
Informix Product Family
Informix
Version 12.10

J/Foundation Developer’s Guide

SC27-4528-00

���

Informix Product Family
Informix
Version 12.10

J/Foundation Developer’s Guide

SC27-4528-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . v
About this publication . v

Types of users . v
Software compatibility . v
Assumptions about your locale . v
Demonstration databases . vi

Example code conventions . vi
Additional documentation . vii
Compliance with industry standards . vii
Syntax diagrams . viii

How to read a command-line syntax diagram . ix
Keywords and punctuation . x
Identifiers and names . x

How to provide documentation feedback . x

Chapter 1. Concepts . 1-1
Features of Java user-defined routines . 1-1
Java virtual processors . 1-1
System catalog tables . 1-2

Chapter 2. Prepare for Java support . 2-1
Install the JDBC Driver . 2-1
Configure Java support . 2-1

Create an sbspace . 2-2
Creating the JVP properties file . 2-2
Set configuration parameters . 2-2
Set environment variables . 2-3
GLS support . 2-4

Chapter 3. Configuration parameters . 3-1
JVPARGS configuration parameter . 3-1
JVPCLASSPATH configuration parameter . 3-1
JVPHOME configuration parameter . 3-2
JVPJAVAHOME configuration parameter . 3-2
JVPJAVALIB configuration parameter . 3-3
JVPJAVAVM configuration parameter . 3-3
JVPLOGFILE configuration parameter . 3-4
JVPPROPFILE configuration parameter . 3-4
SBSPACENAME configuration parameter . 3-4
VPCLASS configuration parameter . 3-5

Chapter 4. Create Java user-defined routines 4-1
Java user-defined routines . 4-1
Limitations for Java UDRs . 4-2
Creating a Java user-defined routine . 4-2
Write a Java user-defined routine . 4-3

The com.informix.udr package . 4-3
The com.informix.udr.UDRManager . 4-4
The com.informix.udr.UDREnv . 4-4
The com.informix.udr.UDRLog . 4-5
The com.informix.udr.UDRTraceable . 4-6

Creating UDT-to-Java mappings . 4-7
Registering Java user-defined routines . 4-8

Specify the JVP . 4-8

© Copyright IBM Corp. 1996, 2013 iii

Routine modifiers . 4-8
Specify the external name . 4-9

A deployment descriptor . 4-11
A manifest file . 4-11
Compiling the Java code . 4-12
Install a JAR file . 4-12
Update JAR file names . 4-13
Execute the user-defined routine. 4-13
Debugging and tracing . 4-14

Generate log messages . 4-14
The administrative tool . 4-15
Debugging a Java user-defined routine . 4-15
Traceable events . 4-15

Find information about user-defined routines . 4-16
Comply with SQLJ . 4-16

Unsupported modifiers . 4-17
Unsupported optional modifiers . 4-18

Chapter 5. The Informix JDBC Driver . 5-1
Public JDBC interfaces . 5-1
The informix-direct subprotocol . 5-1
Host a Java application server with Solano-style connections. 5-2
JDBC 1.0 API . 5-2
JDBC 2.0 . 5-3

Support for opaque data types. 5-4
Interfaces updated for Java 2.0 . 5-4

An example that shows query results . 5-5

Chapter 6. Opaque user-defined data types. 6-1
Using the SQLData interface . 6-1

Default input/output routines . 6-2
SQL definitions for default I/O user-defined routines . 6-2
Informix extensions to SQLInput and SQLOutput . 6-2
The circle class example . 6-4

Override the default I/O methods . 6-5
I/O function sets and related types . 6-5
An example that overrides the default I/O methods . 6-7

Limitations to streams . 6-12

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Trademarks . B-3

Index . X-1

iv J/Foundation Developer’s Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication
This publication describes how to write user-defined routines (UDRs) in the Java™

programming language for IBM® Informix® Dynamic Server with J/Foundation.
The publication also describes the infrastructure that enables you to run Java
applications in the database server. The publication describes the Java classes,
methods, and interfaces that allow you to access databases from within IBM
Informix Dynamic Server with J/Foundation, rather than from a client application.

Types of users
This publication is written for the following users:
v Database-application programmers
v DataBlade® module developers
v Java UDR developers
v Java server application developers

This publication assumes that you have basic knowledge in the following areas:
v Your computer, your operating system, and the utilities that your operating

system provides
v Object-relational databases or exposure to database concepts
v The Java language and the Java Development Kit
v Java Database Connectivity (JDBC), which is a Java application programming

interface to SQL databases
v SQLJ: SQL Routines specification, which specifies the Java binding of SQL UDRs

Software compatibility
This publication assumes that you are using the following software:
v IBM Informix Dynamic Server with J/Foundation, Version 12.10

J/Foundation includes Version 5.0 of the Java Runtime Environment (JRE) and
uses it to execute your server-based Java routines. This specific version of the
JRE ensures that the Java environment is known and reliable for this database
server release.

v Java Development Kit (JDK), Version 5.0
You need JDK to compile your Java programs.

v DataBlade Developers Kit (DBDK) for Java, Version 4.0 or greater
You need DBDK only for DataBlade module development.

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric

© Copyright IBM Corp. 1996, 2013 v

data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
DBDATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é, è, and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin
directory in Windows environments.

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

vi J/Foundation Developer’s Guide

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

Introduction vii

http://www.ibm.com/software/data/sw-library/

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 1. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

viii J/Foundation Developer’s Guide

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

Introduction ix

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

x J/Foundation Developer’s Guide

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xi

http://www.ibm.com/planetwide/

xii J/Foundation Developer’s Guide

Chapter 1. Concepts

This section introduces the infrastructure for creating and executing user-defined
routines (UDRs) and applications that you write in Java to run in the IBM Informix
database server.

This section provides the following information:
v Basic characteristics of Java UDRs
v Basic architecture for executing Java UDRs in the database server
v Impact of Java UDRs on the database server system catalog tables

For general information about the purpose and the process of developing UDRs for
the database server, see the IBM Informix User-Defined Routines and Data Types
Developer's Guide. For information about how to access databases from Java UDRs,
see the IBM Informix JDBC Driver Programmer's Guide.

Features of Java user-defined routines
The IBM Informix database server provides the infrastructure to support Java
UDRs. The database server binds SQL UDR signatures to Java executable routines
and provides mapping between SQL data values and Java objects so that the
database server can pass parameters and retrieve returned results.

The IBM Informix database server also provides support for data type extensibility
and sophisticated error handling.

Java virtual processors
Java UDRs execute on specialized virtual processors called Java virtual processors
(JVPs). A Java Virtual Machine (JVM) is embedded in the code of each JVP.

The JVPs are responsible for executing all server-based Java UDRs and
applications. Although the JVPs are used for Java-related computation, they have
the same capabilities as a CPU VP, and they can process all types of SQL queries.
This eliminates the need to ship Java-related queries back and forth between CPU
VPs and JVPs.

Thread scheduling

When the JVP starts the JVM, the entire database server component is thought of
as running on one particular Java thread, called the main thread. The JVM controls
the scheduling of Java threads and the database server scheduler multiplexes IBM
Informix threads on top of the Java main thread. In other words, the Informix
thread package is stacked on top of the Java thread package.

Query parallelization

While Java applications use threads for parallelism, the Informix database server
uses threads for overlapping latency. That is, Informix threads run concurrently but
not in parallel. To parallelize a query, the database server must spread the work
among multiple virtual processors.

© Copyright IBM Corp. 1996, 2013 1-1

Consequently, the database server must have multiple instances of JVPs to make
parallel calls to UDRs written in Java code. Because the JVMs embedded in
different VPs do not share states, you cannot store global states by using Java class
variables. All global states must be stored in the database to be consistent. The
only guarantee from the database server is that any given UDR instance executes
from start to finish on the same VP. The database server enforces a round-robin
scheduling policy where the UDR instances are spread over the JVPs before they
start executing.

The consistency of multiple JVMs is not an issue on the Windows platform because
all VPs are mapped to kernel threads instead of processes. Because all VPs share
the same process space, you do not need to start multiple instances of the JVM.

System catalog tables
The sysroutinelangs, syslangauth, and sysprocedures system catalog tables
contain information about the UDRs written in Java code.

The sysroutinelangs table lists the programming languages that you can use to
write UDRs. The table gives the names of the language initialization functions and
the path for the language library.

The syslangauth table specifies who is allowed to use the language. For Java code,
the default is the database administrator. For information about how to modify the
usage privileges, see the GRANT statement in the IBM Informix Guide to SQL:
Syntax.

The sysprocedures table gives information about both built-in routines and
routines that you define.

For more information about these system catalog tables, see “Find information
about user-defined routines” on page 4-16 and the IBM Informix Guide to SQL:
Reference.

1-2 J/Foundation Developer’s Guide

Chapter 2. Prepare for Java support

This section describes how to install and configure the database server to provide
UDRs written in Java code.

To create and use UDRs written in Java code, you must install the following
software:
v IBM Informix Dynamic Server with J/Foundation
v The Java Development Kit (JDK), Version 5.0

If you do not plan to develop Java UDRs, you do not need to install the JDK.
J/Foundation includes a tested version of the Java Runtime Environment (JRE) to
execute Java UDRs. You need to install the JDK only if you need to compile new
Java source code. For more information about where to obtain the JDK, see the
machine notes for your platform.

You might also want to install the Informix DataBlade Developers Kit (DBDK),
Version 4.0 or greater, to facilitate development of UDRs in Java code.

For more detailed information about the required software, see the release notes.

Install the JDBC Driver
J/Foundation includes the IBM Informix JDBC Driver. The IBM Informix JDBC
Driver contains Java classes and shared-object files that allow you to write UDRs
in Java code. The installation procedure installs these binary files in
$INFORMIXDIR/extend/krakatoa.

For more information, see the machine notes file.

Configure Java support
The basic configuration procedure for an IBM Informix database server is covered
in the IBM Informix Administrator's Guide. Configuring the database server to
support Java code requires several additional steps. You might find it convenient to
configure the database server without Java code and then modify it to add Java
support.

Preparing to use Java code with the database server requires these additions to the
basic configuration procedure:
v Create an sbspace to hold the Java JAR files.
v Create the JVP properties file.
v Add (or modify) the Java configuration parameters in the onconfig configuration

file.
v Set environment variables.

$INFORMIXDIR/extend/krakatoa is your jvphome. You need to include this path in
several places as you prepare J/Foundation.

© Copyright IBM Corp. 1996, 2013 2-1

Create an sbspace
The database server stores Java JAR files as smart large objects in the system
default sbspace. If you do not already have a default sbspace, you must create one.

For example, the following command creates an sbspace called mysbspace:
onspaces -c -S mysbspace -g 5 -p /dev/raw_dev1 -o 500 -s 20000 -m /dev/raw_dev2 500

After you create the sbspace, set the SBSPACENAME configuration parameter in
the onconfig file to the name that you gave to the sbspace (mysbspace in the
preceding example).

JAR files coexist in the system default sbspace with other smart large objects that
you store in that space. When you choose the size for your default sbspace, you
need to consider how much space those objects require, as well as the number and
size of the JAR files that you plan to install.
Related reference:

The onspaces utility (Administrator's Reference)
“SBSPACENAME configuration parameter” on page 3-4

Creating the JVP properties file
A JVP properties file contains property settings that control various runtime
behaviors of the Java virtual processor.

The JVPPROPFILE configuration parameter specifies the path to the properties file.
When you initialize the database server, the JVP initializes the environment based
on the settings in the JVP property file. The .jvpprops.template file in the
$INFORMIXDIR/extend/krakatoa directory documents the properties that you can
set.

To prepare the JVP properties file:
1. Copy the JVP properties template file, jvphome/.jvpprops.template into

jvphome/.jvpprops where jvphome is the directory $INFORMIXDIR/extend/
krakatoa.

2. Edit .jvpprops to change the trace level or other properties if necessary.
3. Set the JVPPROPFILE configuration parameter to jvphome/.jvpprops.

A sample properties file might contain the following items:
JVP.trace.settings:JVP=2
JVP.trace.verbose:1
JVP.trace.timestampformat:HH:MM
JVP.splitLog:1000
JVP.monitor.port: 10000

The database server provides a fixed set of system trace events such as UDR
sequence initialization, activation, and shutdown. You can also generate
application-specific traces. For more information, see the description of the
UDRTraceable class in “The com.informix.udr.UDRTraceable” on page 4-6.

Set configuration parameters
The onconfig configuration file ($INFORMIXDIR/etc/$ONCONFIG) includes the
following configuration parameters that affect Java code:
v JVPPROPFILE

2-2 J/Foundation Developer’s Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0460.htm#ids_adr_0460

v JVMTHREAD
v JVPCLASSPATH
v JVPLOGFILE

The following example shows sample settings for the Java-related configuration
parameters on a UNIX Solaris system.
JVPLOGFILE jvphome/jvp.log
JVPPROPFILE jvphome/.jvpprops
#VPCLASS jvp,num=1
JVMTHREAD native
JVPCLASSPATH jvphome/krakatoa.jar:jvphome/jdbc.jar

In this example, JVPCLASSPATH shows the default setting. To run in debug mode,
add the _g suffix as shown in the following example:
JVPCLASSPATH jvphome/krakatoa_g.jar:jvphome/jdbc_g.jar

For information about specific configuration parameter settings on your platform,
see $INFORMIXDIR/etc/onconfig.std.
Related reference:
Chapter 3, “Configuration parameters,” on page 3-1

Set environment variables
You do not need any extra environment variables to execute UDRs written in Java
code. However, if you are developing Java UDRs, you must include
jvphome/krakatoa.jar in your CLASSPATH environment variable so that JDK can
compile the Java source files that use IBM Informix Java packages.

