
Informix Product Family
Informix
Version 12.10

IBM Informix
JSON Compatibility Guide

SC27-5556-03

���

Informix Product Family
Informix
Version 12.10

IBM Informix
JSON Compatibility Guide

SC27-5556-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

This edition replaces SC27-5556-02.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2013, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . v
About This Publication . v

Types of Users. v
Assumptions about your locale . v
Demonstration databases . vi

What's new in JSON, Version 12.10 . vi
Example code conventions . ix
Additional documentation . ix
Compliance with industry standards . ix
Syntax diagrams . x

How to read a command-line syntax diagram . xi
Keywords and punctuation . xii
Identifiers and names . xii

How to provide documentation feedback . xiii

Chapter 1. About the Informix JSON compatibility 1-1
Software dependencies . 1-2
MongoDB to Informix term mapping . 1-2

Chapter 2. Wire listener . 2-1
Install the wire listener . 2-1
Configuring the wire listener . 2-2

The jsonListener.properties file. 2-3
Modifying the wire listener properties file . 2-16
Starting the wire listener . 2-16

Starting the MongoDB API wire listener . 2-16
Starting the REST API wire listener . 2-17
Running multiple wire listeners . 2-18

Stopping the wire listener . 2-19
Wire listener command line options . 2-19
Running SQL commands by using a MongoDB API . 2-20
Running MongoDB operations on relational tables. 2-21

Chapter 3. JSON data sharding . 3-1
Enabling sharding for JSON or relational data . 3-1
Creating a shard cluster by running the addShard command in the MongoDB shell 3-2
Creating a shard cluster by running the addShard command through db.runCommand in the MongoDB shell . . 3-3
Viewing shard-cluster participants . 3-4
Shard-cluster definitions for distributing data . 3-6

Creating a shard-cluster definition that uses a hash algorithm for distributing data across database servers . . 3-7
Creating a shard-cluster definition that uses an expression for distributing data across database servers . . . 3-8
Changing the definition for a shard cluster . 3-11

Chapter 4. MongoDB API and commands . 4-1
Language drivers . 4-1
Command utilities and tools . 4-1
Collection methods . 4-1
Index creation . 4-2
Database commands . 4-4
Informix JSON commands . 4-9
Configuring authentication . 4-13
Operators . 4-14

Query and projection operators . 4-14
Update operators . 4-16

© Copyright IBM Corp. 2013, 2014 iii

Informix query operators . 4-18
Aggregation framework operators . 4-18

Example: Accessing MongoDB collections by using SQL . 4-19

Chapter 5. REST API . 5-1
REST API syntax . 5-1

Chapter 6. Create time series through the wire listener 6-1
Time series collections and table formats . 6-2
Example: Create a time series through the wire listener . 6-6

Chapter 7. Monitoring collections . 7-1

Chapter 8. Troubleshooting Informix JSON compatibility 8-1

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Privacy policy considerations . B-3
Trademarks . B-3

Index . X-1

iv IBM Informix JSON Compatibility

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions that this publication uses.

About This Publication
This publication contains information about using the IBM® Informix® JSON
capability.

This section discusses the intended audience for this publication and the associated
software products that you must have to use the administrative utilities.

Types of Users
This publication is written for the following users:
v Database administrators
v System administrators
v Performance engineers

This publication is written with the assumption that you have the following
background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with database server administration, operating-system

administration, or network administration

You can access the Informix information centers, as well as other technical
information such as technotes, white papers, and IBM Redbooks publications
online at http://www.ibm.com/software/data/sw-library/.

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or

© Copyright IBM Corp. 2013, 2014 v

http://www.ibm.com/software/data/sw-library/

en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é, �, and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin
directory in Windows environments.

What's new in JSON, Version 12.10
This publication includes information about new features and changes in existing
functionality.

For a complete list of what's new in this release, go to http://www.ibm.com/
support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm.

vi IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm

Table 1. What's new in JSON for IBM Informix Version 12.10.xC4W1

Overview Reference

Support for CORS requests in the REST API (12.10.xC4W1)

You can now set up cross-origin resource sharing (CORS) with the
REST API. To do so, set the following optional parameters that
were added to the jsonListener.properties file:

v listener.http.accessControlAllowCredentials

v listener.http.accessControlAllowHeaders

v listener.http.accessControlAllowMethods

v listener.http.accessControlAllowOrigin

v listener.http.accessControlExposeHeaders

v listener.http.accessControlMaxAge

Use these parameters to configure the HTTP headers of all
responses. The HTTP headers provide access to JSON fields that
are required by synchronous JavaScript + XML (AJAX)
applications in a web browser when these applications access the
REST listener.

“The jsonListener.properties file” on page 2-3

Table 2. What's new in JSON for IBM Informix Version 12.10.xC4

Overview Reference

Basic text searching support for JSON and BSON data

You can now create a basic text search index on columns that
have JSON or BSON data types. You can create the basic text
search index on JSON or BSON data types through SQL with the
CREATE INDEX statement or on BSON data types through the
Informix extension to MongoDB with the createTextIndex
command. You can control how JSON and BSON columns are
indexed by including JSON index parameters when you create
the basic text search index. You can run a basic text query on
JSON or BSON data with the bts_contains() search predicate in
SQL queries or the $ifxtext query operator in JSON queries.

“Informix JSON commands” on page 4-9

“Informix query operators” on page 4-18

Introduction vii

Table 2. What's new in JSON for IBM Informix Version 12.10.xC4 (continued)

Overview Reference

Enhanced JSON compatibility

Informix now supports the following MongoDB 2.4 features:

v Cursor support so that you can query large volumes of data.

v Text search of string content in collections and tables.

v Geospatial indexes and queries.

v Pipeline aggregation operators.

v The array update modifiers: $each, $slice, $sort.

You can perform the following new tasks that extend MongoDB
functionality in your JSON application:

v Import and export data directly with the wire listener by using
the Informix JSON commands exportCollection and
importCollection.

v Configure a strategy for calculating the size of your database
by using the Informix extension to the MongoDB listDatabases
command: sizeStrategy option or
command.listDatabases.sizeStrategy property.

You can customize the behavior of the wire listener by setting
new properties. For example, you can control logging, caching,
timeout, memory pools, and the maximum size of documents.

“Database commands” on page 4-4

“Query and projection operators” on page 4-14

“Update operators” on page 4-16

“Aggregation framework operators” on page 4-18

“Informix JSON commands” on page 4-9

“The jsonListener.properties file” on page 2-3

Access Informix from REST API clients

You can now directly connect applications or devices that
communicate through the REST API to Informix. You create
connections by configuring the wire listener for the REST API.
With the REST API, you can use MongoDB and SQL queries
against JSON and BSON document collections, traditional
relational tables, and time series data. The REST API uses
MongoDB syntax and returns JSON documents.

Chapter 5, “REST API,” on page 5-1

Create a time series with the REST API or the MongoDB API

If you have applications that handle time series data, you can
now create and manage a time series with the REST API or the
MongoDB API. Previously, you created a time series by running
SQL statements. For example, you can program sensor devices
that do not have client drivers to load time series data directly
into the database with HTTP commands from the REST API.

You create time series objects by adding definitions to time series
collections. You interact with time series data through a virtual
table.

Chapter 6, “Create time series through the wire
listener,” on page 6-1

Table 3. What's new in JSON for IBM Informix Version 12.10.xC3

Overview Reference

Use the Mongo API to access relational data

You can write a hybrid MongoDB application that can access both
relational data and JSON collections that are stored in Informix.
You can work with records in SQL tables as though they were
documents in JSON collections by either referencing the tables as
you would collections, or by using the $sql operator on an
abstract collection.

Chapter 1, “About the Informix JSON
compatibility,” on page 1-1

“Running SQL commands by using a MongoDB
API” on page 2-20

“Running MongoDB operations on relational
tables” on page 2-21

viii IBM Informix JSON Compatibility

Table 3. What's new in JSON for IBM Informix Version 12.10.xC3 (continued)

Overview Reference

Improved JSON compatibility

Informix now supports the following MongoDB features:

v The findAndModify command, which performs multiple
operations at the same time.

v The MongoDB authentication methods for adding users and
authenticating basic roles, such as read and write permissions
for database and system level users.

“Collection methods” on page 4-1

“Database commands” on page 4-4

“The jsonListener.properties file” on page 2-3

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

Introduction ix

http://www.ibm.com/software/data/sw-library/

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 4. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

x IBM Informix JSON Compatibility

Table 4. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment that is named “Setting the Run Mode,” which
according to the diagram footnote is on page Z-1. If this was an actual
cross-reference, you would find this segment on the first page of Appendix Z.
Instead, this segment is shown in the following segment diagram. Notice that the
diagram uses segment start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

Introduction xi

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Include onpladm create job and then the name of the job.
2. Optionally, include -p and then the name of the project.
3. Include the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

4. Optionally, you can include one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to include -f, optionally include d, p, or a, and then
optionally include l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words that are reserved for statements and all commands except
system-level commands.

A keyword in a syntax diagram is shown in uppercase letters. When you use a
keyword in a command, you can write it in uppercase or lowercase letters, but you
must spell the keyword exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in other syntax diagrams. A variable in a syntax diagram, an
example, or text, is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

xii IBM Informix JSON Compatibility

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix product
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v Add comments to topics directly in IBM Knowledge Center and read comments

that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xiii

mailto://docinf@us.ibm.com
http://www.ibm.com/planetwide/

xiv IBM Informix JSON Compatibility

Chapter 1. About the Informix JSON compatibility

You can combine relational and JSON data into a single query by using the
Informix JSON compatibility features.

Applications that use the JSON-oriented query language, created by MongoDB, can
interact with relational and non-relational data that is stored in Informix databases
by using the wire listener. The Informix database server also provides built-in
JSON and BSON (binary JSON) data types. You can use MongoDB community
drivers to insert, update, and query JSON documents in Informix.

With Informix, you can use both SQL and MongoDB drivers to access SQL tables,
JSON collections, time series data, and WebSphere® MQ data. You can join two
JSON collections with each other or with relational tables.

Table 1-1. Relational data and JSON collection access by API type

API type Relational table access JSON collection access

SQL API Uses SQL language and
standard ODBC, JDBC.NET,
OData, and so on.

Uses direct SQL access,
dynamic views, and row
types.

MongoDB API Uses MongoDB APIs for
Java™, JavaScript, C++, C#,
and so on.

Uses MongoDB APIs for
Java, JavaScript, C++, C#,
and so on.

The JSON document format provides a way to transfer object information in a way
that is language neutral, similar to XML. Language-neutral data transmission is a
requirement for working in a web application environment, where data comes
from various sources and software is written in various languages. With Informix,
you can choose which parts of your application data are better suited unstructured,
non-relational storage, and which parts are better suited in a traditional relational
framework.

You can enable dynamic scaling and high-availability for data-intensive
applications by taking the following steps:
v Define a sharded cluster to easily add or remove servers as your requirements

change.
v Use shard keys to distribute subsets of data across multiple servers in a sharded

cluster.
v Query the correct servers in a sharded cluster and return the consolidated results

to the client application.
v Use secondary servers (similar to subordinates in MongoDB) in the sharded

cluster to maximize availability and throughput. Secondary servers also have
update capability.

Authentication of MongoDB clients occurs in the wire listener, not in the Informix
server. Privileges are enforced by the wire listener. All communications that are
sent to Informix originate from the user that is specified in the url parameter,
regardless of which user was authenticated. User information and privileges are
stored in the system_users collection in each database. MongoDB authentication is
done on a per database level, whereas Informix authenticates to the instance.

© Copyright IBM Corp. 2013, 2014 1-1

Software dependencies
This topic describes the software requirements for Informix JSON compatibility.

The Informix JSON compatibility requires IBM Informix version 12.10.xC2 or later,
with the J/Foundation component, which enables services that use Java.

The Informix JSON compatibility support is based on MongoDB version 2.4.

MongoDB API access
You must use IBM Java Runtime Environment (JRE) 1.6 or later versions.
Version 1.6 is delivered with the Informix installation.

REST API access
You must use IBM Java Runtime Environment (JRE) 1.7. For more
information and downloads, see http://www.ibm.com/developerworks/
java/jdk/index.html.

You must use Tomcat version 8, which is included in the Informix
installation as a part of $INFORMIXDIR/bin/nosql_sdk.zip. For the latest
updates to Tomcat version 8, see http://tomcat.apache.org/download-
80.cgi.

MongoDB to Informix term mapping
The commonly used MongoDB terminology and concepts are mapped to the
equivalent Informix terminology and concepts.

The following table provides a summary of commonly used MongoDB terms and
their Informix conceptual equivalents.

1-2 IBM Informix JSON Compatibility

http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/developerworks/java/jdk/index.html
http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/download-80.cgi

Table 1-2. MongoDB concepts mapped to one or more Informix concepts.

MongoDB concept Informix concept Description

collection table This is the same concept. In
Informix this type of
collection is sometimes
referred to as a JSON
collection. A JSON collection
is similar to a relational
database table, except it does
not enforce a schema.

document record This is the same concept. In
Informix, this type of
document is sometimes
referred to as a JSON
document.

field column This is the same concept.

master / slave primary server / secondary
server

This is the same concept.
However, an Informix
secondary server has
additional capabilities. For
example, data on a
secondary server can be
updated and propagated to
primary servers.

replica set high-availability cluster This is the same concept.
However, when the replica
set is updated, it is then sent
to all servers, not only to the
primary server.

sharded cluster shard cluster This is the same concept. In
Informix, a shard cluster is a
group of servers (sometimes
called shard servers) that
contain sharded data.

shard key shard key This is the same concept.

Chapter 1. About the Informix JSON compatibility 1-3

1-4 IBM Informix JSON Compatibility

Chapter 2. Wire listener

The wire listener is a mid-tier gateway server that enables communication between
MongoDB applications and the Informix database server.

The wire listener is provided as an executable JAR file that is named
$INFORMIXDIR/bin/jsonListener.jar. The JAR file provides access to the MongoDB
API and REST API.

MongoDB API access
You can connect to a JSON collection in the MongoDB API by using the
MongoDB Wire Protocol.

When a MongoDB client is connected to the wire listener and requests a
connection to a database, the wire listener creates a connection.

For more information, see “Software dependencies” on page 1-2.

REST API access
You can connect to a JSON collection by using the REST API.

When a client is connected to the wire listener by using the REST API,
each database is registered. The wire listener registers to receive session
events such as create or drop a database. If a REST request refers to a
database that exists but is not registered, the database is registered and a
redirect to the root of the database is returned.

For more information, see “Software dependencies” on page 1-2.

The wire listener configuration file, jsonListener.properties, defines every
operational characteristic.

When you create a database or a table through the wire listener, automatic location
and fragmentation is enabled. Databases are stored in the dbspace that is chosen
by the server. Tables are fragmented among dbspaces that are chosen by the server.
More fragments are added when tables grow.
Related concepts:

Managing automatic location and fragmentation (Administrator's Guide)
Related reference:

SQL administration API portal: Arguments by privilege groups
(Administrator's Reference)

Install the wire listener
You can install the wire listener by choosing the typical or custom installation
options.

If you choose to create a server instance as a part of the installation process:
v The required wire listener configuration file $INFORMIXDIR/etc/

jsonListener.properties is automatically created with default values
established for each property, except the url parameter.

v The user ifxjson, which has REPLICATION privilege group access, is created
and added to the jsonListener.properties file. This user ID is used by the wire
listener to connect to Informix.

© Copyright IBM Corp. 2013, 2014 2-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1470.htm#ids_admin_1470
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_147.htm#ids_sapi_147
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_147.htm#ids_sapi_147

v The wire listener is automatically started and connected to the MongoDB API
and the database server with the default operational instance. If you want to use
the REST API, you must modify the listener.type parameter and restart the
wire listener.

This option reduces the complexity of installation and maintenance of the Informix
server and installs the required extensions for using BSON and JSON types.

If you do not create a server during installation:
v You must configure and start a server.
v You must configure the wire listener.
Related concepts:

Overview of database server configuration and administration (Administrator's
Guide)

Create a configured server during installation (Installation Guide (UNIX))

Database server configuration after installation (Installation Guide (Windows))

Configuring the wire listener
You must configure the wire listener if you did not create a database server during
installation or if you want to use the REST API.

Before you begin

“Install the wire listener” on page 2-1

Procedure
1. Choose an authorized user. An authorized user is required in wire listener

connections to the Informix database server. The authorized user must have
access to the databases and tables that are accessed through the MongoDB API.
v Windows: Specify an operating system user.
v UNIX/Linux: Specify an operating system or a database user. For example, to

create a database user:
CREATE USER userID WITH PASSWORD ’password’ ACCOUNT unlock PROPERTIES
USER daemon;

2. If you want to use the Informix sharding capability, you must grant the user
REPLICATION privilege in the SQL Admin API. For example:
EXECUTE FUNCTION task(’grant admin’,’userID’,’replication’);

3. Create a jsonListener.properties file in $INFORMIXDIR/etc. You can use the
$INFORMIXDIR/etc/jsonListener-example.properties file as a template. To
include parameters in the wire listener, you must uncomment the row and
customize the parameter.
a. Configure the url parameter for your environment and uncomment if

necessary. You can specify the authorized user ID and password in the url
parameter of the jsonListener.properties file. If you do not specify the
user ID and password, the JDBC driver uses operating system
authentication and all wire listener actions are run by the user that started
the wire listener.

b. Optional: If you are using the REST API, set the listener.type parameter to
listener.type=rest.

