
Informix Product Family
Informix
Version 12.10

IBM Informix TimeSeries Data
User's Guide

SC27-4535-03

���

Informix Product Family
Informix
Version 12.10

IBM Informix TimeSeries Data
User's Guide

SC27-4535-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page D-1.

This edition replaces SC27-4535-02.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . xi
About this publication . xi

Types of users . xi
Assumptions about your locale . xi

What's new in TimeSeries data for Informix, Version 12.10 xii
Example code conventions . xvii
Additional documentation. xviii
Compliance with industry standards . xviii
Syntax diagrams . xviii

How to read a command-line syntax diagram . xix
Keywords and punctuation . xx
Identifiers and names . xxi

How to provide documentation feedback . xxi

Chapter 1. Informix TimeSeries solution . 1-1
Informix TimeSeries solution architecture . 1-3
Time series concepts . 1-4

TimeSeries data type technical overview . 1-5
Regular time series . 1-7
Irregular time series . 1-7
Packed time series . 1-8
JSON time series . 1-12
Calendar. 1-13
Time series storage . 1-14

Getting started with the Informix TimeSeries solution . 1-19
Planning for creating a time series . 1-19
Planning for data storage . 1-20
Planning for loading time series data . 1-23
Planning for replication of time series data . 1-23
Planning for accessing time series data . 1-24

Hardware and software requirements . 1-25
Installing the IBM Informix TimeSeries Plug-in for Data Studio 1-25
Database requirements for time series data . 1-26
SQL restrictions for time series data . 1-26
Time series global language support . 1-26

Sample smart meter data . 1-27
Setting up stock data examples . 1-28

Chapter 2. Data types and system tables. 2-1
CalendarPattern data type . 2-1
Calendar data type . 2-4
TimeSeries data type . 2-6
Time series return types . 2-8
CalendarPatterns table . 2-8
CalendarTable table . 2-8
TSContainerTable table . 2-9
TSContainerWindowTable . 2-10

TSContainerUsageActiveWindowVTI Table . 2-11
TSContainerUsageDormantWindowVTI Table . 2-12

TSInstanceTable table . 2-12

Chapter 3. Create and manage a time series through SQL 3-1
Example: Create and load a regular time series . 3-1

Creating a TimeSeries data type and table . 3-2
Creating regular, empty time series . 3-2

© Copyright IBM Corp. 2006, 2014 iii

Creating the data load file . 3-3
Loading the time series data . 3-3
Accessing time series data through a virtual table . 3-4

Example: Create and load a hertz time series . 3-5
Example: Create and load a compressed time series. 3-7
Example: Create and load a time series with JSON data . 3-10
Defining a calendar . 3-12

Predefined calendars. 3-13
Create a time series column . 3-13

Creating a TimeSeries subtype . 3-13
Create the database table . 3-14

Creating containers . 3-15
Rules for rolling window containers . 3-16
Monitor containers . 3-18
Manage container pools . 3-19

Create a time series . 3-22
Creating a time series with metadata . 3-23
Time series input function . 3-24
Create a time series with the output of a function . 3-27

Load data into an existing time series . 3-27
IBM Informix TimeSeries Plug-in for Data Studio . 3-27
Writing a loader program . 3-31
Loading JSON data . 3-33
Loading data from a file into a virtual table . 3-34
Load data with the BulkLoad function. 3-35
Load small amounts of data with SQL functions . 3-36

Delete time series data . 3-37
Manage packed data. 3-37

Chapter 4. Virtual tables for time series data 4-1
Performance of queries on virtual tables . 4-2
The structure of virtual tables . 4-2
The display of data in virtual tables . 4-3
Insert data through virtual tables . 4-4
Creating a time series virtual table . 4-5
TSCreateVirtualTab procedure . 4-5

Example of creating a virtual table . 4-8
Example of creating a fragmented virtual table . 4-10

TSCreateExpressionVirtualTab procedure . 4-13
The TSVTMode parameter . 4-16
Drop a virtual table . 4-26
Trace functions . 4-26

The TSSetTraceFile function . 4-26
TSSetTraceLevel function . 4-27

Chapter 5. Calendar pattern routines . 5-1
AndOp function . 5-1
CalPattStartDate function . 5-2
Collapse function . 5-3
Expand function . 5-4
NotOp function . 5-4
OrOp function . 5-5

Chapter 6. Calendar routines . 6-1
AndOp function . 6-1
CalIndex function . 6-2
CalRange function . 6-3
CalStamp function . 6-4
CalStartDate function . 6-5
OrOp function . 6-5

iv IBM Informix TimeSeries Data User's Guide

Chapter 7. Time series SQL routines . 7-1
Time series SQL routines sorted by task. 7-2
Time series routines that run in parallel. 7-7
The flags argument values . 7-9
Abs function . 7-11
Acos function . 7-11
AggregateBy function . 7-11
AggregateRange function . 7-15
Apply function . 7-18
ApplyBinaryTsOp function . 7-23
ApplyCalendar function . 7-24
ApplyOpToTsSet function . 7-25
ApplyUnaryTsOp function. 7-26
Asin function . 7-27
Atan function . 7-27
Atan2 function. 7-27
Binary arithmetic functions . 7-27
BulkLoad function . 7-30
Clip function . 7-31
ClipCount function . 7-35
ClipGetCount function . 7-37
Cos function . 7-38
CountIf function . 7-38
DelClip function . 7-42
DelElem function . 7-43
DelRange function . 7-44
DelTrim function . 7-45
Divide function . 7-46
ElemIsHidden function . 7-47
ElemIsNull function . 7-47
Exp function . 7-48
FindHidden function . 7-48
GetCalendar function . 7-48
GetCalendarName function . 7-49
GetClosestElem function . 7-49
GetCompression function . 7-50
GetContainerName function . 7-51
GetElem function . 7-52
GetFirstElem function . 7-53
GetFirstElementStamp function . 7-53
GetHertz function . 7-54
GetIndex function . 7-55
GetInterval function . 7-55
GetLastElem function . 7-56
GetLastElementStamp function . 7-57
GetLastNonNull function . 7-57
GetLastValid function . 7-58
GetMetaData function . 7-59
GetMetaTypeName function . 7-59
GetNelems function . 7-60
GetNextNonNull function . 7-61
GetNextValid function . 7-61
GetNthElem function . 7-62
GetOrigin function . 7-64
GetPacked function . 7-64
GetPreviousValid function . 7-65
GetStamp function . 7-66
GetThreshold function . 7-67
HideElem function . 7-67
HideRange function . 7-68
InsElem function . 7-69

Contents v

InsSet function. 7-70
InstanceId function . 7-71
Intersect function . 7-71
IsRegular function . 7-73
Lag function . 7-73
Logn function . 7-74
Minus function . 7-74
Mod function . 7-75
Negate function . 7-75
NullCleanup function . 7-75
Plus function . 7-77
Positive function . 7-77
Pow function . 7-77
PutElem function . 7-77
PutElemNoDups function . 7-79
PutNthElem function . 7-80
PutSet function . 7-80
PutTimeSeries function . 7-82
RevealElem function . 7-83
RevealRange function . 7-83
Round function . 7-84
SetContainerName function . 7-84
SetOrigin function . 7-85
Sin function . 7-85
Sqrt function . 7-85
Tan function . 7-86
Times function. 7-86
TimeSeriesRelease function . 7-86
Transpose function . 7-86
TSAddPrevious function . 7-90
TSCmp function . 7-90
TSColNameToList function . 7-91
TSColNumToList function . 7-92
TSContainerCreate procedure . 7-93
TSContainerDestroy procedure . 7-98
TSContainerLock procedure . 7-99
TSContainerManage function . 7-99
TSContainerNElems function . 7-104
TSContainerPctUsed function . 7-105
TSContainerPoolRoundRobin function . 7-107
TSContainerPurge function . 7-108
TSContainerSetPool procedure . 7-111
TSContainerTotalPages function . 7-112
TSContainerTotalUsed function . 7-113
TSContainerUsage function . 7-114
TSCreate function . 7-116
TSCreateIrr function . 7-118
TSDecay function . 7-122
TSL_Attach function . 7-123
TSL_Commit function . 7-124
TSL_Flush function . 7-126
TSL_FlushAll function . 7-128
TSL_FlushInfo function . 7-129
TSL_FlushStatus function . 7-131
TSL_GetKeyContainer function . 7-131
TSL_GetLogMessage function . 7-132
TSL_Init function . 7-133
TSL_Put function . 7-135
TSL_PutRow function . 7-137
TSL_PutSQL function . 7-138
TSL_SessionClose function . 7-139

vi IBM Informix TimeSeries Data User's Guide

TSL_SetLogMode function . 7-140
TSL_Shutdown procedure . 7-141
TSPrevious function . 7-141
TSRollup function . 7-142
TSRowNameToList function . 7-145
TSRowNumToList function . 7-146
TSRowToList function . 7-147
TSRunningAvg function . 7-147
TSRunningCor function . 7-149
TSRunningMed function . 7-150
TSRunningSum function . 7-151
TSRunningVar function . 7-152
TSSetToList function . 7-153
TSToXML function . 7-154
Unary arithmetic functions . 7-156
Union function . 7-157
UpdElem function . 7-159
UpdMetaData function . 7-159
UpdSet function . 7-160
WithinC and WithinR functions. 7-161

Chapter 8. Time series Java class library. 8-1
Java class files and sample programs . 8-3
Preparing the server for Java classes . 8-3
Mapping time series data types . 8-4
Querying time series data with the IfmxTimeSeries object. 8-4
Obtaining the time series Java class version . 8-5

Chapter 9. Time series API routines . 9-1
Differences in using functions on the server and on the client 9-1
Data structures for the time series API . 9-2

The ts_timeseries structure . 9-2
The ts_tscan structure. 9-2
The ts_tsdesc structure . 9-2
The ts_tselem structure . 9-3

Time series API routines sorted by task . 9-3
The ts_begin_scan() function . 9-7
The ts_cal_index() function . 9-9
The ts_cal_pattstartdate() function . 9-9
The ts_cal_range() function . 9-10
The ts_cal_range_index() function . 9-11
The ts_cal_stamp() function . 9-11
The ts_cal_startdate() function . 9-12
The ts_close() function . 9-12
The ts_closest_elem() function . 9-13
The ts_col_cnt() function . 9-14
The ts_col_id() function. 9-14
The ts_colinfo_name() function . 9-15
The ts_colinfo_number() function . 9-15
The ts_copy() function . 9-16
The ts_create() function . 9-17
The ts_create_with_metadata() function . 9-18
The ts_current_offset() function . 9-20
The ts_current_timestamp() function . 9-21
The ts_datetime_cmp() function . 9-21
The ts_del_elem() function. 9-22
The ts_elem() function . 9-22
The TS_ELEM_HIDDEN macro . 9-23
The TS_ELEM_NULL macro . 9-24
The ts_elem_to_row() function . 9-24

Contents vii

The ts_end_scan() procedure . 9-25
The ts_first_elem() function . 9-25
The ts_free() procedure . 9-26
The ts_free_elem() procedure . 9-26
The ts_get_all_cols() procedure . 9-27
The ts_get_calname() function . 9-27
The ts_get_col_by_name() function . 9-28
The ts_get_col_by_number() function . 9-28
The ts_get_compressed() function . 9-29
The ts_get_containername() function . 9-29
The ts_get_flags() function . 9-30
The ts_get_hertz() function . 9-30
The ts_get_metadata() function . 9-31
The ts_get_origin() function . 9-31
The ts_get_packed() function . 9-32
The ts_get_stamp_fields() procedure . 9-32
The ts_get_threshold() function . 9-33
The ts_get_ts() function . 9-33
The ts_get_typeid() function . 9-34
The ts_hide_elem() function . 9-34
The ts_index() function . 9-35
The ts_ins_elem() function . 9-36
The TS_IS_INCONTAINER macro . 9-36
The TS_IS_IRREGULAR macro . 9-37
The ts_last_elem() function . 9-37
The ts_last_valid() function . 9-38
The ts_make_elem() function . 9-38
The ts_make_elem_with_buf() function . 9-39
The ts_make_stamp() function . 9-40
The ts_nelems() function . 9-41
The ts_next() function . 9-41
The ts_next_valid() function . 9-42
The ts_nth_elem() function. 9-43
The ts_open() function . 9-44
The ts_previous_valid() function . 9-45
The ts_put_elem() function . 9-46
The ts_put_elem_no_dups() function . 9-47
The ts_put_last_elem() function . 9-48
The ts_put_nth_elem() function . 9-48
The ts_put_ts() function. 9-49
The ts_reveal_elem() function . 9-50
The ts_row_to_elem() function . 9-50
The ts_time() function . 9-51
The ts_tstamp_difference() function . 9-51
The ts_tstamp_minus() function . 9-52
The ts_tstamp_plus() function . 9-53
The ts_update_metadata() function . 9-54
The ts_upd_elem() function . 9-54

Appendix A. The Interp function example . A-1

Appendix B. The TSIncLoad procedure example B-1

Appendix C. Accessibility . C-1
Accessibility features for IBM Informix products . C-1

Accessibility features . C-1
Keyboard navigation . C-1
Related accessibility information . C-1
IBM and accessibility . C-1

Dotted decimal syntax diagrams . C-1

viii IBM Informix TimeSeries Data User's Guide

Notices . D-1
Privacy policy considerations . D-3
Trademarks . D-3

Index . X-1

Contents ix

x IBM Informix TimeSeries Data User's Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication
This publication contains information to assist you in using the time series data
types and supporting routines.

These topics discuss the organization of the publication, the intended audience,
and the associated software products that you must have to develop and use time
series.

Types of users
This publication is written for the following audience:
v Developers who write applications to access time series information stored in

IBM® Informix® databases

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é, �, and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

© Copyright IBM Corp. 2006, 2014 xi

What's new in TimeSeries data for Informix, Version 12.10
This publication includes information about new features and changes in existing
functions.

For a complete list of what's new in this release, go to http://pic.dhe.ibm.com/
infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm.

Table 1. What's New in IBM Informix TimeSeries Data User's Guide for 12.10.xC4

Overview Reference

Enhancements to the time series Java™ class library

When you write a Java application with the time series
Java class library, now you can define time series objects
with the new builder classes. Previously, you defined
time series objects with string representations of SQL
statements. Builder classes reduce the possibility of errors
and improve usability. The methods in the Java class
library run faster than in previous releases.

The time series Java class library has the following
enhancements for creating time series objects:

v You can now determine whether the definitions of two
calendars or calendar patterns are the same.

v You can create calendar patterns and calendars with
new IfmxCalendarPattern.Builder and
IfmxCalendar.Builder classes.

v You can create and manage containers with the new
TimeSeriesContainer and
TimeSeriesContainer.Builder classes.

v You can create TimeSeries row types with the new
TimeSeriesRowType and TimeSeriesRowType.Builder
classes.

v You can create a simpler custom type map that uses a
PatternClassMap instead of individual entries for each
data type with the new TimeSeriesTypeMap and
TimeSeriesTypeMap.Builder classes.

The IfmxTimeSeries class has the following enhancements
for managing time series data:

v You can insert data into a time series with the new
IfmxTimeSeries.Builder class.

v You can easily modify data and process query results
because the results of queries on time series data are
now JDBC updatable result sets.

v You can distinguish between case sensitive and case
insensitive databases and make multiple updates
within a row.

v You can convert the time series data to the appropriate
time zone on the client.

v You can select and update data by specifying similar
data types instead of the exact data types. Data is
implicitly cast during read and write operations.
Previously, transactions that did not specify the exact
data types failed.

Chapter 8, “Time series Java class library,” on page 8-1

xii IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm

Table 1. What's New in IBM Informix TimeSeries Data User's Guide for 12.10.xC4 (continued)

Overview Reference

Include JSON documents in time series

You can include JSON documents that are associated with
timestamps in time series. For example, weather
monitoring sensors that return 2 - 50 values in JSON
documents through the REST API every 10 minutes. You
store JSON documents with time series data as BSON
documents in a BSON column in the TimeSeries data
type.

“JSON time series” on page 1-12

“Example: Create and load a time series with JSON data”
on page 3-10

Create a time series with the REST API or the MongoDB
API

If you have applications that handle time series data, you
can now create and manage a time series with the REST
API or the MongoDB API. Previously, you created a time
series by running SQL statements. For example, you can
program sensor devices that do not have client drivers to
load time series data directly into the database with
HTTP commands from the REST API.

You create time series objects by adding definitions to
time series collections. You interact with time series data
through a virtual table.

This feature is documented in the IBM Informix JSON
Compatibility Guide.

Create time series through the wire listener (JSON
compatibility)

Replicate hertz and compressed time series data

You can now replicate hertz and compressed time series
data with Enterprise Replication.

Table 2. What's New in IBM Informix TimeSeries Data User's Guide for 12.10.xC3

Overview Reference

Efficient storage for hertz and numeric time series data

You can save disk space by packing multiple time series
records in each element. If your data is recorded with a
regular subsecond frequency, you can define a hertz time
series to pack records for a second of data in each time
series element. If all the columns in your TimeSeries data
type are numeric, you can define a compressed time
series to pack and compress up to 4 KB of records in each
time series element.

“Packed time series” on page 1-8

“Example: Create and load a hertz time series” on page
3-5

“Example: Create and load a compressed time series” on
page 3-7

Faster queries by running time series routines in parallel

Time series SQL routines that you include in the WHERE
clause of SELECT statements return results faster when
they run in parallel. If you fragment the table that
contains the time series data and enable PDQ, time series
SQL routines run in parallel.

“Time series routines that run in parallel” on page 7-7

Introduction xiii

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.json.doc/ids_json_060.htm#ids_json_060
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.json.doc/ids_json_060.htm#ids_json_060

Table 2. What's New in IBM Informix TimeSeries Data User's Guide for 12.10.xC3 (continued)

Overview Reference

Control the destroy behavior for rolling window
containers

You can limit the number of partitions of a rolling
window container that can be destroyed in an operation.
You control how many partitions are destroyed and
whether active partitions can be destroyed when the
number of partitions that must be detached is greater
than the size of the dormant window. When you create a
rolling window container, set the destroy_count parameter
to a positive integer and the window_control parameter to
2 or 3 in the TSCreateContainer function. You can change
the destroy behavior of an existing rolling window
container by including the wcontrol parameter in the
TSContainerManage function.

“TSContainerCreate procedure” on page 7-93

“TSContainerManage function” on page 7-99

Monitor groups of containers with wildcard characters

You can monitor groups of containers that have similar
names. Include the wildcard characters for the MATCHES
operator in the parameter for the container name in the
TSContainerUsage, TSContainerTotalPages,
TSContainerTotalUsed, TSContainerPctUsed,
TSContainer, and TSContainerNElems functions.

“TSContainerUsage function” on page 7-114

“TSContainerTotalPages function” on page 7-112

“TSContainerTotalUsed function” on page 7-113

“TSContainerPctUsed function” on page 7-105

“TSContainerNElems function” on page 7-104

Faster queries with IN conditions through virtual tables

Access methods that are created through the virtual table
interface now process IN conditions in query predicates
that operate on simple columns. Processing through a
virtual table interface is generally faster than SQL
processing. For example, queries with IN conditions that
you run on time series virtual tables now run faster than
in previous releases.

Table 3. What's New in IBM Informix TimeSeries Data User's Guide for 12.10.xC2

Overview Reference

Accelerate queries on time series data

You accelerate queries on time series data by creating
data marts that are based on time series virtual tables.

You can define virtual partitions so that you can quickly
refresh the data in part of the data mart or continuously
refresh the data. You can make queries faster by limiting
the amount of data in the data mart to specific time
intervals.

“Planning for accessing time series data” on page 1-24

“Performance of queries on virtual tables” on page 4-2

Faster queries on time series virtual tables

You can run queries in parallel on a virtual table that is
fragmented. The virtual table must be based on a time
series table that is fragmented by expression. Include the
fragment flag in the TSVTMode parameter when you
create the virtual table.

You can include the flags for the TSVTMode parameter as
a set of strings instead of as a number.

“Example of creating a fragmented virtual table” on page
4-10

“The TSVTMode parameter” on page 4-16

xiv IBM Informix TimeSeries Data User's Guide

Table 3. What's New in IBM Informix TimeSeries Data User's Guide for 12.10.xC2 (continued)

Overview Reference

Replicate time series data with all high-availability
clusters

You can now replicate time series data with all types of
high-availability clusters. Previously, you could replicate
time series data only with High-Availability Data
Replication (HDR) clusters, and not with shared-disk
secondary and remote stand-alone secondary clusters.
Secondary servers must be read-only.

“Planning for replication of time series data” on page
1-23

Order TimeSeries columns in query results

You can include a TimeSeries column in an ORDER BY
clause of an SQL query. The ORDER BY clause sorts the
results from the TimeSeries column by the time series
instance ID.

“TSInstanceTable table” on page 2-12

Improvements for time series loader programs

You have new options for how you flush time series data
to disk when you write a loader program. You can flush
time series elements for all containers to disk in a single
transaction or in multiple transactions. If you want your
client application to control transactions, run the
TSL_FlushAll function. The TSL_FlushAll function
flushes time series elements to disk in one transaction. If
you want the loader program to control the size of your
transactions, run the TSL_Commit function. The
TSL_Commit function flushes time series elements to
disk in multiple transactions, based on the commit
interval that you specify.

You can view the results of the data flushing function by
running the TSL_FlushInfo function.

You can specify that no duplicate elements are allowed
when you flush time series data to disk.

“TSL_FlushAll function” on page 7-128

“TSL_Commit function” on page 7-124

“TSL_FlushInfo function” on page 7-129

Faster aggregation of an interval of time series data

You can aggregate an interval of time series data faster by
including start and end dates in the TSRollup function.
Previously, you selected an interval of time series data
with the Clip or similar function and passed the results
to the TSRollup function.

“TSRollup function” on page 7-142

Introduction xv

Table 4. What's New in IBM Informix TimeSeries Data User's Guide for 12.10.xC1

Overview Reference

Manage time-series data in rolling window containers

You can control the amount of time-series data that is
stored in containers by specifying when to delete obsolete
data. You create a rolling window container that has
multiple partitions that are stored in multiple dbspaces.
You configure a rolling window container to define the
time interval for each partition and how many partitions
are allowed: for example, 12 partitions that each store a
month of data. When you insert data for a new month, a
new partition is created, and if the number of partitions
exceed the maximum that is allowed, the oldest partition
becomes dormant. You specify when to destroy dormant
partitions. Previously, you had to delete obsolete data
manually.

“Time series storage” on page 1-14

“Rules for rolling window containers” on page 3-16

Load time-series data faster by reducing logging

If you load time-series elements into containers in a
single transaction, you can save time by specifying a
reduced amount of logging. By default, every time-series
element that you insert generates two log records: one for
the inserted element and one for the page header update.
However, you can specify that page header updates are
logged for each transaction instead. For example, you can
insert a set of daily meter readings for a meter in one
transaction and reduce the amount of logging by almost
half.

Run one or more of the PutElem, PutElemNoDups,
PutNthElem, InsElem, BulkLoad, or PutTimeSeries
functions with the TSOPEN_REDUCED_LOG (256) flag
or the TSL_Flush function with the 257 flag within a
transaction without other functions or SQL statements. If
you insert data through a virtual table, run the
TSCreateVirtualTab procedure with the
TS_VTI_REDUCED_LOG (256) flag, and then insert data
within a transaction without other types of statements.

“The flags argument values” on page 7-9

“The TSVTMode parameter” on page 4-16

Replicate time-series data

You can replicate time-series data with Enterprise
Replication. For example, if you collect time-series data in
multiple locations, you can consolidate the data to a
central server.

“Planning for replication of time series data” on page
1-23

Faster writing to time-series containers

By default, multiple sessions can now write to a
time-series container simultaneously. However, you can
limit the number of sessions to one. Data is loaded faster
if only one session writes to the container. Use the
TSContainerLock procedure to control whether multiple
sessions are allowed. Previously, you wrote your
application to prevent more than one session from
writing to a container at one time.

“TSContainerLock procedure” on page 7-99

xvi IBM Informix TimeSeries Data User's Guide

Table 4. What's New in IBM Informix TimeSeries Data User's Guide for 12.10.xC1 (continued)

Overview Reference

Write a custom program to load time-series data

You can use time-series SQL routines to write a custom
program that loads time-series data into the Informix
database. You can load data in parallel in a highly
efficient manner by controlling what data is loaded into
which containers. You can include a custom loader
program in your application.

“Writing a loader program” on page 3-31

Enhancements to the Informix TimeSeries Plug-in for
Data Studio

When you use the Informix TimeSeries Plug-in for Data
Studio, you can load time-series data into an Informix
database directly from another database. You do not have
to export the data into a file. When you create a table
definition, specify a connection to a database and a query
to return the data that you want to load. You can preview
the returned data to validate the query. You can also set
other properties of the load job within the plug-in.

“Create a load job to load data from a database” on page
3-29

Return the timestamp of the first or last time-series
element

You can return the timestamp of the first or last element
in a time series by running the GetFirstElementStamp
function or the GetLastElementStamp function. You can
choose whether the element can be null or must contain
data. For example, you can return the first element that
has data to determine the number of null elements
between the origin and the first element that has data.

“GetFirstElementStamp function” on page 7-53

“GetLastElementStamp function” on page 7-57

Faster queries through virtual tables

Queries on time series virtual tables now run faster
because qualifiers to a WHERE clause that contain
multiple column, constant, or expression parameters are
processed through the virtual table interface instead of
through SQL processing.

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL

Introduction xvii

at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 5. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

xviii IBM Informix TimeSeries Data User's Guide

http://www.ibm.com/software/data/sw-library/

Table 5. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Introduction xix

Notes:

1 See page Z-1

This diagram has a segment that is named “Setting the Run Mode,” which
according to the diagram footnote is on page Z-1. If this was an actual
cross-reference, you would find this segment on the first page of Appendix Z.
Instead, this segment is shown in the following segment diagram. Notice that the
diagram uses segment start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Include onpladm create job and then the name of the job.
2. Optionally, include -p and then the name of the project.
3. Include the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

4. Optionally, you can include one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to include -f, optionally include d, p, or a, and then
optionally include l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words that are reserved for statements and all commands except
system-level commands.

A keyword in a syntax diagram is shown in uppercase letters. When you use a
keyword in a command, you can write it in uppercase or lowercase letters, but you
must spell the keyword exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

xx IBM Informix TimeSeries Data User's Guide

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in other syntax diagrams. A variable in a syntax diagram, an
example, or text, is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, complete the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xxi

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

xxii IBM Informix TimeSeries Data User's Guide

Chapter 1. Informix TimeSeries solution

Database administrators and applications developers use the Informix TimeSeries
solution to store and analyze time series data.

A time series is a set of time-stamped data. Types of time series data vary
enormously, for example, electricity usage that is collected from smart meters,
stock price and trading volumes, ECG recordings, seismograms, and network
performance records. The types of queries performed on time series data typically
include a time criteria and often include aggregations of data over a longer period
of time. For example, you might want to know which day of the week your
customers use the most electricity.

The Informix TimeSeries solution provides the following capabilities to store and
analyze time series data:
v Define the structure of the data
v Control when and how often data is accepted:

– Set the frequency for regularly spaced records
– Handle arbitrarily spaced records

v Control data storage:
– Specify where to store data
– Change where data is stored
– Monitor storage usage

v Load data from a file or individually
v Query data:

– Extract values for a time range
– Find null data
– Modify data
– Display data in standard relational format

v Analyze data:
– Perform statistical and arithmetic calculations
– Aggregate data over time
– Make data visible or invisible
– Find the intersection or union of data

The Informix TimeSeries solution stores time series data in a special format within
a relational database in a way that takes advantage of the benefits of both
non-relational and standard relational implementations of time series data.

The Informix TimeSeries solution is more flexible than non-relational time series
implementations because the Informix TimeSeries solution is not specific to any
industry, is easily customizable, and can combine time series data with information
in relational databases.

The Informix TimeSeries solution loads and queries time stamped data faster,
requires less storage space, and provides more analytical capability than a standard
relational table implementation. Although relational database management systems
can store time series data for standard types by storing one row per time-stamped

© Copyright IBM Corp. 2006, 2014 1-1

data entry, performance is poor and storage is inefficient. The Informix TimeSeries
solution saves disk space by not storing duplicate information from the columns
that do not contain the time-based data. The Informix TimeSeries solution loads
and queries time series data quickly because the data is stored on disk in order by
time stamp and by source.

For example, the following table shows a relational table that contains time-based
information for two sources, or customers, whose identifiers are 1000111 and
1046021.

Table 1-1. Relational table with time-based data

Customer Time Value

1000111 2011-1-1 00:00:00.00000 0.092

1000111 2011-1-1 00:15:00.00000 0.082

1000111 2011-1-1 00:30:00.00000 0.090

1000111 2011-1-1 00:45:00.00000 0.085

1046021 2011-1-1 00:00:00.00000 0.041

1046021 2011-1-1 00:15:00.00000 0.041

1046021 2011-1-1 00:30:00.00000 0.040

1046021 2011-1-1 00:45:00.00000 0.041

The following table shows a representation of the same data stored in an Informix
TimeSeries table. The information about the customer is stored once. All the
time-based information for a customer is stored together in a single row.

Table 1-2. Informix TimeSeries table with time-based data

Customer Time Value

1000111 2011-1-1 00:00:00.00000 0.092

2011-1-1 00:15:00.00000 0.082

2011-1-1 00:30:00.00000 0.090

2011-1-1 00:45:00.00000 0.085

1046021 2011-1-1 00:00:00.00000 0.041

2011-1-1 00:15:00.00000 0.041

2011-1-1 00:30:00.00000 0.040

2011-1-1 00:45:00.00000 0.041

The following table summarizes the advantages of using the Informix TimeSeries
solution for time-based data over using a standard relational table.

1-2 IBM Informix TimeSeries Data User's Guide

Table 1-3. Comparison of time series data stored in a standard relational table and in an
Informix TimeSeries table

Standard relational table issue Informix TimeSeries table benefit

Storage space Stores one row for every record.
Duplicates the information in
non-time series columns. Stores
timestamps. Null data takes as
much space as actual data. The
index typically includes the time
stamp column and several other
columns.

Significant reduction in disk space
needed to store the same data. The
index size on disk is also smaller.

Stores all time series data for a
single source in the same row. No
duplicate information. Calculates
instead of stores the time stamp.
Null data does not require any
space. The index does not include
the time stamp column.

Query speed Data for a single source can be
intermixed on multiple data pages
in no particular order.

Queries that use a time criteria
require many fewer disk reads and
significantly less I/O. Data is
loaded very efficiently.

Data for a single source is stored
together in time stamp order.

Query
complexity

Queries that aggregate data or
apply an expression can be difficult
or impossible to perform with SQL.
Much of the query logic must be
provided by the application.

Less application coding and faster
queries.

Allows complex SQL queries and
analysis. Allows custom analytics
written using the TimeSeries API.

Informix TimeSeries solution architecture
The Informix TimeSeries solution consists of built-in data types and routines. You
can use other Informix tools to administer and load time series data.

The Informix database server includes the following functionality for managing
time series data:
v The TimeSeries data type and other related data types to configure the data.
v TimeSeries SQL routines to run queries on time series data.
v TimeSeries API routines and Java classes to use in your applications to

manipulate and analyze time series data.

You can use IBM Data Studio or IBM Optim™ Developer Studio along with the
IBM Informix TimeSeries Plug-in for Data Studio to load data from a file into an
Informix TimeSeries table.

You can use the IBM OpenAdmin Tool (OAT) for Informix along with the Informix
TimeSeries Plug-in for OAT to administer database objects that are related to a
time series.

The following illustration shows how the Informix TimeSeries solution and the
related products interact.

Chapter 1. Informix TimeSeries solution 1-3

Time series concepts
A time series as implemented by the Informix TimeSeries solution contains
information about how the data is stored in the table column and information
about valid data intervals and where the data is stored on disk.

Understand the following concepts when you create a time series:

TimeSeries data type
The data type that defines the structure for the time series data.

Element
A set of time series data for one timestamp. For example, a value of 1.01
for the time stamp 2011-1-1 00:45:00.00000 is an element for customer 1001.

Packed element
An element in which records for multiple timestamps are stored to save
storage space. Packed elements can store hertz data that is recorded at a
subsecond frequency and compressed numeric data.

Timepoint
The time period for a single element: for example, 15 minutes. In some
industries, a timepoint is referred to as an interval.

Origin
The earliest time stamp that is allowed. Data that has a timestamp before
the origin is not allowed.

time series instance
For each TimeSeries data type value, the set of elements that is stored in a
container. Each instance has a unique identifier that is stored in the
TSInstanceTable table. The time series instance ID is used by some time
series routines and SQL statements.The time series instance ID is used by
some time series routines.

Informix
database server

Client connectivity and
application development

Client
Application

Client
Application

Client
Application

Data loading

IBM Data Studio
Informix TimeSeries Plug-in for Data Studio

Administration

IBM OpenAdmin Tool for Informix
Informix TimeSeries Plug-in for OATTimeSeries data types

TimeSeries SQL routines
TimeSeries API routines
TimeSeries Java classes

Figure 1-1. Informix TimeSeries architecture

1-4 IBM Informix TimeSeries Data User's Guide

Calendar
A set of valid timepoints in a time series, as specified by the calendar
pattern.

Calendar pattern
The pattern of valid timepoints and when the pattern starts. The calendar
pattern can also specify the length of the timepoint. For example, if you
collect electricity usage information every 15 minutes, the calendar pattern
specifies that timepoints have a length of 15 minutes, and because you
want to collect information continuously, all timepoints are valid.

Container
A named portion of a dbspace that contains the time series data for a
specific TimeSeries data type and regularity. The data is ordered by time
stamp. You can control in which containers your time series data is stored.

Regularity
Whether a time series has regularly spaced timepoints or irregularly
spaced timepoints.

Virtual table
Virtual tables display a view of the time series data in a relational format
without duplicating the data. You can use standard SQL statements on
virtual tables to select and insert data.

TimeSeries data type technical overview
The TimeSeries data type defines the structure for the time series data within a
single column in the database.

The TimeSeries data type is a constructor data type that groups together a
collection of ROW data type in time stamp order. A ROW data type consists of a
group of named columns. The rows in a TimeSeries data type, called elements,
each represent one or more data values for a specific time stamp. The elements are
ordered by time stamp. The time stamp column must be the first column in the
TimeSeries ROW data type and must be of type DATETIME YEAR TO
FRACTION(5), even if your data does not have a scale of five fractional seconds.
Time stamps must be unique; multiple entries in a single TimeSeries cannot have
the same time stamp.

The following illustration shows a representation of the structure of a TimeSeries
data type that is similar to the one used in the stores_demo database.

Chapter 1. Informix TimeSeries solution 1-5

The figure shows the ts_data table, which has two columns: the location_id
column that identifies the source of the time series data, and the reads column that
contains the time series data. The reads column has a data type of
TimeSeries(meter_data). The TimeSeries(meter_data) data type has two columns:
tstamp and value. The tstamp column, as the first column in a TimeSeries data
type, has a data type of DATETIME YEAR TO FRACTION(5). For a regular time
series such as the one in the illustration, the timestamp is actually replaced by the
offset from the first element. The value column has a data type of DECIMAL. For
each source of data, the reads column contains multiple rows of time series data,
which are ordered by time stamp. All time series data for a particular source is in
the same row of the table. Each value of the reads column in the ts_data table is a
different time series instance.
Related concepts:
“TimeSeries data type” on page 2-6
Related tasks:
“Creating a TimeSeries subtype” on page 3-13

location_id reads

1000111 TimeSeries(meter_data)

1046021 TimeSeries(meter_data)

1090954 TimeSeries(meter_data)

tstamp (DATETIME YEAR TO
FRACTION(5)

value (DECIMAL)

2010-11-10 00:00:00.00000 0.092

Time series data for ID 1000111

2010-11-10 00:15:00.00000 0.082

2010-11-10 00:30:00.00000 0.090

... ...

2010-11-10 00:00:00.00000 0.041

Time series data for ID 1046021

2010-11-10 00:15:00.00000 0.041

2010-11-10 00:30:00.00000 0.040

... ...

2010-11-10 00:00:00.00000 0.026

Time series data for ID 1090954

2010-11-10 00:15:00.00000 0.035

2010-11-10 00:30:00.00000 0.062

... ...

Database table ts_data

tstamp (DATETIME YEAR TO
FRACTION(5)

value ()DECIMAL

tstamp (DATETIME YEAR TO
FRACTION(5)

value ()DECIMAL

Figure 1-2. TimeSeries data type architecture

1-6 IBM Informix TimeSeries Data User's Guide

Regular time series
A regular time series stores data for regularly spaced timepoints. A regular time
series is appropriate for applications that record entries at predictable timepoints,
such as electricity power usage data that is recorded by smart meters every 15
minutes.

Regular time series are stored very efficiently because, instead of storing the full
time stamp of an element, regular time series store the offset of the element. The
offset of an element is the relative position of the element to the origin of the time
series. The time stamp for an element is computed from its offset. For example,
suppose you have a calendar that has an interval duration of a day. The first
element, or origin, is 2011-01-02. The offset for the origin is 0. The offset for the
sixth element is 5. The time stamp for the sixth element is the origin plus 5 days:
2011-01-07. The following table shows the relationship between elements and
offset.

Table 1-4. Offsets for a daily time series

Day of
the
month 1 2 3 4 5 6 7

Offset 0 1 2 3 4 5

You can use TimeSeries SQL routines to convert between a time stamp and an
offset. Some TimeSeries SQL routines require offset values as arguments. For
example, you can return the 100th element in a time series with the GetNthElem
function.

In a regular time series, each interval between elements is the same length. Regular
elements persist only for the length of an interval as defined by the calendar
associated with the time series. If a value for a timepoint is missing, that element is
null. You can update null elements.
Related reference:
“Create a time series” on page 3-22

Irregular time series
An irregular time series stores data for a sequence of arbitrary timepoints. Irregular
time series are appropriate when the data arrives unpredictably, such as when the
application records every stock trade or when electricity meters record random
events such as low battery warnings or low voltage indicators. Irregular time series
are also required for packed data, which includes hertz data and compressed
numeric data.

