Informix Product Family
Informix Client Software Development Kit
Version 4.10

IBM Informix ODBC Driver
Programmer's Manual

<||I

Informix Product Family
Informix Client Software Development Kit
Version 4.10

IBM Informix ODBC Driver
Programmer's Manual

..ll

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page B-1)

This edition replaces SC27-4502-00.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction.
About this publication .
Types of users
Software compatrblhty
Assumptions about your locale .
Demonstration databases .
Example code conventions.
Additional documentation .
Compliance with industry standards .
How to provide documentation feedback

Chapter 1. Overview of IBM Informix ODBC Driver.

What is IBM Informix ODBC Driver?
IBM Informix ODBC Driver features. .
Additional values for some ODBC function arguments
ODBC component overview
IBM Informix ODBC Driver w1th a drrver manager

IBM Informix ODBC Driver without a driver manager (UNIX) .

IBM Informix ODBC Driver with the DMR

IBM Informix ODBC Driver components
Environment variables .o
Header files .

Data types
Libraries . .

The IBM Informix ODBC Drlver API . .
Environment, connection, and statement handles .
Buffers .
SQLGetInfo argument 1mplementat10n

Global Language Support .

X/Open standard interface

External authentication .

Pluggable Authentication Module (PAM) on UNIX and Lrnux .

LDAP Authentication on Windows .

The SQLSetConnectAttr() function with authent1cat10n
Bypass ODBC parsing .
BufferLength in character for SQLGetDlagReCW
Informix and ISAM error descriptions in SQLGetDragReC
Improved performance for single-threaded applications .
Partially supported and unsupported ODBC features .

Transaction processing . e

ODBC cursors .

ODBC bookmarks

SQLBulkOperations .

SQLDescribeParam . .

Unsupported Microsoft ODBC drrver features .

Chapter 2. Configure data sources
Configure a DSN on UNIX .
The sqlhosts file
The odbcinst.ini file
The odbc.ini file
ODBC section
Set the $ODBCINI enVlronment Varlable
The .netrc file
Configuring a DSN in W1nd0ws

© Copyright IBM Corp. 1996, 2013

. ix
. ix
. ix
. ix

. Xi
. Xi
. Xi

.11
.11
.12
. 1-3

.14
. 1-5
. 1-6
. 1-6

. 1-8
. 1-8
. .19
. 1-10
. 1-11
. 1-12
. 1-14
. 1-18
. 1-18
. 1-18
. 1-19
. 1-19
. 121
. 1-22
. 1-22
. 123
. 1-23
. 1-23
. 1-24
. 1-24
. 1-25
. 1-25
. 1-25

. 2-1
. 2-1
. 2-1
. 23

. 29
. .29
. 2-10

iii

Configuring a new user DSN or system DSN
Removing a DSN . e
Reconfiguring an existing DSN .

Configuring a file DSN .
Creating logs of calls to the drlvers

Creating and configuring a DSN on Mac OS X

Connection string keywords that make a connection .

DSN migration tool .

Setting up and using the DSN mlgratlon tool
DSN migration tool examples. .

Chapter 3. Data types .
Data types
SQL data types . .
Standard SQL data types .
Additional SQL data types for GLS .
Additional SQL data types for Informix.
Precision, scale, length, and display size
C data types .
C interval structure .
Transfer data
Report standard ODBC types .
SQL_INFX_ATTR_ODBC_TYPES_ ONLY .
SQL_INFX_ATTR_LO_AUTOMATIC
SQL_INFX_ATTR_DEFAULT_UDT_FETCH TYPE
Report wide character columns . .
DSN settings for report standard ODBC data types
Convert data o .
Standard conversions
Additional conversions for GLS
Additional conversions for Informix
Convert data from SQL to C .
Convert data from C to SQL .

Chapter 4. Smart large objects .
Data structures for smart large objects .
Working with a smart-large-object data structure
Storage of smart large objects .
Disk-storage information.
Create-time flags
Inheritance hierarchy .
Example of creating a smart large ob]ect
Transfer smart-large-object data .
Access a smart large object
Smart-large-object automation
The ifx_lo functions .
Retrieve the status of a smart large ob]ect .
Example of retrieving information about a smart large ob]ect .
Read or write a smart large object to or from a file

Chapter 5. Rows and collections
Allocating and binding a row or collection buffer
Fixed-type buffers and unfixed-type buffers
Buffers and memory allocation.

SQL data .
Performing a local fetch

Example of retrieving row and Collectlon data from the database .

Example of creating a row and a list on the client .
Modify a row or collection. .
Retrieve information about a row or collectlon .

iV IBM Informix ODBC Driver Programmer's Manual

. 2-11
. 2-15
. 2-15
. 2-16
. 2-17
. 2-17
. 2-18
. 2-19
. 2-19
. 2-20

. 3-1

.31
.31
. 34
. 35

. 3-10
. 3-11
. 3-12
. 3-12
. 3-13
. 3-13
. 3-14
. 3-14
. 3-14
. 3-15
. 3-15
. 3-18
. 3-19
. 3-20
. 3-29

. 41
.41
. 4-2

.42
. 43
. 4-4
. .46
. 4-13
. 4-14
. 4-14
. 4-16
. 427
. 4-27
. 435

. 5-1
. 5-1

. 5-1
.52
.52

. 53

. .53
. 5-10

. 5-16

. 5-17

Chapter 6. Client functions.
Call a client function .
SQL syntax .
Function syntax. .
Input and output parameters .
The SQL_BIGINT data type.
Return codes. .
Functions for smart large obJects .
The ifx_lo_alter() function
The ifx_lo_close() function .
The ifx_lo_col_info() function .
The ifx_lo_create() function .
The ifx_lo_def_create_spec() functlon
The ifx_lo_open() function .
The ifx_lo_read() function
The ifx_lo_readwithseek() function
The ifx_lo_seek() function
The ifx_lo_specget_estbytes() functlon
The ifx_lo_specget_extsz() function .
The ifx_lo_specget_flags() function .
The ifx_lo_specget_maxbytes() function
The ifx_lo_specget_sbspace() function .
The ifx_lo_specset_estbytes() function .
The ifx_lo_specset_extsz() function .
The ifx_lo_specset_flags() function .
The ifx_lo_specset_maxbytes() function
The ifx_lo_specset_sbspace() function .
The ifx_lo_stat() function .
The ifx_lo_stat_atime() function .
The ifx_lo_stat_cspec() function .
The ifx_lo_stat_ctime() function .
The ifx_lo_stat_refent() function .
The ifx_lo_stat_size() function
The ifx_lo_tell() function
The ifx_lo_truncate() function.
The ifx_lo_write() function.
The ifx_lo_writewithseek() functlon
Functions for rows and collections .
The ifx_rc_count() function
The ifx_rc_create() function
The ifx_rc_delete() function
The ifx_rc_describe() function.
The ifx_rc_fetch() function .
The ifx_rc_free() function .
The ifx_rc_insert() function
The ifx_rc_isnull() function
The ifx_rc_setnull() function .
The ifx_rc_typespec() function
The ifx_rc_update() function .

Chapter 7. Improve application performance .

Error checking during data transfer .
Enable delimited identifiers in ODBC
Connection level optimizations
Optimizing query execution
Insert multiple rows . .
Automatically freeing a cursor .
Enabling the AUTOFREE feature .
The AUTOFREE feature . .
Delay execution of the SQL PREPARE statement
Set the fetch array size for simple-large-object data .

. 6-1
.61
.61

. 62
. 62

. 6-3
. 63
. 6-4
. 6-4
. 6-5
. 6-6
. 6-6
. 6-8

. .69
. 6-10
. 6-11
. 6-11
. 6-12
. 6-12
. 6-13
. 6-14
. 6-14
. 6-15
. 6-15
. 6-16
. 6-16
. 6-17
. 6-17
. 6-18
. 6-19
. 6-19
. 6-20
. 6-20
. 6-21
. 6-22
. 6-22
. 6-22
. 6-24
. 6-24
. 6-25
. 6-26
. 6-27
. 6-28
. 6-28
. 629
. 6-29

. 71
. 7-1
. 7-1
.72
.72
. 7-3
. 7-3
.73
. 74
.74
. 7-5

Contents

A\

The SPL output parameter feature
OUT and INOUT parameters .
Asynchronous execution . .
Update data with positioned updates and deletes .
BIGINT and BIGSERIAL data types.
Message transfer optimization

Message chaining restrictions .

Disable message chaining . .o

Errors with optimized message transfers .

Chapter 8. Error messages.

Diagnostic SQLSTATE values . .
Map SQLSTATE values to Informix error messages
Map Informix error messages to SQLSTATE values

Deprecated and new IBM Informix ODBC Driver APIs .

SQLAIllocConnect (core level only) .
SQLAllocEnv (core level only)
SQLAIllocStmt (core level only)
SQLBindCol (core level only) .
SQLBindParameter (level one only).
SQLBrowseConnect (level two only)
SQLCancel (core level only) .
SQLColAttributes (core level only) .
SQLColumnPrivileges (level two only).
SQLColumns (level one only).
SQLConnect (core level only) .
SQLDataSources (level two only)
SQLDescribeCol (core level only)
SQLDisconnect
SQLDriverConnect (level one only)
SQLDrivers (level two only) .
SQLError (core level only) .
SQLExecDirect (core level only) .
SQLExecute (core level only) .
SQLExtendedFetch (level two only)
SQLFetch (core level only).
SQLForeignKeys (level two only)
SQLFreeConnect (core level only)
SQLFreeEnv (core level only) .
SQLFreeStmt (core level only) .
SQLGetConnectOption (level one only)
SQLGetCursorName (core level only) .
SQLGetData (level one only) .
SQLGetFunctions (level one only)
SQLGetInfo (level one only) . .
SQLGetStmtOption (level one only)
SQLGetTypelnfo (level one only)
SQLMoreResults (level two only)
SQLNativeSql (level two only)
SQLNumParams (level two only)
SQLNumResultCols (core level only)
SQLParamData (level one only) . .
SQLParamOptions (core and level two only)
SQLPrepare. ..
SQLPrimaryKeys (level two only)
SQLProcedureColumns (level two only)
SQLProcedures (level two only) .
SQLPutData (level one only) .
SQLRowCount (core level only) .
SQLSetConnectOption (level one only)
SQLSetCursorName (core level only) .

vi IBM Informix ODBC Driver Programmer's Manual

. 7-6

.79
. 7-10
. 7-11
. 7-11
. 7-11
. 7-12
. 7-12

. 8-1
. 8-1
.81
. 8-10
. 8-10
. 811
. 811
. 812
. 812
. 813
. 813
. 8-14
. 8-14
. 815
. 815
. 8-16
. 8-17
. 8-17
. 818
. 8-18
. 8-19
. 820
. 820
. 821
. 822
. 8-24
. 825
. 825
. 8-26
. 8-26
. 8-26
. 8-26
. 8-27
. 8-28
. 828
. 828
. 829
. 8-30
. 8-30
. 8-30
. 831
. 831
. 832
. 8-32
. 833
. 8-34
. 8-34
. 835
. 8-36
. 8-36
. 837

SQLSetStmtOption (level one only) .
SQLSpecialColumns (level one only)
SQLStatistics (level one only) .
SQLTablePrivileges (level two only)
SQLTables (level one only).
SQLTransact (core level only) .

Chapter 9. Unicode .
Overview of Unicode .

Unicode versions . .
Unicode in an ODBC apphcatlon .
Unicode in an ODBC application .

Configuration . .
Supported Unicode functlons .

Appendix. Accessibility . .
Accessibility features for IBM Informix products
Accessibility features .
Keyboard navigation . .
Related accessibility 1nformat10n
IBM and accessibility.
Dotted decimal syntax diagrams .

Notices . -
Privacy policy considerations .
Trademarks .

Index .

Contents

. 8-37
. 8-38
. 8-38
. 8-39
. 8-40
. 8-40

. 9-1
.91
.91
.91
.92
.92
. 9-3

. Al

vii

viii IBM Informix ODBC Driver Programmer's Manual

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication

Types

This publication is a user guide and reference publication for IBM® Informix®

ODBC Diriver, which is the Informix implementation of the Microsoft Open
Database Connectivity (ODBC) interface, Version 3.0. This publication explains how
to use the IBM Informix ODBC Driver application programming interface (API) to
access an Informix database and interact with an Informix database server.

of users

This publication is written for C programmers who use IBM Informix ODBC
Driver to access Informix databases.

This publication assumes that you have the following background:

* A working knowledge of your computer, your operating system, and the utilities
that your operating system provides

* Some experience working with relational or object-relational databases, or
exposure to relational database concepts

¢ C programming language

You can access the Informix information centers and other technical information
such as technotes, white papers, and IBM Redbooks® publications online at
http:/ /www.ibm.com /software /data /sw-library /|

Software compatibility

For information about software compatibility, see the IBM Informix ODBC Driver
release notes.

Assumptions about your locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
DBDATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

© Copyright IBM Corp. 1996, 2013 ix

http://www.ibm.com/software/data/sw-library/

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as ¢, ¢, and f.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration databases

The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:

¢ The stores_demo database illustrates a relational schema with information about
a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

* The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the SINFORMIXDIR%\bin
directory in Windows environments.

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB—-Access, you must delimit multiple
statements with semicolons.

X IBM Informix ODBC Driver Programmer's Manual

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation

Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks publications online at
lhttp:/ /www.ibm.com /software/data /sw-library /|

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

How to provide documentation feedback

You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:

* Send email to|docinf@us.ibm.com}

* In the Informix information center, which is available online at
[http:/ /www.ibm.com/software/data/sw-library/| open the topic that you want
to comment on. Click the feedback link at the bottom of the page, complete the
form, and submit your feedback.

e Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at |http:/ /www.ibm.com/planetwide /|

We appreciate your suggestions.

Introduction X1

http://www.ibm.com/software/data/sw-library/
mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

xii IBM Informix ODBC Driver Programmer's Manual

Chapter 1. Overview of IBM Informix ODBC Driver

These topics introduce the IBM Informix ODBC Driver and describe its advantages
and architecture. The topics also describe conformance, isolation and lock levels,
libraries, and environment variables.

What is IBM Informix ODBC Driver?

Open Database Connectivity (ODBC) is a specification for a database application
programming interface (API).

Microsoft ODBC, Version 3.0, is based on the Call Level Interface specifications
from X/Open and the International Standards Organization/International
Electromechanical Commission (ISO/IEC). ODBC supports SQL statements with a
library of C functions. An application calls these functions to implement ODBC
functionality.

ODBC applications enable you to perform the following operations:
* Connect to and disconnect from data sources

* Retrieve information about data sources

* Retrieve information about IBM Informix ODBC Driver

* Set and retrieve IBM Informix ODBC Driver options

* Prepare and send SQL statements

* Retrieve SQL results and process the results dynamically

* Retrieve information about SQL results and process the information dynamically
ODBC lets you allocate storage for results before or after the results are available.
This feature lets you determine the results and the action to take without the
limitations that predefined data structures impose.

ODBC does not require a preprocessor to compile an application program.

ODBC supports Secure Sockets Layer (SSL) connections. For information about
using the SSL protocol, see [Secure sockets layer protocol (Security Guide)}

IBM Informix ODBC Driver features

IBM Informix ODBC Driver implements the Microsoft Open Database Connectivity
(ODBC) Version 3.0 standard.

The IBM Informix ODBC Driver product also provides the following features and
functionality:

* Data Source Name (DSN) migration

* Driver Manager Replacement Module, which supports compatibility between
ODBC 2.x applications and the ODBC driver, Version 3.00.

* Microsoft Transaction Server (MTS), which is an environment that lets you
develop, run, and manage scalable, component-based Internet and intranet
server applications. MTS performs the following tasks:

— Manages system resources, including processes, threads, and database
connections, so that your application can scale to many simultaneous users

© Copyright IBM Corp. 1996, 2013 1-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sec.doc/ids_ssl_001.htm#ids_ssl_001

— Manages server component creation, execution, and deletion

— Automatically initiates and controls transactions to make your application
reliable

— Implements security so that unauthorized users cannot access your
application

— Provides tools for configuration, management, and deployment

Important: If you want to use distributed transactions managed by MTS
with the IBM Informix ODBC Driver, you must have connection pooling
enabled.

Extended data types, including rows and collections
Long identifiers

Limited support of bookmarks

GLS data types

Extensive error detection

Unicode support

XA support

Internet Protocol Version 6 support for internet protocols of 128 bits. (For more
information, see IBM Informix Administrator’'s Guide.)

Support for extended data types
IBM Informix ODBC Driver supports the extended data types.

IBM Informix ODBC Driver supports the following extended data types:

Collection (LIST, MULTISET, SET)

DISTINCT

OPAQUIE (fixed, unnamed)

Row (named, unnamed)

Smart large object (BLOB, CLOB)

Client functions to support some of the extended data types

Support for GLS data types
IBM Informix ODBC Driver supports the GLS data types.

IBM Informix ODBC Driver supports the following GLS data types:

NCHAR
NVARCHAR

Related reference:

[“SQL data types” on page 3-1|

Extended error detection
IBM Informix ODBC Driver detects the XA types of errors.

Additional values for some ODBC function arguments

IBM Informix ODBC Driver supports additional values for some ODBC function
arguments.

These additional values for some ODBC function arguments include:
* fDescType values for SQLColAttributes

— SQL_INFX_ATTR_FLAGS

1-2 IBM Informix ODBC Driver Programmer's Manual

- SQL_INEX_ATTR_EXTENDED_TYPE_ALIGNMENT
SQL_INFX_ATTR_EXTENDED_TYPE_CODE
SQL_INFX_ATTR_EXTENDED_TYPE_NAME
SQL_INFX_ATTR_EXTENDED_TYPE_OWNER
SQL_INFX_ATTR_SOURCE_TYPE_CODE
* fInfoType return value for SQLGetInfo

- SQL_INEX_LO_PTR_LENGTH

- SQL_INEX_LO_SPEC_LENGTH
* SQL_INFX_LO_STAT_LENGTH

* fOption value for SQLGetConnectOption and SQLSetConnectOption:
SQL_INFX_OPT_LONGID

* fOption value for SQLGetConnectOption and SQLSetConnectOption:
SQL_ATTR_ENLIST_IN_DTC

ODBC component overview
ODBC with the IBM Informix ODBC Driver includes several components.

ODBC with the IBM Informix ODBC Driver can include the following components:
¢ Driver manager

An application can link to a driver manager, which links to the driver specified
by the data source. The driver manager also checks parameters and transitions.
On most UNIX platforms, the ODBC Driver Manager can be purchased from a
third-party vendor.

On Microsoft Windows platforms, the ODBC Driver Manager is a part of the OS.
¢ IBM Informix ODBC Driver

The driver provides an interface to Informix database server. Applications can
use the driver in the following configurations:

— to link to the ODBC driver manager
— to link to the Driver Manager Replacement & the driver
— to link to the driver directly
* Data sources
The driver provides access to the following data sources:
— database management systems (DBMS), including a database server
— databases
— operating systems and network software required for accessing the database

IBM Informix ODBC Driver with a driver manager

There is software architecture when a driver manager is included in the system.
The following figure shows the software architecture when a driver manager is

included in the system. In such a system, the driver and driver manager act like a
single unit that processes function calls.

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-3

Server

/ IBM Informix data source \
4 N

DBMS (including

\ database server)

Client Database

ODBC

Operating system and
network software

_ Driver IBM Informix K J
Application “"” ODBC Driver
IBM Informix data source
/ DBMS (including \
\ database server)

fuf

Database

Operating system and
network software

\l /
o v

Figure 1-1. IBM Informix ODBC Driver with a driver manager

IBM Informix ODBC Driver without a driver manager (UNIX)

There is software architecture when a driver manager is not included in the
system.

The following figure shows an application that uses IBM Informix ODBC Driver

without a driver manager. In this case, the application must link to the IBM
Informix ODBC Driver library.

1-4 1BM Informix ODBC Driver Programmer's Manual

Server

/ IBM Informix data source \
/ DBMS (| \

including

\ database server)

i
Database

aif|

Client

Operating system and
network software

Aoolicati P | IBM Informix
pplication - “| ODBC Driver
IBM Informix data source
/ DBMS (including \
N\ database server)

-
N

Database

il

Operating system and
network software

> 7,

Figure 1-2. IBM Informix ODBC Driver without a driver manager

Related concepts:

[“Libraries” on page 1-8|

IBM Informix ODBC Driver with the DMR

IBM Informix ODBC Driver includes a Driver Manager Replacement (DMR)
library. The DMR replaces the driver manager on platforms where no driver
manager is available.

The following figure shows an ODBC configuration with the DMR.

ODBC 2.x/3.x
Application

IBM Informix ODBC Driver IBM Informix '
— Manager Replacement Module > ODBC Driver .

Figure 1-3. Architecture of the driver manager replacement module

Applications that are linked directly to the ODBC Version 4.10 driver and the DMR
do not require the ODBC Driver Manager.

In addition to supporting ODBC Version 4.10 features, the DMR supports
compatibility between ODBC 2.x applications and Version 3.00 of the IBM Informix

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-5

ODBC Diriver. To be compatible with ODBC 2.x applications, the application must
link to Version 3.00 of IBM Informix ODBC Driver through the DMR or through
the ODBC Version 4.10 driver manager.

You cannot use the IBM Informix DMR to connect to non-Informix data sources.
The DMR does not support connection pooling. The DMR does not map between
Unicode and ANSI APIs.

IBM Informix ODBC Driver components

1-6

IBM Informix ODBC Driver includes the four components.

IBM Informix ODBC Driver includes the following components:
* Environment variables

* Header files

* Data types

* Libraries

Environment variables

There are four environment variables that you must set for the driver.

The following list describes environment variables that you must set for the driver.
For more information about environment variables, see the IBM Informix Guide to
SQL: Reference.

INFORMIXDIR
Full path of the directory where the IBM Informix Client Software
Development Kit is installed.

On Windows platforms, INFORMIXDIR is a registry setting rather than an
environment variable. It is set during installation.

PATH Directories that are searched for executable programs. Your PATH setting
must include the path to your $INFORMIXDIR/bin directory.

DBCENTURY (optional)
Controls the setting of year values. DBCENTURY affects a client program
when a user issues a statement that contains a date or datetime string that
specifies only the last two digits of the year. For example:

insert into datetable (datecol) values ("01/01/01");

The database server stores the date specified in this statement as either
01-01-1901 or 01-01-2001, depending on the DBCENTURY value on the client.

GL_DATE (optional)
GL_DATE controls the interpretation of dates. For example, you can specify
whether the date format is mm-dd-yyyy or yyyy-mm-dd.

Set environment variables on UNIX

If you set the environment variables at the command line, you must reset them
whenever you log on to your system. If you set the environment variables in a file,
they are set automatically when you log on to your system.

IBM Informix ODBC Driver provides a sample setup file called setup.odbc in
$INFORMIXDIR/etc. You can use this file to set environment variables for the driver.
The following list describes the environment variables that are in setup.odbc.

IBM Informix ODBC Driver Programmer's Manual

INFORMIXDIR
Full path of the directory where IBM Informix Client Software
Development Kit is installed.

INFORMIXSQLHOSTS
This value is optional. It specifies the directory that contains sqlhosts. By
default, sqThosts is in $INFORMIXDIR/etc. Set INFORMIXSQLHOSTS if you want
sqlhosts to be in a different directory.

ODBCINI
This value is optional. You can use it to specify an alternative location for
the odbc.ini file. The default location is your home directory.

Set environment variables in Windows

If you set the environment variables at the command line, you must reset them
whenever you log in to your Windows environment. If you set them in the
Windows registry, however, they are set automatically when you log in.

IBM Informix ODBC Driver stores environment variables in the following location
in the Windows registry:

\HKEY_CURRENT_USERS\Software\Informix\Environment

In a Windows environment you must use setnet32.exe, or a tool that updates the
registry correctly, to set environment variables that IBM Informix dynamic link
libraries (DLLs), such as ic1it09b.d11, use. The Setnet utility can only be used to
set Informix environment variables.

You can use environment variables as required by your development environment.
For example, the compiler needs to know where to find the include files. To
specify the location of the include files, set the environment variable INFORMIXDIR
(or some other environment variable) and then set the include path to
INFORMIXDIR\inc1\cli.

The options for setting environment variables have the following precedence:
1. Setnet utility
2. Command line

3. Windows registry

Header files

You can use the sql.h and sqlext.h header files, which are part of the Microsoft
compiler, to run IBM Informix ODBC Driver.

To run Informix extensions, include the infxcli.h file, which is installed in
INFORMIXDIR/inc1/c1i. This file defines IBM Informix ODBC Driver constants and
types, and provides function prototypes for the IBM Informix ODBC Driver
functions. If you include the infxcli.h file, it automatically includes the sql.h and
sqlext.h files.

The sql.h and sqlext.h header files contain definitions of the C data types.
Include the xa.h header file in XA ODBC applications. ODBC applications on
Windows require the IBM Informix Client Software Development Kit to compile.

Existing applications that use the ODBC driver might need to include the location
of the Client SDK in the PATH environment variable before they are recompiled.

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-7

1-8

Related reference:

(Chapter 3, “Data types,” on page 3-1|

Data types

A column of data stored on a data source has an SQL data type.

IBM Informix ODBC Driver maps Informix-specific SQL data types to ODBC SQL
data types, which are defined in the ODBC SQL grammar. (The driver returns
these mappings through SQLGetTypelnfo. It also uses the ODBC SQL data types
to describe the data types of columns and parameters in SQLColAttributes and
SQLDescribeCol).

Each SQL data type corresponds to an ODBC C data type. By default, the driver
assumes that the C data type of a storage location corresponds to the SQL data
type of the column or parameter to which the location is bound. If the C data type
of a storage location is not the default C data type, the application can specify the
correct C data type with the TargetType argument for SQLBindCol, the fCType
argument for SQLGetData, and the ValueType argument in SQLBindParameter.
Before the driver returns data from the data source, it converts the data to the
specified C data type. Before the driver sends data to the data source, it converts
the data from the specified C data type to the SQL data type.

The Informix data type names differ from the Microsoft ODBC data type names.
For information about these differences, see the appendix about data types in the
IBM Informix ODBC Driver Programmer’s Manual.

Related reference:

(Chapter 3, “Data types,” on page 3-1|

Libraries

There is an installation procedure that installs libraries for UNIX and Windows.
UNIX

The installation procedure installs the following libraries into INFORMIXDIR/1ib/c11.
In each data source specification section in the odbc.ini file, set the driver value
indicating the full path to one of the following library file names.

libifcli.a or 1ibcli.a
Static version for single (nonthreaded) library

libifcli.so or iclis09b.so
Shared version for single (nonthreaded) library

Tibthcli.a
Static version for multithreaded library

Tibthcli.so or ic1it09b.so
Shared version for multithreaded library

libifdrm.so or idmrs09a.so
Shared library for DMR (thread safe)

If you do not use a driver manager, your application needs to link to either the
static or the shared version of the IBM Informix ODBC Driver libraries.

