaces are comprised of chunks:
* Dbspaces

* Blobspaces

* Sbspaces

* Temporary dbspaces

* Temporary sbspaces

When you create a chunk, you specify its path, size, and the associated storage
space name.

The database server also uses chunks for mirroring. When you mirror a chunk, the
database server maintains two copies of the data on the chunk. Every write
operation to a primary chunk is automatically followed by an identical write
operation to the mirror chunk. Read operations are evenly divided between the
two chunks. If either the primary chunk or the mirror chunk fails, the chunk that
failed is marked as down, and the other chunk performs all operations without
interrupting the user access to data.

When you create tables, indexes, and other database objects, chunk space is
allocated, or assigned, to those objects. Space that is allocated is not necessarily
used. For example, when you create a table, you allocate space for it, but that
space is not used until you add data to the table. When all the chunks in a dbspace
report 0 free pages, you cannot create new database objects in that dbspace.
However, you can continue to add data to existing database objects as long as they
have unused space. You can monitor chunks by using the onstat -d command or
the OpenAdmin Tool (OAT) for Informix.

Related concepts:

“Sbspaces” on page 8-13|

“Blobspaces” on page 8-13|

"“Dbspaces” on page 8-9

Chapter 17, “Mirroring,” on page 17-1|

Related reference:

[“Specify names for storage spaces and chunks” on page 9-5

[ [onstat -d command: Print chunk information (Administrator's Reference)|

[ [onmode -BC: Allow large chunk mode (Administrator's Reference)|

8-2  IBM Informix Administrator's Guide


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0282.htm#ids_adr_0282
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0504.htm#ids_adr_0504
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0410.htm#ids_adr_0410

Disk allocation for chunks

The database server can use regular operating-system files or raw disk devices to
store data. On UNIX, you must use raw disk devices to store data whenever
performance is important. On Windows, using NTFS files to store data is
recommended for ease of administration.

An IBM Informix storage space can be on an NFS-mounted file system using
regular operating-system files.

Disk access on Windows

On Windows, both raw disks and NTFS use kernel asynchronous I/0 (KAIO). The
Windows file system manager adds additional overhead to disk I/0O, so using raw
disks provides slight performance advantages. Because NTFES files are a more
standard method of storing data, you must use NTFES files instead of raw disks.
Consider using raw disks if your database server requires a large amount of disk
access.

Raw disk space on Windows

On Windows, raw disk space can be either a physical drive without a drive letter or
a logical disk partition that has been assigned a drive letter using the Disk
Administrator. The space can either be formatted or unformatted. If it contains
data, the data is overwritten after the space has been allocated to the database
server. For more information, see [“Allocating raw disk space on Windows” on|
-ae 9-5,

NTFS files

You must use NTFS files, not FAT files, for disk space on Windows. For more
information, see[“Allocating NTFS file space on Windows” on page 9-4]

Unbuffered or buffered disk access on UNIX
You can allocate disk space in two ways. You can either use files that are buffered
through the operating system, or you can use unbuffered disk access.

Files that are buffered through the operating system are often called cooked files.
Unbuffered disk access is also called raw disk space.

When dbspaces are located on raw disk devices (also called character-special devices),
the database server uses unbuffered disk access.

To create a raw device, configure a block device (hard disk) with a raw interface.
The storage space that the device provides is called raw disk space. A chunk of raw
disk space is physically contiguous.

The name of the chunk is the name of the character-special file in the /dev
directory. In many operating systems, you can distinguish the character-special file
from the block-special file by the first letter in the file name (typically r). For
example, /dev/rsdOf is the character-special device that corresponds to the
/dev/sd0f block-special device.

For more information, see [“Allocating raw disk space on UNIX” on page 9-3]

Chapter 8. Data storage ~ 8-3



8-4

A cooked file is a regular file that the operating system manages. Cooked file chunks
and raw disk chunks are equally reliable. Unlike raw disk space, the logically
contiguous blocks of a cooked file might not be physically contiguous.