Irregular time series store the time stamps for each element instead of storing
offsets because the interval between each element can be a different length.
Irregular elements persist until the next element by default and cannot be null. For
example, if you query for the value of a stock price at noon but the last recorded
trade was at 11:59 AM, the query returns the value of the price at 11:59 AM,
because that value is the nearest value equal to or earlier than noon. However, you
can also create a query to return null if the specified time stamp does not exactly
match the time stamp of an element. For example, if you query for the price that a
stock traded for at noon, but the stock did not have a trade at noon, the query
returns a null value.

Chapter 1. Informix TimeSeries solution 1-7

Hertz data and compressed numeric data are stored in irregular time series
because multiple records are packed into each element. However, hertz and
compressed time series require regularly spaced data and behave differently from
standard irregular time series.
Related reference:
“Create a time series” on page 3-22

Packed time series
A packed time series stores records for multiple timepoints in each element to
reduce storage space. You can create a packed time series if you have hertz data or
you have numeric data that you want to compress. Both hertz and compressed
numeric data must be recorded at regular intervals. Packed elements save
approximately 4 bytes per record as compared to a regular time series, not
including the savings for compressing the data.

For a hertz time series, each time series element is packed with records for one
second. Hertz data is recorded at a regular subsecond frequency. For example, an
electrical grid might have phasor measurement units that measure electrical waves
at 50 hertz.

For a compressed time series, each time series element is packed with compressed
records until the size of the element approaches 4 KB. All of the columns in the
TimeSeries subtype must be numeric. You define compression separately for each
column, except the first timestamp column, which is compressed by default. For
example, a weather station might measure the wind speed, air temperature, air
pressure, and precipitation for each weather sensor every 15 minutes.

Packed data is loaded faster than data that is not packed because packed data
generates fewer log records. Each element that you insert into the database
generates one or two log records, depending on whether logging is reduced.
Packed data requires fewer elements.

When you create a virtual table or run a query, packed data is indistinguishable
from time series data that is not packed. Each subelement that is shown in a
virtual table has a row. Each subelement that is returned by a query is shown as an
individual element.

Hertz time series
If your time series data is recorded at a regular subsecond frequency, you can
define a hertz time series to store the data efficiently.

In each element, a hertz time series stores an 11-byte timestamp for the first record
and a 1-byte timestamp for each of the other records. An element contains records
for one second. For example, if data is recorded 5 times a second, then each
element contains 5 sets of values. If the TimeSeries subtype contains a timestamp
column and two other columns, the following table shows how the values are
stored in each element.

Table 1-5. How hertz data is packed in time series elements

Timestamp
of element

Values for
.00000
seconds

Values for
.20000
seconds

Values for
.40000
seconds

Values for
.60000
seconds

Values for
.80000
seconds

2014-01-01
00:00:00.00000

1.01, 0.25 1.93, 0.11 1.74, 0.02 1.03, 0.45 1.85, 0.44

1-8 IBM Informix TimeSeries Data User's Guide

Table 1-5. How hertz data is packed in time series elements (continued)

Timestamp
of element

Values for
.00000
seconds

Values for
.20000
seconds

Values for
.40000
seconds

Values for
.60000
seconds

Values for
.80000
seconds

2014-01-01
00:00:01.00000

2.00, 0.02 1.99, 0.05 1.53, 0.03 NULL, NULL 1.76, 0.01

Data requirements

Hertz records must have timestamps that conform to the hertz subsecond
boundaries within approximately 0.3% tolerance. Only one record per subsecond
boundary is allowed. For example, if the hertz value is 5, then there are 5 valid
timestamps per second. For the first second after midnight, the following
timestamps are valid:
v 00:00:00.00000
v 00:00:00.20000
v 00:00:00.40000
v 00:00:00.60000
v 00:00:00.80000

The tolerance means that a timestamp has a margin of error of plus or minus
0.00003 seconds. For example, for the second record, a subsecond value of 0.20003
is accepted and stored as 0.2, but a subsecond value of 0.20004 is rejected.

If the value of a subsecond boundary has more than 5 significant digits, the value
is rounded down. For example, the 127th subsecond value for a hertz of 255 has
the value 0.498039216, which is rounded down to 0.49803.

NULL values are allowed.

The size of the data for 1 second cannot exceed 32769 bytes.

Time series definition

The TimeSeries subtype that you define for hertz data must have columns of only
the following data types: SMALLINT, INT, BIGINT, SMALLFLOAT, FLOAT, DATE,
INT8, CHAR, VARCHAR, NCHAR, NVCHAR, LVARCHAR, DATETIME,
DECIMAL, and MONEY.

You can use a calendar with any interval size because the interval is significant
only in defining on and off periods. The interval size for a hertz time series is
defined by the hertz parameter when you create the time series.

You define a hertz time series by running the TSCreateIrr function with the hertz
parameter.

Hertz data must be stored in containers that are not rolling window containers.
Related concepts:
“Manage packed data” on page 3-37
“TimeSeries data type” on page 2-6
Related tasks:
“Example: Create and load a hertz time series” on page 3-5

Chapter 1. Informix TimeSeries solution 1-9

Related reference:
“TSCreateIrr function” on page 7-118

Compressed numeric time series
If your time series data is recorded at a regular frequency and all the time series
values are numeric, you can define a compressed time series to store the data
efficiently.

In each element, a compressed time series stores an 11-byte timestamp for the first
record and a 2-byte timestamp for each of the other records. The compression ratio
of the rest of the time series data varies depending on the type of data and the
compression definitions. For example, you can compress an 8-byte BIGINT value
down to 1 byte, with some loss of precision.

Time series definition

You define a compressed time series by running the TSCreateIrr function with the
compression parameter.

You must include a compression definition for every column in the TimeSeries
subtype, except the first timestamp column. The compression definitions are
associated with the columns in the same order. If you do not want to compress a
particular column, include a compression definition of no compression for that
column. If you specify that none of the columns are compressed, only the first
timestamp column is compressed.

Besides the first timestamp column, the TimeSeries subtype columns must have
only the following data types: SMALLINT, INTEGER, BIGINT, SMALLFLOAT, and
FLOAT.

The calendar that you specify in the time series definition defines the size of the
interval, however, off periods are not allowed. One record per interval is accepted
and the timestamp must be on the interval boundary. For example, if the calendar
has an interval of minute, a timestamp that has seconds values other than 00.00000,
such as 2013-01-01 01:52:15.00000, is rejected.

Compressed records must be stored in containers. However, a compressed time
series cannot be stored in rolling window containers.

Compression types

You compress data with the following types of compression algorithms:

Quantization
The quantization compression algorithm divides continuous values into
discrete grids. Each grid represents a range of values. Fewer bytes are
needed to represent a grid than a numeric value. The quantization
algorithm can be lossy. The quantization algorithm allows NULL values.

The quantization compression algorithm is suitable when records are
frequent and the values are highly variable.

You specify the upper and lower boundaries of the values of the data and
the number of bytes to store for each value. The larger the difference
between the upper and lower boundaries and the smaller the compressed
size that you specify, the more compact and possibly lossy the data
becomes.

1-10 IBM Informix TimeSeries Data User's Guide

Linear
The linear compression algorithm represents values as line segments,
which are defined by two end points. If the values are within the supplied
deviation, the values are not recorded. The linear compression algorithm
records a value only when a new value deviates too much from the last
recorded value. The linear compression algorithm does not allow NULL
values.

The linear compression algorithm is suitable when values vary little.

The larger the maximum deviation that you specify, the more compact and
possibly lossy the data becomes.

Use the boxcar variant if you need fast reading and writing performance.

Use the swing door variant if you need a higher compression ratio.

You can combine compression types and choose the quantization linear boxcar or
quantization linear swing door compression algorithm.

You can choose not to compress a column. Columns that are not compressed allow
NULL values.

Lossiness

The following equation describes margin of error that is allowed between the
original and the compressed values for the different compression types:

Quantization type:
margin of error = (upper_bound - lower_bound)

/(2^(compress_size*8))

Linear types:
margin of error = maximum_deviation

Combination of quantization and linear types:
margin of error = (upper_bound - lower_bound)

/(2^(compress_size*8) + maximum_deviation)

compress_size
The size of the compressed data, in bytes.

lower_bound
The lowest acceptable value.

maximum_deviation
The absolute value of the margin of error.

upper_bound
The highest acceptable value.

For example, if the compression definition for quantization is q(1,1,100), the
compression size is 1 byte, the lower boundary is 1, and the upper boundary is
100. The following equation calculates the margin of error:
(100-1)/256 = 0.387

The maximum difference between the original value and the compressed value is
plus or minus 0.387.

Chapter 1. Informix TimeSeries solution 1-11

For the linear compression type, the margin of error is equal to the maximum
deviation value. For example, if the original value is 20 and the maximum
deviation value is 0.1, then the compressed value is in the range 19.9 - 20.1.

If the compression definition for quantization linear boxcar is
qlb(1,1,100,100000), the compression size is 1 byte, the maximum deviation is 1,
the lower boundary is 100, and the upper boundary is 100000. The following
equation calculates the margin of error:
(100000-100)/256= 390.235 + 1 = 391.235

The maximum difference between the original value and the compressed value is
plus or minus 391.235.
Related concepts:
“Manage packed data” on page 3-37
“TimeSeries data type” on page 2-6
Related tasks:
“Example: Create and load a compressed time series” on page 3-7
Related reference:
“TSCreateIrr function” on page 7-118

JSON time series
You can create a time series that contains JSON documents. Because JSON
documents do not have a rigid structure, you avoid schema changes when the
structure of the data changes. You can easily load and query the data.

The advantage of having time-based data unstructured is that the schema of the
TimeSeries data type is simple and does not need to be altered as the data
changes.

A JSON time series has the following advantages over creating a column for every
type of value in the TimeSeries data type:

MongoDB and REST API clients
You can load JSON documents directly from MongoDB and REST API
clients without formatting the data.

Application compatibility
The changes that you need to make to your application when you move
your data into time series is minimized because you do not need to
perform schema migration.

Variable schema
If the structure of your time-based data is likely to change, storing that
data as unstructured data in JSON documents prevents the need to update
your schema or your application. For example, if you have sensors that
monitor every machine in a factory, when you add a machine, the new
sensors might collect different types of data than existing sensors.

Simplified schema
If your schema for time-based data includes more columns than each
record typically uses, or your records typically contain many NULL values,
you can easily load data as unstructured JSON documents. For example, if
you have 50 different measurements but each sensor collects only 5 of
those measurements, each record has 45 NULL values.

1-12 IBM Informix TimeSeries Data User's Guide

Storing data as JSON documents might require more storage space and result in
slower queries than storing data in individual columns in the TimeSeries row
type.

Time series definition

Although you load JSON documents into your time series table, internally the
database server stores the JSON documents as BSON. Therefore, when you create a
TimeSeries row type, you include a BSON column to store the JSON documents.
You can include only one BSON column in a TimeSeries data type. You can also
include columns that have other data types.

The maximum size of a document in a BSON column in a TimeSeries data type is
4 KB.

Loading and querying JSON time series

You can load JSON documents into a time series with the time series input
statement, through a virtual table, or by writing a loader program.

When you query a time series that contains JSON documents, the results are
automatically cast from BSON to JSON. However, when you select data from a
virtual table on a JSON time series, you must cast the BSON column to JSON to
view the documents.

You can aggregate individual fields within JSON documents by specifying the field
name in the aggregate operation. You cannot aggregate an entire BSON column.
When you run the TSRollup, AggregateBy, or AggregateRange function, you
must cast the results to a TimeSeries row type that has the appropriate types of
columns for the results of the aggregate operation.
Related tasks:
“Example: Create and load a time series with JSON data” on page 3-10
“Loading JSON data” on page 3-33

Calendar
Every time series is associated with a calendar. A calendar defines a set of valid
times for elements in a time series.

Each calendar has a calendar pattern of time periods during which data is allowed
or prohibited. Data can be recorded during on periods but cannot be recorded
during off periods. The calendar pattern is based on a time interval; for example,
second, minute, hour, day, or month. A start date specifies when the pattern starts.

Suppose you want to collect data once a day Monday through Friday. The
following table illustrates when data collection is allowed, or on, and prohibited, or
off. The pattern has an interval of a day, a start date on a Sunday, and specifies one
day off, five days on, and one day off:
{1 off, 5 on, 1 off}, day

Table 1-6. When data collection is on or off

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

OFF: data
is
prohibited

ON: data is
allowed

ON: data is
allowed

ON: data is
allowed

ON: data is
allowed

ON: data is
allowed

OFF: data
is
prohibited

Chapter 1. Informix TimeSeries solution 1-13

Table 1-6. When data collection is on or off (continued)

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

OFF: data
is
prohibited

ON: data is
allowed

ON: data is
allowed

ON: data is
allowed

ON: data is
allowed

ON: data is
allowed

OFF: data
is
prohibited

For regular time series, an interval represents the range of time in which one
element is allowed. You cannot enter more than one element into an interval. The
value of an element persists for the length of one interval. If you query for a value
in an off period, you receive an error. Intervals that are missing data are null. You
can query for null elements to find which elements are missing.

For irregular time series, the interval is only relevant for designating off periods
when data is not allowed. The interval size for valid periods does not affect the
number of elements that you can insert into a specific time range. For example,
although the smallest interval size is a second, you can enter subsecond frequency
elements into an irregular time series. The value of an element persists until the
next element. If you query for a value in an off period, you receive the value of the
last element. Irregular time series have no null elements.

You can use a predefined calendar or define your own calendar. The seven
predefined calendars each have a different interval duration that ranges from one
minute to one month. All the predefined calendars start at the beginning of 2011,
but you can alter the start date. You create a calendar by inserting a row into the
CalendarTable table in the format of a Calendar data type. You can include the
calendar pattern in the calendar definition, or create a separate calendar pattern by
inserting a row into the CalendarPatterns table in the format of a CalendarPattern
data type.

You can aggregate information by selecting data and changing the calendar for the
results of the query. Use the AggregateBy function to aggregate data. For example,
if you collect electricity usage information every 15 minutes, but you want to know
the total usage per customer per day, you can specify a daily calendar in the
AggregateBy function to aggregate the data.

You can use calendar and calendar pattern routines to manipulate calendars and
calendar patterns. For example, you can create the intersection of calendars or
calendar patterns.
Related reference:
Chapter 2, “Data types and system tables,” on page 2-1
Chapter 5, “Calendar pattern routines,” on page 5-1
Chapter 6, “Calendar routines,” on page 6-1

Time series storage
Time series data is stored in a container unless the data remains small enough to fit
in a single row of a table. When a time series is stored in a container, the data is
stored contiguously and is retrieved with a minimum number of disk reads. If you
do not create time series containers before you insert time series data, the
containers are created automatically as needed. You can manage storage by
controlling in which dbspaces the time series data is stored and by deleting old
time series data.

1-14 IBM Informix TimeSeries Data User's Guide

A container is mapped to a disk partition in a dbspace. A dbspace is a logical
grouping of physical storage (chunks). The following illustration shows the
architecture of containers in the database. A database usually contains multiple
dbspaces. A dbspace can contain multiple containers along with tables and free
space. A container can contain data for one or more sources, for example,
electricity meters. The time series data for a particular source is stored on pages in
time stamp order.

When you insert data into a time series and you do not specify a container name,
the database server checks for one or more containers that are appropriately
configured for the time series. If any matching containers exist, the container with
the most free space is assigned to the time series. If no matching containers exist,
the database server creates a matching container in each of the dbspaces in which
the table is stored. For example, if a table is not fragmented and is therefore stored
in a single dbspace, one container is created. If a table is fragmented into three
dbspaces, three containers are created.

All containers that are created automatically by the database server belong to the
default container pool, called autopool. A container pool is a group of containers.
You can create one or more container pools in which to include containers You can
assign containers to container pools. Alternatively, you can create your own
container pool policy function.

Strategies for using multiple dbspaces

Strategies for storing time series data in multiple dbspaces depend on how the
data is distributed, how data is inserted into the appropriate container, and how
you delete old data.

Time series data is stored in multiple dbspaces in the following situations:
v The table is fragmented over multiple dbspaces and containers are created

automatically in the same dbspaces as the table fragments.
v You create multiple containers in multiple dbspaces.
v You create a rolling window container that stores time series data in multiple

dbspaces.

The following table compares the different strategies.

Database dbspaces dbspace1 container1

Data storage
on disk

Multiple dbspaces
in the database

Partitions in dbspace1 Data pages in container1

data for
meter1

data for
meter2

data for
meter3

container 1 other tables

container 2 free space

Figure 1-3. Architecture of the default configuration of a container in a database

Chapter 1. Informix TimeSeries solution 1-15

Table 1-7. Comparison of container strategies

Strategy
Data distribution
method Inserting data

Deleting data by
date range

The table is
fragmented among
multiple dbspaces
and containers are
created automatically.

The time series data
is distributed among
the same dbspaces as
the table fragments.

The data is stored in
containers in round
robin order.

You run the
TSContainerPurge
function to delete
data by date range in
all containers.

You create multiple
containers in
multiple dbspaces.

You decide how to
distribute the data.
You can distribute
the time series data
by primary key
values. You can
decide on a specific
set of primary key
values for each
container.

You specify the
appropriate container
name for the primary
key values when you
insert data.

You run the
TSContainerPurge
function to delete
data by date range in
all containers.

You create a rolling
window container.

The time series data
is distributed by date
interval. Each date
interval is stored in
its own partition.
Partitions are stored
in multiple dbspaces.

You specify the
rolling window
container name when
you insert data. The
container controls in
which dbspace the
data is stored.

You configure an
automatic purge
policy to delete data
by date range, or you
manually destroy
partitions.

Multiple dbspaces for multiple containers

The following illustration shows multiple containers in multiple dbspaces. The
time series data is distributed by the primary key value.

Each container stores the data for all dates for a specific set of meter IDs. Each
dbspace stores a container and other tables. If the containers were created

dbs0

Container1:

Data for meters 1-100 for
all dates

Other tables

dbs1

Container2:

Data for meters 101-200 for
all dates

Other tables

dbs2

Container3:

Data for meters 201-300 for
all dates

Other tables

dbs3

Container4:

Data for meters 301-400 for
all dates

Other tables

Figure 1-4. Architecture of dbspaces for multiple containers

1-16 IBM Informix TimeSeries Data User's Guide

automatically, each dbspace contains the table fragment that stores the same
primary key values as the container.

Dbspaces for a rolling window container

When you create a rolling window container, you specify a time interval by which
to store the data and the list of dbspaces in which to store the data. A rolling
window container stores time series data by the specified time interval in separate
partitions. Partitions are stored in the specified dbspaces in round robin order. The
container dbspace stores the information about what data is in which partition. The
following illustration shows a container that stores data in four dbspaces. The time
interval for each partition is one month.

In this illustration, the dbspace named dbs0 contains the container, Container1,
and other tables. Container1 stores the information about the time interval of the
data in each partition and the location of each partition. The dbspaces named dbs1,
dbs2, and dbs3 store time series elements in partitions and other tables. Each
partition stores the data for one month for all meter IDs.

Active and dormant windows

Partitions make it easy to remove old data. You can configure a rolling window
container to automatically delete old data after a specified amount of data is
stored. You specify the number of partitions to keep in the active window and in
the dormant window. The active window contains the partitions into which you
can insert data. The dormant window contains partitions that you no longer need
to query, but are not yet ready to delete. The active window moves ahead in time
when you insert data for the next time interval. When you insert data that is after
the latest partition, a new partition is added and the active window moves ahead.
When the active window exceeds the maximum number of partitions, the oldest
partition is moved to the dormant window. When the dormant window exceeds
the maximum number of partitions, the oldest partition is destroyed.

dbs0

Container1:

Information about rolling
window intervals and partitions

Other tables

dbs1

Partition 1:
Data for
month 1 for
all meters

Other tables

Partition 2:
Data for
month 4 for
all meters

dbs3

Partition 1:
Data for
month 3 for
all meters

Other tables

Partition 2:
Data for
month 6 for
all meters

dbs2

Partition 1:
Data for
month 2 for
all meters

Other tables

Partition 2:
Data for
month 5 for
all meters

Figure 1-5. Architecture of dbspaces for a rolling window container

Chapter 1. Informix TimeSeries solution 1-17

The following illustration shows how an active window and a dormant window
grow and move over time. In this example, the maximum size of both windows is
two months.

This illustration shows how the windows grow and move as data is inserted for
each month:

Month 1: Active
window

1 2 3 4 5 6 ...

1 2 3 4 5 6 ...

1 2 3 4 5 6 ...

1 2 3 4 5 6 ...

1 2 3 4 5 6 ...

Month 2: Active
window

Month 3: Dormant
window

Active
window

Month 4: Dormant
window

Active
window

Month 5: Dormant
window

Active
window

Figure 1-6. Example of an active window and a dormant window, which move over time

1-18 IBM Informix TimeSeries Data User's Guide

v When data is added for month 1, a partition is created in the active window.
v When data is added for month 2, a second partition is created in the active

window.
v When data is added for month 3, the partition for month 1 moves out of the

active window and into the dormant window.
v When data is added for month 4, the active window adds a partition for month

4 and moves the partition for month 2 into the dormant window.
v When data is added for month 5, the active window and the dormant window

move forward. The partition for month 1 is destroyed.

You can move partitions between the active and dormant windows and change the
size of the windows.
Related concepts:
“Monitor containers” on page 3-18
Related tasks:
“Creating containers” on page 3-15
Related reference:
“Rules for rolling window containers” on page 3-16
“TSContainerUsage function” on page 7-114
“TSContainerTotalPages function” on page 7-112
“TSContainerTotalUsed function” on page 7-113
“TSContainerPctUsed function” on page 7-105
“TSContainerNElems function” on page 7-104
“Planning for data storage” on page 1-20

Getting started with the Informix TimeSeries solution
Before you can create a time series, decide on the properties of the time series and
where to store the time series data. After you create a time series, you load the
data and query the data.

Planning for creating a time series
When you create a time series, you define a set of properties.

You can perform the necessary tasks for creating a time series in the following
ways:
v Running SQL commands
v Writing an application with the time series Java class library
v Writing an application with the REST API or the MongoDB API that runs

through a wire listener

The following table lists the properties of a time series.

Table 1-8. Properties of a time series

Time series property Description How to define

Timepoint size For a regular time series,
how long a timepoint lasts.

Define a calendar pattern.

When timepoints are valid The times when elements can
be accepted.

Define a calendar pattern.

Chapter 1. Informix TimeSeries solution 1-19

Table 1-8. Properties of a time series (continued)

Time series property Description How to define

Data in the time series The time stamp and the
other data that is collected
for each time stamp.

Create a TimeSeries data
type.

Time series table The table that contains the
TimeSeries data type
column.

Create a table with a
TimeSeries column.

Location Where the time series data is
stored

Create one or more
containers.

Origin The earliest timestamp of
any element

Create a time series.

Regularity Whether the timepoints are
evenly spaced or arbitrarily
spaced.

Create a regular or an
irregular time series.

Metadata Optional information
included with the time series
that can be retrieved by
routines.

Create a time series with
metadata.

Hertz The data is recorded at a
regularly spaced subsecond
frequency.

Create an irregular time
series with a hertz value

Compression Optional compression of
time series data that is only
numeric.

Create an irregular time
series with compression
definitions

Related concepts:

Create time series through the wire listener (JSON compatibility)
Related reference:
Chapter 3, “Create and manage a time series through SQL,” on page 3-1
Chapter 8, “Time series Java class library,” on page 8-1

Planning for data storage
Time series data is stored in containers within dbspaces. You can use the default
containers that are created in the same dbspace as the table into which you are
loading data or you can create containers in separate dbspaces. You can estimate
how much storage space you need. Rolling window containers have specific
storage requirements.

If you are loading high volumes of data, you can improve the performance of
loading the data if you use multiple dbspaces. Similarly, if you have multiple
TimeSeries columns in the same table, consider creating multiple containers that
store data in different dbspaces.

Estimate the amount of storage space you need by using the following formulas:

Regular and irregular time series:
space in bytes = [primary_key + index_entry
+ (timestamp + ts_columns * elements)
+ 4 * elements] * (table_rows) + B-tree_size

Hertz time series:

1-20 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.json.doc/ids_json_060.htm#ids_json_060

space in bytes = [primary_key + index_entry + (timestamp + ts_columns * records)
+ (4 + 11) * elements] * (table_rows) + B-tree_size

Compressed time series:
space in bytes = [primary_key + index_entry
+ (timestamp + ts_columns * records)
+ (4 + 11) * elements] * (table_rows) + B-tree_size

B-tree_size
The size of the B-tree index, not including the index entries. Typically, the
B-tree index is approximately 2% of the size of the data for a regular time
series and is approximately 4% of the size of the data for an irregular time
series.

elements
The number of elements of time series data in each row. For example, the
ts_data table in stores_demo database has 8640 elements for each of the 28
rows.

For hertz time series, each element represents one second of data.

For compressed time series, each element represents approximately 4 KB of
data.

index_entry
The size of an index entry, which is approximately the size of the primary
key columns plus 4 bytes.

primary_key
The size of the data types of the primary key columns and other non-time
series columns in the time series table.

records For hertz and compressed time series, the number of records.

table_rows
The number of rows in the time series table.

ts_columns
The size of the data types of the columns in the TimeSeries data type,
except the timestamp column. The CHAR data type requires an additional
4 bytes when it is included in a TimeSeries data type.

timestamp
The size of the timestamp per element:

Regular time series = 0

Irregular time series = 11 bytes

The size of the timestamp per record:

Hertz time series = 1 byte

Compressed time series = 2 bytes

The 4 bytes per element is a slot entry.

For hertz and compressed time series, each element has an 11-byte timestamp in
addition to the 1-byte or 2-byte timestamp, respectively, for each record.

The equation is a guideline. The amount of required space can be affected by other
factors, such as the small amount of space that is needed for the slot table and the
null bitmap for each element. The equation might underestimate the amount of
required space if the row size of your time series data size is small. The maximum

Chapter 1. Informix TimeSeries solution 1-21

number of elements that are allowed on a data page is 254. If the row size of your
time series data is small, the page might contain the maximum number of elements
but have unused space, especially if you are not using a 2 KB page size.

Rolling window container storage requirements

Rolling window containers allow you to limit the amount of current data to a
specific time range.

Rolling window containers have two different types of partitions with different
storage requirements: the container partition and the window partitions. The
container partition contains information about the rolling window intervals and
partitions. The window partitions store time series elements. The container
partition typically requires much less space than the window partitions. To avoid
allocating unnecessary space for the container partition, store the container
partition and the window partitions in different dbspaces that have different extent
sizes.

A rolling window container has one container partition. Use the following formula
to estimate the size of the container partition:

Space = (container_name_length + dbspace_name_length + 48) * (active_windowsize +
dormant_windowsize) * 2

active_windowsize
The maximum number of partitions in the active window. If you do not
intend to set a limit to the number of partitions, estimate the maximum
number of partitions you expect.

container_name_length
The length of the container name, in bytes.

dbspace_name_length
The length of the dbspace name for the container partition, in bytes.

dormant_windowsize
The maximum number of partitions in the dormant window. If you do not
intend to set a limit to the number of partitions, estimate the maximum
number of partitions you expect.

A rolling window container has multiple window partitions. You can allocate
multiple dbspaces for window partitions. Use the following formula to estimate
the number of partitions in each dbspace:

Approximate number of partitions in each dbspace = CEIL((active_windowsize +
dormant_windowsize) / number_dbspaces) + 1

active_windowsize
The maximum number of partitions in the active window. If you do not
intend to set a limit to the number of partitions, estimate the maximum
number of partitions you expect.

dormant_windowsize
The maximum number of partitions in the dormant window. If you do not
intend to set a limit to the number of partitions, estimate the maximum
number of partitions you expect.

number_dbspaces
The number of dbspaces that are allocated for the window partitions.

1-22 IBM Informix TimeSeries Data User's Guide

Related tasks:
“Creating containers” on page 3-15
Related reference:
“Time series storage” on page 1-14
“TSContainerCreate procedure” on page 7-93

Planning for loading time series data
When you plan to load time series data, you must choose the loading method and
where to store the data on disk.

The following table summarizes the methods of loading data that you can use,
depending on how much data you need to load and the format of the data.

Table 1-9. Data loading methods

Data to load Methods

Bulk data from a file that
is created by your data
collection application

Use IBM Data Studio and the IBM Informix TimeSeries Plug-in
for Data Studio to create a load job for a delimited file.

Write a custom loader program that runs time series SQL
routines.

Create a virtual table and load data that is in standard relational
format.

Use the BulkLoad SQL function. The file must be formatted
according to the BulkLoad function requirements.

Data in a database,
including databases in
database servers other
than Informix

Use IBM Data Studio and the IBM Informix TimeSeries Plug-in
for Data Studio to create a load job for data in a database.

Write a custom loader program that runs time series SQL
routines.

Alter or add one or more
elements to edit incorrect
data or insert missing
values

Use the InsElem SQL function to insert an element or the
PutElem SQL function to update an element. Use the InsSet
SQL function to insert multiple elements or the PutSet SQL
function to update multiple elements.

Create a virtual table and use a standard SQL INSERT
statement. You can add or update elements.

Related concepts:
Chapter 4, “Virtual tables for time series data,” on page 4-1
“IBM Informix TimeSeries Plug-in for Data Studio” on page 3-27
Related tasks:
“Loading data from a file into a virtual table” on page 3-34
“Writing a loader program” on page 3-31
Related reference:
“Load data with the BulkLoad function” on page 3-35
“Load small amounts of data with SQL functions” on page 3-36

Planning for replication of time series data
You can replicate time series data with high-availability clusters and Enterprise
Replication. Review the restrictions and requirements before you set up replication.

Chapter 1. Informix TimeSeries solution 1-23

Restrictions

You cannot replicate time series data with high-availability secondary servers that
allow updates.

You cannot replicate time series data with the Change Data Capture API.

High-availability clusters

You can replicate time series data between the following types of high-availability
clusters that have read-only secondary servers:
v High-Availability Data Replication (HDR)
v Shared-disk secondary servers
v Remote stand-alone secondary servers

High-availability clusters do not require any prerequisites or have any other
restrictions for replicating time series data.

Because some time series calendar and container information is kept in memory,
stop replication before you drop and then re-create your calendar or container
definitions with the same names but different definitions.

Enterprise Replication

You can replicate time series data with Enterprise Replication. You must follow the
requirements for setting up Enterprise Replication for TimeSeries data types.
Related concepts:

Replication of TimeSeries data types (Enterprise Replication Guide)

High-availability cluster configuration (Administrator's Guide)
Related tasks:
“Creating containers” on page 3-15

Planning for accessing time series data
You use SQL routines, Java classes and methods, and C API routines to access and
manipulate time series data directly. You can also transform time series data into
virtual tables that you can query with standard SQL statements. You can create a
data mart for time series data to query on other dimensions than time.

Call routines from within SQL statements or from within Java or C applications on
either the client or the server computer.

Use TimeSeries SQL routines, Java classes and methods and API routines, and API
routines that are written in C to perform the following types of operations to
access or manipulate time series data:
v Manipulate individual elements or sets of elements
v Perform statistical and arithmetic calculations
v Aggregate data
v Convert between time stamps and offsets
v Extract values for a time interval
v Find or delete null elements
v Remove older data by deleting a range of elements

1-24 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_606.htm#ids_erp_606
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/ids_admin_0915.htm#ids_admin_0915

Create virtual tables to view and query time series data by using standard SQL
statements. You can display the results of TimeSeries SQL functions on time series
data in virtual tables.

If you want to query time series data on dimensions other than time, such as
customer or location, or run analytic functions, you can create data marts with
Informix Warehouse Accelerator. Informix Warehouse Accelerator can efficiently
run queries on the typically large amounts of time series data. You can control the
time range of time series values that you load into the accelerator.

You can output time series data in XML format to display in applications.
Related concepts:
Chapter 4, “Virtual tables for time series data,” on page 4-1

Data marts for time series data (Informix Warehouse Accelerator Guide)
Related reference:
Chapter 7, “Time series SQL routines,” on page 7-1
Chapter 8, “Time series Java class library,” on page 8-1
Chapter 9, “Time series API routines,” on page 9-1
“TSToXML function” on page 7-154

Hardware and software requirements
Before you create a time series, ensure that you have the required hardware and
software, a supported operating system, and that you understand the restrictions
for SQL statements and data replication.

The Informix TimeSeries solution might not be supported on all platforms
supported by Informix database servers. See the system requirements for the
Informix TimeSeries solution at https://www.ibm.com/support/
docview.wss?rs=630&uid=swg27020937.

Installing the IBM Informix TimeSeries Plug-in for Data Studio
The IBM Informix TimeSeries Plug-in for Data Studio is included with the database
server installation. Install the TimeSeries plug-in by specifying its location from
within IBM Data Studio.

IBM Data Studio version or IBM Optim Developer Studio, must be installed and
running. IBM Data Studio is included with the Informix product.

To install the TimeSeries plug-in:
1. Move the plug-in file, ts_datastudio.zip, from the $INFORMIXDIR/extend/

TimeSeries.version/plugin directory to the computer where you are running
Data Studio.

2. From Data Studio, choose Help > Software Updates.
3. From the Available Software tab, click Add Site and then click Archive to

select the plug-in file.
4. Select the plug-in directory from the Available Software list and click Install.
5. After the installation is complete, restart Data Studio.
6. To verify that the plug-in is installed, select Help > About IBM Data Studio

and click Plugin Details. Look for Informix TimeSeries Loader in the Plug-in
Name column.

Chapter 1. Informix TimeSeries solution 1-25

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/ids_acc_102.htm#ids_acc_102
https://www.ibm.com/support/docview.wss?rs=630&uid=swg27020937
https://www.ibm.com/support/docview.wss?rs=630&uid=swg27020937

Related concepts:
“IBM Informix TimeSeries Plug-in for Data Studio” on page 3-27

Database requirements for time series data
To implement the Informix TimeSeries solution, the Scheduler must be running
and the database must conform to requirements.

The Scheduler must be running in the database server. If the Scheduler is not
running when you create the TimeSeries data type or run a time series routine, a
message that the data type is not found or the routine cannot be resolved is
returned.

The database that contains the time series data must meet the following
requirements:
v The database must be logged.
v The database must not be defined as an ANSI database.
v Table and column names cannot be delimited identifiers. The DELIMIDENT

environment variable must be not set or set to n.

If you attempt to create a TimeSeries data type or run a time series routine in an
unlogged or ANSI database, the message DataBlade registration failed is
printed in the online message log.
Related reference:

scheduler argument: Stop or start the scheduler (SQL administration API)
(Administrator's Reference)

DELIMIDENT environment variable (SQL Reference)

ondblog: Change Logging Mode (Administrator's Reference)

SQL restrictions for time series data
Some SQL statements cannot operate on time series data.

You cannot use the following SQL statements or keywords on TimeSeries columns:
v Boolean operators (<, <=, <>, >=, or >)
v SELECT UNIQUE statement
v GROUP BY clause
v FRAGMENT BY clause
v PRIMARY KEY clause

You cannot use the MERGE statement on a table with time series data.

You cannot use the ALTER TYPE statement on the TimeSeries data type.

Time series global language support
Time series data has limited support for non-default locales.

Datetime data

The DATETIME data type used in the TimeSeries subtype must be in the default
U.S. format:
"yyyy-mo-dd hh:mm:ss:fffff"

1-26 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_071.htm#ids_sapi_071
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_071.htm#ids_sapi_071
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_233.htm#ids_sqr_233
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0392.htm#ids_adr_0392

yyyy Year, expressed in digits

mo Month of year, expressed in digits

dd Day of month, expressed in digits

hh Hour of day, expressed in digits

mm Minute of hour, expressed in digits

ss Seconds of minute, in digits

fffff Fraction of a second, in digits

Character data

Character I/O is not GLS-compliant. You can convert time series data only to
character strings that are in the default U.S. locale. You can use the BulkLoad
function only on character data that is in the default U.S. locale.

However, the following character strings can use any locale and can contain
multibyte characters:
v Character fields in a TimeSeries data type
v Column names
v Table names
v Calendar names
v Calendar pattern names
v Container names

Numeric data

Floating point data must use the default U.S. format:
v The ASCII period (.) is the decimal separator.
v The ASCII plus (+) and minus (-) signs must be used.

Decimal and money data types are GLS-compliant except that the ASCII plus (+)
and minus (-) signs must be used.

Sample smart meter data
If you want to practice querying time series data before you define and load your
time series, you can use the sample data in the stores_demo database.

The following tables in the stores_demo database contain time series data based on
electricity usage data collected by smart meters:

Customer_ts_data
Contains customer numbers and location references.

ts_data_location
Contains spatial location information.

ts_data
Contains location references and smart meter time series data.

ts_data_v
Contains the data in the ts_data table in relational format as a virtual table.

The time series data is stored in a container named raw_container.

Chapter 1. Informix TimeSeries solution 1-27

Related concepts:

dbaccessdemo command: Create demonstration databases (DB-Access Guide)
Related reference:

The stores_demo Database Map (SQL Reference)

Setting up stock data examples
Set up the stock data examples. Use the sample queries and sample programs to
practice handling time series data.

To install the sample database schema and to compile the sample C programs:
1. Set the following environment variables:

v MACHINE=machine

v PROD_VERSION=version

v USERFUNCDIR=$INFORMIXDIR/extend/TimeSeries.version/examples

The version is the internal TimeSeries version number, for example 5.00.UC1.
Check the installation directory for the correct version number. The machine is
the name of the operating system, as listed in the $INFORMIXDIR/incl/dbdk/
makeinc file, for example, linux.

2. Run the examples_setup.sql command from the $INFORMIXDIR/extend/
TimeSeries.version/examples directory: make -f Makefile
MY_DATABASE=dbname The dbname is the name of a database.

Sample queries and programs are located in the same examples directory. Precede
queries with the BEGIN WORK statement and follow them with the ROLLBACK
WORK statement.

1-28 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dba.doc/ids_dba_015.htm#ids_dba_015
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_324.htm#ids_sqr_324

Chapter 2. Data types and system tables

Specialized data types and system tables handle time series data.