2-2 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0007.htm#ids_admin_0007
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0007.htm#ids_admin_0007
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.igul.doc/ids_ix_040.htm#ids_ix_040
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.igmsw.doc/ids_cw_003x.htm#ids_cw_003

c. Optional: Modify additional parameters for your environment as described
in the jsonListener.properties file. For more information, see “The
jsonListener.properties file.”

4. If you are using a Dynamic Host Configuration Protocol (DHCP) on your IPv6
host, you must verify that the connection information between JDBC and
Informix is compatible.
For example, you can connect from the IPv6 host through an IPv4 connection
by using the following steps:
a. Add a server alias to the DBSERVERALIASES configuration parameter for

the wire listener on the local host. For example: lo_informix1210.
b. Add an entry to the sqlhosts file for the wire listener alias by using

127.0.0.1. For example:
lo_informix1210 onsoctcp 127.0.0.1 9090

c. In the jsonListener.properties file, update the url entry with the wire
listener alias. For example:
url=jdbc:informix-sqli://localhost:9090/sysmaster:
INFORMIXSERVER=lo_informix1210;

What to do next

Start the wire listener.
Related concepts:
Chapter 3, “JSON data sharding,” on page 3-1
Related tasks:
“Running SQL commands by using a MongoDB API” on page 2-20
Related reference:

CREATE DEFAULT USER statement (UNIX, Linux) (SQL Syntax)

grant admin argument: Grant privileges to run SQL administration API
commands (Administrator's Reference)

The jsonListener.properties file
The properties that control the wire listener and the connection between the client
and database server are set in the %INFORMIXDIR%\etc\jsonListener.properties
file.

If you create a server instance as a part of the installation process, the
jsonListener.properties file is automatically created with default properties,
otherwise you must manually create this file. You can use the $INFORMIXDIR/etc/
jsonListener-example.properties file as a template.

If your properties file is created during installation, or if you are using the
jsonListener-example.properties template file, all of the property file parameters
are commented out by default. To include a parameter in the wire listener, you
must uncomment the row for the parameter and customize the settings.

Important: The url parameter is required. All other parameters are optional.

Required parameter

url
This required parameter specifies the host name, database server, user ID, and
password that are used in connections to the Informix database server.

Chapter 2. Wire listener 2-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1823.htm#ids_sqs_1823
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_145.htm#ids_sapi_145
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_145.htm#ids_sapi_145

The user and password that is specified in the url parameter are optional.
These credentials are used to connect to the Informix database server for all
operations that go through the wire listener. If you do not specify the user ID
and password, the JDBC driver uses operating system authentication and all
wire listener actions are run by using the user ID and password that were
specified in the listener start command.

You must specify the sysmaster database in the url parameter, which is used
for administrative purposes by the wire listener. The url parameter has this
format:
jdbc:informix-sqli://hostname/sysmaster:INFORMIXSERVER=server;USER=userid;
PASSWORD=password

Where:

hostname
The host name of your computer. For example, localhost:9088.

server
The name of the database server to connect to.

userid
This optional attribute specifies the user ID that is used in connections to
the Informix database server. If you plan to use the Informix sharding
capability, you must specify the user with REPLICATION privilege group
access to this parameter.

password
This optional attribute specifies the password for the user ID.

Optional parameters

authentication.enable
This optional parameter indicates whether to enable user authentication.

Authentication of MongoDB clients occurs in the wire listener, not in the
Informix server. Privileges are enforced by the wire listener. All
communications that are sent to Informix originate from the user that is
specified in the url parameter, regardless of which user was authenticated.
User information and privileges are stored in the system_users collection in
each database. MongoDB authentication is done on a per database level,
whereas Informix authenticates to the instance.

false
Do not allow user authentication. This is the default value.

true
Allow user authentication. Use the
authentication.localhost.bypass.enable parameter to control the type of
authentication.

authentication.localhost.bypass.enable

Prerequisite: authentication.enable=true
If you connect from the localhost to the Informix admin database, and the
admin database contains no users, this optional parameter indicates whether to
grant full administrative access. The Informix admin database is similar to the
MongoDB admin database. The Informix
authentication.localhost.bypass.enable parameter is similar to the
MongoDB enableLocalhostAuthBypass parameter.

2-4 IBM Informix JSON Compatibility

true
Grant full administrative access to the user. This is the default value.

false
Do not grant full administrative access to the user.

command.listDatabases.sizeStrategy
This optional parameter specifies a strategy for calculating the size of your
database when the MongoDB listDatabases command is run.

Important: The MongoDB listDatabases command performs expensive and
CPU-intensive computations on the size of each database in the Informix
instance. You can decrease the expense by using the
command.listDatabases.sizeStrategy parameter.

none
List the databases but do not compute the size. The database size is listed
as 0.
command.listDatabases.sizeStrategy=none

compute
Compute the exact size of the database.
command.listDatabases.sizeStrategy=compute

estimate
Estimate the size of the documents sampled. The default value is 1000 (or
0.1%) of the documents.
command.listDatabases.sizeStrategy=estimate

estimate: n
Estimate the size of the documents in a collection by sampling one
document for every n documents in the collection. The following example
estimates the collection size by using sample size of 0.5% or 1/200th of the
documents:
command.listDatabases.sizeStrategy={ estimate: 200 }

compatible.maxBsonObjectSize.enable
This optional parameter indicates whether the maximum BSON object size is
compatible with MongoDB.

false
Use a maximum document size of 256 MB. This is the default value.

true
Use a maximum document size of 16 MB. The maximum document size
for MongoDB is 16 MB.

database.buffer.enable

Prerequisite: database.log.enable=true
This optional parameter indicates whether to enable buffered logging when
you create a database.

true
Enable buffered logging. This is the default value.

false
Do not enable buffered logging.

database.create.enable
This optional parameter indicates whether to enable the automatic creation of a
database, if a database does not exist.

Chapter 2. Wire listener 2-5

true
If a database does not exist, create a database. This is the default value.

false
If a database does not exist, do not create a database. With this option, you
can access only preexisting databases.

database.dbspace

Prerequisite: dbspace.strategy=fixed
This optional parameter specifies the name of the Informix dbspace databases
that are created. The default value is database.dbspace=rootdbs.

database.locale.default
This optional parameter specifies the default locale to use when a database is
created. The default value is en_US.utf8.

database.log.enable
This optional parameter indicates whether to create databases that are enabled
for logging.

true
Create databases that are enabled for logging. This is the default value.

false
Do not create databases that are enabled for logging.

database.share.close.enable

Prerequisite: database.share.enable=true
This optional parameter indicates whether to close a shared database and its
associated resources, including connection pools, when the number of active
sessions drops to zero.

true
Close a shared database when the number of active sessions drops to zero.
This is the default value.

false
Keep the shared database open when the number of active sessions drops
to zero.

Important: If shared databases are enabled and this property is set to false,
the connection pool associated with a database is never closed.

database.share.enable
This optional parameter indicates whether to share database objects and
associated resources. For example, you can share connection pools between
sessions.

true
Share database objects and associated resources. This is the default value.

false
Do not share database objects and associated resources.

dbspace.strategy
This optional parameter specifies the strategy to use when determining the
location of newly created databases, tables, and indexes.

autolocate
The Informix server automatically determines the dbspace for the new
databases, tables, and indexes. This is the default value.

2-6 IBM Informix JSON Compatibility

fixed
Use a specific dbspace, as specified by the database.dbspace property.

documentIdAlgorithm
This optional parameter determines the algorithm that is used to generate the
unique Informix identifier for the ID column that is the primary key on the
table. The _id field of the document is used as the input to the algorithm. The
available algorithms are:

ObjectId
Indicates that the string representation of the ObjectId is used if the _id
field is of type ObjectId; otherwise, the MD5 algorithm is used to compute
the hash of the contents of the _id field.
v The string representation of an ObjectId is the hexadecimal

representation of the 12 bytes that comprise an ObjectId.
v The MD5 algorithm provides better performance than the secure hashing

algorithms (SHA).

This is the default value and it is suitable for most situations.

Important: Use the default unless a unique constraint violation is reported
even though all documents have a unique _id field. In that case, you might
need to investigate using a non-default algorithm, such as SHA-256 or
SHA-512.

SHA-1
Indicates that the SHA-1 hashing algorithm is used to derive an identifier
from the _id field.

SHA-256
Indicates that the SHA-256 hashing algorithm is used to derive an
identifier from the _id field.

SHA-512
Indicates that the SHA-512 hashing algorithm is used to derive an
identifier from the _id field. This option generates the most unique values,
but uses the most processor resources.

fragment.count
This optional parameter specifies the number of fragments to use when
creating a collection. If you specify 0, the database server determines the
number of fragments to create. If you specify a number greater than 0, these
fragments are created when the collection is created. The default value is 0.

include
This optional parameter specifies the location of a properties file to reference.
The path can be absolute or relative. For more information, see “Running
multiple wire listeners” on page 2-18.

insert.batch.enable
If multiple documents are sent as a part of a single INSERT statement, this
optional parameter indicates whether to batch document inserts into
collections.

true
Batch document inserts into collections by using JDBC batch calls to
perform the inserts. This is the default value.

false
Do not batch document inserts into collections.

Chapter 2. Wire listener 2-7

insert.batch.queue.enable
This optional parameter indicates whether to queue INSERT statements into
larger batches. You can improve insert performance by queuing INSERT
statements, however, there is decreased durability.

This parameter batches all INSERT statements, even a single INSERT
statement. These batched INSERT statements are flushed at the interval
specified by the insert.batch.queue.flush.interval parameter, unless another
operation arrives on the same collection. If another operation arrives on the
same collection, the batch inserts are immediately flushed to Informix before
proceeding with the next operation.

false
Do not queue INSERT statements. This is the default.

true
Queue INSERT statements into larger batches.

insert.batch.queue.flush.interval

Prerequisite: insert.batch.queue.enable=true
This optional parameter specifies the number of milliseconds between flushes
of the insert queue to Informix. The default value is 100.

index.cache.enable
This optional parameter indicates whether to enable index caching on
collections.

true
Cache indexes on collections. This is the default value.

false
Do not cache indexes on collections.

index.cache.update.interval
This optional parameter specifies the amount of time, in seconds, between
updates to the index cache on a collection table. The default value is 120.

insert.preparedStatement.cache.enable
This optional parameter indicates whether to cache the prepared statements
that are used to insert documents.

true
Cache the prepared statements that are used to insert documents. This is
the default value.

false
Do not cache the prepared statements that are used to insert documents.

listener.http.accessControlAllowCredentials
This optional parameter indicates whether to display the response to the
request when the omit credentials flag is not set. When this parameter is part
of the response to a preflight request, it indicates that the actual request can
include user credentials.

true
Display the response to the request. This is the default value.

false
Do not display the response to the request.

listener.http.accessControlAllowHeaders
This optional parameter, which is part of the response to a preflight request,

2-8 IBM Informix JSON Compatibility

specifies the header field names that are used during the actual request. You
must specify the value by using a JSON array of strings. Each string in the
array is the case-insensitive header field name. For example, to allow the
headers foo and bar in a request:
listener.http.accessControlAllowHeaders=["foo","bar"]

The default value is
listener.http.accessControlAllowHeaders=["accept","cursorId","content-
type"].

listener.http.accessControlAllowMethods
This optional parameter, which is part of the response to a preflight request,
specifies the methods that are used during the actual request. You must specify
the value by using a JSON array of strings. Each string in the array is the
name of an HTTP method that is allowed. The default value is:
listener.http.accessControlAllowMethods=["GET","PUT",
"POST","DELETE","OPTIONS"]

listener.http.accessControlAllowOrigin
This optional parameter specifies which uniform resource identifiers (URI) are
authorized to receive responses from the REST listener when processing
cross-origin resource sharing (CORS) requests. You must specify the value by
using a JSON array of strings, with a separate string in the array for each
value for the HTTP Origin header in a request. The values that are specified in
this parameter are validated to ensure that they are identical to the Origin
header.

HTTP requests include an Origin header that specifies the URI that served the
resource that processes the request. When a resource from a different origin is
accessed, the resource is validated to determine whether sharing is allowed.

The default value is
listener.http.accessControlAllowOrigin={"$regex":".*"}, which means any
origin is allowed to perform a CORS request.

Here are some usage examples:
v In this example, the localhost is granted access:

listener.http.accessControlAllowOrigin="http://localhost"

v In this example, access is granted to all hosts in the subnet 10.168.8.0/24.
The first 3 segments are validated as 10, 168, and 8, and the fourth segment
is validated as a value 1 - 255:
{"$regex":"^http://10\\\\.168\\\\.8\\\\.([01]?\\\\
d\\\\d?|2[0-4]\\\\d|25[0-5])$" }

v In this example, access is granted to all hosts in the subnet 10.168.8.0/24.
The first 3 segments are validated as 10, 168, and 8, and the fourth segment
must contain one or more digits:
listener.http.accessControlAllowOrigin={"$regex":
"^http://10\\\\.168\\\\.8\\\\.\\\\d+$" }

listener.http.accessControlExposeHeaders
This optional parameter specifies which headers of a CORS request to expose
to the API. You must specify the value by using a JSON array of strings. Each
string in the array is the case-insensitive name of a header to be exposed. For
example, to expose the headers foo and bar to a client:
listener.http.accessControlExposeHeaders=["foo","bar"]

The default value is
listener.http.accessControlExposeHeaders=["cursorId"].

Chapter 2. Wire listener 2-9

listener.http.accessControlMaxAge
This optional parameter specifies the amount of time, in seconds, that the
result of a preflight request is cached in a preflight result cache. A value of 0
indicates that the Access-Control-Max-Age header is not included in the
response to a preflight request. A value greater than 0 indicates that the
Access-Control-Max-Age header is included in the response to a preflight
request.

The default value is 0 seconds.

listener.idle.timeout
This optional parameter specifies the amount of time, in milliseconds, that a
client connection to the wire listener can idle before it is forcibly closed. You
can use this parameter to close connections and free associated resources when
clients are idle. The default value is 0 milliseconds.

Important: When set to a nonzero value, the wire listener socket that is used
to communicate with a MongoDB client is forcibly closed after the specified
time. To the client, the forcible closure appears as an unexpected disconnection
from the server the next time there is an attempt to write to the socket.

listener.input.buffer.size
This optional parameter specifies the size, in MB, of the input buffer for each
wire listener socket. The default value is 8192 MB.

listener.onException
This optional parameter specifies an ordered list of actions to take if an
exception occurs that is not handled by the processing layer.

reply
When an unhandled exception occurs, reply with the exception message.
This is the default value.

closeSession
When an unhandled exception occurs, close the session.

shutdownListener
When an unhandled exception occurs, shut down the wire listener.

listener.output.buffer.size
This optional parameter specifies the size, in MB, of the output buffer for each
listener socket. The default value is 8192 MB.

listener.pool.keepAliveTime
This optional parameter specifies the amount of time, in seconds, that threads
above the core pool size are allowed to idle before they are removed from the
wire listener JDBC connection pool. The default value is 60 seconds.

listener.pool.queue.size
This optional parameter specifies the number of requests above the core wire
listener pool size to queue before expanding the pool size up to the maximum.
A positive integer specifies the queue size to use before expanding the pool
size up to the maximum. The following are special values:

0 Do not allocate a queue size for tasks. All new sessions are either
immediately run on an available or new thread up to the maximum pool
size, or are instantly rejected if the maximum pool size is reached. This is
the default value.

-1 Allocate an unlimited queue size for tasks.

2-10 IBM Informix JSON Compatibility

listener.pool.size.core
This optional parameter specifies the maximum sustained size of the thread
pool that listens for incoming connections from MongoDB clients. The default
value is 128.

listener.pool.size.maximum
This optional parameter specifies the maximum peak size of the thread pool
that listens for incoming connections from MongoDB clients. The default value
is 1024.

listener.port
This optional parameter specifies the port number to listen on for incoming
connections from MongoDB clients. This value can be overridden from the
command line by using the port argument. The default value is 27017.

listener.rest.cookie.domain
This optional parameter specifies the name of the cookie that is created by the
REST wire listener. If not specified, the domain is the default value as
determined by the Apache Tomcat web server.

listener.rest.cookie.httpOnly
This optional parameter indicates whether to set the HTTP-only flag.

true
Set the HTTP-only flag. This flag helps to prevent cross-site scripting
attacks. This is the default value.

false
Do not set the HTTP-only flag.

listener.rest.cookie.length
This optional parameter specifies the length, in bytes, of the cookie value that
is created by the REST wire listener, before Base64 encoding. The default value
is 64 bytes.

listener.rest.cookie.name
This optional parameter specifies the name of the cookie that is created by the
REST wire listener to identify a session. The default value is
informixRestListener.sessionId.

listener.rest.cookie.path
This optional parameter specifies the path of the cookie that is created by the
REST wire listener. The default value is forward slash (/).

listener.rest.cookie.secure
This optional parameter indicates whether the cookies that are created by the
REST wire listener have the secure flag on. The secure flag prevents the
cookies from being used over an unsecure connection.

false
Turn off the secure flag. This is the default value.

true
Turn on the secure flag.

listener.type
This optional parameter specifies the type of wire listener to start.

mongo
Connect the wire listener to the MongoDB API. This is the default value.

rest
Connect the wire listener to the REST API.

Chapter 2. Wire listener 2-11

pool.connections.maximum
This optional parameter specifies the maximum number of active connections
to a database. The default value is 50.

pool.idle.timeout
This optional parameter specifies the minimum amount of time that an idle
connection is in the idle pool before it is closed. The default value is 60.