The following sections describe the runtime environment variables that you can
set.

JVM_MAX_HEAP_SIZE environment variable

Set the environment variable JVM_MAX_HEAP_SIZE to configure the heap size for the
JVM. The default heap size is 16 MB. You can set this variable to the maximum
heap size needed for the JVM, depending on the estimated requirements of the
application.

JAR_TEMP_PATH environment variable

Set the JAR_TEMP_PATH environment variable to specify a local file system location
where jar management procedures such as install_jar and replace_jar can store
JAR files temporarily. This directory must have read and write permissions for the
user who starts the database server. If the JAR_TEMP_PATH environment variable is
not set, temporary copies of JAR files are stored in the /tmp directory of the local
file system for the database server.

JAVA_COMPILER environment variable

To turn off just-in-time (JIT) compilation, set the JAVA_COMPILER environment
variable to NONE or none. For more information about JIT compilation, see the Java
documentation.

Chapter 2. Prepare for Java support 2-3

GLS support
When the database server starts a UDR, the routine runs in the locale that
DB_LOCALE specifies. Consequently, the database server automatically converts
parameters, return values, and output values between the DB_LOCALE code set
and the Unicode code set so that Java code can use the values.

However, when a Java UDR creates a JDBC connection to the database server for
access through SQL, you can set DB_LOCALE into the connection URL to control
conversions and formatting between the Unicode code set and the code set of the
database server locale. This setting of DB_LOCALE overrides any environment
settings. In fact, DB_LOCALE does not need to be set in the environment.
Similarly, you can also set DBDATE, GL_DATE, and DBCENTURY into the URL connection
to control date conversion and formatting.

For example, when a UDR sends string or date data to the database server in an
insert, the database server converts the data from Unicode to the locale that
DB_LOCALE specifies, or it interprets dates and intervals by using your DBDATE or
GL_DATE setting.

When the database server returns data to the Java UDR, the database server does
the opposite conversion, so Java code sees only Unicode.

You can extend the Java Runtime Environment (JRE) that is distributed with server
with your own CharsetProvider, and Charset classes. With the Java Runtime, you
can extend the default list of character sets by creating a JAR file that contains
your own CharsetProvider and Charset class implementations. To extend the JRE,
copy the custom CharsetProvider JAR file into the $INFORMIXDIR/extend/krakatoa/
jre/lib/ext directory. For more information about how to build a custom
CharsetProvider JAR file, see that Java API documentation for CharsetProvider.

Important: This method must only be used for situations where the server
supports a character set that does not have an equivalent (does not exist) within
the JRE that is distributed with server.

NEWLOCALE and NEWCODESET connection properties
IBM Informix JDBC Driver uses the JDK globalization API to manipulate
international data. The classes and methods in this API take a JDK locale or
encoding as a parameter. Because the Informix DB_LOCALE and
CLIENT_LOCALE properties specify the locale and code set based on Informix
names, these Informix names are mapped to the JDK names. For example, the
Informix name for the ASCII code set is 8859-1 and the JDK name for the ASCII
code set is 8859_1. Informix JDBC Driver internally maps 8859-1 to 8859_1 and
uses the appropriate JDK name in the JDK classes and methods.

Two new connection properties, NEWLOCALE and NEWCODESET, enable you to
specify a locale or code set that is not yet mapped in the internal tables of the
JDBC driver.

The NEWLOCALE and NEWCODESET properties have the following formats:
NEWLOCALE=<JDK locale>,<Ifx locale>:<JDK locale>,<Ifx locale>...
NEWCODESET=<JDK encoding>,<Ifx codeset name>,
<Ifx codeset number>:<JDK encoding>,<Ifx codeset name>,<Ifx codeset number>...

The following example shows a URL that uses these properties. (You must specify
a valid URL on a single line.)

2-4 J/Foundation Developer’s Guide

jdbc:informix-sqli://myhost:1533:informixserver=myserver;user=myname;
password=mypasswd;NEWLOCALE=en_us,en_us;NEWCODESET=8859_1,8859-1,819;

There is no limit to the number of locale or code-set mappings that you can
specify. If you specify an incorrect number of parameters or values, you get a
message that says, “Locale Not Supported” or “Encoding or Code Set Not
Supported.” If you set these properties in the URL or in an IfmxDataSource object,
the new values in NEWLOCALE and NEWCODESET override the values in the
JDBC internal tables. For example, if JDBC already maps 8859-1 to 8859_1, but you
specify NEWCODESET=8888,8859-1,819, the new value, 8888, is used for the
code-set conversion.

DBCENTURY environment variable
If a String represents a DATE or a DATETIME value that has less than a three-digit
year value, the IBM Informix JDBC Driver uses the DBCENTURY environment
variable to determine the correct four-digit year and performs a String-to-DATE or
-DATETIME conversion.

The following table summarizes the affected methods and the conditions under
which they are affected.

Table 2-1. Summary of affected methods and conditions

Method Condition

IfxPreparedStatement.setString(String) The target column is SQLDATE or
SQLDTIME.

IfxPreparedStatement.setObject(String) The target column is SQLDATE or
SQLDTIME.

IfxPreparedStatement.IfxSetObject(String) The target column is SQLDATE or
SQLDTIME.

IfxResultSet.getDate() The source column is a String type.

IfxResultSet.getTimestamp The source column is a String type.

IfxResultSet.updateString(String) The target column is SQLDATE or
SQLDTIME.

IfxResultSet.updateObject(String) The target column is SQLDATE or
SQLDTIME.

The following example shows a URL that uses the DBCENTURY environment variable:
jdbc:informix-sqli://myhost:1533:informixserver=myserver;user=myname;password=
mypasswd;DBCENTURY=F;

You must specify a valid URL on a single line.
Related reference:

DBCENTURY environment variable (SQL Reference)

Chapter 2. Prepare for Java support 2-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

2-6 J/Foundation Developer’s Guide

Chapter 3. Configuration parameters

This section documents the configuration parameters that you need to set to use
UDRs written in Java code. Set these parameters in the database server
configuration file (the onconfig file).

For a sample environment that configuration parameters establish, see the release
notes file.
Related reference:
“Set configuration parameters” on page 2-2

JVPARGS configuration parameter
onconfig.std value

None

takes effect
When shared memory is initialized

The JVPARGS configuration parameter provides an easy way for you to set Java
VM options.Use a semicolon to separate options. For example, if you want to
change Xms and Xmx to 32m, you can set those options with the JVPARGS parameter,
as the following example shows:
JVPARGS -Xms32m;-Xmx32m

If you want to see gc information to determine whether you need to increase ms or
mx, you can set JVPARGS, as the following example shows:
JVPARGS -verbose:gc

For more information about Java VM options, see your Java documentation.

JVPCLASSPATH configuration parameter
onconfig.std value

/usr/informix/extend/krakatoa/krakatoa.jar:

/usr/informix/extend/krakatoa/jdbc.jar

takes effect
When shared memory is initialized

The JVPCLASSPATH configuration parameter is the initial Java classpath setting.
You must modify the default setting in the configuration file by replacing
/usr/informix/extend/krakatoa with JVPHOME_path, the path name in your
JVPHOME configuration parameter.
JVPHOME_path/krakatoa_g.jar:JVPHOME_path/jdbc_g:jar

If you require the debug versions of the JAR files, use the following
JVPCLASSPATH setting:
JVPHOME_path/krakatoa_g.jar:JVPHOME_path/jdbc_g.jar

The total number of characters available for specifying configuration values in the
onconfig file is 256. The database server imposes this limit.

© Copyright IBM Corp. 1996, 2013 3-1

To specify more than 256 characters for the value of the JVPCLASSPATH
parameter, you can store the value in a file and specify the keyword file: on the
parameter, followed by the file name. For example, if you set the path in a file
called classpath_fl in the directory /u/informix/iif2000/extend/java, you can
specify the JVPCLASSPATH parameter, as the following example shows:
JVPCLASSPATH file:/u/informix/iif2000/extend/java/classpath_fl

You must specify the complete value for JVPCLASSPATH on one line in the file,
just as you would normally on the configuration parameter. Do not include the
parameter name JVPCLASSPATH again. The database server considers the first
carriage return in the line to be the terminating carriage return for the path name.

The JVPCLASSPATH parameter is required if the number of JVPs (set in VPCLASS
JVP parameter) is greater than 0.

Tip: The JVP ignores the CLASSPATH environment variable. However, you must set
the CLASSPATH environment variable so that you can compile your UDRs.

JVPHOME configuration parameter
onconfig.std value

/usr/informix/extend/krakatoa

takes effect
When shared memory is initialized

The JVPHOME configuration parameter specifies the directory where the classes of
the IBM Informix JDBC Driver are installed. To modify the default setting in the
configuration file, replace /usr/informix with the path name of your
$INFORMIXDIR.

The JVPHOME value, JVPHOME_path, is used in several configuration parameters.
If the JVPHOME location changes, you must change the configuration settings of
all parameters that use the JVPHOME value.

This parameter is required if the number of JVPs (set in VPCLASS JVP) is greater
than 0.

JVPJAVAHOME configuration parameter
onconfig.std value

$INFORMIXDIR/extend/krakatoa/jre/

takes effect
When shared memory is initialized

The JVPJAVAHOME configuration parameter specifies the directory where the JRE
for the database server is installed. The database server includes a tested version of
the JRE. The default location for the JRE is in $INFORMIXDIR/extend/krakatoa/jre/.
To modify the default setting in the configuration file, replace
$INFORMIXDIR/extend/krakatoa/jre/ with the path name setting of
$INFORMIXDIR, followed by /extend/krakatoa/jre/.

This parameter is required if the number of JVPs (set in VPCLASS JVP) is greater
than 0.

3-2 J/Foundation Developer’s Guide

If you want to use a stand-alone JVM, without a JVP, install the JDK on your
platform and use the JVM that is included.

JVPJAVALIB configuration parameter
onconfig.std value

platform-specific value

takes effect
When shared memory is initialized

The JVPJAVALIB configuration parameter specifies the path from
$JVPJAVAHOME to the location of the JVM libraries.

The value of this parameter is platform dependent. To find the proper value for
JVPJAVALIB, see the machine and release notes.

This parameter is required if the number of JVPs (set in VPCLASS JVP) is greater
than 0.

JVPJAVAVM configuration parameter
onconfig.std value

platform-specific value

separators
colon (UNIX) or semicolon (Windows)

takes effect
When shared memory is initialized

The JVPJAVAVM configuration parameter lists the JVM libraries that the database
server loads. The names in this list exclude the lib prefix and .so or .dll suffix.
Entries in the list are separated by colons or semicolons, depending on the
operating system. This parameter is required if the number of JVPs (set in
VPCLASS JVP) is greater than 0.

Depending on your application requirements, test and possibly increase the value
for the JVM_MAX_HEAP_SIZE environment variable to configure the heap size for the
new JVM.

The value of JVPJAVAVM is platform-dependent. To find the proper value for
JVPJAVAVM, see $INFORMIXDIR/etc/onconfig.std.

For example, for UNIX Solaris, use the following value for JVPJAVAVM if you are
using a debug version of the JDBC driver: server_g

If you use a nondebug JDBC driver, you can use the nondebug JDK libraries for
better performance. Set JVPJAVAVM as follows: server

For Windows, use the following value for JVPJAVAVM if you are using a debug
version of the JDBC driver: jvm_g

If you use a nondebug JDBC driver, you can use the nondebug JDK libraries for
better performance. Set JVPJAVAVM as follows: jvm

Chapter 3. Configuration parameters 3-3

JVPLOGFILE configuration parameter
onconfig.std value

/usr/informix/jvp.log

range of values
Any valid complete file name

takes effect
When shared memory is initialized

The database server can generate Java trace outputs and stack dumps. The
database server writes this output to the Java VP log file.

The JVPLOGFILE configuration parameter specifies the path to the Java VP log
file. This parameter is optional.

To change the location of the log file, change the value of the JVPLOGFILE
configuration parameter. For example, the following parameter value sets the log
file to /u/sam/jvp.log:
JVPLOGFILE /u/sam/jvp.log

If you do not specify a value for this parameter, the default value is derived from
the onconfig.std file. If the JVPLOGFILE parameter is not present in the onconfig
file, the default file location is ./jvp.log, where ‘.’ is the current directory of the
user who runs oninit.

JVPPROPFILE configuration parameter
onconfig.std value

/usr/informix/extend/krakatoa/.jvpprops

takes effect
When shared memory is initialized

The JVPPROPFILE configuration parameter specifies the path to the Java VP
properties file, if any. Set this parameter as follows, where JVPHOME_path is the
value in your JVPHOME configuration parameter:
JVPHOME_path/.jvpprops

This parameter is optional.

SBSPACENAME configuration parameter
onconfig.std value

blank

takes effect
When shared memory is initialized

The SBSPACENAME configuration parameter specifies the name of the system
default sbspace. You must provide an sbspace where the database server can store
the Java JAR files.

