
Informix Product Family
Informix
Version 12.10

IBM Informix Change Data Capture API
Programmer's Guide

SC27-4509-00

���

Informix Product Family
Informix
Version 12.10

IBM Informix Change Data Capture API
Programmer's Guide

SC27-4509-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

Edition

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2008, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . v
About this publication . v

Types of users . v
Example code conventions. v
Additional documentation . vi
Compliance with industry standards . vi
Syntax diagrams . vi

How to read a command-line syntax diagram . vii
Keywords and punctuation . viii
Identifiers and names. viii

How to provide documentation feedback . ix

Chapter 1. Getting started with the Change Data Capture API 1-1
The Change Data Capture API . 1-1

Change Data Capture API components . 1-1
Smart large object read functions . 1-2
CDC record sequence numbers . 1-4
Data for capture . 1-5

Preparing to use the Change Data Capture API . 1-5
Writing an application to capture data changes . 1-5

Handling errors. 1-6
Handling smart large objects . 1-7
Restarting data capture . 1-7
Monitoring data capture . 1-8

Chapter 2. Change Data Capture functions . 2-1
The cdc_activatesess() function. 2-1
The cdc_closesess() function . 2-2
The cdc_deactivatesess() function . 2-2
The cdc_endcapture() function . 2-3
The cdc_errortext() function. 2-4
The cdc_opensess() function . 2-5
The cdc_recboundary() function . 2-7
The cdc_set_fullrowlogging() function . 2-7
The cdc_startcapture() function . 2-8

Chapter 3. Change Data Capture records. 3-1
Format of CDC records . 3-1
The CDC_REC_BEGINTX record . 3-2
The CDC_REC_COMMTX record . 3-2
The CDC_REC_DELETE record . 3-3
The CDC_REC_DISCARD record . 3-4
The CDC_REC_ERROR record . 3-4
The CDC_REC_INSERT record. 3-5
The CDC_REC_RBTX record . 3-6
The CDC_REC_TABSCHEMA record . 3-6
The CDC_REC_TIMEOUT record . 3-7
The CDC_REC_TRUNCATE record . 3-8
The CDC_REC_UPDAFT record . 3-8
The CDC_REC_UPDBEF record . 3-9

Chapter 4. The syscdc system database . 4-1
The syscdcerrcodes table . 4-1
The syscdcrectypes table . 4-1

© Copyright IBM Corp. 2008, 2013 iii

Chapter 5. Change Data Capture error codes 5-1

Chapter 6. onstat -g cdc . 6-1

Chapter 7. Change Data Capture sample program 7-1

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Trademarks . B-3

Index . X-1

iv IBM Informix Change Data Capture API Programmer's Guide

Introduction

About this publication
This publication describes the IBM® Informix® Change Data Capture API and the
concepts of capturing changes to data. This publication describes how to use the
Change Data Capture API to write an application that captures changed data for
external processing.

Types of users
This publication is for database application programmers.

To understand this publication, you must have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming in the C or Java™ programming

language

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

© Copyright IBM Corp. 2008, 2013 v

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 1. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

vi IBM Informix Change Data Capture API Programmer's Guide

http://www.ibm.com/software/data/sw-library/

Table 1. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you

Introduction vii

would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

viii IBM Informix Change Data Capture API Programmer's Guide

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction ix

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

x IBM Informix Change Data Capture API Programmer's Guide

Chapter 1. Getting started with the Change Data Capture API

These topics describe the Change Data Capture API and how to use it.

The Change Data Capture API
The Change Data Capture API allows external client applications to capture
transactional data from an IBM Informix database.

The Change Data Capture API provides functions to capture transactional data.
You can use a variety of clients to run these functions, such as, JDBC, ODBC,
ESQL/C, and DB-Access. The data is returned as CDC records by standard IBM
Informix smart large object read functions. How the captured data is processed
depends on your application. For example, you can write an application to
replicate data from an IBM Informix database to another, heterogeneous, database.

The following types of operations are captured:
v INSERT
v DELETE
v UPDATE
v TRUNCATE

The Change Data Capture API starts capturing transactions from the current logical
log and processes all transactions sequentially. The first time you start capturing
data for a particular table, data capture starts at the current log position. If you
later stop capture and the restart it, you can restart at the point in the logical logs
where data capture was stopped. You cannot go backwards in time through the
logical logs to capture the history of the table or perform random seeking in the
logical logs.

At the beginning of data capture for a table, the Change Data Capture API
provides the table schema information that you can use in your application to
create a target table. However, any changes to the table schema after data capture
begins are not captured by the Change Data Capture API.

The Change Data Capture API can only provide data as that data is changing; it
does not provide an initial snapshot of the contents of the table. If you need a
populated target table, you can externally load the existing data to the target table.
Alternatively, you can create dummy updates to the table for each row so that the
Change Data Capture API can capture those updates and populate the target table.

The Change Data Capture API does not capture changes to table schemas or any
other database changes.

The Change Data Capture API can capture data only from databases that have
logging enabled.

Change Data Capture API components
The Change Data Capture API consists of functions, a system database, CDC
records, and error codes.

© Copyright IBM Corp. 2008, 2013 1-1

Functions

Change Data Capture functions are built-in SQL functions that you run by using
the EXECUTE FUNCTION statement. You use these functions to control data
capture. The cdc_opensess() function returns the CDC session ID, which is a smart
large object file descriptor that you use to retrieve captured data. The
cdc_startcapture() function specifies the table from which to capture data. Other
functions specify to start or end data capture.

You must call Change Data Capture functions from a client application. You cannot
call this function from a user-defined routine that runs within the database server.

System database

The syscdc system database contains the Change Data Capture functions and
system tables. The system tables store information about Change Data Capture API
error codes and record types.

Error codes

The Change Data Capture API functions return error codes. Most of the functions
return an error code both if they succeed or fail. The Change Data Capture API
error codes are listed in the syscdcerrcodes table of the syscdc database. You can
query the syscdcerrcodes table to determine whether the function failed and if so,
why it failed.

Smart large object read functions

You use smart large object read functions to read the captured data, by passing the
smart large object file descriptor provided by the cdc_opensess() function. Smart
large object read functions are not part of the Change Data Capture API; you can
use smart large object read functions such as mi_lo_read() or ifx_lo_read().

CDC Records

The Change Data Capture (CDC) records are returned by smart large object read
functions and provide information about the transaction currently being captured
as well as the actual captured data.

Smart large object read functions
You use smart large object read functions to transfer captured data to a buffer
where your application can access it.

You can use any of the smart large object read functions listed in the following
table, depending on your application language. You must use the same smart large
object read function for all read calls during a particular session. Using different
functions in the same session can result in incomplete delivery of captured data.

1-2 IBM Informix Change Data Capture API Programmer's Guide

Table 1-1. Smart large object read functions

Read function Arguments Informix API
Application
language

mi_lo_read() A pointer to a
connection descriptor

A smart large object
file descriptor

A data buffer

The maximum
number of bytes to
read

DataBlade API Use in a C language
application.

ifx_lo_read() A smart large object
file descriptor

A data buffer

ODBC Use in an ODBC
application.

ifx_lo_read() A smart large object
file descriptor

A data buffer

The maximum
number of bytes to
read

A pointer to an error
code

ESQL/C Use in a C language
application.

IfxLoRead() A smart large object
file descriptor

A data buffer

The maximum
number of bytes to
read

JDBC Use in a Java
application.