You create time series objects that have the following data types:
v Calendar
v CalendarPattern
v TimeSeries

You can also create a user-defined data type to store time series metadata. Other
time series data types store information in the time series system tables.

The time series system tables are created in the database in which you create time
series objects.

Important: Do not delete time series system tables unless you do not have any
time series data.
Related concepts:
“Calendar” on page 1-13

CalendarPattern data type
The CalendarPattern data type defines the interval duration and the pattern of
valid and invalid intervals in a calendar pattern.

The CalendarPattern data type is an opaque data type that has the following
format:

�� �

,

{ num_intervals on } ,
off

interval ��

© Copyright IBM Corp. 2006, 2014 2-1

Table 2-1. CalendarPattern data type parameter values

Value Description

interval For regular time series, defines the size of one element. One of the
following interval names:

v Second

v Minute

v Hour

v Day

v Week

v Month

v Year

For irregular time series and hertz time series, the interval is
significant only in defining on and off periods. The interval does
not determine the number of elements. For hertz time series, the
effective interval for recording data is the value of the hertz
parameter when the time series is created.

num_intervals A positive integer that represents the number of interval units.
Interval units are either valid intervals for time series data, if
followed by on, or invalid intervals for time series data, if
followed by off. The maximum number of interval units, either on
or off, in a calendar pattern is 2035. Internal calculations take
longer to perform if you use a long calendar pattern.

For compressed time series, the off keyword is not allowed.

Usage

The information inside the braces is the pattern specification. The pattern
specification has one or more elements that consist of n, the number of interval
units, and either on or off, to signify valid or invalid intervals. Elements are
separated by commas. The information after the braces is the interval size.

The calendar pattern length is how many intervals before the calendar pattern
starts over; after all timepoints in the pattern specification are exhausted, the
pattern is repeated. For this reason, a weekly calendar pattern with daily intervals
must contain exactly seven intervals and a daily calendar pattern with hourly
intervals must contain exactly 24 intervals. If your calendar pattern length is not
correct, your time series data might not match your requirements. For example, the
pattern {1 off, 4 on, 1 off} appears to repeat every week, but the pattern
repeats every six days because there are only six intervals. When the calendar
pattern begins is specified by the calendar pattern start date.

Calendars that have the same calendar pattern length but different interval sizes
are not equivalent. For example, a calendar can be built around a normal five-day
work week, with the time unit in days, and Saturday and Sunday as days off.
Assuming that the calendar pattern start date is for a Sunday, the syntax for this
calendar pattern is:
INSERT INTO CalendarPatterns

VALUES(’workweek_day’,
’{1 off, 5 on, 1 off}, day’);

In the next example, the calendar is built around the same five-day work week,
with the time unit in hours:

2-2 IBM Informix TimeSeries Data User's Guide

INSERT INTO CalendarPatterns
VALUES(’workweek_hour’,

’{ 32 off, 9 on, 15 off, 9 on, 15 off, 9 on, 15 off,
9 on, 15 off, 9 on, 31 off }, hour’};

Both examples have a calendar pattern length of seven days, or one week.
However, the number of allowed records for regular time series and the on and off
periods are different between the calendar patterns. The workweek_day calendar
pattern allows a maximum of five records per week for regular time series and
prohibits records on weekends. The workweek_hour calendar pattern allows 45
records per week for regular time series and prohibits records on weekends and 15
hours per day. For irregular time series, the number of on periods and the number
of records do not correspond.

The calendar pattern is stored in the CalendarPatterns table and can be used in
multiple calendars.

When a calendar is inserted into the CalendarTable table, it draws information
from the CalendarPatterns table. The database server refers only to CalendarTable
for calendar and calendar pattern information; changes to the CalendarPatterns
table have no effect unless CalendarTable is updated or recreated.

You can manage exceptions to your calendar pattern by hiding elements for which
there is no data by using the HideElem function.

Calendar patterns can be combined with functions that form the Boolean AND,
OR, and NOT of the calendar patterns. The resulting calendar patterns can be
stored in a calendar pattern table or used as arguments to other functions.

You can use the calendar pattern interval with the WithinR and WithinC functions
to search for data around a specified timepoint. The WithinR function performs a
relative search. Relative searches search forward or backward from the starting
timepoint, traveling the specified number of intervals into the future or past. The
WithinC function performs a calibrated search. A calibrated search proceeds both
forward and backward to the interval boundaries that surround the given starting
timepoint.

Examples

The following statement creates a pattern that is named hour that has a timepoint
every hour:
INSERT INTO CalendarPatterns

VALUES(’hour’, ’{1 on} hour’);

The following statement creates a pattern that is named fifteen_min that has a
15-minute timepoint:
INSERT INTO CalendarPatterns

VALUES(’fifteen_min’, ’{1 on, 14 off} minute’);

The following statement creates a pattern that is named fourday_day that has a
weekly pattern of four days on and three days off:
INSERT INTO CalendarPatterns

VALUES(’fourday_day’,
’{1 off, 4 on, 2 off}, day’);

Related concepts:
“Calendar data type” on page 2-4

Chapter 2. Data types and system tables 2-3

“CalendarPatterns table” on page 2-8
Related tasks:
“Defining a calendar” on page 3-12
Related reference:
“WithinC and WithinR functions” on page 7-161
“HideElem function” on page 7-67
Chapter 5, “Calendar pattern routines,” on page 5-1
“GetInterval function” on page 7-55

Calendar data type
The Calendar data type controls the times at which time series data can be stored.

The Calendar data type is an opaque data type that is composed of:
v A calendar starting time stamp
v A calendar pattern
v A calendar pattern starting time stamp

For regular time series, calendars are also used to convert the time periods of
interest to offsets of values in the vector, and vice versa.

The input format for the Calendar data type is a quoted text string.

�� ' startdate (start_date)
pattstart (pattern_date)

pattstart (pattern_date)

, �

�
(1)

pattern (Calendar pattern)
pattname (pattern_name)

' ��

Notes:

1 See “CalendarPattern data type” on page 2-1.

Table 2-2. Calendar data type parameter values

Value Data type Description

start_date DATETIME YEAR TO
FRACTION(5)

Defines when the calendar starts.

If you do not specify a start date, the calendar
pattern start date is used.

The calendar start date does not affect the
origin of the time series. The origin of the time
series specifies the earliest date for elements in
the time series. The origin can be before the
calendar start date.

2-4 IBM Informix TimeSeries Data User's Guide

Table 2-2. Calendar data type parameter values (continued)

Value Data type Description

pattern_date DATETIME YEAR TO
FRACTION(5)

Defines when the calendar pattern starts.

If both the calendar start date and the pattern
start date are included, the pattern start date
must be the same as or later than the calendar
start data by a number of intervals that is less
than or equal to the number of interval lengths
in the pattern length.

If you do not specify a calendar pattern start
date, the calendar start date is used.

pattern_name VARCHAR Name of calendar pattern to use from
CalendarPatterns table.

Usage

To create a calendar, insert the keywords and their values into the CalendarTable
table.

Set the calendar start date and calendar pattern start dates at the logical beginning
of an interval. For example, if the interval size is a day, specify a start date time of
midnight.

Calendars can be combined with functions that form the Boolean AND, OR, and
NOT of the calendars. The resulting calendars can be stored in the CalendarTable
table or used as arguments to other functions.

You can define both a calendar pattern starting time and a calendar starting time if
the calendar and calendar pattern starting times do not coincide. The calendar start
date and the pattern start date can be one or more intervals apart, depending on
the calendar pattern length. For example, if the calendar pattern is {1 on, 14 off},
the pattern length is 15. The calendar start date and the pattern start date can be
from 0 to 15 intervals apart.

Occasionally, if you have a regular time series, you have elements for which there
is no data. For example, if you have a daily calendar you might not obtain data on
holidays. These exceptions to your calendar are marked as null elements. However,
you can hide exceptions so that they are not included in calculations or analysis by
using the HideElem function.

Examples

The following example inserts a calendar called weekcal into the CalendarTable
table:
INSERT INTO CalendarTable(c_name, c_calendar)

VALUES (’weekcal’,
’startdate(2011-01-02 00:00:00.00000),
pattstart(2011-01-02 00:00:00.00000),
pattname(workweek_day)’);

This calendar starts on 2011-01-02 and uses a pattern named workweek_day.

The following example creates an hourly calendar with the specified pattern:

Chapter 2. Data types and system tables 2-5

INSERT INTO CalendarTable(c_name, c_calendar)
VALUES(’my_cal’,

’startdate(2011-01-01 00:00:00.00000),
pattstart(2011-01-02 00:00:00.00000),
pattern({24 off, 120 on, 24 off}, hour)’);

The calendar start date is 24 hours before the pattern start date. The pattern length
is 168 hours, or one week.
Related concepts:
“CalendarTable table” on page 2-8
Related tasks:
“Defining a calendar” on page 3-12
Related reference:
Chapter 6, “Calendar routines,” on page 6-1
“CalendarPattern data type” on page 2-1
“HideElem function” on page 7-67

TimeSeries data type
The TimeSeries data type is constructed from a row data type and is a collection
of row subtypes.

To create a TimeSeries column, first you create the TimeSeries subtype, using the
CREATE ROW TYPE statement.

�� CREATE ROW TYPE subtype_name (�

� timestamp_field DATETIME YEAR TO FRACTION(5) , �

� �

,

field_name data_type
NOT NULL

) ; ��

Table 2-3. TimeSeries data type parameter values

Value Description

field_name The name of the field in the row data type. Must be unique for the
row data type. The number of fields in a subtype is not restricted.

Must follow the Identifier syntax. For more information, see
Identifier (SQL Syntax).

2-6 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1660.htm#ids_sqs_1660

Table 2-3. TimeSeries data type parameter values (continued)

Value Description

data_type Can be any data type except the following data types:

v SERIAL, SERIAL8, or BIGSERIAL data types

v Types that have Assign or Destroy functions assigned to them,
including large object types and some user-defined types

v JSON

A hertz time series must have columns of only the following data
types: SMALLINT, INT, BIGINT, SMALLFLOAT, FLOAT, DATE,
INT8, CHAR, VARCHAR, NCHAR, NVCHAR, LVARCHAR,
DATETIME, DECIMAL, and MONEY.

A compressed time series must have only the following data types:
SMALLINT, INTEGER, BIGINT, SMALLFLOAT, and FLOAT.

You can include only one BSON column. A BSON document
cannot exceed 4 KB in size.

subtype_name The name of the TimeSeries subtype. Can be a maximum of 128
bytes.

Must follow the Identifier syntax. For more information, see
Identifier (SQL Syntax).

timestamp_field The name of the field that contains the time stamp. Must be
unique for the row data type.

Must follow the Identifier syntax. For more information, see
Identifier (SQL Syntax).

After you create the TimeSeries subtype, you create the table containing the
TimeSeries column using the CREATE TABLE statement. You can also use the
CREATE DISTINCT TYPE statement to define a new data type of type TimeSeries.

A TimeSeries column can contain either regular or irregular time series; you
specify regular or irregular when you create the time series.

The maximum allowable size for a single time series element is 32704 bytes.

You cannot put an index on a column of type TimeSeries.

After loading data into a TimeSeries column, run the following commands:
update statistics high for table tsinstancetable;

update statistics high for table tsinstancetable (id);

This improves performance for any subsequent load, insert, and delete operations.
Related concepts:
“Hertz time series” on page 1-8
“Compressed numeric time series” on page 1-10
“TimeSeries data type technical overview” on page 1-5
Related tasks:
“Creating a TimeSeries subtype” on page 3-13
Related reference:
“Create the database table” on page 3-14

Chapter 2. Data types and system tables 2-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1660.htm#ids_sqs_1660
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1660.htm#ids_sqs_1660

“Create a time series” on page 3-22

Time series return types
When a routine returns a time series, calendar information is preserved and, if
possible, threshold and container information is preserved.

Some functions that return a TimeSeries subtype require that the return value be
cast to a particular time series type. For functions like Clip, WithinC, and
WithinR, the return type is always the same as the type of the argument time
series, and no cast is required.

However, for other functions, such as AggregateBy, Apply, and Union, the type of
the resulting time series is not necessarily the same as a time series argument.
These functions require that their return types be cast to particular time series
types.

If a time series returned by one of these functions cannot use the container of the
original time series and a container name is not specified, the resulting time series
is stored in a container associated with the matching TimeSeries subtype and
regularity. If no matching container exists, a new container is created.

CalendarPatterns table
The CalendarPatterns table contains information about calendar patterns.

The CalendarPatterns table contains two columns: a VARCHAR(255) column
(cp_name) and a CalendarPattern column (cp_pattern).

To insert a calendar pattern into the CalendarPatterns table, use the INSERT
statement.
Related tasks:
“Defining a calendar” on page 3-12
Related reference:
“CalendarPattern data type” on page 2-1

CalendarTable table
The CalendarTable table maintains information about the time series calendars
used by the database.

When you create a calendar, you insert a row into the CalendarTable table.The
CalendarTable table contains seven predefined calendars that you can use instead
of creating calendars. You can change a calendar by running an UPDATE statement
on a row in the CalendarTable table.

The following table contains the columns in the CalendarTable table.

Table 2-4. The CalendarTable table

Column name Data type Description

c_version INTEGER Internal. The version of the calendar. Currently, only
version 0 is supported.

2-8 IBM Informix TimeSeries Data User's Guide

Table 2-4. The CalendarTable table (continued)

Column name Data type Description

c_refcount INTEGER Internal. Counts the number of in-row time series
that reference this calendar. The c_refcount column
is maintained by the Assign and Destroy functions
on TimeSeries. Rules attached to this table allow
updates only if c_refcount is 0; this restriction
ensures that referential integrity is not violated.

c_name VARCHAR(255) The name of the calendar.

c_calendar Calendar The Calendar type for the calendar.

c_id SERIAL Internal. The serial number of the calendar.

Related concepts:
“Calendar data type” on page 2-4
Related tasks:
“Defining a calendar” on page 3-12
Related reference:
“Predefined calendars” on page 3-13

TSContainerTable table
The TSContainerTable table has one row for each container.

Table 2-5. The columns in the TSContainerTable table

Column name Date type Description

name VARCHAR(128,1) The name of the container of the time series.
The primary key of the table.

Containers that are created automatically are
named autopoolnnnnnnnn, where n is a
positive integer eight digits long with leading
zeros.

subtype VARCHAR(128,1) The name of the time series subtype.

partitionDesc tsPartitionDesc_t The description of the partition for the
container.

flags INTEGER Stores flags to indicate:

v Whether the container is empty and always
was empty.

v Whether the time series is regular or
irregular.

v Whether the container is enabled for
Enterprise Replication.

v Whether the container is a rolling window
container.

pool VARCHAR(128,1)
DEFAULT NULL

The name of the container pool to which the
container belongs. NULL indicates that the
container does not belong to a container pool.
The default container pool is named autopool.

Chapter 2. Data types and system tables 2-9

The TSContainerTable table is managed by the database server. Do not modify it
directly. Rows in this table are automatically inserted or deleted when containers
are created or destroyed.

You can create or destroy containers by using the TSContainerCreate and
TSContainerDestroy procedures, which insert and delete rows in the
TSContainerTable table.

To get a list of containers in the database, run the following query:
SELECT NAME FROM TSContainerTable;

To get a list of the containers in the default container pool, run the following
query:
SELECT NAME FROM TSContainerTable
WHERE pool = ’autopool’;

Related concepts:
“Monitor containers” on page 3-18
Related reference:
“TSContainerWindowTable”
“TSContainerCreate procedure” on page 7-93
“TSContainerDestroy procedure” on page 7-98

TSContainerWindowTable
The TSContainerWindowTable table has one row for each rolling window
container.

Two virtual tables are based on the TSContainerWindowTable table. The virtual
tables contain a row for each partition:
v The TSContainerUsageActiveWindowVTI contains information about the

partitions in the active window.
v The TSContainerUsageDormantWindowVTI contains information about the

partitions in the dormant window.

Table 2-6. The columns in the TSContainerWindowTable table

Column name Data type Description

name VARCHAR(128) The name of the rolling window container.

windowinterval VARCHAR(8) The size of the interval of each partition: year, month,
week, or day.

activewindowsize INTEGER The number of partitions in the active window.

dormantwindowsize INTEGER The number of partitions in the dormant window.

windowspaces LVARCHAR(4096) The list of dbspaces in which partitions are stored.

activewindow TimeSeries(TSContainerWindow_r) A row type that contains interval information for the
partitions that are in the active window.

To view the starting timestamp and location
information about the partitions, query the
TSContainerUsageActiveWindowVTI table.

2-10 IBM Informix TimeSeries Data User's Guide

Table 2-6. The columns in the TSContainerWindowTable table (continued)

Column name Data type Description

dormantwindow TimeSeries(TSContainerWindow_r) A row type that contains interval information for the
partitions that are in the dormant window.

To view the starting timestamp and location
information about the partitions, query the
TSContainerUsageDormantWindowVTI table.

container_size INTEGER The first extent size of the partitions.

container_grow INTEGER The next extent size of the partitions.

windowcontrol INTEGER A flag that indicates how active partitions are
handled when they are manually or automatically
detached:

v 0 = Default. Partitions are not automatically
destroyed if they cannot fit into the dormant
window.

v 1 = Partitions are automatically destroyed if they
cannot fit into the dormant window.

Related concepts:
“TSContainerTable table” on page 2-9
“Monitor containers” on page 3-18

TSContainerUsageActiveWindowVTI Table
The TSContainerUsageActiveWindowVTI table is a virtual table that is based on
the TSContainerWindowTable table. The TSContainerUsageActiveWindowVTI
table has one row for each partition in the active window of a rolling window
container.

Table 2-7. The columns in the TSContainerUsageActiveWindowVTI table

Column name Data type Description

name VARCHAR(128) The name of the rolling window container.

windowinterval VARCHAR(8) The size of the interval of each partition: year, month,
week, or day.

activewindowsize INTEGER The number of partitions in the active window.

dormantwindowsize INTEGER The number of partitions in the dormant window.

windowspaces LVARCHAR(4096) The list of dbspaces in which partitions are stored.

tstamp DATETIME YEAR TO FRACTION(5) The starting timestamp of the time range for the
partition.

partition tsPartitionDesc_t The description of the partition.

container_size INTEGER The first extent size of the partitions.

container_grow INTEGER The next extent size of the partitions.

windowcontrol INTEGER A flag that indicates how active partitions are
handled when they are manually or automatically
detached:

v 0 = Default. Partitions are not automatically
destroyed if they cannot fit into the dormant
window.

v 1 = Partitions are automatically destroyed if they
cannot fit into the dormant window.

Chapter 2. Data types and system tables 2-11

Related concepts:
“Monitor containers” on page 3-18

TSContainerUsageDormantWindowVTI Table
The TSContainerUsageDormantWindowVTI table is a virtual table that is based
on the TSContainerWindowTable table. The
TSContainerUsageDormantWindowVTI table has one row for each partition in
the dormant window of a rolling window container.

Table 2-8. The columns in the TSContainerUsageDormantWindowVTI table

Column name Data type Description

name VARCHAR(128) The name of the rolling window container.

windowinterval VARCHAR(8) The size of the interval of each partition: year, month,
week, or day.

activewindowsize INTEGER The number of partitions in the active window.

dormantwindowsize INTEGER The number of partitions in the dormant window.

windowspaces LVARCHAR(4096) The list of dbspaces in which partitions are stored.

tstamp DATETIME YEAR TO FRACTION(5) The starting timestamp of the time range for the
partition.

partition tsPartitionDesc_t The description of the partition.

container_size INTEGER The first extent size of the partitions.

container_grow INTEGER The next extent size of the partitions.

windowcontrol INTEGER A flag that indicates how active partitions are
handled when they are manually or automatically
detached:

v 0 = Default. Partitions are not automatically
destroyed if they cannot fit into the dormant
window.

v 1 = Partitions are automatically destroyed if they
cannot fit into the dormant window.

Related concepts:
“Monitor containers” on page 3-18

TSInstanceTable table
The TSInstanceTable table contains one row for each large time series, no matter
how many times it is referenced.

Time series smaller than the threshold you specify when you create them are
stored directly in a column and do not appear in the TSInstanceTable table.

2-12 IBM Informix TimeSeries Data User's Guide

Table 2-9. The columns in the TSInstanceTable table

Column name Data type Description

id BIGSERIAL The serial number of the time series and the
primary key for this table. You can use the
InstanceId function to return this number.

The instance ID is a required argument in some
time series routines.

The instance ID is also used to order results if an
SQL query includes an ORDER BY clause on a
TimeSeries column.

cal_id INTEGER The identification of the CalendarTable row for
the time series.

flags SMALLINT Stores various flags for the time series.

v 0x01 = TSFLAGS_IRR. The time series is
irregular.

v 0x10 = TSFLAGS_PACKED. The time series
contains packed elements.

v 0x20 = TSFLAGS_COMPRESSED. The time
series is compressed.

v 0x40 = TSFLAGS_HERTZ. The time series
contains hertz data.

vers SMALLINT The version of the time series.

container_name VARCHAR(128,1) The name of the container of the time series.
This is a reference to the primary key of the
TSContainerTable table.

ref_count INTEGER The number of different references to the same
time series instance.

The TSInstanceTable table is managed by the database server. Do not modify it
directly. Rows in this table are automatically inserted or deleted when large time
series are created or destroyed.
Related reference:
“InstanceId function” on page 7-71
“TSContainerCreate procedure” on page 7-93
“TSContainerSetPool procedure” on page 7-111
“TSContainerDestroy procedure” on page 7-98

Chapter 2. Data types and system tables 2-13

2-14 IBM Informix TimeSeries Data User's Guide

Chapter 3. Create and manage a time series through SQL

Before you can load time series data into the database, you must configure
database objects specific to your time series. You can manage data storage and
remove data as necessary. You can run SQL statements to create and manage time
series.

To create and load a time series:
1. Create a calendar or choose a predefined calendar.
2. Create a time series column.
3. If necessary, create containers.
4. Create the time series.
5. Load data into the time series.
Related concepts:
“Planning for creating a time series” on page 1-19

Example: Create and load a regular time series
This example shows how to create a TimeSeries data type, create a time series
table, create a regular time series by running the TSCreate function, and load data
into the time series through the IBM Informix TimeSeries Plug-in for Data Studio.

Prerequisites:
v IBM Data Studio or IBM Optim Developer Studio must be running and the

Informix TimeSeries Plug-in for Data Studio must be installed. Data Studio can
be installed on a different computer than the database server.

v The stores_demo database must exist. You create the stores_demo database by
running the dbaccessdemo command.

In this example, you create a time series that contains electricity meter readings.
Readings are taken every 15 minutes. The table and TimeSeries data type you
create are similar to the examples in the ts_data table in the stores_demo database.
The following table lists the time series properties used in this example.

Table 3-1. Time series properties used in this example

Time series property Definition

Timepoint size 15 minutes

When timepoints are valid Every 15 minutes with no invalid times

Data in the time series The following data:

v Timestamp

v A decimal value that represents electricity
usage

Time series table The following columns:

v A meter ID column of type BIGINT

v A TimeSeries data type column

Origin All meter IDs have an origin of 2010-11-10
00:00:00.00000

Regularity Regular

© Copyright IBM Corp. 2006, 2014 3-1

Table 3-1. Time series properties used in this example (continued)

Time series property Definition

Metadata No metadata

Amount of storage space Approximately 1 MB (8640 timepoints for
each of the 28 rows)

Where to store the data In an automatically created container in the
same dbspace as the stores_demo database,
which is in the root dbspace by default

How to load the data The TimeSeries plug-in

How to access the data A virtual table

Creating a TimeSeries data type and table
You create a TimeSeries data type with columns for the timestamp and the
electricity usage value. Then you create a table that has primary key column for
the meter ID and a TimeSeries column.

To create the TimeSeries data type and table:
1. Create a TimeSeries subtype named my_meter_data in the stores_demo

database by running the following SQL statement:
CREATE ROW TYPE my_meter_data(

timestamp DATETIME YEAR TO FRACTION(5),
data DECIMAL(4,3)

);

The timestamp column contains the time of the meter reading and the data
column contains the reading value.

2. Create a time series table named my_ts_data by running the following SQL
statement:
CREATE TABLE IF NOT EXISTS my_ts_data (
meter_id BIGINT NOT NULL PRIMARY KEY,
raw_reads TIMESERIES(my_meter_data)
) LOCK MODE ROW;

Related tasks:
“Creating a TimeSeries subtype” on page 3-13
Related reference:
“Create the database table” on page 3-14

Creating regular, empty time series
You need to define the properties of the time series for each meter ID by loading
the meter IDs into the time series table and creating a regular, empty time series
for each meter ID. You use the meter IDs from the ts_data table in the stores_demo
database to populate the meter_id column of your my_ts_data table.

To create regular, empty time series:
1. Create an unload file named my_meter_id.unl that contains the meter IDs from

the loc_esi_id column of the ts_data table by running the following SQL
statement:
UNLOAD TO "my_meter_id.unl" SELECT loc_esi_id FROM ts_data;

2. Create a temporary table named my_tmp and load the meter IDs into it by
running the following SQL statements:

3-2 IBM Informix TimeSeries Data User's Guide

CREATE TEMP TABLE my_tmp (
id BIGINT NOT NULL PRIMARY KEY);

LOAD FROM "my_meter_id.unl" INSERT INTO my_tmp;

You use this table in the next step to create a time series for each meter ID with
one SQL statement instead of running a separate SQL statement for each meter
ID.

3. Create a regular, empty time series for each meter ID that uses the pre-defined
calendar ts_15min by running the following SQL statement, which uses the
time series input function:
INSERT INTO my_ts_data

SELECT id,
"origin(2010-11-10 00:00:00.00000),calendar(ts_15min),
threshold(0),regular,[]"

FROM my_tmp;

Because you did not specify a container name, the time series for each meter ID
is stored in a container in the same dbspace in which the table resides. The
container is created automatically and is a member of the default container
pool.

Related reference:
“Time series input function” on page 3-24

Creating the data load file
You create a time series data load file by creating a virtual table based on the
ts_data table and then unloading some of the columns.

To create the data load file:
1. Create a virtual table based on the raw_reads time series column of the ts_data

table by running the following SQL statement:
EXECUTE PROCEDURE TSCreateVirtualTab("my_vt", "ts_data", 0, "raw_reads");

You use the virtual table to create a data load file.
2. Unload the data from the tstamp and value columns from the virtual table into

a file named my_meter_data.unl by running the following SQL statement:
UNLOAD TO my_meter_data.unl

SELECT loc_esi_id, tstamp, value
FROM my_vt;

Related reference:
“TSCreateVirtualTab procedure” on page 4-5

Loading the time series data
You use the TimeSeries plug-in to load the data from the my_meter_data.unl file
into the my_ts_data table. The TimeSeries plug-in has a cheat sheet that you use to
guide you through the process of loading the data.

To load time series data:
1. If you are using Data Studio or Optim Developer Studio on a different

computer, move the $INFORMIXDIR\my_meter_data.unl file to that computer
and start Data Studio or Optim Developer Studio.

2. From the main menu, choose Help > Cheat Sheets, expand the TimeSeries
Data category, choose Loading from a File, and click OK.

3. Open the TimeSeries perspective.

Chapter 3. Create and manage a time series through SQL 3-3

4. Create a project area named my_test.
5. Create the Informix table definition and define the columns of the table. Name

the table definition my_table and save the definition in the my_test project
directory. Define the following table columns:
v meter_id: choose the Big Integer type and specify that it is the primary key
v raw_reads: choose the TimeSeries type

6. Define the following subcolumns for the raw_reads column and then save the
project:
v timestamp: choose the Timestamp type
v data: choose the Numeric type

7. Create a record format and define the format of the data file. Name the record
format definition my_format and save it in the my_test project directory.
Define the following record formats:
v meter_id: choose the Big Integer type and specify the | (pipe) delimiter
v timestamp: choose the Timestamp type and specify the | (pipe) delimiter
v data: choose the Numeric type and specify the | (pipe) delimiter

8. Create a table map named my_map and map the data formats of the data file
to the columns of the Informix table and then save it in the my_test project
directory.

9. Create a connection profile to the Informix database server named my_ifx.
10. Define and start a load job. Specify the following values:

v File format file: my_format.udrf
v Table definition file: my_table.tbl
v Mapping file: my_map.tblmap
v Data file: my_meter_data.unl
v Connection profile: my_ifx

When you click OK, the load job starts and you see the status.
Related concepts:
“IBM Informix TimeSeries Plug-in for Data Studio” on page 3-27

Accessing time series data through a virtual table
You create a virtual table to view the time series data in relational data format.

To create a virtual table based on the time series table:

Use the TSCreateVirtualTab procedure to create a virtual table named my_vt2 that
is based on the my_ts_data table by running the following SQL statement:
EXECUTE PROCEDURE TSCreateVirtualTab("my_vt2", "my_ts_data",

"calendar(ts_15min), origin(2010-11-10 00:00:00.00000)");

You can query the virtual table by running standard SQL statements. For example,
the following query returns the first value for each of the 28 meter IDs:
SELECT * FROM my_vt2 WHERE timestamp = "2010-11-10 00:00:00.00000";

Related reference:
“TSCreateVirtualTab procedure” on page 4-5

3-4 IBM Informix TimeSeries Data User's Guide

Example: Create and load a hertz time series
This example shows how to create, load, and query a time series that stores hertz
data.

In this example, you create a time series that contains hertz data that is recorded
50 times a second. You can create the time series table in any database that you
choose. The following table lists the time series properties that are used in this
example.

Table 3-2. Time series properties used in this example

Time series property Definition

Element size 1 second

When elements are valid Always

Data in the time series The following data:

v Timestamp

v A SMALLINT value

v An INTEGER value

v A BIGINT value

Time series table The following columns:

v An ID column of type INTEGER

v A TimeSeries data type column

Origin 2014-01-01 00:00:00.00000

Regularity Irregular

Hertz 50 records per second

Metadata No metadata

Where to store the data In a container that you create

How to load the data The InsElem function

How to access the data A virtual table

To create, load, and view a hertz time series:
1. Create a TimeSeries subtype that is named ts_data_h in a database by running

the following SQL statement:
CREATE ROW TYPE ts_data_h(

tstamp datetime year to fraction(5),
tssmallint smallint,
tsint int,
tsbigint bigint

);

You can include only certain data types in your TimeSeries subtype.
2. Create a time series table that is named tstable_h by running the following

SQL statement:
CREATE TABLE IF NOT EXISTS tstable_h(

id int not null primary key,
ts timeseries(ts_data_h)

) LOCK MODE ROW;

3. Create a container that is named container_h by running the following SQL
statement:
EXECUTE PROCEDURE

TSContainerCreate(’container_h’, ’rootdbs’, ’ts_data_h’, 512, 512);

Chapter 3. Create and manage a time series through SQL 3-5

You can choose to create the container in a different dbspace than the root
dbspace.

4. Create a calendar by running the following SQL statement:
INSERT INTO CalendarTable(c_name, c_calendar)

VALUES(’ts_1sec’,
’startdate(2014-01-01 00:00:00.00000),
pattern({1 on}, second)’);

You cannot specify a subsecond interval for a calendar, however, the hertz time
series definition overrides the calendar interval.

5. Create a hertz time series with a hertz value of 50 by running the following
SQL statement in an explicit transaction:
BEGIN;
Started transaction.

INSERT INTO tstable_h VALUES(50,
TSCreateIrr(’ts_1sec’, ’2014-01-01 00:00:00.00000’, 0, 50, 0, ’container_h’)

);
1 row(s) inserted.

COMMIT;

The threshold and nelems parameters must be set to 0.
6. Insert five records for the same second into the time series by running the

following SQL statements:
BEGIN;
Started transaction.

UPDATE tstable_h SET ts = InsElem(ts, row(’2014-01-01 00:00:00.00000’,
1, 201, 99991)::ts_data_h)

WHERE id = 50;
1 row(s) updated.

UPDATE tstable_h SET ts = InsElem(ts, row(’2014-01-01 00:00:00.02000’,
2, 202, 99992)::ts_data_h)

WHERE id = 50;
1 row(s) updated.

UPDATE tstable_h SET ts = InsElem(ts, row(’2014-01-01 00:00:00.04000’,
3, 203, 99993)::ts_data_h)

WHERE id = 50;
1 row(s) updated.

UPDATE tstable_h SET ts = InsElem(ts, row(’2014-01-01 00:00:00.06000’,
4, 204, 99994)::ts_data_h)

WHERE id = 50;
1 row(s) updated.

UPDATE tstable_h SET ts = InsElem(ts, row(’2014-01-01 00:00:00.08000’,
5, 205, 99995)::ts_data_h)

WHERE id = 50;
1 row(s) updated.

COMMIT;
Data committed.

You must insert records in chronological order.
7. Create a virtual table that is named vt_tstable_h_h that is based on the hertz

time series by running the following SQL statement:

3-6 IBM Informix TimeSeries Data User's Guide

EXECUTE PROCEDURE
TSCreateVirtualTab(’vt_tstable_h_h’, ’tstable_h’, 4096, ’ts’);

8. Query the virtual table to view the hertz data by running the following SQL
statement:
SELECT * FROM vt_tstable_h_h;

id 50
tstamp 2014-01-01 00:00:00.00000
tssmallint 1
tsint 201
tsbigint 99991

id 50
tstamp 2014-01-01 00:00:00.02000
tssmallint 2
tsint 202
tsbigint 99992

id 50
tstamp 2014-01-01 00:00:00.04000
tssmallint 3
tsint 203
tsbigint 99993

id 50
tstamp 2014-01-01 00:00:00.06000
tssmallint 4
tsint 204
tsbigint 99994

id 50
tstamp 2014-01-01 00:00:00.08000
tssmallint 5
tsint 205
tsbigint 99995

5 row(s) retrieved.

Related concepts:
“TimeSeries data type” on page 2-6
“Hertz time series” on page 1-8
Related reference:
“Create the database table” on page 3-14
“TSContainerCreate procedure” on page 7-93
“TSCreateIrr function” on page 7-118
“InsElem function” on page 7-69
“TSCreateVirtualTab procedure” on page 4-5

Example: Create and load a compressed time series
This example shows how to create, load, and query a time series that stores
compressed numeric data.

In this example, you create a time series that contains numeric data that is
compressed. You can create the time series table in any database that you choose.
The following table lists the time series properties that are used in this example.

Chapter 3. Create and manage a time series through SQL 3-7

Table 3-3. Time series properties used in this example

Time series property Definition

Calendar interval Second

When elements are valid Always

Data in the time series The following data:

v Timestamp

v Three columns with INTEGER values

Time series table The following columns:

v An ID column of type INTEGER

v A TimeSeries data type column

Origin 2014-01-01 00:00:00.00000

Regularity Irregular

Compression Three different compression definitions

Metadata No metadata

Where to store the data In a container that you create

How to load the data The InsElem function

How to access the data A virtual table

To create, load, and view a compressed time series:
1. Create a TimeSeries subtype that is named ts_data_c in a database by running

the following SQL statement:
CREATE ROW TYPE ts_data_c(

tstamp datetime year to fraction(5),
ts1 int,
ts2 int,
ts3 int

);

You can include only certain numeric data types in your TimeSeries subtype.
2. Create a time series table that is named tstable_c by running the following SQL

statement:
CREATE TABLE IF NOT EXISTS tstable_c(

id int not null primary key,
ts timeseries(ts_data_c)

) LOCK MODE ROW;

3. Create a container that is named container_c by running the following SQL
statement:
EXECUTE PROCEDURE

TSContainerCreate(’container_c’, ’rootdbs’, ’ts_data_c’, 512, 512);

You can choose to create the container in a different dbspace than the root
dbspace.

4. Create a calendar by running the following SQL statement:
INSERT INTO CalendarTable(c_name, c_calendar)

VALUES(’ts_1sec’,
’startdate(2014-01-01 00:00:00.00000),
pattern({1 on}, second)’);

You cannot include off periods in the calendar for a compressed time series.

3-8 IBM Informix TimeSeries Data User's Guide

5. Create a compressed time series with compression definitions for the three data
columns in the ts_data_c data type by running the following SQL statement in
an explicit transaction:
BEGIN;
Started transaction.

INSERT INTO tstable_c VALUES(50,
TSCreateIrr(’ts_1sec’, ’2014-01-01 00:00:00.00000’, ’container_c’,

’q(2,1,100),lb(20),ls(20)’));
1 row(s) inserted.

COMMIT;

The first INTEGER column has a compression type of quantization with a
compression size of 2 bytes, a lower bound of 1 and an upper bound of 100.
The second INTEGER column has a compression type of linear boxcar and a
maximum deviation of 20. The third INTEGER column has a compression type
of linear swing door and a maximum deviation of 20.

6. Insert five records for the same element into the time series by running the
following SQL statements:
BEGIN;
Started transaction.

UPDATE tstable_c SET ts = InsElem(ts, row(’2014-01-01 00:00:00.00000’,
1, 201, 99991)::ts_data_c) WHERE id = 50;

1 row(s) updated.

UPDATE tstable_c SET ts = InsElem(ts, row(’2014-01-01 00:00:01.00000’,
2, 202, 99992)::ts_data_c) WHERE id = 50;

1 row(s) updated.

UPDATE tstable_c SET ts = InsElem(ts, row(’2014-01-01 00:00:02.00000’,
3, 203, 99993)::ts_data_c) WHERE id = 50;

1 row(s) updated.

UPDATE tstable_c SET ts = InsElem(ts, row(’2014-01-01 00:00:03.00000’,
4, 204, 99994)::ts_data_c) WHERE id = 50;

1 row(s) updated.

UPDATE tstable_c SET ts = InsElem(ts, row(’2014-01-01 00:00:04.00000’,
5, 205, 99995)::ts_data_c) WHERE id = 50;

1 row(s) updated.

COMMIT;
Data committed.

You must insert records in chronological order.
7. Create a virtual table that is named vt_tstable_c that is based on the

compressed time series by running the following SQL statement:
EXECUTE PROCEDURE

TSCreateVirtualTab(’vt_tstable_c’, ’tstable_c’, 4096, ’ts’);

8. Query the virtual table to view the compressed data by running the following
SQL statement:
SELECT * FROM vt_tstable_c;

id tstamp ts1 ts2 ts3

50 2014-01-01 00:00:00.00000 1 201 99991
50 2014-01-01 00:00:01.00000 2 202 99992
50 2014-01-01 00:00:02.00000 3 203 99993

Chapter 3. Create and manage a time series through SQL 3-9

50 2014-01-01 00:00:03.00000 4 204 99994
50 2014-01-01 00:00:04.00000 5 205 99995

5 row(s) retrieved.