The following compile command links an application to the thread-safe version of
the IBM Informix ODBC Driver libraries:

IBM Informix ODBC Driver Programmer's Manual

cc ... -L$INFORMIXDIR/1ib/c1i -1ifdmr - 1thcli
Windows

The installation procedure installs the following libraries into INFORMIXDIR\11b.

iclit@9b.1ib
Enables linking directly to the driver without the use of a driver manager

iregt07b.1ib
Allows linking directly to iregt07b.d11

The following compile command links an application to the thread-safe version of
the IBM Informix ODBC Driver libraries:

cl ... -L$INFORMIXDIR/1ib/c1i iclit09b.1ib

If you use a driver manager, you must link your application to the driver manager
library only, as the following example shows:

cl odbc32.1ib

IBM Informix ODBC Driver requires a Version 3.0 driver manager.

Related reference:

[“IBM Informix ODBC Driver without a driver manager (UNIX)” on page 1-4f
[“The odbc.ini file” on page 2-3|

The IBM Informix ODBC Driver API

An application uses the IBM Informix ODBC Driver API to make a connection to a
data source, send SQL statements to a data source, process result data dynamically,
and terminate a connection.

The driver enables your application to perform the following steps:
1. Connect to the data source.

You can connect to the data source through a DSN connection, or you can use
DSN-less connection strings. Specify the data-source name and any additional
information needed to complete the connection.

2. Process one or more SQL statements:

a. Place the SQL text string in a buffer. If the statement includes parameter
markers, set the parameter values.

b. If the statement returns a result set, either assign a cursor name for the
statement or let the driver assign one.

c. Either prepare the statement or submit it for immediate execution.

d. If the statement creates a result set, you can inquire about the attributes of
the result set, such as the number of columns and the name and type of a
specific column. For each column in the result set, assign storage and fetch
the results.

e. If the statement causes an error, retrieve error information from the driver
and take the appropriate action.

3. End any transaction by committing it or rolling it back.

4. Terminate the connection when the application finishes interacting with the
data source.

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-9

Every IBM Informix ODBC Driver function name starts with the prefix SQL. Each
function accepts one or more arguments. Arguments are defined as input (to the
driver) or output (from the driver).

The following figure shows the basic function calls that an application makes even
though an application generally calls other functions also.

SQLAllocHandle
(SQL_HANDLE_ENV)

SQLAllocHandle
—>
(SQL_HANDLE_DBC)

—» SQLConnect

SQLAllocHandle !
(SQL_HANDLE_STMT)

Process SQL statements ¢———

Receive results

|

SQLFreeStmt

CLOSE option

SQLFreeHandle
(SQL_HANDLE_STMT)

SQLDisconnect

SQLFreeHandle
(SQL_HANDLE_DBC)
|
SQLFreeHandle
(SQL_HANDLE_ENV)

Figure 1-4. Sample listing of function calls that an IBM Informix ODBC Driver application
makes

Environment, connection, and statement handles

When an application requests it, the driver and the driver manager allocate storage
for information about the environment, each connection, and each SQL statement.

The driver returns a handle for each of these allocations to the application, which
uses one or more handles in each call to a function.

The IBM Informix ODBC Driver API uses the following types of handles:

1-10 IBM Informix ODBC Driver Programmer's Manual

Environment handles
Environment handles identify memory storage for global information,
including the valid connection handles and the current active connection
handle. The environment handle is an henv variable type. An application
uses one environment handle. It must request this handle before it
connects to a data source.

Connection handles
Connection handles identify memory storage for information about
particular connections. A connection handle is an hdbc variable type. An
application must request a connection handle before it connects to a data
source. Each connection handle is associated with the environment handle.
However, the environment handle can be associated with multiple
connection handles.

Statement handles
Statement handles identify memory storage for information about SQL
statements. A statement handle is an hstmt variable type. An application
must request a statement handle before it submits SQL requests. Each
statement handle is associated with exactly one connection handle.
However, each connection handle can be associated with multiple
statement handles.

Buffers

An application passes data to the driver in an input buffer. The driver returns data
to the application in an output buffer.

The application must allocate memory for both input and output buffers. If the
application uses the buffer to retrieve string data, the buffer must contain space for
the null termination byte.

Some functions accept pointers to buffers that are used later by other functions.
The application must ensure that these pointers remain valid until all applicable
functions have used them. For example, the argument rgbValue in SQLBindCol

points to an output buffer where SQLFetch returns the data for a column.

Input buffers

An application passes the address and length of an input buffer to the driver.

The length of the buffer must be one of the following values:
¢ A length greater than or equal to zero

This value is the actual length of the data in the input buffer. For character data,
a length of zero indicates that the data is an empty (zero length) string. A length
of zero is different from a null pointer. If the application specifies the length of
character data, the character data does not need to be null-terminated.

* SQL_NTS
This value specifies that a character data value is null-terminated.

* SQL_NULL_DATA
This value tells the driver to ignore the value in the input buffer and use a

NULL data value instead. It is valid only when the input buffer provides the
value of a parameter in an SQL statement.

For character data that contains embedded null characters, the operation of IBM
Informix ODBC Driver functions is undefined; for maximum interoperability, it is

Chapter 1. Overview of IBM Informix ODBC Driver 1-11

better not to use them. Informix database servers treat null characters as
end-of-string markers or as indicators that no more data exists.

Unless it is prohibited in a function description, the address of an input buffer can
be a null pointer. In such cases, the value of the corresponding buffer-length
argument is ignored.

Related concepts:
[“Convert data from SQL to C” on page 3-20|

Output buffers
An application passes arguments to the driver so that the driver can return data in
an output buffer.

These arguments are:
e The address of the output buffer, to which the driver returns the data

Unless it is prohibited in a function description, the address of an output buffer
can be a null pointer. In such cases, the driver does not return anything in the
buffer and, in the absence of other errors, returns SQL_SUCCESS.

If necessary, the driver converts data before returning it. The driver always
null-terminates character data before returning it.

* The length of the buffer

The driver ignores this value if the returned data has a fixed length in C, as with
an integer, real number, or date structure.

e The address of a variable in which the driver returns the length of the data (the
length buffer)

The returned length of the data is SQL_NULL_DATA if the data is a null value
in a result set. Otherwise, the returned length of the data is the number of bytes
of data that are available to return. If the driver converts the data, the returned
length of the data is the number of bytes that remain after the conversion; for
character data, it does not include the null-termination byte that the driver adds.

If the output buffer is too small, the driver attempts to truncate the data. If the
truncation does not cause a loss of significant data, the driver returns the truncated
data in the output buffer, returns the length of the available data (as opposed to
the length of the truncated data) in the length buffer, and returns
SQL_SUCCESS_WITH_INFO. If the truncation causes a loss of significant data, the
driver leaves the output and length buffers untouched and returns SQL_ERROR.
The application calls SQLGetDiagRec to retrieve information about the truncation
or the error.

Related concepts:
[“Convert data from SQL to C” on page 3-20|

SQLGetinfo argument implementation

IBM Informix implements the SQLGetInfo arguments for IBM Informix ODBC
Driver.

The following table describes the IBM Informix implementation of SQLGetInfo
arguments for IBM Informix ODBC Driver.

Argument name

Informix implementation

SQL_ACTIVE_ENVIRONMENTS IBM Informix driver does not have a limit on number of

active environments. Zero is always returned.

1-12 IBM Informix ODBC Driver Programmer's Manual

Argument name

Informix implementation

SQL_AGGREGATE_FUNCTIONS

IBM Informix driver returns all aggregate functions that the
database server supports.

SQL_ASYNC_MODE

IBM Informix driver returns SQL_AM_NONE.

SQL_ATTR_METADATA_ID

Supported for GetInfo and PutInfo

SQL_BATCH_ROW_COUNT

IBM Informix driver returns bitmask zero.

SQL_BATCH_SUPPORT

IBM Informix driver returns bitmask zero.

SQL_CA1_POS_DELETE

Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_POSITION

Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_REFRESH

Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_UPDATE

Operation arguments supported in a call to SQLSetPos

SQL_CA1_POSITIONED_DELETE

A DELETE WHERE CURRENT OF SQL statement is
supported when the cursor is a forward-only cursor. (An
SQL-92 entry-level-conforming driver always return this
option as supported.)

SQL_CA1_POSITIONED_UPDATE

An UPDATE WHERE CURRENT OF SQL statement is
supported when the cursor is a static-only cursor. (An
SQL-92 entry-level-conforming driver always return this
option as supported.)

SQL_CA1_LOCK_NO_CHANGE

A LockType argument of SQL_LOCK_NO_CHANGE is
supported in a call to SQLSetPos when the cursor is a
static-only cursor.

SQL_CA1_SELECT_FOR_UPDATE

A SELECT FOR UPDATE SQL statement is supported when
the cursor is a forward-only cursor. (An SQL-92
entry-level-conforming driver always return this option as
supported.)

SQL_CATALOG_NAME

IBM Informix driver returns ‘Y'

SQL_COLLATION_SEQ

INTERSOLV DataDirect ODBC Driver returns InfoValuePtr
(unmodified)

SQL_DDL_INDEX

Returns bitmask SQL_DIL_CREATE_INDEX |
SQL_DL_DROP_INDEX

SQL_DESCRIBE_PARAMETER

Returns ‘N'; parameters cannot be described. (This is because
the latest Informix database servers support function
overloading such that multiple functions with the same name
can accept different parameter types.)

SQL_DIAG_DYNAMIC_FUNCTION

Returns empty string

SQL_DROP_TABLE

Returns bitmask SQL_DT_DROP_TABLE |
SQL_DT_CASCADE | SQL_DT_RESTRICT

SQL_DROP_VIEW

Returns bitmask SQL_DV_DROP_TABLE |
SQL_DV_CASCADE | SQL_DV_RESTRICT

SQL_INDEX_KEYWORDS_

SQL_LLK_ASC | SQL_LK_DESC

SQL_INSERT_STATEMENT

Returns bitmask SQL_IS_INSERT_LITERALS | SQL._
INSERT_SEARCHED | SQL_IS SELECT_INTO

SQL_MAX_DRIVER_CONNECTIONS

Returns zero

SQL_MAX_IDENTIFIER_LEN

Returns different values, depending on database server
capability

SQL_ODBC_INTERFACE_CONFORMANCE

Returns SQL_OIC_CORE

SQL_PARAM_ARRAY_ROW_COUNTS

Returns SQL_PARC_NO_BATCH

Chapter 1. Overview of IBM Informix ODBC Driver 1-13

Argument name

Informix implementation

SQL_PARAM_ARRAY_SELECTS

Returns SQL_PAS_NO_SELECT

SQL_SQL_CONFORMANCE

Returns SQL_OSC_CORE

SQL_SQL92 FOREIGN_KEY_DELETE_RULE

Returns bitmask zero

SQL_SQL92 FOREIGN_KEY_UPDATE_RULE

Returns bitmask zero

SQL_SQL92_GRANT

Returns bitmask zero

SQL_SQL92 NUMERIC_VALUE_FUNCTIONS

Returns bitmask zero

SQL_SQL92_PREDICATES

Returns bitmask zero

SQL_SQL92 RELATIONAL_JOIN_OPERATORS

Returns bitmask zero

SQL_SQL92_REVOKE

SQL_SR_CASCADE | SQL_SR_RESTRICT

SQL_SQL92 ROW_VALUE_CONSTRUCTOR

Returns bitmask zero

SQL_SQL92_STRING_FUNCTIONS

Returns bitmask zero

SQL_SQL92_VALUE_EXPRESSIONS

Returns bitmask zero

SQL_STANDARD_CLI_CONFORMANCE

Returns bitmask SQL_SCC_XOPEN_CLI_VERSIONT1 |
SQL_SCC_IS0O92_CLI

SQL_STATIC_CURSOR_ATTRIBUTES1

Scrollable only

SQL_STATIC_CURSOR_ATTRIBUTES2

Scrollable only

SQL_XOPEN_CLI_YEAR

Returns string “1995”

Related reference:

[‘SQLGetInfo (level one only)” on page 8-28|

Global Language Support

IBM Informix products can support many languages, cultures, and code sets.
Global Language Support (GLS) provides support for all language- and

culture-specific information.

The following table describes how to set the GLS options depending on your

platform.

Platform

How to set GLS options

UNIX

Specify the GLS options in the odbc.ini file.

Windows

Specify the GLS options in the IBM Informix
ODBC Driver DSN Setup dialog box.

The following table describes the GLS options for IBM Informix ODBC Driver.

1-14 1BM Informix ODBC Driver Programmer's Manual

GLS option

Description

Client locale

Description:
Locale and code set that the
application runs in

Format:
locale.codeset@modifier

odbc.ini field for UNIX:
CLIENT_LOCALE

Default value for UNIX:
en_us.8859-1

Default value for Windows:

en_us.1252
Important: The setting of the CLIENT_LOCALE
environment variable in the operating system
environment and in Setnet32 are ignored by
IBM Informix ODBC Driver. To change the
client locale, you must use this GLS option.

Database locale

Description:
Locale and code set that the
database was created in

Format:
locale.codeset@modifier

odbc.ini field for UNIX:
DB_LOCALE

Default value for UNIX:
en_us.8859-1

Default value for Windows:

en_us.1252
Important: The setting of the DB_LOCALE
environment variable in the operating system
environment and in Setnet32 are ignored by
IBM Informix ODBC Driver. To change the
database locale, you must use this GLS
option.

Translation library

Description:
Performs the code set conversion

Format:
Path to the file for the library. The
translation DLL must follow the
ODBC standard for translation
libraries. For more information, see
the IBM Informix ODBC Driver
Programmer’s Manual.

odbc.ini field for UNIX:
TRANSLATIONDLL

Default value for UNIX:
$INFORMIXDIR/1ib/esql/igo4a304.xx
where xx is platform-specific
extension for shared library

Default value for Windows:
1g04n304.d11

Chapter 1. Overview of IBM Informix ODBC Driver 1-15

1-16

GLS option

Description

Translation option

Description:
Option for a non-IBM Informix
translation library

Format:
Determined by the vendor

odbc.ini field for UNIX:
TRANSLATION_OPTION

Default value for Windows:

Determined by the vendor
Restriction: Do not set this option for an
IBM Informix translation library. An IBM
Informix translation library determines the
translation option based on the client locale
and database locale values.

IBM Informix ODBC Driver Programmer's Manual

GLS option Description
VMB character

Description:
Varying multibyte character length
reporting option that specifies how
to set pcbValue when rgbValue (the
output area) is not large enough for
the code-set-converted data. The
possible values are:

Estimate
IBM Informix ODBC Driver
makes a worst-case
estimate of the storage
space needed to return the
data.

Exact IBM Informix ODBC Driver
writes the
code-set-converted data to
disk until all the data is
converted. Because this
option can degrade
performance, it is
recommended that you do
not use this option unless
your application does not
work with Estimate.

When you use a multibyte code set
(in which characters vary in length
from 1 to 4 bytes) for either the
database or client locale, the length
of a character string or simple large
object (TEXT) in the database locale
does not indicate the length of the
string after it is converted to the
client locale.

Possible values for UNIX:
0 = Estimate

1 = Exact

Possible values for Windows:
Estimate

Exact

odbc.ini field for UNIX:
VMBCHARLENEXACT

Default value for UNIX:
Estimate

Default value for Windows:
Estimate

For more information about GLS and locales, see the IBM Informix GLS User’s
Guide.

Chapter 1. Overview of IBM Informix ODBC Driver 1-17

Related tasks:
[“Configuring a DSN in Windows” on page 2-10|

Related reference:
“Configure a DSN on UNIX” on page 2-1|
Chapter 9, “Unicode,” on page 9-1|

X/Open standard interface

In addition to the standard ODBC functions, the IBM Informix ODBC Driver also
supports the additional functions.

The following functions are supported by IBM Informix ODBC Driver

_fninfx_xa_switch
Function for acquiring the xa_switch structure defined by Informix FileNet
Records Manager

IFMX_SQLGetXaHenv
Function for obtaining the environment handle associated with an XA
Connection

IFMX_SQLGetXaHdbc
Function for obtaining the database handle associated with an XA
Connection

Xxa_open
Function takes an xa_info parameter. The IBM Informix ODBC Driver uses
this xa_info to establish a XA connection

The format of xa_info is as follows:

<app11cat10ntoken>|<DSN name>

The application token is a unique number the application generates for
each xa_open request. It must use the same application token as parameter

to IFMX_SQLGetXaHenv and IFMX_SQLGetXaHdbc to get the associated
environment and database handles.

External authentication

1-18

For IBM Informix Version 10.0 and later, you can implement external
authentication through the IBM Informix ODBC Driver.

There are two external authentication modules available to use with the IBM
Informix ODBC Driver. The Pluggable Authentication Module (PAM), works on
UNIX and Linux servers and the LDAP Authentication is supported on Microsoft
Windows operating systems.

Pluggable Authentication Module (PAM) on UNIX and Linux

You can use Pluggable Authentication Module (PAM) with the IBM Informix
ODBC Driver on the UNIX and Linux operating systems that support PAM.

PAM enables system administrators to implement different authentication
mechanisms for different applications. For example, the needs of a system like the
UNIX login program might be different from an application that accesses sensitive
information from a database. PAM allows for many such scenarios in a single
machine, because the authentication services are attached at the application level.

IBM Informix ODBC Driver Programmer's Manual

LDAP Authentication on Windows

You can use LDAP Authentication with the IBM Informix ODBC Driver on
Windows operating systems. LDAP Authentication is similar to the Pluggable
Authentication Module.

Use the LDAP Authentication Support module when you want to use an LDAP
server to authenticate your system users. The module contains source code that
you can modify for your specific LDAP Authentication Support module. For
information about installing and customizing the LDAP Authentication Support
module, see the IBM Informix Security Guide.

The SQLSetConnectAttr() function with authentication

Use the SQLSetConnectAttr() function to specify the callback function used by the
server.

SQLSetConnectAttr() is also used to specify what parameters are used by the
callback function. Parameter attributes are passed back to the callback function
exactly as they are specified to the driver.

The following attributes are IBM Informix-specific extensions to the ODBC
standard:

Parameter

Type Description

SQL_INFX_ATTR_PAM_FUNCTION void * A pointer to the callback function.

SQL_INFX_ATTR_PAM_RESPONSE_BUF void * A generic pointer to a buffer containing the

response to an authentication challenge.

SQL_INFX_ATTR_PAM_RESPONSE_LEN int The length of the response buffer in bytes.

SQL_INFX_ATTR_PAM_RESPONSE_LEN_PTR int * The address which stores the number of bytes

in the response.

SQL_INFX_ATTR_PAM_CHALLENGE_BUF void * A generic pointer to a buffer containing the

authentication challenge. The driver stores any
challenge received from the server into this
buffer. If the buffer is not large enough to
contain the challenge, the challenge is
truncated. The callback function can detect this
challenge by comparing the buffer length with
the number of bytes in the challenge. It is up to
the application developer to detect this
situation and handle it correctly.

SQL_INFX_ATTR_PAM_CHALLENGE_BUF_LEN int The length of the challenge buffer in bytes.

SQL_INFX_ATTR_PAM_CHALLENGE_LEN_PTR int * The address which stores the number of bytes

in the challenge.

The challenge and response buffer pointers can be null. If the authentication server
requires the information that would be stored in these buffers, a connection failure
results due to an authentication failure. The challenge length information is
returned whether the connection is successful or not. If the message type does not
require a response, the response buffer might be null (default) or it might contain
an empty string.

The attributes in the previous table can be set at any time and in any order.
However, they are only valid for connections established with subsequent calls to

one of the driver's connect functions.

Chapter 1. Overview of IBM Informix ODBC Driver 1-19

1-20

You can set the isolation level with the SQLSetConnectAttr() API by using one of
the following connection attributes:

e SQL_TXN_READ_UNCOMMITTED = Read Uncommitted
* SQL_TXN_READ_COMMITTED = Read Committed

* SQL_TXN_SERIALIZABLE = Serializable

* SQL_TXN_REPEATABLE_READ = Repeatable Read

* SQL_TXN_LAST_COMMITTED = Last Committed

* SQL_TXN_TRANSACTION = Transaction

If you use the SQL_TXN_LAST_COMMITTED or SQL_TXN_TRANSACTION
attributes with the SQLSetConnectAttr() API, then your applications must link
directly to the IBM Informix ODBC Driver instead of to the ODBC Driver Manager.
However, if the attribute is specified in the odbc.ini file or the Data Source
Administrator, the application can be linked with ODBC Driver Manager.

If you use the SQL_TXN_TRANSACTION attribute, then the isolation level set in
the DTC application is propagated to the server. This option should be used only
in Windows DTC applications.

Connection pooling and authentication
In ODBC, the driver manager controls connection pooling.

An application programmer must be aware of the effects of connection pooling
when using authentication. The driver manager does not control when its
connections are placed in the pool or when a connection is pulled from the pool. If
the application connects and disconnects without the knowledge of the user, the
performance benefits of connection pooling are maintained and the user does not
receive any unexpected authentication challenges. If the application does make the
user aware they are re-establishing a connection, there is still no authentication
challenge because the connection between the driver manager and the server was
never closed. For more information about connection pooling, see the Microsoft
Data Access SDK documentation.

Connect functions

Any ODBC function which establishes a connection, SQLConnect(),
SQLDriverConnect(), or SQLBrowseConnect(), can be used with authentication
modules.

Consider the following when using these functions.
The SQLConnect() function

The DriverCompletion parameter to the SQLConnect() function can take the
following values

* SQL_DRIVER _PROMPT

* SQL_DRIVER_COMPLETE

* SQL_DRIVER_COMPLETE_REQUIRED
* SQL_DRIVER_NOPROMPT

If an authentication challenge is expected, it is recommended that you use
SQL_DRIVER_NOPROMPT. Using other values might result in the user being
presented with multiple requests for authentication information.

IBM Informix ODBC Driver Programmer's Manual

The SQLBrowseConnect() function

The SQLBrowseConnect() function is designed to be used iteratively where the
driver provides guidance to the application on how to complete the connection
string and the application prompts the user for the required values. This can create
situations where the user is presented with multiple prompts between connection
string completion and authentication.

Additionally, it is typical for the driver to present a choice of databases to the
application as part of the connection string completion process. However, the
driver is not able to query the server for a list of databases until after the user is
authenticated. Depending on application logic, whether it provides a database
name in the original connection string, and whether a challenge is going to be
received from the authentication server, it might not be possible to use
SQLBrowseConnect() when the server uses authentication.

Third-party applications or intermediate code
When using authentication, it is the responsibility of the application to handle any
challenges that originate from the authentication server.

To handle the challenges, the application programmer must be able to register a
callback function with the driver. Because there are no attributes defined in the
ODBC standard that are used to accomplish this, the attributes used are IBM
Informix extensions.

Many applications are written with ADO layer of Microsoft to abstract the ODBC
calls from the developer. Most Visual Basic applications are written with ADO
objects. These applications and third-party applications in general are not aware of
the IBM Informix extensions and are not able to handle an authentication
challenge.

The ODBC Data Source Administrator on Windows also falls under the class of

third-party applications. Not all features are available when configuring a UNIX
data source. For example, the Apply and Test Connection button and the User

Server Database Locale toggle does not work if a challenge is received because

those features require the ability to connect to the server.

Bypass ODBC parsing
You can bypass ODBC parsing by using several options.

Sometimes you might want to improve performance by bypassing ODBC parsing.
Do not bypass ODBC parsing if these conditions exist:

* You intend to use ODBC escape sequences in your query.

* You intend to call any catalog functions (for example, SQLColumns,
SQLProcedureColumns, or SQLTables) after running your SQL query.

You can bypass ODBC parsing in the following ways:

* Set SKIPPARSING to 1 in the connection string. The connection string is used in
a SQLDriverConnect call. For example:

connString="DB=xxx;UID=xxx;....;SKIPPARSING=1;"
e Include SQL_INFX_ATTR_SKIP_PARSING in a SQLSetConnectAttr call, for
example:

SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_SKIP_PARSING,
(SQLPOINTER)SQL_TRUE, SQL_IS_USMALLINT);

Chapter 1. Overview of IBM Informix ODBC Driver 1-21

Use this call after the connection is completed. To restore ODBC parsing, change
SQL_TRUE to SQL_FALSE. After this value is enabled at the connection level, all
statement handles that are allocated with the connection inherit this property.
* In a SQLSetStmtAttr call, include SQL_TRUE. To restore ODBC parsing, change
SQL_TRUE to SQL_FALSE.
SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_SKIP_PARSING,
(SQLPOINTER)SQL_TRUE, SQL_IS USMALLINT);

* On UNIX systems, in .odbc.ini set SKIPPARSING=1. To restore ODBC parsing,
reset the value to SKIPPARSING=0.

The precedence of bypassing ODBC parsing is as follows:

 If ODBC parsing is bypassed or reset in the odbc.ini file (on UNIX systems) and
also in the application with the SQLDriverConnect, SQLSetConnectAttr, or the
SQLSetStmtAttr APIs, the API setting takes precedence.

* If ODBC parsing is bypassed or reset in the application with the
SQLDriverConnect API and also in the SQLSetConnectAttr or SQLSetStmtAttr
APIs, the latter takes precedence.

BufferLength in character for SQLGetDiagRecW

The SQLGetDiagRecW API returns diagnostic information in the output buffer,
where the BufferLength parameter is the length of buffer allocated.

The default for BufferLength is the number of bytes allocated. After setting the
SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW attribute to TRUE, the
BufferLength is treated as a specific number of characters. As a Widechar API, one
character=sizeof(SQLWCHAR) bytes.

Set the attribute in the following ways:
* SQLSetEnvAttr (henv, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
(SQLPOINTER)SQL_TRUE, SQL_IS UINTEGER);
* SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
(SQLPOINTER)SQL_TRUE, SQL_IS UINTEGER);
* SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
(SQLPOINTER)SQL_TRUE, SQL_IS UINTEGER);

e Set the LENGTHINCHARFORDIAGRECW=1 in the connection string.
* On UNIX systems, in odbc.ini set LENGTHINCHARFORDIAGRECW=1

The precedence of setting SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW is:

+ Setting the SQLSetEnvAttr attribute reflects to the henv, hdbc, and hstmt
handles.

* Resetting the hdbc and hstmt handles through
— Setting SQLSetConnectAttr
— Passing the attribute in connection string
— Enabling the Length in Chars for SQLGetDiagRecW option in the DSN

e If the hstmt handle is set or not set by the previously mentioned methods,
setting SQLSetStmtAttr resets it.