IfxBlob.Read() A data buffer .NET Use in a .NET
application.

Read timeout

If no captured data is available to retrieve, the read call waits for data for the
timeout period specified by the cdc_opensess() function. If the timeout period is
exceeded, a CDC_REC_TIMEOUT record is returned to the read call. The read call
passes the CDC_REC_TIMEOUT record into the data buffer and returns
successfully.

Read buffer size

The size of the buffer specified in the read call should be at least 128 bytes. The
maximum size of a read buffer is 2 GB. You can calculate the approximate
minimum size of the buffer for your application by calculating the largest possible
CDC record size, for example, a CDC_REC_INSERT record, and multiplying that
value times the maximum number of records to return per read call that you
specify in the cdc_opensess() function.

Chapter 1. Getting started with the Change Data Capture API 1-3

The amount of data returned by a read call is the lesser of the size of the buffer
specified in the read call and the maximum number of records to return. No more
than the maximum number of records is returned by one read call, even if the
number of bytes contained in those records is less than the maximum number of
bytes allowed by the read call. However, no more than the maximum number of
bytes allowed by the read call will be returned, even if the number of records
returned is less than the maximum number allowed. If a record does not fit into a
buffer, as much of the record as can fit is returned, and subsequent read calls
return the rest.

Smart large object file descriptor

The value for the smart large object file descriptor argument in the read functions
is the CDC session ID returned by the cdc_opensess() function.

Smart large object read function for the IBM Informix .NET
Provider

The smart large object read function for .NET works differently than for other
client APIs. The following pseudo code illustrates the basic structure for reading
smart large objects with .NET:
conn = new IfxConnection(..)// to SYSCDC database
execute function informix.cdc_opensess() // on the same connection
IfxBlob(IfxConnection connection)// construct it using the same connection
IfxBlob.Open(ReadOnly) // open it
IfxBlob.Read(char[] buff)

Related concepts:

IfxBlob class (.NET Provider Guide)
Related tasks:

Accessing a smart large object (DataBlade API Guide)
“Handling smart large objects” on page 1-7
Related reference:

Smart large object examples (JDBC Driver Guide)

Smart large objects (ESQL/C Guide)

CDC record sequence numbers
Most Change Data Capture (CDC) records returned to the client contain a sequence
number.

The sequence number associated with a CDC record is a BIGINT data type.

The CDC record sequence number is not necessarily the same as the LSN of the
IBM Informixlogical log that is being captured.

You can compare sequence numbers for CDC records that are returned for the
same transaction. Within a transaction, the sequence numbers of CDC records
returned increase over time. A lower sequence number indicates that the CDC
record was returned earlier than a CDC record with a higher sequence number.

You can compare the sequence numbers of CDC_REC_BEGINTX records or the
sequence numbers of CDC_REC_COMMTX records for different transactions. Each
committed transaction has one CDC_REC_BEGINTX record and one
CDC_REC_COMMTX record. The sequence numbers for the CDC_REC_BEGINTX

1-4 IBM Informix Change Data Capture API Programmer's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.netpr.doc/ids_net_038.htm#ids_net_038
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dapip.doc/ids_dapip_0267.htm#ids_dapip_0267
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.jdbc_pg.doc/ids_jdbc_201.htm#ids_jdbc_201
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.esqlc.doc/ids_esqlc_0235.htm#ids_esqlc_0235

and CDC_REC_COMMTX records are in monotonic order. A lower sequence
number indicates that the associated transaction was begun or committed earlier
than a transaction associated with a higher sequence number.

Data for capture
You can capture most IBM Informix data types. You can specify the data to capture
at the column level.

The following data types are not supported for data capture:
v Simple large objects (TEXT and BYTE data types)
v User-defined data types
v Collection data types (SET, MULTISET, LIST, and ROW data types)

Specifying what data to capture

You specify a table and which columns from that table to capture with the
cdc_startcapture() function. You must run the cdc_startcapture() function once for
each table that you want to capture. For information about which tables and
columns are currently being captured, look in the syscdctabs table.

Ending capture of a table

To stop data capture of a specific table, run the cdc_endcapture() function. After
you run cdc_endcapture() function, information about that table is removed from
the syscdctabs table.

Preparing to use the Change Data Capture API
Before you can start using the Change Data Capture API, you must prepare the
database and the database server.

Perform the following tasks to prepare for using the Change Data Capture API:
1. Turn on logging for all databases from which you intend to capture data

changes. For information about logging, see the IBM Informix Guide to SQL:
Syntax.

2. Run the following script as user informix from the $INFORMIXDIR/etc directory:
syscdcv1.sql

3. Verify that the syscdcv1 database exists by creating a connection to it, as user
informix. For example, you can use DB-Access to connect to the syscdcv1
database.

4. Set the DB_LOCALE environment variable to be the same as the locale of the
database from which you want to capture data.

Related tasks:
“Writing an application to capture data changes”

Writing an application to capture data changes
Use the Change Data Capture functions to control the data capture process. Process
CDC records to extract the data. Query syscdc tables to retrieve the symbolic
names and descriptions of CDC records and errors.

Complete the prerequisite tasks to prepare for using the Change Data Capture API.

Chapter 1. Getting started with the Change Data Capture API 1-5

Your application should contain the following structures and functions:
v A structure to store table schema information. You use the table schema to parse

the column data.
v A function to interpret the table schema information and populate the table

schema structure. You can obtain the table schema information from the
CDC_REC_TABSCHEMA record.

v A function to retrieve and parse the column values from the data buffer.
v A function to handle errors. You can query the syscdcerrcodes table to

determine the symbolic name and description of the error code.

Include the following tasks in your application to capture data changes:
1. As user informix, connect to the syscdcv1 database on the database server to

which the client is currently connected.
2. Open a capture session by running the cdc_opensess() function. The

cdc_opensess() function returns a session ID.
3. Enable full-row logging for each table from which you want to capture data

by running the cdc_set_fullrowlogging() function.
4. Specify which data to capture by running the cdc_startcapture() function. Run

this function for each table from which you want to capture data.
5. Start the capture process by running the cdc_activatesess() function. CDC

records, including those that contain captured data, are returned to the
application.

6. Read the CDC records containing captured data with a smart large object read
function such as mi_lo_read() by passing the session ID as the large object file
descriptor. Use the same smart large object read function for all read calls.

7. Parse the data by column values. If you are writing your application in Java,
you can use the IfxToJavaType class to convert a byte stream of an Informix
representation of a data type to the appropriate Java data type and value.

8. Stop capturing data by running the cdc_endcapture() function for each table.
9. Disable full-row logging by running the cdc_set_fullrowlogging() function for

each table. Make sure that no other applications or processes are dependent
on full-row logging before your disable it.

10. Close the capture session by running the cdc_closesess() function.
Related concepts:
Chapter 2, “Change Data Capture functions,” on page 2-1
Related tasks:
“Preparing to use the Change Data Capture API” on page 1-5
Related reference:
Chapter 7, “Change Data Capture sample program,” on page 7-1

Handling errors
To process errors that are returned by Change Data Capture functions, reference
error numbers by looking up their symbolic names in the syscdcerrcodes table.

Add code to your application to handle possible error conditions.
1. Declare error code variables for the types of errors that you intend to process

separately.
2. Query the syscdcerrcodes table to find the error number corresponding to each

of the symbolic names of the Change Data Capture error codes.
3. Set the error code variables to the Change Data Capture error numbers.