Important: Set the unit of time in the pool.idle.timeunit parameter.

pool.idle.timeunit

Prerequisite: pool.idle.timeout=time
This optional parameter specifies the unit of time that is used to scale the
pool.idle.timeout parameter.

SECONDS
Use seconds as the unit of time. This is the default value.

NANOSECONDS
Use nanoseconds as the unit of time.

MICROSECONDS
Use microseconds as the unit of time.

MILLISECONDS
Use milliseconds as the unit of time.

MINUTES
Use minutes as the unit of time.

HOURS
Use hours as the unit of time.

DAYS
Use days as the unit of time.

pool.semaphore.timeout
This optional parameter specifies the amount of time to wait to acquire a
permit for a database connection. The default value is 5.

Important: Set the unit of time in the pool.semaphore.timeunit parameter.

pool.semaphore.timeunit

Prerequisite: pool.semaphore.timeout=time
This optional parameter specifies the unit of time that is used to scale the
pool.semaphore.timeout parameter.

SECONDS
Use seconds as the unit of time. This is the default value.

NANOSECONDS
Use nanoseconds as the unit of time.

MICROSECONDS
Use microseconds as the unit of time.

MILLISECONDS
Use milliseconds as the unit of time.

MINUTES
Use minutes as the unit of time.

2-12 IBM Informix JSON Compatibility

HOURS
Use hours as the unit of time.

DAYS
Use days as the unit of time.

pool.service.interval
This optional parameter specifies the amount of time to wait between scans of
the idle connection pool. The idle connection pool is scanned for connections
that can be closed because they have exceeded their maximum idle time. The
default value is 30.

Important: Set the unit of time in the pool.service.timeunit parameter.

pool.service.timeunit

Prerequisite: pool.service.interval=time
This optional parameter specifies the unit of time that is used to scale the
pool.service.interval parameter.

SECONDS
Use seconds as the unit of time. This is the default value.

NANOSECONDS
Use nanoseconds as the unit of time.

MICROSECONDS
Use microseconds as the unit of time.

MILLISECONDS
Use milliseconds as the unit of time.

MINUTES
Use minutes as the unit of time.

HOURS
Use hours as the unit of time.

DAYS
Use days as the unit of time.

pool.size.initial
This optional parameter specifies the initial size of the idle connection pool.
The default value is 0.

pool.size.minimum
This optional parameter specifies the minimum size of the idle connection
pool. The default value is 0.

pool.size.maximum
This optional parameter specifies the maximum size of the idle connection
pool. The default value is 50.

pool.type
This optional parameter specifies the type of pool to use for JDBC connections.
The available pool types are:

basic
Thread pool maintenance of idle threads is run each time that a connection
is returned. This is the default.

none
No thread pooling occurs. Use this type for debugging purposes.

Chapter 2. Wire listener 2-13

advanced
Thread pool maintenance is run by a separate thread.

perThread
Each thread is allocated a connection for its exclusive use.

pool.typeMap.strategy
This optional parameter specifies the strategy to use for distribution and
synchronization of the JDBC type map for each connection in the pool.

copy
Copy the connection pool type map for each connection. This is the default
value.

clone
Clone the connection pool type map for each connection.

share
Share a single type map between all connections. You must use with a
thread-safe type map.

preparedStatement.cache.enable
This optional parameter indicates whether to cache prepared statements for
reuse.

true
Use a prepared statement cache. This is the default value.

false
Do not use a prepared statement cache. A new statement is prepared for
each query.

preparedStatement.cache.size
This optional parameter specifies the size of the least-recently used (LRU) map
that is used to cache prepared statements. The default value is 20.

response.documents.count.maximum
This optional parameter specifies the maximum number of documents in a
single response to a query. The default value is 100.

response.documents.size.maximum
This optional parameter specifies the maximum size, in KB, of all documents in
a single response to a query. The default value is 1048576.

security.sql.passthrough
This optional parameter indicates whether to enable support for issuing SQL
statements by using JSON documents.

false
Disable the ability to issue SQL statements by using the MongoDB API.
This is the default.

true
Allow SQL statements to be issued by using the MongoDB API.

sharding.enable
This optional parameter indicates whether to enable the use of commands and
queries on sharded data.

false
Do not enable the use of commands and queries on sharded data. This is
the default value.

2-14 IBM Informix JSON Compatibility

true
Enable the use of commands and queries on sharded data.

update.client.strategy
This optional parameter specifies the method that is used by the wire listener
to send updates to the database server. When the wire listener does the update
processing, it queries the server for the existing document and then performs
the update to the document.

updatableCursor
Updates are sent to the database server by using an updatable cursor. This
is the default value.

deleteInsert
The original document is deleted when the updated document is inserted.

Important: If the collection is sharded, you must use this method.

update.mode
This optional parameter determines where document updates are processed.

Tip: Choose an option that is based on type of update statements that you are
running. For example, if your document updates consist mainly of single
operation updates on a single field (for example, $set, $inc), you can use mixed
to process these updates directly on the server. If your document updates are
complicated or use document replacement, you can use client to process these
updates by using the wire listener.

client
Use the wire listener to process updates. This is the default value.

mixed
Attempt to process updates on the database server first, then fallback to
the wire listener.

update.one.enable
This optional parameter indicates whether to enable support for updating a
single JSON document.

false
All updates are treated as multiple JSON document updates. This is the
default.

With the update.one.enable=false setting, the MongoDB
db.collection.update multi-parameter is ignored and all updates are
treated as multiple JSON document updates. The performance of updates
is improved with the update.one.enable=false setting.

true
Allow updates to a single document or multiple documents.

With the update.one.enable=true setting, the MongoDB
db.collection.update multi-parameter is accepted. The db.collection.update
multi-parameter controls whether you can update a single document or
multiple documents.

Related reference:
“Collection methods” on page 4-1
“REST API syntax” on page 5-1

Chapter 2. Wire listener 2-15

Modifying the wire listener properties file
You can modify the wire listener properties in the jsonListener.properties file.

About this task

The jsonListener.properties file controls the wire listener and the connection
between the client and database server.

Procedure

To modify the wire listener properties:
1. Stop the wire listener.
2. Update the jsonListener.properties file.
3. Start the wire listener.
Related concepts:
“Starting the wire listener”
Related tasks:
“Stopping the wire listener” on page 2-19
Related reference:
“The jsonListener.properties file” on page 2-3

Starting the wire listener
You can start the wire listener for the REST API and the MongoDB API.
Related reference:

start json listener argument: Start the wire listener (Administrator's Reference)

Starting the MongoDB API wire listener
You can start the MongoDB API wire listener by using the start json listener
SQL administration API task() or admin() function, or the command line
argument.

Before you begin
v If you create a server instance during the installation process, the MongoDB API

wire listener is started automatically and connected to the MongoDB API. If you
create a server instance after the installation process, you must start the wire
listener.

v The wire listener configuration file jsonListener.properties must exist. If a
server instance is created as a part of the installation process, the
jsonListener.properties is automatically created with default properties,
otherwise you must manually create this file.

v If you use the SQL administration API task() or admin() function:
– You must be logged in to the sysadmin database as user informix or another

privileged user.
– The jsonListener.properties file must be located in $INFORMIXDIR/etc.

v “Software dependencies” on page 1-2

2-16 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_158.htm#ids_sapi_158

Procedure

Use one of the following methods to start the MongoDB API wire listener for the
current database server session:
v Run the SQL administration API task() or admin() function with the start json

listener argument. For example:
EXECUTE FUNCTION task("start json listener");

v From the command line, run the following command to start the MongoDB API
wire listener:
java -jar $INFORMIXDIR/bin/jsonListener.jar
-config pathname/jsonListener.properties
-logfile pathname/jsonListener.log -start

Important: You must specify the -config argument in the start command.

Examples

Start the MongoDB API wire listener by using the command line
In this example, the MongoDB API wire listener is started from the
command line:
java -jar $INFORMIXDIR/bin/jsonListener.jar -config
$INFORMIXDIR/etc/jsonListener.properties
-logfile $INFORMIXDIR/jsonListener.log -start

Output from starting the MongoDB API wire listener
In this example, output from starting the MongoDB API wire listener is
shown:
starting mongo listener on port 27017

Starting the REST API wire listener
You can start the REST API wire listener by using the command line argument.

Before you begin

“Software dependencies” on page 1-2

Procedure
1. Create a wire listener properties file for REST API that includes the parameter

setting listener.type="rest". You can use the $INFORMIXDIR/etc/
jsonListener-example.properties file as a template.

Important: The url parameter must be specified, either in each individual
properties file or in the file that is referenced by the include parameter.

2. From the command line, run the following command to start the REST API
wire listener:
java -cp $INFORMIXDIR/bin/jsonListener.jar:pathname/
tomcat-embed-core.jar com.ibm.nosql.informix.server.ListenerCLI
-config pathname/jsonListener.properties
-logfile pathname/jsonListener.log -start

Where pathname is the location where the nosql_sdk.zip file was extracted.

Important: You must specify the -config argument in the start command.

Chapter 2. Wire listener 2-17

Examples

Start the REST API wire listener by using the command line
In this example, the REST API wire listener is started from the command
line:
java -cp $INFORMIXDIR/bin/jsonListener.jar:
$INFORMIXDIR/bin/tomcat-embed-core.jar
com.ibm.nosql.informix.server.ListenerCLI
-config pathname/jsonListener.properties
-logfile pathname/jsonListener.log -start

Output from starting the REST API wire listener
In this example, output from starting the REST API wire listener is shown:
starting rest listener on port 27017

Running multiple wire listeners
You can run multiple wire listeners.

About this task

By running multiple wire listeners, you can use both the REST API and the
MongoDB API. For example, you can create a properties file to start the MongoDB
API and a properties file to start the REST API.

Procedure
1. Create each properties file in the $INFORMIXDIR/etc directory. You can use the

$INFORMIXDIR/etc/jsonListener-example.properties file as a template.
2. Customize each properties file and assign a unique name.

Important: The url parameter must be specified, either in each individual
properties file or in the file that is referenced by the include parameter.

3. Optional: Specify the include parameter to reference another properties file.
The path can be relative or absolute. If you have multiple properties files, you
can avoid duplicating parameter settings in the multiple properties files by
specifying a subset of shared parameters in a single properties file, and the
unique parameters in the individual properties files.

4. Start the wire listeners.

Example: Running multiple wire listeners that share parameter
settings

In this example, the same url, authentication.enable, and
security.sql.passthrough parameters are used to run two separate wire listeners:
1. Create a properties file named shared.properties that includes the following

parameters:
url=jdbc:informix-sqli://localhost:9090/sysmaster:
INFORMIXSERVER=lo_informix1210;
authentication.enable=true
security.sql.passthrough=true

2. Create a properties file for use with the MongoDB API that is named
mongo.properties, with the parameter setting include=shared.properties
included:
include=shared.properties
listener.type=mongo
listener.port=27017

2-18 IBM Informix JSON Compatibility

3. Create a properties file for use with the REST API that is named
rest.properties, with the parameter setting include=shared.properties
included:
include=shared.properties
listener.type=rest
listener.port=8080

4. Start the wire listeners by using the command line:
java -jar jsonListener.jar -start
-config json.properties
-config rest.properties

Related reference:
“REST API syntax” on page 5-1

Stopping the wire listener
You can stop the wire listener by using the stop json listener argument with the
SQL administration API task() or admin() function, or the command line
argument.

Before you begin
v If you use SQL administration API task() or admin() function, you must be

connected to the sysadmin database as user informix or another authorized
user.

Procedure

Use one of the following methods to stop the wire listener for the current database
server session:
v Run the SQL administration API task() or admin() function with the stop json

listener argument. For example:
EXECUTE FUNCTION task("stop json listener");

v From the command line, run the following command to stop the wire listener.
For example:
java -jar jsonListener.jar -config $INFORMIXDIR/etc/jsonListener.properties -stop

Important: You must specify the configuration file in the stop argument.
Related reference:

stop json listener: Stop the wire listener (Administrator's Reference)

Wire listener command line options
You can use command line options to control the wire listener.

Syntax

�� java -jar jsonListener.jar
-config config_file_name -start

-stop

�

�
-logfile log_file_name -loglevel level -port port_number

�

Chapter 2. Wire listener 2-19

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_159.htm#ids_sapi_159

�
-wait wait_time -version -buildInformation

��

Argument Purpose

-config config_file_name Specifies the deployment configuration file to run. This element is required to start or
stop the wire listener.

-start Starts the wire listener. You must also specify the configuration file.

-stop Stops the wire listener. You must also specify the configuration file.

-logfile log_file_name Specifies the name of the log file used. If this option is not specified, the log messages
are sent to std.out.

-loglevel level Specifies the logging level.

error
Errors are sent to the log file. This is the default value.

warn
Errors and warnings are sent to the log file.

info
Informational messages, warnings, and errors are sent to the log file.

debug
Debug, informational messages, warnings, and errors are sent to the log file.

trace
Trace, debug, informational messages, warnings, and errors are sent to the log file.

-port port_number Specifies the port number. If a port is specified on the command line, it overrides the
port properties set in the configuration file. The default port is 27017.

-wait wait_time Specifies the amount of time, in seconds, to wait before the wire listener stops. The
default is immediate shutdown.

-version Prints the wire listener version.

-buildInformation Prints the wire listener build information.

Running SQL commands by using a MongoDB API
You can run SQL statements by using the MongoDB API and retrieve results back.
The results of the SQL statements are treated like they are documents in a JSON
collection.

Before you begin

You must enable SQL operations by setting security.sql.passthrough=true in the
jsonListener.properties file.

Procedure

From the MongoDB API, use the abstract system collection system.sql as the
collection name and $sql as the query operator in the MongoDB shell command,
followed by the SQL statement. For example:
> db.getCollection("system.sql").find({ "$sql": "sql_statement" })

2-20 IBM Informix JSON Compatibility

Examples

Create an SQL table by using the MongoDB API
In this example, an SQL table is created by running the Informix CREATE
TABLE command by using the MongoDB API:
> db.getCollection("system.sql").find({ "$sql": "create table foo
(c1 int)" })

Drop an SQL table by using the MongoDB API
In this example, an SQL table is dropped by running the Informix DROP
TABLE command by using the MongoDB API:
> db.getCollection("system.sql").find({"$sql": "drop table foo" })

Delete SQL customer call records that are more than 5 years old by using the
MongoDB API

In this example, customer call records stored in SQL tables are deleted by
running the Informix DELETE command by using the MongoDB API:
> db.getCollection("system.sql").findOne({ "$sql": "delete from
cust_calls where (call_dtime + interval(5) year to year) < current" })

Result: 7 rows were deleted.
{ "n" : 7 }

Delete SQL customer call records that are more than 5 years old by using the
MongoDB API

In this example, customer call records stored in SQL tables are deleted by
running the Informix DELETE command by using the MongoDB API:
> db.getCollection("system.sql").findOne({ "$sql": "delete
from cust_calls where (call_dtime + interval(5) year to year) < current" })

Result: 7 rows were deleted.
{ "n" : 7 }

Join JSON collections
In this example, a query counts the number of orders a customer has
placed by using an outer join to include the customers who have not
placed orders.
> db.getCollection("system.sql").find({ "$sql": "select
c.customer_num,o.customer_num as order_cust,count(order_num) as
order_count from customer c left outer join orders o on
c.customer_num = o.customer_num group by 1, 2 order by 2" })

Result:
{ "customer_num" : 113, "order_cust" : null, "order_count" : 0 }
{ "customer_num" : 114, "order_cust" : null, "order_count" : 0 }
{ "customer_num" : 101, "order_cust" : 101, "order_count" : 1 }
{ "customer_num" : 104, "order_cust" : 104, "order_count" : 4 }
{ "customer_num" : 106, "order_cust" : 106, "order_count" : 2 }

Related tasks:
“Configuring the wire listener” on page 2-2
Related reference:
“The jsonListener.properties file” on page 2-3

Running MongoDB operations on relational tables
You can run MongoDB operations on relational tables by using the MongoDB API.

Chapter 2. Wire listener 2-21

About this task

Use the MongoDB database methods to run read and write operations on a
relational table as if the table were a collection. The wire listener examines the
database and if the accessed entity is a relational table, it converts the basic
operations on that table to SQL and converts the returned values into a JSON
document. At the first access to an entity, the wire listener caches the name and
type of that entity. The first access results in an extra call to the Informix server,
but subsequent operations do not.

Procedure

From the MongoDB API, enter the relational table name as the collection name in
the MongoDB collection method. For example:
>db.getCollection("tablename");

Examples

The following examples use the customer table in the stores_demo sample
database. All of the tables in the stores_demo database are relational tables, but
you can use the same MongoDB collection methods to access and modify the
tables, as if they were collections.

Get the customer count
In this example, the number of customers is returned.
> db.customer.count()
28

Query for a particular customer
In this example, a specific customer record is retrieved.
> db.customer.find({customer_num:101})
{ "customer_num" : 101, "fname" : "Ludwig", "lname" : "Pauli", "company" :
"All Sports Supplies", "address1" : "213 Erstwild Court", "address2" :
null, "city" : "Sunnyvale", "state" : "CA", "zipcode" : "94086",
"phone" : "408-555-8075" }

Update a customer phone number
In this example, the customer phone number is updated.
> db.customer.update({"customer_id":101}, {"$set":{"phone":"408-555-1234"}})

Related reference:
“Collection methods” on page 4-1

2-22 IBM Informix JSON Compatibility

Chapter 3. JSON data sharding

IBM Informix can horizontally partition data across multiple database servers.
Documents from a collection or rows from a table can be distributed across a
cluster of database servers, reducing the number of documents or rows and the
size of the index for the database of each server. When you distribute data across
database servers, you also distribute performance across hardware. As your
database grows in size, you can scale up by adding more database servers.