Related concepts:
“TimeSeries data type” on page 2-6
“Compressed numeric time series” on page 1-10
Related reference:
“Create the database table” on page 3-14
“TSContainerCreate procedure” on page 7-93
“TSCreateIrr function” on page 7-118
“InsElem function” on page 7-69
“TSCreateVirtualTab procedure” on page 4-5

Example: Create and load a time series with JSON data
This example shows how to create, load, and query a time series that stores JSON
data.

In this example, you create a time series that contains meter readings in JSON
documents. Readings are taken every 15 minutes. The following table lists the time
series properties that are used in this example.

Table 3-4. Time series properties used in this example

Time series property Definition

Timepoint size 15 minutes

When timepoints are valid Every 15 minutes with no invalid times

Data in the time series v Timestamp

v JSON documents that are stored in a
BSON column in the TimeSeries subtype

Time series table v A meter ID column of type INTEGER

v A TimeSeries data type column

Origin 2014-01-01 00:00:00.00000

Regularity Regular

Metadata No metadata

Where to store the data In a container that you create

How to load the data Through an external table and a loader
program

How to access the data Through a virtual table

To create, load, and query a time series that contains JSON data:
1. Create a TimeSeries subtype that is named ts_data_j in a database by running

the following SQL statement:
CREATE ROW TYPE ts_data_j(

tstamp datetime year to fraction(5),
sensor_data BSON

);

Because the JSON documents are stored in the database as BSON documents,
the sensor_data column has a BSON data type.

3-10 IBM Informix TimeSeries Data User's Guide

2. Create a time series table that is named tstable_j by running the following
SQL statement:
CREATE TABLE IF NOT EXISTS tstable_j(

id int not null primary key,
ts timeseries(ts_data_j)

) LOCK MODE ROW;

3. Create a container that is named container_b in a dbspace by running the
following SQL statement:
EXECUTE PROCEDURE

TSContainerCreate(’container_b’, ’dbspace1’, ’ts_data_j’, 512, 512);

4. Create a time series with a JSON document by running the following SQL
statement:
INSERT INTO tstable_j VALUES(1, ’origin(2014-01-01 00:00:00.00000),

calendar(ts_15min), container(container_b),
[({"v1":1.5, "v2":20.5})]’);

A predefined calendar with 15 minute intervals is specified. The JSON
document contains two values.

5. Create a pipe-delimited file in any directory with the name json.unl that
contains the time series data to load:
1|2014-01-01 00:15:00.00000|{"v1":2.0, "v2":17.4}
1|2014-01-01 00:30:00.00000|{"v1":1.9, "v2":20.2}
1|2014-01-01 00:45:00.00000|{"v1":1.8, "v2":19.7}

6. Create an external table and load it with time series data from the json.unl
file:
CREATE EXTERNAL TABLE ext_tstable_j
(
id INT,
tstamp DATETIME YEAR TO FRACTION(5),
json_doc JSON
)
USING(

FORMAT ’DELIMITED’,
DATAFILES

(
"DISK:path/json.unl"
)

);

Substitute path with the directory for the json.unl file.
7. Initialize a global context and open a database session by running the

TSL_Init function:
EXECUTE FUNCTION TSL_Init(’tstable_j’,’ts’);

8. Load the data by running the TSL_PutSQL function with an SQL statement
that selects the data from the external table and casts the JSON column to
BSON:
EXECUTE FUNCTION TSL_PutSQL(’tstable_j|ts’,

"SELECT id, tstamp, sensor_data::bson FROM ext_tstable_j");

9. Save the data to disk by running the TSL_FlushAll function:
BEGIN;
EXECUTE FUNCTION TSL_FlushAll(’tstable_j|ts’);
COMMIT WORK;

10. Close the session and remove the global context by running the
TSL_SessionClose and TSL_Shutdown functions:
EXECUTE FUNCTION TSL_SessionClose(’tstable_j|ts’);
EXECUTE FUNCTION TSL_Shutdown(’tstable_j|ts’);

Chapter 3. Create and manage a time series through SQL 3-11

11. Create a virtual table that is named virt_tstable_j by running the
TSCreateVirtualTab procedure:
EXECUTE PROCEDURE TSCreateVirtualTab(virt_tstable_j, tstable_j);

12. View the virtual table by running a SELECT statement. Cast the sensor_data
column to JSON so that you can view the data:
SELECT id, tstamp, sensor_data::json FROM virt_tstable_j;

(expression)
id tstamp sensor_data
1 2014-01-01 00:00:00.00000 {"v1":1.5, "v2":20.5}
1 2014-01-01 00:15:00.00000 {"v1":2.0, "v2":17.4}
1 2014-01-01 00:30:00.00000 {"v1":1.9, "v2":20.2}
1 2014-01-01 00:45:00.00000 {"v1":1.8, "v2":19.7}

4 row(s) retrieved.

13. Insert a row through the virtual table. You must explicitly cast the JSON data
to the JSON data type, and then cast the data to the BSON data type:
INSERT INTO virt_tstable_j values(1, "2014-01-01 01:00:00.00000",
(’{"v1":2.1, "v2":20.1}’::json)::bson);

Related concepts:
“JSON time series” on page 1-12
Related tasks:
“Creating a TimeSeries subtype” on page 3-13
“Writing a loader program” on page 3-31
“Loading JSON data” on page 3-33
Related reference:
“Create the database table” on page 3-14
“Time series input function” on page 3-24
“TSCreateVirtualTab procedure” on page 4-5

CREATE EXTERNAL TABLE Statement (SQL Syntax)

Defining a calendar
A time series definition must include a calendar. A calendar includes a calendar
pattern, which can be defined separately or within the calendar definition.You can
create a calendar or choose a predefined calendar.

To create a calendar:
1. Optional: Create a named calendar pattern by inserting a row into the

CalendarPatterns table by using the format of the CalendarPattern data type.
A named calendar pattern is useful if you plan to use the same calendar
pattern in multiple calendars.

2. Create a calendar by inserting a row into the CalendarTable table by using the
format of the Calendar data type. Include either the name of an existing
calendar pattern or a calendar pattern definition.

To use a predefined calendar, specify one when you create a time series with the
TSCreate or TSCreateIrr function. You can change a predefined calendar to meet
your needs by updating the row for the calendar in the CalendarTable table.
Related concepts:
“Calendar data type” on page 2-4
“CalendarPatterns table” on page 2-8

3-12 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2053.htm#ids_sqs_2053

“CalendarTable table” on page 2-8
Related reference:
“CalendarPattern data type” on page 2-1

Predefined calendars
You can use predefined calendars when you create a time series.

Predefined calendars are stored in rows in the CalendarTable table. You can
change a predefined calendar by updating the row for the calendar in the
CalendarTable table.

If you upgrade from a previous release of the Informix TimeSeries solution or the
IBM Informix TimeSeries DataBlade® Module and an existing calendar is defined
with the same name as one of the predefined calendars, the existing calendar is not
replaced by the predefined calendar.

The following table contains the properties of predefined calendars.

Table 3-5. Predefined calendars

Calendar name Interval duration Start date and time

ts_1min Once a minute 2011-01-01 00:00:00.00000

ts_15min Once every 15 minutes 2011-01-01 00:00:00.00000

ts_30min Once every 30 minutes 2011-01-01 00:00:00.00000

ts_1hour Once an hour 2011-01-01 00:00:00.00000

ts_1day Once a day 2011-01-01 00:00:00.00000

ts_1week Once a week 2011-01-02 00:00:00.00000

ts_1month Once a month 2011-01-01 00:00:00.00000

ts_1year Once a year 2011-01-01 00:00:00.00000

Related concepts:
“CalendarTable table” on page 2-8

Create a time series column
To create a time series column:

Creating a TimeSeries subtype
To create a column of type TimeSeries, you must first create a row subtype to
represent the data held in each element of the time series.

Subtypes for both regular and irregular time series are created in the same way.

To create the row subtype, use the SQL CREATE ROW TYPE statement and specify
that the first field has a DATETIME YEAR TO FRACTION(5) data type. The row
type must conform to the syntax of the TimeSeries data type.

Examples

The following example creates a TimeSeries subtype, called stock_bar:
create row type stock_bar(

timestamp datetime year to fraction(5),
high real,

Chapter 3. Create and manage a time series through SQL 3-13

low real,
final real,
vol real

);

The following example creates a TimeSeries subtype, called stock_trade:
create row type stock_trade(

timestamp datetime year to fraction(5),
price double precision,
vol double precision,
trade int,
broker int,
buyer int,
seller int

);

Related concepts:
“TimeSeries data type” on page 2-6
“TimeSeries data type technical overview” on page 1-5
Related reference:

CREATE ROW TYPE statement (SQL Syntax)

DATETIME data type (SQL Reference)

Create the database table
After you create the TimeSeries subtype, use the CREATE TABLE statement to
create a table with a column of that subtype.

You have the following options and restrictions when you create a table with at
TimeSeries column:
v You can create the table in a dbspace that uses non-default page size.
v You cannot use delimited identifiers for table or column names.
v If you plan to replicate time series data with Enterprise Replication, the primary

key column must not be an opaque data type.
v If you plan to write a loader program, the name of the table and the name of the

TimeSeries column must not contain uppercase letters.
v You can fragment the table. When you fragment the table and enable PDQ,

certain queries can run faster:
– TimeSeries routines that select time series data can run in parallel. The table

can be fragmented by any method.
– Queries on a fragmented virtual table that is based on the table can run in

parallel. The table must be fragmented by expression.
v You can include other options of the CREATE TABLE statement.

The basic syntax for creating a table with a TimeSeries subtype column is:
CREATE TABLE table_name(

col1 any_data_type,
col2 any_data_type,
...
coln TimeSeries(subtype_name)

);

List the data type of the TimeSeries column as TimeSeries(subtype_name), where
subtype_name is the name of the subtype that you created.

3-14 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0475.htm#ids_sqs_0475
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_110.htm#ids_sqr_110

Examples

The following example creates a table that is called daily_stocks that contains a
time series column of type TimeSeries(stock_bar):
create table daily_stocks (

stock_id int,
stock_name lvarchar,
stock_data TimeSeries(stock_bar)

);

Each row in the daily_stocks table can hold a stock_bar time series for a particular
stock.

The following example creates a table that is called activity_stocks that contains a
time series column of type TimeSeries(stock_trade):
create table activity_stocks(

stock_id int,
activity_data TimeSeries(stock_trade)

);

Each row in the activity_stocks table can hold a stock trade time series for a
particular stock.
Related concepts:
“TimeSeries data type” on page 2-6
Related reference:
“Time series routines that run in parallel” on page 7-7

CREATE TABLE statement (SQL Syntax)

Creating containers
Containers are created automatically when they are needed, in the same dbspaces
in which the table is stored. If you want to store your time series data in other
dbspaces, you can create containers. You can move containers between container
pools. You must create containers if you want to replicate time series data with
Enterprise Replication or create rolling window containers.

To create a container, run the TSContainerCreate procedure. For Enterprise
Replication, you must create containers with the same names on every replication
server before you start replication.

To control whether multiple sessions write to a container at one time, run the
TSContainerLock procedure.

To delete a container, run the TSContainerDestroy procedure.
Related concepts:
“Planning for replication of time series data” on page 1-23
Related reference:
“TSContainerCreate procedure” on page 7-93
“TSContainerDestroy procedure” on page 7-98
“TSContainerSetPool procedure” on page 7-111
“Time series storage” on page 1-14
“TSContainerPurge function” on page 7-108
“Planning for data storage” on page 1-20

Chapter 3. Create and manage a time series through SQL 3-15

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0509.htm#ids_sqs_0509

“TSContainerLock procedure” on page 7-99

Rules for rolling window containers
Rolling window containers store data in partitions by date intervals and can
automatically delete old data. The active window and the dormant window have a
set of behaviors that affect how the data is handled and how you can interact with
the data.

To create a rolling window container, run the TSContainerCreate function. Specify
the size of a partition. Specify maximum sizes for the active and dormant
windows. Enable the automatic deletion of old partitions. Specify multiple
dbspaces in which to store partitions.

To change the properties or the layout of rolling window containers, run the
TSContainerManage function. You can change the window sizes, attach or detach
partitions, destroy partitions, change whether partitions are destroyed
automatically, and change the extent sizes of partitions.

To take advantage of rolling windows, set the sizes of the active and dormant
windows to positive integers. If you set the size of the active window to 0, the
active window size is unlimited and you must manually detach partitions into the
dormant window. If you set the size of the dormant window to 0, you must
manually destroy partitions, regardless of whether you enable the automatic
destroying of partitions.

Set the active window size to the same or larger than the time range of data that
you plan to load. If the range of data is larger than the active window size, the
load might fail. For example, suppose that you are storing meter data and choose
an interval of one week and an active window size of four weeks. When you add a
month of data for the first meter ID, five partitions are created because a month is
usually longer than four weeks. The partition that stores the data for the first week
of the month is moved to the dormant window. When you attempt to insert a
month of data for the next meter ID, the insert fails because some of the data does
not fit into the active window.

In general, set the size of the dormant window larger than the size of the active
window. The dormant window provides a staging area for data that you no longer
need but that you do not yet want to delete.

If you enable the automatic destroying of partitions, test your system under
realistic conditions before you implement it. Consider the size of your active and
dormant windows and how you insert data. For example, the active and dormant
windows each have a maximum size of three intervals. If you insert data that has a
timestamp of seven intervals later than the most recent original data, all of your
original data is destroyed.

The following list of rules describe the behavior of the active window and dormant
windows if you set both the window sizes to positive numbers. The examples that
are provided assume that the active window has a monthly interval, has a
maximum size of 6 partitions, and contains partitions for January, February, and
March. The dormant window has a maximum size of 3 partitions.

Rules for querying, inserting, and modifying data:
v You cannot query, insert, update, or delete data from a partition in a dormant

window.

3-16 IBM Informix TimeSeries Data User's Guide

v You can query, insert, update, and delete the data in the partitions that are in the
active window. For example, you can insert, update, or delete an element for
February 28.

v If you add data with timestamps that are after the latest partition, new partitions
are created automatically in the active window. For example, you insert an
element for March 2. A new partition is created for March.

v You can add data that is earlier than the oldest partition if both of the following
conditions are met:
– The data does not have timestamps that are before the origin of the rolling

window container.
– The active window has space for the new partition, which is created

automatically.
– The dormant window does not have data that has the same or a more recent

timestamp than the data that is being added. For example, the dormant
window is empty, and you insert an element for December 31 of the previous
year. A new partition is created for December in the active window.

v If you add data that is more than one interval later than the latest partition,
intermediate empty partitions are also created. Empty partitions are counted in
the window size. For example, you insert an element for May 15. New partitions
are created for April and May. The April partition remains empty until you
insert data for April. The active window has 6 partitions.

v When you add data for a new partition and the active window is full, the oldest
partition automatically moves to the dormant window. For example, you add
data for July. Partitions are created automatically for June and July. The
partitions for December and January are moved to the dormant window.

Rules for managing partitions:
v You can manually detach partitions from the active window to the dormant

window. Any partitions older than the partition you choose to detach are also
detached. For example, if you detach the March partition to the dormant
window, the February partition is detached automatically. However, if the
dormant window is full and partitions are not destroyed automatically, that
detach operation fails. You must first manually destroy the appropriate number
of partitions.

v You can attach partitions into the active window from the dormant window. The
active window must have room for that partition and any partitions that belong
in between that partition and the oldest partition in the active window. For
example, you attach the January partition to the active window. The February
partition is attached automatically to the active window.

v You can change the size of the active window. If you make the size of the active
window larger, you can attach partitions from the dormant window. For
example, you change the active window size to 9 and attach the December
partition to the active window. The January partition also attaches to the active
window. If you make the size of the active window smaller, the oldest partitions
that exceed the new maximum size are detached to the dormant window.
However, if the dormant window is full and partitions are not destroyed
automatically, the resizing operation fails. You must first manually destroy the
appropriate number of partitions.

Rules for destroying data:
v When you add data and one or more new active partitions are created so that

the number of active partitions exceeds the active window size, the appropriate
number of older active partitions are detached and moved to the dormant

Chapter 3. Create and manage a time series through SQL 3-17

window. How the partitions that are being moved to the dormant window are
handled depends on the number of partitions that are being moved and the
window_control parameter:
– If the number of active partitions that are being detached is less than or equal

to the dormant window size, then the active partitions are moved to the
dormant window. If the number of dormant partitions exceeds the dormant
window size, the older partitions are destroyed.

– If the number of partitions that must be detached is greater than the dormant
windows size, you specify the action taken by setting the window_control
parameter:
- To allow as any dormant partitions as necessary to be destroyed but

prevent any active partitions from being destroyed, set the window_control
parameter to 0. An operation fails if it requires active partitions to be
destroyed.

- To allow as many as necessary active and dormant partitions to be
destroyed, set the window_control parameter to 1.

- To prevent active partitions from being destroyed and limit the number of
dormant partitions that can be destroyed, set the window control flag to 2
and set the destroy_count parameter to a positive integer.

- To allow a specific number of active and dormant partitions to be
destroyed, set the window_control parameter to 3 and the destroy_count
parameter to a positive integer.

v You can manually destroy partitions in the dormant window. Any partitions that
are older than the date that you specify are destroyed. For example, the dormant
window contains partitions for January, February, and March. You specify to
destroy partitions before March. The February and January partitions are
destroyed.

v You can change the size of the dormant window. If you make it smaller, the
action that is taken depends on the window_control parameter. The behavior is
the same as when you add partitions.

v You can change the type and number of partitions that can be destroyed.
Related concepts:
“Delete time series data” on page 3-37
Related reference:
“Time series storage” on page 1-14
“TSContainerCreate procedure” on page 7-93
“TSContainerManage function” on page 7-99

Monitor containers
You can view information about time series containers, such as the properties of
containers, how large containers are, and how full containers are. If you monitor
the containers over time, you can predict how quickly containers fill and how
much data fits into each container.

Use the IBM OpenAdmin Tool (OAT) for Informix to monitor containers.
Alternatively, query system tables and run time series SQL routines.

To view information about the properties of containers, query the
TSContainerTable table. For rolling window containers, view information about
partitions in the TSContainerUsageActiveWindowVTI and
TSContainerUsageDormantWindowVTI tables.

3-18 IBM Informix TimeSeries Data User's Guide

To view specific information about how full a container is, run one of the
following functions, specifying the container name:
v The TSContainerUsage function returns the number of pages that contain time

series data, the number of elements, and the number of pages that are allocated
to the container.

v The TSContainerTotalPages function returns the number of pages that are
allocated to the container.

v The TSContainerTotalUsed function returns the number of pages that contain
time series data.

v The TSContainerPctUsed function returns what percent of the container is full.
v The TSContainerNElems function returns the number of time series data

elements that are stored in the container.

If you specify NULL instead of a container name, the functions return information
about all containers in the database. If you include wildcard characters for the
MATCHES operator in the container name, the functions return information about
all containers that have matching names. For example, if your containers have a
naming convention, you can monitor groups of contains that have similar names.
For rolling window containers, you can specify which sets of partitions to view
information about.
Related concepts:
“TSContainerTable table” on page 2-9
Related reference:
“TSContainerWindowTable” on page 2-10
“TSContainerUsageDormantWindowVTI Table” on page 2-12
“TSContainerUsageActiveWindowVTI Table” on page 2-11
“TSContainerUsage function” on page 7-114
“TSContainerTotalPages function” on page 7-112
“TSContainerTotalUsed function” on page 7-113
“TSContainerPctUsed function” on page 7-105
“TSContainerNElems function” on page 7-104
“Time series storage” on page 1-14

oncheck -pt and -pT: Display tblspaces for a Table or Fragment
(Administrator's Reference)

Manage container pools
By default, containers that are automatically created are added to the default
container pool, named autopool.

To add a container into a container pool or move a container from one container
pool to another, run the TSContainerSetPool procedure and specify the new
container pool name. If the container pool does not exist, it is created.

To remove a container from a container pool, run the TSContainerSetPool
procedure without specifying a container pool name.

To delete a container pool, remove all the containers from it.

Chapter 3. Create and manage a time series through SQL 3-19

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0387.htm#ids_adr_0387
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0387.htm#ids_adr_0387

Example 1: Creating a container and adding it to the default
container pool

Suppose that you have a TimeSeries subtype named smartmeter_row, you want to
store the time series data in a different dbspace than the table is in, and you do not
want to specify the container name when you insert data. The following statements
create a container that is called ctn_sm1 for the smartmeter_row time series and
add the container to the default container pool:
EXECUTE PROCEDURE TSContainerCreate

(’ctn_sm1’,’tsspace1’,’smartmeter_row’,0,0);
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm1’,’autopool’);

When you insert data for the smartmeter_row time series without specifying a
container name, the database server stores the data in the container named
cnt_sm1 in the dbspace named tsspace1 instead of creating a container in the same
dbspace as the table.

Example 2: Removing a container from the default container pool

Suppose that a container was automatically created for your time series, but you
want to stop automatically inserting data into that container. After you create the
container for the time series using the process in the first example, you can remove
the original container from the default container pool. The following statement
removes a container named ctn_sm4 from the default container pool:
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm4’);

The container ctn_sm4 still exists, but data is inserting into it only if the INSERT
statement explicitly names ctn_sm4 with the container argument.

Configuring additional container pools
You can create a container pool to manage how time series data is inserted into
multiple containers. You can insert data into containers in round-robin order or by
using a user-defined method.

If you want to use a container pool policy other than round-robin order, you must
write the user-defined container pool policy function before you insert data into
the container pool. For more information, see “User-defined container pool policy”
on page 3-21.

To create a container pool and store data into containers by using a container pool
policy:
1. Create containers by running the TSContainerCreate procedure.
2. Add each container to the container pool by using the TSContainerSetPool

procedure.
3. Insert data into the time series by including the TSContainerPoolRoundRobin

function with the container pool name or by including your user-defined
container pool policy function in the container argument.

Example

This example uses a TimeSeries subtype named smartmeter_row that is in a
column named rawreadings, which is in a table named smartmeters. Suppose you
want to store the data for the time series in three containers, in a container pool
you created.

3-20 IBM Informix TimeSeries Data User's Guide

The following statements create three containers for the TimeSeries subtype
smartmeter_row:
EXECUTE PROCEDURE TSContainerCreate

(’ctn_sm0’,’tsspace0’,’smartmeter_row’,0,0);
EXECUTE PROCEDURE TSContainerCreate

(’ctn_sm1’,’tsspace1’,’smartmeter_row’,0,0);
EXECUTE PROCEDURE TSContainerCreate

(’ctn_sm2’,’tsspace2’,’smartmeter_row’,0,0);

The following statements add the containers to a container pool named readings:
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm0’,’readings’);
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm1’,’readings’);
EXECUTE PROCEDURE TSContainerSetPool(’ctn_sm2’,’readings’);

The following statement inserts time series data into the column rawreadings. The
TSContainerPoolRoundRobin function that specifies the container pool named
readings is used instead of a container name in the container argument.
INSERT INTO smartmeters(meter_id,rawreadings)

VALUES(’met00001’,’origin(2006-01-01 00:00:00.00000),
calendar(smartmeter),regular,threshold(0),
container(TSContainerPoolRoundRobin(readings)),

[(33070,-13.00,100.00,9.98e+34),
(19347,-4.00,100.00,1.007e+35),
(17782,-18.00,100.00,9.83e+34)]’);

During the running of the INSERT statement, the TSContainerPoolRoundRobin
function runs with the following values:
TSContainerPoolRoundRobin(’smartmeters’,’rawreadings’,

’smartmeter_row’,0,’readings’)

The TSContainerPoolRoundRobin function sorts the container names
alphabetically, returns the container name ctn_sm0 to the INSERT statement, and
the data is stored in the ctn_sm0 container. The TSContainerPoolRoundRobin
function specifies to store the data from the next INSERT statement in the
container named ctn_sm1 and the data from the third INSERT statement in the
container named ctn_sm2. For the fourth INSERT statement, the
TSContainerPoolRoundRobin function returns to the beginning of the container
list and specifies to store the data in the container named ctn_sm0, and so on.
Related reference:
“TSContainerCreate procedure” on page 7-93
“TSContainerPoolRoundRobin function” on page 7-107
“TSContainerSetPool procedure” on page 7-111

User-defined container pool policy:

You can create a policy for inserting data into containers within a container pool.

The user-defined container policy you create must have one of the following
function signatures.

Syntax
PolicyName(

table_name lvarchar,
column_name lvarchar,
subtype lvarchar,
irregular integer,
user_data lvarchar

returns lvarchar;

Chapter 3. Create and manage a time series through SQL 3-21

PolicyName(
table_name lvarchar,
column_name lvarchar,
subtype lvarchar,
irregular integer,

returns lvarchar;

PolicyName
The name of the user-defined function.

table_name
The table into which the time series data is being inserted.

column_name
The name of the time series column into which data is being inserted.

subtype
The name of the TimeSeries subtype.

irregular
Whether the time series is regular (0) or irregular (1).

user_data
Optional argument for the name of the container pool.

Description

Write a container pool policy function to select containers in which to insert time
series data. For example, the TSContainerPoolRoundRobin function inserts data
into containers in a round-robin order. You can write a policy function to insert
data into the container with the most free space or by using other criteria. You can
either specify the name of the container pool with the user_data argument or
include code for choosing the appropriate container pool in the policy function.
The container pool must exist before you can insert data into it, and at least one
container within the container pool must be configured for the same TimeSeries
subtype as used by the data being inserted. Include the policy function in the
container argument of an INSERT statement. The policy function returns container
names to the INSERT statement in the order specified by the function.

Returns

The container name in which to store the time series value.
Related reference:
“TSContainerPoolRoundRobin function” on page 7-107

Create a time series
There are several ways to create an instance of a time series, depending on
whether there is existing data to load and, if so, the format of that data.

The following table lists the methods for creating and populating a time series.

Table 3-6. Methods for creating time series

Task Function

Create an empty time series v TSCreate (regular time series)

v TSCreateIrr (irregular time series)

3-22 IBM Informix TimeSeries Data User's Guide

Table 3-6. Methods for creating time series (continued)

Task Function

Create a time series with metadata v TSCreate with the metadata parameter
(regular time series)

v TSCreateIrr with the metadata parameter
(irregular time series)

Create and populate a time series v TSCreate with the set_ts argument (regular
time series)

v TSCreateIrr with the set_ts argument
(irregular time series)

v The time series input function

v The output of a function

Create a hertz time series v TSCreateIrr with the hertz parameter

v The time series input function

Create a compressed time series v TSCreateIrr with the compression parameter

v The time series input function

Related concepts:
“TimeSeries data type” on page 2-6
“Regular time series” on page 1-7
“Irregular time series” on page 1-7
Related reference:
“TSCreate function” on page 7-116
“TSCreateIrr function” on page 7-118

Creating a time series with metadata
You can create an empty or populated time series that also contains user-defined
metadata. A time series column includes a header that holds information about the
time series and can also contain user-defined metadata.

User-defined metadata allows the time series to be self-describing. The metadata
can be information usually contained in additional columns in the table, such as
the name of a stock, or the type of the time series. The advantage of keeping this
type of information in the time series is that, when using an API routine, it is
easier to retrieve the metadata than to pass additional columns to the routine.
Metadata is stored in a distinct type based on the TimeSeriesMeta data type. The
TimeSeriesMeta data type is an opaque data type of variable length, up to a
maximum length of 512 bytes. The routines that accept the TimeSeriesMeta data
type also accept its distinct type. The distinct type requires support functions, such
as input, output, send, receive, and so on.

To create a time series with metadata:
1. Create a distinct data type based on the TimeSeriesMeta data type with the

following SQL statement. Substitute MyMetaData with a name you choose.
create distinct type MyMetaData as TimeSeriesMeta

2. Create support functions for your metadata data type. For information on
creating support functions, see the IBM Informix User-Defined Routines and Data
Types Developer's Guide.

3. Run the TSCreate or TSCreateIrr function with the metadata argument.

Chapter 3. Create and manage a time series through SQL 3-23

After you have created a time series with metadata, you can add, change, remove,
and retrieve the metadata. You can also retrieve the name of your metadata type.
Related reference:
“TSCreate function” on page 7-116
“TSCreateIrr function” on page 7-118
“UpdMetaData function” on page 7-159
“GetMetaData function” on page 7-59

Time series input function
You can use the time series input function to create a time series with the INSERT
statement.

Use the following syntax for the time series input function.

�� INSERT INTO table_name �

,

VALUES (' column_value ' , ' �

� calendar (calendar_name)
, container (container_name)

�

�
, metadata (metadata_value) , metatype (metadata_type)

�

�
, origin (origin)

�

� , threshold (0) , compress (comp_definition) , irregular
, hertz (hertz)

, irregular
, threshold (threshold) , regular

�

�

�

�

[] ') ;
,

,

(data_value)
NULL @ timestamp

datafile (datafile_name)

��

Table 3-7. Time series input function elements

Element Description

calendar_name The name of the calendar.

3-24 IBM Informix TimeSeries Data User's Guide

Table 3-7. Time series input function elements (continued)

Element Description

comp_definition A string that includes a compression
definition for each column in the TimeSeries
row type except the first column. For the
syntax of the compression definition, see
“TSCreateIrr function” on page 7-118.

The irregular keyword must be included
and the value of the threshold parameter
must be 0.

column_value A value of any column in the table except
the TimeSeries column.

container_name The name of an existing container.

data_value The value of a column in a time series
element, except the timestamp column.

datafile_name The name of a file that contains time series
data. For the format of the file, see
“BulkLoad function” on page 7-30.

hertz An integer 1-255 that specifies the number of
records per second.

The irregular keyword must be included
and the value of the threshold parameter
must be 0.

metadata_type The user-defined metadata type. For more
information, see “Creating a time series with
metadata” on page 3-23.

metadata_value The metadata values. Can be NULL. For
more information, see “Creating a time
series with metadata” on page 3-23.

origin The origin of the time series. The default
origin is the calendar start date.

table_name The name of the time series table.

threshold The threshold for the time series. If the time
series stores more than this number of
elements, it is converted to a container.
Otherwise, it is stored directly in the row
that contains it. The default is 20. The size of
a row that contains an in-row time series
cannot exceed 1500 bytes.

timestamp The timestamp of the element. The time
stamp is optional for regular time series but
mandatory for irregular time series.

All data types have an associated input function that is automatically run when
ASCII data is inserted into the column. For the TimeSeries data type, the input has
several pieces of data that is embedded in the text. This information is used to
convey the name of the calendar, the time stamp of the origin, the threshold, the
container, the regularity, and the initial time series data. A time series is regular by
default; the regular keyword is optional. To define an irregular time series, you
must include the irregular keyword.

Chapter 3. Create and manage a time series through SQL 3-25

If you did not specify a data file, then you can supply the data to be placed in the
time series (the data element), surrounded by square brackets, after the parameters.
Elements consist of data values, each separated by a comma. The data values in
each element correspond to the columns in the TimeSeries subtype, not including
the initial time stamp column. Each element is surrounded by parentheses and
followed by an @ symbol and a time stamp. The time stamp is optional for regular
time series but mandatory for irregular time series. Null data values or elements
are indicated with the word NULL. If no data elements are present, the function
creates an empty time series.

If you include the hertz or compress keywords, you must run the input function in
an explicit transaction.

Example: Create a regular time series

Following example shows an INSERT statement for a regular time series that is
created in the table daily_stocks:
insert into daily_stocks values (1234, ’informix’,

’regular, calendar(daycal),
[(350, 310, 340, 1999), (362, 320, 350, 2500)]’);

This INSERT statement creates a regular time series that starts at the date and time
of day that is specified by the calendar called daycal. The first two elements in the
time series are populated with the bracketed data. Since the threshold parameter is
not specified, its default value is used. Therefore, if more than 20 elements are
placed in the time series, the database server attempts to move the data to a
container, but because there is no container that is specified, an error is raised.

Example: Create an irregular time series

The following example shows an INSERT statement for an irregular time series
that is created in the table activity_stocks:
insert into activity_stocks values (

600, ’irregular, container(ctnr_stock), origin(2005-10-06 00:00:00.00000),
calendar(daycal), [(6.25,1000,1,7,2,1)@2005-10-06 12:58:09.12345, (6.50, 2000,
1,8,3,1)@2005-10-06 12:58:09.23456]’);

The INSERT statement creates an irregular time series that starts on 06 October
2005, at the time of day specified by the calendar called daycal. Two rows of data
are inserted with the specified time stamps.

Example: Create a time series for hertz data

The following statement creates an empty irregular time series that stores hertz
data with a frequency of 50 records per second:
BEGIN;
INSERT INTO tstable VALUES(0, ’origin(2013-01-01 00:00:00.00000),

calendar(ts_1sec), container(container_2k),
threshold(0), hertz(50), irregular, []’)

COMMIT;

Example: Create a time series for compressed data

The following statement creates an empty irregular time series that compresses the
time series records for a TimeSeries subtype that has six numeric columns in
addition to the timestamp column:

3-26 IBM Informix TimeSeries Data User's Guide

BEGIN;
INSERT INTO tstable VALUES(0, "origin(2013-01-01 00:00:00.00000),

calendar(ts_1sec), container(container_4k), threshold(0),
compress(n(),q(1,1,100),ls(0.10), lb(0.10),qls(2,0.15,100,100000),
qlb(2,0.25,100,100000)), irregular, []")

COMMIT;

Related tasks:
“Loading JSON data” on page 3-33
Related reference:
“Load small amounts of data with SQL functions” on page 3-36

Create a time series with the output of a function
Many functions return a time series.

The container for a time series that is created by the output of a function is often
implicitly determined. For example, if part of a time series is extracted using the
Clip function and the result is stored in the database, the container for the original
time series is used for the new time series.

If a time series returned by one of these functions cannot use the container of the
original time series and a container name is not specified, the resulting time series
is stored in a container associated with the matching TimeSeries subtype and
regularity. If no matching container exists, a new container is created.

Load data into an existing time series
After you create a time series, you can use one of several methods to load data
into the time series.

Choose the data loading method according to the amount of data and the format
of the data.

IBM Informix TimeSeries Plug-in for Data Studio
You can load time-based data into existing time series instances by creating load
jobs in the IBM Informix TimeSeries Plug-in for Data Studio.

You must have the following prerequisites to create load jobs in the Informix
TimeSeries Plug-in for Data Studio:
v IBM Data Studio or IBM Optim Developer Studio with the Informix TimeSeries

Plug-in for Data Studio installed.
v An existing table with a TimeSeries column.
v Primary key values in your table and a time series instance that is stored in a

container defined for each row. If your primary key has a data type of CHAR(n),
and each value is not n bytes long, you must pad the values to be n bytes long
or change the data type to VARCHAR(20).

v Connectivity information for the Informix database server that contains the time
series table. The connection is created through JDBC.

v A file of time-based data that you want to load into the database or a query to
select data from a database.

v The data must be compatible with Informix data types.

A load job consists of the following definitions:

Chapter 3. Create and manage a time series through SQL 3-27

v Record reader definition that describes the source of the data. The data can be in
a file or in a database, including a database other than Informix.

v Table definition that describes the schema of the Informix table that has the
TimeSeries column.

v Mapping definition that maps the source data to the time series table. If you
change your table definition, you must also update the corresponding mapping
definition.

v A connection profile for the Informix database.
v A connection profile for the source database, if you are loading data from

another database.
v Load properties that describe how the data is loaded.

Load jobs have the following default properties:
– Existing records can be updated.
– The timestamp date format is yyyy-MM-dd HH:mm:ss.
– Missing rows are created and populated with NULL values.
– Data loading is distributed among five threads.
– The data is saved to disk after every KB of data is loaded.
– The data is attempted to be inserted 10 times before returning a failure.
You can change these values and set other load job properties, such as logging
load errors, by editing load properties in the plug-in.

You can reuse the definitions that you created in other load jobs.

After you create a load job, you can run it from the command line with the
command-line loader application.

The maximum number of load jobs you can run simultaneously is limited by the
capabilities of your computer.

The TimeSeries plug-in includes cheat sheets that provide detailed instructions for
creating load jobs and loading data.
Related concepts:
“Planning for loading time series data” on page 1-23
Related tasks:
“Installing the IBM Informix TimeSeries Plug-in for Data Studio” on page 1-25

Creating a load job to load data from a file
Use the IBM Informix TimeSeries Plug-in for Data Studio to create a load job that
loads time-based data from a file into existing time series instances.

Loading data from a file has the following additional requirements:
v The data can be formatted as a single-delimited, double-delimited, fixed-width,

or LSE formatted data stream, for example: one or more files or URLs.
v The data must be ASCII characters.
v The pipe symbol (|) is interpreted as a delimiter.
v Field delimiters can be any ASCII character or regular expression representable

in Java.
v The maximum size of the input file is set by your Java implementation.
1. Open the appropriate cheat sheet by choosing Help > Cheat Sheets, expand

the TimeSeries Data category, choose Loading from a File, and click OK.

3-28 IBM Informix TimeSeries Data User's Guide

2. Follow the instructions in the cheat sheet to create the load job.
Related tasks:
“Running a load job from the command line”

Create a load job to load data from a database
Use the IBM Informix TimeSeries Plug-in for Data Studio to create a load job that
loads time-based data from a database into existing time series instances.

Loading data from databases has the following additional requirements:
v The data is in a database, including databases on database servers other than

Informix.
v Connectivity information for the database server that contains the source data.

The database server must support the Informix or DRDA® connectivity
protocols. The connection is created through JDBC.

1. Open the appropriate cheat sheet by choosing Help > Cheat Sheets, expand
the TimeSeries Data category, choose Loading from a Database, and click OK.