1-6 IBM Informix Change Data Capture API Programmer's Guide

4. Add code to handle each error condition.

You can use the cdc_errortext() function to return the error text for a specified
symbolic name.
Related reference:
Chapter 5, “Change Data Capture error codes,” on page 5-1

Handling smart large objects
The Change Data Capture API does not directly support the retrieval of smart
large object column data from a captured BLOB or CLOB row. You must use the
DataBlade API or client API smart large object read functions to retrieve smart
large objects.

To retrieve the data in a smart large object column, follow these general steps:
1. Retrieve the data row that contains the smart large object with the Change Data

Capture API.
2. Extract the values of columns that uniquely identify the data row, such as the

primary key or a unique constraint.
3. Run an SQL SELECT statement with the identifying values to retrieve the data

row.
4. Open the smart large object from the column in the data row.
5. Retrieve the smart large object data by using one of the following types of

smart large object functions:
v DataBlade API functions, such as mi_lo_read(), mi_lo_to_buffer(), or

mi_lo_to_file()

v SQL functions such as LOTOFILE()
v ESQL/C functions such as ifx_lo_read()

6. Close the smart large object.
Related concepts:

IfxBlob class (.NET Provider Guide)
“Smart large object read functions” on page 1-2
Related tasks:

Accessing a smart large object (DataBlade API Guide)
Related reference:

Smart large object examples (JDBC Driver Guide)

Smart large objects (ESQL/C Guide)

Restarting data capture
You can restart data capture where the last data capture session ended.

The restart position is the sequence number of a CDC record that was returned in
the previous data capture session. You can use the sequence number of the last
CDC record processed in the previous data capture session. However, to preserve
transactional integrity, you should determine last transaction for which a commit
or rollback operation was not processed and restart capture at the beginning of
that transaction. In this case, the restart position is the lowest sequence number of
the CDC_REC_BEGINTX records for incomplete transactions. To avoid
reprocessing already committed transactions, you should also determine the largest

Chapter 1. Getting started with the Change Data Capture API 1-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.netpr.doc/ids_net_038.htm#ids_net_038
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dapip.doc/ids_dapip_0267.htm#ids_dapip_0267
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.jdbc_pg.doc/ids_jdbc_201.htm#ids_jdbc_201
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.esqlc.doc/ids_esqlc_0235.htm#ids_esqlc_0235

sequence number of the CDC_REC_COMMTX record that you have already
processed in a previous data capture session.

To restart data capture:
1. Determine the restart position. To preserve transactional integrity:

a. Find all captured transactions that did not return a CDC_REC_COMMTX or
CDC_REC_RBTX record.

b. Compare the sequence numbers of the CDC_REC_BEGINTX records for the
incomplete transactions. The lowest sequence number is the restart position.

2. Open a new capture session by running the cdc_opensess() function.
3. Run the cdc_startcapture() function for the table on which you want to restart

capturing data.
4. Active the session by running the cdc_activatesess() function. Pass the

appropriate sequence number as the position argument. Data capture restarts for
the table at the last transaction that was processed.

5. Discard any transactions whose CDC_REC_COMMTX sequence number is less
than that of the CDC_REC_COMMTX record with the largest sequence number
that you processed in the previous data capture session.

Related reference:
“The cdc_activatesess() function” on page 2-1

Monitoring data capture
You can monitor the status of data capture by running the onstat -g cdc command.

To view the current status of a data capture session, run the onstat -g cdc
command. For this command, and all other onstat -g cdc command options, you
can specify a single session or view information about all current sessions.

To view the status of session buffers, run the onstat -g cdc bufm command.

To view information about session configuration, run the onstat -g cdc config
command.

To view information about tables currently being captured, run the onstat -g cdc
table command. You can provide a single table name or view information for all
tables.
Related reference:
Chapter 6, “onstat -g cdc,” on page 6-1

1-8 IBM Informix Change Data Capture API Programmer's Guide

Chapter 2. Change Data Capture functions

These topics describe the Change Data Capture functions.
Related tasks:
“Writing an application to capture data changes” on page 1-5

The cdc_activatesess() function
For an open capture session, starts capturing data from the specified log and log
position.

The syscdcsess table is updated when the session is activated.

Syntax

�� cdc_activatesess (session_ID , position) ��

Function arguments

Table 2-1. The cdc_activatesess() arguments

Argument Data Type Description

session_ID INTEGER The session ID of the open
capture session for which to
start capturing data.

position BIGINT Must be 0 or the restart
position.

Usage

After you open a session with the cdc_opensess() function, you use the
cdc_activatesess() function to start capturing data at the specified log position. If
you are starting data capture on a table for the first time, the position must be 0. If
you have previously performed data capture, you can restart data capture where it
left off by specifying a sequence number of a CDC record returned in the previous
capture session.

You must call this function from a client application. You cannot call this function
from a user-defined routine that runs within the database server.

Return values

If successful, returns 0.

If unsuccessful, returns an integer corresponding to an error code and updates the
syscdcsess table with the error information.

© Copyright IBM Corp. 2008, 2013 2-1

Related tasks:
“Restarting data capture” on page 1-7

The cdc_closesess() function
Closes a capture session that is associated with the specified session ID.

Any resources used by the capture session are released. The rows in the syscdctabs
and syscdcsess tables containing the specified session ID are deleted.

Syntax

�� cdc_closesess (session_ID) ��

Function argument

Table 2-2. The cdc_closesess() argument

Argument Data Type Description

session_ID INTEGER The session ID of the capture
session that you want to
close.

Usage

Use the cdc_closesess() function to close a capture session that you no longer need.
If the capture session was active, all data capture is immediately stopped when the
session is closed.

You must call this function from a client application. You cannot call this function
from a user-defined routine that runs within the database server.

Return values

If successful, returns 0.

If unsuccessful, returns an integer corresponding to an error code and updates the
syscdcsess table with the error information.

The cdc_deactivatesess() function
Stops capturing data for an active capture session.

The syscdcsess table is update to show that the capture session is not active.

Syntax

�� cdc_deactivatesess (session_ID) ��

2-2 IBM Informix Change Data Capture API Programmer's Guide

Function argument

Table 2-3. The cdc_deactivatesess() argument

Argument Data Type Description

session_ID INTEGER The session ID of the capture
session that you want to
deactivate.

Usage

Use the cdc_deactivatesess() function to stop capturing data for a specific capture
session.

You must call this function from a client application. You cannot call this function
from a user-defined routine that runs within the database server.

Return values

If successful, returns 0.

If unsuccessful, returns an integer corresponding to an error code and updates the
syscdcsess table with the error information.

The cdc_endcapture() function
Ends capture for a specified table.

The row in the syscdctabs table associated with the specified session ID and table
is deleted.

Purpose

�� cdc_endcapture (session_ID , MBZ , "database:owner.table_name") ��

Function arguments

Table 2-4. The cdc_endcapture() arguments

Argument Data Type Description

session_ID INTEGER The session ID of an open
capture session.

MBZ BIGINT Must be 0. Reserved.

Chapter 2. Change Data Capture functions 2-3

Table 2-4. The cdc_endcapture() arguments (continued)

Argument Data Type Description

database:owner.table_name LVARCHAR The qualified name of the
table from which to capture
data. The qualified name
includes the following
elements:

database The name of the
database in which
the table exists.

owner The name of the
owner of the table.

table The name of the
table

Usage

Use the cdc_endcapture() function to stop capturing data from a specific table. This
function does not affect the session status; the session remains open and active.