You can more easily allocate cooked files than raw disk space. To allocate a cooked
file, you must create the file on any existing partition. The name of the chunk is

the complete path name of the file. These steps are described in |”Allocating cookedl
ffile spaces on UNIX” on page 9-3

In a learning environment, where performance is not critical, or for static data,
cooked files can be convenient. If you must use cooked UNIX files, store the least
frequently accessed data in those files. Store the files in a file system with minimal
activity.

For cooked file chunks, the operating system processes all chunk I/O from its own
buffer pool and ensures that all writes to chunks are physically written to the disk.

Important: While you must generally use raw disk devices on UNIX to achieve
better performance, if you enable the DIRECT_IO configuration parameter, the
performance for cooked files can approach the performance of raw devices used
for dbspace chunks. This occurs because direct I/O bypasses the use of the file
system buffers. If you have an AIX® operating system, you can also enable
concurrent I/O for IBM Informix to use with direct IO when reading and writing
to chunks that use cooked files. For more information about using direct 10O or
concurrent IO, see the IBM Informix Performance Guide.

To determine the best device for performance, perform benchmark testing on the
system with both types of devices for the dbspace and table layout.

When using raw disks, you are not required to take any special action to create
chunks and files that are larger than two gigabytes. If you want to create large
chunks in cooked files, or if you want to use the various database export and
import utilities with large files, you must ensure that the files systems that hold
the large files are appropriately configured.

Extendable chunks

Extendable chunks are chunks that Informix can automatically extend or you can

manually extend when additional storage space is required for an application. If
you have extendable chunks, you are not required to add new chunks or spend

time trying to determine which storage space will run out of space and when it
will run out of space.

Configuring Informix to automatically add more storage space prevents the error
that can occur if a partition requires additional storage space and cannot find that
space in one of the chunks in the space in which the partition is located.

An extendable chunk must be in a nonmirrored dbspace or temporary dbspace.

You use an SQL administration APl command with the modify space sp_sizes
argument to modify the extend size and the create size for the space in which your
extendable chunk is located.

Related concepts:

“ Automatic space management” on page 9-23|

“The storage pool” on page 8-36|

IBM Informix Administrator's Guide



Related tasks:
[‘Marking a chunk as extendable or not extendable” on page 9-25|

[‘Manually expanding a space or extending an extendable chunk” on page 9-28|

Partitions and offsets

The system administrator might divide a physical disk into partitions, which are
different parts of a disk that have separate path names. Although you must use an
entire disk partition when you allocate a chunk on a raw disk device, you can
subdivide partitions or cooked files into smaller chunks using offsets.

Tip: With a 4-terabyte limit to the size of a chunk, you can avoid partitioning a
disk by assigning a single chunk per disk drive.

You can use an offset to indicate the location of a chunk on the disk partition, file,
or device. For example, suppose that you create a 1000 KB chunk that you want to
divide into two chunks of 500 KB each. You can use an offset of 0 KB to mark the
beginning of the first chunk and an offset of 500 KB to mark the beginning of the
second chunk.

You can specify an offset whenever you create, add, or drop a chunk from a
dbspace, blobspace, or sbspace.

You might also be required to specify an offset to prevent the database server from
overwriting partition information.

Related concepts:

[“Disk-layout guidelines” on page 8-37|
Related tasks:
[“Allocating raw disk space on UNIX” on page 9-3|

Pages

A page is the physical unit of disk storage that the database server uses to read
from and write to IBM Informix databases.

The following figure illustrates the concept of a page, represented by a darkened
sector of a disk platter.

=

®)

Figure 8-1. A page on disk

On most UNIX platforms, the page size is 2 KB. On Windows, the page size is 4
KB. Because your hardware determines the size of your page, you cannot alter this
value.

A chunk contains a certain number of pages, as the following figure illustrates. A
page is always entirely contained within a chunk; that is, a page cannot cross

Chapter 8. Data storage ~ 8-5



chunk boundaries.