Horizontal partitioning is also known as sharding. The database servers that receive
sharded data are shard servers, and a cluster of shard servers is a shard cluster.

Documents or rows that are inserted on a shard server can be copied to other
shard servers in a shard cluster. Queries that are performed on a shard server can
select data from other shard servers in a shard cluster. When data is sharded based
on a field or column that specifies certain segmentation characteristics, queries can
skip shard servers that do not contain relevant data. This query optimization is
another benefit that comes from data sharding.

To use Informix sharding capability, you must complete the following steps:
1. Add existing database servers to a shard cluster. You can create a cluster of

shard servers by using MongoDB commands or IBM Informix commands.
2. Define a schema for sharding data. You can create a definition by using

MongoDB commands or IBM Informix commands.
Related concepts:

Shard cluster setup (Enterprise Replication Guide)
Related tasks:
“Configuring the wire listener” on page 2-2

Enabling sharding for JSON or relational data
You must enable sharding support before you can shard data.

Before you begin

Verify that the user of the wire listener has REPLICATION privilege group access
in the SQL Admin API. If a database server instance is created as a part of the
installation process, the user ifxjson is created and added to the
$INFORMIXDIR/etc/jsonListener.properties file, with REPLICATION privilege
group access. If a database server instance is created after the installation process,
you must add the user with REPLICATION privilege group access to the url
parameter in the $INFORMIXDIR/etc/jsonListener.properties file.

Procedure

To enable sharding for JSON or relational data:
1. Specify trusted hosts for each database server that is added to the shard cluster.

Use one of the following methods to set each database server's
REMOTE_SERVER_CFG configuration parameter, and add trusted-host names
as values to each database server's trusted-host file:

© Copyright IBM Corp. 2013, 2014 3-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_646.htm#ids_erp_646

v Use the OpenAdmin Tool (OAT) for Informix. Go to the Server
Administration > Configuration page, and click the Trusted Hosts tab.

v Run the SQL administration API task() or admin() function with the cdr add
trustedhost argument and include the appropriate host values. You must be
a Database Server Administrator (DBSA) to run these functions.

2. Set the sharding.enable parameter to true in each database server's
$INFORMIXDIR/etc/jsonListener.properties file.

3. Set the update.client.strategy parameter to deleteInsert in each database
server's $INFORMIXDIR/etc/jsonListener.properties file.

4. Restart the wire listener.
Related reference:

cdr add trustedhost argument: Add trusted hosts (SQL administration API)
(Administrator's Reference)

cdr remove trustedhost argument: Remove trusted hosts (SQL administration
API) (Administrator's Reference)

cdr list trustedhost argument: List trusted hosts (SQL administration API)
(Administrator's Reference)

Creating a shard cluster by running the addShard command in the
MongoDB shell

The sh.addShard MongoDB shell command adds a database server to a shard
cluster.

Before you begin

You must verify the following details:
v All database servers that are participating in, or being added to, a shard cluster

are listed in each database server's trusted-host file.
v The sharding.enable parameter is set to true in each database server's

$INFORMIXDIR/etc/jsonListener.properties file.
v The user of the wire listener has REPLICATION privilege group access in the

SQL Admin API.

Procedure

To create a shard cluster by running the addShard command in the MongoDB
shell:
1. Run the mongo command to start the MongoDB shell.
2. Run the sh.addShard command with the host and port specified for the

Informix server that you want to add. The specified port must be an Informix
port that runs a SQLI, network-based listener, for example the onsoctcp
protocol. For example:
> sh.addShard("myhost1.ibm.com:9201")

Example: Adding a single database server to a shard cluster

The following command adds the database server that is at port 9202 of
myhost2.ibm.com to a shard cluster. The shard-cluster definition changes to
include the new server.
> sh.addShard("myhost2.ibm.com:9202")

3-2 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm#ids_sapi_155
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm#ids_sapi_155
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm#ids_sapi_156
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm#ids_sapi_156
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157

Related reference:

cdr define shardCollection (Enterprise Replication Guide)

cdr add trustedhost argument: Add trusted hosts (SQL administration API)
(Administrator's Reference)

cdr remove trustedhost argument: Remove trusted hosts (SQL administration
API) (Administrator's Reference)

cdr list trustedhost argument: List trusted hosts (SQL administration API)
(Administrator's Reference)
“Database commands” on page 4-4

Creating a shard cluster by running the addShard command through
db.runCommand in the MongoDB shell

The db.runCommand command with addShard command syntax adds database
servers to a shard cluster.

Before you begin

You must verify the following details:
v All database servers that are participating in, or being added to, a shard cluster

are listed in each database server's trusted-host file.
v The sharding.enable parameter is set to true in each database server's

$INFORMIXDIR/etc/jsonListener.properties file.
v The user of the wire listener has REPLICATION privilege group access in the

SQL Admin API.

Procedure

To create a shard cluster by running the addShard command through
db.runCommand in the MongoDB shell:
1. Run the mongo command. The command starts the MongoDB shell.
2. Run the db.runCommand from the MongoDB shell, with addShard command

syntax.
v Add a single database server by using the following syntax:

�� db.runCommand({"addShard": " local_hostname :port_number" })
fully_qualified_domain_name

��

Element Description Restrictions

local_hostname The localhost name for a server. None.

fully_qualified_domain_name The full domain name for a server. None.

port_number The port that is used for communication with the server. None.

For example:
> db.runCommand({"addShard":"myhost1.ibm.com:9201"})

v Add multiple database servers by using the following syntax:

Chapter 3. JSON data sharding 3-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_640.htm#ids_erp_640
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm#ids_sapi_155
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm#ids_sapi_155
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm#ids_sapi_156
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm#ids_sapi_156
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157

�� �

,

db.runCommand({"addShard":[" local_hostname :port"]})
fully_qualified_domain_name

��

Element Description Restrictions

local_hostname The localhost name for a server. None.

fully_qualified_domain_name The full domain name for a server. None.

port The port that is used for communication with the server. None.

For example:
> db.runCommand({"addShard":["myhost2.ibm.com:9202",

"myhost3.ibm.com:9203"]})

Examples

Add a database server to a shard cluster
This example adds the database server that is at port 9204 of
myhost4.ibm.com to a shard cluster. The shard-cluster definition changes
to include the new server.
> db.runCommand({"addShard":"myhost4.ibm.com:9204"})

Add multiple database servers to a shard cluster
This example adds the database servers that are at port 9205 of
myhost5.ibm.com, port 9206 of myhost6.ibm.com, and port 9207 of
myhost7.ibm.com to a shard cluster. The shard-cluster definition changes
to include the new servers.
> db.runCommand({"addShard":["myhost5.ibm.com:9205",

"myhost6.ibm.com:9206","myhost7.ibm.com:9207"]})

Related reference:

cdr define shardCollection (Enterprise Replication Guide)

cdr add trustedhost argument: Add trusted hosts (SQL administration API)
(Administrator's Reference)

cdr remove trustedhost argument: Remove trusted hosts (SQL administration
API) (Administrator's Reference)

cdr list trustedhost argument: List trusted hosts (SQL administration API)
(Administrator's Reference)
“Database commands” on page 4-4

Viewing shard-cluster participants
Run the db.runCommand MongoDB shell command with listShards syntax to list
the Enterprise Replication group names, hosts, and port numbers of all database
servers that are participating in a shard cluster.

Procedure
1. Run the mongo command. The command starts the MongoDB shell.
2. Run the listShards command:

Syntax:

�� db.runCommand({listShards:1}) ��

3-4 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_640.htm#ids_erp_640
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm#ids_sapi_155
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm#ids_sapi_155
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm#ids_sapi_156
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm#ids_sapi_156
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157

For example, run the following command:
db.runCommand({listShards:1})

The listShards command produces output in the following structure:
{

"serverUsed" : "server_host/IP_address",
"shards" : [

{
"_id" : "ER_group_name_1",
"host" : "host_1:port_1"

},
{

"_id" : "ER_group_name_2",
"host" : "host_2:port_2"

},
{

"_id" : "ER_group_name_x",
"host" : "host_x:port_x"

}
],
"ok" : 1

}

Element Description Restrictions

ER_group_name The Enterprise Replication group name of a database server
that is a shard-cluster participant.

The Enterprise Replication group name for a database
server can be found in the database server's sqlhosts file.
The default location for the sqlhosts file is:

v UNIX: $INFORMIXDIR/etc/sqlhosts

v Windows: %INFORMIXDIR%\etc\sqlhosts.
%INFORMIXSERVER%

The default Enterprise Replication group name for a
database server is the database server's name prepended
with g_. For example, the default Enterprise Replication
group name for a database server named myserver is
g_myserver.

None.

host The host for a shard-cluster participant. The host can be a
localhost name or a full domain name.

None.

IP_address The IP address of the database server that the listener is
connected to.

None.

port The port number that a shard-cluster participant uses to
communicate with other shard-cluster participants.

None.

server_host The host for the database server that the listener is
connected to. The host can be a localhost name or a full
domain name.

None.

Example

For this example, you have a shard cluster defined by the following command:
prompt> db.runCommand({"addShard":["myhost1.ibm.com:9201",

"myhost2.ibm.com:9202","myhost3.ibm.com:9203",
"myhost4.ibm.com:9204","myhost5.ibm.com:9205"]})

The following example output is shown when the listShards command is run in
the MongoDB shell, and the listener is connected to the database server at

Chapter 3. JSON data sharding 3-5

myhost1.ibm.com.

Related concepts:

Installing the OpenAdmin Tool for Informix with the Client SDK (Client
Products Installation Guide)
Related reference:

cdr list trustedhost argument: List trusted hosts (SQL administration API)
(Administrator's Reference)

cdr list shardCollection (Enterprise Replication Guide)

onstat -g shard command: Print information about the shard cache
(Administrator's Reference)
“Database commands” on page 4-4

Shard-cluster definitions for distributing data
A cluster of shard servers uses a definition to distribute data across shard servers.

You must create a shard-cluster definition to distribute data across the shard
servers. The definition contains the following information:
v The Informix Enterprise Replication group name of each participating shard

server.
v The name of the database and collection or table that is distributed across the

shard servers of a shard cluster.
v The field or column that is used as a shard key for distributing data. Shard key

values determine which shard server a document or row is stored on.
v The sharding method by which documents or rows are distributed to specific

shard servers. The sharding method is either a hash-based or expression-based.

{
"serverUsed" : "myhost1.ibm.com/192.0.2.0:9200",
"shards" : [

{
"_id" : "g_myserver1",
"host" : "myhost1.ibm.com:9200"

},
{

"_id" : "g_myserver2",
"host" : "myhost2.ibm.com:9202"

},
{

"_id" : "g_myserver3",
"host" : "myhost3.ibm.com:9203"

}
{

"_id" : "g_myserver4",
"host" : "myhost4.ibm.com:9204"

}
{

"_id" : "g_myserver5",
"host" : "myhost5.ibm.com:9205"

}
],
"ok" : 1

}

Figure 3-1. listShards command output for a shard cluster

3-6 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.cpi.doc/ids_cpi_027.htm#installingtheibmopenadmintooloatfor
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.cpi.doc/ids_cpi_027.htm#installingtheibmopenadmintooloatfor
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_643.htm#ids_erp_643
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm#ids_adr_1177
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm#ids_adr_1177

A definition that uses a hash algorithm to shard data is modified when MongoDB
commands are used to add a server to the shard cluster.

A definition that uses an expression to shard data can be modified by running the
changeShardCollection command. If you add a shard server to a definition, you
must first add the server to the shard cluster by running the db.runCommand
command with addShard command syntax.

When you change the shard-cluster definition, existing data on shard servers is
redistributed to match the new definition.
Related reference:

cdr change shardCollection (Enterprise Replication Guide)

cdr delete shardCollection (Enterprise Replication Guide)

Creating a shard-cluster definition that uses a hash algorithm
for distributing data across database servers

The shardCollection command in the MongoDB shell creates a definition for
distributing data across the database servers of a shard cluster.

Procedure

To create a shard-cluster definition that uses a hash algorithm for distributing data
across database servers:
1. Run the mongo command. The command starts the MongoDB shell.
2. Run the shardCollection command. There are two ways to run the command:

v Run the sh.shardCollection MongoDB command. For example:
> sh.shardCollection("database1.collection1",

{customer_name:"hashed"})

v Run the db.runCommand from the MongoDB shell, with shardCollection
command syntax. For example:
> db.runCommand({"shardCollection":"database2.collection_2",

key:{customer_name:"hashed"}})

The shardCollection command syntax for using a hash algorithm is shown
in the following diagram:

�� db.runCommand ({"shardCollection":"database. collection ",
table

�

� key:{ field :"hashed"}})
column

��

Element Description Restrictions

database The name of the database that contains the collection
that is distributed across database servers.

The database must exist.

collection The name of the collection that is distributed across
database servers.

The collection must exist.

column The shard key that is used to distribute data across the
database servers of a shard cluster.

The column must exist.

Composite shard keys are
not supported.

Chapter 3. JSON data sharding 3-7

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_641.htm#ids_erp_641
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_642.htm#ids_erp_642

Element Description Restrictions

field The shard key that is used to distribute data across the
database servers of a shard cluster.

The field must exist.

Composite shard keys are
not supported.

table The name of the table that is distributed across
database servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the
MongoDB ensureIndex command on the shard key of each of a cluster's shard
servers. The ensureIndex command ensures that an index for the collection or
table is created on the shard server.

Results

The name of a shard-cluster definition that is created by a shardCollection
command that is run through the wire listener is:

�� sh_database_ collection
table

��

Example

The following command defines a shard cluster that uses a hash algorithm on the
shard key value year to distribute data across multiple database servers.
> sh.shardCollection("mydatabase.mytable",{year:"hashed"})

The name of the created shard-cluster definition is sh_mydatabase_mytable.
Related reference:

cdr change shardCollection (Enterprise Replication Guide)

cdr delete shardCollection (Enterprise Replication Guide)
“Database commands” on page 4-4

Creating a shard-cluster definition that uses an expression for
distributing data across database servers

The MongoDB shell db.runCommand command with shardCollection command
syntax creates a definition for distributing data across the database servers of a
shard cluster.

Procedure

To create a shard-cluster definition that uses an expression for distributing data
across database servers:
1. Run the mongo command. The command starts the MongoDB shell.
2. Run the db.runCommand from the MongoDB shell, with shardCollection

command syntax.
The shardCollection command syntax for using an expression is shown in the
following diagram:

3-8 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_641.htm#ids_erp_641
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_642.htm#ids_erp_642

�� db.runCommand ({"shardCollection":"database. collection ",
table

�

� key:{ column :1},expressions:{
field

�

� �

,

" ER_group_name ": expression " �

� " ER_group_name ":" remainder " }) ��

Element Description Restrictions

collection The name of the collection that is distributed
across database servers.

The collection must exist.

column The shard key that is used to distribute data across
the database servers of a shard cluster.

The column must exist.

Composite shard keys are
not supported.

database The name of the database that contains the
collection that is distributed across database
servers.

The database must exist.

ER_group_name The Enterprise Replication group name of a
database server that receives copied data.

The default Enterprise Replication group name for
a database server is the database server's name
prepended with g_. For example, the default
Enterprise Replication group name for a database
server that is named myserver is g_myserver.

None.

expression The expression that is used to select documents by
shard key value.

None.

field The shard key that is used to distribute data across
the database servers of a shard cluster.

The field must exist.

Composite shard keys are
not supported.

remainder Specifies a database server that receives documents
with shard key values that are not selected by
expressions. The remainder expression is required.

table The name of the table that is distributed across
database servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the
MongoDB ensureIndex command on the shard key of each of a cluster's shard
servers. The ensureIndex command ensures that an index is created for the
collection or table on the shard server.

Chapter 3. JSON data sharding 3-9

Results

The name of a shard-cluster definition that is created by a shardCollection
command that is run through the wire listener is:

�� sh_database_ collection
table

��

Examples

Define a shard cluster that uses an expression to distribute data across multiple
database servers

The following command defines a shard cluster that uses an expression on
the field value state for distributing collection1 across multiple database
servers.
> db.runCommand({"shardCollection":"database1.collection1",

key:{state:1},expressions:{"g_shard_server_1":"in (’KS’,’MO’)",
"g_shard_server_2":"in (’CA’,’WA’)","g_shard_server_3":"remainder"}})

The name of the created shard-cluster definition is
sh_database1_collection1.
v Inserted documents with KS and MO values in the state field are sent to

g_shard_server_1.
v Inserted documents with CA and WA values in the state field are sent to

g_shard_server_2.
v All inserted documents that do not have KS, MO, CA, or WA values in

the state field are sent to g_shard_server_3.

Define a shard cluster that uses an expression to distribute data across multiple
database servers

The following command defines a shard cluster that uses an expression on
the column value animal for distributing table2 across multiple database
servers.
> db.runCommand({"shardCollection":"database1.table2",

key:{animal:1},expressions:{"g_shard_server_1":"in (’dog’,’coyote’)",
"g_shard_server_2":"in (’cat’)","g_shard_server_3":"in (’rat’)",
"g_shard_server_4":"remainder"}})

The name of the created shard-cluster definition is sh_database2_table2.
v Inserted rows with dog or coyote values in the animal column are sent

to g_shard_server_1.
v Inserted rows with cat values in the animal column are sent to

g_shard_server_2.
v Inserted rows with rat data values in the animal column are sent to

g_shard_server_3.
v All inserted rows that do not have dog, coyote, cat, or rat values in the

animal column are sent to g_shard_server_4.