Informix and ISAM error descriptions in SQLGetDiagRec

The SQLGetDiagRec API returns diagnostic information in the output buffer, where
the error description is for the IBM Informix error message.

1-22 IBM Informix ODBC Driver Programmer's Manual

When the IBM Informix server encounters an error, it returns an Informix error
code and an associated error description. There is an additional error code, the
ISAM error code, which provides information that is necessary to understand the
circumstances that caused the Informix error code.

If you do not set an attribute for the SQLSetConnectAttr API, the SQLGetDiagRec
API returns the Informix error message.

If you set the SQL_DIAG_ISAM_ERROR attribute for the SQLGetDiagField API,
the SQLGetDiagField API returns the ISAM error message.

If you set the SQL_INFX_ATTR_IDSISAMERRMSG attribute for the
SQLSetConnectAttr API, the SQLGetDiagRec API returns both the Informix error
message and the ISAM error message.

Set the SQL_INFX_ATTR_IDSISAMERRMSG attribute in the following way:

SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_IDSISAMERRMSG,
(SQLPOINTER)SQL_TRUE, SQL_IS UINTEGER);

Improved performance for single-threaded applications

You are likely to improve the performance of single-threaded applications by using
the SINGLETHREADED connection parameter. The value is off by default.

Do not use this parameter in an XA/MSDTC environment. You can set the
SINGLETHREADED connection parameter in a connection string as the following
example shows:

DSN=xxx3Uid=xxx;Pwd=xxx;SINGLETHREADED=1;"

Partially supported and unsupported ODBC features

IBM Informix ODBC Driver supports partial implementation of several ODBC
features.

These ODBC features are
¢ Transaction processing
* ODBC cursors

* ODBC bookmarks

* SQLBulkOperations

Transaction processing

IBM Informix ODBC Driver implementation of transaction isolation levels and
transaction modes is slightly different from the Microsoft ODBC implementation of
these features.

The following topics describe the implementation of transaction isolation levels
and transaction modes in IBM Informix ODBC Driver.

Transaction isolation levels
IBM Informix ODBC Driver supports three transaction isolation levels for the
Informix database server.

The following table lists the transaction isolation levels that IBM Informix ODBC
Driver supports for the Informix database server.

Chapter 1. Overview of IBM Informix ODBC Driver 1-23

1-24

Database servers Transaction isolation levels

IBM Informix + SQL_TXN_READ_COMMITTED
+ SQL_TXN_READ_UNCOMMITTED
+ SQL_TXN_SERIALIZABLE

The default transaction isolation level is SQL_TXN_READ_COMMITTED. To
change the transaction isolation level, call SQLSetConnectOption() with an fOption
value of SQL_TXN_ISOLATION.

For more information about transaction isolation levels, see the
SQL_DEFAULT_TXN_ISOLATION and SQL_TXN_ISOLATION_OPTION
descriptions in the IBM Informix ODBC Driver Programmer’s Manual.

Changing the transaction mode
You can change the transaction mode from its default of auto-commit to manual
commit.

To change the transaction mode to manual commit:
1. Enable transaction logging for your database server.

For information about transaction logging, see your IBM Informix
Administrator’s Guide.

2. Call SQLSetConnectOption() with SQL_ AUTOCOMMIT set to
SQL_AUTOCOMMIT_OFF.

ODBC cursors

IBM Informix ODBC Driver supports static and forward cursors but not dynamic
and keyset-driven cursors.

For more information about cursors, see the IBM Informix ODBC Driver
Programmer’s Manual.

ODBC bookmarks

A bookmark is a value that identifies a row of data.

IBM Informix ODBC Driver supports bookmarks with SQLFetchScroll and
SQLExtendedFetch and does not support them with SQLBulkOperations.IBM
Informix ODBC Driver supports bookmarks to the following extent:

* Uses only variable length bookmarks.
* SQL_DESC_OCTET_LENGTH is set to 4 for bookmark columns.

* A bookmark is an integer that contains the row number within the row set,
starting with 1.

* Bookmarks persist only if the cursor remains open.

* SQLFetchScroll, using SQL_FETCH_BOOKMARK for the fetch orientation
argument, is fully supported.

* SQLBulkOperations does not update the bookmark column for SQL_ADD.

For more information about ODBC bookmarks, see the IBM Informix ODBC Driver
Programmer’s Manual.

IBM Informix ODBC Driver Programmer's Manual

SQLBulkOperations

IBM Informix ODBC Driver supports only the SQL_ADD argument of
SQLBulkOperations.

SQLDescribeParam

SQLDescribeParam is an ODBC API which returns metadata for the parameters of
a query.

In earlier releases of the IBM Informix ODBC Driver, the SQLDescribeParam API
returned SQL_UNKNOWN if the API was called to get information about an
expression value or a parameter that was embedded inside another routine. This
restriction no longer applies to values of BOOLEAN, LVARCHAR, or of built-in
non-opaque Informix data types that are returned by the following expressions in
other UDRs:

* Binary arithmetic expressions
— Addition (+)
— Subtraction (-)
— Multiplication (*)
— Division (/)
* Relational operator expressions
— Less than (<)
— Less than or equal to (<=)
- Equalto (= ==)
— Greater than or equal to (>=)
— Greater than (>)
— Not equal to (<>, =)
* The following string operations
— Concatenation (|)
- MATCHES
- LIKE
* BETWEEN ... AND conditional expressions

For example, if the column tabl.c1 is an INT data type, SQLDescribeParam()
returns type int for the input host variable of the following query:

select cl, c2 from tabl where ABS(cl) > ?;

The UDR from the other side of the expression can be a column expression or a
built-in routine, but it cannot be a user-defined routine. In earlier releases, the
SQLDescribeParam API returns SQL_UNKNOWN for expression values and
parameters that are embedded in another procedure in the following cases:

* The value on the other side of the expression is a user-defined routine.
* Another operand of the same expression is a user-defined routine.

* The data type of any operand of the expression is not a BOOLEAN,
LVARCHAR, or a built-in non-opaque data type.

Unsupported Microsoft ODBC driver features

IBM Informix ODBC Driver does not support implementation of the certain
Microsoft ODBC driver features.

Chapter 1. Overview of IBM Informix ODBC Driver 1-25

The unsupported Microsoft ODBC driver features are:
* Asynchronous communication mode
* Concurrency checking
— SQL_CA2_OPT_ROWVER_CONCURRENCY
- SQL_CA2_OPT_VALUES_CONCURRENCY
* CONVERT scalar functions
e Cursor simulation features:
SQL_CA2_CRC_APPROXIMATE
SQL_CA2_CRC_EXACT
SQL_CA2_SIMULATE_NON_UNIQUE
— SQL_CA2_SIMULATE_TRY_UNIQUE
SQL_CA2_SIMULATES_UNIQUE
* Dynamic cursor attributes
* Installer DLL

1-26 IBM Informix ODBC Driver Programmer's Manual

Chapter 2. Configure data sources

These topics explain how to configure a data source (DSN) on UNIX and Windows
for IBM Informix ODBC Driver.

After you install the driver, you must configure your DSN before you can connect
to it.

Related reference:

[“Connection level optimizations” on page 7-2|

Configure a DSN on UNIX

The configuration files provide information, such as driver attributes, that the
driver uses to connect to DSNs.

This section provides information about driver specifications and DSN
specifications on UNIX, and describes the following DSN configuration files:

* sqlhosts
e odbcinst.ini
e odbc.ini

To modify these files, use a text editor. The section also provides examples of
driver and DSN specifications.

If you are enabling single-sign on (SSO), additional steps are in "Configuring
ESQL/C and ODBC Drivers for SSO" in IBM Informix Security Guide.

Related reference:

[“Global Language Support” on page 1-14|

The sqlhosts file

The sqlhosts file consists of connection information.

It contains an entry for each IBM Informix database server. For information about
the sqlhosts file, see IBM Informix Administrator’s Guide.

The odbcinst.ini file
The odbcinst.ini file has entries for all the installed drivers on your computer.

Installed ODBC drivers use the odbcinst.ini sample file, which is located in
$INFORMIXDIR/etc/odbcinst.ini. To create your odbcinst.ini file, copy the
odbcinst.ini sample file to your home directory as $HOME/.odbcinst.ini (note the
added dot at the beginning of the file name). Update this file when you install a
new driver or a new version of a driver. The following table describes section
items in the $HOME/.odbcinst.ini file.

Section Description Status
ODBC drivers List of names of all the installed ODBC drivers Optional
ODBC driver List of driver attributes and values Optional
specifications

© Copyright IBM Corp. 1996, 2013 2-1

2-2

ODBC drivers

Use examples to obtain information about ODBC drivers.

The following example illustrates information about drivers:

[ODBC Drivers]

driver_namel=Installed
driver_nameZ=Installed

The following example illustrates information about installed drivers:

[ODBC Drivers]

IBM INFORMIX ODBC DRIVER=Installed

Driver specifications
Each installed driver has a properties section under the name of the driver.

The following example illustrates a driver-specification format:

[driver namel]

Driver=driver_library path
Setup=setup/driver_library_path
APILevel=api_level supported
ConnectFunctions=connectfunctions
DriverODBCVer=odbc_version

FileUsage=file_usage
SQLLevel=sql _level

The following example illustrates information about driver specifications:

[IBM INFORMIX ODBC DRIVER]
Driver=/vobs/tristarm/odbc/ic1is09b.so
Setup=/vobs/tristarm/odbc/ic1is09b.so

APILevel=1

ConnectFunctions=YYY
DriverODBCVer=03.50

FileUsage=0
SQLLevel=1

The following table describes the keywords that are in the driver-specification

section.
Keywords Description Status
API Level ODBC interface conformance level that the driver | Required
supports
0=None
1=Level 1 supported
2=Level 2 supported
ConnectFunctions Three-character string that indicates whether the Required
driver supports SQLConnect, SQLDriverConnect,
and SQLBrowseConnect
DriverODBCVer Character string with the version of ODBC that the |Required
driver supports
Driver Driver library path Required
FileUsage Number that indicates how a file-based driver Required
directly treats files in a DSN
Setup Setup library Required

IBM Informix ODBC Driver Programmer's Manual

Keywords Description Status

SQLLevel Number that indicates the SQL-92 grammar that Required
the driver supports

For a detailed description of the Driver Specification section, see the IBM Informix
ODBC Driver Programmer’s Manual.

The odbc.ini file

The odbc. ini file is a sample data-source configuration information file.

For the location of the odbc.ini file, see the release notes. To create this file, copy
odbc.ini to your home directory as $HOME/.odbc.ini (note the added dot at the
beginning of the file name). Every DSN to which your application connects must
have an entry in this file. The following table describes the sections in

$HOME/.odbc . n.
Section Description Status
ODBC Data Sources This section lists the DSNs and associates them Required
with the name of the driver. You need to provide
this section only if you use an ODBC driver
manager from a third-party vendor.
Data Source Each DSN listed in the ODBC Data Sources section |Required
Specification has a Data-Source Specification section that
describes the DSN.
ODBC This section lists ODBC tracing options. Optional

Follow these rules to include comments in the odbc.ini file on UNIX systems:

* Begin a comment with a semicolon (;) or number sign (#) in the first position of
the first line.

* If a comment includes multiple lines, you can begin following comment lines
with a space or tab character (\t).

* You can include blank lines in comments.

Related concepts:

[“Libraries” on page 1-8|

ODBC Data Sources
Each entry in the ODBC Data Sources section lists a DSN and the driver name.

The data_source_name value is any name that you choose. It is like an envelope that
contains all relevant connection information about the DSN.

The following example illustrates an ODBC data-source format:

[ODBC Data Sources]
data_source_name=IBM INFORMIX ODBC DRIVER

The following example defines two DSNs called EmpInfo and CustInfo:

[ODBC Data Sources]
EmpInfo=IBM INFORMIX ODBC DRIVER
CustInfo=IBM INFORMIX ODBC DRIVER

Chapter 2. Configure data sources ~ 2=3

Data-source specification
Each DSN in the data sources section has a data-source specification section.

The following example illustrates a data-source specification format:

[data_source_name]
Driver=driver_path
Description=data_source_description
Database=database_name
LogonID=user_id
pwd=user_password
Server=database_server
CLIENT_LOCALE=application_locale
DB_LOCALE=database_locale
TRANSLATIONDLL=translation_path
CURSORBEHAVIOR=cursor_behavior
DefaultUDTFetchType=default_UDT_Fetch_type
ENABLESCROLLABLECURSORS=enable _scroll cursors
ENABLEINSERTCURSORS=enable_insert_cursors
OPTIMIZEAUTOCOMMIT=optimize_auto_commit
NEEDODBCTYPESONLY=need_odbc_types_only
OPTOFC=open_fetch_close_optimization
REPORTKEYSETCURSORS=report_keyset_cursors
FETCHBUFFERSIZE=fetchbuffer _size
DESCRIBEDECIMALFLOATPOINT=describe decimal as float
USESERVERDBLOCALE=use_server_dblocale
DONOTUSELVARCHAR=do_not_use_Llvarchar
REPORTCHARCOLASWIDECHARCOL=char_col_as_widechar_col
[oDBC]

UNICODE=unicode_type
LENGTHINCHARFORDIAGRECW=bufferlength_as_number_of characters

The following table describes the keywords that are in the data-source specification
section and the order that they appear in each section.

Keywords Description Status
data_source_name Data source specified in the Data Sources section Required
Driver Path for the driver Required

Set this value to the complete path name for the driver
library. For more information about the library directory
and file names, see the release notes.

Description Description of the DSN Optional

Configured for a single user or for system users.

Database Database to which the DSN connects by default Required
LogonID User identification or account name for access to the DSN | Optional
pwd Password for access to the DSN Optional
Server IBM Informix database server on which database_name is in | Required
CLIENT_LOCALE (GLS only) Client locale. Default value: en_us.8859-1 Optional
DB_LOCALE (GLS only) Database locale. Default value: en_us.8859-1 Optional
TRANSLATIONDLL (GLS only) DLL that performs code-set conversion; default value: Optional

$INFORMIXDIR/1ib/esql/ig04a304.xx where xx represents a
platform-specific file extension

2-4 IBM Informix ODBC Driver Programmer's Manual

Keywords

Description

Status

CURSORBEHAVIOR

Flag for cursor behavior when a commit or rollback
transaction is called.

Possible values are:
* O=close cursor

° 1=preserve cursor

Default value: 0

Optional

DefaultUDTFetchType

Default UDT fetch type.
Default value: SQL_C_BINARY

Possible values are:
* SQL_C_BINARY
* SQL_C_CHAR

Optional

ENABLESCROLLABLECURSORS

If this option is activated, the IBM Informix ODBC Driver
supports only scrollable, static cursors.

Available only as a connection option:
SQL_INFX_ATTR_ENABLE_SCROLL_CRUSORS

or as a connection attribute string:

EnableScrollableCursors

Default value is: 0 (disabled)

Optional

ENABLEINSERTCURSORS

Reduces the number of network messages sent to and from
the server by buffering the inserted rows used with arrays
of parameters and insert statements. This option improves
the performance of bulk insert operations.

Available as both a connection and statement option:
SQL_INFX_ATTR_ENABLE_INSERT CURSORS

or as a connection attribute string:

EnableInsertCursors

Default value is: 0

Optional

OPTIMIZEAUTOCOMMIT

Defers automatic commit operations while cursors remain
open. This option can reduce database communication
when the application is using non-ANSI logging databases.

Available as a connection option:
SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT

or as a connection attribute string:

OptimizeAutoCommit

Default value is: 1 (enabled)

Optional

Chapter 2. Configure data sources

2-5

Keywords

Description

Status

OPTOFC

Causes the driver to buffer the open, fetch, and close
cursor messages to the server. This option eliminates one or
more message cycles when you use SQLPrepare,
SQLExecute, and SQLFetch statements to fetch data with a
cursor.

Only available as a connection option:
SQL_INFX_ATTR_OPTOFC

or as a connection attribute string:
OPTOFC

Default is: 0 (disabled)

Optional

REPORTKEYSETCURSORS

Causes the driver to report (through SQLGetInfo) that is
supports forward-only, static, and keyset-driver cursors
even though the driver only supports forward-only and
static cursors. This option is used to enable dynaset-type
functions, such as Microsoft Visual Basic, which require
drivers that support keyset-driven cursors.

Also available as connection option:
SQL_INFX_ATTR REPORT KEYSET CURSORS

or as a connection attribute string:

ReportKeysetCursors

Default is: 0 (disabled)

Optional

FETCHBUFFERSIZE

Size of a fetch buffer in bytes.

Available as connection attribute string:
FETCHBUFFERSIZE

The maximum size of the fetch buffer is 2 GB.

Default is: 32767

Optional

DESCRIBEDECIMALFLOATPOINT

Describes all floating-point decimal columns as:
* Float(SQL_REAL) or
* Float(SQL_DOUBLE)

A floating-point decimal column is a column that was
created without a scale, for example DECIMAL(12). Some
prepackaged applications such as Visual Basic cannot
properly format Decimal columns that do not have a fixed
scale. To use these applications, you must enable this
option or redefine the column with a fixed scale.

Enabling this option has the disadvantage that
SQL_DECIMAL is an exact numeric data type while
SQL_REAL and SQL_DOUBLE are approximate numeric
data types. SQL_DECIMAL with a precision of 8 or less are
described as SQL_REAL. With a precision greater than 8, it
is described as SQL_DOUBLE.

Available as connection attribute string:
DESCRIBEDECIMALFLOATPOINT

Default is: 0 (disabled)

Optional

2-6 IBM Informix ODBC Driver Programmer's Manual

Keywords

Description

Status

USESERVERDBLOCALE

Users server database locale.

Available as a connection attribute string:
USERSERVERDBLOCALE

Default is: 0 (disabled)

Optional

DONOTUSELVARCHAR

If enabled, the SQLGetTypelnfo does not report
LVARCHAR as a supported type (DATA_TYPE) of
SQL_VARCHAR. Some applications use LVARCHAR
instead of VARCHAR, even in columns that are less than
256 bytes. The minimum number of bytes transmitted for
LVARCHAR is higher than VARCHAR. Many LVARCHAR
columns can result in the rowset size exceeding the
maximum.

Important: Enable this option only if your
SQL_VARCHAR columns are less than 256 bytes.

Available as a connection attribute string:
DONOTUSELVARCHAR

Default is: 0 (disabled)

Optional

REPORTCHARCOLASWIDECHARCOL

Causes SQLDescribeCol to report character columns as
wide character columns as follows:

¢ SQL_CHAR is reported as SQL_WCHAR
* SQL_VARCHAR is reported as SQL_WVARCHAR

* SQL_LONGVARCHAR is reported as
SQL_WLONGVARCHAR

Available as a connection attribute string:
REPORTCHARCOLASWIDECHARCOL

Default is: 0 (disabled)

Optional

UNICODE

Indicates the type of Unicode used by an application. This

attribute applies to UNIX applications only and is set in

the ODBC section of the odbc.ini file. The following

considerations apply:

¢ Applications on UNIX not linking to Data Direct ODBC
driver manager should set this to UCS-4

* Applications on IBM AIX® with version lower than 5L
should set this attribute to UCS-2.

* Applications using Data Direct driver manager do not
need to set this attribute.

Default is: UTF-8

For more information about using Unicode in an ODBC
application, see [Chapter 9, “Unicode,” on page 9-1]

Required

LENGTHINCHARFORDIAGRECW

If enabled, the SQLGetDiagRecW API treats the
BufferLength parameter as the number of characters.

Default is: FALSE (disabled)

For more information about using the BufferLength
parameter sed”BufferLength in character for|
[SQLGetDiagRecW” on page 1-22.|

Chapter 2. Configure data sources

2-7

2-8

The following example shows the configuration for a DSN called EmpInfo:

[EmpInfo]

Driver=/informix/1ib/c1i/ic1is09b.so
Description=Demo data source

Database=odbc_demo

LogonID=admin

pwd=tiger

Server=ifmx_91

CLIENT_LOCALE=en_us.8859-1

DB_LOCALE=en_us.8859-1
TRANSLATIONDLL=/opt/informix/1ib/esql/igo4a304.so

The following example shows the configuration for a DSN called Informix 9:

[Informix9]
Driver=/work/informix/1ib/c1i/ic1is09b.so
Description=Informix 9.x ODBC Driver
LogonID=userl

pwd=tigress4

Database=odbc_demo

ServerName=my_server

If you specify a null LogonID or pwd, the following error occurs:
Insufficient connect information supplied

Tip: You can establish a connection to a DSN with null values for LogonID and pwd
if the local Informix database server is on the same computer where the client is
located. In this case, the current user is considered a trusted user.

A sample data source, with no LogonID and pwd, where the server and client are on
the same computer, might look like the following example:

Driver=/work/informix/1ib/c1i/ic1is09b.so
Description=Informix 9.x ODBC Driver
LogonID=

pwd=tiger

Database=odbc_demo

ServerName=1ifmx_server

Set the isolation level (UNIX only)
Set the isolation level in the odbc.ini file by using the ISOLATIONLEVEL and
SQL_TXN_LAST_COMMITTED keywords.

To specify the isolation level in the odbc.ini file, use the following keyword and
values:

¢ ISOLATIONLEVEL = level
* SQL_TXN_LAST _COMMITTED = last committed

where level is a number from 0 to 5:

* 0 = Automatically considers the default based on database type
* 1 = Read Uncommitted

* 2 = Read Committed (default for non-ANSI databases)

* 3 = Repeatable Read (default for ANSI databases)

* 4 = Serializable

* 5 = Last Committed

If an application calls SQLSetConnectAttr with the SQL_ATTR_TXN_ISOLATION
attribute and sets the value before connecting, and later sets ISOLATIONLEVEL or
ISOLVL in the connection string, the connection string is the final value to be used.

IBM Informix ODBC Driver Programmer's Manual

The SQL_TXN_TRANSACTION isolation level is not supported on UNIX
platforms.

ODBC section
The values in the ODBC section of odbc.ini specify ODBC tracing options.

With tracing, you can find the log of calls made and also the return codes for each
call. These options are set through the Tracing tab of the ODBC Data Source
Administrator dialog box on Windows.

The following table describes the tracing options in the ODBC section:

Table 2-1. Tracing options for ODBC section of odbc. ini

Option Details

TRACE=1 Tracing enabled

TRACE=0 Tracing disabled

TRACEFILE Set to where you want to driver to write the call logs.
TRACEDLL Always idmrs09a.so

The following example illustrates an ODBC section specification format:

[oDBC]

TRACE=1
TRACEFILE=/WORK/0ODBC/0DBC.LOG
TRACEDLL=idmrs09a.so
UNICODE=UCS-4

You must set the TRACEFILE to where you want the driver to write all of the call
logs. Keep in mind that TRACE=1 means that tracing is enabled. TRACE=0
disables tracing options.

Set the $ODBCINI environment variable

Set the $ODBCINI environment variable to provide access to your DSN by system
users

By default, IBM Informix ODBC Driver uses configuration information found in
the $HOME/.odbc.ini file. If you want to provide access to your DSN by system
users, modify the path in the $0DBCINI environment variable to point to another
configuration file that also contains the configuration information found in the
$HOME/.odbc.ini file. Then change the configuration file permissions to allow read
access for system users. Do not change the permissions to the $HOME/.odbc.ini file.

In the following example, the configuration file name is myodbc.ini:
setenv ODBCINI /work/myodbc.ini

The .netrc file

The .netrc file contains data for logging in to a remote database server over the
network.

Create the .netrc file in the home directory where the client computer initiates the

connection. Set the .netrc file permissions for the user to deny read access by the
group and others.

Chapter 2. Configure data sources ~ 2=9

To connect to a remote database server, create entries in the .netrc file for the
LogonID and pwd required to autoconnect to the data source. To establish a
connection to a remote data source, the ODBC driver first reads the LogonID and
pwd from the data source entry in the $HOME/.odbc.ini file. If the $HOME/.odbc. ini
file does not specify a LogonID and pwd, the ODBC driver searches the
$HOME/ . netrc file.

For example, to allow an autologin to the computer called ray by using the login
name 1o0g8in with password mypassword, your .netrc file contains the following
line:

machine ray login 1og8in password mypassword

For information about the .netrc file, see the UNIX man pages.

Configuring a DSN in Windows

In Windows environments, IBM Informix ODBC Driver provides a GUI to
configure DSNs.

To configure a DSN:
¢ Choose a procedure to modify your DSN:
— Choose the User DSN option to restrict access to one user.
— Choose the System DSN option to restrict access to system users.
— Choose the File DSN option to allow access to all users on a network.

* Enter DSN-configuration values to create a DSN, such as the data-source name,
the database server name, and the database locale.

For a description of values, see the following two tables. Values are shown in the
order that they appear in each section. You can also use Microsoft ODBC, Version
2.5 or later, to configure a DSN.

Tip: To find out what DSN you have, click the About tab and read the contents of
the Description text box.

Important: To configure a DSN on the Windows 64-bit platform, you must use the
32-bit ODBC Data Source Administrator:

C:\WINDOWS\SysWOwW64\odbcad32.exe

If you are enabling single-sign on (SSO), additional steps are in "Configuring
ESQL/C and ODBC Dirivers for SSO" in IBM Informix Security Guide.

Table 2-2. Required DSN values

Required values Description

Data Source Name DSN to access

This value is any name that you choose. Data Source Name is like
an envelope that contains all relevant connection information
about the DSN.

Database Name Name of the database to which the DSN connects by default
Host Name Computer on which Server is in
Protocol Protocol used to communicate with Server

After you have added a DSN, the menu will display the available
choices.

2-10 IBM Informix ODBC Driver Programmer's Manual

Table 2-2. Required DSN values (continued)

Required values

Description

Server Name

IBM Informix database server on which Database is in

Service

IBM Informix database server process that runs on your Host
computer

Confirm the service name with your system administrator or
database administrator.

Table 2-3. Optional DSN values

Optional values

Description

Client Locale

Default value: en_us.1252

Database Locale

Default value: en_us.1252

Description Any information, such as version number and service
Options General information, such as password settings
For more information about this value, see the sqlhosts
information in your IBM Informix Administrator’s Guide.
Password Password for access to the DSN

Translation Library

Dynamic linked library (DLL) that performs code-set conversion;
default value: $INFORMIXDIR\bin\ig04n304.d11

User ID

User identification or account name for access to the DSN

Translation Option

Option for a non-IBM Informix translation library

Varying multibyte character length reporting option that specifies
how to set pcbValue when rgbValue (the output area) is not large
enough for the code-set-converted data

Possible values:
¢ (O=Estimate
¢ 1=Exact

Default value: 0

Cursor Behavior

Flag for cursor behavior when a commit or rollback transaction is
called

Possible values are:
e 0O=close cursor

M 1=preserve cursor

Default value: 0

After you complete these steps, you will connect to the DSN.