2. Follow the instructions in the cheat sheet to create the load job.
Related tasks:
“Running a load job from the command line”

Running a load job from the command line
After you create a load job in the IBM Informix TimeSeries Plug-in for Data Studio,
you can run the load job from the command line with the command-line loader
application. The command-line loader application is useful if you want to load
data without using the IBM Data Studio or Eclipse user interface. The
command-line loader requires a minimal Eclipse platform.

The following software is required on the computer on which you run the
command-line loader:
v The Eclipse Platform Runtime Binary, or a larger Eclipse or Data Studio

installation, with all necessary dependencies
v TimeSeries plug-in

To load data by running the command-line loader on a computer with a minimal
Eclipse platform:
1. Create load job definition files by running the TimeSeries plug-in through Data

Studio or the Eclipse IDE.
2. Copy the five definition files:

v Record reader definition file
v Table definition file
v Mapping definition file
v The connection profile file for the Informix database that has the TimeSeries

column
v Load properties file. If you did not edit the load properties and want to use

the default properties, you can create an empty file with a .tslp extension.
3. Move the copies of the five definition files to the computer on which you want

to load the data.
4. Extract the TimeSeries plug-in files into the top-level Eclipse directory.
5. Start Eclipse with the -clean and -initialize flags to install the plug-in: ./eclipse

-clean -initialize

6. Run the command-line loader application.

Chapter 3. Create and manage a time series through SQL 3-29

Related tasks:
“Creating a load job to load data from a file” on page 3-28
“Create a load job to load data from a database” on page 3-29
Related reference:
“Command-line loader application”

Command-line loader application
You run the command-line loader application as an argument to the eclipse
command. The command-line loader application uses the parameter files from a
load job that you create with the IBM Informix TimeSeries Plug-in for Data Studio.

Syntax
./eclipse -application com.ibm.informix.timeseries.loader \

-recordReader=RecordReader_file \
-table=Table_file.tbl \
-map=Map_file.fcmap \
-connection=Connection_file.xml \
-properties=LoadProps_file.tslp

RecordReader_file
The name of the file that contains the record reader definition, including
the database connection information, if necessary. The file extension
depends on from where the data is loaded:

.udrf = User-defined record format. The data is loaded from a file.

.drr = Database record reader. The data is loaded from a database.

Table_file
The name of the file that contains the table definition.

Map_file
The name of the file that contains the mapping definition.

Connection_file
The name of the file that contains the Informix database connection profile.

LoadProps_file
The name of the file that contains the load properties.

Usage

Use the command-line loader application to load time series data into a
TimeSeries column. The Eclipse Platform Runtime Binary, or a larger Eclipse
program, the TimeSeries plug-in, and the load files that are generated by the
TimeSeries plug-in are required.

You can load time series data in parallel by running multiple loader applications
simultaneously.

As the data is loaded, statistics about the data are printed to the console. When the
load job is complete, cumulative statistics are printed.

Example

The following command starts a load job that specifies the files that are named for
loadjob1:

3-30 IBM Informix TimeSeries Data User's Guide

./eclipse -application com.ibm.informix.timeseries.loader \
-recordReader=customer1.udrf \
-table=loadjob1_table.tbl \
-map=loadjob1_map.fcmap \
-connection=loadjob1_conn.xml \
-properties=loadjob1_prop.tslp

Related tasks:
“Running a load job from the command line” on page 3-29

Writing a loader program
You can write a program to load time series data by using time series SQL
routines.

You must have the following prerequisites before you load data:
v An existing table with a TimeSeries column. The name of the table and the

name of the TimeSeries column must not contain uppercase letters.
v Primary key values in your table and a time series instance that is defined for

each row. The time series definition must include a threshold value of 0, which
means that all elements are stored in containers.

v A container that is associated with the TimeSeries column.
v Data that consists of a primary key and time-based data. The data can have the

form of a buffer, a file as a CLOB data type, a ROW data type that is compatible
with the TimeSeries data type, or an SQL query to extract the data from the
source database.

v The data must be compatible with Informix data types.

A loader program creates a loader session. A loader session loads data into a
specific TimeSeries column. You must use separate loader sessions for every
TimeSeries column. Opening a loader session takes time. Leave a session open
instead of repeatedly opening and closing the session.

Within a loader session, you can open multiple database sessions so that you can
load data in parallel.

To write a loader program that uses one database session:
1. Initialize a global context and open a database session by running the TSL_Init

function.
2. Copy data from a file or input stream into the database server by running the

TSL_Put, TSL_PutRow, or TLS_PutSQL function. You run this function many
times while you load data.

3. Save data to disk by running the TSL_FlushAll or TSL_Commit function. You
can view information about the last flush operation by running the
TSL_FlushInfo function.

4. If necessary, change the logging mode by running the TSL_SetLogMode
function.

5. Monitor the progress of loaded and saved data by running the
TSL_GetLogMessage function.

6. Close the database session by running the TSL_SessionClose function.
7. Remove the global context and shut down the loader by running the

TSL_Shutdown procedure.

To write a loader program that uses multiple database sessions:

Chapter 3. Create and manage a time series through SQL 3-31

1. Initialize a global context and open a database session by running the TSL_Init
function.

2. Open additional database sessions by running the TSL_Attach function.
3. Determine how to distribute the data among database sessions by running the

TSL_GetKeyContainer function to find into which container each primary key
value belongs.
Loading is faster if each database session loads data into a different container.

4. Within the context of each database session, run the TSL_Put, TSL_PutRow, or
TLS_PutSQL function and the TSL_FlushAll or TSL_Commit function to load
and save data.

5. Within the context of each database session, monitor the progress of loaded and
saved data by running the TSL_GetLogMessage function.

6. If necessary, change the logging mode of all database sessions by running the
TSL_SetLogMode function.

7. Within the context of each database session, close the database session by
running the TSL_SessionClose function.

8. Remove the global context and shut down the loader by running the
TSL_Shutdown procedure.

Examples

The following loader session uses one database session to load data into the
ts_data table in the stores_demo database:
EXECUTE PROCEDURE ifx_allow_newline (’t’);

EXECUTE FUNCTION TSL_Init (’ts_data’,’raw_reads’,
3,4, NULL, ’%Y-%m-%d %H:%M:%S’,

’/tmp/rejects.log’,NULL);

EXECUTE FUNCTION TSL_Put (’ts_data|raw_reads’,
’4727354321000111|KWH|P|2010-11-10 00:00:00.00000|0.092|
4727354321000111|KWH|P|2010-11-10 00:15:00.00000|0.084|
4727354321000111|KWH|P|2010-11-10 00:30:00.00000|0.09|
4727354321000111|KWH|P|2010-11-10 00:45:00.00000|0.085|
4727354321000111|KWH|P|2010-11-10 01:00:00.00000|0.088|
4727354321000111|KWH|P|2010-11-10 01:15:00.00000|0.088|
4727354321000111|KWH|P|2010-11-10 01:30:00.00000|0.085|
4727354321000111|KWH|P|2010-11-10 01:45:00.00000|0.091|
4727354321046021|KWH|P|2010-11-10 00:00:00.00000|0.041|
4727354321046021|KWH|P|2010-11-10 00:15:00.00000|0.041|
4727354321046021|KWH|P|2010-11-10 00:30:00.00000|0.04|
4727354321046021|KWH|P|2010-11-10 00:45:00.00000|0.041|
4727354321046021|KWH|P|2010-11-10 01:00:00.00000|0.041|
4727354321046021|KWH|P|2010-11-10 01:15:00.00000|0.041|
4727354321046021|KWH|P|2010-11-10 01:30:00.00000|0.055|
4727354321046021|KWH|P|2010-11-10 01:45:00.00000|0.073|
4727354321046021|KWH|P|2010-11-10 02:00:00.00000|0.071|
4727354321046021|KWH|P|2010-11-10 02:15:00.00000|0.068|
4727354321046021|KWH|P|2010-11-10 02:30:00.00000|0.07|
’);

EXECUTE FUNCTION TSL_Put (’ts_data|raw_reads’,
’4727354321090954|KWH|P|2010-11-10 00:00:00.00000|0.026|
4727354321090954|KWH|P|2010-11-10 00:15:00.00000|0.035|
4727354321090954|KWH|P|2010-11-10 00:30:00.00000|0.062|
4727354321090954|KWH|P|2010-11-10 00:45:00.00000|0.092|
4727354321090954|KWH|P|2010-11-10 01:00:00.00000|0.016|
4727354321090954|KWH|P|2010-11-10 01:15:00.00000|0.043|
4727354321090954|KWH|P|2010-11-10 01:30:00.00000|0.038|
4727354321090954|KWH|P|2010-11-10 01:45:00.00000|0.037|

3-32 IBM Informix TimeSeries Data User's Guide

4727354321090954|KWH|P|2010-11-10 02:00:00.00000|0.034|
4727354321090954|KWH|P|2010-11-10 02:15:00.00000|0.023|
4727354321090954|KWH|P|2010-11-10 02:30:00.00000|0.03|
4727354321090954|KWH|P|2010-11-10 02:45:00.00000|0.05|
4727354321090954|KWH|P|2010-11-10 03:00:00.00000|0.048|
4727354321090954|KWH|P|2010-11-10 03:15:00.00000|0.047|
’);

begin;
EXECUTE FUNCTION TSL_FlushAll (’ts_data|raw_reads’);
commit;

EXECUTE FUNCTION TSL_SessionClose (’ts_data|raw_reads’);

EXECTUE PROCEDURE TSL_Shutdown (’ts_data|raw_reads’);

Related concepts:
“Planning for loading time series data” on page 1-23
Related tasks:
“Loading JSON data”
Related reference:
“TSL_Put function” on page 7-135
“TSL_Shutdown procedure” on page 7-141
“TSL_SessionClose function” on page 7-139
“TSL_Init function” on page 7-133
“TSL_SetLogMode function” on page 7-140
“TSL_GetLogMessage function” on page 7-132
“TSL_GetKeyContainer function” on page 7-131
“TSL_PutRow function” on page 7-137
“TSL_PutSQL function” on page 7-138
“TSL_FlushInfo function” on page 7-129
“TSL_Commit function” on page 7-124
“TSL_FlushAll function” on page 7-128

Loading JSON data
You can load JSON data into a time series with the time series input statement,
through a virtual table, or by writing a loader program.

When you insert time series data that contains JSON documents with the time
series input function as an INSERT statement, the database server automatically
casts the JSON documents to BSON.

When you create a virtual table that is based on a time series that contains JSON
documents, you can insert rows through the virtual table. You must explicitly cast
the JSON data to the JSON data type, and then cast the data to the BSON data
type. When you query a virtual table, you must cast the contents of the BSON
column to JSON to view the data.

To write a loader program to load JSON data into a time series:
1. Do the prerequisite tasks that are necessary for a loader program, including

creating a TimeSeries subtype, creating a table, creating a container, and
instantiating a time series.

2. Create an external table and load time series data from a file or a pipe. For
example, use the following format for loading from a file:

Chapter 3. Create and manage a time series through SQL 3-33

CREATE EXTERNAL TABLE ext_table_name
(
primary_key_col data_type,
tstamp_col DATETIME YEAR TO FRACTION(5),
json_col JSON
)
USING(

FORMAT ’DELIMITED’,
DATAFILES

(
"DISK:path/filename"
)

);

The ext_table_name is the name that you give to the external table.
The primary_key_col is the name of the primary key column of the time series
table. The primary key can consist of multiple columns.
The tstamp_col is the name of the timestamp column.
The data_type is the data type of the primary key column.
The json_col is the name of the column that contains JSON documents.
The path is the directory for the data file.
The filename is the name of the data file.

3. Write a loader program that loads the time series data from the external table.
Run the TSL_PutSQL function with a SELECT statement that returns data from
the external table and casts the JSON column to BSON. For example, use the
following format to run the TSL_PutSQL function:
EXECUTE FUNCTION TSL_PutSQL(’ts_table_name|ts_col’,

"SELECT primary_key_col, tstamp_col,
json_col::bson FROM ext_table_name");

You cannot load JSON data with the TSL_Put or TSL_PutRowfunctions.
Related concepts:
“JSON time series” on page 1-12
Related tasks:
“Example: Create and load a time series with JSON data” on page 3-10
“Writing a loader program” on page 3-31
Related reference:

CREATE EXTERNAL TABLE Statement (SQL Syntax)
“Time series input function” on page 3-24

Loading data from a file into a virtual table
Data that you insert into a virtual table is written to the underlying base table.
Therefore, you can use the virtual table to load your data that is in a relational
format in a file into a TimeSeries column. Often it is easier to format your raw
data to load a virtual table than to load a TimeSeries column directly, especially if
you must perform incremental loading.

You can load data from a virtual table that was created by the TSCreateVirtualTab
procedure. You cannot load data from a virtual table was created by the
TSCreateExpressionVirtualTab procedure.

To load relational data through a virtual table:
1. Create a virtual table that is based on a time series table.
2. Put your input data in a single file.

3-34 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2053.htm#ids_sqs_2053

3. Format the data according to the standard IBM Informix load file format.
4. Use any of the Informix load utilities: pload, onpload, dbload, or the load

command in DB-Access, to load the file into the virtual table.

See the IBM Informix Administrator's Guide for information about Informix load file
formats and load utilities.
Related concepts:
“Planning for loading time series data” on page 1-23
Chapter 4, “Virtual tables for time series data,” on page 4-1
Related reference:
“TSCreateVirtualTab procedure” on page 4-5

Load data with the BulkLoad function
You can load data into an existing time series with the BulkLoad function. This
SQL function takes an existing time series and a file name as arguments. The file
name is for a file on the client that contains row type data to be loaded into the
time series.

The syntax for using BulkLoad with the UPDATE statement and the SET clause is:
update table_name

set TimeSeries_col=BulkLoad(TimeSeries_col, ’filename’)
where col1=’value’;

The TimeSeries_col parameter is the name of the column that contains the row type.
The filename parameter is the name of the data file. The WHERE clause specifies
which row in the table to update.
Related concepts:
“Planning for loading time series data” on page 1-23
Related reference:
“BulkLoad function” on page 7-30

Data file formats for BulkLoad
Two data formats are supported for the file loaded by BulkLoad:
v Using type constructors
v Using tabs

Each line of the client file must have all the data for one element.

The type constructor format follows the row type convention: comma-separated
columns surrounded by parentheses and preceded by the ROW type constructor.
The first two lines of a typical file look like this:
row(2011-01-03 00:00:00.00000, 1.1, 2.2)
row(2011-01-04 00:00:00.00000, 10.1, 20.2)

If you include collections in a column within the row data type, use a type
constructor (SET, MULTISET, or LIST) and curly braces surrounding the collection
values. A row including a set of rows has this format:
row(timestamp, set{row(value, value), row(value, value)}, value)

The tab format separates the values by tabs. It is only recommended for
single-level rows that do not contain collections or row data types. The first two
lines of a typical file in this format look like this:

Chapter 3. Create and manage a time series through SQL 3-35

2011-01-03 00:00:00.00000 1.1 2.2
2011-01-04 00:00:00.00000 10.1 20.2

The spaces between entries represent a tab.

In both formats, NULL indicates a null entry.

The first file format is also produced when you use the onload utility. This utility
copies the contents of a table into a client file or a client file into a table. When
copying a file into a table, the time series is created and then the data is written
into the new time series. See the IBM Informix Performance Guide for more
information about onload.

Example: Load data with BulkLoad
The following example uses BulkLoad in the SET clause of an UPDATE statement
to populate the existing time series in the daily_stocks table:
insert into daily_stocks values

(999, ’IBM’, TSCreate (’daycal’,
’2011-01-03 00:00:00.00000’,20,0,0, NULL));

update daily_stocks
set stock_data=BulkLoad(stock_data,’sam.dat’)
where stock_name=’IBM’;

Load small amounts of data with SQL functions
You can load individual elements or sets of elements by using time series SQL
functions.

Use any of the following functions to load data into a time series:

PutElem
Updates a time series with a single element.

PutSet Updates a time series with a set of elements.

InsElem
Inserts an element into a time series.

InsSet Inserts every element of a specified set into a time series.

These functions add or update an element or set of elements to the time series.
They must be used in an SQL UPDATE statement with the SET clause:
update table_name

set TimeSeries_col=FunctionName(TimeSeries_type, data)
where col1=’value’;

The TimeSeries_col argument is the name of the column in which the time series is
located. The FunctionName argument is the name of the function. The data
argument is in the row type data element format. The WHERE clause specifies
which row in the table to update.

The following example appends an element to a time series by running the
PutElem function:
update daily_stocks
set stock_data = PutElem(stock_data,

row(NULL::datetime year to fraction(5),
2.3, 3.4, 5.6, 67)::stock_bar)
where stock_name = ’IBM’;

3-36 IBM Informix TimeSeries Data User's Guide

You can also use more complicated expressions to load a time series, for example,
by including binary arithmetic functions.
Related concepts:
“Planning for loading time series data” on page 1-23
Related reference:
“Time series input function” on page 3-24
“Binary arithmetic functions” on page 7-27

Delete time series data
You can delete time series data to remove incorrect data or to remove old data.

The easiest and fastest way to delete old time series data is to create a rolling
window container, from which aging data in partitions can be manually or
automatically detached or destroyed.

You can remove the oldest time series data through an end date in one for more
containers for multiple time series instances by running the TSContainerPurge
function.

You can delete data from a single time series instance in the following ways:
v Delete a single element by running the DelElem function.
v Delete elements in a time range and free any resulting empty pages by running

the DelRange function.
v Free any empty pages in a time series instance by running the NullCleanup

function.
Related reference:
“Rules for rolling window containers” on page 3-16
“DelRange function” on page 7-44
“TSContainerPurge function” on page 7-108
“DelElem function” on page 7-43
“NullCleanup function” on page 7-75

Manage packed data
You can insert, delete, and select packed data.

You must follow these rules when you insert or delete packed data:
v Records must be inserted in chronological order. Existing records cannot be

replaced or updated. Missing records are allowed but cannot be updated.
v Functions that insert or delete compressed data must be run in an explicit

transaction.

You can determine whether a time series contains packed data by running the
GetPacked function. You can determine the frequency of hertz data by running the
GetHertz function. You can determine the compression definition of compressed
data by running the GetCompression function.

Insert packed data

You can insert data into an existing hertz or compressed time series by running the
following functions:

Chapter 3. Create and manage a time series through SQL 3-37

v InsElem

v InsSet

v TSL_Put

v TSL_PutRow

v TSL_PutSQL

You can also insert data through a virtual table.

The data is saved to disk when an element reaches maximum size or the
transaction is committed.

Delete packed data

You can delete elements of hertz data by running the following functions:
v DelClip

v DelItem

v DelRange

v DelTrim

You cannot delete individual records from an element. Regardless of the time
range you specify, whole elements are deleted.

You cannot delete elements from a compressed time series. To delete compressed
data, you must delete the time series instance. For example, you can delete a row
in the table that contains packed data.

Select packed data

You can run any time series function that selects data on packed data. You do not
need to know that the data is packed. When packed data is returned by a time
series function, every packed record appears as an individual element.

The following example shows a returned value from a hertz time series:
SELECT GetElem(ts_2k, ’2014-01-01 00:00:02.50000’) FROM tstable50

(expression) ROW(’2014-01-01 00:00:02.50000’,2 ,50 ,5050

Similarly, when you create a virtual table that is based on packed data, each
packed record is a row in the virtual table. The following example shows four
values in a virtual table that are from the same element in a hertz time series:
SELECT * FROM vt_tstable_2k WHERE tstamp < ’2014-01-01 00:00:00.08000’

id 50
tstamp 2014-01-01 00:00:00.00000
tssmallint 2
tsint 50
tsbigint 5050

id 50
tstamp 2014-01-01 00:00:00.02000
tssmallint 2
tsint 50
tsbigint 5050

id 50
tstamp 2014-01-01 00:00:00.04000
tssmallint 2

3-38 IBM Informix TimeSeries Data User's Guide

tsint 50
tsbigint 5050

id 50
tstamp 2014-01-01 00:00:00.06000
tssmallint 2
tsint 50
tsbigint 5050

4 row(s) retrieved.

Related concepts:
“Hertz time series” on page 1-8
“Compressed numeric time series” on page 1-10
Related reference:
“GetPacked function” on page 7-64
“GetHertz function” on page 7-54
“GetCompression function” on page 7-50

Chapter 3. Create and manage a time series through SQL 3-39

3-40 IBM Informix TimeSeries Data User's Guide

Chapter 4. Virtual tables for time series data

A virtual table provides a relational view of your time series data.

Virtual tables are useful for viewing time series data in a simple format. An SQL
SELECT statement against a virtual table returns data in ordinary data type format,
rather than in the TimeSeries data type format. Many of the operations that
TimeSeries SQL functions and API routines perform can be done using SQL
statements against a virtual table. Some SQL queries are easier to write for the
virtual table than for an underlying time series table, especially SQL queries with
qualifications on a TimeSeries column.

The virtual table is not a real table stored in the database. The data is not
duplicated. At any moment, data visible in the virtual table is the same as the data
in the base table. The data in the virtual table is updated to reflect changes to the
data in the base table. You cannot create an index on a time series virtual table.

You can use a virtual table as the basis of a data mart and accelerate queries on
time series data. When you accelerate queries, you can analyze large amounts of
data faster than directly querying the base table or the virtual table.

Some operations are difficult or impossible in one interface but are easily
accomplished in the other. For example, finding the average value of one of the
fields in a time series over a time is easier with a query against a virtual table than
by using TimeSeries functions. The following query against a virtual table finds the
average stock price over a year:
select avg(vol) from daily_stocks_no_ts
where stock_name = ’IBM’
and timestamp between datetime(2010-1-1) year to day
and datetime(2010-12-31) year to day;

However, aggregating from one calendar to another is easier using the
AggregateBy routine.

Selecting the nth element in a regular time series is easy using the GetNthElem
routine but difficult using a virtual table.

You can insert data into a virtual table that is based on a time series table, which
automatically updates the underlying base table. You can use SELECT and INSERT
statements with time series virtual tables. You cannot use UPDATE or DELETE
statements, but you can update a time series element in the base table by inserting
a new element for the same time point into the virtual table.

You can create a virtual table that is based on an expression that is performed on a
time series table.

You can create a virtual table that is based on only one TimeSeries column at a
time. If the base table has multiple TimeSeries columns, you can create a virtual
table for each of them.
Related concepts:
“Planning for accessing time series data” on page 1-24
“Planning for loading time series data” on page 1-23

© Copyright IBM Corp. 2006, 2014 4-1

Related tasks:
“Loading data from a file into a virtual table” on page 3-34

Performance of queries on virtual tables
The performance of queries on virtual tables depends on the type of query and
whether the query is accelerated.

The performance of queries on virtual tables is similar in most cases to the
performance of queries that run TimeSeries functions on base tables. For example,
the Clip function is faster applied through a virtual table than directly on a time
series. However, it is faster to run the Apply or the Transpose routines on a time
series than to run them through a virtual table by using the
TSCreateExpressionVirtualTab procedure.

If you want to query large amounts of time series data, the performance of queries
on virtual tables that are accelerated by Informix Warehouse Accelerator is
significantly faster than any other type of query. You can control how much of the
virtual table is loaded into the data mart to further improve query performance.
You can easily change which parts of the virtual table are in the data mart. For
example, you create a virtual table that contains three years of time series data.
You create a data mart that is based on the virtual table. You define virtual
partitions for the data mart so that you can quickly refresh the data mart. You
define time windows for the first three months of each year of data and load that
data into the data mart. You run analytic queries on the data through the
accelerator. Then you change the time window to the second three months of each
year and run analytic queries on that data.

You can enhance the performance of your virtual tables by performing the
following tasks:
v Create the virtual table as a fragmented table and enable PDQ so that queries

are run in parallel. The base table must be fragmented by expression.
v Create an index on the key column of the base table. If the table has more than

one column in the key, create a composite index that consists of all key columns.
v Run UPDATE STATISTICS on the base table and on its key columns after any

load or delete operation:
UPDATE STATISTICS HIGH FOR TABLE daily_stocks;

UPDATE STATISTICS HIGH FOR TABLE daily_stocks (stock_id);

By default, statistics are automatically updated once a week.
Related concepts:

Data marts for time series data (Informix Warehouse Accelerator Guide)

The structure of virtual tables
A virtual table that is based on a time series has the same schema as the base table,
except for the TimeSeries column. The TimeSeries column is replaced with the
columns of the TimeSeries subtype. A virtual table based on an expression on a
time series displays the TimeSeries subtype that is the result of the expression,
instead of the subtype from the base table.

For example, the table ts_data contains a TimeSeries column called raw_reads that
contains a row type with tstamp and value columns. The following table displays

4-2 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/ids_acc_102.htm#ids_acc_102

part of the ts_data table. The actual time stamp values are shown for clarity,
although the time stamp values are calculated instead of stored in regular time
series.

Table 4-1. Data in a table with a TimeSeries column

loc_esi_id measure_unit direction raw_reads

4727354321000111 KWH P (2010-11-10 00:00:00.00000, 0.092),
(2010-11-10 00:15:00.00000, 0.084), ...

4727354321046021 KWH P (2010-11-10 00:00:00.00000, 0.041),
(2010-11-10 00:15:00.00000, 0.041), ...

4727354321090954 KWH P (2010-11-10 00:00:00.00000, 0.026),
(2010-11-10 00:15:00.00000, 0.035), ...

The virtual table that is based on the ts_data table converts the raw_reads column
elements into individual columns. The rows are ordered by timestamp, starting
with the earliest timestamp. The following table displays part of the virtual table
that is based on the ts_data table.

Table 4-2. Data in a virtual table based on a time series

loc_esi_id measure_unit direction tstamp value

4727354321000111 KWH P 2010-11-10 00:00:00.00000 0.092

4727354321000111 KWH P 2010-11-10 00:15:00.00000 0.084

. . .

4727354321046021 KWH P 2010-11-10 00:00:00.00000 0.041

4727354321046021 KWH P 2010-11-10 00:15:00.00000 0.041

. . .

4727354321090954 KWH P 2010-11-10 00:00:00.00000 0.026

4727354321090954 KWH P 2010-11-10 00:15:00.00000 0.035

When you create a virtual table that is based on the results of an expression that is
performed on a time series, you specify the TimeSeries subtype appropriate for
containing the results of the expression. The virtual table is based on the specified
TimeSeries data type and the other columns from the base table.

The display of data in virtual tables
When you create virtual tables based on time series, you can customize how time
series data is shown in the virtual tables and in the results of queries on the virtual
tables.

Null elements in a time series are not included in the virtual table. If a base table
has a null element at a specific timepoint, the virtual table has no entry for that
timepoint. You can specify that null elements appear in the virtual table.

Hidden elements are not included in the virtual table. A hidden element is marked
as invisible in the base table. You can specify if hidden elements appear as null
values in the virtual table, or if their values are visible in the virtual table.

When you select data from a virtual table by timestamps, the rows whose
timestamps are closest to being equal to or earlier than the timestamps specified in
the query are returned. If the time series is irregular, the returned rows show the

Chapter 4. Virtual tables for time series data 4-3

same timestamps as specified in the query, regardless if the actual timestamps are
the same. You can specify that when you select data from a virtual table by
timestamps, only rows whose timestamps are exactly equal to the timestamps
specified in the query are returned.

You control the display of data by setting the TSVTMode parameter in the
TSCreateVirtualTab procedure or the TSCreateExpressionVirtualTab procedure.
Related concepts:
“The TSVTMode parameter” on page 4-16
Related reference:
“TSCreateVirtualTab procedure” on page 4-5
“TSCreateExpressionVirtualTab procedure” on page 4-13

Insert data through virtual tables
You can insert data into a virtual table that is based on a time series table. You can
control whether to allow a new time series, duplicate elements for the same
timepoints, which columns in the base table can be updated, and how flexible the
INSERT statement can be.

You can add a time series element to an existing time series through a virtual table.
You can specify to be able to add a time series element into an existing row that
does not have any time series data, or to add a row to the base table.

When you insert an element that has the same timepoint as an existing element,
the original element is replaced. You can specify to allow multiple elements with
the same timepoint.

If the base table has a primary key, the primary key is used to find the row to
update and updates to the base table do not require accurate values for columns
that are not part of the primary key.

If the base table does not have a primary key, all columns in the table except the
TimeSeries column are used to identify the row to be updated and updates to the
base table require accurate values for every column in the base table other than the
TimeSeries column. You can only update the values in the TimeSeries column.

You can specify the rules for the INSERT statement and which columns can be
updated:
v You can update only the TimeSeries column, but you can specify NULL as the

values for non-primary key columns
v You can update the TimeSeries column and all other non-primary key columns

that do not have null values in the INSERT statement.
v You can update the TimeSeries column and all other non-primary key columns.

You can set columns that do not have NOT NULL constraints to null values.
v You can update the TimeSeries column and all other non-primary key columns

that have NOT NULL constraints. You can specify null values for columns that
have NOT NULL constraints.

You can speed data insertion by reducing the amount of logging. If you reduce the
amount of logging, INSERT statements must be run in a transaction without other
types of SQL statements and the elements that are inserted are not visible until the
transaction commits.

4-4 IBM Informix TimeSeries Data User's Guide

Control the rules for inserting data by setting the NewTimeSeries parameter and the
TSVTMode parameter in the TSCreateVirtualTab procedure.
Related concepts:
“The TSVTMode parameter” on page 4-16
Related reference:
“TSCreateVirtualTab procedure”

Creating a time series virtual table
You can create a virtual table that is based on a time series or based on the results
of an expression on a time series.

You can update or insert data through a virtual table that is based on a time series
table. You cannot update or insert data through a virtual table that is based on an
expression on a time series.

To create a virtual table that is based on a table that contains a TimeSeries column,
run the TSCreateVirtualTab procedure.

To create a virtual table that is based on the results of an expression that is
performed on a time series, run the TSCreateExpressionVirtualTab procedure.

If you alter the base table, you must drop and re-create the virtual table.
Related reference:
“TSCreateVirtualTab procedure”
“TSCreateExpressionVirtualTab procedure” on page 4-13

TSCreateVirtualTab procedure
The TSCreateVirtualTab procedure creates a virtual table that is based on a table
that contains a TimeSeries column.

Syntax
TSCreateVirtualTab(VirtualTableName lvarchar,

BaseTableName lvarchar,
NewTimeSeries lvarchar,
TSVTMode integer default 0,
TSColName lvarchar default NULL);

TSCreateVirtualTab(VirtualTableName lvarchar,
BaseTableName lvarchar,
NewTimeSeries lvarchar,
TSVTMode lvarchar,
TSColName lvarchar default NULL);

VirtualTableName
The name of the new virtual table.

BaseTableName
The name of the base table.

NewTimeSeries (optional)
The definition of the new time series to create.

TSVTMode (optional)
Sets the virtual table mode, as described in “The TSVTMode parameter” on
page 4-16

Chapter 4. Virtual tables for time series data 4-5

page 4-16. Can be an integer or a string of one or more flag names that are
separated by one of the following delimiters: plus sign (+), pipe (|), or
comma (,).

TSColName (optional)
For base tables that have more than one TimeSeries column, specifies the
name of the TimeSeries column to be used to create the virtual table. The
default value for the TSColName parameter is NULL, in which case the base
table must have only one TimeSeries column.

Usage

Use the TSCreateVirtualTab procedure to create a virtual table that is based on a
table that contains a time series. Because the column names in the TimeSeries row
type are used as the column names in the resulting virtual table, you must ensure
that these column names do not conflict with the names of other columns in the
base table. The total length of a row in the virtual table (non-time-series and
TimeSeries columns combined) must not exceed 32 KB.

You can configure the time series virtual table to allow updating data in the base
table through the virtual table. If you specify any of the optional parameters, you
must include them in the order that is shown in the syntax, but you can use any
one of them without using the others. For example, you can specify the TSColName
parameter without including the NewTimeSeries and the TSVTMode parameters.

The NewTimeSeries parameter

The NewTimeSeries parameter specifies whether the virtual table allows elements to
be inserted into a time series that does not yet exist in the base table either because
the row does not exist or because the row does not yet have a time series element.
To allow inserts if a time series does not yet exist, use the NewTimeSeries parameter
to specify the time series input string. To prohibit inserts if a time series does not
yet exist, omit the NewTimeSeries parameter when you create the virtual table.

The following table describes the results of attempting to update the base table for
different goals.

Table 4-3. Behavior of updates to the base table

Goal Result

Need to use the
NewTimeSeries
parameter?

Add a time series element into
an existing row that does not
have any time series data. For
example, add the first meter
reading for a specific meter.

A new time series is inserted in
the existing row.

Yes

4-6 IBM Informix TimeSeries Data User's Guide

Table 4-3. Behavior of updates to the base table (continued)

Goal Result

Need to use the
NewTimeSeries
parameter?

Add a time series element to an
existing time series. For
example, add a meter reading
for a meter that has previous
readings.

If the timepoint is not the same as
an existing element, the new
element is inserted to the time
series. If the timepoint is the same
as an existing element, the
existing element is updated with
the new value.

If the TSVTMode parameter
includes the value 1 or putelem,
multiple elements for the same
timepoint can coexist, therefore
the new element is inserted, and
the existing element is also
retained.

No

Add a row. For example, add a
row for a new meter ID.

A new row is inserted into the
base table.

Yes

If you do not include the NewTimeSeries parameter and attempt to insert a time
series element into an existing row that does not have any time series elements or
into a new row, you receive an error.

Example

The following example creates a virtual table that is called daily_stocks_virt based
on the table daily_stocks. Because this example specifies a value for the
NewTimeSeries parameter, the virtual table daily_stocks_virt allows inserts if a time
series does not exist for an element in the underlying base table. If you perform
such an insert, the database server creates a new empty time series that uses the
calendar daycal and has an origin of January 3, 2011.
EXECUTE PROCEDURE TSCreateVirtualTab(’daily_stocks_virt’,

’daily_stocks’, ’calendar(daycal),
origin(2011-01-03 00:00:00.00000)’);

The following statement creates a virtual table with the same characteristics as the
previous statement, except that the TSVTMode parameter specifies to allow
duplicate timepoints and to reduce logging:
EXECUTE PROCEDURE TSCreateVirtualTab(’daily_stocks_virt’,

’daily_stocks’, ’calendar(daycal),
origin(2011-01-03 00:00:00.00000)’,
’put_elem+reduced_log’);

Related concepts:
“The display of data in virtual tables” on page 4-3
“Insert data through virtual tables” on page 4-4
Related tasks:
“Creating a time series virtual table” on page 4-5
“Loading data from a file into a virtual table” on page 3-34

Chapter 4. Virtual tables for time series data 4-7

Example of creating a virtual table
This example shows how to create a virtual table on a table that contains time
series data and the difference between querying the base table and the virtual
table.

To improve clarity, these examples use values t1 through t6 to indicate DATETIME
values, rather than showing complete DATETIME strings.

Query the base table

The base table, daily_stocks, was created with the following statements:
create row type stock_bar(

timestamp datetime year to fraction(5),
high real,
low real,
final real,
vol real

);

create table daily_stocks (
stock_id int,
stock_name lvarchar,
stock_data TimeSeries(stock_bar)

);

The daily_stocks base table contains the following data.

Table 4-4. The daily_stocks base table

stock_id stock_name stock_data

900 AA01 (t1, 7.25, 6.75, 7, 1000000), (t2, 7.5, 6.875, 7.125, 1500000), ...

901 IBM (t1, 97, 94.25, 95, 2000000), (t2, 97, 95.5, 96, 3000000), ...

905 FNM (t1, 49.25, 47.75, 48, 2500000), (t2, 48.75, 48, 48.25, 3000000), ...

To query on the stock_data column, you must use time series functions. For
example, the following query uses the Apply function to obtain the closing price:
select stock_id,
Apply(’$final’, stock_data)::TimeSeries(one_real)
from daily_stocks;

In this query, one_real is a row type that is created to hold the results of the query
and is created with this statement:
create row type one_real(

timestamp datetime year to fraction(5),
result real);

To obtain price and volume information within a specific time range, use a query
that has the following format:
select stock_id, Clip(stock_data, t1, t2) from daily_stocks;

Create the virtual table

The following statement uses the TSCreateVirtualTab procedure to create a virtual
table, called daily_stocks_no_ts, based on daily_stocks:
execute procedure
TSCreateVirtualTab(’daily_stocks_no_ts’, ’daily_stocks’);

4-8 IBM Informix TimeSeries Data User's Guide

Because the statement does not specify the NewTimeSeries parameter,
daily_stocks_no_ts does not allow inserts of elements that do not have a
corresponding time series in daily_stocks.

Also, the statement omits the TSVTMode parameter, so TSVTMode assumes its
default value of 0. Therefore, if you insert data into daily_stocks_no_ts, the
database server uses PutElemNoDups to add an element to the underlying time
series in daily_stocks.

The following table illustrates the virtual table, daily_stocks_no_ts.

Table 4-5. The daily_stocks_no_ts virtual table

stock_id stock_name timestamp* high low final vol

900 AA01 t1 7.25 6.75 7 1000000

900 AA01 t2 7.5 6.875 7.125 1500000

...

901 IBM t1 97 94.25 95 2000000

901 IBM t2 97 95.5 96 3000000

...

905 FNM t1 49.25 47.75 48 2500000

905 FNM t2 48.75 48 48.25 3000000

...

* In this column, t1 and t2 are DATETIME values.

Query the virtual table

Certain SQL queries are much easier to write for a virtual table than for a base
table. For example, the query to obtain the closing price is much simpler:
select stock_id, final from daily_stocks_no_ts;

The query to obtain price and volume within a specific time range is:
select * from daily_stocks_no_ts
where timestamp between t1 and t5;

Some tasks that are complex for time series functions to accomplish, such as use of
the ORDER BY clause, are now simple:
select * from daily_stocks_no_ts
where timestamp between t1 and t5
order by volume;

Inserting data into the virtual table is also simple. To add an element to the IBM
stock, use the following query:
insert into daily_stock_no_ts
values(’IBM’, t6, 55, 53, 54, 2000000);

The element (t6, 55, 53, 54, 2000000) is added to daily_stocks.
Related concepts:
“The TSVTMode parameter” on page 4-16

Chapter 4. Virtual tables for time series data 4-9

Example of creating a fragmented virtual table
This example shows how to create a fragmented virtual table that is based on a
table that contains time series data and that is fragmented by expression.