Define a shard cluster that uses an expression to distribute collections across
multiple database servers

The following command defines a shard cluster that uses an expression on
the field value year for distributing collection3 across multiple database
servers.

3-10 IBM Informix JSON Compatibility

> db.runCommand({"shardCollection":"database1.collection3",
key:{year:1},expressions:{"g_shard_server_1":"between 1980 and 1989",
"g_shard_server_2":"between 1990 and 1999",
"g_shard_server_3":"between 2000 and 2009",
"g_shard_server_4":"remainder"}})

The name of the created shard-cluster definition is
sh_database3_collection3.
v Inserted documents with values of 1980 to 1989 in the year field are sent

to g_shard_server_1.
v Inserted documents with values of 1990 to 1999 in the year field are sent

to g_shard_server_2.
v Inserted documents with values of 1980 to 1989 in the year field are sent

to g_shard_server_3.
v Inserted documents with values below 1980 or above 2009 in the year

field are sent to g_shard_server_4.
Related reference:

cdr add trustedhost argument: Add trusted hosts (SQL administration API)
(Administrator's Reference)

cdr remove trustedhost argument: Remove trusted hosts (SQL administration
API) (Administrator's Reference)

cdr list trustedhost argument: List trusted hosts (SQL administration API)
(Administrator's Reference)

cdr define shardCollection (Enterprise Replication Guide)

cdr change shardCollection (Enterprise Replication Guide)

cdr delete shardCollection (Enterprise Replication Guide)

cdr list shardCollection (Enterprise Replication Guide)
“Database commands” on page 4-4

Changing the definition for a shard cluster
The db.runCommand command with changeShardCollection command syntax
changes the definition for a shard cluster.

Before you begin

If the shard cluster uses an expression for distributing data across multiple
database servers, you must add database servers to a shard cluster and remove
database servers from a shard cluster by running the changeShardCollection
command. If the shard-cluster definition uses a hash algorithm, database servers
are automatically added to the shard cluster when you run the sh.addShard
MongoDB shell command.

If you change a shard-cluster definition to include a new shard server, that server
must first be added to a shard cluster by running the db.runCommand command
with addShard command syntax.

When a shard-cluster definition changes, existing data on shard servers is
redistributed to match the new definition.

Chapter 3. JSON data sharding 3-11

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm#ids_sapi_155
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm#ids_sapi_155
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm#ids_sapi_156
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm#ids_sapi_156
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_640.htm#ids_erp_640
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_641.htm#ids_erp_641
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_642.htm#ids_erp_642
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_643.htm#ids_erp_643

About this task

The following steps apply to changing the definition for shard cluster that uses an
expression for distributing documents in a collection across multiple database
servers.

Procedure

To change the definition for a shard cluster:
1. Run the mongo command. The command starts the MongoDB shell.
2. Change the shard-cluster definition by running the changeShardCollection

command. You must redefine all expressions for all shard servers, not just
newly added or changed shard servers.

�� db.runCommand ({"changeShardCollection":"database. collection ",
table

�

� �

,

expressions:{ " ER_group_name ":" expression " �

� ,"ER_group_name":"remainder" }) ��

Element Description Restrictions

collection The name of the collection that is distributed across database
servers.

The collection must
exist.

database The name of the database that contains the collection that is
distributed across database servers.

The database must
exist.

ER_group_name The Enterprise Replication group name of a database server
that receives copied data.

The default Enterprise Replication group name for a database
server is the database server's name prepended with g_. For
example, the default Enterprise Replication group name for a
database server that is named myserver is g_myserver.

None.

expression The expression that is used to select documents by shard key
value.

None.

remainder The database server that receives documents with shard key
values that are not selected by expressions.

table The name of the table that is distributed across database
servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the
MongoDB ensureIndex command on the shard key each of a cluster's shard
servers. The ensureIndex command ensures that an index for the collection or
table is created on the shard server.

3-12 IBM Informix JSON Compatibility

Example

You have a shard cluster that is composed of three database servers, and the shard
cluster is defined by the following command:
> db.runCommand({"shardCollection":"database1.collection1",

expressions:{"g_shard_server_1":"in (’KS’,’MO’)",
"g_shard_server_2":"in (’CA’,’WA’)","g_shard_server_3":"remainder"})

To add g_shard_server_4 and g_shard_server_5 to the shard cluster and change
where data is sent to, run the following command:
> db.runCommand({"changeShardCollection":"database1.collection1",

expressions:{"g_shard_server_1":"in (’KS’,’MO’)",
"g_shard_server_2":"in (’TX’,’OK’)","g_shard_server_3":"in (’CA’,’WA’)",
"g_shard_server_4":"in (’OR’,’ID’)","g_shard_server_5":"remainder"})

The new shard cluster contains five database servers:
v Inserted documents with a state field value of KS or MO are sent to

g_shard_server_1.
v Inserted documents with a state field value of TX or OK are sent to

g_shard_server_2.
v Inserted documents with a state field value of CA or WA are sent to

g_shard_server_3.
v Inserted documents with a state field value of OR or ID are sent to

g_shard_server_4.
v Inserted documents with a state field value that is not in the expression are sent

to g_shard_server_5.

To then remove g_shard_server_2 and change where the data that was on
g_shard_server_2 is sent to, run the following command:
> db.runCommand({"changeShardCollection":"database1.collection1",

expressions:{"g_shard_server_1":"in (’KS’,’MO’)",
"g_shard_server_3":"in (’TX’,’CA’,’WA’)",
"g_shard_server_4":"in (’OK’,’OR’,’ID’)",
"g_shard_server_5":"remainder"})

The new shard cluster contains four database servers.
v Inserted documents with a state field value of TX are now sent to

g_shard_server_3.
v Inserted documents with a state field value of OK are now sent to

g_shard_server_4.

Existing data on shard servers is redistributed to match the new definition.
Related reference:

cdr define shardCollection (Enterprise Replication Guide)

cdr change shardCollection (Enterprise Replication Guide)

cdr delete shardCollection (Enterprise Replication Guide)

cdr list shardCollection (Enterprise Replication Guide)

Chapter 3. JSON data sharding 3-13

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_640.htm#ids_erp_640
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_641.htm#ids_erp_641
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_642.htm#ids_erp_642
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_643.htm#ids_erp_643

3-14 IBM Informix JSON Compatibility

Chapter 4. MongoDB API and commands

The Informix support for MongoDB application programming interfaces and
commands are described here.

Language drivers
The wire listener parses messages that are based on the MongoDB Wire Protocol.

You can use the MongoDB community drivers to store, update, and query JSON
documents with Informix as a JSON data store. These drivers can include Java,
C/C++, Ruby, PHP, PyMongo, and so on.

Download the MongoDB drivers for the programming languages at
http://docs.mongodb.org/ecosystem/drivers/.

Command utilities and tools
You can use the MongoDB shell and any of the standard MongoDB command
utilities and tools.

The supported MongoDB shell is version 2.4.3.

You can run the MongoDB mongodump and mongoexport utilities against
MongoDB to export data from MongoDB to Informix.

You can run the MongoDB mongorestore and mongoimport utilities against
Informix to import data from MongoDB to Informix.

Collection methods
The collection methods for the mongo shell that are supported by Informix are
shown.

The MongoDB collection methods are operations that are run on a JSON collection
or a relational table.

Table 4-1. Supported collection methods

Name
JSON
collections

Relational
tables Details

aggregate No No

count Yes Yes

createIndex Yes Yes For more information, see “Index creation” on page 4-2.

dataSize Yes No

distinct Yes Yes

drop Yes Yes

dropIndex Yes Yes

dropIndexes Yes No

ensureIndex Yes Yes For more information, see “Index creation” on page 4-2.

© Copyright IBM Corp. 2013, 2014 4-1

http://docs.mongodb.org/ecosystem/drivers/

Table 4-1. Supported collection methods (continued)

Name
JSON
collections

Relational
tables Details

find Yes Yes

findAndModify Yes Yes For relational tables, findAndModify is only supported for tables
that have a primary key, a serial column, or a rowid. This command
does not support sharded data.

findOne Yes Yes

getIndexes Yes No

getShardDistribution No No

getShardVersion No No

getIndexStats No No

group No No

indexStats No No

insert Yes Yes

isCapped Yes Yes This command returns false because capped collections are not
supported in Informix.

mapReduce No No

reIndex No No

remove Yes Yes The justOne option is not supported. This command deletes all
documents that match the query criteria.

renameCollection No No

save Yes No

stats Yes No

storageSize Yes No

totalSize Yes No

update Yes Yes The multi option is supported only if update.one.enable=true in
the jsonListener.properties file. If update.one.enable=false, all
documents that match the query criteria are updated.

validate No No

For more information about the MongoDB features, see http://docs.mongodb.org/
v2.4/.
Related tasks:
“Running MongoDB operations on relational tables” on page 2-21
Related reference:
“The jsonListener.properties file” on page 2-3

Index creation
Informix supports the creation of indexes on collections and relational tables by
using the MongoDB API and the wire listener.
v “Index creation by using the MongoDB syntax” on page 4-3
v “Index creation for a specific data type by using the Informix extended syntax”

on page 4-3
v “Index creation for text, geospatial, and hashed” on page 4-4

4-2 IBM Informix JSON Compatibility

http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/

Index creation by using the MongoDB syntax

For JSON collections and relational tables, you can use the MongoDB createIndex
and ensureIndex syntax to create an index that works for all data types. For
example:
db.collection.createIndex({ zipcode: 1 })
db.collection.createIndex({ state: 1, zipcode: -1})

Tip: If you are creating an index for a JSON collection on a field that has a fixed
data type, you can get the best query performance by using the Informix extended
syntax.

The following options are supported:
v name
v unique

The following options are not supported:
v background
v default_language
v dropDups
v expireAfterSeconds
v language_override
v sparse
v v
v weights

Index creation for a specific data type by using the Informix
extended syntax

You can use the Informix createIndex or ensureIndex syntax on collections to create
an index for a specific data type. For example:
db.collection.createIndex({ zipcode : [1, “$int”] })
db.collection.createIndex({ state: [1, “$string”], zipcode: [-1, “$int”] })

This syntax is supported for collections only. It not supported for relational tables.

Tip: If you are creating an index on a field that has a fixed data type, you can get
better query performance by using the Informix createIndex or ensureIndex syntax.

The following data types are supported:
v $binary
v $boolean
v $date
v $double2

v $int3

v $integer3

v $lvarchar1

v $number2

v $string1

v $timestamp
v $varchar

Chapter 4. MongoDB API and commands 4-3

Notes:

1. $string and $lvarchar are aliases and create lvarchar indexes.
2. $number and $double are aliases and create double indexes.
3. $int and $integer are aliases.

Index creation for text, geospatial, and hashed

Text indexes
Text indexes are supported. You can search string content by using text
search in documents of a collection.

You can create text indexes by using the MongoDB or Informix syntax. For
example, here is the MongoDB syntax:
db.articles.ensureIndex({ abstract: "text" })

The Informix syntax provides additional support for the Informix basic text
search functionality. For more information, see “createTextIndex” on page
4-9.

Geospatial indexes
2dsphere indexes are supported by using the GeoJSON objects, but not the
MongoDB legacy coordinate pairs.

2d indexes are not supported.

Hashed indexes
Hashed indexes are not supported. If a hashed index is specified, a regular
untyped index is created.

For more information about the MongoDB features, see http://docs.mongodb.org/
v2.4/.

Database commands
The MongoDB database commands that are supported by Informix are sorted into
logical areas.

The MongoDB database commands are run on a database.

User commands

Aggregation commands

Table 4-2. Aggregation commands

Name
JSON
collections

Relational
tables Details

aggregate Yes Yes The wire listener supports version 2.4 of the MongoDB
aggregate command, which returns a command result. For
more information, see “Aggregation framework operators” on
page 4-18.

count Yes Yes

distinct Yes Yes

group No No

mapReduce No No

Geospatial commands

4-4 IBM Informix JSON Compatibility

http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/

Table 4-3. Geospatial commands

Name
JSON
collections

Relational
tables Details

geoNear Yes No Supported by using the GeoJSON format. The MongoDB
legacy coordinate pairs are not supported.

geoSearch No No

geoWalk No No

Query and write operation commands

Table 4-4. Query and write operation commands

MongoDB command
JSON
collections

Relational
tables Details

eval No No

findAndModify Yes Yes For relational tables, the findAndModify command is only
supported for tables that have a primary key, a serial
column, or a rowid. This command does not support
sharded data.

getLastError Yes Yes

getPrevError No No

resetError No No

text No No Text queries are supported by using the $text or $ifxtext
query operators, not through the text command.

Database operations

Authentication commands

Table 4-5. Authentication commands

Name Supported

authenticate Yes

logout Yes

getnonce Yes

Diagnostic commands

Table 4-6. Diagnostic commands

Name Supported Details

buildInfo Yes Whenever possible, the Informix output fields are identical to
MongoDB. There are additional fields that are unique to Informix.

collStats Yes The value of any field that is based on the collection size is an estimate,
not an exact value. For example, the value of the field 'size' is an
estimate.

connPoolStats No

cursorInfo No

dbStats Yes The value of any field that is based on the collection size is an estimate,
not an exact value. For example, the value of the field 'dataSize' is an
estimate.

features Yes

Chapter 4. MongoDB API and commands 4-5

Table 4-6. Diagnostic commands (continued)

Name Supported Details

getCmdLineOpts Yes

getLog No

hostInfo Yes The memSizeMB, totalMemory, and freeMemory fields indicate the amount
of memory that is available to the Java virtual machine (JVM) that is
running, not the operating system values.

indexStats No

listCommands No

listDatabases Yes The value of any field that is based on the collection size is an estimate,
not an exact value. For example, the value of the field 'sizeOnDisk' is an
estimate.
Important: The listDatabases command performs expensive and
CPU-intensive computations on the size of each database in the
Informix instance. You can decrease the expense by using the
sizeStrategy option.

sizeStrategy
You can use this option to configure the strategy for calculating
database size when the listDatabases command is run.

�� sizeStrategy: "estimate"
{estimate: n}
"none"
"compute"

��

estimate
Estimate the size of the documents in the collection by using 1000
(or 0.1%) of the documents.

The following example estimates the collection size by using the
default of 1000 (or 0.1%) of the documents:

db.runCommand({listDatabases:1 ,
sizeStrategy: "estimate" })

estimate: n
Estimate the size of the documents in a collection by sampling one
document for every n documents in the collection.

The following example estimates the collection size by using
sample size of 0.5% or 1/200th of the documents:

db.runCommand({listDatabases:1 ,
sizeStrategy: { estimate: 200 } })

none
List the databases but do not compute the size. The database size is
listed as 0.

db.runCommand({listDatabases:1 ,
sizeStrategy: "none" })

compute
Compute the exact size of each database.

db.runCommand({listDatabases:1 ,
sizeStrategy: "compute" })

ping Yes

serverStatus Yes

4-6 IBM Informix JSON Compatibility

Table 4-6. Diagnostic commands (continued)

Name Supported Details

top No

whatsmyuri Yes

Instance administration commands

Table 4-7. Instance administration commands

Name
JSON
collections

Relational
tables Details

clone No No

cloneCollection No No

cloneCollectionAsCapped No No

collMod No No

compact No No

convertToCapped No No

copydb No No

create Yes No Informix does not support the following flags:

v capped

v autoIndexID

v size

v max

drop Yes Yes Informix does not lock the database to block concurrent
activity.

dropDatabase Yes Yes

dropIndexes Yes No The MongoDB deleteIndexes command is equivalent.

filemd5 No No

fsync No No

getParameter No No

logRotate No No

reIndex No No

renameCollection No No

repairDatabase No No

setParameter No No

shutdown Yes Yes The timeoutSecs flag is supported. In the Informix, the
timeoutSecs flag determines the number of seconds that
the wire listener waits for a busy client to stop working
before forcibly terminating the session.

The force flag is not supported.

touch No No

Replication commands

Table 4-8. Replication commands

Name Supported

isMaster Yes

Chapter 4. MongoDB API and commands 4-7

Table 4-8. Replication commands (continued)

Name Supported

replSetFreeze No

replSetGetStatus No

replSetInitiate No

replSetMaintenance No

replSetReconfig No

replSetStepDown No

replSetSyncFrom No

Resync No

Sharding commands

Table 4-9. Replication commands

Name
JSON
collections

Relational
tables Details

addShard Yes Yes The MongoDB maxSize and name options are not
supported.

In addition to the MongoDB command syntax for adding a
single shard server, you can use the Informix specific
syntax to add multiple shard servers in one command by
sending the list of shard servers as an array. For more
information, see “Creating a shard cluster by running the
addShard command through db.runCommand in the
MongoDB shell” on page 3-3.

enableSharding Yes Yes This action is not required for Informix and therefore this
command has no affect for Informix.

flushRouterConfig No No

isdbgrid Yes Yes

listShards Yes Yes The equivalent Informix command is cdr list server.

movePrimary No No

removeShard No No

shardCollection Yes Yes The equivalent Informix command is cdr define
shardCollection.