This parameter is not exclusively for Java code. If your database tables include
smart-large-object columns that do not explicitly specify a storage space, that data
is stored in the sbspace that SBSPACENAME specifies.

3-4 J/Foundation Developer’s Guide

Tip: When you use UDRs written in Java code, create separate sbspaces for storing
your smart large objects.
Related reference:

SBSPACENAME configuration parameter (Administrator's Reference)
“Create an sbspace” on page 2-2

CREATE TABLE statement (SQL Syntax)

VPCLASS configuration parameter
onconfig.std value

set

range of values
0 and positive integers

takes effect
When shared memory is initialized

The VPCLASS configuration parameter specifies the number of virtual processors
to initialize for a given virtual-processor class. The JVP option of VPCLASS
specifies the number of Java virtual processors that the database server should
start.

This parameter is required to execute Java UDRs.

Set this option as follows, where number is the number of Java virtual processors:
VPCLASS JVP,num=number

The default value of number is 1. If you set the number of JVPs to zero, or if there
is no VPCLASS parameter for the JVP class, execution of Java UDRs is disabled.

If you have not correctly installed and configured the software for Java in the
server, the JVP fails to start when you start the database server. However, the
database server itself continues to initialize normally. The main database log file
contains a message that indicates the cause of the JVP failure.
Related reference:

VPCLASS configuration parameter (Administrator's Reference)

Chapter 3. Configuration parameters 3-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0147.htm#ids_adr_0147
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0509.htm#ids_sqs_0509
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0189.htm#ids_adr_0189

3-6 J/Foundation Developer’s Guide

Chapter 4. Create Java user-defined routines

A user-defined routine (UDR) is a routine that an SQL statement or another UDR
can invoke. UDRs written in Java code use the server-side implementation of the
IBM Informix JDBC Driver to communicate with the database server.

This section provides the following information about UDRs written in Java code:
v What tasks a UDR can perform
v How to create a UDR

Java user-defined routines
The behaviors of installing and invoking UDRs written in Java code follow the
SQLJ: SQL Routines specification. Every UDR written in Java code maps to an
external Java static method whose class is in a Java Archive (JAR) file that was
installed in a database. The SQL-to-Java data type mapping is done according to
the IBM Informix JDBC Driver specification.

UDRs can be user-defined functions or user-defined procedures, which can return
values or not, as follows:
v A user-defined function returns one or more values and therefore can be used in

SQL expressions.
For example, the following query returns the results of a UDR called area() as
part of the query results:
SELECT diameter, area(diameter) FROM shapes
WHERE diameter > 6

v A user-defined procedure is a routine that optionally accepts a set of arguments
and does not return any values.
A procedure cannot be used in SQL expressions because it does not return a
value. However, you can call it directly, as the following example shows:
EXECUTE PROCEDURE myproc(1, 5)

You can also call user-defined procedures within triggers.

For general information about UDRs, see the IBM Informix User-Defined Routines
and Data Types Developer's Guide.

UDRs written in Java code can perform the following tasks.

Table 4-1. Tasks that can be performed by UDRs written in Java

Type of UDR Purpose

End-user routine A UDR that performs some common task for
an end user

User-defined aggregate A UDR that calculates an aggregate value on
a PROCEDURE particular column or value

Parallelizable UDR A UDR that can run in parallel when
executed within an SQL statement

(UDRs that open JDBC connections cannot
run in parallel.)

© Copyright IBM Corp. 1996, 2013 4-1

Table 4-1. Tasks that can be performed by UDRs written in Java (continued)

Type of UDR Purpose

Cast function A UDR that converts or casts one data type
to another

Operator function A UDR that implements some operator
symbol (such as +, -, or /)

Iterator function A user-defined function that returns more
than one row of data

Iterator functions written in Java code are
supported by using some IBM Informix
extensions.

Functional index A UDR on which an index can be built

Opaque data type support function A user-defined function that tells the
database server how to handle the data of an
opaque data type

Negator function A function that calculates the not operation
for a particular operator or function

You cannot use UDRs written in Java code for any of the following features:
v Commutator functions
v Cost functions
v Operator-class functions
v Selectivity functions
v User-defined statistics functions

Limitations for Java UDRs
Java UDRs have the following limitations in IBM Informix:
v Return arrays for the executeBatch() method are not supported when using the

direct connect method (IfxDirectConnection) for Java UDRs. Only the update
count for the first statement executed in the batch is returned.

v BYTE OUT parameters for Java UDRs are not supported.
v A BYTE value cannot be retrieved from a BYTE column in Java UDRs.

Creating a Java user-defined routine
When you create a Java UDR, you need to write and compile the source code and
then install the finished code in the database server.

To create a Java UDR:
1. Write the UDR, which can use the IBM Informix JDBC Driver methods to

interact with the database server.
2. If the UDR uses any user-defined data types (UDTs), for each UDT write a

Java class that translates between the database server and Java representation
of the type.
This class implements the SQLData interface. For information about
SQLData, see the Informix JDBC Driver 2.0 specification.

3. Write the CREATE FUNCTION or CREATE PROCEDURE statement for
registering the UDR.

4-2 J/Foundation Developer’s Guide

4. Write the deployment descriptor, which contains the SQL statements for
registering the UDR.

5. Prepare the manifest file.
6. Compile the Java source files and collect the compiled code into a JAR file.
7. Create a JAR file that contains the classes, deployment descriptor, and

manifest file.
8. Install the JAR file that contains the UDR in the current database.
9. Execute the UDR.

10. Use tracing and the debugging features to work out any problems in the
UDR.

11. Optimize performance of the UDR.

For general information about how to develop a UDR, see the IBM Informix
User-Defined Routines and Data Types Developer's Guide. The following sections
briefly describe each of these steps in the development of a UDR.

Tip: It is recommended that you use the Informix DataBlade Developers Kit
(DBDK), Version 4.0 or later, to help write UDRs in Java code. DBDK enforces
standards that facilitate migration between different versions of the database
server.

Write a Java user-defined routine
Java UDRs can use the following packages, interfaces, classes, and methods:
v Java packages

UDRs can use all the basic nongraphic Java packages that are in the JDK. That
is, UDRs can use java.util.*, java.io.*, java.net.*, java.rmi.*, and so on.
UDRs cannot use java.awt.*, java.applet.* and other user-interface packages.
For more information about these packages, see the JDK documentation.

v Java Database Connectivity (IBM Informix JDBC Driver) 1.0 API
UDRs can use the Informix JDBC Driver 1.0 API to access the database. For
more information, see “JDBC 1.0 API” on page 5-2.
The $INFORMIXDIR/extend/krakatoa/examples.tar file of online examples
includes a sample of Informix JDBC Driver in a UDR in Informix JDBC
Driver.java.

v Informix JDBC Driver extensions
UDRs can also use Informix extensions to Informix JDBC Driver 1.0 to access
some Informix JDBC Driver 2.0 functionality. For more information, see
Chapter 5, “The Informix JDBC Driver,” on page 5-1.

v Informix extensions for UDRs written in Java code
Certain Informix extensions are available to applications that need to use the
capabilities of the database server. The Informix extensions are in the
com.informix.udr package.

The Informix com.informix.udr package provides extensions to SQLJ that allow
applications to use the capabilities of Informix. Such extensions include logging,
tracing, iterator support, and invocation-state management.

The com.informix.udr package
The com.informix.udr package contains the following public interfaces:
v The com.informix.udr.UDRManager

Chapter 4. Create Java user-defined routines 4-3

v The com.informix.udr.UDREnv

v The com.informix.udr.UDRLog

v The com.informix.udr.UDRTraceable

The following sections describe each of these extensions, which are specific to IBM
Informix.

The com.informix.udr.UDRManager
The UDRManager class provides a method for a UDR instance to obtain its
UDREnv object. This class is defined as follows:
public class UDRManager
{

static UDREnv getUDREnv();
}

The SQLJ: SQL Routines specification, which describes how to use static Java
methods as database UDRs, does not provide a mechanism to save the user state
across invocations. The UDREnv interface is a provided interface that maintains
state information. You can use this state information, for example, to write iterator
UDRs. The UDREnv object is maintained by the thread that manages the execution
of the static method that represents the UDR. Therefore, if the UDR forks its own
threads, the UDRManager.getUDREnv method cannot be directly used by those
secondary threads of the UDR. The UDR must explicitly pass the UDREnv object
to the secondary threads that it creates.

The com.informix.udr.UDREnv
The UDREnv interface consists of methods for accessing and manipulating the
routine state of the UDR. It exposes a subset of the routine-state information in the
MI_FPARAM structure (which holds routine-state information for C UDRs). It also
contains some utilities related to the JVP, such as logging and tracing.

The online examples in $INFORMIXDIR/extend/krakatoa/examples.tar include an
example of the UDREnv class in Env.java.

The UDREnv interface is defined as follows:
public interface UDREnv
{

// Information about the UDR signature

String getName();
String[] getParamTypeName();
String getReturnTypeName();

// For maintaining state across UDR invocations

void setUDRState (Object state);
Object getUDRState();

// For set/iterator processing

public static final int UDR_SET_INIT = 1;
public static final int UDR_SET_RETONE = 2;
public static final int UDR_SET_END = 3;
int getSetIterationState();
void setSetIterationIsDone(boolean value);

// Logging and Tracing

4-4 J/Foundation Developer’s Guide

UDRTraceable getTraceable();
UDRLog getLog();

}

The getName() method returns the name of the UDR as it is registered in the
database.

The getParamTypeName() method returns the SQL data type names for the UDR
arguments and getReturnTypeName() method returns the SQL data type names
for the return value.

If you are using IBM Informix JDBC Driver 2.0, use the getUDRs() method of the
java.sql.DatabaseMetaData class to obtain more information about a data type.

The setUDRState() method sets the user-state pointer for the UDR. It stores a
given object in the context of the UDR instance. The object might contain states
that are shared across UDR invocations (such as an Informix JDBC Driver
connection handle or a UDRLog object). The getUDRState() method returns the
object set by the latest call to setUDRState().

The getSetIterationState() method retrieves the iterator status for an iterator
function. (This method is analogous to the C-language accessor mi_fp_request for
set iterators.) This method returns one of the following values.

Iterator-status constant Meaning Use

UDR_SET_INIT This is the first time that the
iterator function is called.

Initialize the user state for the
iterator function.

UDR_SET_RETONE This is an actual iteration of
the iterator function.

Return items of the active set,
one per iteration.

UDR_SET_END This is the last time that the
iterator function is called.

Free any resources associated
with the user state.

The setSetIterationIsDone() method sets the iterator-completion flag for an iterator
function. Use the setSetIterationIsDone() method to tell the database server
whether the current iterator function has reached its end condition. An end
condition indicates that the generation of the active set is complete. The database
server calls the iterator function with the UDR_SET_RETONE iterator-status value
as long as the end condition has not been set.

The getLog() method returns a UDRLog interface for logging uses.

The getTraceable() method returns a UDRTraceable interface for the UDRs to use.
Related reference:
“The com.informix.udr.UDRLog”
“The com.informix.udr.UDRTraceable” on page 4-6

The com.informix.udr.UDRLog
The UDRLog interface provides a simple logging facility for a UDR. The UDRLog
interface is defined as follows:
public interface UDRLog
{

void log(String msg);
}

Chapter 4. Create Java user-defined routines 4-5

The interface defines a single method, log(), which takes a String argument and
appends it to the JVP log file, which the JVPLOGFILE configuration parameter
specifies.
Related reference:
“The com.informix.udr.UDREnv” on page 4-4
“Generate log messages” on page 4-14

The com.informix.udr.UDRTraceable
The UDRTraceable interface supports zone-based tracing. A trace zone is a
conceptual code component. For example, you can put all UDRs in the same zone
and all general-purpose Java applications in another. Each zone can have its own
trace level that dictates the granularity of tracing. The zones form a hierarchy
where subzones inherit the trace levels of their parents. You can define the zones,
their hierarchical relationships, and trace levels with the following features:
v The settings in the JVP property file (which the JVPPROPFILE configuration

parameter specifies)
v Calls to the UDRTraceable methods at program execution time

The UDRTraceable interface is defined as follows:
public interface UDRTraceable extends Traceable
{

public static final int TRACE_OFF = 0;
public static final int TRACE_MINIMAL = 1;
public static final int TRACE_COARSE = 2;
public static final int TRACE_MEDIUM = 3;
public static final int TRACE_FINE = 4;
public static final int TRACE_SUPERFINE = 5;

int traceLevel(String zone);
void traceSet(String zone, int level);
void tracePrint(String zone, int level, String message);

The traceLevel() method returns the current trace-level setting for the given trace
zone. The predefined trace levels are as follows.

Table 4-2. Predefined trace levels for the traceLevel() method

Trace-level constant Description

TRACE_OFF No trace output is generated

TRACE_MINIMAL Basic tracing

TRACE_COARSE Coarse-grained tracing

TRACE_MEDIUM Medium-grained tracing

TRACE_FINE Fine-grained tracing

TRACE_SUPERFINE For the trace sessions that require all possible
details

The traceSet() method sets the specified trace zone to the specified trace level.

The tracePrint() method sends the specified message to the JVP log file if the trace
zone has a trace level that is greater than or equal to the level parameter. The
JVPLOGFILE configuration parameter specifies the JVP log file name.