You must call this function from a client application. You cannot call this function
from a user-defined routine that runs within the database server.

Return values

If successful, returns 0.

If unsuccessful, returns an integer corresponding to an error code and updates the
syscdcsess table with the error information.

The cdc_errortext() function
Returns the error message text corresponding to the specified symbolic error name.

Symbolic error names are listed in the syscdcerrcodes table in the syscdc database.

Syntax

�� cdc_errortext (' error_name ' , ' locale_name ') ��

Function arguments

Table 2-5. The cdc_errortext() arguments

Argument Data Type Description

error_name LVARCHAR The symbolic name of the
error.

locale_name LVARCHAR The name of the locale in
which to display the error
text. If locale name
parameter is SQL NULL or a
string of 0 length ("") the
default locale is used.

2-4 IBM Informix Change Data Capture API Programmer's Guide

Usage

Use the cdc_errortext() function to return the error text for an error that you
received from another CDC function. Not all error texts are available in all locales.
If the cdc_errortext() function does not return the text in the locale you specified,
try to run the function again with a different locale, such as ’en_us.819’ or
’en_us.033’.

Return values

If successful, returns SQLCODE 0 and the error message text.

If unsuccessful, returns with a nonzero SQLCODE:
v 23109: Invalid locale specification.

The locale name is not correct or the specified locale was not found.
v 1824: Message cannot be found.

The locale is valid but the message was not found in the message file for that
locale. Specify a different locale, such as en_us.033.

v Other SQLCODES represent internal errors.

Example

The following example returns the error text for the error CDC_E_TABCAPTURED
in the en_us.033 locale:
> select cdc_errortext(’CDC_E_TABCAPTURED’, ’en_us.033’) from syscdcvers;

(expression) The specified table is already being captured by the CDC session.

1 row(s) retrieved.

Related reference:
Chapter 5, “Change Data Capture error codes,” on page 5-1

The cdc_opensess() function
Opens a capture session and creates a session ID.

A row is inserted into the syscdcsess table for the session.

Syntax

�� cdc_opensess (" server_name " , session_ID , timeout , �

� max_recs , major_version , minor_version) ��

Chapter 2. Change Data Capture functions 2-5

Function arguments

Table 2-6. The cdc_opensess() arguments

Argument Data Type Description

server_name LVARCHAR The name of the server. Must
be the server to which the
client application that is
calling the cdc_opensess()
function is connected.

session_ID INTEGER Must be 0.

timeout INTEGER Specifies the timeout
behavior of a read call on the
captured data:

<0 Do not timeout.

0 Return immediately
if no data is
available.

1 or more
The number of
seconds to wait for
data before timing
out.

max_recs INTEGER The maximum number of
CDC records to return per
read function call. This value
takes precedence over the
maximum number of bytes
to return that is specified in
the smart large object read
function.

major_version INTEGER The major version number of
the Change Data Capture
API. Must be 1.

minor_version INTEGER The minor version number of
the Change Data Capture
API.

Must be 1 for new
applications.

Can be 0 for existing
applications.

Usage

Use the cdc_opensess() function to open a communication session between the
client application and the database server. The session ID returned by the
cdc_opensess() is the smart large object file descriptor that you supply to the smart
large object read function. To start capturing data, you must then use the
cdc_activatesess() function and the cdc_startcapture() function.

You must call this function from a client application. You cannot call this function
from a user-defined routine that runs within the database server.

2-6 IBM Informix Change Data Capture API Programmer's Guide

Important: If you have multiple applications that use the Change Data Capture
API and connect to the same Informix server, all applications must use the same
values for the major_version and minor_version arguments.

Return values

If successful, returns an integer that is the session ID.

If unsuccessful, returns an integer corresponding to an error code.

The cdc_recboundary() function
Restarts data capture from the beginning of the CDC record currently being
returned.

Syntax

�� cdc_recboundary (session_ID) ��

Function argument

Table 2-7. The cdc_recboundary() argument

Argument Data Type Description

session_ID INTEGER The session ID of the open
capture session.

Usage

Use the cdc_recboundary() function if you need to restart capture from the
beginning of the current log record.

You must call this function from a client application. You cannot call this function
from a user-defined routine that runs within the database server.

Return values

If successful, returns a positive integer representing the number of complete or
partial log records that were captured but skipped during the current session.

If unsuccessful, returns an integer corresponding to an error code and updates the
syscdcsess table with the error information.

The cdc_set_fullrowlogging() function
Enables or disables full-row logging for a table.

Purpose

You must run this function to enable full-row logging on a table before you can
start capturing data from it.

The DB_LOCALE environment variable must be set to the same locale as the database
locale when you run this function.

Chapter 2. Change Data Capture functions 2-7

�� cdc_set_fullrowlogging ("database:owner.table_name" , logging) ��

Function arguments

Table 2-8. The cdc_set_fullrowlogging() arguments

Argument Data Type Description

database:owner.table_name LVARCHAR The qualified name of the
table. The qualified name
includes the following
elements:

database The name of the
database in which
the table exists.

owner The name of the
owner of the table.

table The name of the
table.

logging INTEGER v 0 Disable full-row logging

v 1 Enable full-row logging

Usage

Use the cdc_set_fullrowlogging() function to enable full-row logging on a table
from which you intend to perform data capture. This function must be run as user
informix. After you stop capturing data from a table, you can disable full-row
logging.

You must call this function from a client application. You cannot call this function
from a user-defined routine that runs within the database server.

Return values

If successful, returns 0.

If unsuccessful, returns an integer corresponding to an error code and updates the
syscdcsess table with the error information.

The cdc_startcapture() function
Specifies the data to start capturing from a table.

If the capture session is both open and active (you have run the cdc_activatesess()
function), data capture starts immediately on the specified columns in the specified
table. Otherwise, data capture starts when you activate the open capture session.

The DB_LOCALE environment variable must be set to the same locale as the database
locale when you run this function.

A row is added in the syscdctabs table associated with the specified session ID and
table.

Syntax

2-8 IBM Informix Change Data Capture API Programmer's Guide

�� cdc_startcapture (session_ID , MBZ , �

� �

,

"database:owner.table_name"," column_name " , user_data) ��

Function arguments

Table 2-9. cdc_startcapture() arguments

Argument Data Type Description

session_ID INTEGER The session ID of an open
capture session.

MBZ BIGNIT Must be 0. Reserved.

database:owner.table_name LVARCHAR The qualified name of the
table from which to capture
data. The qualified name
includes the following
elements:

database The name of the
database in which
the table exists.

owner The name of the
owner of the table.

table The name of the
table.

column_name LVARCHAR A comma-separated list of
column names in the
specified table, from which
to capture data.

user_data INTEGER The table identifier.

Usage

Use the cdc_startcapture() function to specify a table and columns within that table
from which to start capturing data. You cannot include columns with simple large
objects, user-defined data types, or collection data types.

The table identifier is a number you use in your application to uniquely identify
each table that will participate in data capture.

You must call this function from a client application. You cannot call this function
from a user-defined routine that runs within the database server.

Return values

If successful, returns 0.

If unsuccessful, returns an integer corresponding to an error code and updates the
syscdcsess table with the error information.

Chapter 2. Change Data Capture functions 2-9

2-10 IBM Informix Change Data Capture API Programmer's Guide

Chapter 3. Change Data Capture records

These topics describe the CDC records returned from calls to read functions from
an open capture session.