The MongoDB unique and numInitialChunks options are
not supported.

shardingState No No

split No No

For more information about the MongoDB features, see http://docs.mongodb.org/
v2.4/.
Related tasks:
“Creating a shard-cluster definition that uses an expression for distributing data
across database servers” on page 3-8
“Viewing shard-cluster participants” on page 3-4
“Creating a shard cluster by running the addShard command in the MongoDB
shell” on page 3-2

4-8 IBM Informix JSON Compatibility

http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/

“Creating a shard cluster by running the addShard command through
db.runCommand in the MongoDB shell” on page 3-3
“Creating a shard-cluster definition that uses a hash algorithm for distributing data
across database servers” on page 3-7

Informix JSON commands
The Informix JSON commands are available in addition to the supported
MongoDB commands. These commands enable functionality that is supported by
Informix and they are run by using the MongoDB API.
v “createTextIndex”
v “exportCollection” on page 4-10
v “importCollection” on page 4-12
v “transaction” on page 4-12

createTextIndex

Create Informix bts indexes.

Important: If you create text indexes by using the Informix createTextIndex
command, you must query them by using the Informix $ifxtext query operator. If
you create text indexes by using the MongoDB syntax for text indexes, you must
query them by using the MongoDB $text query operator.

�� createTextIndex: " collection_name " , name: " indexName " �

� options: { }
(1)

btx index parameters

�

�

�

,

key: { " column " }

��

Notes:

1 See bts access method syntax (Database Extensions Guide).

createTextIndex
This required parameter specifies the name of the collection or relational table
where the bts index is created.

name
This required parameter specifies the name of the bts index.

options
This required parameter specifies the name-value pairs for the bts parameters
that are used when creating the index. If no parameter values are required, you
can specify an empty document.

Use bts index parameters to customize the behavior of the index and how text
is indexed. Include JSON index parameters to control how JSON and BSON
documents are indexed. For example, you can index the documents as field
name-value pairs instead of as unstructured text so that you can search for text

Chapter 4. MongoDB API and commands 4-9

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_020.htm#ids_dbxt_020

by field. The name and values of the bts index parameters in the options
parameter are the same as the syntax for creating a bts access method with the
SQL CREATE INDEX statement.

key
This parameter is required if you are indexing relational tables, but optional if
you are indexing collections. This parameter specifies which columns to index
for relational tables.

The following example creates an index named myidx in the mytab relational
table on the title and abstract columns:
db.runCommand({
createTextIndex: “mytab”,
name:”myidx”,
key:{“title”:”text”, “abstract”:”text”},
options : {} })

The following example creates an index named articlesIdx on the articles
collection by using the bts paramter all_json_names="yes".
db.runCommand({
createTextIndex: “articles”,
name:”articlesIdx”,
options : {all_json_names : "yes"} })

exportCollection

Export JSON collections from the wire listener to a file.

�� exportCollection: " collection_name " , file: " filepath " , �

�

�

�

json
format: " "

"jsonArray" ,

, fields: { " filter " }
,

" csv " , fields: { " filter " }

�

�
, query: { " query_document " }

��

exportCollection
This required parameter specifies the collection name to export.

file
This required parameter specifies the output file path. For example, file:
"/tmp/export.out".

format
This required parameter specifies the exported file format.

json
The .json file format. One JSON-serialized document per line is exported.
This is the default value.

The following command exports all documents from the collection that is
named c by using the json format:

4-10 IBM Informix JSON Compatibility

> db.runCommand({exportCollection: "c" , file: "/tmp/export.out"
, format:"json"})
{
"ok" : 1,
"n" : 1000,
"millis" : NumberLong(119),
"rate" : 8403.361344537816
}

Where "n" is the number of documents that are exported, "millis" is the
number of milliseconds it took to export, and "rate" is the number of
documents per second that are exported.

jsonArray
The .jsonArray file format. This format exports an array of JSON-serialized
documents with no line breaks. The array format is JSON-standard.

The following command exports all documents from the collection c by
using the jsonArray format:
> db.runCommand({exportCollection: "c" , file: "/tmp/export.out"
, format:"jsonArray"})
{
"ok" : 1,
"n" : 1000,
"millis" : NumberLong(81),
"rate" : 12345.67901234568
}

Where "n" is the number of documents that are exported, "millis" is the
number of milliseconds it took to export, and "rate" is the number of
documents per second that are exported.

csv
The .csv file format. Comma-separated values are exported. You must
specify which fields to export from each document. The first line of the
.csv file contains the fields and all subsequent lines contain the
comma-separated document values.

fields
This parameter specifies which fields are included in the output file. This
parameter is required for the csv format, but optional for the json and
jsonArray formats.

The following command exports all documents from the collection that is
named c by using the csv format, only output the "_id" and "name" fields:
> db.runCommand({exportCollection: "c" , file: "/tmp/export.out"
, format:"csv" , fields: { "_id":1 , "name" : "1" } })

{
"ok" : 1,
"n" : 1000,
"millis" : NumberLong(57),
"rate" : 17543.859649122805
}

Where "n" is the number of documents that are exported, "millis" is the
number of milliseconds it took to export, and "rate" is the number of
documents per second that are exported.

query
This optional parameter specifies a query document that identifies which
documents are exported. The following example exports all documents from
the collection that is named c that have a "qty" field that is less than 100:

Chapter 4. MongoDB API and commands 4-11

> db.runCommand({exportCollection: "c" , file: "/tmp/export.out"
, format:"json" , query: { "qty": { "$lt" : 100 } } })

{ "ok" : 1, "n" : 100, "millis" : NumberLong(5), "rate" : 20000 }

importCollection

Import JSON collections from the wire listener to a file.

�� importCollection: " collection_name " , file: " filepath " , �

�
json

format: " jsonArray "
csv

��

importCollection
The required parameter specifies the collection name to import.

file
This required parameter specifies the input file path. For example, file:
"/tmp/import.json".

format
This required parameter specifies the imported file format.

json
The .json file format. This is the default value.

The following example imports documents from the collection that is
named c by using the json format:
> db.runCommand({importCollection: "c" , file: "/tmp/import.out"
, format:"json"})

jsonArray
The .jsonArray file format.

The following example imports documents from the collection c by using
the jsonArray format:
> db.runCommand({exportCollection: "c" , file: "/tmp/import.out"
, format:"jsonArray"})

csv
The .csv file format.

transaction

Enable or disable transaction support for a session. This command binds or
unbinds a connection to the current MongoDB session in a database. The
relationship between a MongoDB session and the Informix JDBC connection is not
static.

Important: This command is not supported for queries that are run on shard
servers.

4-12 IBM Informix JSON Compatibility

�� transaction: " "
enable

commit
rollback

disable
status

��

enable
This optional parameter enables transaction mode for the current session in the
current database. The following example shows how to enable transaction
mode:
> db.runCommand({transaction : "enable" })
{ "ok" : 1 }

disable
This optional parameter disables transaction mode for the current session in
the current database. The following example shows how to disable for
transaction mode:
> db.c.find()
{ "_id" : ObjectId("52a8f9c477a0364542887ed4"), "a" : 1 }
> db.runCommand({transaction : "disable" })
{ "ok" : 1 }

status
This optional parameter prints status information to indicate whether
transaction mode is enabled, and if transactions are supported by the current
database. The following example shows how to print status information:
> db.runCommand({transaction : "status" })
{ "enabled" : true, "supports" : true, "ok" : 1 }

commit
If transactions are enabled, this optional parameter commits the current
transaction. If transactions are disabled, an error is shown. The following
example shows how to commit the current transaction:
> db.c.insert({a:1})
> db.runCommand({transaction : "commit" })
{ "ok" : 1 }

rollback
If transactions are enabled, this optional parameter rolls back the current
transaction. If transactions are disabled, an error is shown. The following
example shows how to roll back the current transaction:
> db.c.insert({a:2})
> db.c.find()
{ "_id" : ObjectId("52a8f9c477a0364542887ed4"), "a" : 1 }
{ "_id" : ObjectId("52a8f9e877a0364542887ed5"), "a" : 2 }
> db.runCommand({transaction : "rollback" })
{ "ok" : 1 }

Configuring authentication
You can configure Informix to use MongoDB authentication.

About this task

The authentication support for Informix JSON is based on MongoDB version 2.4.

Procedure
1. Start the MongoDB wire listener with authentication turned off.

Chapter 4. MongoDB API and commands 4-13

2. For each database, add the users that you want grant access. For example, to
grant user bob readWrite access:
db.addUser({user:"bob", pwd: "myPass1", roles:["readWrite","sql"]})

3. Stop the wire listener.
4. Set authentication.enable=true in the properties file.
5. Restart the wire listener.

What to do next

After authentication is turned on, each client must authenticate.
Related concepts:
“Starting the wire listener” on page 2-16
Related tasks:
“Stopping the wire listener” on page 2-19
Related reference:
“The jsonListener.properties file” on page 2-3

Operators
The MongoDB operators that are supported by Informix are sorted into logical
areas.

MongoDB read and write operations on existing relational tables are run as if the
table were a collection. The wire listener determines whether the accessed entity is
a relational table and converts the basic MongoDB operations on that table to SQL,
and then converts the returned values back into a JSON document. The initial
access to an entity results in an extra call to the Informix server. However, the wire
listener caches the name and type of an entity so that subsequent operations do
not require an extra call.

MongoDB operators are supported on both JSON collections and relational tables,
unless explicitly stated otherwise.

Query and projection operators
The MongoDB query and projection operators that are supported by Informix are
sorted into logical areas.

Query selectors

Array query operators

Table 4-10. Array query operators

MongoDB command
JSON
collections

Relational
tables Details

$elemMatch No No

$size Yes No Supported for simple queries only. The operator is only
supported when it is the only condition in the query
document.

Comparison query operators

4-14 IBM Informix JSON Compatibility

Table 4-11. Comparison query operators

MongoDB command
JSON
collections

Relational
tables Details

$all Yes Yes Supported for primitive values and simple queries only. The
operator is only supported when it is the only condition in
the query document.

$gt Yes Yes

$gte Yes Yes

$in Yes Yes

$lt Yes Yes

$lte Yes Yes

$ne Yes Yes

$nin Yes Yes

$query Yes Yes

Element query operators

Table 4-12. Element query operators

MongoDB command
JSON
collections

Relational
tables Details

$exists Yes No

$type Yes No

Evaluation

Table 4-13. Evaluation query operators

MongoDB command
JSON
collections

Relational
tables Details

$mod Yes Yes

$regex Yes No Supported for string matching, similar to queries that use
the SQL LIKE condition. Pattern matching that uses
regular expression special characters is not supported.

$text Yes Yes The $text query operator support is based on MongoDB
version 2.6.

You can customize your text index and take advantage of
additional text query options by creating a basic text
search index with the createTextIndex command. For more
information, see “Informix JSON commands” on page 4-9.

$where No No

Geospatial query operators
Geospatial queries are supported by using the GeoJSON format. The legacy
coordinate pairs are not supported.

Table 4-14. Geospatial query operators

MongoDB command
JSON
collections

Relational
tables Details

$geoWithin Yes No

$geoIntersects Yes No

Chapter 4. MongoDB API and commands 4-15

Table 4-14. Geospatial query operators (continued)

MongoDB command
JSON
collections

Relational
tables Details

$near Yes No

$nearSphere Yes No

JavaScript query operators
The JavaScript query operators are not supported.

Logical query operators

Table 4-15. Logical query operators

MongoDB command
JSON
collections

Relational
tables Details

$and Yes Yes

$or Yes Yes

$not Yes Yes

$nor Yes Yes

Projection operators

Comparison query operators

Table 4-16. Comparison query operators

MongoDB command
JSON
collections

Relational
tables Details

$ No No

$elemMatch No No

$slice No No

$comment No No

$explain Yes Yes

$hint Yes No

$maxScan No No

$max No No

$meta Yes Yes

$min No No

$orderby Yes Yes

$returnkey No No

$showdiskLoc No No

$snapshot No No

For more information about the MongoDB features, see http://docs.mongodb.org/
v2.4/.

Update operators
The MongoDB update operators that are supported by Informix are sorted into
logical areas.

4-16 IBM Informix JSON Compatibility

http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/

Array update operators

Table 4-17. Array update operators

MongoDB command
JSON
collections

Relational
tables Details

$ No No

$addToSet Yes No Supported for primitive values only. The operator is not
supported on arrays and objects.

$pop Yes No

$pullAll Yes No Supported for primitive values only. The operator is not
supported on arrays and objects.

$pull Yes No Supported for primitive values only. The operator is not
supported on arrays and objects.

$pushAll Yes No

$push Yes No

Array update operators modifiers

Table 4-18. Array update modifiers

MongoDB command
JSON
collections

Relational
tables Details

$each Yes No

$slice Yes No

$sort Yes No

$position No No

Bitwise update operators

Table 4-19. Bitwise update operators

MongoDB command
JSON
collections

Relational
tables Details

$bit Yes No

Field update operators

Table 4-20. Field update operators

MongoDB command
JSON
collections

Relational
tables Details

$inc Yes Yes

$rename Yes No

$setOnInsert Yes No

$set Yes Yes

$unset Yes Yes

Isolation update operators
The isolation update operators are not supported.

For more information about the MongoDB features, see http://docs.mongodb.org/
v2.4/.

Chapter 4. MongoDB API and commands 4-17

http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/

Informix query operators
The Informix query operators are extensions to the MongoDB API.

You can use the Informix query operators in all MongoDB functions that accept
query operators, for example find() or findOne().

$ifxtext
The $ifxtext query operator is similar to the MongoDB $text operator, except
that it passes the search string as-is to the bts_contains() function.

When using relational tables, the MongoDB $text and Informix $ifxtext query
operators both require a column name, specified by $key, in addition to the
$search string.

The search string can be a word or a phrase as well as optional query term
modifiers, operators, and stopwords. You can include field names to search in
specific fields. The syntax of the search string in the $ifxtext query operator is
the same as the syntax of the search criteria in the bts_contains() function that
you include in an SQL query.

In the following example, a single-character wildcard search is run for the
strings text or test:
db.collection.find({ "$ifxtext" : { "$search" : "te?t” } })

$like
The $like query operator tests for matching character strings and maps to the
SQL LIKE query operator. For more information about the SQL LIKE query
operator, see LIKE Operator (SQL Syntax).

In the following example, a wildcard search is run for strings that contain
Informix:
db.collection.find({ "$like" : "%Informix%")

Related reference:

Basic Text Search query syntax (Database Extensions Guide)

Aggregation framework operators
The MongoDB aggregation framework operators that are supported by Informix
are sorted into logical areas.

Pipeline operators

Table 4-21. Pipeline operators

MongoDB command
JSON
collections

Relational
tables Details

$project Partial Partial v You can use $project to include fields from the original
document, for example { $project : { title : 1 ,
author : 1 }}.

v You cannot use $project to insert computed fields,
rename fields, or create and populate fields that hold
subdocuments.

v Projection operators are not supported.

$match Yes Yes

$redact No No

$limit Yes Yes

$skip Yes Yes

4-18 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1388.htm#ids_sqs_1388
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_182.htm#ids_dbxt_182

Table 4-21. Pipeline operators (continued)

MongoDB command
JSON
collections

Relational
tables Details

$unwind Yes No

$group Yes Yes

$sort Yes Yes

$geoNear Yes No v Supported by using the GeoJSON format. The MongoDB
legacy coordinate pairs are not supported.

v You cannot use dot notation for the distanceField and
includeLocs parameters.

$out No No

For more information about the MongoDB features, see http://docs.mongodb.org/
v2.4/.

Expression operators

$group operators

Table 4-22. $group operators

MongoDB
command JSON collections Relational tables

$addToSet Yes No

$max Yes Yes

$min Yes Yes

$avg Yes Yes

$push Yes No

$sum Yes Yes

For more information about the MongoDB features, see http://docs.mongodb.org/
v2.4/.

Example: Accessing MongoDB collections by using SQL
As an alternative to using the MongoDB API, you can use Informix SQL to access
BSON data.

Important: This method of accessing MongoDB collections is only available in a
projection list of the main query.

In this example, a table named people is created with names and ages inserted by
using the mongo interactive JavaScript shell interface to MongoDB.
db.createCollection("people");
db.people.insert({"name":"Anne","age":31});
db.people.insert({"name":"Bob","age":39});
db.people.insert({"name":"Charlie","age":29});

In this example, the name and age fields in each of the BSON documents are
accessed by using the following query. This query returns a BSON document for
the name and age of each person in the table.
SELECT data.name, data.age FROM people;

Chapter 4. MongoDB API and commands 4-19

http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/

In this example, casts to JSON are added to the name and age query, which returns
documents in human readable form.
> SELECT data.name::json, data.age::json FROM people;

(expression) {"name":"Anne"}
(expression) {"age":31}

(expression) {"name":"Bob"}
(expression) {"age":39}

(expression) {"name":"Charlie"}
(expression) {"age":29}

3 row(s) retrieved.

In this example, casts are used to convert the values to their underlying data type.
This query retrieves the name as a varchar and the age as an integer for all people
younger than 35.
> SELECT data.name::varchar as name, data.age::int as age FROM people
WHERE data.age::int < 35;

name Anne
age 31

name Charlie
age 29

2 row(s) retrieved.

4-20 IBM Informix JSON Compatibility

Chapter 5. REST API

The REST API provides an alternative method for accessing JSON collections in
Informix and provides driverless access to your data.

With the REST API, you can use MongoDB and SQL queries against JSON and
BSON document collections, traditional relational tables, and time series data. The
REST API uses MongoDB syntax and returns JSON documents.