4-6 J/Foundation Developer’s Guide

Related reference:
“The com.informix.udr.UDREnv” on page 4-4
“Generate log messages” on page 4-14
“Traceable events” on page 4-15

Creating UDT-to-Java mappings
The routine manager needs a mapping between SQL data values and Java objects
to be able to pass parameters to and retrieve return results from a UDR. The
SQL-to-Java data type mapping is performed according to the IBM Informix JDBC
Driver specification.

For built-in SQL data types, the routine manager can use mappings to existing
Informix JDBC Driver data types.

For any UDTs that your UDR uses, you must create mappings. You can use the
following UDTs in UDRs written in Java code.

User-defined data type SQL statement

Distinct data type CREATE DISTINCT TYPE

Opaque data type CREATE OPAQUE TYPE

Restriction: You cannot use row or collection data types in UDRs written in Java
code.

To create the mapping between a user-defined SQL data type and a Java object:
1. Create a user-defined class that implements the SQLData interface. For more

information, see the Informix JDBC Driver 2.0 specification.
2. Bind this user-defined class to the user-defined SQL data type by using the

setUDTExtName built-in procedure.
Because the SQL statements that create UDTs do not currently provide a clause
for specifying the external name of a UDT, you must define this mapping. Use
the following built-in procedures with the EXECUTE PROCEDURE statement
to define the mapping:
v sqlj.setUDTExtName()

This procedure defines the mapping between a UDT and a Java data type.
v sqlj.unsetUDTExtName()

This procedure removes the SQL-to-Java mapping and removes any cached
copy of the Java class from database server shared memory.
For example:
-- Creating or removing UDT-to-Java Mappings
EXECUTE PROCEDURE sqlj.setUDTExtName(’udt_name’,

’class_name.udtname');
EXECUTE PROCEDURE sqlj.unsetUDTExtName(’udt_name’);

The online examples in $INFORMIXDIR/extend/krakatoa/examples.tar include a
sample implementation of a UDT written in Java code, Circle.java.

Chapter 4. Create Java user-defined routines 4-7

Registering Java user-defined routines
For a UDR to be invoked in an SQL statement, it must be registered in the current
database. Use the CREATE FUNCTION and CREATE PROCEDURE statements to
register UDRs.

Tip: Place your SQL statements for registering UDRs written in Java code in a
deployment descriptor file.

The following sections describe the Java-specific syntax of the CREATE
FUNCTION and CREATE PROCEDURE statements that affect UDR registration.
Related reference:
“Comply with SQLJ” on page 4-16

CREATE FUNCTION statement (SQL Syntax)

CREATE PROCEDURE statement (SQL Syntax)

Specify the JVP
To execute, a UDR written in Java code must run in a JVP. The JVP is a predefined
virtual-processor class that contains a JVM to interpret Java byte codes.

Use the following syntax to specify that a UDR executes in the JVP class:
WITH (class=’jvp’)

By default, most UDRs run in the CPU VP, which does not contain a JVM.
However, a UDR written in Java code runs on a JVP by default. Therefore, the
CLASS routine modifier is optional when you register a UDR written in Java code.
To improve readability of your SQL statements, include the CLASS routine
modifier when you register a UDR.

For example:
-- Specifying the JVP
CREATE PROCEDURE showusers()

WITH (class=’jvp’)
EXTERNAL NAME ’thisjar:admin.showusers()’
LANGUAGE java;

Routine modifiers
The routine modifiers that you specify in the WITH clause of the CREATE
FUNCTION or CREATE PROCEDURE statement tell the database server about
attributes of the UDR.

The database server supports the following routine modifiers for UDRs.

Table 4-3. Routine modifiers for UDRs

Routine modifier Type of UDR

CLASS Accesses to the JVP

HANDLESNULLS Handles SQL null values as arguments

ITERATORS Iterator function

NEGATOR Negator function

NOT VARIANT Might return cached results

PARALLELIZABLE Parallelizable UDR

4-8 J/Foundation Developer’s Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0388.htm#ids_sqs_0388
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0456.htm#ids_sqs_0456

Table 4-3. Routine modifiers for UDRs (continued)

Routine modifier Type of UDR

VARIANT Returns different results when invoked with
the same arguments

The following routine modifiers are C-language specific and do not apply to UDRs
in Java code:
v COSTFUNC
v INTERNAL
v SELFUNC
v STACK
v PERCALL_COST
v SELCOST

Specify the external name
The following diagram details the external-name portion of the CREATE ROUTINE
(or FUNCTION or PROCEDURE) statement for a UDR written in Java code.

�� EXTERNAL NAME Java external name ��

Java external name:

' THISJAR
jar_name

owner .
database .

: class_name.method
package_name .

�

� �

,

()
java_datatype

'

Element Purpose Restrictions

class_name Class to which the UDR belongs Must be an existing
class.

database Database where the jar exists If omitted, defaults
to the current database.

Must be an existing
database.

jar_name JAR identifier as specified in the install_jar()
statement

Must be an existing JAR
name.

java_datatype Name of a Java data type The second column of
the following table shows data types and class
names that you can use for this variable.

Must be a Java data
type.

method Name of the static method of the UDR Must be an existing
method.

owner Owner of the jar. If omitted, default is the
current user.

Must be an existing user
name.

Chapter 4. Create Java user-defined routines 4-9

Element Purpose Restrictions

package_name Name of a package Required if the UDR
classes are in a package.

When used within a deployment descriptor, the THISJAR keyword automatically
expands to the SQLJ-defined three-part JAR path.

The following table shows mapping between SQL data values and Java types. Use
the values in the second column for the java_datatype variable.

Table 4-4. Mapping between SQL data values and Java types

SQL data type Java type

CHAR(1) char

CHAR(1) java.lang.Character

CHAR() Java.lang.String

CHARACTER() java.lang.String

CHARACTER VARYING() java.lang.String

VARCHAR java.lang.String

LVARCHAR java.lang.String

SMALLINT short

SMALLINT java.lang.Short

INTEGER int

INTEGER java.lang.Integer

INT8 long

INT8 java.lang.Long

SMALLFLOAT float

SMALLFLOAT java.lang.Float

REAL float

REAL java.lang.Float

FLOAT double

FLOAT java.lang.Double

DOUBLE PRECISION double

DOUBLE PRECISION java.lang.Double

DECIMAL java.math.BigDecimal

MONEY java.math.BigDecimal

NUMERIC java.math.BigDecimal

BOOLEAN boolean

BOOLEAN java.lang.Boolean

DATE java.sql.Date

DATETIME HOUR TO SECOND java.sql.Time

DATETIME YEAR TO FRACTION java.sql.Timestamp

INTERVAL java.lang.String

BLOB java.sql.Blob

CLOB java.sql.Clob

4-10 J/Foundation Developer’s Guide

A deployment descriptor
A deployment descriptor allows you to include in a JAR file the SQL statements
for creating and dropping the UDRs. Both sqlj.install_jar() and sqlj.remove_jar()
take parameters that, when set appropriately, cause the procedure to search for
deployment descriptor files in the JAR file.

You can include the following SQL statements in a deployment descriptor:
v CREATE FUNCTION
v CREATE PROCEDURE
v GRANT
v DROP FUNCTION
v DROP procedure

When you execute sqlj.install_jar() or sqlj.remove_jar(), the database server
automatically performs the actions described by any deployment-descriptor files
that exist in the JAR file.

Important: The transaction handling of the current database controls the SQL
statements that the deployment descriptor executes. Use a BEGIN WORK
statement to begin a transaction before you execute the sqlj.install_jar() or
sqlj.remove_jar() procedure. In this way, a successful deployment can be
committed, while a failed deployment can be rolled back.

For example, you might prepare a file, deploy.txt, that includes the following
statements:
SQLActions[] = {
"BEGIN INSTALL

CREATE PROCEDURE showusers()
WITH (class=’jvp’)
EXTERNAL NAME ’thisjar:admin.showusers()’
LANGUAGE JAVA;

GRANT EXECUTE ON PROCEDURE showusers() to informix;
END INSTALL",

"BEGIN REMOVE
DROP PROCEDURE showusers();

END REMOVE"

For details on deployment-descriptor files, refer to the SQLJ: SQL Routines
specification.
Related reference:

sqlj.remove_jar (SQL Syntax)

sqlj.install_jar (SQL Syntax)

A manifest file
The manifest file specifies the names of the deployment descriptor files that a JAR
file contains. The m option of the jar command incorporates the manifest file into
the default manifest of the JAR.

The following example shows the manifest file, manifest.txt, for a JAR with two
deployment descriptors:

Chapter 4. Create Java user-defined routines 4-11

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1811.htm#ids_sqs_1811
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1808.htm#ids_sqs_1808

Name: deploy1.txt
SQLJDeploymentDescriptor: TRUE

Name: deploy2.txt
SQLJDeploymentDescriptor: TRUE

The following example shows the jar command that incorporates manifest.txt
into a JAR file:
jar cvmf manifest.txt admin.jar deploy*.txt *.class

Compiling the Java code
A UDR written in Java code is implemented by a static method in a Java class.

To make the Java source code into an executable format:
1. Compile the java files with the javac command to create class files.
2. Use the jar command to collect a set of class files into a JAR file.

For example:
makefile for admin class
JAR_NAME = admin.jar
all:

javac *.java
jar cvmf manifest.txt $(JAR_NAME)

deploy.txt *.class
mv $(JAR_NAME) $(INFORMIXDIR)/jars

cleanup:
rm -f *.class $(INFORMIXDIR)/jars/$(JAR_NAME)

JAR files contain Java classes that in turn contain static methods corresponding to
SQL UDRs. JAR files can also contain auxiliary classes and methods that are used
by the UDRs (for example, to perform SQL-to-Java type mapping).

Install a JAR file
JAR files contain the code for the UDRs. For an SQL statement to be able to
include a UDR written in Java code, you must install the JAR file in the current
database. When a JAR file is installed, the routine manager of the database server
can load the appropriate Java class when the UDR is invoked.

To install a JAR file on IBM Informix, the JAR file must be have READ permissions
for user informix.

If the IFX_EXTEND_ROLE configuration parameter is set to 'On' or 1, authorization
to use the built-in routines that manipulate shared objects is available only to the
Database Server Administrator, and to users to whom the DBSA has granted the
EXTEND role. For IBM Informix 10.00.xC4 and later releases, IFX_EXTEND_ROLE
is enabled by default.

For databases in which this security feature is not needed, see the description of
IFX_EXTEND_ROLE in your IBM Informix Administrator's Reference for information
about how the DBSA can disable this configuration parameter by resetting it.

To manage JAR files, use the EXECUTE PROCEDURE statement with the following
SQLJ built-in procedures:
v sqlj.install_jar(jar_url varchar(255), jar_id varchar(255), deploy_flag int)

4-12 J/Foundation Developer’s Guide

Before a Java static method can be mapped to a UDR, the class file that defines
the method must be installed in the database. The install_jar() procedure installs
a Java JAR file in the current database and assigns it a JAR identifier (or JAR ID)
for use in subsequent CREATE FUNCTION or CREATE PROCEDURE
statements.
For example:
-- Installing a jar file
EXECUTE PROCEDURE sqlj.install_jar
(’file:$INFORMIXDIR/jars/admin.jar’,
’admin_jar’, 1);

v sqlj.replace_jar(jar_url varchar(255), jar_id varchar(255))

The replace_jar() procedure replaces a previously installed JAR file with a new
version.

v sqlj.remove_jar(jar_id varchar(255), undeploy_flag int)

The remove_jar() procedure removes a previously installed JAR file from the
current database.

v sqlj.alter_java_path(jar_id varchar(255), path lvarchar)

The alter_java_path() procedure specifies the java-file search path to use when the
routine manager resolves related Java classes for the JAR file of a UDR.

For details about jar-naming conventions, see the SQLJ: SQL Routines specification.

All SQLJ built-in procedures are in the sqlj schema.

Both sqlj.install_jar() and sqlj.remove_jar() take a parameter that, when set
appropriately, causes the procedure to execute the deployment descriptor files in
the JAR file.

For more information about how to install JAR files, see the SQLJ: SQL Routines
specification.

The SQLJ: SQL Routines specification has detailed tutorials on writing, registering,
installing, and calling routines written in Java code.
Related reference:

sqlj.remove_jar (SQL Syntax)

sqlj.install_jar (SQL Syntax)

Update JAR file names
The script update_jars.sql is provided to update the three-part names of installed
JAR files when you rename the database to which the JAR file belongs. You must
execute the update_jars.sql script in the database after you rename it. You need
to execute the update_jars.sql script only if you rename a database that has one
or more installed JAR files.

Execute the user-defined routine
After you register a UDR as an external routine in the database, the UDR can be
invoked in SQL statements such as:
v In the select list of a SELECT statement
v In the WHERE clause of a SELECT, UPDATE, or DELETE statement
v With the EXECUTE PROCEDURE or EXECUTE FUNCTION statement

Chapter 4. Create Java user-defined routines 4-13

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1811.htm#ids_sqs_1811
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1808.htm#ids_sqs_1808

The routine manager of the database server handles the execution of the UDR.
Related concepts:

Routine management (UDR and Data Type Guide)

Debugging and tracing
As with a UDR written in C, a UDR written in Java code might generate the SQL
messages for UDR and DataBlade API errors when it executes. UDRs written in
Java code adopt the IBM Informix JDBC Driver error-reporting mechanism as well.