Chunk

—r— Page

Figure 8-2. A chunk, logically separated into a series of pages

For information about how the database server structures data within a page, see
the chapter on disk structures and storage in the IBM Informix Administrator’s
Reference

Blobpages

A blobpage is the unit of disk-space allocation that the database server uses to store
simple large objects (TEXT or BYTE data) within a blobspace.

You specify blobpage size as a multiple of the database server page size. Because
the database server allocates blobpages as contiguous spaces, it is more efficient to
store simple large objects in blobpages that are as close to the size of the data as
possible. The following figure illustrates the concept of a blobpage, represented as
a multiple (three) of a data page.

)
g

Figure 8-3. A blobpage on disk

For information about how IBM Informix structures data stored in a blobpage, see
structure of a blobspace blobpage in the disk structures and storage topics of the
IBM Informix Administrator’s Reference.

Just as with pages in a chunk, a certain number of blobpages compose a chunk in
a blobspace, as the following figure illustrates. A blobpage is always entirely
contained in a chunk and cannot cross chunk boundaries.

8-6 IBM Informix Administrator's Guide



Chunk

—— Blobpage (defined when
blobspace was created)

Figure 8-4. A chunk in a blobspace, logically separated into a series of blobpages

Instead of storing simple-large-object data in a blobspace, you can choose to store
it in a dbspace. However, for a simple large object larger than two pages,
performance improves when you store it in a blobspace. Simple large objects stored
in a dbspace can share a page, but simple large objects stored in a blobspace do
not share pages.

For information about how to determine the size of a blobpage, see [“Determing]

blobpage size” on page 9-18)For a description of blobspaces, see [“Blobspaces” onl

page 8-13]

Sbpages

An sbpage is the type of page that the database server uses to store smart large
objects within an sbspace. Unlike blobpages, sbpages are not configurable. An
sbpage is the same size as the database server page, which is usually 2 KB on
UNIX and 4 KB on Windows.

The unit of allocation in an sbspace is an extent, whereas the unit of allocation in a
blobspace is a blobpage. Just as with pages in a chunk, a certain number of smart
large object extents compose a chunk in an sbspace, as the following figure
illustrates. An extent is always entirely contained in a chunk and cannot cross
chunk boundaries.

Chunk

—+—  Smart-large-object extent
(size calculated by
database server)

Figure 8-5. A chunk in an sbspace, logically separated into a series of extents

Smart large objects cannot be stored in a dbspace or blobspace. For more
information, see [“Sbspaces” on page 8-13|and sbspace structure in the disk
structures and storage chapter of the IBM Informix Administrator’s Reference.

Chapter 8. Data storage ~ 8-7



The database server calculates the extent size for a smart large object from a set of
heuristics, such as the number of bytes in a write operation. For more information,
see [“Extent sizes for sbspaces” on page 8-16.|

Extents

An extent consists of a collection of contiguous pages that store data for a given
table.

When you create a table, the database server allocates a fixed amount of space to
contain the data to be stored in that table. (See[“Tables” on page 8-24)) When this
space fills, the database server must allocate space for additional storage. The
physical unit of storage that the database server uses to allocate both the initial
and subsequent storage space is called an extent.

The following figure illustrates the concept of an extent.

Chunk

—+——Page

Extent

Figure 8-6. An extent that consists of six contiguous pages on a raw disk device

Every permanent database table has two extent sizes associated with it. The
initial-extent size is the number of KB allocated to the table when it is first created.
The next-extent size is the number of KB allocated to the table when the initial
extent (and any subsequent extents) becomes full. For permanent tables and
user-defined temporary tables, the next-extent size begins to double after each
extent. For system-created temporary tables, the next-extent size begins to double
after 4 extents have been added.

When you create a table, you can specify the size of the initial extent, and the size
of the extents to be added as the table grows. You can also modify the size of an
extent in a table in a dbspace, and you can modify the size of new subsequent
extents. To specify the initial-extent size and next-extent size, use the CREATE
TABLE and ALTER TABLE statements. For more information, see the IBM Informix
Guide to SQL: Syntax and disk structures in the IBM Informix Administrator’s
Reference.