Prerequisites

Before you run the statements in this example, create three dbspaces named dbs1,
dbs2, and dbs3. Otherwise, substitute your dbspace names in the example.

About this example

When you create the stores_demo database, all the setup tasks for creating and
loading a time series table are complete. The ts_data table in the stores_demo
database contains time series data. The ts_data_v table is a virtual table that is
based on the ts_data table. The ts_data table and the ts_data_v virtual table are not
fragmented.

In this example, you alter the ts_data table to fragment it by expression into three
dbspaces. You re-create the ts_data_v virtual table as a fragmented virtual table.
Then, you run queries in parallel against the ts_data_v virtual table.

Preparing for parallel queries

Run the SQL statements in these steps from an SQL editor, such as DB-Access or
IBM OpenAdmin Tool (OAT) for Informix.

To prepare for running parallel queries on the ts_data_v virtual table:
1. If necessary, create the stores_demo database by running the following

command:
dbaccessdemo

2. If necessary, set the PDQPRIORITY environment variable to a value other than
OFF to enable parallel database queries. For example, run the following SQL
statement:
SET PDQPRIORITY 100

3. Specify an explain output file and enable explain output so that you can
determine whether your queries run in parallel by running the following SQL
statements:
SET EXPLAIN FILE TO ’c:/test/parallelvtq.out’;
SET EXPLAIN ON;

You can specify a different directory and file name for the explain output file.
4. Drop the existing virtual table on time series data, ts_data_v, in the

stores_demo database by running the following SQL statement:
DROP TABLE ts_data_v;

5. Alter the ts_data table to fragment it by expression by running the following
SQL statement:
ALTER FRAGMENT ON TABLE ts_data init

FRAGMENT BY EXPRESSION
PARTITION part1 (loc_esi_id <= "4727354321355594") in dbs1,
PARTITION part2 (loc_esi_id <= "4727354321510846") in dbs2,
REMAINDER IN dbs3;

6. Create the fragmented virtual table, ts_data_v, by running the following SQL
statement:

4-10 IBM Informix TimeSeries Data User's Guide

EXECUTE PROCEDURE TSCreateVirtualTab(
’ts_data_v’,
’ts_data’,
’origin(2010-11-10 00:00:00.00000),calendar(cal15min),
container(raw_container),threshold(0),regular’,
’fragment’,
’raw_reads’
);

The difference between this definition of the ts_data_v virtual table and the
original definition is the value of the fourth parameter, the TSVTMode
parameter. In this definition, the TSVTMode parameter is set to fragment to
fragment the virtual table. In the original definition of the ts_data_v virtual
table, the TSVTMode parameter is set to 0, which indicates the default behavior.

7. Set the isolation level to DIRTY READ by running the following SQL statement:
SET ISOLATION TO DIRTY READ;

The DIRTY READ isolation level ensures that a parallel query on a virtual table
succeeds if the data in the base table is being modified at the same time.

Run parallel queries

The following SQL statement selects the number of values, the sum of the values,
and the average of the values for a 15-minute period on February 7, 2011 for each
customer who lives in the state of Arizona:
SELECT state,

COUNT(value) num_values,
SUM(value) sum,
AVG(value) average

FROM ts_data_v v, customer_ts_data l, customer c
WHERE

v.loc_esi_id=l.loc_esi_id AND l.customer_num=c.customer_num
AND state = "AZ"

AND v.tstamp BETWEEN ’2011-02-07 23:30:00.00000’
AND ’2011-02-07 23:45:00.00000’

GROUP BY state, value
ORDER BY state, value;

The result of the query displays the information for the three qualifying customers:
state (count) (sum) (avg)
AZ 1 0.011 0.011
AZ 1 0.012 0.012
AZ 2 0.050 0.025

The explain output file, parallelvtq.out, describes the query plan for this query.
The information (Parallel, fragments: ALL) for the second and third scans
indicates that the scans ran in parallel and accessed all fragments:
...

Estimated Cost: 14
Estimated # of Rows Returned: 1
Maximum Threads: 5
Temporary Files Required For: Order By Group By

1) informix.c: SEQUENTIAL SCAN

Filters: informix.c.state = ’AZ’

2) informix.l: INDEX PATH

(1) Index Keys: customer_num (Parallel, fragments: ALL)
Lower Index Filter: informix.l.customer_num = informix.c.customer_num

NESTED LOOP JOIN

Chapter 4. Virtual tables for time series data 4-11

3) informix.v: VTI SCAN (Parallel, fragments: ALL)

VTI Filters: (informix.lessthanorequal(informix.v.tstamp,datetime
(2011-02-07 23:45:00.00000) year to fraction(5)) AND
informix.greaterthanorequal(informix.v.tstamp,datetime
(2011-02-07 23:30:00.00000) year to fraction(5)))

Filters: informix.v.loc_esi_id = informix.l.loc_esi_id
NESTED LOOP JOIN

The following SQL statement selects the number of values, the sum of the values,
and the average of the values after 11:30 PM on February 7, 2011 for each
customer:
SELECT state,

COUNT(value) num_values,
SUM(value) sum,
AVG(value) average

FROM ts_data_v v, customer_ts_data l, customer c
WHERE

v.loc_esi_id=l.loc_esi_id
AND l.customer_num=c.customer_num
AND greaterthan(v.tstamp,’2011-02-07 23:30:00.00000’)

GROUP BY state, value
ORDER BY state, value;

The result of the query displays the information for all the qualifying customers:
state (count) (sum) (avg)
AZ 1 0.011 0.011
AZ 1 0.025 0.025
CA 1 0.020 0.02
CA 1 0.023 0.023
CA 1 0.056 0.056
CA 1 0.065 0.065
CA 1 0.071 0.071
CA 1 0.073 0.073
CA 1 0.088 0.088
CA 1 0.162 0.162
CA 1 0.204 0.204
CA 1 0.226 0.226
CA 1 0.246 0.246
CA 1 0.277 0.277
CA 1 0.323 0.323
CA 1 0.340 0.34
CA 1 0.415 0.415
CA 1 0.469 0.469
CA 1 0.670 0.67
CA 1 1.412 1.412
CO 1 0.118 0.118
DE 1 0.256 0.256
FL 1 3.470 3.47
MA 1 4.388 4.388
NJ 2 0.374 0.187
NY 1 0.239 0.239
OK 1 0.086 0.086

The GROUP BY and ORDER BY clauses order the results by state.

The explain output for this query shows that the query ran in parallel.
...

Estimated Cost: 63
Estimated # of Rows Returned: 1
Maximum Threads: 5

4-12 IBM Informix TimeSeries Data User's Guide

Temporary Files Required For: Order By Group By

1) informix.l: SEQUENTIAL SCAN

2) informix.v: VTI SCAN (Parallel, fragments: ALL)

VTI Filters: informix.greaterthan(informix.v.tstamp,datetime
(2011-02-07 23:30:00.00000) year to fraction(5))

Filters: informix.v.loc_esi_id = informix.l.loc_esi_id
NESTED LOOP JOIN

3) informix.c: INDEX PATH

(1) Index Keys: customer_num (Parallel, fragments: ALL)
Lower Index Filter: informix.l.customer_num = informix.c.customer_num

NESTED LOOP JOIN

Related concepts:
“The TSVTMode parameter” on page 4-16

dbaccessdemo command: Create demonstration databases (DB-Access Guide)
Related reference:

ALTER FRAGMENT statement (SQL Syntax)

SET PDQPRIORITY statement (SQL Syntax)

SET ISOLATION statement (SQL Syntax)

SET EXPLAIN statement (SQL Syntax)

TSCreateExpressionVirtualTab procedure
The TSCreateExpressionVirtualTab procedure creates a virtual table that is based
on the results of an expression that was performed on a table that contains a
TimeSeries column. The resulting virtual table is read-only.

Syntax
TSCreateExpressionVirtualTab

(VirtualTableName lvarchar,
BaseTableName lvarchar,
expression lvarchar,
subtype lvarchar,
TSVTMode integer default 0,
TSColName lvarchar default NULL);

VirtualTableName
The name of the new virtual table.

BaseTableName
The name of the base table.

expression
The expression to be evaluated on time series data. The expression must
result in a time series value that has a TimeSeries subtype that is specified
by the subtype parameter.

subtype
The name of the TimeSeries subtype for the values that are the results of
the expression.

Chapter 4. Virtual tables for time series data 4-13

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dba.doc/ids_dba_015.htm#ids_dba_015
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0236.htm#ids_sqs_0236
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1179.htm#ids_sqs_1179
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1161.htm#ids_sqs_1161
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1152.htm#ids_sqs_1152

TSVTMode (optional)
Sets the virtual table mode, as described in “The TSVTMode parameter” on
page 4-16.

TSColName (optional)
For base tables that have more than one TimeSeries column, specifies the
name of the TimeSeries column to be used to create the virtual table. The
default value for the TSColName parameter is NULL, in which case the base
table must have only one TimeSeries column.

Usage

Use the TSCreateExpressionVirtualTab procedure to create a virtual table based
on a time series that results from an expression that is performed on time series
data each time a query, such as a SELECT statement, is performed. You specify the
name of the TimeSeries subtype in the virtual table with the subtype parameter.

The total length of a row in the virtual table (non-time-series and TimeSeries
columns combined) must not exceed 32 KB.

If you specify either of the optional parameters, you must include them in the
order that is shown in the syntax, but you can use either one without the other.
For example, you can specify the TSColName parameter without including the
TSVTMode parameter.

The virtual table is read-only. You cannot run INSERT, UPDATE, or DELETE
statements on a virtual table that is based on an expression. When you query the
virtual table, the WHERE clause in the SELECT statement cannot have any
predicates that are based on the columns in the virtual table that are derived from
the resulting TimeSeries subtype.

In the expression, you can use time series SQL routines and other SQL statements
to manipulate the data, for example, the AggregateBy function and the Apply
function.

You can use the following variables in the expression:
v $ts_column_name: If the base table has multiple TimeSeries columns, instead of

specifying the name of the TimeSeries column in the expression, you can use
the $ts_column_name variable to substitute the value of the TScolName parameter
in the TSCreateExpressionVirtualTab procedure. Because the column name is a
variable, you can use the same expression for each of the TimeSeries columns in
the table.

v $ts_begin_time: Instead of specifying a DATETIME value, you can use this
variable and specify the beginning time point of the time series in the WHERE
clause of the SELECT statement when you query the virtual table. If the WHERE
clause does not contain the beginning timepoint, the first timepoint in the time
series is used.

v $ts_end_time: Instead of specifying a DATETIME value, you can use this
variable and specify the ending time point of the time series in the WHERE
clause of the SELECT statement when you query the virtual table. If the WHERE
clause does not contain the ending timepoint, the last timepoint in the time
series is used.

You can test whether the subtype that you create for the results of the expression is
valid by running the following statement against your base table with the

4-14 IBM Informix TimeSeries Data User's Guide

expression and subtype parameters that you plan to use in the
TSCreateExpressionVirtualTab procedure:
SELECT expression::timeseries(subtype) FROM BaseTableName;

If the statement fails, you cannot create the virtual table.

Examples

The following examples use a table named smartmeters that contains a column
named meter_id and a TimeSeries column named readings. The TimeSeries
subtype has the columns t and energy.

Example 1: Find the daily maximum and minimum values

The following statement creates a virtual table that is named
smartmeters_vti_agg_max_min based on a time series that contains the maximum
and minimum energy readings per day:
EXECUTE PROCEDURE TSCreateExpressionVirtualTab(

’smartmeters_vti_agg_max_min’, ’smartmeters’,
’AggregateBy(’’max($energy),min($energy)’’,

’’smartmeter_daily’’, readings, 0)’,
’tworeal_row’);

The following query shows the daily maximum and minimum of the energy
reading between 2011-0-01 and 2011-01-02:
SELECT * FROM smartmeters_vti_agg_max_min
WHERE t >= ’2011-01-01 00:00:00.00000’::datetime year to fraction(5)

AND t <= ’2011-01-02 23:59:59.99999’::datetime year to fraction(5);

meter_id t value1 value2

met00000 2011-01-01 00:00:00.00000 37.00000000000 9.000000000000
met00000 2011-01-02 00:00:00.00000 34.00000000000 8.000000000000
met00001 2011-01-01 00:00:00.00000 36.00000000000 9.000000000000
met00001 2011-01-02 00:00:00.00000 36.00000000000 10.00000000000
met00002 2011-01-01 00:00:00.00000 34.00000000000 9.000000000000
met00002 2011-01-02 00:00:00.00000 36.00000000000 10.00000000000

6 row(s) retrieved.

Example 2: Find the daily maximum of a running average

The following statement creates a virtual table that is named
smartmeters_vti_daily_max that contains the daily maximum of the running
average of the energy readings:
EXECUTE PROCEDURE TSCreateExpressionVirtualTab(

’smartmeters_vti_daily_max’, ’smartmeters’,
’AggregateBy(’’max($value)’’,’’smartmeter_daily’’,

Apply(’’TSRunningAvg($energy, 4)’’,
$ts_begin_time, $ts_end_time,
$ts_col_name)

::TimeSeries(onereal_row), 0)’,
’onereal_row’, 0, ’readings’);

The $ts_col_name parameter is replaced by the column name that is specified by
the TSCreateExpressionVirtualTab procedure, in this case, readings. The
$ts_begin_time and $ts_end_time parameters are replaced when the virtual table
is queried.

Chapter 4. Virtual tables for time series data 4-15

The following query shows the maximum daily average energy readings for two
days:
SELECT * FROM smartmeters_vti_daily_max
WHERE t >= ’2011-01-01 00:00:00.00000’::datetime year to fraction(5)

AND t <= ’2011-01-02 23:59:59.99999’::datetime year to fraction(5);

meter_id t value

met00000 2011-01-01 00:00:00.00000 30.25000000000
met00000 2011-01-02 00:00:00.00000 29.50000000000
met00001 2011-01-01 00:00:00.00000 29.75000000000
met00001 2011-01-02 00:00:00.00000 31.00000000000
met00002 2011-01-01 00:00:00.00000 31.25000000000
met00002 2011-01-02 00:00:00.00000 28.75000000000

6 row(s) retrieved.

Related concepts:
“The display of data in virtual tables” on page 4-3
Related tasks:
“Creating a time series virtual table” on page 4-5

The TSVTMode parameter
The TSVTMode parameter configures the behavior and display of the virtual table
for time series data.

You use the TSVTMode parameter with the TSCreateVirtualTab procedure to
control:
v How data is updated in the base table when you insert data into the virtual

table
v Whether NULL time series elements are displayed in a virtual table
v Whether to fragment the virtual table so that queries can be run on the virtual

table in parallel
v Whether updates to existing rows in the base table require accurate values for

columns that are not part of the primary key
v Whether existing values in columns other than the TimeSeries column or the

primary key columns can be updated.
v Whether NULL values can be used in the INSERT statement for columns other

than the primary key columns.
v Whether hidden time series elements are displayed in a virtual table
v Whether data selected by time stamp exactly matches the specified timestamps

or includes the last rows that are equal to or earlier than the specified
timestamps.

v Whether to quickly insert elements into existing time series instances that are
stored in containers.

v Whether to reduce how many log records are generated when you insert data.

You use the TSVTMode parameter with the TSCreateExpressionVirtualTab
procedure to control:
v Whether NULL time series elements are displayed in a virtual table
v Whether hidden time series elements are displayed in a virtual table
v Whether data selected by time stamp exactly matches the specified timestamps

or includes the last rows that are equal to or earlier than the specified
timestamps.

4-16 IBM Informix TimeSeries Data User's Guide

The default value of the TSVTMode parameter, 0, sets the default behavior of the
virtual table. Each of the other values of the TSVTMode parameter reverses one
aspect of the default behavior.

You can set the TSVTMode parameter to a combination of the values. You can
specify values for the TSVTMode parameter in the following formats:
v Numeric: Sum the numeric values of the flags that you want to include. For

example, if you want both null and hidden elements to be displayed in the
virtual table, set the TSVTMode parameter to 514 (512 + 2). You can also specify
the numeric value as a hexadecimal number.

v String: List the flag names that you want to include, separated by one of the
following delimiters: plus sign (+), pipe (|), or comma (,). For example, if you
want both null and hidden elements to be displayed in the virtual table, set the
TSVTMode parameter to ’scan_hidden+show_nulls’.

Table 4-6. Settings for the TSVTMode parameter

Flag name Value Description

putelemnodups 0 Default. The virtual table has the following behavior:

v Multiple elements for the same timepoint are not
allowed. Updates to the underlying time series
update existing elements for the same timepoint.
Uses the PutElemNoDups function.

v Null elements are not included in the virtual table.

v The virtual table is not fragmented.

v If the base table has a primary key, the primary key
is used to find the row to update and updates to the
base table do not require accurate values for
columns that are not part of the primary key. If the
base table does not have a primary key, all columns
in the table except the TimeSeries column are used
to identify the row to be updated and updates to
the base table require accurate values for every
column in the base table other than the TimeSeries
column. NOT NULL constraints are included in the
virtual table for the primary key columns and other
columns that have NOT NULL constraints in the
base table.

v For updates to existing rows, only the TimeSeries
column can be updated.

v Hidden elements are not included in the virtual
table.

v When you select data from a virtual table by
timestamps, the rows whose timestamps are closest
to being equal to or earlier than the timestamps
specified in the query are returned. If the time series
is irregular, the returned rows show the same
timestamps as specified in the query, regardless if
the actual timestamps are the same.

See “Default behavior” on page 4-20

putelem 1 Multiple elements for the same timepoint are allowed.
Updates to the underlying time series insert elements
even if elements exist for the timepoints. Uses the
PutElem function.

See “Duplicate timepoints” on page 4-23.

Chapter 4. Virtual tables for time series data 4-17

Table 4-6. Settings for the TSVTMode parameter (continued)

Flag name Value Description

show_nulls 2 Null elements are displayed in the virtual table.
Hidden elements are displayed as null elements,
unless the value 512 is also set.

See “Null and hidden elements” on page 4-23.

fragment 4 This setting is only valid if the base table is
fragmented by expression.

The virtual table is fragmented by expression using
the same distribution scheme as the base table.
Queries on the virtual table are run in parallel if PDQ
is enabled.

disable_not_null_constraints 16 For existing rows, you can specify NULL values for
columns that are not part of the primary key,
regardless if those columns have NOT NULL
constraints in the base table. NOT NULL constraints
are not included in the virtual table, but are enforced
in the base table.

For new rows, you can specify null values for columns
that are not part of the primary key and do not have
NOT NULL constraints.

update_nonkey_not_nulls 32 This setting is valid only if the base table has a
primary key.

You can update the value of columns in an existing
row that are not part of the primary key. You can
specify NULL for non-primary key columns that you
do not want to update. All columns that have
non-NULL values in the INSERT statement are
updated in the base table, except the primary key
columns.

See “Update values that are not in the primary key”
on page 4-21.

update_nonkey_include_nulls 64 This setting is valid only if the base table has a
primary key.

You can update the value of all the columns in an
existing row that are not part of the primary key,
including setting null values for columns that allow
null values. Columns that are not part of the primary
key are updated to the value included in the INSERT
statement. Columns that allow null values can be set
to NULL.

See “Update values that are not in the primary key
and allow null values” on page 4-22.

4-18 IBM Informix TimeSeries Data User's Guide

Table 4-6. Settings for the TSVTMode parameter (continued)

Flag name Value Description

elem_insert 128 You can quickly insert elements directly into
containers given the following constraints:

v The base table has a primary key

v The time series instances exist and are stored in
containers

v Base table columns are not being updated

Cannot be combined with the settings 16, 32, or 64.
Cannot be combined with the NewTimeSeries
parameter.

reduced_log 256 Reduces how many log records are generated when
you insert elements into containers. By default, every
element that you insert generates two log records: one
for the inserted element and one for the page header
update. If this flag is set, page header updates are
logged per transaction instead of per element.

The INSERT statements must be run within a
transaction without other types of SQL statements. The
elements that are inserted are not visible by dirty
reads until after the transaction commits.

scan_hidden 512 Hidden elements are displayed in the virtual table.

See “Null and hidden elements” on page 4-23.

scan_discreet 1024 When you select data from a virtual table by
timestamps, only rows whose timestamps are exactly
equal to the timestamps specified in the query are
returned.

Update columns in the base table

When you create a virtual table with the TSCreateVirtualTab procedure, you can
update the data in the base table from the virtual table.

The following table describes how to control updating columns in the base table,
assuming that the base table has a primary key. Whether the NewTimeSeries
parameter is specified also affects the behavior of inserting data into the base table.
For information about the effect of the NewTimeSeries parameter, see
“TSCreateVirtualTab procedure” on page 4-5.

Table 4-7. TSVTMode parameter settings that affect which columns are updated in the base
table

Columns to update
TSVTMode parameter
setting

Update only the TimeSeries column. You must specify valid,
but not necessarily accurate, values for non-primary key
columns.

0

Update only the TimeSeries column. You can specify NULL
as the values for non-primary key columns

16

Update the TimeSeries column and all other non-primary
key columns that do not have null values in the INSERT
statement.

32

Chapter 4. Virtual tables for time series data 4-19

Table 4-7. TSVTMode parameter settings that affect which columns are updated in the base
table (continued)

Columns to update
TSVTMode parameter
setting

Update the TimeSeries column and all other non-primary
key columns. You can set columns that do not have NOT
NULL constraints to null values.

64 or 80 (64 + 16)

Update the TimeSeries column and all other non-primary
key columns that have NOT NULL constraints. You can
specify null values for columns that have NOT NULL
constraints.

48 (32 + 16)

The following examples illustrate some of the settings for the TSVTMode
parameter. The examples use a base table with columns for the account number,
the meter identifier, the time series data, the meter owner, and the meter address.
The account number and meter identifier columns are the primary key. The
TimeSeries column contains columns for the time stamp, energy, and temperature.
The owner column has a NOT NULL constraint. Each of the virtual tables that is
created in the examples has the following initial one row that represents one times
series element:
acct_no 6546
meter_id 234
t 2011-01-01 00:00:00.00000
energy 33070
temperature -13.0000000000
owner John
address 5 Nowhere Place

1 row(s) retrieved.

Default behavior

The following statement creates a virtual table named smartmeters_vti_nn with the
TSVTMode parameter set to 0:
EXECUTE PROCEDURE TSCreateVirtualTab(’smartmeters_vti_nn’,

’smartmeters’, ’origin(2011-01-01 00:00:00.00000),
calendar(ts_15min), regular,threshold(20), container()’, 0);

The following statement inserts a new row into the virtual table and a new
element in the time series in the base table:
INSERT INTO smartmeters_vti_nn(acct_no,meter_id,t,energy,temperature,owner,address)
VALUES(6546, 234,

’2011-01-01 00:45:00.00000’::datetime year to fraction(5),
3234, -12.00,
’Ignored_value’, ’Ignored_value’);

1 row(s) inserted.

The values of the primary key columns match the original row. The values of the
owner and address columns are ignored; they are not used to identify the row that
must be updated and those values are not updated in the base table. After the
INSERT statement, the virtual table contains two rows, and each contains the
original values of the owner and address columns:
SELECT * FROM smartmeters_vti_nn;

acct_no 6546
meter_id 234

4-20 IBM Informix TimeSeries Data User's Guide

t 2011-01-01 00:00:00.00000
energy 33070
temperature -13.0000000000
owner John
address 5 Nowhere Place

acct_no 6546
meter_id 234
t 2011-01-01 00:45:00.00000
energy 3234
temperature -12.0000000000
owner John
address 5 Nowhere Place

2 row(s) retrieved.

Fragment the virtual table

When you run queries in parallel on fragmented virtual tables, set the isolation
level to Dirty Read. Otherwise, when a parallel query on the virtual table and a
query that modifies data on the base table coincide, the parallel query might fail
with a -244 error. The Dirty Read isolation level can result in returning phantom
rows from other sessions that are never committed. If you do not want to set the
Dirty Read isolation level and you want to run a parallel query at a time when
you know that the base table is being updated, you can disable PDQ for the
transaction.

The results of parallel queries on fragmented virtual tables are not necessarily
ordered by the primary key values. You can ensure that the results are ordered
properly by including an ORDER BY clause in the query that specifies the primary
key and the timestamp column. If you do not include an ORDER BY clause, the
results are grouped in batches of up to 128 rows per primary key value. Within
each batch, the results are ordered by timestamp. The batches for each primary key
value are ordered chronologically, but interspersed with batches for different
primary key values.

For example, suppose that the results of a query include 396 values for the primary
key value meter1, 347 values for meter2, and 280 values for meter3. The results
might be ordered in the following way:
128 rows of meter1
128 rows of meter2
128 rows of meter3
128 rows of meter1
128 rows of meter3
128 rows of meter1
128 rows of meter3
12 rows of meter1
24 rows of meter3
91 rows of meter2

Update values that are not in the primary key

The following statement creates a virtual table named smartmeters_vti_nn_nk_nn
with the TSVTMode parameter set to 32:
EXECUTE PROCEDURE TSCreateVirtualTab(’smartmeters_vti_nn_nk_nn’,

’smartmeters’, ’origin(2011-01-01 00:00:00.00000),
calendar(ts_15min), regular,threshold(20), container()’, 32);

The following statement inserts a new row into the virtual table and a new
element in the time series in the base table:

Chapter 4. Virtual tables for time series data 4-21

INSERT INTO smartmeters_vti_nn_nk_nn(acct_no,meter_id,t,energy,
temperature,owner,address)

VALUES(6546, 234,
’2011-01-01 00:45:00.00000’::datetime year to fraction(5),
3234, -12.00,
’Jim’, NULL);

1 row(s) inserted.

The value of the owner column is updated to Jim. The value of the address
column is not changed because null values are ignored. The virtual table now
contains two rows, each of which have the new value for the owner column and
the existing value for the address column:
SELECT * FROM smartmeters_vti_nn_nk_nn;

acct_no 6546
meter_id 234
t 2011-01-01 00:00:00.00000
energy 33070
temperature -13.0000000000
owner Jim
address 5 Nowhere Place

acct_no 6546
meter_id 234
t 2011-01-01 00:45:00.00000
energy 3234
temperature -12.0000000000
owner Jim
address 5 Nowhere Place

2 row(s) retrieved.

Update values that are not in the primary key and allow null
values

The following statement creates a virtual table named smartmeters_vti_nn_nk_in
with the TSVTMode parameter set to 64:
EXECUTE PROCEDURE TSCreateVirtualTab(’smartmeters_vti_nn_nk_in’,

’smartmeters’, ’origin(2011-01-01 00:00:00.00000),
calendar(ts_15min), regular,threshold(20), container()’, 64);

The following statement inserts a new row into the virtual table and a new
element in the time series in the base table:
INSERT INTO smartmeters_vti_nn_nk_in(acct_no,meter_id,t,energy,

temperature,owner,address)
VALUES(6546, 234,

’2011-01-01 00:45:00.00000’::datetime year to fraction(5),
3234, -12.00,
’Jim’, NULL);

1 row(s) inserted.

The value of the owner column is updated to Jim. The value of the address
column is updated to a null value. The virtual table now contains two rows, each
of which have the new value for the owner column and a null value for the
address column:
SELECT * FROM smartmeters_vti_nn_nk_in;

acct_no 6546
meter_id 234
t 2011-01-01 00:00:00.00000

4-22 IBM Informix TimeSeries Data User's Guide

energy 33070
temperature -13.0000000000
owner Jim
address

acct_no 6546
meter_id 234
t 2011-01-01 00:45:00.00000
energy 3234
temperature -12.0000000000
owner Jim
address

2 row(s) retrieved.

Duplicate timepoints

By default, the database server uses the PutElemNoDups function to add an
element to the underlying time series. If an element exists at the same timepoint,
the existing element is updated. You can perform bulk updates of the underlying
time series without producing duplicate elements for the same timepoints.

When the TSVTMode parameter includes the value 1, the database server uses the
PutElem function to add an element to the underlying time series. The PutElem
function handles updates to existing data in an underlying irregular time series
differently than does the PutElemNoDups function.

Null and hidden elements

The TSVTMode parameter includes options to display null or hidden time series
elements in the virtual table. By default, if a base table has a null element at a
specific timepoint, the virtual table has no entries for that timepoint. You can use
the TSVTMode parameter to display null elements as a row of null values, plus the
timestamp column and any non-time-series columns from the base table.

If the TSVTMode parameter includes the value 2, null time series elements are
displayed as null values in the virtual table. Hidden elements also show as null
values. If the TSVTMode parameter does not include the value 2, null time series
elements do not show in the virtual table.

If the TSVTMode parameter includes the value 512, hidden time series elements are
displayed in the virtual table; otherwise, they do not.

The following statements create four virtual tables that are all based on the same
base table, named inst, which contains the TimeSeries column named bars. Each
of the tables uses a different value for the TSVTMode parameter. The inst_vt0 table
does not show null or hidden elements. The inst_vt2 table shows null elements.
The inst_vt512 table shows hidden elements. The inst_vt514 table shows null and
hidden elements.
execute procedure TSCreateVirtualTab(’inst_vt0’, ’inst’, 0);
execute procedure TSCreateVirtualTab(’inst_vt2’, ’inst’, 2);
execute procedure TSCreateVirtualTab(’inst_vt512’, ’inst’, 512);
execute procedure TSCreateVirtualTab(’inst_vt514’, ’inst’, 514);

The following statement hides one element by using the HideElem function:
update inst set bars = HideElem(bars,

datetime(2011-01-18) year to day) where code = ’AA’;
1 row(s) updated.

Chapter 4. Virtual tables for time series data 4-23

The following query shows that the inst_vt0 table does not contain the hidden
element for 2011-01-18:
select * from inst_vt0
where code = ’AA’
and t between datetime(2011-01-14) year to day
and datetime(2011-01-19) year to day
order by t;

code AA
t 2011-01-14 00:00:00.00000
high 69.25000000000
low 68.37500000000
final 68.62500000000
vol 462.0000000000

code AA
t 2011-01-19 00:00:00.00000
high 69.62500000000
low 69.12500000000
final 69.62500000000
vol 96.69999700000
2 row(s) retrieved.

The following query shows that the inst_vt2 table contains null elements:
select * from inst_vt2
where code = ’AA’
and t between datetime(2011-01-14) year to day
and datetime(2011-01-19) year to day
order by t;

code AA
t 2011-01-14 00:00:00.00000
high 69.25000000000
low 68.37500000000
final 68.62500000000
vol 462.0000000000

code AA
t 2011-01-17 00:00:00.00000
high
low
final
vol

code AA
t 2011-01-18 00:00:00.00000
high
low
final
vol

code AA
t 2011-01-19 00:00:00.00000
high 69.62500000000
low 69.12500000000
final 69.62500000000
vol 96.69999700000
4 row(s) retrieved.

The following query shows that the inst_vt512 table does contain the hidden
element:
select * from inst_vt512
where code = ’AA’
and t between datetime(2011-01-14) year to day
and datetime(2011-01-19) year to day

4-24 IBM Informix TimeSeries Data User's Guide

order by t;

code AA
t 2011-01-14 00:00:00.00000
high 69.25000000000
low 68.37500000000
final 68.62500000000
vol 462.0000000000

code AA
t 2011-01-18 00:00:00.00000
high 69.75000000000
low 68.75000000000
final 69.62500000000
vol 281.2000100000

code AA
t 2011-01-19 00:00:00.00000
high 69.62500000000
low 69.12500000000
final 69.62500000000
vol 96.69999700000
3 row(s) retrieved.

The following query shows that the inst_vt514 table does contain the hidden
element and the null element:
select * from inst_vt514
where code = ’AA’
and t between datetime(2011-01-14) year to day
and datetime(2011-01-19) year to day
order by t;

code AA
t 2011-01-14 00:00:00.00000
high 69.25000000000
low 68.37500000000
final 68.62500000000
vol 462.0000000000

code AA
t 2011-01-17 00:00:00.00000
high
low
final
vol

code AA
t 2011-01-18 00:00:00.00000
high 69.75000000000
low 68.75000000000
final 69.62500000000
vol 281.2000100000

code AA
t 2011-01-19 00:00:00.00000
high 69.62500000000
low 69.12500000000
final 69.62500000000
vol 96.6999970000
4 row(s) retrieved.

Related concepts:
“The display of data in virtual tables” on page 4-3
“Insert data through virtual tables” on page 4-4
Related reference:

Chapter 4. Virtual tables for time series data 4-25

“Example of creating a fragmented virtual table” on page 4-10
“PutElemNoDups function” on page 7-79
“PutElem function” on page 7-77
“Example of creating a virtual table” on page 4-8

Drop a virtual table
You use the DROP statement to destroy a virtual table in the same way as you
destroy any other database table. When you drop a virtual table, the underlying
base table is unaffected.

Trace functions
Trace functions are available to help you debug your work with virtual tables.

Restriction: You should not use these trace functions unless you are working with
an IBM Informix Technical Support or Engineering professional.

The functions are:

TSSetTraceFile
Allows you to specify a file to which the trace information is appended.

TSSetTraceLevel
Sets the level of tracing to perform: in effect, turns tracing either on or off.

The TSSetTraceFile function
The TSSetTraceFile function specifies a file to which trace information is
appended.

Syntax
TSSetTraceFile(traceFileName lvarchar)
returns integer;

traceFileName
The full path and name of the file to which trace information is appended.

Description

The file you specify using TSSetTraceFile overrides any current trace file. The file
is located on the server computer. The default trace file is /tmp/
session_number.trc.

TSSetTraceFile calls the mi_set_trace_file() DataBlade API function. For more
information about mi_set_trace_file(), see the IBM Informix DataBlade API
Programmer's Guide.

Returns

Returns 0 on success, -1 on failure.

Example

The following example sets the file /tmp/test1.trc to receive trace information:
execute function TSSetTraceFile(’/tmp/test1.trc’);

4-26 IBM Informix TimeSeries Data User's Guide

TSSetTraceLevel function
The TSSetTraceLevel function sets the trace level of a trace class.

Syntax
TSSetTraceLevel(traceLevelSpec lvarchar)
returns integer;

traceLevelSpec
A character string specifying the trace level for a specific trace class. The
format is TS_VTI_DEBUG traceLevel.

Description

TSSetTraceLevel sets the trace level of a trace class. The trace level determines
what information is recorded for a given trace class. The trace class for virtual
table information is TS_VTI_DEBUG. The level to enable tracing for the
TS_VTI_DEBUG trace class is 1001. You must set the tracing level to 1001 or
greater to enable tracing. By default, the trace level is below 1001.

TSSetTraceLevel calls the mi_set_trace_level() DataBlade API function. For more
information about mi_set_trace_level(), see the IBM Informix DataBlade API
Programmer's Guide.

Returns

Returns 0 on success, -1 on failure.

Example

The following example turns tracing on:
execute function TSSetTraceLevel(’TS_VTI_DEBUG 1001’);

Chapter 4. Virtual tables for time series data 4-27

4-28 IBM Informix TimeSeries Data User's Guide

Chapter 5. Calendar pattern routines

You can use calendar pattern routines to manipulate calendar patterns.

Calendar pattern routines can perform the following types of operations:
v Create the intersection of calendar patterns
v Create the union of calendar patterns
v Alter a calendar pattern

Calendar and calendar pattern routines can be useful when comparing time series
that are based on different calendars. For example, to compare peak time business
usage of a computer network across multiple countries requires accounting for
different sets of public holidays in each country. An efficient way to handle this is
to define a calendar for each country and then create the calendar intersections to
perform business-day comparisons.

Calendar pattern routines can be run in SQL statements or sent from an
application using the DataBlade API function mi_exec.
Related concepts:
“Calendar” on page 1-13
Related reference:
“CalendarPattern data type” on page 2-1

AndOp function
The AndOp function returns the intersection of two calendar patterns.

Syntax
AndOp (cal_patt1 CalendarPattern,

cal_patt2 CalendarPattern)
returns CalendarPattern;

cal_patt1
The first calendar pattern.

cal_patt2
The second calendar pattern.

Description

This function returns a calendar pattern that has every interval on that was on in
both calendar patterns; the rest of the intervals are off. If the specified patterns do
not have the same interval unit, the pattern with the larger interval unit is
expanded to match the other.

Returns

A calendar pattern that is the result of two others that are combined by the AND
operator.

© Copyright IBM Corp. 2006, 2014 5-1

Example

The first AndOp statement returns the intersection of two daily calendar patterns,
and the second AndOp statement returns the intersection of one hourly and one
daily calendar pattern:
select * from CalendarPatterns

where cp_name = ’workweek_day’;

cp_name workweek_day
cp_pattern {1 off,5 on,1 off},day

select * from CalendarPatterns
where cp_name = ’fourday_day’;

cp_name fourday_day
cp_pattern {1 off,4 on,2 off},day

select * from CalendarPatterns
where cp_name = ’workweek_hour’;

cp_name workweek_hour
cp_pattern {32 off,9 on,15 off,9 on,15 off,9 on,15 off, 9

on,15 off,9 on,31 off},hour

select AndOp(p1.cp_pattern, p2.cp_pattern)
from CalendarPatterns p1, CalendarPatterns p2

where p1.cp_name = ’workweek_day’
and p2.cp_name = ’fourday_day’;

(expression) {1 off,4 on,2 off},day

select AndOp(p1.cp_pattern, p2.cp_pattern)
from CalendarPatterns p1, CalendarPatterns p2

where p1.cp_name = ’workweek_hour’
and p2.cp_name = ’fourday_day’;

(expression) {32 off,9 on,15 off,9 on,15 off,9 on,15 off,9
on,55 off},hour

Related reference:
“AndOp function” on page 6-1

CalPattStartDate function
The CalPattStartDate function takes a calendar name and returns a DATETIME
containing the start date of the pattern for that calendar.

Syntax
CalPattStartDate(calname lvarchar)
returns datetime year to fraction(5);

calname
The name of the source calendar.

Description

The equivalent API function is ts_cal_pattstartdate().

Returns

The start date of the pattern for the specified calendar.

5-2 IBM Informix TimeSeries Data User's Guide

Example

The following example returns the start dates of the calendar patterns for each
calendar in the CalendarTable table:
select c_name, CalPattStartDate(c_name) from CalendarTable;

Related reference:
“CalStartDate function” on page 6-5
“The ts_cal_pattstartdate() function” on page 9-9

Collapse function
The Collapse function collapses the specified calendar pattern into destination
units, which must have a larger interval unit than the interval unit of the specified
calendar pattern.