The UDR throws an SQLException in case of an execution error such as a failed
Informix JDBC Driver call. The routine manager detects such exceptions and
translates it into a normal UDR error message.

In addition, the UDR can generate Java trace outputs and stack dumps at run time.
These additional Java messages are written to the JVP log file. The JVP log file is
separate from the main database server log file, online.log. No JVP-specific
messages appear in the database log. The JVP log file is intended to be the main
destination for logging and tracing messages that are specific to the JVP and the
UDR. This log is essential for IBM support to perform debugging efforts. You
should preserve it when possible.

Generate log messages
Log messages in the JVP log file can originate from any of the following sources:
v The JVP

JVP messages report such conditions as:
– JVP status (such as boot progress)
– Warnings about missing or limited resources
– Execution errors (such as being unable to locate a UDR)
– Internal errors (such as unexpected exceptions)
JVP log messages that report serious errors usually print a Java-method stack
trace.

v The UDR
Log messages from the UDR are messages that make sense only in the JVP and
Java domain or that can complement the messages from SQL or the database
server with annotations and references that are specific to Java code or the JVP.
Use the following methods to write messages to the JVP log file from within a
UDR:
– UDRLog.log()

– UDRTraceable.tracePrint()

By default, the JVP uses the following log file:
/usr/informix/jvp.log

where ‘.’ is the current directory of the user who runs oninit.

You can change this default log file with the JVPLOGFILE parameter in the
onconfig configuration file. Set this configuration parameter to the name of the log
file that you want the JVP to use. For example, the following line sets the log file
to /usr/jvp.log:
JVPLOGFILE /usr/jvp.log

4-14 J/Foundation Developer’s Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.udr.doc/ids_udr_011.htm#ids_udr_011

Restriction: Do not use the JVP log for error messages that need to be reported to
the client application or to the main online.log file. Instead, the method throws an
SQLException.
Related reference:
“The com.informix.udr.UDRLog” on page 4-5
“The com.informix.udr.UDRTraceable” on page 4-6

The administrative tool
The IBM Informix JDBC Driver includes a built-in iterative UDR that is a limited
administrative tool, informix.jvpcontrol(). The database server enables the
informix.jvpcontrol() UDR when the JVPPROPFILE configuration parameter
specifies a starting port number by using the JVP.monitor.port entry.

You start informix.jvpcontrol() with the following syntax:
EXECUTE FUNCTION informix.jvpcontrol (command lvarchar);

The command can be one of the following forms, where vpid is the virtual processor
ID:
v threads vpid

v memory vpid

You can use the onstat -g glo command to list the vpid numbers.

The threads vpid option

The threads vpid form lists the threads running on the Java VP whose ID is vpid.
For example, if command is threads 4, the UDR might return the following output:

(expression) Thread[informix.jvp.dbapplet.impl.JVPControl#0,
9,informix.jvp.dbapplet.impl.JVPControl#0],UDR=JVPControlUDR(java.lang.String), state = EXECUTE
(expression) Thread[JVP control monitor thread,10,main]
(expression) Thread[main,10,main]
(expression) Thread[SIGQUIT handler,0,system]
(expression) Thread[Finalizer thread,1,system]
5 row(s) retrieved.

The memory vpid option

The memory vpid form lists memory use on the Java VP whose ID is vpid. For
example, if command is memory 4, the UDR might return the following output:
(expression) Memory 16521840 bytes free, 16777208 bytes total
1 row(s) retrieved.

Debugging a Java user-defined routine
To debug a UDR written in Java code, you can connect the Java debugger, jdb, to
the embedded JVM for debugging. The agent password that jdb requires is printed
in the message log.

Traceable events
The database server provides a fixed set of system trace events such as UDR
sequence initialization, activation, and shutdown. You can also generate
application-specific traces.

Chapter 4. Create Java user-defined routines 4-15

Related reference:
“The com.informix.udr.UDRTraceable” on page 4-6

Find information about user-defined routines
The system catalog tables contain information about UDRs. The LANGUAGE
clause of the CREATE FUNCTION or CREATE PROCEDURE statement tells the
database server in which language the UDR is written. For UDRs in Java code, the
LANGUAGE clause must be as follows:
LANGUAGE JAVA

The database server stores valid UDR languages in the sysroutinelangs table. The
information includes an integer, the language identifier, in the langid column. The
following lines show the entry in the sysroutinelangs system catalog table for the
Java language:
langid 3
langname java
langinitfunc udrlm_java_init
langpath $INFORMIXDIR/extend/krakatoa/lmjava.so
langclass jvp

The Java language has the same default privilege as the C language. The following
entry in the syslangauth system catalog table specifies the privileges for the Java
language:
grantor informix
grantee DBA
langid 3
langauth u

By default, both user informix and the owner of the database are allowed to create
UDRs in Java code. If you attempt to execute the CREATE FUNCTION or CREATE
PROCEDURE statement as some other user, the database server generates an error.

To allow other users to register UDRs in the database, user informix can grant the
usage privilege on the Java language with the GRANT statement. The following
GRANT statement allows any user who has Resource privileges on the database to
register UDRs written in Java code:
GRANT USAGE ON LANGUAGE JAVA TO public

Related reference:

GRANT statement (SQL Syntax)

Comply with SQLJ
The syntax of Java UDRs that the IBM Informix database server supports usually
follows the SQLJ specification. Where syntactic differences and missing features
occur, the differences are mostly due to differences between Informix SQL and the
SQL-3 standards. The following table summarizes the level of SQLJ compliance.

Feature (SQLJ section
#) Function Syntax

Definition and
rules Comments

jar names (3.1) Yes Yes Yes

Java path (3.2) Yes Yes Yes

4-16 J/Foundation Developer’s Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0828.htm#ids_sqs_0828

Feature (SQLJ section
#) Function Syntax

Definition and
rules Comments

Install, replace, or
remove JAR files
(4.1-4.3)

Yes Yes Yes (required)
No (optional)

No support of the
optional replacement
jar validation rules.

Alter Java path (4.4) Yes Yes Yes

Create procedure,
Create function (5.1)1

Yes Yes Yes (required)
No (optional)

No support of the
optional create time jar
validation and the Java
main method.

Drop procedure, Drop
function (5.2)

Yes Yes Yes

Grant or revoke jar
(5.3-5.4, optional)

No No No

SQLJ function call (5.5) Yes Yes Yes

SQLJ procedure call
(5.6)

Yes Yes Yes

System properties and
default connections

No No No

Deployment-
descriptor files
(optional)

Yes No No

Status codes, exception
handling (7.1-7.2)

Yes Yes Yes

Note:

1. For information about modifiers for Create Procedure and Create Function, see
“Unsupported modifiers” and “Unsupported optional modifiers” on page 4-18.

Related reference:
“Registering Java user-defined routines” on page 4-8

Unsupported modifiers
Some modifiers for CREATE PROCEDURE and CREATE FUNCTION are not
supported in this version of the database server.

IBM Informix UDRs do not support the following routine modifiers of the SQLJ
specification.

Table 4-5. Unsupported modifiers

Modifier How to handle the modifier

Read SQL data No Informix equivalent

Contains SQL No Informix equivalent

Modifies SQL data No Informix equivalent

No SQL No Informix equivalent

Return null on null input Informix default for external routines

Call on null input Use the Informix modifier HANDLESNULLS

Deterministic Use the Informix modifier NOT VARIANT

Nondeterministic Use the Informix modifier VARIANT

Chapter 4. Create Java user-defined routines 4-17

Table 4-5. Unsupported modifiers (continued)

Modifier How to handle the modifier

Returns Java data type in Java method
signature

No Informix equivalent

In parameter Informix default; no need to specify the
modifier

Unsupported optional modifiers
IBM Informix UDRs do not support the following optional routine modifiers of the
SQLJ specification:
v Dynamic result sets
v Inout parameter
v Output parameters in callable statements

4-18 J/Foundation Developer’s Guide

Chapter 5. The Informix JDBC Driver

All UDRs written in Java code can access the database server data through the IBM
Informix JDBC Driver application programming interface (API). This section briefly
describes the Informix implementation of the Informix JDBC Driver API and the
server-side Informix JDBC Driver.

Generally, the IBM Informix server-side Informix JDBC Driver derives from the
client-side driver so that the two drivers are essentially the same. Java UDRs
require some differences, however, to use the Informix JDBC Driver from the
server side. This section describes the public Informix JDBC Driver interfaces and
Informix JDBC Driver subprotocols that the Informix JDBC Driver provides
specifically for server-side Informix JDBC Driver applications, and restrictions that
apply to server-side Informix JDBC Driver applications. For principal
documentation of the IBM Informix JDBC Driver, see the IBM Informix JDBC Driver
Programmer's Guide.

Public JDBC interfaces
IBM Informix JDBC Driver defines the com.informix.jdbc.IfxConnection and
com.informix.jdbc.IfxProtocol public interfaces.

The client and server drivers for Informix JDBC Driver each have their own
implementation of the preceding interfaces. The client driver provides access to
databases from Java applications. The server driver provides database access from
within the server through UDRs written in Java code.

The com.informix.jdbc.IfxConnection

The IfxConnection interface is a subinterface of java.sql.Connection with methods
specific to Informix added. The com.informix.jdbc.IfxDirectConnection class
implements the com.informix.jdbc.IfxConnection interface. This interface provides
a connection to the current database server from within a UDR. The connection
corresponds to a server-query context and is passed to the UDR by the SQLJ
language manager. The transaction context of this connection is that of the query
issuing the UDR call, and the call to create a UDR connection does not specify any
database or user information.

The com.informix.jdbc.IfxProtocol

The IfxProtocol interface represents the protocol and data exchange between the
client application and an Informix database server. It sends and processes the
messages and data flow between the client and database server. The
com.informix.jdbc.IfxDirectProtocol class implements the IfxProtocol interface. It
uses the DataBlade API (DAPI) to access database resources.

The informix-direct subprotocol
The IBM Informix JDBC Driver DriverManager class provides services to connect
to Informix JDBC Driver drivers. It assists in loading and initializing a requested
Informix JDBC Driver. A UDR written in Java code uses the registerDriver()
method of DriverManager to register itself and to redirect user messages to the
DriverManager logging facility.

© Copyright IBM Corp. 1996, 2013 5-1

A UDR written in Java code or a Java client application that wants to connect to
the database calls the DriverManager.getConnection() method to obtain a
connection handle. This method takes a URL string as an argument. The Informix
JDBC Driver management layer attempts to locate a driver that can connect to the
database that the URL represents. To perform this task, the Informix JDBC Driver
management layer asks each driver in turn if it can connect to the specified URL.
Each driver examines the URL and determines if it supports the specified Informix
JDBC Driver subprotocol. The Informix implementation of UDRs written in Java
code supports the informix-direct subprotocol in the database server.

For the informix-direct subprotocol, the Informix JDBC Driver loads and uses the
following classes:
v The connection class, which you can specify with the ConnectionClass property.

The connection class must implement IfxConnection.
v The protocol class, which you can specify with the ProtocolClass property. This

protocol class must implement IfxProtocol.

These specifiers are optional in the URL string. If you do not specify
ConnectionClass or ProtocolClass, the Informix JDBC Driver can determine them
from the subprotocol.

The following call opens a UDR connection with the class IfxDirectConnection. It
uses the IfxDirectProtocol as the protocol for processing queries on the current
database.
DriverManager.getconnection("jdbc:informix-direct:"+
"//ConnectionClass="com.informix.jdbc.IfxDirectConnection;"+
"//ProtocolClass=com.informix.jdbc.IfxDirectProtocol");

The UDR connection can only be opened by the thread that executes the UDR
static method. In this way, the database server can ensure that the proper
transaction context is used for the UDR.

Host a Java application server with Solano-style connections
IBM Informix can host a JAVA application server, such as an EJB container or
custom HTTP server, within the database server by using a Solano-style database
server connection string. For example:
jdbc:informix-direct:/stores_demo:user=user;password=passwd;

If you use a Solano-style connection string, a Java UDR can run in the database
server and communicate with both the database server and its own client
connections (for example by listening on a port and communicating with web
browsers). This can lead to performance benefits and greatly extends the
functionality of Informix.

JDBC 1.0 API
The IBM Informix JDBC Driver 1.0 API consists of the following Java classes and
interfaces that you can use to open connections to particular databases, execute
SQL statements, and process the results.

Table 5-1. Java classes and interfaces

Classes Interfaces

java.sql.DataTruncation java.sql.CallableStatement

5-2 J/Foundation Developer’s Guide

Table 5-1. Java classes and interfaces (continued)

Classes Interfaces

java.sql.Date java.sql.Connection

java.sql.DriverManager java.sql.DatabaseMetaData

java.sql.DriverPropertyInfo java.sql.Driver

java.sql.SQLException java.sql.PreparedStatement

java.sql.SQLWarning java.sql.ResultSet

java.sql.Time java.sql.ResultSetMetaData

java.sql.Timestamp java.sql.Statement

java.sql.Types None

The following Informix JDBC Driver 1.0 classes and interfaces are the most
important for the development of UDRs in Java code:
v java.sql.DriverManager handles loading of drivers and provides support for

creating new database connections.
v java.sql.Connection represents a connection to a particular database.
v java.sql.Statement acts as a container for executing an SQL statement on a given

connection.
v java.sql.ResultSet controls access to the row results of a given statement.
v java.sql.PreparedStatement handles execution of a pre-compiled SQL statement.
v java.sql.CallableStatement handles execution of a call to a database SPL routine.