Related tasks:

[“Reconfiguring an existing DSN” on page 2-15|

Related reference:

[“Global Language Support” on page 1-14|

Configuring a new user DSN or system DSN

Access the ODBC Data Source Administrator dialog box to configure a new user

DSN or system DSN.

Chapter 2. Configure data sources ~ 2=11

2-12

To configure a new user DSN or system DSN:

1.
2.

[page 2-11]

Choose Start > Settings > Control Panel.

Double-click ODBC to open the ODBC Data Source Administrator dialog box.
* To configure a user DSN, go to step EI

* To configure a system DSN, click the System DSN tab and go to step B

All subsequent steps are the same to configure either a user DSN or a system
DSN.

Click Add.
The Create New Data Source dialog box opens.

Double-click IBM INFORMIX ODBC driver on the Create New Data Source
wizard.

The General page for the IBM Informix ODBC Driver Setup dialog box opens.
Enter the values in the General page, as the following example shows:

* Data Source Name: odbc33int

* Description: file DSN 3.81 on turbo

For a description of the values, see [Table 2-2 on page 2-1(and [Table 2-3 on|

Restriction: Do not click OK after you enter the values on this page. If you
click OK before you enter all the values, you get an error message.

Click the Connection tab to display the Connection page and enter the
values, as the following example shows:

* Server Name: o]l_cTipper (or use the menu to choose a server that is on the
sqlhosts registry. If you use the menu, the ODBC application sets the Host
Name, Service, Protocol, and Options values.)

* Host Name: clipper

* Service: turbo

* Protocol: onsoctcp (or use the menu to choose a protocol)

* Options: csm=(SPWDCSM)

* Database Name: odbc_demo (or use the menu to find a database name)
* User ID: myname

* Password: ***x*%*

To save the values you chose and verify that your DSN connects
successfully, click Apply & Test Connection. An ODBC Message dialog box
opens. The box tells you if your connection was successful or, if it was not,
tells you which Connection-tab value is incorrect.

Click the Environment tab to display the Environment page and enter the
values, as the following example shows:

* Client Locale: en_US.CP1252
* Database Locale: en_US.CP1252

e Use Server Database Locale: if check box is checked, database locale value
is set to the server locale. If the check box is cleared, the database locale is
set to the default locale, en_US.CP1252.

* Translation Library: INFORMIXDIR\1ib\esql\ig04n304.d11
¢ Translation Option: 0

* Cursor Behavior: 0 - Close

* VMB Character: 0 - Estimate

IBM Informix ODBC Driver Programmer's Manual

e Fetch Buffer Size: 4096

e Isolation Level: 0 - Default will be considered, Read Committed
(non-ANST databases) or Repeatable Read (ANSI databases)

8. Click the Advanced tab to display the Advanced page and click all applicable

boxes.

Option

Description

Auto commit optimization

This option defers automatic commit
operations while cursors remain open and
can reduce database communication when
the application is using non-ANSI logging
databases. This option is available only as a
connection option:

SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT

or as a connection attribute string:
"OptimizeAutoCommit"

The default is: 1 (enabled).

Open-Fetch-Close optimization

This option causes the driver to buffer the
open, fetch, and close cursor messages to the
server. In addition, this option eliminates one
or more message round trips when you use
SQLPrepare, SQLExecute, and SQLFetch
statements to fetch data with a cursor. This
option is available only as a connection
option:

SQL_INFX_ATTR_OPTOFC

or as a connection attribute string: "OPTOFC"

The default is: 0 (disabled).

Insert cursors

This option reduces the number of network
messages sent to and from the server by
buffering the inserted rows that are used
with arrays of parameters and insert
statements. This option can greatly improve
the performance of bulk insert operations,
and is available as both connection and
statement options:

SQL_INFX_ATTR_ENABLE_INSERT CURSORS.

or as a connection attribute string:
"EnablelnsertCursors"

The default is: 0 (disabled).

Scrollable cursor

If this option is activated, IBM Informix
ODBC Diriver, Version 2.90 and later,
supports only scrollable, static cursors. This
option is available only as a connection
option:
SQL_INFX_ATTR_ENABLE_SCROLL_CURSORS

or as a connection attribute string:
"EnableScrollableCursors"

The default is: 0 (disabled).

Chapter 2. Configure data sources ~ 2=13

2-14

Option

Description

Report KeySet cursors

This option causes the driver to report
(through SQLGetInfo) that it supports
forward-only, static, and keyset-driven cursor
types, although the driver only supports
forward-only and static cursors. When you
set this option, the driver enables
dynaset-type functions, such as functions for
Microsoft Visual Basic. These functions
require drivers that support keyset-driven
cursor types. This option is also available as
a connection attribute:

SQL_INFX_ATTR_REPORT_KEYSET CURSORS

or as a connection attribute string:
"ReportKeysetCursors"

The default is: 0 (disabled).

Report standard ODBC types only

If you activate this feature, the driver causes
SQLGetTypelnfo to map all occurrences of
user-defined types (UDTs) as follows:

Blob SQL_LONGVARBINARY
Clob SQL_LONGVARBINARY

Multiset
SQL_C_CHAR/SQL_C_BINARY

Set SQL_C_CHAR/SQL_C_BINARY
List SQL_C_CHAR/SQL_C_BINARY
Row SQL_C_CHAR/SQL_C_BINARY

The driver maps multiset, set, row, and list
data types to SQL_C_CHAR or

SQL_C_BINARY, which is the default UDT
FetchType to SQL_C_CHAR features.

The default is: 0 (disabled).

Describe decimal floating point as

SQL_REAL / SQL_DOUBLE

This option describes all floating-point
decimal columns as Float (SQL_REAL or
SQL_DOUBLE). A floating-point decimal
column is a column that was created without
a scale, ex: DECIMAL(12). Some prepackaged
applications such as Visual Basic cannot
properly format Decimal columns that do not
have a fixed scale. To use these applications
you must enable this option or redefine the
column with a fixed scale.

There is a disadvantage to enabling this
option however, SQL_DECIMAL is an exact
numeric data type while SQL_REAL and
SQL_DOUBLE are approximate numeric data
types. A SQL_DECIMAL with a precision of
8 or less aree described as SQL_REAL, with a
precision greater than 8 it is SQL_DOUBLE.

The default is: 0 (disabled).

IBM Informix ODBC Driver Programmer's Manual

Option Description

Do not use LVARCHAR Causes SQLGetTypelnfo to not report
LVARCHAR as a supported type of
DATA_TYPE of SQL_VARCHAR.

Some applications such as MS Access97 use
LVARCHAR instead of VARCHAR even for
columns that are less than 256 bytes long.
The minimum number of bytes transmitted
for LVARCHAR is higher than for
VARCHAR and many LVARCHAR columns
can result in the rowset size exceeding the
maximum. Enable this option only if your
SQL_VARCHAR columns are less than 256
bytes in length.

The default is: 0 (disabled)

Report CHAR columns as wide CHAR Causes SQLDescribeCol to report char
columns columns as wide char columns. SQL_CHAR
column is reported as SQL_WCHAR,
SQL_VARCHAR as SQL_WVARCHAR and
SQL_LONGVARCHAR column as
SQL_WLONGVARCHAR

The default is: 0 (disabled)

Length in Chars for SQLGetDiagRecW If enabled, the SQLGetDiagRecW API treats
the BufferLength Parameter as the number of
characters.

The default is: FALSE (disabled)

9. To check your connection to the database server, click Test Connection.

10. Click OK to return to the ODBC Data Source Administrator dialog box and to
update the DSN information in the appropriate files.

When your application connects to this DSN, the values that you entered are the
default entries for the DSN connection.

Removing a DSN

Access the ODBC Data Source Administrator dialog box to remove a DSN.

To remove a DSN:

1. Follow steps|l on page 2-12land [2 on page 2—12| from |”Conﬁguring a new useti
[DSN or system DSN” on page 2-11

2. Click Remove in the ODBC Data Source Administrator dialog box.
The 32-bit ODBC Administrator dialog box opens.

3. Click Yes to remove the DSN and return to the ODBC Data Source
Administrator dialog box.

Reconfiguring an existing DSN

Access the ODBC Data Source Administrator dialog box to reconfigure an exiting
user DSN.

To reconfigure an existing DSN:

Chapter 2. Configure data sources 2-15

1. Follow steps|l on page 2-12|and [2 on page 2-12| from [“Configuring a new user|
[DSN or system DSN” on page 2-11|

2. Click Configure to display the IBM Informix ODBC Driver Setup dialog box.

Enter the new configuration values in the corresponding text boxes and click
OK to return to the ODBC Data Source Administrator dialog box.

After you complete these steps, you will connect to the DSN.
Related tasks:
[“Configuring a DSN in Windows” on page 2-10|

Configuring a file DSN

Access the ODBC Data Source Administrator dialog box to configure a file DSN.

To configure a file DSN:
1. Choose Start > Settings > Control Panel.
2. Double-click the ODBC icon to open the ODBC Data Source Administrator
dialog box.
3. Click the File DSN tab to display the File DSN page.

Choose the File DSN option to allow access to the DSN to all users on a
network. For a description of values, see [Table 2-2 on page 2-10| and [Table 2-3|

4. Click Add.
The Create New Data Source wizard opens.

5. Select IBM INFORMIX ODBC Driver from the driver list and click Next to
display the Create New Data Source Setup wizard, which contains a file data
source text box.

6. If you know the name of the date source file, type the name into the text box,
click NeETt to display the completed Create New Data Source wizard, and go
to step

If you do not know the name of the file, click Browse to display the Save As
dialog box and enter the values, as the following example shows:

* File Name: File DSN
* Save as type: ODBC File Data Sources
Select a file name or type a file name in the File_name text box.

7. Click Save to display the Create New Data Source wizard, which displays
information about the data source name.

8. Click Next to display the completed Create New Data Source wizard.

9. Click Finish to display the IBM Informix Connect dialog box. For a
description of the values, see [Table 2-2 on page 2-10| and [Table 2-3 on page
2-11} For Advanced tab values, see [‘Configuring a new user DSN or syste
IDSN” on page 2-11.

10. Click OK to save the values and display the ODBC Data Source Administrator
dialog box.

The name of the data file that you chose or typed in step Ia is displayed in the
text box.

After you add or change DSN-configuration information, the driver updates the
appropriate Windows registry to reflect the specified values. To be compatible with
other IBM Informix connectivity products, the driver stores the DSN-configuration
information in the Windows registry.

2-16 IBM Informix ODBC Driver Programmer's Manual

Creating logs of calls to the drivers

Access the Tracing page to create logs of calls to the drivers.

To create logs of calls to the drivers:

1.
2.
3.

Click the Tracing tab to display the Tracing page.
Select Start Tracing Now to turn on tracing.

To enter an existing log file, click Browse to display the Select ODBC Log File
dialog box.

Enter the file name in the File_name text box and click Save to return to the
Tracing page.

To select a custom trace dynamic link library (DLL), click Select DLL to display
the Select a custom trace dll dialog box, and enter the values, as the following
example shows:

* File name: test2_dsn

* Files of type: Dynamic 1ink Tibraries(x.d11)

Choose a file or type a file name in the File_name text box.
Click Open to display the Tracing page.

Click OK to save the changes.

Creating and configuring a DSN on Mac OS X

The Mac OS X environment has a GUI interface for creating and configuring an
IBM Informix ODBC data source name (DSN). This utility is the ODBC
Administrator.

To create and configure an Informix DSN on Mac OS X:

1.

Open the ODBC Administrator by choosing Applications > Utilities > ODBC
Administrator.

2. Click the System DSN tab.

3. Click Add.

4. Select IBM Informix ODBC Driver, and click OK.

5. Enter a name in the Data Source Name field.

6. Optional: Enter information in the Description field if you want to include it.

7. Click Add.

8. Click Key, which appears directly under the Keyword column heading. A
single click here enables you to edit the field in this row.

9. Type UID in the field so that it overwrites Key.

10. Click Value on the right side of the row, which appears directly under the
Value column heading so that you can edit the field.

11. Type in the name of the login user that is used to connect to the database.

12. Repeat steps EI and El to create three more row entries so that all the
Keyword-Value pairs correspond with the entries in the following table. Enter
the real information of your system in place of the variables in the Value
column of the following table.

Keyword Value

UID your_login_user

PWD password_of _login_user

Database your_database

Chapter 2. Configure data sources 2-17

Keyword Value

ServerName your_server_name

13. Click OK.

14. Edit the global sqlhosts file to specify server connectivity information for

Informix ODBC data sources. This file is at /etc/Informix0DBC/sqlhosts. The
following is an example of a line entry in the sqlhosts file:

csm=(SPWDCSM)
The fields in this line define the following connectivity parameters:

odbc_demo onsoctcp clipper turbo

* Column 1 (odbc_demo in the example): server name (this should be identical
to ServerName defined in the DSN)

* Column 2 (onsoctcp as example): connection protocol

e Column 3 (clipper as example): host name (a local computer must end in
.Tocal)

* Column 4 (turbo as example): service name (as defined in etc/services) or
port number

* Column 5 (csm=SPWDCSM as example): optional connection setting, such as an
Informix communications support module

See the IBM Informix Administrator’s Guide for details on how to set up the

sqlhosts file.

Connection string keywords that make a connection

Use connection string keywords to make a connection with or without DSN and

with the DRIVER keywords.

The following table lists the connection string keywords that can be used in

making a connection:

Keyword Short version
CLIENT_LOCALE CLOC
CONNECTDATABASE CONDB
CURSORBEHAVIOR CURB
DATABASE DB
DB_LOCALE DLOC
DESCRIBEDECIMALFLOATPOINT DDFP
DESCRIPTION DESC
DONOTUSELVARCHAR DNL
DRIVER DRIVER
DSN DSN
ENABLEINSERTCURSORS ICUR
ENABLESCROLLABLECURSORS SCUR
EXCLUSIVE XCL
FETCHBUFFERSIZE FBC
FILEDSN FILEDSN
HOST HOST
NEEDODBCTYPESONLY ODTYP

IBM Informix ODBC Driver Programmer's Manual

Keyword Short version
OPTIMIZEAUTOCOMMIT OAC
OPTIONS OPT
OPTOFC OPTOFC
PWD PWD
REPORTCHARCOLASWIDECHARCOL RCWC
REPORTKEYSETCURSORS RKC
SAVEFILE SAVEFILE
SERVER SRVR
SERVICE SERV
SINGLETHREADED SINGLETH
SKIPPARSING SKIPP
TRANSLATIONDLL TDLL
TRANSLATIONOPTION TOPT

UID UID

DSN migration tool

You can use the DSN migration tool by creating a text file with an .ini extension.

To use the DSN migration tool, dsnmigrate.exe, that accompanies IBM Informix
ODBC Driver, create a text file with the extension .ini; and then type the names
and values of the DSNs that you want to migrate or restore. The migration log file
is located in %INFORMIXDIR%\release\dsnMigr.log. The restore information is
located in %INFORMIXDIR%\release\dsnMigr.sav.

The following restrictions apply:

e A user DSN can be used or migrated only by the user who created that DSN.
* A system DSN can be used by all users of the system.

* A file DSN requires write privileges to the file.

Setting up and using the DSN migration tool

Set up and use the DSN migration tool with a text editor to create a text file.

To set up and use the DSN migration tool:
1. Open a text editor and create a text file with an .ini extension.

2. Create a section in the file for each type of DSN (user, system, and file) to be
modified.

3. On a separate line in each section, specify your DSNs by using the following
format:

DSNname=drivername

drivername must be IBM INFORMIX ODBC DRIVER
4. To run dsnmigrate.exe, use the following command:
dsnMigrate -f filename

where filename is the name of the text file created in step

Chapter 2. Configure data sources ~ 2=19

2-20

DSN migration tool examples

The DSN migration tool examples illustrate various DSNs migrated to the IBM
Informix ODBC Driver.

In the following example a DSN named Testl migrates to IBM INFORMIX ODBC
DRIVER, and a DSN named Test2 migrates to IBM INFORMIX ODBC DRIVER. Both
DSNs are restricted to the user who created them.

[User DSN]

Test1=IBM INFORMIX ODBC DRIVER
Test2=IBM INFORMIX ODBC DRIVER

In the second example a DSN named Test3 migrates to IBM INFORMIX ODBC DRIVER,
and a DSN named Test4 migrates to its original DSN. Both DSNs can be used by
all users of the system. The user who migrates these system DSNs must have
permission to modify ODBC system DSN registry entries.

[System DSN]

Test3=IBM INFORMIX ODBC DRIVER
Test4=restore

In the third example, two file DSNs named test5.dsn and test6.dsn migrate to IBM
INFORMIX ODBC DRIVER.
[File DSN]

C:\Program Files\ODBC\Data Sources\test5.dsn=IBM INFORMIX ODBC DRIVER
C:\Program Files\ODBC\Data Sources\test6.dsn=IIBM INFORMIX ODBC DRIVER

IBM Informix ODBC Driver Programmer's Manual

Chapter 3. Data types

These topics contain information about the data types that are supported by IBM
Informix ODBC Diriver.

Related concepts:

“Header files” on page 1-7|

“Data types” on page 1-8

Chapter 4, “Smart large objects,” on page 4-1|

Chapter 5, “Rows and collections,” on page 5-1|

Data types
IBM Informix ODBC Driver supports five different data types.

The following table describes the data types that IBM Informix ODBC Driver

supports.

Data type Description Example

Informix SQL data type Data types that your Informix database | CHAR(n)
server uses

Informix ODBC Driver SQL Data types that correspond to the SQL_CHAR

data type Informix SQL data types

Standard C data type Data types that your C compiler defines | unsigned char

Informix ODBC Driver Typedefs that correspond to the UCHAR

typedef standard C data types

Informix ODBC Driver C data | Data types that correspond to the SQL_C_CHAR

type standard C data types

SQL data types

IBM Informix database server uses SQL data types.

For detailed information about the IBM Informix SQL data types, see IBM Informix
Guide to SQL: Reference, IBM Informix Guide to SQL: Tutorial, and IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

Related reference:

[“Support for GLS data types” on page 1-2

Standard SQL data types

Standard IBM Informix SQL data types have corresponding IBM Informix ODBC
Driver data types.

The following table lists the standard IBM Informix SQL data types and their
corresponding IBM Informix ODBC Driver data types.

© Copyright IBM Corp. 1996, 2013 3-1

Informix SQL data type

Informix ODBC driver SQL data type
(fSqlType)

Description

BIGINT

SQL_INEX_BIGINT

Signed numeric value with precision
10, scale 0, and range n

-2%-1)=n=2%-1)

BIGSERIAL SQL_INFX_BIGINT Sequential positive integers to 2% — 1)
BOOLEAN SQL_BIT ‘t' or 'f

BYTE SQL_LONGVARBINARY Binary data of variable length
CHAR(n), CHARACTER(n) SQL_CHAR Character string of fixed length n

(1=n =32,767)

CHARACTER VARYING(m, 7)

SQL_VARCHAR

Character string of variable length
with maximum length m (1 = m = 255)
and minimum amount of reserved
spacer (0 =r <m)

DATE

SQL_DATE

Calendar date

DATETIME

SQL_TIMESTAMP

Calendar date and time of day

DEC(p,s), DECIMAL(p, s)

SQL_DECIMAL

Signed numeric value with precision
p and scale s:

(1=p=32,0=s=p)

Important:

* If you use a value for scale > 14,
inconsistencies in rounding are
possible.

* When a DECIMAL column contains
floating-point data, Informix ODBC
reports the column's scale as 255.
This is to differentiate from
fixed-point data, which has a
maximum scale of 32. The
DataDirect ODBC Driver always
returns a scale of zero.

DOUBLE PRECISION

SQL_DOUBLE

Signed numeric value with the same
characteristics as the standard C
double data type

FLOAT

SQL_DOUBLE

Signed numeric value with the same
characteristics as the standard C
double data type

IDSSECURITYLABEL

Built-in DISTINCT OF
VARCHAR(128) data type; use is
restricted to label-based access control

INT, INTEGER

SQL_INTEGER

Signed numeric value with precision
10, scale 0, and range n

(-2,147,483,647 = n = 2,147,483,647)

INTS8 SQL_BIGINT Signed numeric value with precision
10, scale 0, and range n
-@%-1)=n=2%-1)

INTERVAL MONTH(p) SQL_INTERVAL_MONTH Number of months between two

dates; p is the interval leading
precision.

3-2 IBM Informix ODBC Driver Programmer's Manual

Informix SQL data type

Informix ODBC driver SQL data type
(fSqlType)

Description

INTERVAL YEAR(p)

SQL_INTERVAL_YEAR

Number of years and months
between two dates; p is the interval
leading precision.

INTERVAL YEAR(p) TO MONTH

SQL_INTERVAL_YEAR_TO_MONTH

Number of years and months
between two dates; p is the interval
leading precision.

INTERVAL DAY(p)

SQL_INTERVAL_DAY

Number of days between two dates; p
is the interval leading precision.

INTERVAL HOUR(p)

SQL_INTERVAL_HOUR

Number of hours between two date
times; p is the interval leading
precision.

INTERVAL MINUTE(p)

SQL_INTERVAL_MINUTE

Number of minutes between two
date/times; p is the interval leading
precision.

INTERVAL SECOND(p,q)

SQL_INTERVAL_SECOND

Number of seconds between two
date/times; p is the interval leading
precision and g is the interval seconds
precision.

INTERVAL DAY(p) TO HOUR

SQL_INTERVAL_DAY_TO_HOUR

Number of days/hours between two
date/times; p is the interval leading
precision.

INTERVAL DAY (p) TO MINUTE

SQL_INTERVAL_DAY_TO_MINUTE

Number of days/hours/minutes
between two date/times; p is the
interval leading precision.

INTERVAL DAY(p) TO
SECOND(g)

SQL_INTERVAL_DAY_TO_SECOND

Number of days/hours/minutes/
seconds between two date/times; p is
the interval leading precision and g is
the interval seconds precision.

INTERVAL HOUR (p) TO
MINUTE

SQL_INTERVAL_HOUR_TO_MINUTE

Number of hours/minutes between
two date/times; p is the interval
leading precision.

INTERVAL HOUR(p) TO
SECOND(g)

SQL_INTERVAL_HOUR_TO_SECOND

Number of hours/minutes/seconds
between two date/times; p is the
interval leading precision and g is the
interval seconds precision.

INTERVAL MINUTE(p) TO
SECOND(g)

SQL_INTERVAL_MINUTE_TO_SECOND

Number of minutes/seconds between
two date/times; p is the interval
leading precision and g is the interval
seconds precision.

LVARCHAR

SQL_VARCHAR

Character string of variable length
with length [

(255 = I = 32,000)When connecting to
IBM Informix 10.0 servers with the
ODBC driver, the SQLDescribeCol,
SQLColAttributes &
SQLDescribeParam APIs report the
length mentioned during creation of
the LVARCHAR column. If no length
was mentioned during creation,
length defaults to 2048 bytes.

Chapter 3. Data types 3-3

Informix ODBC driver SQL data type

Informix SQL data type (fSqlType) Description

MONEY(p, s) SQL_DECIMAL Signed numeric value with precision
p and scale s
(1=p=32,0=s=p)

NUMERIC SQL_NUMERIC Signed, exact, numeric value with
precision p and scale s
(I1=p=150=s=p)

REAL SQL_REAL Signed numeric value with the same
characteristics as the standard C float
data type

SERIAL SQL_INTEGER Sequential INTEGER

SERIALS SQL_BIGINT Sequential INT8

SMALLFLOAT SQL_REAL Signed numeric value with the same
characteristics as the standard C float
data type

SMALLINT SQL_SMALLINT Signed numeric value with precision
5, scale 0, and range n
(-32,767 = n = 32,767)

TEXT SQL_LONGVARCHAR Character string of variable length

VARCHAR(m,) SQL_VARCHAR Character string of variable length

with maximum length m (1 = m = 255)
and minimum amount of reserved
spacer (0 =r <m)

Visual Basic client-side cursors

When you use Visual Basic client-side cursors to perform rowset update related
operations with using CHAR or LVARCHAR columns that have lengths greater
than or equal to 16,385, the IBM Informix ODBC Driver might return an error.

Visual Basic sends the SQL data type to SQLBindParameter as
SQL_LONGVARCHAR instead of SQL_VARCHAR when the length is greater than
or equal to 16,385. IBM Informix ODBC Driver maps SQL_LONGVARCHAR to
TEXT data type. Therefore, applications might see the error:

[Informix] [Informix ODBC Driver]No cast from text to lvarchar

or
[Informix] [Informix ODBC Driver]Illegal attempt to use Text/Byte host variable.

Additional SQL data types for GLS

Additional SQL data types for GLS have corresponding IBM Informix ODBC
Driver data types.

The following table lists the additional IBM Informix SQL data types for GLS and
their corresponding IBM Informix ODBC Driver data types. Informix ODBC driver
does not provide full GLS support. For more information about GLS, see the IBM
Informix GLS User's Guide.

3-4 IBM Informix ODBC Driver Programmer's Manual

Informix SQL data type

Informix ODBC driver
SQL data type (fSqlType)

Description

NCHAR()

SQL_CHAR

Character string of fixed length n (1 =
n = 32,767). Collation depends on
locale.

NVARCHAR(m, 1)

SQL_VARCHAR

Character string of variable length
with maximum length m (1 =m <
255) and minimum amount of
reserved space r (0 = r < m). Collation
depends on locale.

Additional SQL data types for Informix

Additional IBM Informix SQL data types for Informix have corresponding IBM
Informix ODBC Driver data types.

The following table lists the additional IBM Informix SQL data types for Informix
and their corresponding IBM Informix ODBC Driver data types. To use the
Informix ODBC driver SQL data types for Informix, include infxcli.h.

Informix SQL data type

Informix ODBC driver SQL data type
(fSqlType)

Description

Collection (LIST, MULTISET,
SET)

Any Informix ODBC driver SQL data
type

Composite value that consists of one or
more elements, where each element has
the same data type.

DISTINCT

Any Informix ODBC driver SQL data
type

UDT that is stored the same way as its
source data type but has different casts
and functions

OPAQUE (fixed)

SQL_INFX_UDT_FIXED

Fixed-length UDT with an internal
structure that has the same size for all
possible values

OPAQUE (varying)

SQL_INFX_UDT_VARYING

Variable-length UDT with an internal
structure that can have a different size for
each different value

Row (Named row, unnamed
TowW)

Any Informix ODBC Driver SQL data
type

Composite value that consists of one or
more elements, where each element can
have a different data type.