The jsonListener.jar file is the executable file that includes the wire listener
configuration file, jsonListener.properties, which defines the operational
characteristics for theMongoDB API and REST API.

REST API syntax
A subset of the HTTP methods are supported by the REST API. These methods are
DELETE, GET, POST, and PUT.
v “POST”
v “PUT” on page 5-3
v “GET” on page 5-4
v “DELETE” on page 5-5

The examples shown in this topic contain line breaks for page formatting; however,
the REST API does not allow line breaks.

POST

The POST method maps to the MongoDB insert or create command.

Table 5-1. Supported POST method syntax

Method Path Description

POST / Create a database.

© Copyright IBM Corp. 2013, 2014 5-1

Table 5-1. Supported POST method syntax (continued)

Method Path Description

POST /databaseName Create a collection.

databaseName
The database name.

POST /databaseName/collectionName Create a document.

databaseName
The database name.

collectionName
The collection name.

Create a database
This example creates a database with the locale specified.

Request:
Specify the POST method:
POST /

Data: Specify database name mydb and an English UTF-8 locale:
{name:"mydb",locale:"en_us.utf8"}

Response:
The following response indicates that the operation was successful:
Response does not contain any data.

Create a collection
This example creates a collection in the mydb database.

Request:
Specify the POST method and the database name as mydb:
POST /mydb

Data: Specify the collection name as bar:
{name:“bar”}

Response:
The following response indicates that the operation was successful:
{"msg":"created collection mydb.bar","ok":true}

Create a relational table
This example creates a relational table in an existing database.

Request:
Specify the POST method and stores_mydb as the database:
POST /stores_mydb

Data: Specify the table attributes:
{ name: "rel", columns:
[{name:"id",type:"int",primaryKey:true,},
{name:"name",type:"varchar(255)"},
{name:"age",type:"int",notNull:false}]}

Response:
The following response indicates that the operation was successful:
{msg: "created collection stores_mydb.rel" ok: true}

Insert a single document
This example inserts a document into an existing collection.

5-2 IBM Informix JSON Compatibility

Request:
Specify the POST method, mydb database, and people collection:
POST /mydb/people

Data: Specify John Doe age 31:
{firstName:"John",lastName:"Doe",age:31}

Response:
Because the _id field was not included in the document, the
automatically generated _id is included in the response. Here is a
successful response:
{"id":{"$oid":"537cf433559aeb93c9ab66cd"},"ok":true}

Insert multiple documents into a collection
This example inserts multiple documents into a collection.

Request:
Specify the POST method, mydb database, and people collection:
POST /mydb/people

Data: Specify John Doe age 31 and Jane Doe age 31:
[{firstName:"John",lastName:"Doe",age:31},
{firstName:"Jane",lastName:"Doe",age:31}]

Response:
Here is a successful response:
{ok: true}

PUT

The PUT method maps to the MongoDB update command.

Table 5-2. Supported PUT method syntax

Method Path Description

PUT /databaseName/
collectionName?queryParameters

Update a document.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The supported Informix
queryParameters are query, upsert, and
multiupdate. These map to the
equivalent MongoDB query, insert, and
multi query parameters, respectively.

Update a document in a collection
This example updates the value for Larry in an existing collection, from
age 49 to 25:
[{"_id":{"$oid":"536d20f1559a60e677d7ed1b"},"firstName":"Larry"
,"lastName":"Doe","age":49},{"_id":{"$oid":"536d20f1559a60e677d7ed1c"}
,"firstName":"Bob","lastName":"Doe","age":47}]

Request:
Specify the PUT method and query the name Larry:
PUT /?query={name:"Larry"}

Data: Specify the MongoDB $set operator with age 25:

Chapter 5. REST API 5-3

{"$set":{age:25}}

Response:
Here is a successful response:
{"n":1,"ok":true}

GET

The GET method maps to the MongoDB query command.

Table 5-3. Supported GET method syntax

Method Path Description

GET / List databases

GET /databaseName List collections

databaseName
The database name.

GET /databaseName/
collectionName?queryParameters

Query the collection.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The query parameters.

The supported Informix queryParameters
are batchSize, query, fields, and sort.
These map to the equivalent MongoDB
batchSize, query, fields, and sort
parameters.

List databases
This example lists all of the databases on the server.

Request:
Specify the GET method and forward slash (/):
GET /

Data: None.

Response:
Here is a successful response:
["mydb" , "test"]

List all collections
This example lists all of the collections in a database.

Request:
Specify the GET method and mydb database:
GET /mydb

Data: None.

Response:
Here is a successful response:
["bar"]

Sort in ascending order
This example sorts the query results in ascending order by age.

5-4 IBM Informix JSON Compatibility

Request:
Specify the GET method, mydb database, people collection, and
query with the sort parameter. The sort parameter specifies
ascending order (age:1), and filters id (_id:0) and last name
(lastName:0) from the response:
GET /mydb/people?sort={age:1}&fields={_id:0,lastName:0}

Data: None.

Response:
The first names are displayed in ascending order with the _id and
lastName filtered from the response:
[{"firstName":"Sherry","age":31},
{"firstName":"John","age":31},
{"firstName":"Bob","age":47},
{"firstName":"Larry","age":49}]

DELETE

The DELETE method maps to the MongoDB delete command.

Table 5-4. Supported DELETE method syntax

Method Path Description

DELETE / Delete all databases.

DELETE /databaseName Delete a database.

databaseName
The database name.

DELETE /databaseName/collectionName Delete a collection.

databaseName
The database name.

collectionName
The collection name.

DELETE /databaseName/
collectionName?queryParameter

Delete all documents that satisfy the query
from a collection.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The query parameters.

The supported Informix queryParameter
is query. This map to the equivalent
MongoDB query parameter.

Delete a database
This example deletes a database called mydb.

Request:
Specify the DELETE method and the mydb database:
DELETE /mydb

Data: None.

Response:
Here is a successful response:

Chapter 5. REST API 5-5

{msg: "dropped database"ns: "mydb"ok: true}

Delete a collection
This example deletes a collection from a database.

Request:
Specify the DELETE method, mydb database, and bar collection:
DELETE /mydb/bar

Data: None.

Response:
Here is a successful response:
{"msg":"dropped collection""ns":"mydb.bar""ok":true}

Related concepts:
Chapter 6, “Create time series through the wire listener,” on page 6-1
Related tasks:
“Running multiple wire listeners” on page 2-18
Related reference:
“The jsonListener.properties file” on page 2-3

5-6 IBM Informix JSON Compatibility

Chapter 6. Create time series through the wire listener

You can create and manage time series with the REST API or the MongoDB API
through the wire listener. You create time series objects by adding definitions to
time series collections. You interact with time series data through a virtual table.
For example, you can program sensor devices that do not have client drivers to
load time series data directly into the database with HTTP commands from the
REST API.

Prerequisites

Before you create a time series, you must understand time series concepts, the
properties of your data, and how much storage space your data requires. For an
overview of time series concepts and guidance on how to design your time series
solution, see Informix TimeSeries solution.

You must also configure the wire listener for the REST API or the MongoDB API.

Restrictions

The following restrictions apply when you create a time series through the wire
listener:
v You cannot define hertz or compressed time series.
v You cannot define rolling window containers.
v You cannot load time series data through a loader program. You must load time

series data through a virtual table.
v You cannot run time series SQL routines or methods from the time series Java

class library. You operate on the data through a virtual table.

Creating a time series

To create a time series through the wire listener:
1. Choose a predefined calendar from the system.timeseries.calendar collection

or create a calendar by adding a document to the system.timeseries.calendar
collection.

2. Create a TimeSeries row type by adding a document to the
system.timeseries.rowType collection.

3. Create a container by adding a document to the system.timeseries.container
collection.

4. Create a time series table with the time series table format syntax.
5. Instantiate the time series by creating a virtual table with the time series virtual

table format syntax.
6. Load time series data by inserting documents into the virtual table.

After you create and load a time series, you query and update the data though the
virtual table.
Related reference:
“REST API syntax” on page 5-1

© Copyright IBM Corp. 2013, 2014 6-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_010.htm#ids_tms_010

Time series collections and table formats
You can add, view, and remove documents from the time series collections with
REST API and MongoDB API methods to create and manage your time series. You
must use a specific format to create time series tables and virtual tables that are
based on time series tables.

For the REST API, use the GET, POST, and DELETE methods to view, insert, or
delete data in the time series collections.

For the MongoDB API, use the query, create, or remove methods to view, insert, or
delete data in the time series collections.

The time series collections are virtual collections that are used to manage the
objects that are required to store time series data in a database.
v “system.timeseries.calendar collection”
v “system.timeseries.rowType collection” on page 6-3
v “system.timeseries.container collection” on page 6-3
v “Time series table format” on page 6-4
v “Virtual table format” on page 6-5

system.timeseries.calendar collection

The system.timeseries.calendar collection stores the definitions of predefined and
user-defined calendars. A calendar controls the times at which time series data can
be stored. The calendar definition embeds the calendar pattern definition. For
details and restrictions about calendars, see Calendar data type. For a list of
predefined calendars, see Predefined calendars.

Use the following format to add a calendar to the system.timeseries.calendar
collection.

calendar

�� { name: "calendar_name" , calendarStart: "start_date" , �

� patternStart: "pattern_date" , pattern: { type: "interval" �

� , intervals: �

� �

,

[{ duration: "num_intervals" , on: true }] }
false

} ��

name The name of the calendar.

calendarStart
The start date of the calendar.

6-2 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_059.htm#ids_tms_059
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_365.htm#ids_tms_365

patternStart
The start date of the calendar pattern.

pattern
The calendar pattern definition.

type The time interval. Valid values for interval are: second, minute,
hour, day, week, month, year.

intervals
The description of when to record data.

duration
The number of intervals, as a positive integer.

on Whether to record data during the interval:

true = Recording is on.

false = Recording is off.

system.timeseries.rowType collection

The system.timeseries.rowType collection stores TimeSeries row type definitions.
The TimeSeries row type defines the structure for the time series data within a
single column in the database. For details and restrictions on TimeSeries row
types, see TimeSeries data type.

Use the following format to add a TimeSeries row type to the
system.timeseries.rowType collection.

�� { name: "rowtype_name" , fields: [�

� �

,

{ name: "field_name" , type: "data_type" }] } ��

name The rowtype_name is the name of the TimeSeries row type.

fields

name The name of the field in the row data type. The field_name must be
unique for the row data type. The number of fields in a row type
is not restricted.

type Must be datetime year to fraction(5) for the first field, which
contains the time stamp.

The data type of the field. Most data types are valid for fields after
the time stamp field.

system.timeseries.container collection

The system.timeseries.container collection stores container definitions. Time
series data is stored in containers. For details and restrictions on containers, see
TSContainerCreate procedure. Rolling window container syntax is not supported.

Use the following format to add a container to the system.timeseries.container
collection.

Chapter 6. Create time series through the wire listener 6-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_060.htm#ids_tms_060
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_222.htm#ids_tms_222

�� { name: "container_name" , dbspaceName: "dbspace_name" , �

� rowTypeName: "rowtype_name" , firstExtent: extent_size , �

� nextExtent: next_extent_size } ��

name The container_name is the name of the container. The container name must
be unique.

dbspaceName
The dbspace_name is the name of the dbspace for the container.

rowTypeName
The rowtype_name is the name of an existing TimeSeries row type in the
system.timeseries.rowType collection.

firstExtent
The extent_size is a number that represents the first extent size for the
container, in KB.

nextExtent
The next_extent_size is a number that represents the increments by which
the container grows, in KB. The value must be equivalent to at least 4
pages.

Time series table format

A time series table must have a primary key column that does not allow null
values. The last column in the time series table must be the TimeSeries column.
For details and restrictions on time series tables, see Create the database table.

The following format describes the simplest structure of a time series table. You
can include other options and columns in a time series table.

�� { collection: "table_name" , options: { columns: �

� [{ name: "col_name" , type: "data_type" , primaryKey:true , �

� notNull:true } , { name: "col_name" , �

� type: "timeseries(rowtype_name)" }] } } ��

collection
The table_name is the name of the time series table.

options
The collection definition.

columns
The column definitions.

name The col_name is the name of the column.

type The data_type is the data type of the column.

For the TimeSeries column, the rowtype_name is the name
of an existing TimeSeries row type in the
system.timeseries.rowType collection.

primaryKey
true = The column is the primary key.

6-4 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_078.htm#ids_tms_078

notNull
true = The column does not allow null values.

Virtual table format

You use a virtual table that is based on the time series table to insert and query
time series data.

�� { collection: "virtualtable_name" , �

� options: { timeseriesVirtualTable: { baseTableName: "table_name" , �

� newTimeSeries: " calendar (calendar_name) , origin (origin) , �

� container (container_name)
, irregular

regular
,

�

� , virtualTableMode:mode , timeseriesColumnName: "col_name" } } } ��

collection
The virtualtable_name is the name of the virtual table.

options

timeseriesVirtualTable
The definition of the virtual table.

baseTableName
The table_name is the name of the time series table.

newTimeseries
The time series definition.

calendar
The calendar_name is the name of a
calendar in the
system.timeseries.calendar collection.

origin The origin is the first time stamp in the
time series. The data type is DATETIME
YEAR TO FRACTION(5).

container
The container_name is the name of a
container in the
system.timeseries.container collection.

regular
Default. The time series is regular.

irregular
The time series is irregular.

virtualTableMode
The mode is the integer value of the
TSVTMode parameter that controls the
behavior and display of the virtual table

Chapter 6. Create time series through the wire listener 6-5

for time series data. For the settings of the
TSVTMode parameter, see The TSVTMode
parameter.

timeseriesColumnName
The col_name is the name of the TimeSeries
column.

Example: Create a time series through the wire listener
This example shows how to create, load, and query a time series with the REST
API or the MongoDB API through the wire listener.

Before you begin

Before you start this tutorial, complete the following prerequisite tasks:
v Connect to a database in which to create the time series table. You run all

methods in the database.
v Configure the wire listener for the REST API or the MongoDB API. See

“Configuring the wire listener” on page 2-2.

About this task

In this example, you create a time series that contains sensor readings about the
temperature and humidity in your house. Readings are taken every 10 minutes.
The following table lists the time series properties that are used in this example.

Table 6-1. Time series properties used in this example

Time series property Definition

Timepoint size 10 minutes

When timepoints are valid Every 10 minutes

Data in the time series The following data:

v Timestamp

v A float value that represents temperature

v A float value that represents humidity

Time series table The following columns:

v A meter ID column of type INTEGER

v A TimeSeries data type column

Origin 2014-01-01 00:00:00.00000

Regularity Regular

Where to store the data In a container that you create

How to load the data Through a virtual table

How to access the data Through a virtual table

Attention: The example code is formatted with line breaks for usability. Do not
include line breaks in the data portion of REST API methods.

Procedure

To create a time series with the REST API or the MongoDB API:

6-6 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_108.htm#ids_tms_108
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_108.htm#ids_tms_108

1. Create a time series calendar that is named ts_10min by adding the following
document to the system.timeseries.calendar collection with the REST API
POST method or the MongoDB API insert method:
{name:"ts_10min",
calendarStart:"2014-01-01 00:00:00",
patternStart:"2014-01-01 00:00:00",
pattern:{type:"minute",

intervals:[{duration:1,on:true},
{duration:9,on:false}]}}

2. Create a TimeSeries row type that is named reading by adding the following
document to the system.timeseries.rowType collection with the REST API
POST method or the MongoDB API insert method:
{name:"reading",
fields:[{name:"tstamp", type:"datetime year to fraction(5)"},

{name:"temp", type:"float"},
{name:"hum", type:"float"}]}

3. Create a container that is named c_0 in the dbspace1 dbspace by adding the
following document to the system.timeseries.container collection with the
REST API POST method or the MongoDB API insert method:
{name:"c_0",
dbspaceName:"dbspace1",
rowTypeName:"reading",
firstExtent:1000,
nextExtent:500}

4. Create the time series table that is named ts_data1 by running the REST API
POST method or the MongoDB API create method with the following table
format:
{name:"ts_data1",
columns:[{name:"id", type:"int", primaryKey:true, notNull:true},

{name:"ts", type:"timeseries(reading)"}]}

5. Create the virtual table that is named ts_data1_v by running the REST API
POST method or the MongoDB API create method with the following table
format:
{name:"ts_data1_v",
timeseriesVirtualTable:

{baseTableName:"ts_data1",
newTimeseries:"calendar(ts_10min),

origin(2014-01-01 00:00:00.00000),
container(c_0)",
virtualTableMode:0,
timeseriesColumnName:"ts"}}

6. Load records into the time series by inserting the following documents into the
ts_data1_v virtual table with the REST API POST method or the MongoDB API
insert method:
{ id: 1, temp: 15.0, hum: 20.0}

{ id: 1, temp: 16.2, hum: 19.0}

{ id: 1, temp: 16.5, hum: 22.0}

Because this time series is regular, you do not need to include the time stamp.
The first record is inserted for the origin of the time series, 2014-01-01
00:00:00.00000. The second record has the time stamp 2014-01-01 00:10:00.00000,
and the third record has the time stamp 2014-01-01 00:20:00.00000.

Chapter 6. Create time series through the wire listener 6-7

Example

The following examples show queries on time series data with REST API methods.
You run the following examples against the stores_demo database. Run the
DB-Access command dbaccessdemo to create the stores_demo database. For
instructions, see dbaccessdemo command: Create demonstration databases.