JDBC 2.0
IBM Informix JDBC Driver 2.0 is a major leap from Informix JDBC Driver 1.0 in
that it supports extensible data types and large objects.

The following extensions to Informix JDBC Driver 1.0 are provided to support
user-defined data types (UDTs) with JDK 1.1.x:
v java.sql.Blob

v java.sql.Clob

v java.sql.SQLData

v java.sql.SQLInput

The following read/write methods are not supported for opaque types:
– readString()

Use the Informix extension readString(len).
– readInterval()

– readBytes()

Use the Informix extension readBytes(len).
– readCharacterStream()

– readAsciiStream()

– readBinaryStream()

– readObject()

– readRef()

– readArray()

v java.sql.SQLOutput

Chapter 5. The Informix JDBC Driver 5-3

The following read/write methods are not supported for opaque types:
– writeString()

Use the Informix extension writeString(len).
– writeInterval()

– writeBytes()

Use the Informix extension writeBytes(len).
– writeCharacterStream()

– writeAsciiStream()

– writeBinaryStream()

– writeObject()

– writeRef()

– writeArray()

Support for opaque data types
Certain IBM Informix JDBC Driver 2.0 interfaces must be extended to support
opaque data types. Some of the methods need an additional length argument to
read or write an opaque data type because the Informix JDBC Driver cannot look
inside an opaque data type to determine the field lengths.

The Informix implementation of UDRs written in Java code provides the following
extensions of the Informix JDBC Driver user-defined-type (UDT) support:
v java.sql.SQLUDTInput

v java.sql.SQLUDTOutput

java.sql.SQLUDTInput

This class extends java.sql.SQLInput with the following methods:
public String readString(int maxlen) throws SQLException;
public byte[] readBytes(int maxlen) throws SQLException;

java.sql.SQLUDTOutput

This class extends java.sql.SQLOutput with the following methods:
public void writeString(String str, int maxlen) throws SQLException;
public void writeBytes(byte[] b, int maxlen) throws SQLException;

Related reference:
Chapter 6, “Opaque user-defined data types,” on page 6-1

Interfaces updated for Java 2.0
The IBM Informix implementation of UDRs written in Java code also defines the
following public interfaces:
v com.informix.PreparedStatement2

This class includes the Informix JDBC Driver 2.0 methods setBlob() and
setClob().

v com.informix.ResultSet2

This class includes the Informix JDBC Driver 2.0 methods getBlob() and
getClob().

v com.informix.Types2

This class includes the type codes for the smart-large-object data types, BLOB
and CLOB.

5-4 J/Foundation Developer’s Guide

An example that shows query results
The following example implements a procedure called showusers(), which runs a
query, retrieves all rows from the returned result, and prints the rows in the JVP
log file:
import com.informix.udr.*;
import java.sql.*;

public class admin
{

public static void showusers() throws SQLException
{

UDREnv env = UDRManager.getUDREnv();
UDRLog log = env.getLog();
String name = env.getName();

Connection conn = DriverManager.getConnection
("jdbc:informix-direct:");

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery

("SELECT * FROM Users");
log.log("User information:");

while (rs.next())
{

String UID = rs.getString(1);
String Password = rs.getString(2);
String Last = rs.getString(3);
String First = rs.getString(4);

// Write out the UDR name followed by the
// columns values
String line = name + " : " +

UID + " " + Password + " " + Last + " " + First;
log.log(line);

}
stmt.close();
conn.close();

}
}

After you create and install the JAR file that contains this Java method, the next
task is to register the showusers() method as a UDR by giving it an SQL procedure
signature. For the CREATE PROCEDURE statement that registers showusers(), see
“Specify the JVP” on page 4-8.

The syntax for invoking a UDR written in Java code is no different from a
standard UDR call, as follows:
EXECUTE PROCEDURE showusers()

Chapter 5. The Informix JDBC Driver 5-5

5-6 J/Foundation Developer’s Guide

Chapter 6. Opaque user-defined data types

This section describes how to use opaque user-defined data types (UDTs). This
section describes the default SQLData interface and how to override the default.

It provides the following information:
v The SQLData Interface
v SQL statements to create default I/O routines
v IBM Informix extensions to SQLInput and SQLOutput interfaces
v How to override the default I/O methods
v Required I/O function sets and related data types
v Limitations to Streams
Related reference:
“Support for opaque data types” on page 5-4

Using the SQLData interface
To implement a complete UDT in Java code, you must supply a set of
data-formatting methods that convert to and from the various representations of
the data type. These methods perform input and output operations for the data
type such as converting text input to the internal structure that the database server
uses.

All the database server I/O functions manipulate data formats that can be
represented as Java streams. The streams encapsulate the data and implement
methods needed to parse the source format or write the destination format.

To implement an opaque UDT and use the default data-translation I/O methods:
1. Supply the IBM Informix JDBC Driver SQLData interface: readSQL(),

writeSQL(), and getSQLTypeName() methods.
2. Create the SQL routine and cast definitions for the I/O functions by calling

sqlj.registerJUDTfuncs(varchar(255)), where the varchar argument is the SQL
name of the type you are registering.
For example, after creating the UDT Record3 with the following statements:
create opaque type Record3 (internallength = variable,

alignment = 8, maxlen = 2048, cannothash);
grant usage on type Record3 to public;
execute procedure setUDTExtName("Record3",

"informix.testclasses.jlm.udt.Record3");

You could create the default casts and I/O functions with the following
statement:
execute procedure registerJUDTfuncs(“Record3”);

The readSQL() method converts a database type to a Java object and the
writeSQL() method converts a Java object to the database type. The system
supplies the appropriate stream type at run time.

You can back out default I/O functions and casts by calling
sqlj.unregisterJUDTfuncs(varchar(255)), where the varchar argument is the SQL
name of the type, as the following example shows:

© Copyright IBM Corp. 1996, 2013 6-1

execute procedure unregisterJUDTfuncs(“Record3”);

Default input/output routines
Because this interface uses Java, all the SQL I/O support functions are predefined
when you register the UDT. You only need to supply the required SQLData
implementation.

IBM Informix supplies extensions to the Stream arguments of SQLData methods to
suit various uses. With these extensions, you can build I/O functions for a new
Java UDT. All that you must do to implement any of the required function sets is
select the Stream type.

Informix also supplies default Input and Output processing methods in Java code
that are used to implement all UDT I/O operations. The database server contains
these default I/O methods and executes them just like any other Java UDR. These
methods use information in the SQL UDR definition to select the correct Streams
and instantiate the right user-defined type objects at execution time.

“The circle class example” on page 6-4 illustrates the use of the SQLData interface.

SQL definitions for default I/O user-defined routines
After you register the Java UDT with the database server by using the SQL
procedure setUDTExtName(), you can create SQL functions and casts for it, using
either the default I/O wrapper methods or explicit methods in your Java UDT
class.

For the default I/O wrapper methods, the registerJUDTfuncs function creates the
SQL functions shown in the following example, where SQLType is the SQL UDT
name, JavaType is the JUDT name, and SQLBuffer is the SQL transport type being
converted, that is, SENDRECV:

-- Receive function

CREATE IMPLICIT CAST (SENDRECV as SQLUDT with
IfxJavaSENDRECVInJavaUDT);

CREATE FUNCTION IfxJavaSENDRECVInJavaUDT (in SENDRECV)
RETURNS SQLUDT

EXTERNAL NAME
'com.informix.jdbc.IfxDataPointer.IfxDataInput(java.lang.Object)'
LANGUAGE java;
GRANT EXECUTE ON FUNCTION IfxJavaSENDRECVInJavaUDT TO PUBLIC;

-- Send function

CREATE EXPLICIT CAST (SQLUDT as SENDRECV with
IfxJavaSENDRECVOutJavaUDT);

CREATE FUNCTION IfxJavaSENDRECVOutJavaUDT(out SQLUDT) RETURNS
SENDRECV

EXTERNAL NAME 'com.informix.jdbc.IfxDataPointer.IfxDataOutput(java.sql.SQLData)'
LANGUAGE java NOT VARIANT;
GRANT EXECUTE ON IfxJavaSENDRECVOutJavaUDT TO PUBLIC;

The default Input method cannot be declared not variant because it might need to
perform SQL queries to instantiate the correct Java UDT class.

Informix extensions to SQLInput and SQLOutput
Some of the standard SQLInput and SQLOutput Stream methods need an
additional length argument to read or write an opaque data type because the IBM
Informix JDBC Driver cannot determine the field lengths for an opaque type.

6-2 J/Foundation Developer’s Guide

Informix database server provides the IfmxUDTSQLInput and
IfmxUDTSQLOutput extensions, which inherit from the standard Informix JDBC
Driver 2.0 SQLInput and SQLOutput interfaces.

IfmxUDTSQLInput
The IfmxUDTSQLInput interface extends SQLInput, which contains the following
public methods:
String readString()
boolean readBoolean()
byte readByte()
short readShort()
int readInt()
long readLong()
float readFloat()
double readDouble()
java.math.BigDecimal readBigDecimal()
byte[] readBytes()
java.sql.Date readDate()
java.sql.Time readTime()
java.sql.Timestamp readTimestamp()
java.io.Reader readCharacterStream()
java.io.InputStream readAsciiStream()
java.io.InputStream readBinaryStream()
Object readObject()
Ref readRef()
Blob readBlob()
Clob readClob()
Array readArray()
boolean wasNull()

The IfmxUDTSQLInput interface adds the following IBM Informix methods:
String readString(int maxlen)
byte[] readBytes(int maxlen)
Interval readInterval()
int available();
int length();
IfxUDTInfo getUDTInfo(int xid)
IfxUDTInfo getUDTInfo(String name, String owner)

All the readXXX() methods throw an SQLException when they detect parsing
errors. Use the readXXX() methods to convert the buffer of the given Input stream
into a Java object. When the Input stream is empty, each read method throws an
SQLException with e.getErrorcode equal to -79772 or
IfxErrMsg.S_BADSQLDATA. However, you can use the length() and available()
methods to determine when the Input stream is exhausted while converting
variable length UDTs to Java objects.

IfmxUDTSQLOutput
The IfmxUDTSQLOutput interface extends SQLOutput, which contains the
following public methods:
void writeString(String x)
void writeBoolean(boolean x)
void writeByte(byte x)
void writeShort(short x)
void writeInt(int x)
void writeLong(long x)
void writeFloat(float x)
void writeDouble(double x)
void writeBigDecimal(java.math.BigDecimal x)
void writeBytes(byte[] x)
void writeDate(java.sql.Date x)
void writeTime(java.sql.Time x)

Chapter 6. Opaque user-defined data types 6-3

void writeTimestamp(java.sql.Timestamp x)
void writeCharacterStream(java.io.Reader x)
void writeAsciiStream(java.io.InputStream x)
void writeBinaryStream(java.io.InputStream x)
void writeObject(SQLData x)
void writeRef(Ref x)
void writeBlob(Blob x)
void writeClob(Clob x)
void writeStruct(Struct x)
void writeArray(Array x)

The IfmxUDTSQLOutput interface adds the following IBM Informix methods:
void writeString(String x, int length)
void writeBytes(byte[] b, int length)
void writeInterval(Interval intrvl)
int available()
int length()
IfxUDTInfo getUDTInfo(int xid)
IfxUDTInfo getUDTInfo(String name, String owner)

All the writeXXX() methods throw an exception when they encounter conversion
errors. Use the Stream write() methods to convert a Java object into the given
Output buffer. The length() method returns the number of bytes that remain in the
buffer. The Informix JDBC Driver 2.0 class files describe the SQLOutput definition.

The circle class example
The circle class example implements a fixed-length opaque data type.

The circle data type includes X and Y coordinates (xCoord and yCoord), which
represent the center of the circle and a radius value (radius). The readSQL method
reads the input stream SQLInput to obtain the xCoord, yCoord, and radius values
and saves the data type name from String typename. The writeSQL method writes
the xCoord, yCoord, and radius values to the stream SQLOutput.
package informix.testclasses.jlm;

import java.sql.*;

public class circle implements SQLData
{
public int xCoord;
public int yCoord;
public int radius;
private String type;

public String getSQLTypeName()
{

return type;
}

public void readSQL (SQLInput stream, String typeName)
throws SQLException

{
xCoord = stream.readInt();
yCoord = stream.readInt();
radius = stream.readInt();

type = typeName;
}

public void writeSQL (SQLOutput stream)
throws SQLException

{
stream.writeInt(xCoord);

6-4 J/Foundation Developer’s Guide

stream.writeInt(yCoord);
stream.writeInt(radius);

}
}

The SQLData methods use I/O streams to translate between C and Java
representations. The following C-language structure shows the C definition for the
circle:
typedef struct
{

int x;
int y;
int radius;

} circle;

Override the default I/O methods
If the default methods are not sufficient because, for example, you want to include
parentheses and other delimiting characters in the text representation, you can
explicitly override the defaults with definitions of your own, after you register the
Java UDT.