When you create a table with a column for CLOB or BLOB data types, you also
define extents for an sbspace. For more information, see [“Storage characteristics of|
lsbspaces” on page 8-16)

The following figure shows how the database server allocates six pages for an
extent:

8-8 IBM Informix Administrator's Guide



* An extent is always entirely contained in a chunk; an extent cannot cross chunk
boundaries.

* If the database server cannot find the contiguous disk space that is specified for
the next-extent size, it searches the next chunk in the dbspace for contiguous
space.

Chunk 1 Chunk 2

Extent

The database server decides —»The database —— The database —» The database

to allocate an extent and server cannot find server extends server finds 6 contiguous free
begins a search for 6 6 contiguous free its search to the  pages and allocates an
contiguous free pages. In pages in chunk 1. next chunk. extent.

this illustration, free pages
are clear (white) and used
pages are shaded.

Figure 8-7. Process of extent allocation

Related concepts:
[‘Tables” on page 8-24
Related reference:

[ [Extent size doubling (Administrator's Reference)|

Dbspaces

A dbspace is a logical unit that can contain between 1 and 32,766 chunks. The
database server uses the dbspace to store databases and tables. Place databases,
tables, logical-log files, and the physical log in dbspaces.

When you create a standard or temporary dbspace, you can specify the page size
for the dbspace. You cannot specify a page size for blobspaces, sbspaces, or
external spaces. If you do not specify a page size, the size of the root dbspace is
the default page size.

When you create a standard dbspace, you can specify the first and next extent
sizes for the tblspace in the dbspace. Specifying the extent sizes reduces the
number of tblspace extents and reduces the frequency of situations when you must
place the tblspace extents in non-primary chunks.

You can mirror every chunk in a mirrored dbspace. As soon as the database server
allocates a mirror chunk, it flags all space in that mirror chunk as full.

Related concepts:

Chapter 8. Data storage ~ 8-9


http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0299.htm#ids_adr_0299

[‘Chunks” on page 8-2|

Control of where simple large object data is stored

A key responsibility of the database server administrator is to control where the
database server stores data.

By storing high-use access tables or critical dbspaces (root dbspace, physical log, and
logical log) on your fastest disk drive, you can improve performance. By storing
critical data on separate physical devices, you ensure that when one of the disks
that holds noncritical data fails, the failure affects only the availability of data on
that disk.

As the following figure shows, to control the placement of databases or tables, you
can use the IN dbspace option of the CREATE DATABASE or CREATE TABLE
statements.

Dbspace on UNIX
S

% onspaces -c -d stores_space -p /dev/rsd0f -0 0 -s 10000

CREATE TABLE stores_demo IN stores_space

/dev/rsd0f

Figure 8-8. Control table placement with the CREATE TABLE... IN statement

8-10

Before you create a database or table in a dbspace, you must first create the
dbspace.

A dbspace includes one or more chunks, as the following figure shows. You can
add more chunks at any time. A database server administrator must to monitor
dbspace chunks for fullness and to anticipate the necessity to allocate more chunks
to a dbspace. When a dbspace contains more than one chunk, you cannot specify
the chunk in which the data is located.

IBM Informix Administrator's Guide



Logical units of storage Physical units of storage

Database Chunks
)
System catalog D M~
- » Dbspace 1 » Chunk 1
E—

Table 1 D N~
— » Dbspace 2 »  Chunk 2
- ~ N~

Yy

Table 2 (=) D

— » Dbspace 3 Chunk 3
v\ N
Sy

Chunk 4
~_

Figure 8-9. Dbspaces that link logical and physical units of storage

Related concepts:
[“Tables” on page 8-24|
[“Manage dbspaces” on page 9-7|

Related reference:

[“Monitor disk usage” on page 9-40)|

Root dbspace

The root dbspace is the initial dbspace that the database server creates.

The root dbspace is special because it contains reserved pages and internal tables
that describe and track all physical and logical units of storage. (For more
information about these topics, see|“Tables” on page 8-24|and the disk structures
and storage chapter in the IBM Informix Administrator’s Reference.) The initial chunk
of the root dbs