List all device IDs
The following query returns all device IDs:
GET /stores_demo/$cmd?query={distinct:"ts_data_v",key:"loc_esi_id"}

List device IDs that are greater than 10
The following query returns the device IDs that are greater than 10:
GET /stores_demo/$cmd?
query={distinct:"ts_data_v",key:"loc_esi_id",que
ry:{value:{"$gt":10}}}

Find the data for a specific device ID
The following query returns the data for the device with the ID of
4727354321046021:
GET /stores_demo/ts_data_v?
query={loc_esi_id:"4727354321046021"}

Find and sort data with multiple qualifications
The following query finds all data for a specific device with a value greater
than 100.0 and a direction of P, returns the tstamp and value fields, and
sorts the results in descending order by the value field:
GET /stores_demo/ts_data_v?query={"$and":
[{loc_esi_id:"4727354321046021"},{value:
{"$gt":100.0}},
{direction:"P"}]}&fields={tstamp:1,value:1}&sort= {value:-1}

Find all data for a device in a specific date range
To query for specific dates, convert the dates to milliseconds since the
epoch. For example:
v 2011-01-01 00:00:00 = 1293861600000
v 2011-01-02 00:00:00 = 1293948000000

The following query returns the data from midnight January 1, 2011 to
January 2, 2011 for device ID 4727354321000111:
GET /stores_demo/ts_data_v?query={"$and":
[{loc_esi_id:"4727354321000111"},{tstamp:
{"$gte":{"$date":1293861600000}}},{tstamp:
{"$lt":
{"$date":1293948000000}}}]}&fields={tstamp:1, value:1}

Find the latest data point for a specific device
The following query sets the sort parameter to order the tstamp field in
descending order and sets the limit parameter to 1 to return only the latest
value:
GET /stores_demo/ts_data_v?
query={loc_esi_id:"4727354321000111"}&fields ={tstamp:1,value:1}
&sort={tstamp:-1}&limit=1

Find the 100th data point for a specific device
The following query sets the sort parameter to order the tstamp field in
ascending order and sets the skip parameter to 100 to return the 100th
value:
GET /stores_demo/ts_data_v?
query={loc_esi_id:"4727354321000111"}&fields ={tstamp:1,value:1}
&sort={tstamp:1}&limit=1& skip=100

6-8 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dba.doc/ids_dba_015.htm#ids_dba_015

Chapter 7. Monitoring collections

You can use the IBM OpenAdmin Tool (OAT) for Informix to monitor collections in
an Informix database.

Youc can view collections by using the IBM Informix JSON Plug-in for
OpenAdmin Tool (OAT) or by using the IBM Informix Schema Manager Plug-in
for OpenAdmin Tool (OAT).

See the OAT help for more information.
Related concepts:

Installing the OpenAdmin Tool for Informix with the Client SDK (Client
Products Installation Guide)
Related reference:

cdr list trustedhost argument: List trusted hosts (SQL administration API)
(Administrator's Reference)

cdr list shardCollection (Enterprise Replication Guide)

onstat -g shard command: Print information about the shard cache
(Administrator's Reference)

© Copyright IBM Corp. 2013, 2014 7-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.cpi.doc/ids_cpi_027.htm#installingtheibmopenadmintooloatfor
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.cpi.doc/ids_cpi_027.htm#installingtheibmopenadmintooloatfor
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm#ids_sapi_157
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_643.htm#ids_erp_643
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm#ids_adr_1177
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm#ids_adr_1177

7-2 IBM Informix JSON Compatibility

Chapter 8. Troubleshooting Informix JSON compatibility

Several troubleshooting techniques, tools, and resources are available for resolving
problems that you encounter with Informix JSON compatibility.

Problem Solution

How do I start the wire
listener?

If the wire listener does not automatically start:

1. Verify that the user was created. For more information, see
“Configuring the wire listener” on page 2-2.

2. Manually start the wire listener. For more information, see
“Starting the wire listener” on page 2-16.

How can I debug wire
listener problems?

From the wire listener command line, run the -loglevel level
command, where level is the logging level. Log level options
are:

v error

v warn

v info

v debug

v trace

For more information, see “Wire listener command line options”
on page 2-19.

Where is the wire listener
log file?

UNIX: The log file is in $INFORMIXDIR/jsonListener.log.

Windows: The log file is named servername_jsonListener.log
and is in your home directory. For example,
C:\Users\ifxjson\ol_informix1210_1_jsonListener.log.

How can I view all of the
current properties for the
jsonListener.properties
file?

From the wire listener command line, you can run the
-listProperties command. This command prints all of the
supported properties and their default values. For more
information, see “The jsonListener.properties file” on page
2-3.

How do I access the wire
listener help?

You can view a list of available command line options by
running the -help command.

© Copyright IBM Corp. 2013, 2014 8-1

8-2 IBM Informix JSON Compatibility

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http://www.ibm.com/able.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 2013, 2014 A-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

A-2 IBM Informix JSON Compatibility

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix JSON Compatibility

Notices

This information was developed for products and services offered in the U.S.A.
This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2013, 2014 B-1

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

B-2 IBM Informix JSON Compatibility

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices B-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

B-4 IBM Informix JSON Compatibility

Index

Special characters
$group

operators 4-18

A
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

addShard command 3-2, 3-3, 3-6
admin() functions

cdr add trustedhost argument 3-1
aggregation framework operators

$group 4-18
pipeline 4-18
supported 4-18

authentication
authentication.enable 4-13
MongoDB 4-13
user access 4-13

authentication.enable
jsonListener.properties 2-3

authentication.localhost.bypass.enable
jsonListener.properties 2-3

B
bts

$ifxtext 4-18
$text 4-18
query 4-18

C
cdr add trustedhost argument 3-1
changeShardCollection command 3-6, 3-11
Collections

monitoring 7-1
Collections for configuring time series 6-2
command line

arguments 2-19
command.listDatabases.sizeStrategy

jsonListener.properties 2-3
commands

buildinformation 2-19
command line 2-19
config 2-19
database 4-4
logfile 2-19
loglevel 2-19
port 2-19
projection 4-14
query 4-14
start 2-19
stop 2-19
update 4-17
version 2-19

commands (continued)
wait 2-19

compatible.maxBsonObjectSize.enable
jsonListener.properties 2-3

compliance with standards x
Concepts

MongoDB and Informix 1-2
copy

jsonListener.properties 2-3

D
database commands

aggregation 4-4
collection 4-1
db.collection 4-1
diagnostic 4-4
instance administration 4-4
query and write operation 4-4
replication 4-4
sharding 4-4
supported 4-1, 4-4
unsupported 4-1, 4-4

database.buffer.enable
jsonListener.properties 2-3

database.cache.enable
jsonListener.properties 2-3

database.create.enable
jsonListener.properties 2-3

database.dbspace
jsonListener.properties 2-3

database.locale.default
jsonListener.properties 2-3

database.log.enable
jsonListener.properties 2-3

database.share.close.enable
jsonListener.properties 2-3

database.share.enable
jsonListener.properties 2-3

dbspace.strategy
jsonListener.properties 2-3

DELETE
example 5-1
REST API 5-1
support 5-1

deleteInsert
jsonListener.properties 2-3

Disabilities, visual
reading syntax diagrams A-1

Disability A-1
documentIdAlgorithm

jsonListener.properties 2-3
Dotted decimal format of syntax diagrams A-1

E
ensureIndex command 3-7, 3-8, 3-11

© Copyright IBM Corp. 2013, 2014 X-1

F
files

jsonListener.properties 2-16
Files

jsonListener.properties 3-1, 3-2, 3-3
sqlhosts 3-4

fragment.count
jsonListener.properties 2-3

Functions, SQL administration API
cdr add trustedhost argument 3-1

G
GET

example 5-1
REST API 5-1
support 5-1

H
Horizontal partitioning 3-1, 3-2, 3-3, 3-4, 3-6, 3-8, 3-11

I
ifxjson

jsonListener.properties 2-1
replication 2-1
sharding 2-1
user permissions 2-1

import
collections 4-1
data 4-1

index
create 4-2
createIndex

supported options 4-2
ensureIndex

supported options 4-2
supported options 4-2

index.cache.enable
jsonListener.properties 2-3

index.cache.update.interval
jsonListener.properties 2-3

industry standards x
Informix configuration parameters

REMOTE_SERVER_CFG 3-1
Informix wire listener

creating time series 6-6
insert.batch.enable

jsonListener.properties 2-3
insert.batch.queue.enable

jsonListener.properties 2-3
insert.batch.queue.flush.interval

jsonListener.properties 2-3
insert.preparedStatement.cache.enable

jsonListener.properties 2-3
IPv4

configuration 2-2
IPv6

configuration 2-2

J
Java 1-2
Java requirement 2-1

JSON
SQL access 2-20

JSON compatibility
about 1-1
MongoDB 1-1

JSON plug-in 7-1
jsonListener.properties

configuring 2-2
creating 2-2
DBSERVERALIASES 2-2
dynamic host IPv6 2-2
ifxjson 2-1
installing 2-1
MongoDB 2-2
optional 2-3
parameters 2-3
required

url 2-3
REST API 2-2
sample 2-2
sharding 2-2, 2-3
template 2-2
view all properties 8-1

jsonListener.properties file 3-1, 3-2, 3-3
modify 2-16

jsonListener.properties parameters
sharding.enable 3-1, 3-2, 3-3
url 3-1

L
listener.http.accessControlAllowCredentials

jsonListener.properties 2-3
listener.http.accessControlAllowHeaders

jsonListener.properties 2-3
listener.http.accessControlAllowMethods

jsonListener.properties 2-3
listener.http.accessControlAllowOrigin

jsonListener.properties 2-3
listener.http.accessControlExposeHeaders

jsonListener.properties 2-3
listener.http.accessControlMaxAge

jsonListener.properties 2-3
listener.idle.timeout

jsonListener.properties 2-3
listener.input.buffer.size

jsonListener.properties 2-3
listener.onException

jsonListener.properties 2-3
listener.output.buffer.size

jsonListener.properties 2-3
listener.pool.keepAliveTime

jsonListener.properties 2-3
listener.pool.queue.size

jsonListener.properties 2-3
listener.pool.size.core

jsonListener.properties 2-3
listener.pool.size.maximum

jsonListener.properties 2-3
listener.port

jsonListener.properties 2-3
listener.rest.cookie.domain

jsonListener.properties 2-3
listener.rest.cookie.httpOnly

jsonListener.properties 2-3
listener.rest.cookie.length

jsonListener.properties 2-3

X-2 IBM Informix JSON Compatibility

listener.rest.cookie.name
jsonListener.properties 2-3

listener.rest.cookie.path
jsonListener.properties 2-3

listener.rest.cookie.secure
jsonListener.properties 2-3

listener.type
MongoDB 2-3
REST API 2-3

listShards command 3-4

M
methods

collection 4-1
MongoDB

dependencies 1-2
supported version 1-2

MongoDB API
creating time series 6-6
relational tables 2-22
SQL 2-22

MongoDB API wire listener
start 2-16

MongoDB commands
addShard 3-2, 3-3, 3-6
changeShardCollection 3-6, 3-11
ensureIndex 3-7, 3-8, 3-11
listShards 3-4
shardCollection 3-7, 3-8

MongoDB concepts 1-2
MongoDB language drivers 4-1
MongoDB shell

version 4-1
MongoDB utilities

mongodump 4-1
mongoexport 4-1
mongoimport 4-1
mongorestore 4-1

Monitoring collections 7-1

N
non-root install

considerations 8-1

O
OAT 7-1
operators

aggregation framework
$group 4-18
pipeline 4-18

Informix support 4-14
MongoDB 4-14
projection 4-14
query 4-14
supported 4-14
unsupported 4-14
update 4-17

P
pipeline

operators 4-18

pool.connections.maximum
jsonListener.properties 2-3

pool.idle.timeout
jsonListener.properties 2-3

pool.idle.timeunit
jsonListener.properties 2-3

pool.semaphore.timeout
jsonListener.properties 2-3

pool.semaphore.timeunit
jsonListener.properties 2-3

pool.service.interval
jsonListener.properties 2-3

pool.service.timeunit
jsonListener.properties 2-3

pool.size.initial
jsonListener.properties 2-3

pool.size.maximum
jsonListener.properties 2-3

pool.size.minimum
jsonListener.properties 2-3

pool.type
jsonListener.properties 2-3

pool.typeMap.strategy
jsonListener.properties 2-3

POST
example 5-1
REST API 5-1
support 5-1

preparedStatement.cache.enable
jsonListener.properties 2-3

preparedStatement.cache.size
jsonListener.properties 2-3

projection operators
supported 4-14
unsupported 4-14

Q
query operators

supported 4-14
unsupported 4-14

R
relational database

$sql 2-20
run commands using MongoDB 2-20
run MongoDB operations 2-22
system.sql 2-20

REMOTE_SERVER_CFG configuration parameter 3-1
response.documents.count.maximum

jsonListener.properties 2-3
response.documents.size.maximum

jsonListener.properties 2-3
REST API

configuring 2-2
creating time series 6-6
DELETE 5-1
examples 5-1
GET 5-1
listener.type 2-2
POST 5-1
syntax 5-1

REST API wire listener
start 2-17

Index X-3

S
Schema Manager plug-in 7-1
Screen reader

reading syntax diagrams A-1
search

bts 4-18
text 4-18

security.sql.passthrough
jsonListener.properties 2-3

Shard cluster
viewing participants 3-4

shard clusters 3-1
Shard clusters 3-1, 3-2
Shard servers 3-1
Shard-cluster definition

changing 3-6, 3-11
creating 3-2, 3-3, 3-6, 3-7, 3-8

shardCollection command 3-7, 3-8
sharding

enable 3-1
ifxjson 2-1
JSON 3-1, 3-2, 3-3, 3-4, 3-6, 3-7, 3-8, 3-11
jsonListener.properties 2-2
Relational data 3-7, 3-8, 3-11
shard-cluster creation 3-2, 3-3
shard-cluster defining 3-6, 3-7, 3-8, 3-11
shard-cluster viewing 3-4
update.client.strategy 2-3
wire listener 3-1

sharding.enable
jsonListener.properties 2-3

sharding.enable configuration parameter 3-1, 3-2, 3-3
Shortcut keys

keyboard A-1
software requirement 1-2
SQL

$sql 2-20
JSON access 2-20
system.sql 2-20
using MongoDB API 2-20

SQL administration API functions
cdr add trustedhost argument 3-1

sqlhosts file 3-4
standards x
start MongoDB API wire listener

command line 2-16
listener.type 2-16
SQL administration API 2-16

start REST API wire listener
command line 2-17
listener.type 2-17

stop wire listener
command line 2-19

Syntax diagrams
reading in a screen reader A-1

T
task() functions

cdr add trustedhost argument 3-1
Time series

collections 6-2
creating with MongoDB API 6-6
creating with REST API 6-6
example for wire listener 6-6
MongoDB API 6-1

Time series (continued)
REST API 6-1
wire listener 6-1

Tomcat 1-2

U
updatableCursor

jsonListener.properties 2-3
update operators

supported 4-17
unsupported 4-17

update.client.strategy
jsonListener.properties 2-3

update.mode
jsonListener.properties 2-3

update.one.enable
jsonListener.properties 2-3

url
jsonListener.properties 2-3

url configuration parameter 3-1
user permission

grant access 2-2
required access 2-2
sharding 2-2

V
Visual disabilities

reading syntax diagrams A-1

W
wire listener

change 2-16
debug 8-1
help 8-1
Java version 2-1
log file 8-1
modify 2-16
MongoDB 2-1
REST 2-1, 5-1
start 2-16
stop 2-19
using 2-1

Wire listener
creating time series 6-6

wire listener parameters 2-3
Wire listener parameters

sharding.enable 3-1, 3-2, 3-3
url 3-1

X-4 IBM Informix JSON Compatibility

����

Printed in USA

SC27-5556-03

	Contents
	Introduction
	About This Publication
	Types of Users
	Assumptions about your locale
	Demonstration databases

	What's new in JSON, Version 12.10
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. About the Informix JSON compatibility
	Software dependencies
	MongoDB to Informix term mapping

	Chapter 2. Wire listener
	Install the wire listener
	Configuring the wire listener
	The jsonListener.properties file

	Modifying the wire listener properties file
	Starting the wire listener
	Starting the MongoDB API wire listener
	Starting the REST API wire listener
	Running multiple wire listeners

	Stopping the wire listener
	Wire listener command line options
	Running SQL commands by using a MongoDB API
	Running MongoDB operations on relational tables

	Chapter 3. JSON data sharding
	Enabling sharding for JSON or relational data
	Creating a shard cluster by running the addShard command in the MongoDB shell
	Creating a shard cluster by running the addShard command through db.runCommand in the MongoDB shell
	Viewing shard-cluster participants
	Shard-cluster definitions for distributing data
	Creating a shard-cluster definition that uses a hash algorithm for distributing data across database servers
	Creating a shard-cluster definition that uses an expression for distributing data across database servers
	Changing the definition for a shard cluster

	Chapter 4. MongoDB API and commands
	Language drivers
	Command utilities and tools
	Collection methods
	Index creation
	Database commands
	Informix JSON commands
	Configuring authentication
	Operators
	Query and projection operators
	Update operators
	Informix query operators
	Aggregation framework operators

	Example: Accessing MongoDB collections by using SQL

	Chapter 5. REST API
	REST API syntax

	Chapter 6. Create time series through the wire listener
	Time series collections and table formats
	Example: Create a time series through the wire listener

	Chapter 7. Monitoring collections
	Chapter 8. Troubleshooting Informix JSON compatibility
	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