I/O function sets and related types
The following table specifies the I/O functions that you must implement for the
nondefault case, and their related data types.

Table 6-1. Nondefault I/O functions and types table

Function set
Data
format SQL buffer type Java buffer type

Java stream
implementation

Server UDR UDT Internal
Representation

IfxDataPointer IfmxSQLInStream
IfmxSQLOutStream

Input Output Text LVARCHAR String (String
Buffer)

IfmxTextInStream
IfmxTextOutStream

Send Receive Client
Binary

SENDRECV IfxDataPointer IfmxSRInStream
IfmxSROutStream

Import Export Text IMPEXP IfxDataPointer IfmxIEInsStream
IfmxIEOutStream

Binary Import
Export

Client
Binary

IMPEXBIN IfxDataPointer IfmxIEBinStream
IfmxIEBOutStream

The columns in the preceding table represent the following:
v Function set

Names the type of function in conformance with UDT specifications
v Data format

A conceptual description of the format of the data in the SQL buffer that is being
converted

v Buffer type
Names the actual data types being read or written
– SQLBuffer is the SQL (or database-server) type for this data.
– JavaBuffer is the Java type to which the SQLBuffer is transformed before

being passed to (or returned from) the I/O method.

Chapter 6. Opaque user-defined data types 6-5

It is an intermediate type that is contained in and manipulated by a Java
Stream. It is also the argument type for input methods and the return type for
output methods.

v Java Stream implementation
Names the actual stream type that is passed to the SQLData interface when the
default I/O functions are used. Each of the streams implements
IfmxUDTSQLInput or IfmxUDTSQLOutput.

IfxDataPointer
The IfxDataPointer class encapsulates the IBM Informix C-language representation
of a type and its corresponding data buffer. This is usually a database server buffer
structure, with a few attributes extracted for easy access in Java code.

This class is used to transport the nontextual SQL data types to and from the I/O
methods and is generally managed by an IfmxUDTSQLInput or
IfmxUDTSQLOutput stream.

Methods in both streams might throw an SQLException with the e.getErrorcode
equal to -79700 or IfxErrMsg.S_MTHNSUPP, if they are not implemented. These
methods are generally not needed on the database server side but are useful in the
client Informix JDBC Driver code.

For more documentation of these streams, see the IBM Informix JDBC Driver
Programmer's Guide. For an example of using these streams, see “Usage example”
on page 6-8.

Stream implementations
This section briefly describes the Java classes that implement the
IfmxUDTSQLInput and IfmxUDTSQLOutput interfaces.

IfmxSQLInStream and IfmxSQLOutStream

These streams convert to and from the internal data representation that the
database server uses.

IfmxTextInStream and IfmxTextOutStream

These streams convert to and from a textual data representation for Input and
Output functions. does not support cross-locale Input and Output routines; all
strings are assumed to be in US English.

These streams delimit each component of the composite type with a white space
between record elements. The SQL type is an LVARCHAR that contains client text.
The JavaBuffer type for Input is String, which contains the client text. The
JavaBuffer type for Output is a StringBuffer. The read() and write() methods must
convert between the client text representation and the relevant Java object.

IfmxSRInStream and IfmxSROutStream

These streams convert to and from the binary data representation of the client for
send and receive functions. The SQL type is SENDRECV, which is an internal
representation that contains binary data in the client format. The JavaBuffer type is
IfxDataPointer. The read() and write() methods convert between the client
representation and the relevant Java object.

6-6 J/Foundation Developer’s Guide

IfmxIEInStream and IfmxIEOutStream

This stream converts to and from a canonical text representation for import and
export functions. The SQLBuffer is an IMPEXP type that is an internal
representation that contains canonical textual data. The JavaBuffer type is
IfxDataPointer. The read() and write() methods convert between the text
representation and the relevant Java objects. These streams inherit from the
IfmxTextInStream and IfmxTextOutStream classes.

IfmxIEBInStream

This stream converts to and from a canonical binary representation for binary
import and export functions. The SQLBuffer is an IMPEXPBIN type that is an
internal representation that contains canonical binary data. The JavaBuffer type is
IfxDataPointer. The read() and write() methods must convert between the binary
representation and the relevant Java objects. These streams inherit from the
IfmxSRInStream and IfmxSRIOutStream classes.

Class layout (for input)

The following figure describes the class layout for input. The class layout for
output is similar; simply replace In with Out in the names.

An example that overrides the default I/O methods
The following example illustrates a Java UDT class with nondefault definitions.
JavaType is the new Java UDT, and JavaBuffer is the buffer type for the SQL data
being converted, as “I/O function sets and related types” on page 6-5 shows. For a
complete set of required and optional code, see “Usage example” on page 6-8.

Figure 6-1. .Input class layout

Chapter 6. Opaque user-defined data types 6-7

public class JavaType implements SQLData
{
// Java data Object declarations for this Class....
// non-default Data Input function

public static JavaType JavaTypeInput(JavaBuffer in)
{

JavaType x = new JavaType(); // make a new object
// convert JavaBuffer fields to Java data objects in
// this Class
return(x);// return the new object

}
// non-default Data Output function
public static JavaBuffer JavaTypeOutput(JavaType out)
{

JavaBuffer x = new JavaBuffer();
// Do whatever it takes to translate object to output
// buffer format

return x; // return the initialized buffer
}
// required SQLData implementation
private String type;
public String getSQLTypeName()
{

return type;
}
public void readSQL (SQLInput instream, String typeName)

throws SQLException
{

type = typeName;
// cast up to Informix specific stream type
IfmxUDTSQLInput in = (IfmxUDTSQLInput) instream;
// read stream fields into Java data objects in this Class
return;

}

public void writeSQL(SQLOutput outstream) throws SQLException
{
// cast up to Informix specific stream type

IfmxUDTSQLOutput out = (IfmxUDTSQLOutput) outstream;
// write object to output stream

return;
}

}

For an example of the SQL definitions required to use the explicit methods in the
preceding code, see “SQL definitions for a variable-length UDT example” on page
6-12.

Usage example
All Java UDT classes must implement the readSQL() and writeSQL() methods for
the SQLData interface. The readSQL() method initializes a Java object by using
data from the database server in a C-language format. The writeSQL() method
converts a Java object back to the representation of the database server. The
readSQL() and writeSQL() methods receive a Stream argument that encapsulates
the conversion methods for each built-in type that the database server uses, for
example, int, float, decimal.

For a fixed-length UDT, the readSQL() and writeSQL() methods know the order
and number of fields they are to process. For a variable-length UDT, the
programmer must rely on the stream.available() method and/or the
SQLException to find the end of the data as this example shows.

Variable-length UDT including nondefault input and output methods:

6-8 J/Foundation Developer’s Guide

/* Variable Length UDT example type: Record3
** Example of required and explicit method implementations.
**
** The C language structure equivalent of this JUDT is:
**
** typedef struct
** {
** mi_double_precision d;
** mi_chara[4];
** mi_integerb;
** mi_realc;
** mi_datee;
** mi_smallintf;
** mi_booleang[MAXBOOLS];
** } NewFixUDT;
**
** Where the last boolean array can contain up to MAX values
** but only valid values will be written to disk.
*/
// Put this in our test package,
// could be anywhere but needs to match SQL definitons for UDRs.
package informix.testclasses.jlm.udt;
// get the usual suspect classes
import java.sql.*;
// get informix specific interfaces, etal.
import com.informix.jdbc.*;
// These are only needed for the non-default Input/Output
// functions, remove if you use defaults.
import informix.jvp.dbapplet.impl.IfmxTextInStream;
import informix.jvp.dbapplet.impl.IfmxTextOutStream;
/**************** Now here's our UDT *************/
public class Record3 implements SQLData
{

// to turn debug print lines on and off
private static boolean classDebug = true;

// define storage for Java members of UDT
private double d_double;
private String a_char;
private int b_int;
private float c_float;
private java.sql.Date e_date;
private short f_smint;
// could use a Vector for booleans, but would then need Boolean
// objects ...so I've left it as an exercise for the reader...
private static final int MAXBOOLS = 20;
private boolean g_boolvals[] = new boolean[MAXBOOLS];
private int numbools = 0;
// dummy constructor just so we can log instantiation
public Record3()
{

super();
if(classDebug)

System.out.println("Record3() " + super.toString() + " created");
}
// dummy finalizer just so we can log our own destruction
protected void finalize()
{

super.finalize();
if(classDebug)

System.out.println("Record3() " + super.toString() + " deleted");
}

/*********** REQUIRED SQLData implementation: ***********/
// needed for SQLData interface
private String type;
public String getSQLTypeName()
{

Chapter 6. Opaque user-defined data types 6-9

return type;
}
// Called to convert an SQL buffer TYPE to JAVA class.
// note: we need to use SQLInput as the argument type or this
// method signature won't resolve correctly.
public void readSQL (SQLInput in, String typeName) throws
SQLException
{

if(classDebug)
System.out.println("Record3.readSQL() entered");
// save the type name

type = typeName;
// cast the _real_ type of Stream for IFMX extensions.
IfmxUDTSQLInput stream = (IfmxUDTSQLInput) in;
// trap exceptions; don't really know how many bytes
// are in the input.
try
{

d_double = stream.readDouble();
a_char = stream.readString(4);
b_int = stream.readInt();
c_float = stream.readFloat();
e_date = stream.readDate();
f_smint = stream.readShort();

// Read booleans until we get an exception:
// converting a non-existant boolean will throw cookies.
// but we can use available() to make sure there is more
// to read...

for(int count = 0; (stream.available() > 0) && (count
< MAXBOOLS); ++count)

{
g_boolvals[count] = stream.readBoolean();
++numbools;

}
}
catch (SQLException e)
{
// if we got something besides end of input rethrow,
// otherwise just assume we're done.

if(e.getErrorCode() != IfxErrMsg.S_BADSQLDATA)
{

if(classDebug)
System.out.println("Record3.readSQL() exception = " +

e.toString());
throw e;

}
}

}

// Called to convert JAVA class to SQL buffer TYPE.
// note: we need to use SQLOutput as the argument type or this
// method signature won't resolve correctly.

public void writeSQL(SQLOutput out) throws SQLException
{

if(classDebug)
System.out.println("Record3.writeSQL() entered");

// cast up to _real_ type of Stream to use IFMX extensions.
IfmxUDTSQLOutput stream = (IfmxUDTSQLOutput) out;
stream.writeDouble(d_double);
stream.writeString(a_char, 4);
stream.writeInt(b_int);
stream.writeFloat(c_float);
stream.writeDate(e_date);
stream.writeShort(f_smint);
for(int i = 0; i < numbools; i++)

stream.writeBoolean(g_boolvals[i]);

6-10 J/Foundation Developer’s Guide

}
/*********** END SQLData implementation ***********/
/**** NON-DEFAULT implementation of Input and Output functions ****/
/* Remove all this if you only use the Defaults */

The following example illustrates the implementation of user-defined input and
output functions that override the default I/O methods. If you use the default
methods, you do not need to implement overriding methods like those that follow:
// Called as Input function to convert SQL lvarchar to JAVA class
public static Record3 fromString(String str)
{

if(classDebug)
System.out.println("Record3.fromString(String) entered");

// Make a stream of the right kind.
IfmxTextInStream stream = new IfmxTextInStream(str);
// Make a new Java object of the right type.
Record3 record = new Record3();
// Just call readSQL ourselves.
// For a real implementation you would probably copy all the
// readXXX()'s and intersperse delimiting chars as needed...
try
{

readSQL(stream, "Record3");
}
catch (Exception e)
{

System.err.println(e.getMessage());
}
return record;

}

// Called as Output function; convert JAVA class to SQL lvarchar.
// note: could use toString() directly,
// except that the UDR method must be "static", and
// it needs to take a Record3 as an argument....

public static String makeString(Record3 x)
{

if(classDebug)
System.out.println("Record3.makeString() entered");

return x.toString();
}

// Might as well implement the standard toString() as long as
// we're doing non-defaults. If a different method name is
// used here, Object.toString() will be called when the class
// gets printed out in debug lines....

public String toString()
{
// Need to use a StringBuffer because we can't pass a
// reference to a String to be initialized.
// We could optimize by guessing at size of buffer, too.
// StringBuffer str = new StringBuffer();
// IfmxTextOutStream stream = new IfmxTextOutStream(str);
// Just call writeSQL.
// For a real implementation you would probably copy all the
// writeXXX()'s and intersperse delimiting chars as needed...

try
{

writeSQL(stream);
}
catch (Exception e)
{

System.err.println(e.getMessage());
// not sure if we need to clear out result string?