Smart large object (BLOB or
CLOB)

SQL_IFMX_UDT_BLOB

SQL_IFMX_UDT_CLOB

Large object that is stored in an sbspace
on disk and is recoverable.

Related concepts:

Chapter 4, “Smart large objects,” on page 4-1|

Chapter 5, “Rows and collections,” on page 5-1|

Precision, scale, length, and display size

The functions that get and set precision, scale, length, and display size for SQL
values have size limitations for their input arguments.

Therefore, these values are limited to the size of an SDWORD that has a maximum
value of 2,147,483,647. The following table describes these values.

Chapter 3. Data types 3-5

Description for a non-numeric

Value Description for a numeric data type |data type
Precision Maximum number of digits. Either the maximum length or the
specified length.
Scale Maximum number of digits after the |Not applicable.
decimal point. For floating point
values, the scale is undefined because
the number of digits to the right of
the decimal point is not fixed.
Length Maximum number of bytes that a Maximum number of bytes that a

function returns when a value is
transferred to its default C data
type. The length does not include
the NULL termination byte.

function returns when a value is
transferred to its default C data type.

Display size Maximum number of bytes needed

to display data in character form.

Maximum number of bytes
needed to display data in
character form.

Standard SQL data types
View the values for the precision, scale, length, and display size for standard IBM
Informix ODBC Driver SQL data types.

The following table describes the precision, scale, length, and display size for the
standard IBM Informix ODBC Driver SQL data types.

Informix ODBC driver sql
data type (£SqlType) Description
SQL_BIGINT Precision
19. SQLBindParameter ignores the value of cbColDef for this data type.
Scale 0. SQLBindParameter ignores the value of ibScale for this data type.
Length 8 bytes
Display size
20 digits. One digit is for the sign.
SQL_BIT ..
Precision
1. SQLBindParameter ignores the value of cbColDef for this data type.
Scale 0. SQLBindParameter ignores the value of ibScale for this data type.
Length 1 byte
Display size
1 digit
SQL_CHAR ..
Precision
Same as the length
Scale Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length The specified length. For example, the length of CHAR(10) is 10 bytes.
Display size
Same as the length.

3-6 IBM Informix ODBC Driver Programmer's Manual

Informix ODBC driver sql
data type (fSqlType)

Description

SQL_DATE

Precision
10. SQLBindParameter ignores the value of cbColDef for this data type.

Scale Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length 6 bytes

Display size
10 digits in the format yyyy-mm-dd.

SQL_DECIMAL

Precision
The specified precision. For example, the precision of DECIMAL (12, 3) is
12.

Scale The specified scale. For example, the scale of DECIMAL(12, 3) is 3.

Length The specified precision plus 2. For example, the length of DECIMAL(12, 3)
is 14 bytes. The two additional bytes are used for the sign and the decimal
points because functions return this data type as a character string.

Display size
Same as the length.

SQL_DOUBLE

Precision
15. SQLBindParameter ignores the value of chColDef for this data type.

Scale Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.

Length 8 bytes

Display size

22 digits. The digits are for a sign, 15 numeric characters, a decimal point,
the letter E, another sign, and 2 more numeric characters.

SQL_INTEGER

Precision
10. SQLBindParameter ignores the value of chColDef for this data type.

Scale 0. SQLBindParameter ignores the value of ibScale for this data type.
Length 4 bytes

Display size
11 digits. One digit is for the sign.

SQL_LONGVARBINARY

Precision
Same as the length.

Scale Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.

Length The maximum length. If a function cannot determine the maximum length,
it returns SQL_NO_TOTAL.

Display size
The maximum length times 2. If a function cannot determine the maximum
length, it returns SQL_NO_TOTAL.

Chapter 3. Data types ~ 3-7

Informix ODBC driver sql
data type (fSqlType)

Description

SQL_LONGVARCHAR

Precision
Same as the length.

Scale Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.

Length The maximum length. If a function cannot determine the maximum length,
it returns SQL_NO_TOTAL.

Display size
Same as the length.

SQL_REAL

Precision
7. SQLBindParameter ignores the value of cbColDef for this data type.

Scale Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.

Length 4 bytes

Display size

13 digits. The digits are for a sign, 7 numeric characters, a decimal point,
the letter E, another sign, and 2 more numeric characters.

SQL_SMALLINT

Precision
5. SQLBindParameter ignores the value of cbColDef for this data type.

Scale 0. SQLBindParameter ignores the value of ibScale for this data type.
Length 2 bytes

Display size
6 digits. One digit is for the sign.

SQL_TIMESTAMP

Precision
8. SQLBindParameter ignores the value of cbColDef for this data type.

Scale The number of digits in the FRACTION field.
Length 16 bytes
Display size

19 or more digits:

* If the scale of the time stamp is 0: 19 digits in the format yyyy-mm-dd
hh:mm:ss.

¢ If the scale of the time stamp exceeds 0: 20 digits plus digits for the
FRACTION field in the format yyyy-mm-dd hh:mm:ss.f...

SQL_VARCHAR

Precision
Same as the length.

Scale Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length The specified length. For example, the length of VARCHAR(10) is 10 bytes.

Display size
Same as the length.

3-8 IBM Informix ODBC Driver Programmer's Manual

Additional SQL data types for Informix
View the values for the precision, scale, length, and display size for additional IBM
Informix ODBC Driver SQL data types.

The following table describes the precision, scale, length, and display size for the
IBM Informix ODBC Driver SQL data types for Informix.

Informix ODBC driver sql data
type (SqlType)

Description

SQL_IFMX_UDT_BLOB

Precision
Variable value. To determine this value, call a function that returns the
precision for a column.

Scale Not applicable. A function that returns the scale for a column returns -1
for this data type.

Length Variable value. To determine this value, call a function that returns the
length for a column.

Display size
Variable value. To determine this value, call a function that returns the
display size for a column.

SQL_IFMX_UDT_CLOB

Precision
Variable value. To determine this value, call a function that returns the
precision for a column.

Scale Not applicable. A function that returns the scale for a column returns -1
for this data type.

Length Variable value. To determine this value, call a function that returns the
length for a column.

Display size
Variable value. To determine this value, call a function that returns the
display size for a column.

SQL_INFX_UDT_FIXED

Precision
Variable value. To determine this value, call a function that returns the
precision for a column.

Scale Not applicable. A function that returns the scale for a column returns -1
for this data type.

Length Variable value. To determine this value, call a function that returns the
length for a column.

Display size
Variable value. To determine this value, call a function that returns the
display size for a column.

SQL_INFX_UDT_VARYING

Precision
Variable value. To determine this value, call a function that returns the
precision for a column.

Scale Not applicable. A function that returns the scale for a column returns -1
for this data type.

Length Variable value. To determine this value, call a function that returns the
length for a column.

Display size
Variable value. To determine this value, call a function that returns the
display size for a column.

Chapter 3. Data types 3-9

C data types

An IBM Informix ODBC Driver application uses C data types to store values that

the application processes.

The following table describes the C data types that IBM Informix ODBC Driver

provides.

Important: String arguments in Informix ODBC driver functions are unsigned.
Therefore, you need to cast a CString object as an unsigned string before you use it

as an argument in an Informix ODBC driver function.

Informix ODBC driver C data

Informix ODBC driver

Value type (fCType) typedef Standard C data type
Binary SQL_C_BINARY UCHAR FAR * unsigned char FAR *
Boolean SQL_C_BIT UCHAR unsigned char
Character SQL_C_CHAR UCHAR FAR * unsigned char FAR *
Wide Character SQL_C_WCHAR WCHAR FAR * wchar_t FAR *
Date SQL_C_DATE DATE_STRUCT struct tagDATE_STRUCT{
SWORD year; UWORD
month; UWORD day; }
Interval SQL_C_INTERVAL_YEAR SQL_INTERVAL_STRUCT C Interval Structure
SQL_C_INTERVAL_MONTH SQL_INTERVAL_STRUCT C Interval Structure
SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT C Interval Structure
SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT C Interval Structure
SQL_C_INTERVAL_MINUTE SQL_INTERVAL_STRUCT C Interval Structure
SQL_C_INTERVAL_SECOND SQL_INTERVAL_STRUCT C Interval Structure
SQL_C_INTERVAL_YEAR SQL_INTERVAL_STRUCT C Interval Structure
_TO_MONTH
SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT C Interval Structure
_TO_HOUR
SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT C Interval Structure
_ TO_MINUTE
SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT C Interval Structure
_ TO_SECOND
SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT C Interval Structure
_TO_MINUTE
SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT C Interval Structure
_TO_SECOND
SQL_C_INTERVAL_MINUTE SQL_INTERVAL_STRUCT C Interval Structure
_TO_SECOND

Numeric SQL_C_DOUBLE SDOUBLE signed double
SQL_C_FLOAT SFLOAT signed float
SQL_C_LONG SDWORD signed long int

3-10 IBM Informix ODBC Driver Programmer's Manual

Value

Informix ODBC driver C data

type (fCType)

Informix ODBC driver
typedef

Standard C data type

SQL_C_NUMERIC

SQL_NUMERIC_STRUCT

struct tag
SQL_NUMERIC_STRUCT {
SQLCHAR precision;
SQLSCHAR scale; SQLCHAR
sign; SQLCHAR val
[SQL_MAX_ NUMERIC_LEN];
}SQL_NUMERIC STRUCT;

SQL_C_SHORT SWORD signed short int
SQL_C_SLONG SDWORD signed long int
SQL_C_SSHORT SWORD signed short int
SQL_C_STINYINT SCHAR signed char
SOL_C_TINYINT SCHAR signed char
SQL_C_ULONG UDWORD unsigned long int
SQL_C_USHORT UWORD unsigned short int
SQL_C_UTINYINT UCHAR unsigned char

Time stamp

SQL_C_TIMESTAMP

TIMESTAMP_STRUCT

struct
tagTIMESTAMP_STRUCT {
SWORD year; UWORD
month; UWORD day;
UWORD hour; UWORD
minute; UWORD
second; UDWORD
fraction; }

C interval structure

Specify the C data type for the SQL interval data type by using a C interval

structure.

The following structures specify the C data type for the SQL interval data type:

typedef struct tagSQL_INTERVAL_STRUCT

SQLINTERVAL interval_type;
SQLSMALLINT interval_sign;
union
{
SQL_YEAR_MONTH_STRUCT year_month;
SQL_DAY_SECOND_STRUCT day_second;
} intval;
}SQLINTERVAL_STRUCT;

typedef enum
{
SQL_IS_YEAR=1,
SQL_IS MONTH=2,
SQL_IS_DAY=3,
SQL_IS_HOUR=4,
SQL_IS_MINUTE=5,
SQL_IS_SECOND=6,
SQL_IS_YEAR_TO_MONTH=7,
SQL_IS_DAY_TO_HOUR=8,
SQL_IS DAY _TO MINUTE=9,
SQL_IS_DAY_TO_SECOND=10,
SQL_IS_HOUR_TO MINUTE=11,
SQL_IS_HOUR_TO_SECOND=12,

Chapter 3. Data types ~ 3-11

SQL_IS_MINUTE_TO SECOND=13,
}SQLINTERVAL;

typedef struct tagSQL_YEAR_MONTH

{

SQLUINTEGER years;
SQLUINTEGER month;
}SQL_YEAR_MOHTH_STRUCT;

typedef struct tagSQL_DAY_SECOND
{
SQLUINTEGER day;
SQLUNINTEGER hour;
SQLUINTEGER minute;
SQLUINTEGER second;
SQLUINTEGER fraction;
}SQL_DAY_SECOND_STRUCT;

Transfer data

Among data sources that use the same DBMS, you can safely transfer data in the
internal form that a DBMS uses.

For a particular piece of data, the SQL data types must be the same in the source
and target data sources. The C data type is SQL_C_BINARY.

When you call SQLFetch, SQLExtendedFetch, or SQLGetData to retrieve this data
from a data source, IBM Informix ODBC Driver retrieves the data and transfers it,
without conversion, to a storage location of type SQL_C_BINARY. When you call
SQLExecute, SQLExecDirect, or SQLPutData to send this data to a target data
source, IBM Informix ODBC Driver retrieves the data from the storage location and
transfers it, without conversion, to the target data source.

The binary representation of INT8, SERIALS, and BIGSERIAL data types is an
array of two unsigned long integers followed by a short integer that indicates the
sign field. The sign field is 1 for a positive value, -1 for a negative value, or 0 for a
null value.

Important: Applications that transfer any data (except binary data) in this manner
are not interoperable among DBMSs.

Report standard ODBC types

3-12

IBM Informix ODBC Driver supports existing applications that support standard
ODBC data types only. Check the DSN option Report Standard ODBC Types to
turn on this behavior.

When an application sets this option, the driver sets the following behavior:

¢ Only Standard ODBC data types are reported for all the driver defined new data
types.

* The data type access method for smart-large-object (LO) data can be accessed as
SQL_LONGVARCHAR and SQL_LONGVARBINARY. In other words,
SQL_LONGVARCHAR and SQL_LONGVARBINARY act like the simple large
objects, byte, and text.

* The defaultUDTfetchtype is set to SQL_C_CHAR.

IBM Informix ODBC Driver Programmer's Manual

However, you can control each of the preceding behaviors individually as a
connection or a statement level option. Use the following connection and statement
level attributes:

* SQL_INFX_ATTR_ODBC_TYPES_ONLY
* SQL_INFX_ATTR_LO_AUTOMATIC
* SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE

Applications can use SQLSetConnectAttr and SQLSetStmtAttr to set and unset
these values. (ODBC 2.x applications can use SQLSetConnectOption and
SQLSetStmtOption equivalently.)

SQL_INFX_ATTR_ODBC_TYPES_ONLY

Applications can set the SQL_INFX_ATTR_ODBC_TYPES_ONLY attribute to value
SQL_TRUE or SQL_FALSE.

This attribute can be set and unset at connection and statement level. All the
statements allocated under the same connection inherit this value. Alternatively
each statement can change this attribute. By default this attribute is set to
SQL_FALSE.

An application can change the value of this attribute by using SQLSetConnectAttr
and SQLSetStmtAttr (SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x).
Applications can retrieve the values set by using SQLGetConnectAttr and
SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

This attribute cannot be set to SQL_TRUE when
SQL_INFX_ATTR_LO_AUTOMATIC is set SQL_FALSE. An error message is
returned that reports the following message:

Attribute cannot be set. LoAutomatic should be ON to set this value

The application should first set the SQL_INFX_ATTR_LO_AUTOMATIC attribute
to SQL_TRUE and then set the attribute SQL_INFX_ATTR_ODBC_TYPES_ONLY to
SQL_TRUE.

SQL_INFX_ATTR_LO_AUTOMATIC

Applications can set the SQL_INFX_ATTR_LO_AUTOMATIC attribute to value
SQL_TRUE or SQL_FALSE.

This attribute can be set and unset at connection and statement level. All the
statements allocated under the same connection inherit this value. Alternatively
each statement can change this attribute. By default this attribute is set to
SQL_FALSE.

An application can change the value of this attribute by using SQLSetConnectAttr
and SQLSetStmtAttr (SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x).
Applications can retrieve the values set by using SQLGetConnectAttr and
SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

The attribute SQL_INFX_ATTR_LO_AUTOMATIC cannot be set to SQL_FALSE
when SQL_INFX_ATTR_ODBC_TYPES_ONLY is set to SQL_TRUE. An error
message is returned that reports the following message:

Attribute cannot be set. ODBC types only should be OFF to set this value

Chapter 3. Data types 3-13

3-14

Applications should first set the attribute SQL_INFX_ODBC_TYPES_ONLY to
SQL_FALSE and then set the attribute SQL_INFX_ATTR_LO_AUTOMATIC to
SQL_FALSE.

SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE

Applications can set the SQL_INFX_ATTR_DEFAULT _UDT_FETCH_TYPE attribute
to SQL_C_CHAR or SQL_C_BINARY to set the default fetch type for UDTs.

The default value of this attribute is set depending on the following conditions:

* If the DSN setting for Report Standard ODBC Types is ON, the value of
DefaultUDTFetchType is set to SQL_C_CHAR.

* If the DSN setting for Report Standard ODBC Types is OFF, the value of
DefaultUDTFetchType is set to SQL_C_BINARY.

 If a user has set a registry key, the value of DefaultUDTFetchType is set to the
value in the registry provided Report Standard ODBC Types is not set.

An application can change the value of this attribute by using SQLSetConnectAttr
and SQLSetStmtAttr (SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x).
Applications can retrieve the values set by using SQLGetConnectAttr and
SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

Setting the Report Standard ODBC Types to ON always overrides
DefaultUDTFetchType to SQL_C_CHAR.

Report wide character columns

IBM Informix servers do not support wide character data types.

When an application sets the Report Char Columns as Wide Char Columns
option, the driver sets the following behavior:

* SQLDescribeCol reports char columns as wide char columns

* SQL_CHAR column is reported as SQL_WCHAR

* SQL_VARCHAR column is reported as SQL_WVARCHAR

* SQL_LONGVARCHAR column is reported as SQL_WLONGVARCHAR
* The default is 0: (disabled)

After setting the Report Char Columns as Wide Char Columns option, calls to
SQLBindParameter with SQL data types have the following behavior:

¢ SQL_WCHAR is mapped to SQL_CHAR
* SQL_WVARCHAR is mapped to SOQL_VARCHAR
* SQL_WLONGVARCHAR is mapped to SOL_LONGVARCHAR

DSN settings for report standard ODBC data types

For UNIX and Windows, you can add the new DSN option
NeedODBCTypesOnly.

For UNIX, add a new DSN option NeedODBCTypesOnly under your DSN setting
in your odbc.ini file [default is 0]. For example:

IBM Informix ODBC Driver Programmer's Manual

[Informix9]
Driver=/informix/1ib/c1i/1ibthcli.so
Description=IBM Informix ODBC Driver

NeedODBCTypesOnly=1

For Windows, check this option under the Advanced tab of the ODBC
Administration for IBM Informix Driver DSN [default is 0].

The following table shows how the Informix data types map to the standard
ODBC data types.

Table 3-1. Informix and ODBC data type mapping

Informix ODBC

Bigint SQL_BIGINT

Bigserial SQL_BIGINT

Blob SQL_LONGVARBINARY

Boolean SQL_BIT

Clob SQL_LONGVARCHAR

Int8 SQL_BIGINT

Lvarchar SQL_VARCHAR

Serial8 SQL_BIGINT

Multiset SQL_C_CHAR or SQL_C_BINARY
Set SQL_C_CHAR or SQL_C_BINARY
List SQL_C_CHAR or SQL_C_BINARY
Row SQL_C_CHAR or SQL_C_BINARY
Important:

* For multiset, set, row, and list data types, the data type is mapped to the
defaultUDTFetchType attribute set (SQL_C_CHAR or SQL_C_BINARY).

* To enable SQL_BIGINT to work correctly with SQLBindCol and
SQLBindParameter, you must use SQL_C_UBIGINT (which has a supported data
range of 8 byte unsigned integer) and not SQL_C_LONG (which has a
supported data range of 4 byte integer).

Convert data

The word convert is used in this section in a broad sense; it includes the transfer of
data from one storage location to another without a conversion in data type.

Standard conversions

Standard conversions exist between the IBM Informix SQL data types and the IBM
Informix ODBC Driver C data types.

Only Informix can convert data to SQL_C_BIT.
The Informix ODBC driver C data types, SQOL_C_BINARY, SQL_C_CHAR, and

SQL_C_WCHAR, support conversion between all Informix SQL data types listed
in the following tables.

Chapter 3. Data types ~ 3-15

3-16

The following tables show the supported conversions between the Informix SQL
data types and the Informix ODBC Driver C data types.

Table 3-2. Supported conversions between Informix SQL data types and ODBC Driver C

data types

ODBC driver C data types (target type)
SQL data type |SQL_C_BIT |SQL_C_DATE |SQL_C_DOUBLE |SQL_C_FLOAT
BOOLEAN yes no no no
CHAR, yes no yes yes
CHARACTER
CHARACTER |yes no yes yes
VARYING
DATE no yes no no
DATETIME no yes no no
DEC, yes no yes yes
DECIMAL
DOUBLE no no yes yes
PRECISION
FLOAT no no yes yes
INT, INTEGER |yes no yes yes
INT8 no no no no
LVARCHAR yes yes no yes
MONEY no yes yes yes
NUMERIC no yes yes yes
REAL no yes yes yes
SERIAL no yes yes yes
SMALLFLOAT |yes no yes yes
SMALLINT yes no yes yes
TEXT yes yes yes yes
VARCHAR yes yes yes yes

Table 3-3. Supported conversions between Informix SQL data types and ODBC Driver C

data types

ODBC driver C data types (target type)

SQL data type | SQL_C_LONG |SQL_C_NUMERIC |SQL_C_SHORT |SQL_C_SLONG
BIGINT yes yes no yes
BIGSERIAL yes yes yes yes
BYTE no no no no
CHAR, yes yes yes yes
CHARACTER

CHARACTER |yes yes yes yes
VARYING

DEC, yes yes yes yes
DECIMAL

DOUBLE yes yes yes yes
PRECISION

IBM Informix ODBC Driver Programmer's Manual

Table 3-3. Supported conversions between Informix SQL data types and ODBC Driver C
data types (continued)

ODBC driver C data types (target type)
SQL data type | SQL_C_LONG |SQL_C_NUMERIC |SQL_C_SHORT |SQL_C_SLONG
FLOAT yes yes yes yes
INT, INTEGER | yes yes yes yes
INT8 yes yes no yes
LVARCHAR |yes no yes yes
MONEY yes yes yes yes
NUMERIC yes yes yes yes
REAL yes yes yes yes
SERIAL yes no yes yes
SERIALS yes yes yes yes
SMALLFLOAT | yes yes yes yes
SMALLINT yes yes yes yes
TEXT yes yes yes yes
VARCHAR yes yes yes yes

Table 3-4. Supported conversions between Informix SQL data types and ODBC Driver C

data types

ODBC driver C data types (target type)

SQL data type |SQL_C_SSHORT SQL_C_STINYINT SQL_C_TIMESTAMP
BIGINT yes no no
BIGSERIAL yes no no
CHAR, yes yes no
CHARACTER

CHARACTER |yes yes no
VARYING

DATE no no yes
DATETIME no no yes
DEC, yes yes no
DECIMAL

DOUBLE yes yes no
PRECISION

FLOAT yes yes no
INT, INTEGER |yes yes no
INT8 yes no no
LVARCHAR yes yes yes
MONEY yes yes yes
NUMERIC yes yes yes
REAL yes yes yes
SERIAL yes yes yes
SERIALS yes no no
SMALLFLOAT |yes yes no

Chapter 3.

Data types 3-17

Table 3-4. Supported conversions between Informix SQL data types and ODBC Driver C
data types (continued)

SQL data type

ODBC driver C data types (target type)

SQL_C_SSHORT

SQL_C_STINYINT

SQL_C_TIMESTAMP

SMALLINT yes yes no
TEXT yes yes yes
VARCHAR yes yes yes

The ODBC driver C data type SQL_C_ULONG supports conversion between all
the SQL data types listed in the following table.

Table 3-5. Supported conversions between Informix SQL data types and ODBC Driver C

data types

ODBC driver C data types (target type)
SQL data type |SQL_C_TINYINT SQL_C_USHORT SQL_C_UTINYINT
BIGINT no no no
BIGSERIAL no yes no
CHAR, yes yes yes
CHARACTER
CHARACTER |yes yes yes
VARYING
DEC, yes yes yes
DECIMAL
DOUBLE yes yes yes
PRECISION
FLOAT yes yes yes
INT, INTEGER |yes yes yes
INT8 no no no
LVARCHAR yes yes yes
MONEY yes yes yes
NUMERIC yes yes yes
REAL yes yes yes
SERIAL yes yes yes
SERIALS no yes no
SMALLFLOAT |yes yes yes
SMALLINT yes yes yes
TEXT yes yes yes
VARCHAR yes yes yes

Additional conversions for GLS

There are supported conversions between the additional IBM Informix SQL data
types for GLS and the IBM Informix ODBC Driver C data types.

Only Informix can convert data to SQL_C_BIT.

IBM Informix ODBC Driver Programmer's Manual

The Informix NCHAR and NVARCHAR SQL data types support conversion
between the following ODBC driver C data types (fCType):

« SQL_C_BINARY

« SQL_C_BIT

+ SQL_C_CHAR

« SQL_C_DATE

« SQL_C_DOUBLE
« SQL_C_FLOAT

- SQL_C_LONG

« SQL_C_SHORT

+ SQL_C_SLONG

« SQL_C_SSHORT
« SQL_C_STINYINT
« SQL_C_TIME STAMP
« SQL_C_TINYINT
+ SQL_C_ULONG

+ SQL_C_USHORT
« SQL_C_UTINYINT

Additional conversions for Informix

There are supported conversions between the additional IBM Informix SQL data
types for Informix and the IBM Informix ODBC Driver C data types.

The Informix SQL data types, Collection, DISTINCT, Row, and Smart large object,
support conversions between the following Informix ODBC driver C data types
(fCType):

¢ SQL_C_BINARY

« SQL_C_BIT

* SQL_C_CHAR

* SQL_C_DATE

« SQL_C_DOUBLE

* SQL_C_FLOAT

* SQL_C_LONG

* SQL_C_SHORT

* SQL_C_SLONG

* SQL_C_SSHORT

« SQL_C_STINYINT

* SQL_C_TIMESTAMP

« SQL_C_TINYINT

* SQL_C_ULONG

* SQL_C_USHORT

« SQL_C_UTINYINT

The Informix SQL data type OPAQUE supports conversion between the
SQL_C_BINARY and SQL_C_CHAR ODBC driver C data types (fCType). Use
SQL_C_CHAR to access an OPAQUE value in the external format as a string. Use
SQL_C_BINARY to access an OPAQUE value in the internal binary format.

Chapter 3. Data types 3-19

3-20

Convert data from SQL to C

When you call SQLExtendedFetch, SQLFetch, or SQLGetData, IBM Informix
ODBC Driver retrieves data from a data source.

If necessary, IBM Informix ODBC Driver converts the data from the source data
type to the data type that the TargetType argument in SQLBindCol or the fCType
argument in SQLGetData specifies. Finally, IBM Informix ODBC Driver stores the
data in the location pointed to by the rgbValue argument in SQLBindCol or
SQLGetData.

The tables in the following sections describe how IBM Informix ODBC Driver
converts data that it retrieves from a data source. For a given IBM Informix ODBC
Driver SQL data type, the first column of the table lists the legal input values of
the TargetType argument in SQLBindCol and the fCType argument in SQLGetData.
The second column lists the outcomes of a test, often by using the cbValueMax
argument specified in SQLBindCol or SQLGetData, which IBM Informix ODBC
Driver performs to determine whether it can convert the data. For each outcome,
the third and fourth columns list the values of the rgbValue and pcbValue arguments
specified in SQLBindCol or SQLGetData after IBM Informix ODBC Driver tries to
convert the data.