Format of CDC records
The Change Data Capture (CDC) records contain a header that is common to all
records, followed by a specific header for the type of CDC record.

The CDC_REC_INSERT, CDC_REC_DELETE, CDC_REC_UPDBEF, and
CDC_REC_UPDAFT records also contain column data.

The header common to all CDC records describes the size and type of the CDC
record.

Table 3-1. The header common to all CDC records

Section Size Description

Header size 4 bytes The number of bytes in the common
and CDC record-specific headers.

Payload size 4 bytes The number of bytes of data in the
record after the common and CDC
record-specific headers.

Packet scheme 4 bytes The packetization scheme number
of one of the packetization schemes
contained in the
syscdcpacketschemes table. The
only packetization scheme is 66,
CDC_PKTSCHEME_LRECBINARY.

Record number 4 bytes The record number of one of the
CDC records contained in the
syscdcrectypes table.

© Copyright IBM Corp. 2008, 2013 3-1

Related reference:
“The CDC_REC_BEGINTX record”
“The CDC_REC_COMMTX record”
“The CDC_REC_DELETE record” on page 3-3
“The CDC_REC_DISCARD record” on page 3-4
“The CDC_REC_ERROR record” on page 3-4
“The CDC_REC_INSERT record” on page 3-5
“The CDC_REC_RBTX record” on page 3-6
“The CDC_REC_TABSCHEMA record” on page 3-6
“The CDC_REC_TIMEOUT record” on page 3-7
“The CDC_REC_TRUNCATE record” on page 3-8
“The CDC_REC_UPDAFT record” on page 3-8
“The CDC_REC_UPDBEF record” on page 3-9

The CDC_REC_BEGINTX record
Indicates the beginning of a transaction.

The header for the CDC_REC_BEGINTX record follows the common header. No
data follows the headers; the payload size in the common header is 0.

Table 3-2. Format of the CDC_REC_BEGINTX record

Section Size Description

Sequence number 8 bytes The sequence number of the
record.

Transaction ID 4 bytes The transaction ID.

Start time 8 bytes The UTC time at which the
transaction began, in time_t
format.

User ID 4 bytes The operating system user
ID of the user who started
the transaction.

Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_COMMTX record
Indicates that a transaction has been committed.

The header for the CDC_REC_COMMTX record follows the common header. No
data follows the headers; the payload size in the common header is 0.

Table 3-3. Format of the CDC_REC_COMMTX record

Section Size Description

Sequence number 8 bytes The sequence number of the
record.

Transaction ID 4 bytes The transaction ID.

3-2 IBM Informix Change Data Capture API Programmer's Guide

Table 3-3. Format of the CDC_REC_COMMTX record (continued)

Section Size Description

Commit time 8 bytes The UTC time at which the
transaction was committed,
in time_t format.

Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_DELETE record
Provides the row that was removed as a result of a DELETE operation.

The CDC_REC_DELETE record consists of these fields:
v The common header.
v The record-specific header.
v Fields listing the size of each variable-length column in the row, if any.
v Column data for each fixed-length column, if any.
v Column data for each variable-length column, if any.

The value in the header size field in the common header represents the number of
bytes occupied by the combination of the common header, the record-specific
header, and the fields listing the size of variable-length columns.

The value in the payload size field in the common header represents the number
of bytes of the column data for both fixed-length and variable length columns.

The record-specific header

The header specific to the CDC_REC_DELETE record follows the common header.

Table 3-4. The CDC_REC_DELETE record header

Section Size Description

Sequence number 8 bytes The sequence number
associated with the DELETE
operation.

Transaction ID 4 bytes The transaction ID.

User data 4 bytes The table identifier passed to
the cdc_startcapture()
function and stored in the
syscdtabs table.

Flags 4 bytes Reserved.

Variable-length column size fields

If there are variable-length columns in the row being deleted, a 4–byte field for
each of those columns appears containing the column size. The order of the
column size fields is the same as the order of the columns in the
CDC_REC_TABSCHEMA record.

Chapter 3. Change Data Capture records 3-3

Fixed-length column data

The data from the fixed-length columns, if any, appears in the order that the
corresponding columns are listed in the CDC_REC_TABSCHEMA record.

Variable-length column data

The data from the variable-length columns, if any, appears in the order that the
corresponding columns are listed in the CDC_REC_TABSCHEMA record.
Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_DISCARD record
Indicates that some operations of the transaction should be discarded.

CDC records for the same transaction that follow this record should be discarded.

The header specific to the CDC_REC_DISCARD record follows the common
header. No data follows the headers; the payload size in the common header is 0.

Table 3-5. Format of the CDC_REC_DISCARD record

Section Size Description

Sequence number 8 bytes The sequence number of the
record. Any CDC records
that have the same
transaction ID value and that
have a sequence number
greater than or equal to this
sequence number should be
discarded.

Transaction ID 4 bytes The transaction ID.

Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_ERROR record
Indicates that an error occurred and the session is no longer valid.

3-4 IBM Informix Change Data Capture API Programmer's Guide

The header specific to the CDC_REC_ERROR record follows the common header.
No data follows the headers; the payload size in the common header is 0.

Table 3-6. Format of the CDC_REC_ERROR record

Section Size Description

Flags 4 bytes Hexadecimal flag:

v 0x1 indicates that the
capture session is no
longer valid and the only
valid operation is to run
the cdc_closesess()
function to close the
session.

v any other value indicates
that the session is still
valid.

Error code 4 bytes The error code.

Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_INSERT record
Provides the row that resulted from an INSERT operation.

The CDC_REC_INSERT record consists of these fields:
v The common header.
v The record-specific header.
v Fields listing the size of each variable-length column in the row, if any.
v Column data for each fixed-length column, if any.
v Column data for each variable-length column, if any.

The value in the header size field in the common header represents the number of
bytes occupied by the combination of the common header, the record-specific
header, and the fields listing the size of variable-length columns.

The value in the payload size field in the common header represents the number
of bytes of the column data for both fixed-length and variable length columns.

The record-specific header

The header specific to the CDC_REC_INSERT record follows the common header.

Table 3-7. The CDC_REC_INSERT record header

Section Size Description

Sequence number 8 bytes The sequence number
associated with the INSERT
operation.

Transaction ID 4 bytes The transaction ID.

Chapter 3. Change Data Capture records 3-5

Table 3-7. The CDC_REC_INSERT record header (continued)

Section Size Description

User data 4 bytes The table identifier passed to
the cdc_startcapture()
function and stored in the
syscdtabs table.

Flags 4 bytes Reserved.

Variable-length column size fields

If there are variable-length columns in the row being inserted, a 4–byte field for
each of those columns appears containing the column size. The order of the
column size fields is the same as the order of the columns in the
CDC_REC_TABSCHEMA record.

Fixed-length column data

The data from the fixed-length columns, if any, appears in the order that the
corresponding columns are listed in the CDC_REC_TABSCHEMA record.

Variable-length column data

The data from the variable-length columns, if any, appears in the order that the
corresponding columns are listed in the CDC_REC_TABSCHEMA record.
Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_RBTX record
Indicates that the transaction has been rolled back.

The header specific to the CDC_REC_RBTX record follows the common header. No
data follows the headers; the payload size in the common header is 0.

Table 3-8. Format of the CDC_REC_RBTX record

Section Size Description

Sequence number 8 bytes The sequence number
associated with the
ROLLBACK operation.