Chapter 6. Opaque user-defined data types 6-11

str.setLength(0);
}
return str.toString();

}

SQL definitions for a variable-length UDT example:
The SQL definitions for this example are:

-- VarLen UDT and support functions ----------------------------
create opaque type Record3 (internallength = variable,

alignment = 8, maxlen = 2048, cannothash);
grant usage on type Record3 to public;
-- register JUDT implementation....
-- note package name needs to match class file package
execute procedure setUDTExtName("Record3",

"informix.testclasses.jlm.udt.Record3");
-- Definitions for NON_DEFAULT Input/Output functions.
-- this overrides the defaults setup above
-- LVARCHAR INPUT
drop cast (Record3 as lvarchar);
create implicit cast (Record3 as lvarchar with record3_output);
create function record3_input (l lvarchar) returns Record3

external name
'informix.testclasses.jlm.udt.Record3.fromString(java.lang.String)'

language java not varient;
grant execute on function record3_input to public;
-- CHAR INPUT
drop cast (Record3 as char(100));
create implicit cast (Record3 as char(100) with record3_rout);
create function record3_rin (c char(100)) returns Record3

external name
'informix.testclasses.jlm.udt.Record3.fromString(java.lang.String)'

language java not varient;
grant execute on function record3_rin to public;

-- LVARCHAR OUTPUT
drop cast (lvarchar as Record3);
create explicit cast (lvarchar as Record3 with record3_input);
create function record3_output (c Record3) returns lvarchar

external name
'informix.testclasses.jlm.udt.Record3.makeString(informix.testclasses.jlm.udt.Record3)'

language java not varient;
grant execute on function record3_output to public;
-- CHAR OUTPUT
drop cast (char(100) as Record3);
create explicit cast (char(100) as Record3 with record3_rin);
create function record3_rout (c Record3) returns varchar(100) external name
'informix.testclasses.jlm.udt.Record3.makeString(informix.testclasses.jlm.udt.Record3)'
language java not varient;
grant execute on function record3_rout to public;

-- END definitions for NON_DEFAULT Input/Output functions.
-- end VarLen UDT and support functions --------------------------
-- Example Usage ---
create table rec3tab (record_col Record3);
insert into rec3tab values ('665.999 JAVA 398 197.236 1952-04-10 47 f t t');
insert into rec3tab values ('667.000 Jive 983 791.632 2002-04-11 42 f f f f f');
select * from rec3tab;

Limitations to streams
The following limitations apply to the I/O streams in :
v BLOBs and CLOBs are not supported.
v Text Input and Output across locales is not supported.
v Text Input and Output for intervals is not supported.

6-12 J/Foundation Developer’s Guide

v Time stamps are only supported in their full format. Qualifiers are not
supported.

v Byte arrays, byte[], and Object/Stream I/O are not supported for either text or
binary operations.

Chapter 6. Opaque user-defined data types 6-13

6-14 J/Foundation Developer’s Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2013 A-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

A-2 J/Foundation Developer’s Guide

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 J/Foundation Developer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1996, 2013 B-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

B-2 J/Foundation Developer’s Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 J/Foundation Developer’s Guide

Index

A
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

Administrative tool 4-15
alter_java_path() 4-12

C
Cast function, definition 4-1
Circle class, example 6-4
Class layout for input 6-6
CLASS routine modifier 4-8
CLASSPATH environment variable 2-3
com.informix.udr 4-3
com.informix.udr.UDREnv 4-4
com.informix.udr.UDRLog 4-5
com.informix.udr.UDRManager 4-4
com.informix.udr.UDRTraceable 4-6
Compliance

with SQLJ 4-16
compliance with standards vii
Configuration parameters

example 2-2
JVPCLASSPATH 3-1
JVPHOME 3-2
JVPJAVAHOME 3-2
JVPJAVALIB 3-3
JVPJAVAVM 3-3
JVPLOGFILE 3-4
JVPPROPFILE 3-4
SBSPACENAME 3-4
setting 2-2
VPCLASS JVP 3-5

Configuring, to support Java 2-1
COSTFUNC routine modifier 4-8

D
Default I/O methods

and registering a UDT 6-2
backing out for opaque user-defined data type 6-1
for opaque user-defined data type 6-1
overriding 6-5

Deployment descriptor
example 4-11
in manifest file 4-11
SQL statements 4-11

Disabilities, visual
reading syntax diagrams A-1

Disability A-1
Dotted decimal format of syntax diagrams A-1
DriverManager class 5-1

E
End-user routine 4-1

Environment variables
CLASSPATH 2-3

Examples
circle class 6-4
circle UDT 4-7
configuration parameters 2-2
creating an sbspace 2-2
deployment descriptor 4-11
makefile for JAR 4-12
properties file 2-2
that overrides the default I/O methods 6-7
UDREnv class 4-4
usage of variable-length UDT 6-8
using CLASS 4-8
variable-length UDT 6-12

EXECUTE FUNCTION statement 4-13
EXECUTE PROCEDURE statement 4-13
EXTEND role 4-12

F
Functional index 4-1

G
GRANT statement 4-16

H
HANDLESNULLS routine modifier 4-8, 4-17

I
I/O functions sets, for overriding default methods 6-5
IfmxIEBInStream 6-6
IfmxIEInStream 6-6
IfmxIEOutStream 6-6
IfmxSQLInStream 6-6
IfmxSQLOutStream 6-6
IfmxSRInStream 6-6
IfmxSROutStream 6-6
IfmxUDTSQLInput

methods in interface 6-3
IfmxUDTSQLInput stream

and IfxDataPointer class 6-6
IfmxUDTSQLOutput 6-2

stream, and IfxDataPointer class 6-6
IfmxUDTSQLOutput interface

methods contained in 6-3
IFX_EXTEND_ROLE configuration parameter 4-12
IfxConnection 5-1
IfxDataPointer class 6-6
IfxDirectConnection 5-1
IfxDirectProtocol 5-1
IfxProtocol 5-1
industry standards vii
informix-direct subprotocol 5-1
informix.jvpcontrol 4-15
install_jar() 4-12

© Copyright IBM Corp. 1996, 2013 X-1

Installing JDBC 2-1
Interfaces

IfxConnection 5-1
IfxProtocol 5-1

INTERNAL routine modifier 4-8
Iterator functions 4-1
ITERATOR routine modifier 4-8
Iterator status 4-4

J
JAR file

installing 4-12
makefile 4-12

Java debugger 4-15
Java Development Kit 2-1
Java Runtime Environment 2-1
Java UDR

limitations 4-2
Java Virtual Machine 1-1
Java virtual processor

description 1-1
log file 4-14
messages 4-14
specifying 4-8

java.sql.SQLInput
extensions 5-4
unsupported methods 5-3

java.sql.SQLOutput
extensions 5-4
unsupported methods 5-3

JDBC 1.0, extensions 5-3
JDBC 2.0

Informix extensions 5-4
public interfaces 5-4

JVP properties file 2-2
JVP.monitor.port 4-15
JVPCLASSPATH parameter 3-1
JVPHOME parameter 3-2
JVPJAVAHOME parameter 3-2
JVPJAVALIB parameter 3-3
JVPJAVAVM parameter 3-3
JVPLOGFILE parameter 3-4
JVPPROPFILE parameter 3-4

L
Limitations

for Java UDRs 4-2
Limitations, streams 6-12
Log files 4-14
Logging 4-4

M
Manifest file 4-11
Mapping

between SQL and Java 4-7
creating 4-7

Memory use 4-15

N
Negator functions 4-1
NEGATOR routine modifier 4-8

NOT VARIANT routine modifier 4-8

O
onstat command 4-15
Opaque data type support function 4-1
Operator function 4-1
Overriding Default I/O Methods 6-5

P
Parallel queries 1-1
PARALLELIZABLE routine modifier 4-8
Parallelizable UDR 4-1
PERCALL_COST routine modifier 4-8
Port numbers 4-15
Properties file 2-2

Q
Query parallelization 1-1

R
readsql() 6-1
registerDriver() 5-1
Registering a UDR 4-8
Registering a UDT

default I/O methods 6-2
registerJUDTfuncs 6-2
with setUDTExName() SQL procedure 6-2

remove_jar() 4-12
replace_jar() 4-12
Routine modifier

CLASS 4-8
COSTFUNC 4-8
HANDLESNULLS 4-8
INTERNAL 4-8
ITERATOR 4-8
NEGATOR 4-8
NOT VARIANT 4-8
PARALLELIZABLE 4-8
PERCALL_COST 4-8
SELCOST 4-8
SELFUNC 4-8
STACK 4-8
unsupported 4-8, 4-17, 4-18
VARIANT 4-8

S
SBSPACENAME parameter 3-4
sbspaces, creating 2-2
Screen reader

reading syntax diagrams A-1
SELCOST routine modifier 4-8
SELECT statements 4-13
SELFUNC routine modifier 4-8
setUDTExtName 4-7
setUDTExtName(), registering a UDT 6-2
Shortcut keys

keyboard A-1
Solano-style connection 5-2
SQL definitions

for default I/O UDRs 6-2

X-2 J/Foundation Developer’s Guide

SQL definitions (continued)
for variable-length UDT example 6-12

SQL statements
EXECUTE FUNCTION 4-13
EXECUTE PROCEDURE 4-13
GRANT 4-16
SELECT 4-13

SQLBuffer
transport type 6-2

SQLData interface
readsql() 6-1
using 6-1
writesql() 6-1

SQLException 4-14
SQLInput interface

extensions 6-2
methods contained in 6-3

SQLOutput interface
extensions 6-2
methods contained in 6-3

SQLUDTInput 5-4
SQLUDTOutput 5-4
Stack dumps 4-14
STACK routine modifier 4-8
standards vii
Streams

and database server I/O 6-1
IfmxIEInStream 6-6
IfmxIEOutStream 6-6
IfmxSQLInStream 6-6
IfmxSQLOutStream 6-6
IfmxSRInStream 6-6
IfmxSROutStream 6-6
IfmxTextInStream 6-6
IfmxTextOutStream 6-6
limitations 6-12
stream.available method 6-8

Syntax diagrams
reading in a screen reader A-1

System catalog tables 1-2, 4-16
syslangauth 4-16
sysroutinelnags 4-16

System trace events 4-15

T
Threads

listing 4-15
scheduling 1-1

Trace outputs 4-14
Trace-level settings 4-6
Traceable events 4-15

U
UDREnv 4-4
UDRLog 4-5
UDRManager 4-4
UDRTraceable 4-6
User-defined aggregates 4-1
User-defined data types

converting to and from 6-1
implementing with default I/O methods 6-1

User-defined function 4-1
User-defined procedure 4-1

User-defined routines
compiling 4-12
data type 4-4
definition of 4-1
executing 4-13
granting usage privilege 4-16
iterator status 4-4
log messages 4-14
logging 4-5
name 4-4
packages allowed 4-3
privileges 4-11, 4-16
registering 4-8
steps for creating 4-2
tracing and debugging 4-14
unsupported modifiers 4-17, 4-18
user-state pointer 4-4
uses not allowed 4-1
uses of 4-1

V
Variable-length UDT

example 6-8
VARIANT routine modifier 4-8, 4-17
Visual disabilities

reading syntax diagrams A-1
VPCLASS JVP parameter 3-5
vpid number 4-15

W
writesql() 6-1

Z
Zone-based tracing 4-6

Index X-3

X-4 J/Foundation Developer’s Guide

����

Printed in USA

SC27-4528-00

	Contents
	Introduction
	About this publication
	Types of users
	Software compatibility
	Assumptions about your locale
	Demonstration databases

	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Concepts
	Features of Java user-defined routines
	Java virtual processors
	System catalog tables

	Chapter 2. Prepare for Java support
	Install the JDBC Driver
	Configure Java support
	Create an sbspace
	Creating the JVP properties file
	Set configuration parameters
	Set environment variables
	GLS support
	NEWLOCALE and NEWCODESET connection properties
	DBCENTURY environment variable

	Chapter 3. Configuration parameters
	JVPARGS configuration parameter
	JVPCLASSPATH configuration parameter
	JVPHOME configuration parameter
	JVPJAVAHOME configuration parameter
	JVPJAVALIB configuration parameter
	JVPJAVAVM configuration parameter
	JVPLOGFILE configuration parameter
	JVPPROPFILE configuration parameter
	SBSPACENAME configuration parameter
	VPCLASS configuration parameter

	Chapter 4. Create Java user-defined routines
	Java user-defined routines
	Limitations for Java UDRs
	Creating a Java user-defined routine
	Write a Java user-defined routine
	The com.informix.udr package
	The com.informix.udr.UDRManager
	The com.informix.udr.UDREnv
	The com.informix.udr.UDRLog
	The com.informix.udr.UDRTraceable

	Creating UDT-to-Java mappings
	Registering Java user-defined routines
	Specify the JVP
	Routine modifiers
	Specify the external name

	A deployment descriptor
	A manifest file
	Compiling the Java code
	Install a JAR file
	Update JAR file names
	Execute the user-defined routine
	Debugging and tracing
	Generate log messages
	The administrative tool
	Debugging a Java user-defined routine
	Traceable events

	Find information about user-defined routines
	Comply with SQLJ
	Unsupported modifiers
	Unsupported optional modifiers

	Chapter 5. The Informix JDBC Driver
	Public JDBC interfaces
	The informix-direct subprotocol
	Host a Java application server with Solano-style connections
	JDBC 1.0 API
	JDBC 2.0
	Support for opaque data types
	Interfaces updated for Java 2.0

	An example that shows query results

	Chapter 6. Opaque user-defined data types
	Using the SQLData interface
	Default input/output routines
	SQL definitions for default I/O user-defined routines
	Informix extensions to SQLInput and SQLOutput
	IfmxUDTSQLInput
	IfmxUDTSQLOutput

	The circle class example

	Override the default I/O methods
	I/O function sets and related types
	IfxDataPointer
	Stream implementations

	An example that overrides the default I/O methods
	Usage example

	Limitations to streams

	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