The last column lists the SQLSTATE returned for each outcome by
SQLExtendedFetch, SQLFetch, or SQLGetData.

If the TargetType argument in SQLBindCol or the fCType argument in SQLGetData
contains a value for an IBM Informix ODBC Driver C data type that is not shown
in the table for a given IBM Informix ODBC Driver SQL data type,
SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE 07006
(Restricted data type attribute violation). If the fCType argument or the TargetType
argument contains a value that specifies a conversion from a driver-specific SQL
data type to an IBM Informix ODBC Driver C data type and IBM Informix ODBC
Driver does not support this conversion, then SQLExtendedFetch, SQLFetch, or
SQLGetData returns SQLSTATE S1C00 (Driver not capable).

Although the tables in this chapter do not show it, the pcbValue argument contains
SQL_NULL_DATA when the SQL data value is null. When IBM Informix ODBC
Driver converts SQL data to character C data, the character count returned in
pcbValue does not include the null-termination byte. If rgbValue is a null pointer,
SQLBindCol or SQLGetData returns SQLSTATE S1009 (Invalid argument value).

The following terms and conventions are used in the tables:

Length of data
The number of bytes of C data that are available to return in rgbValue,
regardless of whether the data is truncated before it returns to the
application. For string data, this does not include the null-termination byte.

Display size
Total number of bytes that are needed to display the data in character
format.

Words in italics
Represent function arguments or elements of the IBM Informix ODBC
Driver SQL grammar.

IBM Informix ODBC Driver Programmer's Manual

Related concepts:

[‘Input buffers” on page 1-11|

[“Output buffers” on page 1-12|

Default C data types
You can specify the SQL_C_DEFAULT for different functions so that IBM Informix
ODBC Driver uses the C data type.

If you specify SQL_C_DEFAULT for the TargetType argument in SQLBindCol, the
fCType argument in SQLGetData, or the ValueType argument in
SQLBindParameter, IBM Informix ODBC Driver uses the C data type of the
output or input buffer for the SQL data type of the column or parameter to which
the buffer is bound.

Standard default C data types:
There is default C data type for each IBM Informix ODBC Driver SQL data type.

For each IBM Informix ODBC Driver SQL data type, the following table shows the
default C data type.

Informix ODBC driver SQL data type Default Informix ODBC driver C data type
(fSqlType) (fCType)

SQL_BIGINT SQL_C_CHAR

SQL_BIT SQL_C_BITS

SQL_CHAR SQL_C_CHAR

SQL_DATE SQL_C_DATE

SQL_DECIMAL SQL_C_CHAR

SQL_DOUBLE SQL_C_DOUBLE

SQL_INTEGER

SQL_C_SLONG

SQL_LONGVARBINARY

SQL_C_BINARY

SQL_LONGVARCHAR SQL_C_CHAR
SQL_NUMERIC SQL_C_NUMERIC
SQL_REAL SQL_C_FLOAT

SQL_SMALLINT

SQL_C_SSHORT

SQL_TIMESTAMP

SQL_C_TIMESTAMP

SQL_VARCHAR

SQL_C_CHARS

Additional default C data types for Informix:

There is default C data type for each additional IBM Informix ODBC Driver SQL

data type.

For each additional IBM Informix ODBC Driver SQL data type for Informix, the
following table shows the default C data type.

Informix ODBC driver SQL data type

(fSqlType)

Default Informix ODBC driver C data type
(fCType)

SQL_IFMX_UDT_BLOB

SQL_C_BINARY

SQL_IFMX_UDT_CLOB

SQL_C_BINARY

Chapter 3. Data types 3-21

Informix ODBC driver SQL data type Default Informix ODBC driver C data type
(fSqlType) (fCType)

SQL_INFX_UDT_FIXED This IBM Informix ODBC Driver SQL data
type does not have a default IBM Informix
ODBC Diriver C data type. Because this
Informix ODBC driver SQL data type can
contain binary data or character data, you
must bind a variable for this Informix ODBC
driver SQL data type before you fetch a
corresponding value. The data type of the
bound variable specifies the C data type for
the value.

SQL_INFX_UDT_VARYING This IBM Informix ODBC Driver SQL data
type does not have a default IBM Informix
ODBC Diriver C data type. Because this
Informix ODBC Driver SQL data type can
contain binary data or character data, you
must bind a variable for this Informix ODBC
Driver SQL data type before you fetch a
corresponding value. The data type of the
bound variable specifies the C data type for
the value.

SQL to C: Binary
The binary IBM Informix ODBC Driver SQL data type is SQL_LONGVARBINARY.

The following table shows the IBM Informix ODBC Driver C data types to which
binary SQL data can be converted.

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_BINARY Length of data = cbValueMax Data Length of data N/A
Length of data > cbValueMax Truncated data Length of data 01004

SQL_C_CHAR (Length of data) * 2 < cbValueMax Data Length of data N/A
(Length of data) * 2 = cbValueMax Truncated data Length of data 01004

When IBM Informix ODBC Driver converts binary SQL data to character C data,
each byte (8 bits) of source data is represented as two ASCII characters. These
characters are the ASCII character representation of the number in its hexadecimal
form. For example, IBM Informix ODBC Driver converts binary 00000001 to “01”
and binary 11111111 to “FE.”

IBM Informix ODBC Driver converts individual bytes to pairs of hexadecimal
digits and terminates the character string with a null byte. Because of this
conversion, if chValueMax is even and is less than the length of the converted data,
the last byte of the rgbValue buffer is not used. (The converted data requires an
even number of bytes, the next-to-last byte is a null byte, and the last byte cannot
be used.)

SQL to C: Boolean
The Boolean IBM Informix ODBC Driver SQL data type is SQL_BIT.

The following table shows the IBM Informix ODBC Driver C data types to which
Boolean SQL data can be converted. When IBM Informix ODBC Driver converts
Boolean SQL data to character C data, the possible values are 0 and 1.

3-22 IBM Informix ODBC Driver Programmer's Manual

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_BINARY cbValueMax = 1 Data 1 N/A
cbValueMax < 1 Untouched Untouched 22003
SQL_C_BIT IBM Informix ODBC Driver ignores |Data 1 N/A
the value of chValueMax for this o .
conversion. IBM Informix ODBC (This is the SIZ? of
Driver uses the size of rgbValue for the corresponding C
the size of the C data type. data type.)
SQL_C_CHAR cbValueMax > 1 Data 1 N/A
cbValueMax = 1 Untouched Untouched 22003
SQAL to C: Character
The character IBM Informix ODBC Driver SQL data types are SQL_CHAR,
SQL_LONGVARCHAR, and SQL_VARCHAR.
The following table shows the IBM Informix ODBC Driver C data types to which
character SQL data can be converted. When IBM Informix ODBC Driver converts
character SQL data to numeric, date, or time stamp C data, it ignores leading and
trailing spaces.
fCType Test rgbValue pcbValue SQLSTATE
SQL_C_BINARY Length of data = cbValueMax. Data Length of data N/A
Length of data > cbValueMax. Truncated data |Length of data 01004
SQL_C_BIT Data is 0 or 1. Data 1 N/A
Data is greater than 0, less than 2, and | Truncated data 1 01004
not equal to 1.
Data is less than 0 or greater than or | Untouched Untouched 22003
equal to 2.
Data is not a numeric-literal. Untouched Untouched 22005
(The size of the
corresponding C
data type is 1.)
SQL_C_CHAR Length of data < cbValueMax. Data Length of data N/A
Length of data = cbValueMax. Truncated data |Length of data 01004
SQL_C_DATE Data value is a valid date-value. Data 6 N/A
Data value is a valid timestamp-value; | Data 6 N/A
time portion is zero.
Data value is a valid timestamp-value; | Truncated data 6 01004
time portion is non-zero.
(IBM Informix ODBC Driver ignores
the date portion of timestamp-value.)
Data value is not a valid date-value or | Untouched Untouched 22008

timestamp-value.

(For all these conversions, IBM
Informix ODBC Driver ignores the
value of cbValueMax. IBM Informix
ODBC Diriver uses the size of rgbValue
for the size of the C data type.)

(The size of the
corresponding C
data type is 6.)

Chapter 3. Data types

3-23

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_DOUBLE Data is within the range of the data Data Size of the C data |N/A
SQL_C_FLOAT type to which the number is being type
converted.
Data is outside the range of the data | Untouched Untouched 22003
type to which the numb er is being
converted.
Data is not a numeric-literal. Untouched Untouched 22005
(For all these conversions, IBM
Informix ODBC Driver ignores the
value of cbValueMax. IBM Informix
ODBC Diriver uses the size of rgbValue
for the size of the C data type.)
SQL_C_LONG Data converted without truncation. Data Size of the C data |N/A
SQL_C_SHORT type
SQL_C_SLONG Data converted with truncation of Truncated data |Size of the C data |01004
SQL_C_SSHORT fractional digits. type
SQL_C_STINYINT
SQL_C_TINYINT Conversion of data would result in Untouched Untouched 22003
SQL_C_ULONG loss of whole (as opposed to
SQL_C_USHORT fractional) digits.
SQL_C_UTINYINT Data is not a numeric-literal. Untouched Untouched 22005

(For all these conversions, IBM
Informix ODBC Driver ignores the
value of cbValueMax. IBM Informix
ODBC Diriver uses the size of rgbValue
for the size of the C data type.)

3-24

IBM Informix ODBC Driver Programmer's Manual

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_TIMESTAMP |Data value is a valid time Data 16 N/A
stamp-value; fractional seconds
portion not truncated.
Data value is a valid timestamp-value; | Truncated data 16 N/A
fractional seconds portion truncated.
Data value is a valid date-value. Data 16 N/A
(IBM Informix
ODBC Driver
sets the time
fields of the time
stamp structure
to zero.)
Data value is a valid time-value. Data 16 N/A
(IBM Informix
ODBC Diriver
sets the date
fields of the time
stamp structure
to the current
date.)
Data value is not a valid date-value, Untouched Untouched 22008
time-value, or timestamp-value.
(The size of the
(For all these conversions, IBM corresponding C
Informix ODBC Driver ignores the data type is 16.)
value of cbValueMax. IBM Informix
ODBC Diriver uses the size of rgbValue
for the size of the C data type.)

SQL to C: Date

The date IBM Informix ODBC Driver SQL data type is SQL_DATE.

The following table shows the IBM Informix ODBC Driver C data types to which
date SQL data can be converted. When IBM Informix ODBC Driver converts date

SQL data to character C data, the resulting string is in the yyyy-mm-dd format.

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_BINARY Length of data = cbValueMax Data Length of data N/A
Length of data > cbValueMax Untouched Untouched 22003
SQL_C_CHAR cbValueMax = 11 Data 10 N/A
cbValueMax < 11 Untouched Untouched 22003
SQL_C_DATE IBM Informix ODBC Driver Data 6 N/A

ignores the value of cbValueMax
for this conversion. IBM Informix
ODBC Driver uses the size of
rgbValue for the size of the C data

type.

(This is the size of
the corresponding
C data type.)

Chapter 3. Data types

3-25

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_TIMESTAMP

IBM Informix ODBC Driver
ignores the value of cbValueMax
for this conversion. IBM Informix
ODBC Diriver uses the size of
rgbValue for the size of the C data

type.

Data

(IBM Informix

ODBC Driver sets

the time fields of
the time stamp

structure to zero.)

16

the corresponding

C data type.)

(This is the size of

N/A

SQL to C: Numeric

The numeric IBM Informix ODBC Driver SQL data types are SQL_DECIMAL,
SQL_DOUBLE, SQL_INTEGER, SQL_REAL, and SQL_SMALLINT

The following table shows the IBM Informix ODBC Driver C data types to which
numeric SQL data can be converted.

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_BINARY Length of data = cbValueMax. Data Length of data N/A
Length of data > cbValueMax. Untouched Untouched 22003
SQL_C_BIT Data is 0 or 1. Data 1 N/A
Data is greater than 0, less than 2, |Truncated data |1 01004
and not equal to 1.
Data is less than 0 or greater than | Untouched Untouched 22003
or equal to 2.
Data is not a numeric-literal. Untouched Untouched 22005
(The size of the
corresponding C
data type is 1.)
SQL_C_CHAR Display size < cbValueMax Data Length of data N/A
Number of whole (as opposed to | Truncated data |Length of data 01004
fractional) digits < cbValueMax.
Number of whole (as opposed to | Untouched Untouched 22003
fractional) digits = cbValueMax.
SQL_C_DOUBLE Data is within the range of the Data Size of the C data N/A
SQL_C_FLOAT data type to which the number is type
being converted.
Data is outside the range of the Untouched Untouched 22003
data type to which the number is
being converted.
(IBM Informix ODBC Driver
ignores the value of cbValueMax
for this conversion. IBM Informix
ODBC Driver uses the size of
rgbValue for the size of the C data
type.)
3-26 IBM Informix ODBC Driver Programmer's Manual

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_LONG Data converted without Data Size of the C data N/A
SQL_C_SHORT truncation. type

SQL_C_SLONG Data converted with truncation of |Truncated data |Size of the C data 01004
SQL_C_SSHORT fractional digits type

SQL_C_STINYINT 8IS P

SQL_C_TINYINT Conversion of data would result | Untouched Untouched 22003

SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT

in loss of whole (as opposed to
fractional) digits.

(IBM Informix ODBC Driver
ignores the value of chValueMax
for this conversion. IBM Informix
ODBC Driver uses the size of
rgbValue for the size of the C data

type)

SQL to C: Time stamp

The time stamp IBM Informix ODBC Driver SQL data type is SQL_TIMESTAMP.

The following table shows the Informix ODBC Driver C data types to which time
stamp SQL data can be converted.

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_BINARY Length of data = cbValueMax. Data Length of data N/A
Length of data > cbValueMax. Untouched Untouched 22003
SQL_C_CHAR cbValueMax > Display size. Data Length of data N/A
20 = cbValueMax = Display size. | Truncated data |Length of data 01004
(IBM Informix
ODBC Driver
truncates the
fractional
seconds portion
of the time
stamp.)
cbValueMax < 20. Untouched Untouched 22003
SQL_C_DATE Time portion of time stamp is Data 6 N/A
Z€T0.
Time portion of time stamp is Truncated data |6 01004
nonzero.
(IBM Informix (The size of the
(IBM Informix ODBC Driver ODBC Driver corresponding C
ignores the value of cbValueMax | truncates the data type is 6.)
for this conversion. IBM Informix |time portion of
ODBC Diriver uses the size of the time stamp.)
rgbValue for the size of the C data
type.)

Chapter 3. Data types

3-27

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_TIMESTAMP Fractional seconds portion of Data 16 N/A

time stamp is not truncated.

Fractional seconds portion of Truncated data 16 01004

type)

time stamp is truncated.

(IBM Informix ODBC Driver
ignores the value of cbValueMax
for this conversion. IBM Informix
ODBC Driver uses the size of
rgbValue for the size of the C data

(IBM Informix
ODBC Driver
truncates the
fractional
seconds portion
of the time
stamp.)

(The size of the
corresponding C
data type is 16.)

When IBM Informix ODBC Driver converts time stamp SQL data to character C
data, the resulting string is in the yyyy-mm-dd hh:mm:ss[.f...] format, where up to
nine digits can be used for fractional seconds. Except for the decimal point and
fractional seconds, the entire format must be used, regardless of the precision of
the time stamp SQL data type.

SQL-to-C data conversion examples
The examples show how IBM Informix ODBC Driver converts SQL data to C data.

The following table illustrates how IBM Informix ODBC Driver converts SQL data
to C data. “\0” represents a null-termination byte (“\0” represents a wide null
termination character when the C data type is SQL_C_WCHAR). IBM Informix
ODBC Driver always null-terminates SQL_C_CHAR and SQL_C_WCHAR data.
For the combination of SQL_DATE and SQL_C_TIMESTAMP, IBM Informix
ODBC Driver stores the numbers that are in the rgbValue column in the fields of
the TIMESTAMP_STRUCT structure.

SQL data
SQL data type value C data type cbValueMax |rgbValue SQLSTATE
SQL_CHAR tigers SQL_C_CHAR 7 tigers\0 N/A
SQL_CHAR tigers SQL_C_CHAR 6 tiger\0 01004
SQL_CHAR tigers SQL_C_WCHAR 14 tigers\0 N/A
SQL_CHAR tigers SQL_C_WCHAR 12 tiger\0 01004
SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 N/A
SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 01004
SQL_DECIMAL 1234.56 SQL_C_CHAR 4 — 22003
SQL_DECIMAL 1234.56 SQL_C_WCHAR 16 1234.56\0 N/A
SQL_DECIMAL 1234.56 SQL_C_WCHAR 10 1234\0 01004
SQL_DECIMAL 1234.56 SQL_C_WCHAR 8 — 220023
SQL_DECIMAL 1234.56 SQL_C_FLOAT Ignored 1234.56 N/A
SQL_DECIMAL 1234.56 SQL_C_SSHORT Ignored 1234 01004
SQL_DECIMAL 1234.56 SQL_C_STINYINT Ignored — 22003
SQL_DOUBLE 1.2345678 SQL_C_DOUBLE Ignored 1.234567 N/A
SQL_DOUBLE 1.2345678 SQL_C_FLOAT Ignored 1.234567 N/A
SQL_DOUBLE 1.2345678 SQL_C_STINYINT Ignored 1 N/A
SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 |N/A
3-28 IBM Informix ODBC Driver Programmer's Manual

SQL data
SQL data type value C data type cbValueMax |rgbValue SQLSTATE
SQL_DATE 1992-12-31 SQL_C_CHAR 10 — 22003
SQL_DATE 1992-12-31 SQL_C_WCHAR 22 1992-12-31\0 |N/A
SQL_DATE 1992-12-31 SQL_C_WCHAR 20 — 22003
SQL_DATE 1992-12-31 SQL_C_TIMESTAMP Ignored 1992,12,31, N/A
0,0,0,0
SQL_TIMESTAMP 1992-12-31 SQL_C_CHAR 23 1992-12-31 N/A
23:45:55.12 23:45:55.12\0
SQL_TIMESTAMP 1992-12-31 SQL_C_CHAR 22 1992-12-31 01004
23:45:55.12 23:45:55.1\0
SQL_TIMESTAMP 1992-12-31 SQL_C_CHAR 18 — 22003
23:45:55.12
SQL_TIMESTAMP 1992-12-31 SQL_C_WCHAR 46 1992-12-31 N/A
23:45:55.12 23:45:55.12\0
SQL_TIMESTAMP 1992-12-31 SQL_C_WCHAR 44 1992-12-31 01004
23:45:55.12 23:45:55.1\0
SQL_TIMESTAMP 1992-12-31 SQL_C_WCHAR 36 — 22003
23:45:55.12

Important: The size of a wide character (wchar_t) is platform dependent. The
previous examples are applicable to Windows where the size of wide characters is
2 bytes. On most UNIX platforms, wide characters are 4 bytes. On IBM AIX
versions lower than AIX5L, it is 2 bytes.

Convert data from C to SQL

When you call SQLExecute or SQLExecDirect, IBM Informix ODBC Driver
retrieves the data for parameters that are bound with SQLBindParameter from
storage locations in the application.

For data-at-execution parameters, call SQLPutData to send the parameter data. If
necessary, IBM Informix ODBC Driver converts the data from the data type that
the ValueType argument specifies in SQLBindParameter to the data type that the
fSqlType argument specifies in the SQLBindParameter. Finally, IBM Informix
ODBC Driver sends the data to the data source.

If the rgbValue and pcbValue arguments specified in SQLBindParameter are both
null pointers, then that function returns SQLSTATE S1009 (Invalid argument
value). To specify a null SQL data value, set the value that the pcbValue argument
of SQLBindParameter points to or the value of the cbValue argument to
SQL_NULL_DATA. To specify that the value in rgbValue is a null-terminated string,
set these values to SQL_NTS.

The following terms are used in the tables:

Length of data
The number of bytes of SQL data that are available to send to the data

Chapter 3. Data types ~ 3-29

source, regardless of whether the data is truncated before it goes to the
data source. For string data, this does not include the null-termination
byte.

Column length and display size
Defined for each SQL data type in [“Precision, scale, length, and display|
kize” on page 3-5.

Number of digits
The number of characters that represent a number, including the minus
sign, decimal point, and exponent (if needed).

Words in italics
Represent elements of the IBM Informix ODBC Driver SQL syntax.

C to SQL: Binary
The binary IBM Informix ODBC Driver C data type is SQL_C_BINARY.

The following table shows the IBM Informix ODBC Driver SQL data types to
which binary C data can be converted. In the Test column, the SQL data length is
the number of bytes needed to store the data on the data source. This length might
be different from the column length, as defined in [‘Precision, scale, length, and]
[display size” on page 3-5.

fSqlType Test SQLSTATE
SQL_BIGINT Length of data = SQL data length. N/A
Length of data # SQL data length. 22003
SQL_BIT Length of data = SQL data length. N/A
Length of data # SQL data length. 22003
SQL_CHAR Length of data = Column length. N/A
SQL_LONGVARCHAR Length of data > Column length. 01004

SQL_VARCHAR

SQL_DATE Length of data = SQL data length. N/A
SQL_TIMESTAMP Length of data # SQL data length. 22003
SQL_DECIMAL Length of data = SQL data length. N/A
SQL_DOUBLE Length of data # SQL data length. 22003

SQL_INTEGER
SQL_REAL

SQL_SMALLINT

SQL_LONGVARBINARY Length of data = Column length. N/A

Length of data > Column length. 01004

C to SQL: Bit
The bit IBM Informix ODBC Driver C data type is SQL_C_BIT.

The following table shows the IBM Informix ODBC Driver SQL data types to
which bit C data can be converted.

3-30 IBM Informix ODBC Driver Programmer's Manual

fSqlType

Test SQLSTATE

SQL_BIGINT
SQL_DECIMAL
SQL_DOUBLE
SQL_INTEGER
SQL_REAL

SQL_SMALLINT

None N/A

SQL_BIT

None N/A

SQL_CHAR

SQL_LONGVARCHAR

SQL_VARCHAR

None N/A

IBM Informix ODBC Driver ignores the value that the pcbValue argument of
SQLBindParameter points to and the value of the cbValue argument of
SQLPutData when it converts data from the Boolean C data type. IBM Informix
ODBC Diriver uses the size of rgbValue for the size of the Boolean C data type.

C to SQL: Character
The character IBM Informix ODBC Driver C data type is SQL_C_CHAR.

The following table shows the IBM Informix ODBC Driver SQL data types to
which C character data can be converted.

fSqlType Test SQLSTATE
SQL_BIGINT Data converted without truncation. N/A
Data converted with truncation of fractional digits. 01004
Conversion of data would result in loss of whole (as | 22003
opposed to fractional) digits.
Data value is not a numeric-literal. 22005
SQL_BIT Datais 0 or 1. N/A
Data is greater than 0, less than 2, and not equal to 1. |01004
Data is less than 0 or greater than or equal to 2. 22003
Data is not a numeric-literal. 22005
SQL_CHAR Length of data = Column length. N/A
Length of data > Column length. 01004

SQL_LONGVARCHAR

SQL_VARCHAR

Chapter 3. Data types

3-31

fSqlType Test SQLSTATE
SQL_DATE Data value is a valid Informix ODBC driver N/A

date-literal.

Data value is a valid Informix ODBC driver N/A

timestamp-literal; time portion is zero.

Data value is a valid Informix ODBC driver 01004

timestamp-literal; time portion is non-zero. Informix

ODBC driver truncates the time portion of the time

stamp.

Data value is not a valid Informix ODBC driver 22008

date-literal or Informix ODBC driver timestamp-literal.
SQL_DECIMAL Data converted without truncation. N/A
SQL_INTEGER Data converted with truncation of fractional digits. 01004

Conversion of data would result in loss of whole (as |22003
SQL_SMALLINT opposed to fractional) digits.

Data value is not a numeric-literal. 22005
SQL_DOUBLE Data is within the range of the data type to which the |[N/A

number is being converted.
SQL_REAL ; - .

Data is outside the range of the data type to which the | 22003

number is being converted.

Data value is not a numeric-literal. 22005
SQL_LONGVARBINARY (Length of data) / 2 = Column length. N/A

(Length of data) / 2 > Column length. 01004

Data value is not a hexadecimal value. 22005
SQL_TIMESTAMP Data value is a valid Informix ODBC driver N/A

timestamp-literal; fractional seconds portion not

truncated.

Data value is a valid Informix ODBC driver 01004

timestamp-literal; fractional seconds portion truncated.

Data value is a valid Informix ODBC driver date-literal. [N/ A

Informix ODBC driver sets the time portion of the

time stamp to zero.

Data value is a valid Informix ODBC driver N/A

time-literal. Informix ODBC driver sets the date

portion of the time stamp to the current date.

Data value is not a valid Informix ODBC driver 22008

date-literal, Informix ODBC driver time-literal, or
Informix ODBC driver timestamp-literal.

When IBM Informix ODBC Driver converts character C data to numeric, date, or
time stamp SQL data, it ignores leading and trailing blanks. When IBM Informix
ODBC Diriver converts character C data to binary SQL data, it converts each two
bytes of character data to one byte of binary data. Each two bytes of character data
represent a number in hexadecimal form. For example, IBM Informix ODBC Driver
converts “01” to binary 00000001 and “FF” to binary 11111111.

IBM Informix ODBC Driver always converts pairs of hexadecimal digits to

individual bytes and ignores the null-termination byte. Because of this conversion,
if the length of the character string is odd, the last byte of the string (excluding the
null termination byte, if any) is not converted.

3-32 IBM Informix ODBC Driver Programmer's Manual

C to SQL: Date

The date IBM Informix ODBC Driver C data type is SQL_C_DATE.

The following table shows the IBM Informix ODBC Driver SQL data types to

which date C data can be converted.

fSqlType Test SQLSTATE
SQL_CHAR Column length = 10. N/A
SQL_LONGVARCHAR Column length < 10. 22003
SOL_VARCHAR Data value is not a valid date. 22008
SQL_DATE Data value is a valid date. N/A

Data value is not a valid date. 22008
SQL_TIMESTAMP Data value is a valid date. Informix ODBC driver sets |N/A

the time portion of the time stamp to zero.

Data value is not a valid date. 22008

When IBM Informix ODBC Driver converts date C data to character SQL data, the

resulting character data is in the yyyy-mm-dd format.

IBM Informix ODBC Driver ignores the value that the pcbValue argument of
SQLBindParameter points to and the value of the cbValue argument of
SQLPutData when it converts data from the date C data type. IBM Informix
ODBC Driver uses the size of rgbValue for the size of the date C data type.