Transaction ID 4 bytes The transaction ID.

Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_TABSCHEMA record
Describes the table from which data is being captured.

The value in the payload size field in the common header represents the number
of bytes occupied by the column name and data type list.

3-6 IBM Informix Change Data Capture API Programmer's Guide

The header specific to the CDC_REC_TABSCHEMA record follows the common
header.

Table 3-9. Format of the CDC_REC_TABSCHEMA record

Section Size Description

User data 4 bytes The table identifier that was
specified in the
cdc_startcapture() function
for the table being captured.

Flags 4 bytes Must be 0.

Fixed-length size 4 bytes The number of bytes of data
in fixed-length columns in
the table.

Fixed-length columns 4 bytes The number of fixed-length
columns in the table being
captured.

A 0 indicates that there are
no fixed-length columns.

Variable-length columns 4 bytes The number of
variable-length columns in
the table being captured.

A 0 indicates that there are
no variable-length columns.

Column names and data
types

variable byte length A comma-separated list of
column names and data
types in UTF-8 format. The
column list conforms to the
syntax of the column list in a
CREATE TABLE statement.

Names of any fixed-length
columns appear before
names of any variable-length
columns.

The number of columns
equals the number of
fixed-length columns plus
the number of
variable-length columns.

Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_TIMEOUT record
Indicates that the read call did not return data before the timeout period specified
in the cdc_opensess() function.

The header specific to the CDC_REC_TIMEOUT record follows the common
header. No data follows the headers; the payload size in the common header is 0.

Chapter 3. Change Data Capture records 3-7

Table 3-10. Format of the CDC_REC_TIMEOUT record

Section Size Description

Sequence number 8 bytes The sequence number of the
last data retrieved from the
source database.

Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_TRUNCATE record
Indicates that a TRUNCATE operation was performed on a table.

The header specific to the CDC_REC_TRUNCATE record follows the common
header. No data follows the headers; the payload size in the common header is 0.

Table 3-11. Format of the CDC_REC_TRUNCATE record

Section Size Description

Sequence number 8 bytes The sequence number
associated with the
TRUNCATE operation.

Transaction ID 4 bytes The transaction ID.

User data 4 bytes The table identifier passed to
the cdc_startcapture()
function and stored in the
syscdtabs table.

Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_UPDAFT record
Provides the image of a row after an UPDATE operation.

The CDC_REC_UPDAFT record consists of these fields:
v The common header.
v The record-specific header.
v Fields listing the size of each variable-length column in the row, if any.
v Column data for each fixed-length column, if any.
v Column data for each variable-length column, if any.

The value in the header size field in the common header represents the number of
bytes occupied by the combination of the common header, the record-specific
header, and the fields listing the size of variable-length columns.

The value in the payload size field in the common header represents the number
of bytes of the column data for both fixed-length and variable length columns.

3-8 IBM Informix Change Data Capture API Programmer's Guide

The record-specific header

The header specific to the CDC_REC_UPDAFT record follows the common header.

Table 3-12. The CDC_REC_UPDAFT record header

Section Size Description

Sequence number 8 bytes The sequence number
associated with the UPDATE
operation.

Transaction ID 4 bytes The transaction ID.

User data 4 bytes The table identifier passed to
the cdc_startcapture()
function and stored in the
syscdtabs table.

Flags 4 bytes Reserved.

Variable-length column size fields

If there are variable-length columns in the row being updated, a 4-byte field for
each of those columns appears containing the column size. The order of the
column size fields is the same as the order of the columns in the
CDC_REC_TABSCHEMA record.

Fixed-length column data

The data from the fixed-length columns, if any, appears in the order that the
corresponding columns are listed in the CDC_REC_TABSCHEMA record.

Variable-length column data

The data from the variable-length columns, if any, appears in the order that the
corresponding columns are listed in the CDC_REC_TABSCHEMA record.
Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

The CDC_REC_UPDBEF record
Provides the image of a row before an UPDATE operation.

The CDC_REC_UPDBEF record consists of these fields:
v The common header.
v The record-specific header.
v Fields listing the size of each variable-length column in the row, if any.
v Column data for each fixed-length column, if any.
v Column data for each variable-length column, if any.

The value in the header size field in the common header represents the number of
bytes occupied by the combination of the common header, the record-specific
header, and the fields listing the size of variable-length columns.

Chapter 3. Change Data Capture records 3-9

The value in the payload size field in the common header represents the number
of bytes of the column data for both fixed-length and variable length columns.

The record-specific header

The header specific to the CDC_REC_UPDBEF record follows the common header.

Table 3-13. The CDC_REC_UPDBEF record header

Section Size Description

Sequence number 8 bytes The sequence number
associated with the UPDATE
operation.

Transaction ID 4 bytes The transaction ID.

User data 4 bytes The table identifier passed to
the cdc_startcapture()
function and stored in the
syscdtabs table.

Flags 4 bytes Reserved.

Variable-length column size fields

If there are variable-length columns in the row being updated, a 4–byte field for
each of those columns appears containing the column size. The order of the
column size fields is the same as the order of the columns in the
CDC_REC_TABSCHEMA record.

Fixed-length column data

The data from the fixed-length columns, if any, appears in the order that the
corresponding columns are listed in the CDC_REC_TABSCHEMA record.

Variable-length column data

The data from the variable-length columns, if any, appears in the order that the
corresponding columns are listed in the CDC_REC_TABSCHEMA record.
Related reference:
“Format of CDC records” on page 3-1
“The syscdcrectypes table” on page 4-1

3-10 IBM Informix Change Data Capture API Programmer's Guide

Chapter 4. The syscdc system database

The syscdc system database contains tables that store information about the
Change Data Capture API.

The syscdc database can only be accessed or connected to by the user informix. It
uses the UTF-8 locale. You cannot alter the tables in the syscdc database; you can
only query them.

The syscdcerrcodes table
Contains the error codes used by the Change Data Capture API.

Use this table to look up the symbolic name and description that correspond to an
error code.

Table 4-1. The syscdcerrcodes table

Column Data Type Description

errcode INTEGER Numeric value of the error.

errname VARCHAR(16) Symbolic name of the error.

errdesc VARCHAR(127) Error description.

Related reference:
Chapter 5, “Change Data Capture error codes,” on page 5-1

The syscdcrectypes table
Contains the record types used by the Change Data Capture API.

Use this table to look up the symbolic name and description that correspond to a
record code.

Table 4-2. The syscdcrectypes table

Column Data Type Description

recnum INTEGER Numeric value of the record
type.

recname VARCHAR(16) Symbolic name of the record
type.

recdesc VARCHAR(127) Record type description.

© Copyright IBM Corp. 2008, 2013 4-1

Related reference:
“The CDC_REC_BEGINTX record” on page 3-2
“The CDC_REC_COMMTX record” on page 3-2
“The CDC_REC_DELETE record” on page 3-3
“The CDC_REC_DISCARD record” on page 3-4
“The CDC_REC_ERROR record” on page 3-4
“The CDC_REC_INSERT record” on page 3-5
“The CDC_REC_RBTX record” on page 3-6
“The CDC_REC_TABSCHEMA record” on page 3-6
“The CDC_REC_TIMEOUT record” on page 3-7
“The CDC_REC_TRUNCATE record” on page 3-8
“The CDC_REC_UPDAFT record” on page 3-8
“The CDC_REC_UPDBEF record” on page 3-9

4-2 IBM Informix Change Data Capture API Programmer's Guide

Chapter 5. Change Data Capture error codes

If a Change Data Capture function encounters a problem, it returns an error code.
Most functions return 0 if they succeed.