Syntax
Collapse (cal_patt CalendarPattern,

interval lvarchar)
returns CalendarPattern;

cal_patt
The calendar pattern to be collapsed.

interval
The destination time interval: minute, hour, day, week, month, or year.

Description

If any part of a destination unit is on, the whole unit is considered on.

Returns

The collapsed calendar pattern.

Example

The following statements convert an hourly calendar pattern into a daily calendar
pattern:
select * from CalendarPatterns

where cp_name = ’workweek_hour’;

cp_name workweek_hour
cp_pattern {32 off,9 on,15 off,9 on,15 off,9 on,15 off,9

on,15 off,9 on,31 off},hour

select Collapse(cp_pattern, ’day’)
from CalendarPatterns

where cp_name = ’workweek_hour’;

(expression) {1 off,5 on,1 off},day

Related reference:
“Expand function” on page 5-4

Chapter 5. Calendar pattern routines 5-3

Expand function
The Expand function expands the specified calendar pattern into the destination
units, which must have a smaller interval unit than the interval unit of the
specified calendar pattern.

Syntax
Expand (cal_patt CalendarPattern,

interval lvarchar)
returns CalendarPattern;

cal_patt
The calendar pattern to expand.

interval
The destination time interval: second, minute, hour, day, week, or month.

Description

When a month is expanded, it is assumed to have 30 days.

Returns

The expanded calendar pattern.

Example

The following statements convert a daily calendar pattern into an hourly calendar
pattern:
select * from CalendarPatterns

where cp_name = ’workweek_day’;

cp_name workweek_day
cp_pattern {1 off,5 on,1 off},day

select Expand(cp_pattern, ’hour’)
from CalendarPatterns

where cp_name = ’workweek_day’;

(expression) {24 off,120 on,24 off},hour

Related reference:
“Collapse function” on page 5-3

NotOp function
The NotOp function turns all on intervals off and all off intervals on in the
specified calendar pattern.

Syntax
NotOp (cal_patt CalendarPattern)
returns CalendarPattern;

cal_patt
The calendar pattern to convert.

Returns

The inverted calendar pattern.

5-4 IBM Informix TimeSeries Data User's Guide

Example

The following statement converts the workweek_day calendar:
select * from CalendarPatterns

where cp_name = ’workweek_day’;

cp_name workweek_day
cp_pattern {1 off,5 on,1 off},day

select NotOp(cp_pattern)
from CalendarPatterns

where cp_name = ’workweek_day’;

(expression) {1 on,5 off,1 on}, day

OrOp function
The OrOp function returns the union of the two calendar patterns.

Syntax
OrOp (cal_patt1 CalendarPattern,

cal_patt2 CalendarPattern)
returns CalendarPattern;

cal_patt1
The first calendar pattern.

cal_patt2
The second calendar pattern.

Description

The OrOp function returns a calendar pattern that has every interval on that was
on in either of the calendar patterns; the rest of the intervals are off. If the two
patterns have different sizes of interval units, the resultant pattern has the smaller
of the two intervals.

Returns

A calendar pattern that is the result of two others that are combined with the OR
operator.

Example

The examples use the following three calendar pattern definitions:
select * from CalendarPatterns

where cp_name = ’workweek_day’;

cp_name workweek_day
cp_pattern {1 off,5 on,1 off},day

select * from CalendarPatterns
where cp_name = ’fourday_day’;

cp_name fourday_day
cp_pattern {1 off,4 on,2 off},day

select * from CalendarPatterns
where cp_name = ’workweek_hour’;

Chapter 5. Calendar pattern routines 5-5

cp_name workweek_hour
cp_pattern {32 off,9 on,15 off,9 on,15 off,9 on,15 off,

9 on,15 off,9 on,31 off},hour

The following OrOp statement returns the union of two daily calendar patterns:
select OrOp(p1.cp_pattern, p2.cp_pattern)

from CalendarPatterns p1, CalendarPatterns p2
where p1.cp_name = ’workweek_day’
and p2.cp_name = ’fourday_day’;

(expression) {1 off,5 on,1 off},day

The following OrOp statement returns the union of one hourly and one daily
calendar pattern:
select OrOp(p1.cp_pattern, p2.cp_pattern)

from CalendarPatterns p1, CalendarPatterns p2
where p1.cp_name = ’workweek_day’
and p2.cp_name = ’workweek_hour’;

(expression) {24 off,120 on,24 off},hour

Related reference:
“OrOp function” on page 6-5

5-6 IBM Informix TimeSeries Data User's Guide

Chapter 6. Calendar routines

You can use calendar routines to manipulate calendars.

Calendar routines can perform the following types of operations:
v Create the intersection of calendars
v Create the union of calendars
v Return information about the calendar

Calendar routines can be useful when comparing time series that are based on
different calendars. For example, to compare peak time business usage of a
computer network across multiple countries requires accounting for different sets
of public holidays in each country. An efficient way to handle this is to define a
calendar for each country and then create the calendar intersections to perform
business-day comparisons.

Calendar routines can be run in SQL statements or sent from an application using
the DataBlade API function mi_exec.
Related concepts:
“Calendar” on page 1-13
“Calendar data type” on page 2-4

AndOp function
The AndOp function returns the intersection of the two calendars.

Syntax
AndOp (cal1 Calendar,

cal2 Calendar)
returns Calendar;

cal1 The first calendar.

cal2 The second calendar.

Description

This function returns a calendar that has every interval on that was on in both
calendars; the rest of the intervals are off. The resultant calendar takes the later of
the two start dates and the later of the two pattern start dates.

If the two calendars have different size interval units, the resultant calendar has
the smaller of the two intervals.

Returns

A calendar that is the result of two other calendars that are combined with the
AND operator.

© Copyright IBM Corp. 2006, 2014 6-1

Example

The following AndOp statement returns the intersection of an hourly calendar
with a daily calendar that has a different start date:
select c_calendar from CalendarTable

where c_name = ’hourcal’;

c_calendar startdate(2011-01-01 00:00:00), pattstart(2011-
01-02 00:00:00), pattern({32 off,9 on,15 off,9
on,15 off,9 on,15 off,9 on,15 off, 9 on,31
off},hour)

select c_calendar from CalendarTable
where c_name = ’daycal’;

c_calendar startdate(2011-04-01 00:00:00), pattstart(2011-
04-03 00:00:00), pattern({1 off,5 on,1 off},day)

select AndOp(c1.c_calendar, c2.c_calendar)
from CalendarTable c1, CalendarTable c2
where c1.c_name = ’daycal’ and c2.c_name = ’hourcal’;

The query returns the following results:
(expression)

startdate(2011-04-01 00:00:00), pattstart(2011-04-03
00:00:00), pattern({32 off,9 on,15 off,9 on,15 off,9 on,15
off,9 on,15 off, 9 on ,31 off},hour)

Related reference:
“AndOp function” on page 5-1
“OrOp function” on page 6-5

CalIndex function
The CalIndex function returns the number of valid intervals in a calendar between
two given time stamps.

Syntax
CalIndex(cal_name lvarchar,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5))

returns integer;

cal_name
The name of the calendar.

begin_stamp
The begin point of the range. Must not be earlier than the calendar start
date.

end_stamp
The end point of the range.

Description

The equivalent API function is ts_cal_index().

6-2 IBM Informix TimeSeries Data User's Guide

Returns

The number of valid intervals in the specified calendar between the two time
stamps.

Example

The following query returns the number of intervals in the calendar daycal
between 2011-01-03 and 2011-01-05:
select CalIndex(’daycal’,

’2011-01-03 00:00:00.00000’,
’2011-01-05 00:00:00.00000’)

from systables
where tabid = 1;

Related reference:
“The ts_cal_range() function” on page 9-10
“The ts_cal_range_index() function” on page 9-11
“The ts_cal_stamp() function” on page 9-11
“GetIndex function” on page 7-55
“GetStamp function” on page 7-66

CalRange function
The CalRange function returns a set of valid time stamps within a range.

Syntax
CalRange(cal_name lvarchar,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5))

returns list(datetime year to fraction(5));

CalRange(cal_name lvarchar,
begin_stamp datetime year to fraction(5),
num_stamps integer)

returns list(datetime year to fraction(5));

cal_name
The name of the calendar.

begin_stamp
The begin point of the range. Must be no earlier than the first time stamp
in the calendar.

end_stamp
The end point of the range.

num_stamps
The number of time stamps to return.

Description

The first syntax specifies the range as between two given time stamps. The second
syntax specifies the number of valid time stamps to return after a specified time
stamp.

The equivalent API function is ts_cal_range().

Chapter 6. Calendar routines 6-3

Returns

A list of time stamps.

Example

The following query returns a list of all the time stamps between 2011-01-03 and
2011-01-05 in the calendar daycal:
execute function CalRange(’daycal’,

’2011-01-03 00:00:00.00000’,
’2011-01-05 00:00:00.00000’::datetime year

to fraction(5));

The following query returns a list of the two time stamps that follow 2011-01-03 in
the calendar daycal:
execute function CalRange(’daycal’,

’2011-01-03 00:00:00.00000’, 2);

Related reference:
“The ts_cal_range() function” on page 9-10
“The ts_cal_range_index() function” on page 9-11
“The ts_cal_stamp() function” on page 9-11
“GetIndex function” on page 7-55
“GetStamp function” on page 7-66

CalStamp function
The CalStamp function returns the time stamp at a specified number of calendar
intervals after a specified time stamp.

Syntax
CalStamp(cal_name lvarchar,

tstamp datetime year to fraction(5),
num_stamps integer)

returns datetime year to fraction(5);

cal_name
The name of the calendar.

tstamp The input time stamp.

num_stamps
The number of calendar intervals after the input time stamp. Cannot be
negative.

Description

The equivalent API function is ts_cal_stamp().

Returns

The time stamp that represents the specified offset.

Example

The following example returns the time stamp that is two intervals after
2011-01-03:

6-4 IBM Informix TimeSeries Data User's Guide

execute function CalStamp(’daycal’,
’2011-01-03 00:00:00.00000’, 2);

Related reference:
“Time series routines that run in parallel” on page 7-7
“The ts_cal_range() function” on page 9-10
“The ts_cal_range_index() function” on page 9-11
“The ts_cal_stamp() function” on page 9-11

CalStartDate function
The CalStartDate function takes a calendar name and returns a DATETIME value
that contains the start date of that calendar.

Syntax
CalStartDate(cal_name lvarchar)
returns datetime year to fraction(5);

cal_name
The name of the calendar.

Description

The equivalent API function is ts_cal_startdate().

Returns

The start date of the specified calendar.

Example

The following example returns the start dates of all the calendars in the
CalendarTable table:
select c_name, CalStartDate(c_name) from CalendarTable;

Related reference:
“CalPattStartDate function” on page 5-2
“The ts_cal_startdate() function” on page 9-12

OrOp function
The OrOp function returns the union of the two calendars.

Syntax
OrOp (cal1 Calendar,

cal2 Calendar)
returns Calendar;

cal1 The first calendar to be combined.

cal2 The second calendar to be combined.

Description

This function returns a calendar that has every interval on that was on in either
calendar; the rest of the intervals are off. The resultant calendar takes the earlier of
the two start dates and the two pattern start dates.

Chapter 6. Calendar routines 6-5

If the two calendars have different sizes of interval units, the resultant calendar has
the smaller of the two intervals.

Returns

A calendar that is the result of two others that are combined with the OR operator.

Example

The following OrOp function returns the union of an hourly calendar with a daily
calendar that has a different start date:
select c_calendar from CalendarTable

where c_name = ’hourcal’;

c_calendar startdate(2011-01-01 00:00:00), pattstart(2011-
01-02 00:00:00), pattern({32 off,9 on,15 off,9
on,15 off,9 on,15 off,9 on,15 off, 9 on,31
off},hour)

select c_calendar from CalendarTable
where c_name = ’daycal’;

c_calendar startdate(2011-04-01 00:00:00), pattstart(2011-
04-03 00:00:00), pattern({1 off,5 on,1 off},day)

select OrOp(c1.c_calendar, c2.c_calendar)
from CalendarTable c1, CalendarTable c2
where c1.c_name = ’daycal’ and c2.c_name = ’hourcal’;

The query returns the following result:
(expression)

startdate(2011-01-01 00:00:00), pattstart(2011-01-02
00:00:00), pattern({24 off,120 on,24 off},hour)

Related reference:
“OrOp function” on page 5-5
“AndOp function” on page 6-1

6-6 IBM Informix TimeSeries Data User's Guide

Chapter 7. Time series SQL routines

Time series SQL routines create instances of a particular time series type, and then
add data to or change data in the time series type. SQL routines are also provided
to examine, analyze, manipulate, and aggregate the data within a time series.

The several data types and tables used throughout the examples in this chapter are
listed in the following table.

Type/Table Description

stock_bar Type containing timestamp(DATETIME), high, low, final, and
vol columns

daily_stocks Table containing stock_id, stock_name, and stock_data columns
stock_trade Type containing timestamp(DATETIME), price, vol, trade,

broker, buyer, and seller columns
activity_stocks Table containing stock_id and activity_data columns

For more information about these data types and tables, see “Creating a TimeSeries
subtype” on page 3-13 and “Create the database table” on page 3-14.

The schema for these examples is in the $INFORMIXDIR/TimeSeries.version/
examples directory.
Related concepts:
“Planning for accessing time series data” on page 1-24

© Copyright IBM Corp. 2006, 2014 7-1

Time series SQL routines sorted by task
Time series SQL routines are sorted into logical areas that are based on the type of
task.

Table 7-1. Time series SQL routines by task type

Task type Description

Get information from a
time series

Get the origin: “GetOrigin function” on page 7-64

Get the interval: “GetInterval function” on page 7-55

Get the calendar: “GetCalendar function” on page 7-48

Get the calendar name: “GetCalendarName function” on page 7-49

Get the container name: “GetContainerName function” on page 7-51

Get user-defined metadata: “GetMetaData function” on page 7-59

Get the metadata type: “GetMetaTypeName function” on page 7-59

Determine whether a time series is regular: “IsRegular function” on page 7-73

Get the instance ID if the time series is stored in a container: “InstanceId function” on
page 7-71

Determine whether a time series contains packed data: “GetPacked function” on page
7-64

Get the frequency of hertz data: “GetHertz function” on page 7-54

Get the compression type of compressed data: “GetCompression function” on page 7-50

Convert between a time
stamp and an offset

Return the offset for the specified timestamp: “GetIndex function” on page 7-55

Return the time stamp for the specified offset: “GetStamp function” on page 7-66

Count the number of
elements

Return the number of elements: “GetNelems function” on page 7-60

Get the number of elements between two time stamps: “ClipGetCount function” on page
7-37

Get the number of elements that match the criteria of an arithmetic expression: “CountIf
function” on page 7-38

Select individual elements Get the element associated with the specified time stamp“GetElem function” on page 7-52

Get the element at or before a time stamp: “GetLastValid function” on page 7-58

Get the element after a time stamp: “GetNextValid function” on page 7-61

Get the element before a time stamp: “GetPreviousValid function” on page 7-65

Get the element at a specified position: “GetNthElem function” on page 7-62

Get the first element: “GetFirstElem function” on page 7-53

Get the timestamp of the first element: “GetFirstElementStamp function” on page 7-53

Get the last element: “GetLastElem function” on page 7-56

Get the timestamp of the last element: “GetLastElementStamp function” on page 7-57

Get the last non-null element: “GetLastNonNull function” on page 7-57

Get the next non-null element: “GetNextNonNull function” on page 7-61

7-2 IBM Informix TimeSeries Data User's Guide

Table 7-1. Time series SQL routines by task type (continued)

Task type Description

Modify elements or a set
of elements

Add or update a single element: “PutElem function” on page 7-77

Add or update a single element: “PutElemNoDups function” on page 7-79

Add or update a single element at a specified offset (regular only): “PutNthElem
function” on page 7-80

Add or update an entire set: “PutSet function” on page 7-80

Insert an element: “InsElem function” on page 7-69

Insert a set: “InsSet function” on page 7-70

Update an element: “UpdElem function” on page 7-159

Update a set: “UpdSet function” on page 7-160

Put every element of one time series into another time series: “PutTimeSeries function” on
page 7-82

Delete elements Delete an element at the specified timepoint: “DelElem function” on page 7-43

Delete all elements in a time series instance for a specified time range: “DelClip function”
on page 7-42

Delete all elements and free space in a time series instance for a specified time range in
any part of a time series: “DelRange function” on page 7-44

Delete all elements and free space in a time series instance for a specified time range at
the end of a time series: “DelTrim function” on page 7-45

Free empty pages in a specified time range or throughout the time series instance:
“NullCleanup function” on page 7-75

Delete elements through a specified timestamp from one or more containers for one or
more time series instances: “TSContainerPurge function” on page 7-108

Modify metadata Update user-defined metadata: “UpdMetaData function” on page 7-159

Make elements visible or
invisible to a scan

Make an element invisible “HideElem function” on page 7-67

Make a range of elements invisible: “HideRange function” on page 7-68

Make an element visible: “RevealElem function” on page 7-83

Make a range of elements visible: “RevealRange function” on page 7-83

Check for null or hidden
elements

Determine whether an element is hidden: “ElemIsHidden function” on page 7-47

Determine whether an element is null: “ElemIsNull function” on page 7-47

Extract and use part of a
time series

Extract a period between two time stamps or corresponding to a set of values and run an
expression or function on every entry: “Apply function” on page 7-18

Extract data between two timepoints: “Clip function” on page 7-31

Clip some elements: “ClipCount function” on page 7-35

Output values in XML format: “TSToXML function” on page 7-154

Extract a period that includes the specified time or starts or ends at the specified time:
“WithinC and WithinR functions” on page 7-161

Apply a new calendar to
a time series

Apply a calendar: “ApplyCalendar function” on page 7-24

Chapter 7. Time series SQL routines 7-3

Table 7-1. Time series SQL routines by task type (continued)

Task type Description

Create and load a time
series

Load data from a client file: “BulkLoad function” on page 7-30

Create a regular empty time series, a regular populated time series, or a regular time
series with metadata: “TSCreate function” on page 7-116

Create an irregular empty time series, an irregular populated time series, or an irregular
time series with metadata: “TSCreateIrr function” on page 7-118

Load time series data
through a loader program

Initialize a loader session: “TSL_Init function” on page 7-133

Open a database session: “TSL_Attach function” on page 7-123

Load data into the database server: “TSL_Put function” on page 7-135

Load data from a table into the database server: “TSL_PutSQL function” on page 7-138

Load a row of data into the database server: “TSL_PutRow function” on page 7-137

Flush loaded data to disk in a single transaction: “TSL_FlushAll function” on page 7-128

Flush loaded data to disk in multiple transactions: “TSL_Commit function” on page 7-124

View information about the last data flush operation: “TSL_FlushInfo function” on page
7-129

Reset the logging mode: “TSL_SetLogMode function” on page 7-140

Monitor loading and saving data: “TSL_GetLogMessage function” on page 7-132

Get the container name for a specific primary key: “TSL_GetKeyContainer function” on
page 7-131

Close a database session: “TSL_SessionClose function” on page 7-139

Shut down the loader session: “TSL_Shutdown procedure” on page 7-141

Find the intersection or
union of time series

Build the intersection of multiple time series and optionally clip the result: “Intersect
function” on page 7-71

Build the union of multiple time series and optionally clip the result: “Union function” on
page 7-157

Iterator functions Convert time series data to tabular form: “Transpose function” on page 7-86

Aggregate functions Return a list (collection of rows) containing all elements in a time series: “TSSetToList
function” on page 7-153

Return a list of values from the specified column name in the time series:
“TSColNameToList function” on page 7-91

Return a list of values from the specified column number in the time series:
“TSColNumToList function” on page 7-92

Return a list of values that contains the columns of the time series plus non-time-series
columns: “TSRowToList function” on page 7-147

Return a list of values from the specified column name of the time series plus
non-time-series columns: “TSRowNameToList function” on page 7-145

Return a list of values from the specified column number of the time series plus
non-time-series columns: “TSRowNumToList function” on page 7-146

7-4 IBM Informix TimeSeries Data User's Guide

Table 7-1. Time series SQL routines by task type (continued)

Task type Description

Used within the Apply
function to perform
statistical calculations on
a time series

Sum SMALLFLOAT or DOUBLE PRECISION values: “TSAddPrevious function” on page
7-90

Compute the decay function: “TSDecay function” on page 7-122

Compute a running average over a specified number of values: “TSRunningAvg function”
on page 7-147

Compute a running correlation between two time series over a specified number of
values: “TSRunningCor function” on page 7-149

Compute a running median over a specified number of values: “TSRunningMed
function” on page 7-150

Compute a running sum over a specified number of values: “TSRunningSum function”
on page 7-151

Compute a running variance over a specified number of values: “TSRunningVar function”
on page 7-152

Compare SMALLFLOAT or DOUBLE PRECISION values: “TSCmp function” on page
7-90

Return a previously saved value: “TSPrevious function” on page 7-141

Chapter 7. Time series SQL routines 7-5

Table 7-1. Time series SQL routines by task type (continued)

Task type Description

Perform an arithmetic
operation on one or two
time series

Add two time series together: “Plus function” on page 7-77

Subtract one time series from another: “Minus function” on page 7-74

Multiply one time series by another: “Times function” on page 7-86

Divide one time series by another: “Divide function” on page 7-46

Raise the first argument to the power of the second: “Pow function” on page 7-77

Get the absolute value: “Abs function” on page 7-11

Exponentiate the time series: “Exp function” on page 7-48

Get the natural logarithm of a time series: “Logn function” on page 7-74

Get the modulus or remainder of a division of one time series by another: “Mod
function” on page 7-75

Negate a time series: “Negate function” on page 7-75

Return the argument and the argument is bound to the unary + operator: “Positive
function” on page 7-77

Round the time series to the nearest whole number: “Round function” on page 7-84

Get the square root of the time series: “Sqrt function” on page 7-85

Get the cosine of the time series: “Cos function” on page 7-38

Get the sine of the time series: “Sin function” on page 7-85

Get the tangent of the time series: “Tan function” on page 7-86

Get the arc cosine of the time series: “Acos function” on page 7-11

Get the arc sine of the time series: “Asin function” on page 7-27

Get the arc tangent of the time series: “Atan function” on page 7-27

Get the arc tangent for two time series: “Atan2 function” on page 7-27

Apply an arithmetic
operation on one or more
time series

Apply a binary function to a pair of time series, or to a time series and a compatible row
type or number: “ApplyBinaryTsOp function” on page 7-23

Apply a unary function to a time series: “ApplyUnaryTsOp function” on page 7-26

Apply another function to a set of time series: “ApplyOpToTsSet function” on page 7-25

Aggregate time series
values

Aggregate values in a time series from a single row: “AggregateBy function” on page 7-11

Aggregate values in a time series from a single row over a specified time range:
“AggregateRange function” on page 7-15

Aggregate time series values across multiple rows: “TSRollup function” on page 7-142

Create a time series that
lags

Create a time series that lags the source time series by a specified offset (regular only):
“Lag function” on page 7-73

Reset the origin Reset the origin: “SetOrigin function” on page 7-85

7-6 IBM Informix TimeSeries Data User's Guide

Table 7-1. Time series SQL routines by task type (continued)

Task type Description

Manage containers Create a container: “TSContainerCreate procedure” on page 7-93

Delete a container: “TSContainerDestroy procedure” on page 7-98

Set the container name: “SetContainerName function” on page 7-84

Specify the container pool for inserting data into a time series:
“TSContainerPoolRoundRobin function” on page 7-107

Add a container into a container pool or remove a container from a container pool:
“TSContainerSetPool procedure” on page 7-111

Delete elements through a specified timestamp from one or more containers:
“TSContainerPurge function” on page 7-108

Control whether multiple sessions write to the container at the same time:
“TSContainerLock procedure” on page 7-99

Change the properties of rolling windows containers: “TSContainerManage function” on
page 7-99

Change the extent sizes of containers: “TSContainerManage function” on page 7-99

Monitor containers Return the number of elements in one or all containers: “TSContainerNElems function”
on page 7-104

Return the percentage of space that is used in one or all containers: “TSContainerPctUsed
function” on page 7-105

Return the total number of pages that are allocated to one or all containers:
“TSContainerTotalPages function” on page 7-112

Return the number of pages that are used by one or all containers:
“TSContainerTotalUsed function” on page 7-113

Return the number of elements, the number of pages that are used, and the total number
of pages that are allocated for one or all containers: “TSContainerUsage function” on page
7-114

Time series routines that run in parallel
Some time series routines can run in parallel. Running in parallel is faster than
running serially.

For time series routines to run in parallel, the following conditions are required:
v The table that contains the time series data is fragmented, by any fragmentation

method.
v Parallel database queries are enabled: the PDQPRIORITY environment variable

is set to a value other than OFF and the MAX_PDQPRIORITY configuration
parameter is set to a value other than 0 or 1.

v The routine is referenced in the WHERE clause of a SELECT statement. Routines
that are referenced in the Projection clause are not run in parallel.

v The routine must select data from a table that contains time series data or a time
series system table. Routines that insert, update, or delete data do not run in
parallel.

Chapter 7. Time series SQL routines 7-7

v The routine cannot call another routine that cannot run in parallel. If a routine
that can run in parallel calls another routine that cannot run in parallel, neither
routine runs in parallel.

v The routine cannot include a collection data type as an argument or return
value. For example, if the Intersect function includes a parameter that has a SET
data type, the function is not run in parallel.

The routines in the following list can run in parallel.
Related reference:

MAX_PDQPRIORITY configuration parameter (Administrator's Reference)

PDQPRIORITY environment variable (SQL Reference)
“Create the database table” on page 3-14
“Abs function” on page 7-11
“Acos function” on page 7-11
“AggregateBy function” on page 7-11
“AggregateRange function” on page 7-15
“ApplyBinaryTsOp function” on page 7-23
“ApplyCalendar function” on page 7-24
“ApplyUnaryTsOp function” on page 7-26
“Asin function” on page 7-27
“Atan function” on page 7-27
“Atan2 function” on page 7-27
“CalStamp function” on page 6-4
“Clip function” on page 7-31
“ClipCount function” on page 7-35
“ClipGetCount function” on page 7-37
“Cos function” on page 7-38
“CountIf function” on page 7-38
“DelClip function” on page 7-42
“DelElem function” on page 7-43
“DelRange function” on page 7-44
“DelTrim function” on page 7-45
“Divide function” on page 7-46
“ElemIsHidden function” on page 7-47
“ElemIsNull function” on page 7-47
“Exp function” on page 7-48
“GetCalendar function” on page 7-48
“GetCalendarName function” on page 7-49
“GetClosestElem function” on page 7-49
“GetContainerName function” on page 7-51
“GetElem function” on page 7-52
“GetFirstElem function” on page 7-53
“GetFirstElementStamp function” on page 7-53
“GetIndex function” on page 7-55
“GetInterval function” on page 7-55
“GetLastElem function” on page 7-56

7-8 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0107.htm#ids_adr_0107
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_292.htm#ids_sqr_292

“GetLastElementStamp function” on page 7-57
“GetLastNonNull function” on page 7-57
“GetLastValid function” on page 7-58
“GetNelems function” on page 7-60
“GetNextNonNull function” on page 7-61
“GetNextValid function” on page 7-61
“GetNthElem function” on page 7-62
“GetOrigin function” on page 7-64
“GetPreviousValid function” on page 7-65
“GetStamp function” on page 7-66
“GetThreshold function” on page 7-67
“HideElem function” on page 7-67
“HideRange function” on page 7-68
“Intersect function” on page 7-71
“IsRegular function” on page 7-73
“Lag function” on page 7-73
“Logn function” on page 7-74
“Minus function” on page 7-74
“Mod function” on page 7-75
“Negate function” on page 7-75
“NullCleanup function” on page 7-75
“Plus function” on page 7-77
“Positive function” on page 7-77
“Pow function” on page 7-77
“RevealElem function” on page 7-83
“RevealRange function” on page 7-83
“Round function” on page 7-84
“Sin function” on page 7-85
“Sqrt function” on page 7-85
“Tan function” on page 7-86
“Times function” on page 7-86
“TSToXML function” on page 7-154
“Union function” on page 7-157
“WithinC and WithinR functions” on page 7-161

The flags argument values
The time series SQL functions that insert data have a flags argument to determine
how elements are inserted.

The value of the flags argument is the sum of the flag values that you want to use.

Table 7-2. The values of the flags argument

Flag Value Meaning Restrictions

TSOPEN_RDWRITE 0 (Default) Indicates that the time
series can be read and written to.

Chapter 7. Time series SQL routines 7-9

Table 7-2. The values of the flags argument (continued)

Flag Value Meaning Restrictions

TSOPEN_READ_HIDDEN 1 Indicates that hidden elements are
treated as if they are not hidden.

Cannot be used in combination with
the following flag values:

v TSOPEN_WRITE_AND_HIDE

v TSOPEN_WRITE_AND_REVEAL

v TSOPEN_WRITE_HIDDEN

TSOPEN_WRITE_HIDDEN 2 Allows hidden elements to be
written to without first revealing
them. The element remains hidden
afterward.

Cannot be used in combination with
the following flag values:

v TSOPEN_WRITE_AND_HIDE

v TSOPEN_WRITE_AND_REVEAL

v TSOPEN_READ_HIDDEN

TSOPEN_WRITE_AND_HIDE 4 Marks as hidden any elements that
are written to a time series.

Cannot be used in combination with
the following flag values:

v TSOPEN_WRITE_HIDDEN

v TSOPEN_WRITE_AND_REVEAL

v TSOPEN_READ_HIDDEN

TSWRITE_AND_REVEAL 8 Reveals any hidden element that is
written to.

TSOPEN_NO_NULLS 32 Prevents elements that were never
allocated
(TS_NULL_NOTALLOCATED) from
being returned as NULL. By default,
if an element is not allocated, it is
returned as NULL. If this flag is set,
an element that has each column set
to NULL is returned instead.

TS_PUTELEM_NO_DUPS 64 Prevents duplicate elements. By
default, the function adds elements
with the PutElem function If this
flag is set, the function uses the
PutElemNoDups function.

Can be used only in the following
functions:

v BulkLoad

v PutTimeSeries

v PutSet

TSOPEN_REDUCED_LOG 256 Reduces how many log records are
generated when you insert data. By
default, every element that you
insert generates two log records: one
for the inserted element and one for
the page header update. If this flag
is set, page header updates are
logged per transaction instead of per
element, which improves
performance.

Can be used only in the following
functions:

v BulkLoad

v InsElem

v PutElem

v PutElemNoDups

v PutNthElem

v PutTimeSeries

Functions that include this flag must
be run within a transaction. The
transaction can include other
functions that use this flag. The
transaction cannot include functions
that do not use this flag or other
SQL statements. The elements that
are inserted are not visible by dirty
reads until after the transaction
commits.

7-10 IBM Informix TimeSeries Data User's Guide

Abs function
The Abs function returns the absolute value of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Acos, Asin, Atan, Cos, Exp, Logn, Negate, Positive, Round, Sin, Sqrt and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

Acos function
The Acos function returns the arc cosine of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Asin, Atan, Cos, Exp, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

AggregateBy function
The AggregateBy function aggregates the values in a time series using a new time
interval that you specify by providing a calendar.

This function can be used to convert a time series with a small interval to a time
series with a larger interval: for instance, to produce a weekly time series from a
daily time series.

If you supply the optional start and end DATETIME parameters, just that part of
the time series is aggregated to the new time interval.

Syntax
AggregateBy(agg_express lvarchar,

cal_name lvarchar,
ts TimeSeries
flags integer default 0
start datetime year to fraction(5) default NULL,
end datetime year to fraction(5) default NULL

)
returns TimeSeries;

agg_express
A comma-separated list of these SQL aggregate operators: MIN, MAX,
MEDIAN, SUM, AVG, FIRST, LAST, or Nth. The MIN, MAX, MEDIAN,
SUM, and AVG expressions can operate only on numeric columns.

cal_name
The name of a calendar that defines the aggregation period.

ts The time series to be aggregated.

flags (optional)
Determines how data points in off periods of calendars are handled during
aggregation. See “The flags argument values” on page 7-13.

start (optional)
The date and time at which to start aggregation.

Chapter 7. Time series SQL routines 7-11

end (optional)
The date and time at which to end aggregation.

Description

The AggregateBy function converts the input time series to a regular time series
with a calendar given by the cal_name argument.

The agg_express expressions operate on a column of the input time series, which is
specified by one of the following column identifiers:

$colname
The colname is the name of the column to aggregate in the TimeSeries data
type. For example, if the column name is high, the column identifier is
$high.

$colnumber
The colnumber is the position of the column to aggregate in the TimeSeries
data type. For example if the column number is 1, the column identifier is
$1.

$bson_field_name
The bson_field_name is the name of a field in at least one BSON document
in the BSON column in the TimeSeries data type. For example, if the field
name is v1, the column identifier is $v1. If the BSON field name is the
same as another column in the TimeSeries data type, you must qualify the
field name in one of the following ways:
v $colname.bson_field_name

For example, if the BSON column name is b_data and the field name is
v1, the column identifier is $b_data.v1.

v $colnumber.bson_field_name

For example, if the BSON column number is 1 and the field name is v1,
the column identifier is $1.v1.

You must cast the results of the AggregateBy function on a BSON field to
a TimeSeries data type that has the appropriate type of columns for the
result of the expression.

The Nth expression returns the value of a column for the specified aggregation
period, using the following syntax:
Nth($col, n)

$col The column identifier.

n A positive or negative number that indicates the position of the TimeSeries
row within the aggregation period. Positive values of n begin at the first
row in the aggregation period; therefore, Nth($col, 1) is equivalent to
FIRST($col). Negative values of n begin with the last row in the
aggregation period; therefore, Nth($col, -1) is equivalent to LAST($col).

If an aggregation period does not have a value for the nth row, then the
Nth function returns a null value for that period. The Nth function is more
efficient for positive values of the n argument than for negative values.

An aggregation time period is denoted by the start date and time of the period.

7-12 IBM Informix TimeSeries Data User's Guide

The origin of the aggregated output time series is the first period on or before the
origin of the input time series. Each output period is the aggregation of all input
periods from the start of the output period up to, but not including, the start of the
next output period.

For instance, suppose you want to aggregate a daily time series that starts on
Tuesday, Jan. 4, 2011, to a weekly time series. The input calendar, named “days,”
starts at 12:00 a.m., and the output calendar, named “weeks,” starts at 12:00 a.m.,
on Monday.

The first output time is 00:00 Jan. 3, 2011; it is the aggregation of all input values
from the input origin, Jan. 4, 2011, to 23:59:59.99999 Jan. 9, 2011. The second output
time is 00:00 Jan. 10, 2011; it is the aggregation of all input values from 00:00 Jan
10, 2011 to 23:59:59.99999 Jan. 16, 2011.

Typically, the AggregateBy function is used to aggregate from a fine-grained
regular time series to a coarser-grained one. However, the following scenarios are
also supported:
v Converting from a regular time series to a time series with a calendar of the

same granularity. In this case, AggregateBy shifts the times back to
accommodate differences in the calendar start times: for example, 00:00 from
8:00. Elements can be removed or null elements added to accommodate
differences in the on/off pattern.

v Converting from a regular time series to one with a calendar of finer granularity.
In this case, AggregateBy replicates values.

v The input time series is irregular. Because the granularity of an irregular time
series does not depend on the granularity of the calendar, this case is treated like
aggregation from a fine-grained time series to a coarser-grained one. This type of
aggregation always produces a regular time series.

The flags argument values

The flags argument determines how data points in the off periods of calendars are
handled during aggregation and how hidden elements are managed. It can have
the following values.

0 (Default) Data in off periods is aggregated with the next output period.

1 Data in off periods is aggregated with the previous output period.

2 Indicates that the scan runs with the TS_SCAN_HIDDEN flag set (hidden
elements are returned).

4 Indicates that the scan runs with the TS_SCAN_SKIP_HIDDEN flag set
(hidden elements are not returned).

For example, consider an input time series that has a daily calendar with no off
days: it has data from weekdays and weekends. If you aggregate this data by a
business-day calendar (5 days on, 2 days off, starting on a Monday), a flags
argument of 0 causes weekend data to be aggregated with the next Monday's data,
and a flags argument of 1 causes weekend data to be aggregated with the previous
Friday's data.

For another example, consider a quarterly calendar that is defined as:
’startdate(2010-1-1 00:00:00.00000), pattstart(2010-1-1 00:00:00.00000),
pattern({1 on, 2 off}, month’

Chapter 7. Time series SQL routines 7-13

If you aggregate this calendar with either a flags argument of 0 or no flags
argument, all input points up to, but not including, 2010-2-1 00:00:00.00000 are
aggregated into the first output element. All points from 2010-2-1 00:00:00.00000 up
to, but not including, 2010-5-1 00:00:00.00000 are aggregated into the second output
element, and so on.

If the flags argument is 1, all input points up to but not including 2010- 4-1
00:00:00.00000 are aggregated into the first output element. All points from 2010-4-1
00:00:00.00000 up to, but not including, 2010-7-1 00:00:00.00000 are aggregated into
the second output element, and so on. The AggregateBy clause might look like
this:
AggregateBy(’max($high)’, ’quarterlycal’, ts, 1);

Returns

The aggregated time series, which is always regular, if you are aggregating to a
new time interval. The resulting time series has a time stamp column plus one
column for each expression in the list.