C to SQL: Numeric

There are a total of ten IBM Informix ODBC Driver C data types.

The numeric IBM Informix ODBC Driver C data types are:

+ SQL_C_DOUBLE
« SQL_C_FLOAT

+ SQL_C_LONG

+ SQL_C_SHORT

- SQL_C_SLONG

+ SQL_C_STINYINT
« SQL_C_TINYINT
- SQL_C_ULONG

+ SQL_C_USHORT
« SQL_C_UTINYINT

The following table shows the IBM Informix ODBC Driver SQL data types to

which numeric C data can be converted.

fSqlType Test SQLSTATE
SQL_BIGINT Data converted without truncation. N/A
Data converted with truncation of fractional digits. 01004

opposed to fractional) digits.

Conversion of data would result in loss of whole (as | 22003

Chapter 3. Data types

3-33

fSqlType Test SQLSTATE
SQL_BIT Data is 0 or 1. N/A

Data is greater than 0, less than 2, and Inot equal to 1. | 01004

Data is less than 0 or greater than or equal to 2. 22003
SQL_CHAR Number of digits = Column length. N/A

SQL_LONGVARCHAR

SQL_VARCHAR

Number of whole (as opposed to fractional) digits = 01004
Column length.

Number of whole (as opposed to fractional) digits > 22003
Column length.

SQL_DECIMAL
SQL_INTEGER

SQL_SMALLINT

Data converted without truncation N/A

Data converted with truncation of fractional digits. 01004

Conversion of data would result in loss of whole (as | 22003
opposed to fractional) digits.

SQL_DOUBLE

SQL_REAL

Data is within the range of the data type to which the |N/A
number is being converted.

Data is outside the range of the data type to which the | 22003
number is being converted.

IBM Informix ODBC Driver ignores the value that the pcbValue argument of
SQLBindParameter points to and the value of the cbValue argument of
SQLPutData when it converts data from the numeric C data types. IBM Informix
ODBC Diriver uses the size of rgbValue for the size of the numeric C data type.

C to SQL: Time stamp
The time stamp IBM Informix ODBC Driver C data type is SQL_C_TIMESTAMP.

The following table shows the IBM Informix ODBC Driver SQL data types to
which time stamp C data can be converted.

fSqlType

Test SQLSTATE

SQL_CHAR
SQL_LONGVARCHAR

SQL_VARCHAR

Column length = Display size. N/A

19 = Column length < Display size. 01004

IBM Informix ODBC Driver truncates the fractional
seconds of the time stamp.

Column length < 19. 22003
Data value is not a valid date. 22008
SQL_DATE Time fields are zero. N/A
Time fields are non-zero. 01004

IBM Informix ODBC Driver truncates the time fields
of the time stamp structure.

Data value does not contain a valid date. 22008
SQL_TIMESTAMP Fractional seconds fields are not truncated. N/A
Fractional seconds fields are truncated. 01004

IBM Informix ODBC Driver truncates the fractional
seconds fields of the time stamp structure.

Data value is not a valid time stamp. 22008

3-34 IBM Informix ODBC Driver Programmer's Manual

When IBM Informix ODBC Driver converts time stamp C data to character SQL
data, the resulting character data is in the yyyy-mm-dd hh:mm:ss[.f...] format.

IBM Informix ODBC Driver ignores the value that the pcbValue argument of
SQLBindParameter points to and the value of the cbValue argument of
SQLPutData when it converts data from the time stamp C data type. IBM Informix
ODBC Diriver uses the size of rgbValue for the size of the time stamp C data type.

C-to-SQL data conversion examples
The examples show how IBM Informix ODBC Driver converts C data to SQL data.

The following table illustrates how IBM Informix ODBC Driver converts C data to
SQL data. “\0” represents a null-termination byte. The null-termination byte is
required only if the length of the data is SQL_NTS. For SQL_C_DATE, the
numbers that are in the C Data Value column are the numbers that are stored in
the fields of the DATE_STRUCT structure. For SQL_C_TIMESTAMP, the numbers
that are in the C Data Value column are the numbers that are stored in the fields of
the TIMESTAMP_STRUCT structure.

SQL data

C data type C data value | SQL data type Column length value SQLSTATE
SQL_C_CHAR tigers\0 SQL_CHAR 6 tigers N/A
SQL_C_CHAR tigers\0 SQL_CHAR 5 tiger 01004
SQL_C_CHAR 1234.56\0 SQL_DECIMAL 8 1234.56 N/A

(In addition to bytes

for numbers, one

byte is required for a

sign and another for

the decimal point.)
SQL_C_CHAR 1234.56\0 SQL_DECIMAL 7 1234.5 01004

(In addition to bytes

for numbers, one

byte is required for a

sign and another for

the decimal point.)
SQL_C_CHAR 1234.56\0 SQL_DECIMAL 4 — 22003
SQL_C_FLOAT 1234.56 SQL_FLOAT not applicable 1234.56 N/A
SQL_C_FLOAT 1234.56 SQL_INTEGER not applicable 1234 01004
SQL_C_FLOAT 1234.56 SQL_TINYINT not applicable — 22003
SQL_C_DATE 1992,12,31 SQL_CHAR 10 1992-12-31 N/A
SQL_C_DATE 1992,12,31 SQL_CHAR 9 — 22003
SQL_C_DATE 1992,12,31 SQL_TIMESTAMP | not applicable 1992-12-31 N/A

00:00:00.0
SQL_C_TIMESTAMP 1992,12,31, SQL_CHAR 22 1992-12-31 N/A
23,45,55, 23:45:55.12
120000000

Chapter 3. Data types 3-35

SQL data

C data type C data value | SQL data type Column length value SQLSTATE
SQL_C_TIMESTAMP 1992,12,31, |SQL_CHAR 21 1992-12-31 01004
23,45,55, 23:45:55.1
120000000
SQL_C_TIMESTAMP 1992,12,31, |SQL_CHAR 18 — 22003

23,45,55,

120000000

3-36

IBM Informix ODBC Driver Programmer's Manual

Chapter 4. Smart large objects

These topics describe how to store, create, and access a smart large object; how to
transfer smart-large-object data; how to retrieve the status of a smart large object;
and how to read or write a smart large object to or from a file.

The information in these topics apply only if your database server is IBM Informix.

A smart large object is a recoverable large object that is stored in an sbspace on
disk. You can access a smart large object with read, write, and seek operations
similar to an operating-system file. The two data types for smart large objects are
character large object (CLOB) and binary large object (BLOB). A CLOB consists of text
data and a BLOB consists of binary data in an undifferentiated byte stream.

For more information about smart-large-object data types, see the IBM Informix
Guide to SQL: Reference.

Related concepts:

(Chapter 6, “Client functions,” on page 6-1|

Related reference:

[“Additional SQL data types for Informix” on page 3-5|

(Chapter 3, “Data types,” on page 3-1|

Data structures for smart large objects

Because a smart large object can be huge, IBM Informix has two alternatives to
store the content of a smart large object.

Therefore, instead of storing the content of a smart large object in a database table,
IBM Informix does the following:

* Stores the content of the smart large object in an sbspace

 Stores a pointer to the smart large object in the database table

Because a smart large object can be huge, an IBM Informix ODBC Driver
application cannot receive a smart large object in a variable. Instead, the
application sends or receives information about the smart large object in a data
structure. The following table describes the data structures that IBM Informix
ODBC Driver uses for smart large objects.

Data structure |Name Description
lofd Smart-large-object | Provides access to a smart large object. Uses a file
file descriptor descriptor to access smart-large-object data as if it
were in an operating-system file.
loptr Smart-large-object | Provides security information and a pointer to a
pointer structure smart large object. This structure is the data that the

database server stores in a database table for a smart
large object. Therefore, SQL statements such as
INSERT and SELECT accept a smart-large-object
pointer structure as a value for a column or a
parameter that has a data type of smart large object.

© Copyright IBM Corp. 1996, 2013 4-1

Data structure | Name Description

lospec Smart-large-object | Specifies the storage characteristics for a smart large
specification object.
structure

lostat Smart-large-object | Stores status information for a smart large object.
status structure Normally you can fetch a user-defined data type

(UDT) in either binary or character representation.
However, it is not possible to convert a
smart-large-object status structure to character
representation. Therefore, you need to use
SQL_C_BINARY as the IBM Informix ODBC Driver
C data type for lostat.

Restriction: These data structures are opaque to IBM Informix ODBC Driver
applications and their internal structures might change. Therefore, do not access
the internal structures directly. Use the smart-large-object client functions to
manipulate the data structures.

The application is responsible for allocating space for these smart-large-object data
structures.

Working with a smart-large-object data structure

You can use this procedure to work with a smart-large-object data structure. An
example is included.

To work with a smart-large-object data structure:
1. Determine the size of the smart-large-object structure.

2. Use either a fixed size array or a dynamically allocated buffer that is at least
the size of the data structure.

3. Free the array or buffer space when you are done with it.

The following code example illustrates these steps:

rc = SQLGetInfo(hdbc, SQL_INFX LO_SPEC_LENGTH, &lospec_size,
sizeof(lospec_size), NULL);
Tospec_buffer = malloc(lospec_size);

free(Tospec_buffer);

Storage of smart large objects

4-2

The smart-large-object specification structure stores the disk-storage information
and create-time flags for a smart large object.

Disk-storage information

Disk-storage information helps IBM Informix determine how to store the smart
large object most efficiently on disk.

The following table describes the types of disk-storage information and the
corresponding client functions. For most applications, it is recommended that you
use the values for the disk-storage information that the database server determines.

IBM Informix ODBC Driver Programmer's Manual

Disk-storage
information

Description

Client functions

Estimated size

An estimate of the final size, in bytes,
of the smart large object. The database
server uses this value to determine the
extents in which to store the smart
large object. This value provides
optimization information. If the value
is grossly incorrect, it does not cause
incorrect behavior. However, it does
mean that the database server might
not necessarily choose optimal extent
sizes for the smart large object.

ifx_lo_specget_estbytes()

ifx_lo_specset_estbytes()

Maximum size

The maximum size, in bytes, for the
smart large object. The database server
does not allow the smart large object to
grow beyond this size.

ifx_lo_specget_maxbytes()

ifx_lo_specset_maxbytes()

Allocation extent
size

The allocation extent size is specified
in kilobytes. Optimally, the allocation
extent is the single extent in a chunk
that holds all the data for the smart
large object.

The database server performs storage
allocations for smart large objects in
increments of the allocation extent size.
It tries to allocate an allocation extent
as a single extent in a chunk. However,
if no single extent is large enough, the
database server must use multiple
extents as necessary to satisfy the
request.

ifx_lo_specget_extsz()

ifx_lo_specset_extsz()

Name of the
sbspace

The name of the sbspace that contains
the smart large object. On this database
server, an sbspace name can be up to
128 characters long and must be null
terminated.

ifx_lo_specget_sbspace()

ifx_lo_specset_sbspace()

Create-time flags

Create-time flags tell IBM Informix what options to assign to the smart large object.

The following table describes the create-time flags.

Chapter 4. Smart large objects

4-3

Type of
indicator Create-time flag

Description

Logging LO_LOG

Tells the database server to log
changes to the smart large object in
the system log file.

Consider carefully whether to use the
LO_LOG flag value. The database
server incurs considerable overhead
to log smart large objects. You must
also make sure that the system log
file is large enough to hold the value
of the smart large object. For more
information, see your IBM Informix
Administrator’s Guide.

LO_NOLOG

Tells the database server to turn off
logging for all operations that
involve the associated smart large
object.

Last LO_KEEP_LASTACCESS_TIME
access-time

Tells the database server to save the
last access time for the smart large
object. This access time is the time of
the last read or write operation.

Consider carefully whether to use the
LO_KEEP_LASTACCESS_TIME flag
value. The database server incurs
considerable overhead to maintain
last access times for smart large
objects.

LO_NOKEEP_LASTACCESS_TIME

Tells the database server not to
maintain the last access time for the
smart large object.

The ifx_lo_specset_flags() function sets the create-time flags to a new value. The
ifx_lo_specget_flags() function retrieves the current value of the create-time flag.

Logging indicators and the last access-time indicators are stored in the
smart-large-object specification structure as a single flag value. To set a flag from
each group, use the C-language OR operator to mask the two flag values together.
However, masking mutually exclusive flags causes an error. If you do not specify a
value for one of the flag groups, the database server uses the inheritance hierarchy

to determine this information.

Related reference:

[“The ifx_lo_specset_flags() function” on page 6-14|

Inheritance hierarchy

IBM Informix uses an inheritance hierarchy to obtain storage characteristics.

The following figure shows the inheritance hierarchy for smart-large-object storage

characteristics.

4-4 1BM Informix ODBC Driver Programmer's Manual

Database server storage characteristics
(system defaults and the ONCONFIG file)

!

sbspace storage characteristics
(assigned when the database server creates the shspace

|

Column-level storage characteristics
(assigned with the CREATE TABLE statement)

l

User-defined storage characteristics
(assigned from within an IBM Informix ODBC application)

Figure 4-1. Inheritance hierarchy for storage characteristics

Using system-specified storage characteristics
IBM Informix uses one set of storage characteristics as the system-specified storage
characteristics.

IBM Informix uses one of the following sets of storage characteristics:

* If the sbspace in which the smart large object is stored specifies a value for a
particular storage characteristic, the database server uses the sbspace value as
the system-specified storage characteristic.

The database administrator can use the onspaces utility to define storage
characteristics for an sbspace.

e If the sbspace in which the smart large object is stored does not specify a value
for a particular storage characteristic, the database server uses the system default
as the system-specified storage characteristic.

The database server defines the system defaults for storage characteristics
internally. However, you can specify a default sbspace name with the
SBSPACENAME configuration parameter in the onconfig file. Also, an
application call to ifx_lo_col_info() or ifx_lo_specset_sbspace() can supply the
target sbspace in the smart-large-object specification structure.

Important: An error occurs if the SBSPACENAME configuration parameter is not
specified and the smart-large-object specification structure does not contain the
name of the target sbspace.

It is recommended that you use the system-specified storage characteristics for the
disk-storage information. For more information about sbspaces and the description
of the onspaces utility, see your IBM Informix Administrator’s Guide.

To use system-specified storage characteristics for a new smart large object:

1. Call ifx_lo_def_create_spec() to allocate a smart-large-object specification
structure and to initialize the structure to null values.

2. Call ifx_lo_create() to create an instance of the smart large object.

Chapter 4. Smart large objects ~ 4-5

Using column-level storage characteristics
The CREATE TABLE statement assigns storage characteristics to a database
column.

The PUT clause of the CREATE TABLE statement specifies storage characteristics
for a smart-large-object column. The syscolattribs system catalog table stores the
column-level storage characteristics.

To use column-level storage characteristics for a new smart-large-object instance:

1. Call ifx_lo_def_create_spec() to allocate a smart-large-object specification
structure and initialize this structure to null values.

2. Call ifx_lo_col_info() to retrieve the column-level storage characteristics and
store them in the specified smart-large-object specification structure.

3. Call ifx_lo_create() to create an instance of the smart large object.

User-defined storage characteristics
To specify user-defined storage characteristics, call an ifx_lo_specset_* function.

You can define a unique set of storage characteristics for a new smart large object,
as follows:

* For a smart large object that will be stored in a column, you can override some
storage characteristics for the column when you create an instance of a smart
large object.

If you do not override some or all of these characteristics, the smart large object
uses the column-level storage characteristics.

* You can specify a wider set of characteristics for a smart large object because a
smart large object is not constrained by table column properties.

If you do not override some or all of these characteristics, the smart large object
inherits the system-specified storage characteristics.

Example of creating a smart large object

The code example, Tocreate.c, shows how to create a smart large object.

You can find the Tocreate.c file in the SINFORMIXDIR%/demo/c1idemo directory on
UNIX platforms and in the INFORMIXDIR%\demo\odbcdemo directory in Windows
environments. You can also find instructions on how to build the odbc_demo
database in the same location.

/*

*% locreate.c
**

** To create a smart large object
%

*% 0BDC Functions:

*% SQLAT1ocHandle
*% SQLBindParameter
*% SQLConnect

*k SQLFreeStmt

*% SQLGetInfo

*x SQLDisconnect

*k SQLExecDirect

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

4-6 IBM Informix ODBC Driver Programmer's Manual

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /+*NO_WIN32+*/

#include "infxcli.h"

#define BUFFER_LEN 12
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,
SQLHANDLE handle,
char *errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN] ;

SQLSMALLINT textLengthPtr;
if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INF0))
{

while (retcode != SQL_NO_DATA)

{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,

&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

if (retcode == SQL_INVALID HANDLE)
{

fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;

}

if ((retcode == SQL_SUCCESS) || (retcode == SQL SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);

errNum++;

}

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

1
else
return 0; /* no errors to report */
1
int main (long argc,
char *argv[])

{

/* Declare variables

*/

/* Handles =/

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */

Chapter 4. Smart large objects

long lofd;
Tong lofd_valsize = 0;

/* Smart large object pointer structure x/

charx* Toptr_buffer;
short Toptr_size;
long Toptr_valsize = 0;

/* Smart large object specification structure */

charx* Tospec_buffer;
short lospec_size;
Tong Tospec_valsize = 0;

/* Write buffer */

charx* write_buffer;
short write_size;
Tong write valsize = 0;

/* Miscellaneous variables =*/
UCHAR dsn[20];/*name of the DSN used for connecting to the

databasex/
SQLRETURN rc = 03
int ing
FILE* hfile;
char= To_file_name = "advert.txt";
char colname[BUFFER_LEN] = "item.advert";
long colname_size = SQL_NTS;
Tong mode = LO_RDWR;
long cbMode = 0;
charx insertStmt = "INSERT INTO item VALUES (1005, 'Helmet', 235,

'Each', ?, '39.95')";

/* STEP 1. Get data source name from command line (or use default).

*% Allocate environment handle and set ODBC version.
*k Allocate connection handle.

*k Establish the database connection.

*k Allocate the statement handle.

*/

/* If (dsn is not explicitly passed in as arg) */

if (argc != 2)

{

/* Use default dsn - odbc_demo =*/
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char x)dsn, (char *)defDsn);

else

{
/* Use specified dsn */
strcpy ((char *)dsn, (char *)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);

/* Allocate the Environment handle =/

rc = SQLATlocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

if (rc != SQL_SUCCESS)
fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
return (1);

/* Set the O0DBC version to 3.5 */

4-8 IBM Informix ODBC Driver Programmer's Manual

/*

rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!"))
return (1);

/* Allocate the connection handle */
rc = SQLATTocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!"))
return (1);

/* Establish the database connection =/
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\n"))
return (1);

/* Allocate the statement handle */
rc = SQLA11ocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Get the size of the smart large object specification
*% structure.

*% Allocate a buffer to hold the structure.

*% Create a default smart large object specification structure.
*% Reset the statement parameters.

*/

/* Get the size of a smart large object specification structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO SPEC_LENGTH, &lospec_size,
sizeof(lospec_size), NULL);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 2 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object specification
structurex/
Tospec_buffer = malloc (Tospec_size);

/* Create a default smart large object specification structure x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter failed\n"))
goto Exit;
rc = SQLExecDirect (hstmt, "{call ifx_lo_def_create_spec(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...default smart Targe object specification
structure created\n");

Chapter 4. Smart large objects

/* STEP 3. Initialise the smart Targe object specification structure

*% with values for the database column where the smart Tlarge
Kk object is being inserted.

*k Reset the statement parameters.

*/

/* Initialise the smart Targe object specification structure */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM INPUT, SQL C CHAR, SQL_CHAR,
BUFFER_LEN, 0, colname, BUFFER_LEN, &colname_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

lospec_valsize = Tospec_size;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_col_info(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters =*/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLFreeStm failed\n"))
goto Exit;

fprintf(stdout, "STEP 3 done...smart Targe object specification
structure initialised\n");

/* STEP 4. Get the size of the smart lTarge object pointer structure.
*% Allocate a buffer to hold the structure.
*/

/* Get the size of the smart large object pointer structure =/
rc = SQLGetInfo (hdbc, SQL_INFX LO PTR LENGTH, &loptr size,
sizeof(loptr_size), NULL);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 4 --
SQLGetInfo failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object pointer structure */
Toptr_buffer = malloc (Toptr_size);

fprintf (stdout, "STEP 4 done...smart large object pointer structure
allocated\n");

/* STEP 5. Create a new smart large object.
*% Reset the statement parameters.

*/

/* Create a new smart large object */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

4-10 I1BM Informix ODBC Driver Programmer's Manual

/*

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, (UDWORD)0O, 0, &mode, sizeof(mode), &cbMode);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

loptr_valsize = loptr_size;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, Toptr_buffer,
Toptr_size, &loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 3)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 4, SQL_PARAM_OUTPUT, SQL C_SLONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 4)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_create(?, ?, ?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 5 done...smart large object created\n");

STEP 6. Open the file containing data for the new smart large object.

*% Allocate a buffer to hold the smart large object data.

*% Read data from the input file into the smart Targe object.
*% data buffer

*% Write data from the data buffer into the new smart large.
*k object.

% Reset the statement parameters.

*

/

/* Open the file containing data for the new smart large object */
hfile = open (1o_file_name, "rt");

/* sneaky way to get the size of the file */

write_size = Tseek (open (lo_file_name, "rt"), OL, SEEK END);

/% Allocate a buffer to hold the smart large object data */
write_buffer = malloc (write_size + 1);

/* Read smart large object data from file */
read (hfile, write_buffer, write_size);

write_buffer[write_size] = '\0';
write valsize = write_size;
/* Write data from the data buffer into the new smart large object */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

(UDWORD)write_size, 0, write_buffer, write_size, &write_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --

Chapter 4. Smart large objects

4-11

SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo write(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 6 done...data written to new smart large
object\n");

/* STEP 7. Insert the new smart Targe object into the database.
*% Reset the statement parameters.
*/

/* Insert the new smart large object into the database */
loptr_valsize = Toptr_size;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, Toptr_buffer,
Toptr_size, &loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, insertStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters =*/
rc = SQLFreeStmt (hstmt, SQL_RESET PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 7 done...smart large object inserted into the
database\n");

/* STEP 8. Close the smart large object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)0O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo close(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 8 done...smart large object closed\n");

/* STEP 9. Free the allocated buffers.
*/

4-12 1BM Informix ODBC Driver Programmer's Manual

free (lospec_buffer);

free (loptr_buffer);

free (write_buffer);

fprintf (stdout, "STEP 9 done...smart large object buffers freed\n");
Exit:

/* CLEANUP: Close the statement handle

*% Free the statement handle

*% Disconnect from the datasource

*% Free the connection and environment handles
*k Exit

*/

/* Close the statement handle x/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle =/
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source */
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
in = getchar ();
return (rc);

Transfer smart-large-object data

An INSERT or UPDATE statement does not perform the actual input of the
smart-large-object data. It does, however, provide a means for the application to
identify which smart-large-object data to associate with the column.

A BLOB or CLOB column in a database table stores the smart-large-object pointer
structure for a smart large object. Therefore, when you store a BLOB or CLOB
column, you provide a smart-large-object pointer structure for the column in a
loptr variable to the INSERT or UPDATE statement.

The following figure shows how an application transfers the data of a smart large
object to the database server.

Chapter 4. Smart large objects 4-13

IBM Informix ODBC Driver Application

1. Use client functions to create a
smart-large-object pointer structure.

2. Initialize the smart-large-object data through
the smart-large-object pointer structure.

l

3. Execute INSERT or UPDATE statement to
assign the smart-large-object pointer structure
to a CLOB or BLOB column.

Dynamic Server

Figure 4-2. Transfer smart-large-object data from client application to database server

The smart large object that a smart-large-object pointer structure identifies exists if
the smart-large-object pointer structure exists. When you store a smart-large-object
pointer structure in a database, the database server deallocates the smart large
object when appropriate.

If your application does not store the smart-large-object pointer structure for a new
smart large object in the database, the smart-large-object pointer structure is only
valid to access the version of the smart large object that was current when the
pointer was passed to the application. If the smart large object is updated later, the
pointer is invalid. The smart-large-object pointer structures that you store in a row
do not expire when the object version changes.

When you retrieve a row and then update a smart large object that is contained in
that row, the database server exclusively locks the row for the time that it updates
the smart large object. Moreover, long updates for smart large objects (whether
logging is enabled and whether they are associated with a table row) create the
potential for a long transaction condition if the smart large object takes a long time
to update or create.

The smart-large-object pointer structure, not the CLOB or BLOB data itself, is
stored in a CLOB or BLOB column in the database. Therefore, SQL statements such
as INSERT and SELECT accept and return a smart-large-object pointer structure as
the column value for a smart-large-object column.

Access a smart large object

4-14

This section describes how to select, open, delete, modify, and close a smart large
object by using either the standard ODBC API or by using ifx_lo functions.

Smart-large-object automation

Instead of accessing smart large objects with the ifx_lo functions, you can access
smart large objects by using the standard ODBC APIL

Operations supported when accessing smart large objects with the standard ODBC
API include select, insert, update, and delete for CLOB and BLOB data types. You
cannot access BYTE and TEXT simple large objects in this way.

IBM Informix ODBC Driver Programmer's Manual

Set the access method using SQL_INFX_ATTR_LO_AUTOMATIC
You can use the SQL_INFX_ATTR_LO_AUTOMATIC attribute to tell the database
server whether you will access smart large objects by using the ODBC API or the
ifx_lo functions.

If the application enables the SQL_INFX_ATTR_LO_AUTOMATIC attribute as a
connection attribute, all statements for that connection inherit the attribute value.
To change this attribute value per statement, you have to set and reset it as a
statement attribute. If you enable this attribute for the statement, the application
can access the smart large object by using the standard ODBC way, as previously
described. If you do not enable this attribute for the statement, the application
accesses smart large objects by using ifx_lo functions. The application cannot use
the ifx_lo functions if this attribute is enabled for the statement.

You can also enable the SQL_INFX_ATTR_LO_AUTOMATIC attribute by turning
on the Report Standard ODBC Types option under the Advanced tab of the
ODBC Administration for IBM Informix Driver DSN.

SQLDescribeCol for a CLOB data type column returns SQL_LONGVARCHAR for
the DataPtrType. SQLDescribeCol for a BLOB data type column returns
SQL_LONGVARBINARY, if the SQL_INFX_ATTR_LO_AUTOMATIC attribute is
enabled for that statement.

SQLColAttributes for a CLOB data type column returns SQL_LONGVARCHAR
for the Field Identifier of SQL_DESC_TYPE, whereas for the BLOB data type
column it returns SQL_LONGVARBINARY only if the
SQL_INFX_ATTR_LO_AUTOMATIC attribute is enabled for that statement.