Error numbers are not guaranteed to remain the same in subsequent releases.
Always use the symbolic names in your application code. You can view the error
message text corresponding to a symbolic error name by using the cdc_errortext()
function.

Table 5-1. Change Data Capture error codes

Symbolic Name Description

CDC_E_OK Operation succeeded.

CDC_E_NOCDCDB The syscdc database does not exist.

CDC_E_APIVERS The requested CDC API behavior version is
not valid or is unsupported.

CDC_E_NODB The specified database does not exist.

CDC_E_DBNOTLOGGED The specified database is not logged.

CDC_E_NOTAB The specified table does not exist.

CDC_E_TABPROPERTIES The table properties do not support capture:
it is a temporary table, a view, or otherwise
not logged.

CDC_E_NOCOL The specified column does not exist.

CDC_E_NOSES The specified CDC session does not exist.

CDC_E_NOREOPEN The CDC session cannot be reopened.

CDC_E_TABCAPTURED The specified table is already being captured
by the CDC session.

CDC_E_TABNOTCAPTURED The specified table is not being captured by
the CDC session.

CDC_E_ARGNULL An argument to the function has the SQL
NULL value, which is not allowed.

CDC_E_LSN Data at the requested log sequence number
is unavailable for capture.

CDC_E_DUPLSESS A CDC session is already active.

CDC_E_ARG A parameter passed to the function is not
valid.

CDC_E_ARG1 The first parameter passed to the function is
not valid.

CDC_E_ARG2 The second parameter passed to the function
is not valid.

CDC_E_ARG3 The third parameter passed to the function
is not valid.

CDC_E_ARG4 The fourth parameter passed to the function
is not valid.

CDC_E_ARG5 The fifth parameter passed to the function is
not valid.

© Copyright IBM Corp. 2008, 2013 5-1

Table 5-1. Change Data Capture error codes (continued)

Symbolic Name Description

CDC_E_ARG6 The sixth parameter passed to the function
is not valid.

CDC_E_INTERNAL Internal error. Contact IBM Support.

CDC_E_NOMEM Memory allocation failed.

CDC_E_MUSTCLOSE The CDC capture session cannot continue
and must be closed.

CDC_E_BADSTATE The resource state does not allow the
attempted operation.

CDC_E_BADCHAR A byte sequence that is not a valid character
in the character code set was encountered.

CDC_E_INTERRUPT The CDC session was interrupted.

CDC_E_UNIMPL Unimplemented feature.

CDC_E_LOCALEMISMATCH The locale setting in the environment does
not match the locale of the database.

Related tasks:
“Handling errors” on page 1-6
Related reference:
“The syscdcerrcodes table” on page 4-1
“The cdc_errortext() function” on page 2-4

5-2 IBM Informix Change Data Capture API Programmer's Guide

Chapter 6. onstat -g cdc

Monitors the sessions involved in change data capture.

�� onstat -g cdc
0

sessionID
�

�
bufm long
table

database:owner.table
config

��

Table 6-1. The onstat -g cdc syntax elements

Element Purpose

bufm Displays information about the buffers being used by the
session, including:

v The highest number of buffers used by the session.

v The number of buffers currently being used by the session.

v With the long option, the address of each allocated buffer.

config Displays information about the session configuration,
including:

v The read timeout setting for the session, in seconds.

v The maximum number of records returned by a read call.

database:owner.table The fully-qualified name of the table for which to display
information. The qualified name includes the following
elements:

v database: The name of the database in which the table
exists.

v owner: The name of the owner of the table.

v table: the name of the table.

long Provides additional detail for sessions, the bufm option, or
the table option.

sessionID Displays information for the specified session ID:

v The associated SQL session ID.

v The number of tables being captured by the session.

v With the long option, information about the number of
records processed by the session.

If you do not specify a session ID, or if you specify a session
ID of 0, information for all sessions is displayed.

© Copyright IBM Corp. 2008, 2013 6-1

Table 6-1. The onstat -g cdc syntax elements (continued)

Element Purpose

table Displays information about the tables being captured,
including:

v The number of tables being captured in a session.

v The full name of each table being captured.

v The time when data capture on each table started.

v With the long option, information about the captured
columns for each table.

If you specify a fully-qualified table name, only the
information for that table is displayed. If you do not specify
a table name, information for all tables is displayed.

Examples

The following examples display sample output of the onstat -g cdc command with
some of its options.

Example 1: Detailed session information

The following command generates output that shows detailed information
about the session 159383591:
onstat -g cdc 159383591 long

CDC subsystem structure at 0x44252318
CDC session structure at 0x4d8e0d00

CDC session id: 159383591 (0x9800027)
Associated SQL session id: 304
Number of tables captured: 1
State: ACTIVATED (0x50534555)
Create time: 1238530254 (Tue Mar 31 15:10:54 2009)
Open time: 1238530254 (Tue Mar 31 15:10:54 2009)
Activate time: 1238530256 (Tue Mar 31 15:10:56 2009)
Activate Sequence Number: 0x0
Total client read calls: 9
Last client read time: 1238530321 (Tue Mar 31 15:12:01 2009)
Last Sequence Number returned to client: 0x150004b774
Total number records examined: 4385
Total number records kept (approximate): 1937
Total number I/U/D records examined: 1046
Total number I/U/D records kept (approximate): 582
Client required to close: NO
Read exit error code: 0

Example 2: Configuration information

The following command generates output that shows information about
the configuration of open sessions:
onstat -g cdc config

CDC subsystem structure at 0x44252318
CDC session structure at 0x4dba3d00

CDC session id: 160432167 (0x9900027)
Read Timeout (seconds): 3
Maximum buffers per read call: 4
Survive DATALOST errors: NO

CDC session structure at 0x4d8e0d00
CDC session id: 159383591 (0x9800027)
Read Timeout (seconds): 3

6-2 IBM Informix Change Data Capture API Programmer's Guide

Maximum buffers per read call: 4
Survive DATALOST errors: NO

CDC session structure at 0x4c022d00
CDC session id: 158335015 (0x9700027)
Read Timeout (seconds): 3
Maximum buffers per read call: 4
Survive DATALOST errors: NO

Example 3: Buffer information

The following command generates output that shows information about
the buffers being used by currently open sessions:
onstat -g cdc 0 bufm

CDC subsystem structure at 0x44252318
CDC session structure at 0x4dba3d00

CDC session id: 160432167 (0x9900027)

Buffer Manager at 0x4dba5028
Number of allocated buffers high watermark: 268
Number of currently allocated buffers: 267
Minimum prepend for alloced buffers: 172

CDC session structure at 0x4d8e0d00
CDC session id: 159383591 (0x9800027)

Buffer Manager at 0x4d8e2028
Number of allocated buffers high watermark: 271
Number of currently allocated buffers: 270
Minimum prepend for alloced buffers: 172

CDC session structure at 0x4c022d00
CDC session id: 158335015 (0x9700027)

Buffer Manager at 0x4c6e5028
Number of allocated buffers high watermark: 269
Number of currently allocated buffers: 267
Minimum prepend for alloced buffers: 172

Example 4: Table information

The following command generates output that shows information about
the session 158335015 for the table named account:
onstat -g cdc 158335015 table bank:pinch.account

CDC subsystem structure at 0x44252318
CDC session structure at 0x4c022d00

CDC session id: 158335015 (0x9700027)
Captured Table Manager found at 0x4c048b20
Number of tables captured: 1

Captured Table structure at 0x4c6e5160
Full Table Name: bank:pinch.account
Version Sequence Number: 0xe00238388
Time capture started: 1238530249 (Tue Mar 31 15:10:49 2009)

Related tasks:
“Monitoring data capture” on page 1-8

Chapter 6. onstat -g cdc 6-3

6-4 IBM Informix Change Data Capture API Programmer's Guide

Chapter 7. Change Data Capture sample program

The Change Data Capture sample program provides an example of using the
Change Data Capture API to capture and process data.

The IBM Informix sample program, cdcapi.ec, is located in the
INFORMIXDIR/demo/cdc directory. The program creates an application that captures
data from multiple tables. The program runs Change Data Capture functions, reads
CDC records, and displays the column values of the captured data to stdout. The
program also queries the syscdc system tables to display information about CDC
records and error messages. The program terminates when it encounters an error
or a CDC_REC_TIMEOUT record.

The program has a command-line interface that you use to enter the database
name, the table name, column names, and the timeout value.

This program requires that the getopt parser function is implemented on your
computer.
Related tasks:
“Writing an application to capture data changes” on page 1-5

© Copyright IBM Corp. 2008, 2013 7-1

7-2 IBM Informix Change Data Capture API Programmer's Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 2008, 2013 A-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

A-2 IBM Informix Change Data Capture API Programmer's Guide

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Change Data Capture API Programmer's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2008, 2013 B-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

B-2 IBM Informix Change Data Capture API Programmer's Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix Change Data Capture API Programmer's Guide

Index

A
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

application development with Change Data Capture API 1-5

C
capture session

activating 2-1
closing 2-2
deactivating 2-2
opening 2-5
specifying data 2-8

capture session for Change Data Capture 1-5
cdc_activatesess() function 2-1
cdc_closesess() function 2-2
cdc_deactivatesess() function 2-2
cdc_endcapture() function 2-3
cdc_errortext() function 2-4
cdc_opensess() function 2-5
CDC_REC_BEGINTX record 3-2
CDC_REC_COMMTX record 3-2
CDC_REC_DELETE record 3-3
CDC_REC_DISCARD record 3-4
CDC_REC_ERROR record 3-5
CDC_REC_INSERT record 3-5
CDC_REC_RBTX record 3-6
CDC_REC_TABSCHEMA record 3-6
CDC_REC_TIMEOUT record 3-7
CDC_REC_TRUNCATE record 3-8
CDC_REC_UPDAFT record 3-8
CDC_REC_UPDBEF record 3-9
cdc_recboundary() function 2-7
cdc_set_fullrowlogging() function 2-7
cdc_startcapture() function 2-8
Change Data Capture

application development 1-5
data types supported 1-5
error handling 1-6
logging 2-7
monitoring 1-8
onstat -g cdc 1-8
overview 1-1
restarting capture 1-7
sample program 7-1
smart large objects 1-2, 1-7
syscdc database 4-1
transactions captured 1-1

Change Data Capture API
monitoring 6-1
prerequisites 1-5

Change Data Capture API components 1-2
Change Data Capture error codes 5-1
Change Data Capture functions

cdc_activatesess() 2-1
cdc_closesess() 2-2
cdc_deactivatesess() 2-2

Change Data Capture functions (continued)
cdc_endcapture() 2-3
cdc_errortext() 2-4
cdc_opensess() 2-5
cdc_recboundary() 2-7
cdc_set_fullrowlogging() 2-7
cdc_startcapture() 2-8

Change Data Capture records
CDC_REC_BEGINTX 3-2
CDC_REC_COMMTX 3-2
CDC_REC_DELETE 3-3
CDC_REC_DISCARD 3-4
CDC_REC_ERROR 3-5
CDC_REC_INSERT 3-5
CDC_REC_RBTX 3-6
CDC_REC_TABSCHEMA 3-6
CDC_REC_TIMEOUT 3-7
CDC_REC_TRUNCATE 3-8
CDC_REC_UPDAFT 3-8
CDC_REC_UPDBEF 3-9
format of 3-1
sequence number 1-4

Change Data Capture system tables
syscdcerrorcodes 4-1
syscdcrectypes 4-1

compliance with standards vi

D
data buffer for Change Data Capture 1-5
data capture

data selection 2-8
logging 2-7
restarting 1-7
starting 1-7, 2-1, 2-5
stopping 2-2

data types for Change Data Capture 1-5
Disabilities, visual

reading syntax diagrams A-1
Disability A-1
Dotted decimal format of syntax diagrams A-1

E
error codes for Change Data Capture 5-1
error handling for Change Data Capture 1-6
error text

returning 2-4

I
industry standards vi

L
logging for Change Data Capture 1-5, 2-7

© Copyright IBM Corp. 2008, 2013 X-1

O
onstat -g cdc 6-1

P
prerequisites for Change Data Capture API 1-5

R
rewinding data capture 2-7

S
sample program for Change Data Capture 7-1
Screen reader

reading syntax diagrams A-1
sequence number for CDC records 1-4
session ID for Change Data Capture 1-5, 2-5
Shortcut keys

keyboard A-1
smart large object read functions 1-5
smart large objects 1-2, 1-7
standards vi
status of data capture session 1-8
status of table capture 1-8
Syntax diagrams

reading in a screen reader A-1
syscdc database 4-1
syscdcerrcodes table 4-1
syscdcrectypes table 4-1

T
table schema for Change Data Capture 1-5
target destination for Change Data Capture 1-5
transactions

Change Data Capture 1-1

V
Visual disabilities

reading syntax diagrams A-1

X-2 IBM Informix Change Data Capture API Programmer's Guide

����

Printed in USA

SC27-4509-00

	Contents
	Introduction
	About this publication
	Types of users

	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Getting started with the Change Data Capture API
	The Change Data Capture API
	Change Data Capture API components
	Smart large object read functions
	CDC record sequence numbers
	Data for capture

	Preparing to use the Change Data Capture API
	Writing an application to capture data changes
	Handling errors

	Handling smart large objects
	Restarting data capture
	Monitoring data capture

	Chapter 2. Change Data Capture functions
	The cdc_activatesess() function
	The cdc_closesess() function
	The cdc_deactivatesess() function
	The cdc_endcapture() function
	The cdc_errortext() function
	The cdc_opensess() function
	The cdc_recboundary() function
	The cdc_set_fullrowlogging() function
	The cdc_startcapture() function

	Chapter 3. Change Data Capture records
	Format of CDC records
	The CDC_REC_BEGINTX record
	The CDC_REC_COMMTX record
	The CDC_REC_DELETE record
	The CDC_REC_DISCARD record
	The CDC_REC_ERROR record
	The CDC_REC_INSERT record
	The CDC_REC_RBTX record
	The CDC_REC_TABSCHEMA record
	The CDC_REC_TIMEOUT record
	The CDC_REC_TRUNCATE record
	The CDC_REC_UPDAFT record
	The CDC_REC_UPDBEF record

	Chapter 4. The syscdc system database
	The syscdcerrcodes table
	The syscdcrectypes table

	Chapter 5. Change Data Capture error codes
	Chapter 6. onstat -g cdc
	Chapter 7. Change Data Capture sample program
	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	A
	C
	D
	E
	I
	L
	O
	P
	R
	S
	T
	V