Insert, update, and delete smart large objects using the ODBC
API

When you insert, update, and delete either a CLOB or BLOB data type, the
application binds the data type by using SQLBindParameter with a C type.

When you insert, update, or delete a CLOB data type, the application binds the
CLOB data type by using SQLBindParameter with C type as SQL_C_CHAR and
SQL type as SQOL_LONGVARCHAR.

When you insert, update, or delete a BLOB data type, the application binds BLOB
data type by using SQLBindParameter with C type as SQL_C_BINARY and SQL
type as SQL_LONGVARBINARY.

IBM Informix ODBC Driver performs insertion of smart large objects in the
following way:

¢ The driver sends a request to the database server to create a smart large object
on the server side in the form of a new file.

* The driver gets back the file descriptor (for example, lofd) of this file from the
database server.

* The driver sends the preceding lofd file and the smart-large-object data that was
bound by the application with SQLBindParameter to the database server.

e The database server writes the data onto the file.

Select smart large objects using the ODBC API

When you select a CLOB data type, the application binds the C type of the column
as SQL_C_CHAR. When you select a BLOB data type, the C type is bound as
SQL_C_BINARY.

Chapter 4. Smart large objects 4-15

4-16

IBM Informix ODBC Driver selects smart large objects in the following way:

* The driver sends a request to the database server to open the smart large object
as a file on the server side.

* The driver gets back the file descriptor (for example, lofd) of this file from the
database server.

e The driver sends the preceding lofd and a read request to the database server to
read the smart-large-object data from the file.

* The database server reads the data from the corresponding file by using the
preceding lofd and sends it to the driver.

* The driver writes the data to the buffer that was bound by the application with
SQLBindParameter.

The ifx_lo functions

This section describes how to select, open, delete, modify, and close a smart large
object by using ifx_lo functions.

Select a smart large object using ifx_lo functions

A SELECT statement does not perform the actual output for the smart-large-object
data. It does, however, establish a means for the application to identify a smart
large object so that the application can then perform operations on the smart large
object.

The following figure shows how the database server transfers the data of a smart
large object to the application.

Dynamic Server

1. Execute SELECT statement.
2. Obtain smart-large-object pointer structure.

l

3. Use client functions to access data through the
smart-large-object pointer structure.

IBM Informix ODBC Driver Application

Figure 4-3. Transferring smart-large-object data from database server to client application

Open a smart large object using ifx_lo functions
When you open a smart large object, you obtain a smart-large-object file descriptor
for the smart large object.

Through the smart-large-object file descriptor, you can access the data of a smart
large object as if it were in an operating-system file.

Access modes:
When you open a smart large object, you specify the access mode for the data. The
access mode determines which read and write operations are valid on the open

smart large object.

The following table describes the access modes that ifx_lo_open() and
ifx_lo_create() support.

IBM Informix ODBC Driver Programmer's Manual

Access mode

Purpose

Constant

Read only

Only read operations are valid on the data.

LO_RDONLY

Dirty read

Lets you read uncommitted data pages for the
smart large object. You cannot write to a smart
large object after you set the mode to
LO_DIRTY_READ. When you set this flag, you
reset the current transaction isolation mode to

dirty read for this smart large object.

Do not base updates on data that you obtain
from a smart large object in dirty-read mode.

LO_DIRTY_READ

Write only

Only write operations are valid on the data.

LO_WRONLY

Append

Intended for use with LO_WRONLY or
LO_RDWR. Sets the location pointer to the end
of the object immediately before each write.
Appends any data you write to the end of the
smart large object. If LO_APPEND is used
alone, the object is opened for reading only.

LO_APPEND

Read /write
data.

Both read and write operations are valid on the

LO_RDWR

Buffered access

Uses standard database server buffer pool.

LO_BUFFER

Lightweight I/O

Uses private buffers from the session pool of
the database server.

LO_NOBUFFER

When you open a smart large object with LO_APPEND only, the database server
opens the smart large object as read-only. Seek operations and read operations
move the file pointer. Write operations fail and do not move the file pointer.

You can mask the LO_APPEND flag with another access mode. In any of these OR
combinations, the seek operation remains unaffected. The following table shows
the effect on the read and write operations that each of the OR combinations has.

OR operation

Read operations

Write operations

LO_RDONLY |
LO_APPEND

Occur at the file position and
then move the file position to
the end of the data that has
been read.

Fail and do not move the file
position.

LO_WRONLY |
LO_APPEND

Fail and do not move the file
position.

Move the file position to the
end of the smart large object
and then write the data; file
position is at the end of the

data after the write.

LO_RDWR | LO_APPEND

Occur at the file position and
then move the file position to
the end of the data that has
been read.

Move the file position to the
end of the smart large object
and then write the data; file
position is at the end of the

data after the write.

Chapter 4. Smart large objects

4-17

4-18

Related reference:

[‘The ifx_lo_create() function” on page 6-5|

[‘The ifx_lo_open() function” on page 6-6|
Lightweight 1/0

When the database server accesses smart large objects, it uses buffers from the
buffer pool for buffered access. Unbuffered access is called lightweight 1/O.

Lightweight I/O uses private buffers instead of the buffer pool to hold smart large
objects. These private buffers are allocated out of the database server session pool.

Lightweight 1/0 allows you to bypass the overhead of the least recently used
(LRU) queues that the database server uses to manage the buffer pool. For more
information about LRU queues, see your IBM Informix Performance Guide.

You can specify lightweight /O by setting the flags parameter to LO_NOBUFFER
when you create or open a smart large object. To specify buffered access, which is
the default, use the LO_BUFFER flag.

Important: Keep in mind the following issues when you use lightweight 1/0:

* Close smart large objects with ifx_lo_close() when you finish with them to free
memory allocated to the private buffers.

 All open operations that use lightweight I/O for a particular smart large object
share the same private buffers. Consequently, one operation can cause the pages
in the buffer to be flushed while other operations expect the object to be present
in the buffer.

The database server imposes the following restrictions on switching from
lightweight I1/O to buffered 1/0:

* You can use the ifx_lo_alter() function to switch a smart large object from
lightweight I/O (LO_NOBUFFER) to buffered I/O (LO_BUFFER) if the smart
large object is not open. However, ifx_lo_alter() generates an error if you try to
change a smart large object that uses buffered I/O to one that uses lightweight
I/0.

* Unless you first use ifx_lo_alter() to change the access mode to buffered access
(LO_BUFEFER), you can only open a smart large object that was created with
lightweight I/O with the LO_NOBUFFER access-mode flag. If an open operation
specifies LO_BUFFER, the database server ignores the flag.

* You can open a smart large object that has been created with buffered access
(LO_BUFEFER) with the LO_NOBUFEFER flag only if you open the object in
read-only mode. If you attempt to write to the object, the database server returns
an error. To write to the smart large object, you must close it and then reopen it
with the LO_BUFFER flag and an access flag that allows write operations.

You can use the database server utility onspaces to specify lightweight 1/O for all
smart large objects in an sbspace. For more information about the onspaces utility,
see your IBM Informix Administrator’s Guide.

Smart-large-object locks
To prevent simultaneous access to smart-large-object data, the database server locks
a smart large object when you open it.

Locks on smart large objects are different from row locks. If you retrieve a smart
large object from a row, the database server might hold a row lock as well as a

IBM Informix ODBC Driver Programmer's Manual

smart-large-object lock. The database server locks smart large objects because many
columns can contain the same smart-large-object data.

To specify the lock mode of a smart large object, pass the access-mode flags,
LO_RDONLY, LO_DIRTY_READ, LO_APPEND, LO_WRONLY, LO_RDWR, and
LO_TRUNC, to the ifx_lo_open() and ifx_lo_create() functions. When you specify
LO_RDONLY, the database server places a lock on the smart-large-object data.
When you specify LO_DIRTY_READ, the database server does not place a lock on
the smart-large-object data. If you specify any other access-mode flag, the database
server obtains an update lock, which it promotes to an exclusive lock on first write
or other update operation.

Share and update locks (read-only mode or write mode before an update operation
occurs) are held until your application takes one of the following actions:

* Closes the smart large object
e Commits the transaction or rolls it back

Exclusive locks are held until the end of a transaction even if you close the smart
large object.

Important: You lose the lock at the end of a transaction even if the smart large
object remains open. When the database server detects that a smart large object
does not have an active lock, it places a new lock the next time that you access the
smart large object. The lock that it places is based on the original open mode of the
smart large object.

Duration of an open operation on a smart large object
After you open a smart large object with the ifx_lo_create() function or the
ifx_lo_open() function, it remains open until certain events occurs.

A smart large object remains open until one of these events occur:
* The ifx_lo_close() function closes the smart large object.
* The session ends.

Important: The end of the current transaction does not close a smart large object.
It does, however, release any lock on a smart large object.

Close smart large objects as soon as you finish with them. Leaving smart large
objects open unnecessarily uses system memory. Leaving many smart large objects
open can eventually produce an out-of-memory condition.

Delete a smart large object
A smart large object cannot be deleted until certain conditions are met.

A smart large object is not deleted until both of the following conditions are met:
* The current transaction commits.
* The smart large object is closed, if the application opened the smart large object.

Modifying a smart large object
You can modify a smart large object by using either an UPDATE or INSERT
statement.

To modify the data of a smart large object:

1. Read and write the data in the open smart large object.

Chapter 4. Smart large objects 4-19

2. Use an UPDATE or INSERT statement to store the smart-large-object pointer in
the database.

Close a smart large object
After you finish modifying a smart large object, call ifx_lo_close() to deallocate the
resources that are assigned to it.

When the resources are freed, you can reallocate them to other structures that your
application needs. You can also reallocate the smart-large-object file descriptor to
other smart large objects.

Example of retrieving a smart large object from the database
using ifx_lo functions

The code example, loselect.c, shows how to retrieve a smart large object from the
database.

You can find the Toselect.c file in the $INFORMIXDIR%/demo/c1idemo directory on
UNIX platforms and in the INFORMIXDIR%\demo\odbcdemo directory on Windows
platforms. You can also find instructions on how to build the odbc_demo database
in the same location.

/*

*k loselect.c

%

** To access a smart large object
*k SQLBindCol

*% SQLBindParameter
*% SQLConnect

*k SQLFetch

*% SQLFreeStmt

k% SQLGetInfo

*% SQLDisconnect

*% SQLExecDirect

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#include "infxcli.h"
#define ERRMSG_LEN 200
UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,
SQLHANDLE handle,
char *errmsg)

SQLRETURN retcode = SQL_SUCCESS;

SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN] ;
SQLSMALLINT textLengthPtr;

4-20 1BM Informix ODBC Driver Programmer's Manual

}

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
{

while (retcode != SQL_NO_DATA)

{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);
if (retcode == SQL_INVALID HANDLE)
{
fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;
}
if ((retcode == SQL_SUCCESS) || (retcode ==
SQL_SUCCESS_WITH INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);
errNum++;

}

fprintf (stderr, "%s\n", errmsg);

return 1; /* all errors on this handle have been reported */
1
else

return 0; /* no errors to report */

int main (long argc,

{

char *argv[])

/* Declare variables
*/

/* Handles */

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */
Tong lofd;
long lofd_valsize = 0;

/* Smart large object pointer structure x/

charx* loptr_buffer;
short loptr_size;
long loptr_valsize = 0;

/* Smart large object status structure =/

charx* lostat_buffer;
short lostat_size;
Tong lostat_valsize = 0;

/* Smart large object data */
charx* lo_data;
Tong lo_data_valsize = 0;

/* Miscellaneous variables */

UCHAR dsn[20]; /*name of the DSN used for connecting to the
databasex/

SQLRETURN rc = 0;

int in;

char= selectStmt = "SELECT advert FROM item WHERE item_num =
1004";

Chapter 4. Smart large objects

4-21

long mode = LO_RDONLY;
Tong lo_size;
Tong cbMode = 0, cbLoSize = 0;

/* STEP 1. Get data source name from command line (or use default)

*k Allocate the environment handle and set ODBC version
*k Allocate the connection handle

*% Establish the database connection

*k Allocate the statement handle

*

/

/% 1f(dsn is not explicitly passed in as arg) */
if (argc != 2)
{

/* Use default dsn - odbc_demo */
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char *)defDsn);

else
{
/* Use specified dsn x/
strcpy ((char *)dsn, (char *)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);

/* Allocate the Environment handle */
rc = SQLATTocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

fprintf (stdout, "Environment Handle Allocation
failed\nExiting!!\n");
return (1);

/* Set the ODBC version to 3.5 */
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0)}
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!\n"))
return (1);

/% Allocate the connection handle */
rc = SQLATTocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!\n"))
return (1);

/* Establish the database connection */
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL NTS);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\nExiting!!"))
return (1);
/* Allocate the statement handle */
rc = SQLATlocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

/* STEP 2. Select a smart-large object from the database

*k -- the select statement executed is -
*% "SELECT advert FROM item WHERE item_num = 1004"
*/

4-22 IBM Informix ODBC Driver Programmer's Manual

/*

/* Execute the select statement x/
rc = SQLExecDirect (hstmt, selectStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...select statement executed...smart Targe
object retrieved from the databse\n");

STEP 3. Get the size of the smart large object pointer structure.
*% Allocate a buffer to hold the structure.

*% Get the smart large object pointer structure from the

*% database.

*k Close the result set cursor.

*

/

/* Get the size of the smart large object pointer structure =/
rc = SQLGetInfo (hdbc, SQL_INFX_LO PTR_LENGTH, &loptr_size,
sizeof(Toptr_size),
NULL);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 3 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object pointer structure */
Toptr_buffer = malloc (Toptr_size);

/* Bind the smart large object pointer structure buffer allocated to the
column in the result set & fetch it from the database */
rc = SQLBindCol (hstmt, 1, SQL _C BINARY, Tloptr buffer, loptr_size,
&loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindCol failed\n"))
goto Exit;

rc = SQLFetch (hstmt);
if (rc == SQL_NO_DATA_FOUND)

fprintf (stdout, "No Data Found\nExiting!!\n");
goto Exit;

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 -- SQLFetch
failed\n"))
goto Exit;

/* Close the result set cursor */
rc = SQLCloseCursor (hstmt);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLCloseCursor failed\n"))
goto Exit;

fprintf (stdout, "STEP 3 done...smart large object pointer structure
fetched from the database\n");

STEP 4. Use the smart large object's pointer structure to open it
*% and obtain the smart Targe object file descriptor.

*% Reset the statement parameters.

*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM OUTPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

Chapter 4. Smart large objects

4-23

rc = SQLBindParameter (hstmt, 2, SQL_PARAM INPUT, SQL C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
Toptr_size, &loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM INPUT, SQL C_LONG,
SQL_INTEGER, (UDWORD)0O, 0, &mode, sizeof(mode), &cbMode);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 3)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{? = call ifx_lo_open(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters =*/
rc = SQLFreeStmt (hstmt, SQL_RESET PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 4 done...smart large object opened... file
descriptor obtained\n");

/% STEP 5. Get the size of the smart Targe object status structure.

** Allocate a buffer to hold the structure.

*% Get the smart large object status structure from the
*% database.

*% Reset the statement parameters.

*

/

/* Get the size of the smart large object status structure =/
rc = SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size,
sizeof(lostat_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 5 -- SQLGetInfo
failed\n"))
goto Exit;

/% Allocate a buffer to hold the smart large object status structure. =*/
Tostat_buffer = malloc(lostat_size);

/* Get the smart large object status structure from the database. */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
lostat_size, &lostat_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDiret failed\n"))
goto Exit;

/* Reset the statement parameters */

rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --

4-24 1BM Informix ODBC Driver Programmer's Manual

/*

/*

SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 5 done...smart large object status structure
fetched from the database\n");

STEP 6. Use the smart large object's status structure to get the
*% size of the smart Targe object.

*k Reset the statement parameters.

*/

/% Use the smart large object status structure to get the size of the
smart large object */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM INPUT, SQL C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
Tostat_size, &lostat_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM OUTPUT, SQL_C_LONG,
SQL_BIGINT, (UDWORD)O, 0, &lo_size, sizeof(lo_size), &cbLoSize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_size(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters =*/
rc = SQLFreeStmt (hstmt, SQL_RESET PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 6 done...smart large object size = %1d bytes\n",
To_size);

STEP 7. Allocate a buffer to hold the smart Targe object's data.

*% Read the smart large object's data using its file descriptor.
*% Null-terminate the Tast byte of the smart Targe-object's data.
*% Print out the contents of the smart large object.

% Reset the statement parameters.

*

/

/* Allocate a buffer to hold the smart large object's data chunks =*/
lo_data = malloc (lo_size + 1);

/* Read the smart large object's data */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,
lo_size, 0, lo_data, lo_size, &lo_data_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_read(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --

Chapter 4. Smart large objects

4-25

4-26

/*

/*

SQLExecDirect failed\n"))
goto Exit;

/* Null-terminate the last byte of the smart large objects data */
To_data[lo_size] = '\0';

/* Print the contents of the smart large object */
fprintf (stdout, "Smart large object contents are..... \n\n\n%s\n\n\n",
To_data);

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 7 done...smart large object read completely\n");

STEP 8. Close the smart Targe object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM INPUT, SQL C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;
fprintf (stdout, "STEP 8 done...smart large object closed\n");
STEP 9. Free the allocated buffers.
*/
free (Toptr_buffer);
free (lostat_buffer);
free (1o_data);
fprintf (stdout, "STEP 9 done...smart large object buffers freed\n");
Exit:

/* CLEANUP: Close the statement handle

*k Free the statement handle

*% Disconnect from the datasource

*% Free the connection and environment handles
*x Exit

*/

/* Close the statement handle =/
SQLFreeStmt (hstmt, SQL _CLOSE);

/* Free the statement handle =/
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source */
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

IBM Informix ODBC Driver Programmer's Manual

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");

in = getchar ();

return (rc);

Retrieve the status of a smart large object

The status information of a smart large object has corresponding client functions.

The following table describes the status information and the corresponding client

functions.

Disk-storage
information

Description

Client functions

Last access time

The time, in seconds, that a smart large
object was last accessed.

This value is available only if the
LO_KEEP_LASTACCESS_TIME flag is
set for the smart large object.

ifx_lo_stat_atime()

Last time of status
change

The time, in seconds, of the last status
change for a smart large object.

A change in status includes updates,
changes in ownership, and changes to
the number of references.

ifx_lo_stat_ctime()

Last modification
time (seconds)

The time, in seconds, that a smart large
object was last modified.

ifx_lo_stat_mtime_sec()

Last modification
time (microseconds)

The microsecond component of the time
of last modification.

This value is only supported on
platforms that provide system time to
microsecond granularity.

ifx_lo_stat_mtime_usec()

Reference count

A count of the number of references to a
smart large object.

ifx_lo_stat_refcnt()

Size

The size, in bytes, of a smart large object.

ifx_lo_stat_size()

The time values (such as last access time and last change time) might differ slightly
from the system time. This difference is due to the algorithm that the database
server uses to obtain the time from the operating system.

Example of retrieving information about a smart large object

The code example, Toinfo.c, shows how to retrieve information about a smart

large object.

You can find the Toinfo.c file in the $INFORMIXDIR%/demo/c1idemo directory on
UNIX platforms and in the %SINFORMIXDIR%\demo\odbcdemo directory in Windows
environments. You can also find instructions on how to build the odbc_demo
database in the same location.

/*
*% loinfo.c
*%

** To check the status of a smart Targe object

**

Chapter 4. Smart large objects 4-27

*x OBDC Functions:

*k SQLBindCol

k% SQLBindParameter
*k SQLConnect

*% SQLFetch

*k SQLFreeStmt

*% SQLDisconnect

*x SQLExecDirect

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#include "infxcli.h"

#define BUFFER_LEN 20
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,

SQLHANDLE handle,
char *errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN] ;

SQLSMALLINT textLengthPtr;
if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INF0))
{

while (retcode != SQL_NO_DATA)
{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

if (retcode == SQL_INVALID HANDLE)
{
fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;

}

if ((retcode == SQL_SUCCESS) || (retcode
SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);

errNum++;

}

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

}

else

4-28 IBM Informix ODBC Driver Programmer's Manual

}

return 0; /* no errors to report */

int main (long argc,

{

/*

char *argv[])

/* Declare variables

*/

/* Handles =/

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */
long lofd;
Tong lofd valsize = 0;

/* Smart large object specification structure */

char= lospec_buffer;
short lospec_size;
long lospec_valsize = 0;

/* Smart large object status structure */

charx lostat_buffer;
short lostat_size;
Tong lostat_valsize = 0;

/* Smart large object pointer structure =/

charx loptr_buffer;
short loptr_size;
long loptr_valsize = 0;

/* Miscellaneous variables =/

UCHAR dsn[20]; /*name of the DSN used for connecting to the
databasex/

SQLRETURN rc = 0;

int in;

charx selectStmt = "SELECT advert FROM item WHERE item_num =
1004";

long lo_size;

Tong mode = LO_RDONLY;

char sbspace_name[BUFFER_LEN] ;

Tong sbspace_name_size = SQL_NTS;

long cbMode = 0, cbLoSize = 0;

STEP 1. Get data source name from command Tine (or use default).

*% Allocate the environment handle and set ODBC version.
*k Allocate the connection handle.

*k Establish the database connection.

*k Allocate the statement handle.

*

/

/* If (dsn is not explicitly passed in as arg) =*/
if (argc !'= 2)

/* Use default dsn - odbc_demo x/
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char *)defDsn);

else

{

/* Use specified dsn x/

Chapter 4. Smart large objects

4-29

4-30

/*

/*

strcpy ((char *)dsn, (char *)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);

/* Allocate the Environment handle =/
rc = SQLATlocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

fprintf (stdout, "Environment Handle Allocation
failed\nExiting!!\n");
return (1);

/* Set the ODBC version to 3.5 x/
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_0DBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!\n"))
return (1);

/* Allocate the connection handle */
rc = SQLAT1ocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!\n"))
return (1);

/* Establish the database connection */
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL _NTS);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\nExiting!!"))
return (1);

/% Allocate the statement handle =/
rc = SQLATTocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Select a smart-large object from the database.
*k -- the select statement executed is -

*x "SELECT advert FROM item WHERE item_num = 1004"
*/

/* Execute the select statement x/
rc = SQLExecDirect (hstmt, selectStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...select statement executed...smart Targe
object retrieved from the databse\n");

STEP 3. Get the size of the smart large object pointer structure.
*k Allocate a buffer to hold the structure.
*k Get the smart large object pointer structure from the database.
*% Close the result set cursor.
*
/

/* Get the size of the smart large object pointer structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size,
sizeof (loptr_size), NULL);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 3 -- SQLGetInfo

IBM Informix ODBC Driver Programmer's Manual

/*

failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object pointer structure */
Toptr_buffer = malloc (loptr_size);

/* Bind the smart large object pointer structure buffer allocated to the
column in the result set & fetch it from the database */
rc = SQLBindCol (hstmt, 1, SQL_C_BINARY, loptr_buffer, loptr_size,
&loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindCol failed\n"))
goto Exit;

rc = SQLFetch (hstmt);
if (rc == SQL_NO_DATA_FOUND)

fprintf (stdout, "No Data Found\nExiting!!\n");
goto Exit;

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 -- SQLFetch
failed\n"))
goto Exit;

/* Close the result set cursor */
rc = SQLCloseCursor (hstmt);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLCToseCursor failed\n"))
goto Exit;

fprintf (stdout, "STEP 3 done...smart large object pointer structure
fetched from the database\n");

STEP 4. Use the smart large object's pointer structure to open it
k% and obtain the smart Targe object file descriptor.

*% Reset the statement parameters.

*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
Toptr_size, &loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)0O, 0, &mode, sizeof(mode), &chMode);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 3)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{? = call ifx_lo_open(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters =*/

rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLFreeStmt failed\n"))

Chapter 4. Smart large objects

4-31

4-32

/*

goto Exit;

fprintf (stdout, "STEP 4 done...smart large object opened... file
descriptor obtained\n");

STEP 5. Get the size of the smart large object status structure.

*k Allocate a buffer to hold the structure.

*% Get the smart large object status structure from the database.
*% Reset the statement parameters.

*

/

/* Get the size of the smart large object status structure =/
rc = SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size,
sizeof(lostat_size), NULL);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 5 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object status structure. */
Tostat_buffer = malloc(lostat_size);

/* Get the smart large object status structure from the database. */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM INPUT, SQL C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat size, 0, lostat buffer,
Tostat_size, &lostat_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters =*/
rc = SQLFreeStmt (hstmt, SQL_RESET PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 5 done...smart large object status structure
fetched from the database\n");

STEP 6. Use the smart large object's status structure to get the size
*k of the smart Targe object.

% Reset the statement parameters.

*k You can use additional ifx_lo_stat () functions to get more
*% status information about the samrt large object.

Kk You can also use it to retrieve the smart large object

*% specification structure and get further information about the
*% smart large objectusing it's specification structure.

*

/

/% Use the smart large object status structure to get the size of the
smart Targe object. */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM INPUT, SQL C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
Tostat_size, &lostat_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --

IBM Informix ODBC Driver Programmer's Manual

/*

SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_BIGINT, (UDWORD)O, 0, &lo_size, sizeof(lo_size), &cbLoSize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_To_stat size(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters =*/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "LARGE OBJECT SIZE = %1d\n", lo_size);
fprintf (stdout, "STEP 6 done...smart large object size retrieved\n");

STEP 7. Get the size of the smart large object specification structure.
*% Allocate a buffer to hold the structure.

*k Get the smart Targe object specification structure from the

*k database.

*k Reset the statement parameters.

*

/

/* Get the size of the smart Targe object specification structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO_SPEC_LENGTH, &lospec_size,
sizeof(lospec_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 7 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object specification
structure */
Tospec_buffer = malloc (lTospec_size);

/* Get the smart large object specification structure from the
database */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
Tostat_size, &lostat_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, Tospec_buffer,
Tospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_cspec(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 7 done...smart large object status structure
fetched from the database\n");

Chapter 4. Smart large objects

4-33

4-34

/*

/*

/*

STEP 8. Use the smart large object's specification structure to get

*% the sbspace name where the smart large object is stored.
*% Reset the statement parameters.
*/

/* Use the smart large object's specification structure to get the
sbspace name of the smart large object. */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM INPUT, SQL C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM OUTPUT, SQL C CHAR, SQL_CHAR,
BUFFER_LEN, 0, shspace name, BUFFER_LEN, &sbspace name size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_specget sbspace(?, ?)}",
SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "LARGE OBJECT SBSPACE NAME = %s\n", sbspace_name);
fprintf (stdout, "STEP 8 done...large object sbspace name retrieved\n");

STEP 9. Close the smart large object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 9 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 9 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 9 done...smart large object