Examples: Stock data

The following query aggregates the daily_stocks time series to a weekly time
series:
insert into daily_stocks(stock_id, stock_name, stock_data)

select stock_id, stock_name,
AggregateBy(’max($high), min($low),last($final),sum($vol)’,
’weekcal’, stock_data)::TimeSeries(stock_bar)
from daily_stocks;

The following query clause selects the second price from each week:
AggregateBy(’Nth($price, 2)’, ’weekly’, ts)

This query clause selects the second to the last price from each week:
AggregateBy(’Nth($price, -2)’, ’weekly’, ts)

Examples: BSON data

This example is based on the following row type and time series definition. The
TimeSeries row type contains an INTEGER column that is named v1 and the
BSON column contains a field that is also named v1.
CREATE ROW TYPE rb(timestamp datetime year to fraction(5), data bson, v1 int);

INSERT INTO tj VALUES(1,’origin(2011-01-01 00:00:00.00000), calendar(ts_15min),
container(kontainer),threshold(0), regular,[({"v1":99},20)]’);

The following statement creates a TimeSeries data type to hold the results of the
aggregation on the BSON field in an INTEGER column:
CREATE ROW TYPE outrow(timestamp datetime year to fraction(5), x int);

If a column and a BSON field have the same name, the column takes precedence.
The following statement returns the maximum value from the v1 INTEGER
column:
SELECT AggregateBy(’max($v1)’,’ts_1year’,tsdata,0

"2011-01-01 00:00:00.00000"::datetime year to fraction(5),
"2012-01-01 00:00:00.00000"::datetime year to fraction(5))

FROM tj;

7-14 IBM Informix TimeSeries Data User's Guide

The following two equivalent statements return the maximum value from the v1
field in the data BSON column, which is column 1 in the TimeSeries row type:
SELECT AggregateBy(’max($data.v1)’,’ts_1year’,tsdata,0

"2011-01-01 00:00:00.00000"::datetime year to fraction(5),
"2012-01-01 00:00:00.00000"::datetime year to fraction(5))
::timeseries(outrow)

FROM tj;

SELECT AggregateBy(’max($1.v1)’,’ts_1year’,tsdata,0
"2011-01-01 00:00:00.00000"::datetime year to fraction(5),
"2012-01-01 00:00:00.00000"::datetime year to fraction(5))
::timeseries(outrow)

FROM tj;

The aggregated time series that is returned has the TimeSeries data type outrow.
If you do not cast the result to a row type that has appropriate columns for the
results, the statement fails.
Related reference:
“Time series routines that run in parallel” on page 7-7
“TSRollup function” on page 7-142
“AggregateRange function”
“Apply function” on page 7-18
“PutTimeSeries function” on page 7-82

AggregateRange function
The AggregateRange function produces an aggregate over each element for a time
range that is specified by start and end DATETIME parameters.

Syntax
AggregateRange(agg_express lvarchar,

ts TimeSeries
flags integer default 0
start datetime year to fraction(5) default NULL,
end datetime year to fraction(5) default NULL

)
returns row;

agg_express
A comma-separated list of these SQL aggregate operators: MIN, MAX,
MEDIAN, SUM, AVG, FIRST, LAST, or Nth. The MIN, MAX, MEDIAN,
SUM, and AVG expressions can operate only on numeric columns.

ts The time series to be aggregated.

flags (optional)
See “The flags argument values” on page 7-16.

You cannot use a flags argument value of 1 with this function.

start (optional)
The date and time at which to start aggregation.

end (optional)
The date and time at which to end aggregation.

Description

The AggegateRange function converts the input section of a time series to a row of
aggregate values.

Chapter 7. Time series SQL routines 7-15

The agg_express expressions operate on a column of the input time series, which is
specified by one of the following column identifiers:

$colname
The colname is the name of the column to aggregate in the TimeSeries data
type. For example, if the column name is high, the column identifier is
$high.

$colnumber
The colnumber is the position of the column to aggregate in the TimeSeries
data type. For example, if the column number is 1, the column identifier is
$1.

$bson_field_name
The bson_field_name is the name of a field in at least one BSON document
in the BSON column in the TimeSeries data type. For example, if the field
name is v1, the column identifier is $v1. If the BSON field name is the
same as another column in the TimeSeries data type, you must qualify the
field name in one of the following ways:
v $colname.bson_field_name

For example, if the BSON column name is b_data and the field name is
v1, the column identifier is $b_data.v1.

v $colnumber.bson_field_name

For example, if the BSON column number is 1 and the field name is v1,
the column identifier is $1.v1.

You must cast the results of the AggregateRange function on a BSON field
to a TimeSeries data type the appropriate type of columns for the result of
the expression, for example a timestamp column and an INTEGER column.

The Nth expression returns the value of a column for the specified aggregation
period, using the following syntax:

Nth($col, n)

$col The column identifer.

n A positive or negative number indicating the position of the TimeSeries
row within the aggregation period. Positive values of n begin at the first
row in the aggregation period; therefore, Nth($col, 1) is equivalent to
FIRST($col). Negative values of n begin with the last row in the
aggregation period; therefore, Nth($col, -1) is equivalent to LAST($col).

If an aggregation period does not have a value for the nth row, then the
Nth function returns a null value for that period. The Nth function is more
efficient for positive values of the n argument than for negative values.

An aggregation time period is denoted by the start date and time of the period.

The flags argument values

The flags argument determines how data points in the off periods of calendars are
handled during aggregation and how hidden elements are managed. It can have
the following values.

0 (default)
Data in off periods is aggregated with the next output period.

7-16 IBM Informix TimeSeries Data User's Guide

2 Indicates that the scan runs with the TS_SCAN_HIDDEN flag set (hidden
elements are returned).

4 Indicates that the scan runs with the TS_SCAN_SKIP_HIDDEN flag set
(hidden elements are not returned).

Returns

A single element (row).

Example: Stock data

The following example produces an average of the values in the column high of
the time series called stock_data. First, the example creates the row type, elemval,
as a cast for the result.
create row type elemval (tstamp datetime year to fraction(5),

high double precision);

select
AggregateRange(’avg($high)’, stock_data)::elemval

from daily_stocks;

Examples: BSON data

This example is based on the following row type and time series definition. The
TimeSeries row type contains an INTEGER column that is named v1 and the
BSON column contains a field that is also named v1.
CREATE ROW TYPE rb(timestamp datetime year to fraction(5), data bson, v1 int);

INSERT INTO tj VALUES(1,’origin(2011-01-01 00:00:00.00000), calendar(ts_15min),
container(kontainer),threshold(0), regular,[({"v1":99},20)]’);

The following statement creates a TimeSeries data type for the results:
CREATE ROW TYPE outrow(timestamp datetime year to fraction(5), x int);

If a column and a BSON field have the same name, the column takes precedence.
The following statement returns the maximum value from the v1 INTEGER
column:
SELECT AggregateRange(’max($v1)’,’ts_1year’,tsdata,0

"2011-01-01 00:00:00.00000"::datetime year to fraction(5),
"2012-01-01 00:00:00.00000"::datetime year to fraction(5))

FROM tj;

The following two equivalent statements return the maximum value from the v1
field in the data BSON column, which is column 1 in the TimeSeries row type:
SELECT AggregateRange(’max($data.v1)’,’ts_1year’,tsdata,0

"2011-01-01 00:00:00.00000"::datetime year to fraction(5),
"2012-01-01 00:00:00.00000"::datetime year to fraction(5))
::outrow

FROM tj;

SELECT AggregateRange(’max($1.v1)’,’ts_1year’,tsdata,0
"2011-01-01 00:00:00.00000":datetime year to fraction(5),
"2012-01-01 00:00:00.00000":datetime year to fraction(5))
::outrow

FROM tj;

Chapter 7. Time series SQL routines 7-17

The aggregated time series that is returned has the TimeSeries data type outrow.
If you do not cast the result to a row type that has the appropriate columns for the
results, the statement fails.
Related reference:
“Time series routines that run in parallel” on page 7-7
“AggregateBy function” on page 7-11
“Apply function”

Apply function
The Apply function queries one or more time series and applies a user-specified
SQL expression or function to the selected time series elements.

Syntax
Apply(sql_express lvarchar,

ts TimeSeries, ...)
returns TimeSeries;

Apply(sql_express lvarchar,
multiset_ts multiset(TimeSeries))

returns TimeSeries;

Apply(sql_express lvarchar,
filter lvarchar,
ts TimeSeries, ...)

returns TimeSeries;

Apply(sql_express lvarchar,
filter lvarchar,
multiset_ts multiset(TimeSeries))

returns TimeSeries;

Apply(sql_express lvarchar,
begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
ts TimeSeries, ...)

returns TimeSeries with (handlesnulls);

Apply(sql_express lvarchar,
begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
multiset_ts multiset(TimeSeries))

returns TimeSeries with (handlesnulls);

Apply(sql_express lvarchar,
filter lvarchar,
begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
ts TimeSeries, ...)

returns TimeSeries with (handlesnulls);

Apply(sql_express lvarchar,
filter lvarchar,
begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
multiset_ts multiset(TimeSeries))

returns TimeSeries with (handlesnulls);

sql_express
The SQL expression or function to evaluate.

filter The filter expression used to select time series elements.

7-18 IBM Informix TimeSeries Data User's Guide

begin_stamp
The begin point of the range. See “Clip function” on page 7-31 for more
detail about range specifications.

end_stamp
The end point of the range. See “Clip function” on page 7-31 for more
detail about range specifications.

ts The first ts argument is the first series, the second ts argument is the
second series, and so on. This function can take up to eight ts arguments.
The order of the arguments must correspond to the desired order in the
SQL expression or function. There is no limit to the number of $
parameters in the expression.

multiset_ts
A multiset of time series.

Description

This function runs a user-specified SQL expression on the given time series and
produces a new time series containing the result of the expression at each
qualifying element of the input time series.

You can qualify the elements from the input time series by specifying a time
period to clip and by using a filter expression.

The sql_express argument is a comma-separated list of expressions to run for each
selected element. There is no limit to the number of expressions you can run. The
results of the expressions must match the corresponding columns of the result time
series minus the first time stamp column. Do not specify the first time stamp as
the first expression; the first time stamp is generated for each expression result.

The parameters to the expression can be an input element or any column of an
input time series. You should use $, followed by the position of a given time series
on the input time series list to represent its data element, plus a dot, then the
number of the column. Both the position number and column number are
zero-based.

For example, $0 means the element of the first input time series, $0.0 represents its
time stamp column, and $0.1 is the column following the time stamp column.
Another way to refer to a column is to use the column name directly, instead of
the column number. Suppose the second time series has a column called high then
you can use $1.high to refer to it. If the high column is the second column in the
element, $1.high is equivalent to $1.1.

If Apply has only one time series argument, you can refer to the column name
without the time series position part; hence, $0.high is the same as $high. Notice
that $0 always means the whole element of the first time series. It does not mean
the first column of the time series, even if there is only one time series argument.

If you use a function as your expression, then it must take the subtype of each
input time series in that order as its arguments and return a row type that
corresponds to the subtype of the result time series of Apply. In most cases, it is
faster to evaluate a function than to evaluate a generic expression. If performance
is critical, you should implement the calculation to be performed in a function and
use the function syntax. See “Example” on page 7-21 for how to achieve this.

Chapter 7. Time series SQL routines 7-19

The following examples show valid expressions for Apply to apply. Assume two
argument time series with the same subtype daybar(t DATETIME YEAR TO
FRACTION(5), high REAL, low REAL, close REAL, vol REAL). The expression
could be any of:
v "$0.high + $1.high)/2, ($0.low + $1.low)/2"

v "($0.1 + $1.1)/2, ($0.2 + $1.2)/2"

v "$0.high, $1.high"

v "avghigh"

The signature of avghigh is:
"avghigh(arg1 daybar, arg2 daybar) returns (one_real)"

The syntax for the filter argument is similar to the previous expression, except that
it must evaluate to a single-column Boolean result. Only those elements that
evaluate to TRUE are selected.
"$0.vol > $1.vol and $0.close > ($0.high - $0.low)/2"

Apply with the multiset_ts argument assigns parameter numbers by fetching
TimeSeries values from the set and processing them in the order in which they are
returned by the set management code. Since sets are unordered, parameters might
not be assigned numbers predictably. Apply with the multiset_ts argument is useful
only if you can guarantee that the TimeSeries values are returned in a fixed order.
There are two ways to guarantee this:
v Write a C function that creates the set and use the function as the multiset_ts

argument to Apply. The C function can return the TimeSeries values in any
order you want.

v Use ORDER BY in the multiset_ts expression

Apply with the multiset_ts argument evaluates the expression once for every
timepoint in the resulting union of time series values. When all the data in the
clipped period has been exhausted, Apply returns the resulting series.

Apply uses the optional clip time range to restrict the data to a particular time
period. If the beginning timepoint is NULL, then Apply uses the earliest valid
timepoint of all the input time series. If the ending timepoint is NULL, then Apply
uses the latest valid timepoint of all the input time series. When the optional clip
time range is not used, it is equivalent to both the beginning and ending
timepoints being NULL: Apply considers all elements.

If both the clip time range and filter expression are given, then clipping is done
before filtering.

If you use a string literal or NULL for the clip time range, you should cast to
DATETIME YEAR TO FRACTION(5) on at least the beginning timepoint to avoid
ambiguity in function resolution.

When more than one input time series is specified, a union of all input time series
is performed to produce the source of data to be filtered and evaluated by Apply.
Hence, Apply acts as a union function, with extra filtering and manipulation of
union results. For details on how the Union function works, see “Union function”
on page 7-157.

7-20 IBM Informix TimeSeries Data User's Guide

Returns

A new time series with the results of evaluating the expression on every selected
element from the source time series.

Example

The following example uses Apply without a filter argument and without a
clipped range:
select Apply(’$high-$low’,

datetime(2011-01-01) year to day,
datetime(2011-01-06) year to day,
stock_data)::TimeSeries(one_real)

from daily_stocks
where stock_name = ’IBM’;

The following example shows Apply without a filter and with a clipped range:
select Apply(

’($0.high+$1.high)/2, ($0.low+$1.low)/2, ($0.final+$1.final)/2,
($0.vol+$1.vol)/2’,

datetime(2011-01-04) year to day,
datetime(2011-01-05) year to day,
t1.stock_data, t2.stock_data)
::TimeSeries(stock_bar)

from daily_stocks t1, daily_stocks t2
where t1.stock_name = ’IBM’ and t2.stock_name = ’HWP’;

The following example shows Apply with a filter and without a clip range. The
resulting time series contains the closing price of the days that the trading range is
more than 10% of the low:
create function ts_sum(a stock_bar)

returns one_real;
return row(null::datetime year to fraction(5),
(a.high + a.low + a.final + a.vol))::one_real;

end function;

select Apply(’ts_sum’,
’2011-01-03 00:00:00.00000’::datetime year

to fraction(5),
’2011-01-03 00:00:00.00000’::datetime year

to fraction(5),
stock_data)::TimeSeries(one_real)
from daily_stocks

where stock_id = 901;

The following example uses a function as the expression to evaluate to boost
performance. The first step is to compile the following C function into
applyfunc.so:
/* begin applyfunc.c */
#include "mi.h"
MI_ROW *
high_low_diff(MI_ROW *row, MI_FPARAM *fp)
{

MI_ROW_DESC *rowdesc;
MI_ROW *result;
void *values[2];
mi_boolean nulls[2];
mi_real *high, *low;
mi_real r;
mi_integer len;
MI_CONNECTION *conn;
mi_integer rc;

Chapter 7. Time series SQL routines 7-21

nulls[0] = MI_TRUE;
nulls[1] = MI_FALSE;
conn = mi_open(NULL,NULL,NULL);
if ((rc = mi_value(row, 1, (MI_DATUM *) &high,

&len)) == MI_ERROR)
mi_db_error_raise(conn, MI_EXCEPTION,

"ts_test_float_sql: corrupted argument row");
if (rc == MI_NULL_VALUE)
goto retisnull;

if ((rc = mi_value(row, 2, (MI_DATUM *) &low,
&len)) == MI_ERROR)

mi_db_error_raise(conn, MI_EXCEPTION,
"ts_test_float_sql: corrupted argument row");

if (rc == MI_NULL_VALUE)
goto retisnull;

r = *high - *low;
values[1] = (void *) &r;
rowdesc = mi_row_desc_create(mi_typestring_to_id(conn,

"one_real"));
result = mi_row_create(conn, rowdesc, (MI_DATUM *)

values, nulls);
mi_close(conn);
return (result);

retisnull:
mi_fp_setreturnisnull(fp, 0, MI_TRUE);
return (MI_ROW *) NULL;

}
/* end of applyfunc.c */

Then create the following SQL function:
create function HighLowDiff(arg stock_bar) returns one_real
external name ’/tmp/applyfunc.bld(high_low_diff)’
language C;

select stock_name, Apply(’HighLowDiff’,
stock_data)::TimeSeries(one_real)

from daily_stocks;

The following query is equivalent to the previous query, but it does not have the
performance advantages of using a function as the expression to evaluate:
select stock_name, Apply(’$high - $low’,

stock_data)::TimeSeries(one_real)
from daily_stocks;

Related reference:
“AggregateBy function” on page 7-11
“AggregateRange function” on page 7-15
“Clip function” on page 7-31
“ClipCount function” on page 7-35
“ClipGetCount function” on page 7-37
“Intersect function” on page 7-71
“TSAddPrevious function” on page 7-90
“TSCmp function” on page 7-90
“TSDecay function” on page 7-122
“TSPrevious function” on page 7-141
“TSRunningAvg function” on page 7-147

7-22 IBM Informix TimeSeries Data User's Guide

“TSRunningSum function” on page 7-151
“Union function” on page 7-157
“Binary arithmetic functions” on page 7-27
“SetOrigin function” on page 7-85
“TSRunningCor function” on page 7-149
“TSRunningMed function” on page 7-150
“TSRunningVar function” on page 7-152
“Unary arithmetic functions” on page 7-156

ApplyBinaryTsOp function
The ApplyBinaryTsOp function applies a binary arithmetic function to a pair of
time series or to a time series and a compatible row type or number.

Syntax
ApplyBinaryTsOp(func_name lvarchar,

ts TimeSeries,
ts TimeSeries)

returns TimeSeries;

ApplyBinaryTsOp(func_name lvarchar,
number_or_row scalar|row,
ts TimeSeries)

returns TimeSeries;

ApplyBinaryTsOp(func_name lvarchar,
ts TimeSeries,
number_or_row scalar|row)

returns TimeSeries;

func_name
The name of a binary arithmetic function.

ts The time series to use in the operation. The second and third arguments
can be a time series, a row type, or a number. At least one of the two must
be a time series.

number_or_row
A number or a row type to use in the operation. The second and third
arguments can be a time series, a row type, or a number. The second two
arguments must be compatible under the function. See “Binary arithmetic
functions” on page 7-27 for a description of the compatibility requirements.

Description

These functions operate in an analogous fashion to the arithmetic functions that
have been overloaded to operate on time series. See the description of these
functions in “Binary arithmetic functions” on page 7-27 for more information. For
example, Plus(ts1, ts2) is equivalent to ApplyBinaryTsOp(‘Plus', ts1, ts2).

Returns

A time series of the same type as the first time series argument, which can result in
a loss of precision. The return type can be explicitly cast to a compatible time
series type with more precision to avoid this problem. See “Binary arithmetic
functions” on page 7-27 for more information.

Chapter 7. Time series SQL routines 7-23

Example

The following example uses ApplyBinaryTSOp to implement the Plus function:
create row type simple_series(stock_id int, data TimeSeries(one_real));
create table daily_high of type simple_series;
insert into daily_high

select stock_id,
Apply(’$0.high’,

NULL::datetime year to fraction(5),
NULL::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;
create table daily_low of type simple_series;
insert into daily_low

select stock_id,
Apply(’$0.low’,

NULL::datetime year to fraction(5),
NULL::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;
create table daily_avg of type simple_series;
insert into daily_avg

select l.stock_id, ApplyBinaryTSOp("plus", l.data, h.data)/2
from daily_low l, daily_high h
where l.stock_id = h.stock_id;

You can receive the same results by substituting (l.data + h.data) for
ApplyBinaryTSOp('plus', 1.data, h.data).
Related reference:
“Time series routines that run in parallel” on page 7-7
“ApplyOpToTsSet function” on page 7-25
“Binary arithmetic functions” on page 7-27

ApplyCalendar function
The ApplyCalendar function applies a new calendar to a time series.

Syntax
ApplyCalendar (ts TimeSeries,

cal_name lvarchar,
flags integer default 0)

returns TimeSeries;

ts The specified time series from which specific timepoints are projected.

cal_name
The name of the calendar to apply.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

If the calendar specified by the argument has an interval smaller than the calendar
attached to the original time series, and the original time series is regular, then the
resulting time series has a higher frequency and can therefore have more elements
than the original time series. For example, applying an hourly calendar with eight
valid timepoints per day to a daily time series converts each daily entry in the new
time series into eight hourly entries.

7-24 IBM Informix TimeSeries Data User's Guide

Returns

A new time series that uses the named calendar and includes entries from the
original time series on active timepoints in the new calendar.

Example

Assuming fourdaycal is a calendar that contains four-day workweeks, the
following query returns a time series of a given stock's data for each of the four
working days:
select ApplyCalendar(stock_data,’fourdaycal’)

from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Time series routines that run in parallel” on page 7-7

ApplyOpToTsSet function
The ApplyOpToTsSet function applies a binary arithmetic function to a set of time
series.

Syntax
ApplyOpToTsSet(func_name lvarchar,

multiset_ts multiset(TimeSeries))
returns TimeSeries;

func_name
The name of a binary function. See “Binary arithmetic functions” on page
7-27 for more information.

multiset_ts
A multiset of time series that are compatible with the function. All the time
series in the multiset must have the same type.

Description

All the time series must have the same type. If the multiset is empty, then
ApplyOpToTsSet returns NULL. If the multiset contains only one time series, then
ApplyOpToTsSet returns a copy of that time series. If the multiset contains exactly
two time series, ts1 and ts2, then ApplyOpToTsSet returns
ApplyBinaryTsOp(func_name, ts1, ts2). If the multiset contains three time series,
ts1, ts2, and ts3, then ApplyOpToTsSet returns ApplyBinaryTsOp(func_name,
ApplyBinaryTsOp(func_name, ts1, ts2), ts3), and so on.

Returns

A time series of the same type as the time series in the multiset. The calendar of
the resulting time series is the union of the calendars of the input time series. The
resulting time series is regular if all the input times series are regular and irregular
if any of the inputs are irregular.
Related reference:
“ApplyBinaryTsOp function” on page 7-23
“Binary arithmetic functions” on page 7-27

Chapter 7. Time series SQL routines 7-25

ApplyUnaryTsOp function
The ApplyUnaryTsOp function applies a unary arithmetic function to a time
series.

Syntax
ApplyUnaryTsOp(func_name lvarchar,

ts TimeSeries)
returns TimeSeries;

func_name
The name of the unary arithmetic function.

ts The time series to act on.

Description

This function operates in an analogous fashion to the unary arithmetic functions
that have been overloaded to operate on time series. See the description of these
functions in the section “Unary arithmetic functions” on page 7-156 for more
information. For example, Logn(ts1) is equivalent to ApplyUnaryTsOp(‘Logn', ts1).

Returns

A time series of the same type as the supplied time series.

Example

The following example uses ApplyUnaryTSOp with the Logn function:
create row type simple_series(stock_id int, data TimeSeries(one_real));
create table daily_high of type simple_series;
insert into daily_high

select stock_id,
Apply(’$0.high’,

NULL::datetime year to fraction(5),
NULL::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;
create table daily_low of type simple_series;
insert into daily_low

select stock_id,
Apply(’$0.low’,

NULL::datetime year to fraction(5),
NULL::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;
create table daily_avg of type simple_series;
insert into daily_avg

select l.stock_id, ApplyBinaryTSOp("plus", l.data, h.data)/2
from daily_low l, daily_high h
where l.stock_id = h.stock_id;

create table log_high of type simple_series;
insert into log_high

select stock_id, ApplyUnaryTsOp("logn",
data) from daily_avg;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

7-26 IBM Informix TimeSeries Data User's Guide

Asin function
The Asin function returns the arc sine of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Atan, Cos, Exp, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

Atan function
The Atan function returns the arc tangent of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Asin, Cos, Exp, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

Atan2 function
The Atan2 function returns the arc tangent of corresponding elements from two
time series.

It is one of the binary arithmetic functions that work on time series. The others are
Divide, Minus, Mod, Plus, Pow, and Times.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Binary arithmetic functions”

Binary arithmetic functions
The standard binary arithmetic functions Atan2, Plus, Minus, Times, Divide, Mod,
and Pow can operate on time series data. The Plus, Minus, Times, and Divide
functions can also be denoted by their standard operators +, -, *, and /.

Syntax
Function(ts TimeSeries,

ts TimeSeries)
returns TimeSeries;

Function(number scalar,
ts TimeSeries)

returns TimeSeries;

Function(ts TimeSeries,
number scalar)

returns TimeSeries;

Function(row row,
ts TimeSeries)

returns TimeSeries;

Chapter 7. Time series SQL routines 7-27

Function(ts TimeSeries,
row row)

returns TimeSeries;

ts The source time series. One of the two arguments must be a time series for
this variant of the functions. The two inputs must be compatible under the
function.

number
A scalar number. Must be compatible with the source time series.

row A row type. Must be compatible with the source time series.

Description

In the first format, both arguments are time series. The result is a time series that
starts at the later of the starting times of the inputs. The end point of the result is
the later of the two input end points if both inputs are irregular. The result end
point is the earlier of the input regular time series end points if one or more of the
inputs is a regular time series. The result time series has one time point for each
input time point in the interval.

The element at time t in the resulting time series is formed from the last elements
at or before time t in the two input time series. Normally the function is applied
column by column to the input columns, except for the time stamp, to produce the
output element. In this case, the two input row types must have the same number
of columns, and the corresponding columns must be compatible under the
function.

However, if there is a variant of the function that operates directly on the row
types of the two input time series, then that variant is used. Then the input row
types can have different numbers of columns and the columns might be
incompatible. The time stamp of the resulting element is ignored; the element
placed in the resulting time series has the later of the time stamps of the input
elements.

The resulting calendar is the union of the calendars of the input time series. If the
input calendars are the same, then the resulting calendar is the same as the input
calendar. Otherwise, a new calendar is made. The name of the resulting calendar is
a string that contains the names of the calendars of the input time series, separated
by a vertical line (|). For example, if two time series are joined, and mycal and
yourcal are the names of their corresponding calendars, the resulting calendar is
named mycal|yourcal.

The resulting time series is regular if both the input time series are regular and
irregular if either of the inputs is irregular.

One of the inputs can be a scalar number or a row type. In this case, the resulting
time series has the same calendar, sequence of time stamps, and regularity as the
input time series. If one of the inputs is a scalar number, then the function is
applied to the scalar number and to each non-time stamp column of each element
of the input time series.

If an input is a row type, then that row type must be compatible with the time
series row type. The function is applied to the input row type and each element of
the input time series. It is applied column by column or directly to the two row

7-28 IBM Informix TimeSeries Data User's Guide

types, depending on whether there is a variant of the function that handles the
row types directly.

Returns

The same type of time series as the first time series input, unless the function is
cast, then it returns the type of time series to which it is cast.

For example, suppose that time series tsi has type TimeSeries(ci), and that time
series tsr has type TimeSeries(cr), where ci is a row type with INTEGER columns
and cr is a row type with SMALLFLOAT columns. Then Plus(tsi, tsr) has type
TimeSeries(ci); the fractional parts of the resulting numbers are discarded. This is
generally not the wanted effect. Plus(tsi, tsr)::TimeSeries(cr) has type
TimeSeries(cr) and does not discard the fractional parts of the resulting numbers.

Example

Suppose that you want to know the average daily value of stock prices. The
following statements separate the daily high and low values for the stocks into
separate time series in a daily_high table and a daily_low table:
create row type price(timestamp datetime year to fraction(5),

val real);
create row type simple_series(stock_id int, data

TimeSeries(price));

create table daily_high of type simple_series;

$insert into daily_high
select stock_id,

Apply(’$high’,
’2011-01-03 00:00:00.00000’
::datetime year to fraction(5),
’2011-01-10 00:00:00.00000’
::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks;

create table daily_low of type simple_series;

insert into daily_low
select stock_id,

Apply(’$low’,
’2011-01-03 00:00:00.00000’
::datetime year to fraction(5),
’2011-01-10 00:00:00.00000’
::datetime year to fraction(5),
stock_data)::TimeSeries(price)

from daily_stocks;

The following query uses the symbol form of the Plus and Divide functions to
produce a time series of daily average stock prices in the daily_avg table:
create table daily_avg of type simple_series;

insert into daily_avg
select l.stock_id, (l.data + h.data)/2

from daily_low l, daily_high h
where l.stock_id = h.stock_id;

Related reference:
“Load small amounts of data with SQL functions” on page 3-36
“ApplyBinaryTsOp function” on page 7-23

Chapter 7. Time series SQL routines 7-29

“ApplyOpToTsSet function” on page 7-25
“Atan2 function” on page 7-27
“Apply function” on page 7-18
“Unary arithmetic functions” on page 7-156
“Divide function” on page 7-46
“Minus function” on page 7-74
“Mod function” on page 7-75
“Plus function” on page 7-77
“Pow function” on page 7-77
“Times function” on page 7-86

BulkLoad function
The BulkLoad function loads data from a client file into an existing time series.

Syntax
BulkLoad (ts TimeSeries,

filename lvarchar,
flags integer default 0)

returns TimeSeries;

ts The time series in which to load data.

filename
The path and file name of the file to load.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

The file is located on the client and can be an absolute or relative path name.

Two data formats are supported for the file loaded by BulkLoad:
v Using type constructors
v Using tabs

Each line of the client file must have all the data for one element.

The type constructor format follows the row type convention: comma-separated
columns surrounded by parentheses and preceded by the ROW type constructor.
The first two lines of a typical file look like this:
row(2011-01-03 00:00:00.00000, 1.1, 2.2)
row(2011-01-04 00:00:00.00000, 10.1, 20.2)

If you include collections in a column within the row data type, use a type
constructor (SET, MULTISET, or LIST) and curly braces surrounding the collection
values. A row including a set of rows has this format:
row(timestamp, set{row(value, value), row(value, value)}, value)

The tab format is to separate the values by tabs. It is only recommended for
single-level rows that do not contain collections or row data types. The first two
lines of a typical file in this format look like this:
2011-01-03 00:00:00.00000 1.1 2.2
2011-01-04 00:00:00.00000 10.1 20.2

7-30 IBM Informix TimeSeries Data User's Guide

The spaces between entries represent a tab.

In both formats, the word NULL indicates a null entry.

When BulkLoad encounters data with duplicate time stamps in a regular time
series, the old values are replaced by the new values. In an irregular time series,
when BulkLoad encounters data with duplicate time stamps, the following
algorithm is used to determine where to place the data belonging to the duplicate
time stamp:
1. Round the time stamp up to the next second.
2. Search backwards for the first element less than the new time stamp.
3. Insert the new data at this time stamp plus 10 microseconds.

This is the same algorithm as used by the PutElem function, described in
“PutElem function” on page 7-77.

Returns

A time series containing the new data.

Example

The following example adds data from the sam.dat file to the stock_data time
series:
update daily_stocks
set stock_data = BulkLoad(stock_data, ’sam.dat’)

where stock_name = ’IBM’;

Related reference:
“Load data with the BulkLoad function” on page 3-35

Clip function
The Clip function extracts data between two timepoints in a time series and
returns a new time series that contains that data. You can extract periods of interest
from a large time series and to store or operate on them separately from the large
series.

Syntax
Clip(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
flag integer default 0)

returns TimeSeries;

Clip(ts TimeSeries,
begin_stamp datetime year to fraction(5),
end_offset integer,
flag integer default 0)

returns TimeSeries;

Clip(ts TimeSeries,
begin_offset integer,
end_stamp datetime year to fraction(5),
flag integer default 0)

returns TimeSeries;

Clip(ts TimeSeries,

Chapter 7. Time series SQL routines 7-31

begin_offset integer,
end_offset integer,
flag integer default 0)

returns TimeSeries;

ts The time series to clip.

begin_stamp
The begin point of the range. Can be NULL.

end_stamp
The end point of the range. Can be NULL.

begin_offset
The begin offset of the range (regular time series only).

end_offset
The end offset of the range (regular time series only).

flag (optional)
The configuration of the resulting time series. Each flag value other than 0
reverses one aspect of the default behavior. The value of the flag argument
is the sum of the flag values that you want to use.

0 = Default behavior:
v The origin of the resulting time series is the later of the begin point and

the origin of the input time series.
v Hidden elements are not included in the resulting time series.
v The resulting time series has the same regularity as the input time series.
v The first record in a resulting irregular time series has the timestamp of

the begin point and the value of the first record from the input time
series that is equal to or earlier than the begin point.

1 = The origin of the resulting time series is the earlier of the begin point
and the origin of the input time series. For regular time series, timepoints
that are before the origin of the time series are set to NULL. For irregular
time series, has no effect.

2 = Hidden elements are included and kept hidden in the resulting time
series.

4 = Hidden elements are included and revealed in the resulting time series.

8 = The resulting time series is irregular regardless of whether the input
time series is irregular.

16 = For irregular time series, the resulting time series begins with the first
record that is equal to or later than the begin point. For regular time series,
has no effect.

Description

The Clip functions all take a time series, a begin point, and an end point for the
range.

For regular time series, the begin and end points can be either integers or time
stamps. If the begin point is an integer, it is the absolute offset of an entry in the
time series. Data at the beginning and ending offsets is included in the resulting
time series. If the begin point is a time stamp, the Clip function uses the calendar
of the input time series to find the offset that corresponds to the time stamp. If

7-32 IBM Informix TimeSeries Data User's Guide

there is no entry in the time series exactly at the requested time stamp, Clip uses
the time stamp that immediately follows the specified time stamp as the begin
point of the range.

The end point is used in the same way as the begin point, except that it specifies
the end of the range, rather than its beginning. The begin and end points can be
NULL, in which case the beginning or end of the time series is used.

For irregular time series, only time stamps are allowed for the begin and end
points. The timestamp of the first record in a resulting irregular time series is later
than or equal to the begin point. However, the value of a record in an irregular
time series persists until the next record. Therefore, by default, the first record in
the resulting time series can have a value that corresponds to an earlier timestamp
than the begin point. You can specify that the first record in the resulting time
series is the first record whose timestamp is equal to or after the begin point by
including the flag argument value of 16.

You can specify that the resulting time series is irregular by including the flag
argument value of 8.

You can choose whether the origin of the resulting time series can be earlier than
the origin of the input time series by setting the flag argument. By default, the
origin of the resulting time series cannot be earlier than the origin of the input
time series. You can also control how hidden elements are handled with the flag
argument. By default, hidden elements from the input time series are not included
in the resulting time series. You can include hidden element in the resulting time
series and specify whether those elements remain hidden or are revealed in the
resulting time series.

Returns

A new time series that contains only data from the requested range. The new series
has the same calendar as the original, but it can have a different origin and
number of entries.

Examples

The results of the Clip function are slightly different for regular and irregular time
series.

Example 1: Regular time series

The following query extracts data from a time series and creates a table that
contains the specified stock data for a single week:
create table week_1_analysis (stock_id int, stock_data

TimeSeries(stock_bar));
insert into week_1_analysis

select stock_id,
Clip(stock_data,

’2011-01-03 00:00:00.00000’
::datetime year to fraction(5),
’2011-01-07 00:00:00.00000’
::datetime year to fraction(5))

from daily_stocks
where stock_name = ’IBM’;

Chapter 7. Time series SQL routines 7-33

The following query returns the first six entries for a specified stock in a time
series:
select Clip(stock_data, 0, 5)
from daily_stocks
where stock_name = ’IBM’;

Example 2: Irregular time series

An irregular time series has the following values:
2005-12-17 10:23:00.00000 26.46
2006-01-03 13:19:00.00000 27.30
2006-01-04 13:19:00.00000 28.67
2006-01-09 13:19:00.00000 30.56

The following statement extracts data from a time series over a five day period:
EXECUTE FUNCTION Transpose ((

select Clip(
tsdata,
"2006-01-01 00:00:00.00000"::datetime year to fraction (5),
"2006-01-05 00:00:00.00000"::datetime year to fraction (5),
0)

from ts_tab
where station_id = 228820)) ;

The resulting irregular time series is as follows:
2006-01-01 00:00:00.00000 26.46
2006-01-03 13:19:00.00000 27.30
2006-01-04 13:19:00.00000 28.67

The first record has a time stamp equal to the begin point of the clip and the value
of the first original value. Because the time series is irregular, a record persists until
the next record. Therefore, the value of 26.46 is still valid on 2006-01-01.

However, if the Clip function includes the flag argument value of 16, the first value
of the resulting time series is later than the begin point of the clip. The following
statement extracts data that is after the begin point:
EXECUTE FUNCTION Transpose ((

select Clip(
tsdata,
"2006-01-01 00:00:00.00000"::datetime year to fraction (5),
"2006-01-05 00:00:00.00000"::datetime year to fraction (5),
16)

from ts_tab
where station_id = 228820)) ;

The resulting irregular time series is as follows:
2006-01-03 13:19:00.00000 27.30
2006-01-04 13:19:00.00000 28.67

Related reference:
“Time series routines that run in parallel” on page 7-7
“Apply function” on page 7-18
“ClipCount function” on page 7-35
“ClipGetCount function” on page 7-37
“GetElem function” on page 7-52
“GetLastValid function” on page 7-58
“GetNthElem function” on page 7-62

7-34 IBM Informix TimeSeries Data User's Guide

“WithinC and WithinR functions” on page 7-161
“DelClip function” on page 7-42
“DelTrim function” on page 7-45
“SetOrigin function” on page 7-85

ClipCount function
The ClipCount function is a variation of Clip in which the first integer argument
is interpreted as a count of entries to clip. If the count is positive, ClipCount
begins with the first element at or after the time stamp and clips the next count
entries. If the count is negative, ClipCount begins with the first element at or
before the time stamp and clips the previous count entries.

Syntax
ClipCount(ts TimeSeries,

begin_stamp datetime year to fraction(5),
num_stamps integer,
flag integer default 0)

returns TimeSeries;

ts The time series to clip.

begin_stamp
The begin point of the range. Can be NULL.

num_stamps
The number of elements to be included in the resultant time series.

flag (optional)
The configuration of the resulting time series. Each flag value other than 0
reverses one aspect of the default behavior. The value of the flag argument
is the sum of the flag values that you want to use.

0 = Default behavior:
v The origin of the resulting time series is the later of the begin point and

the origin of the input time series.
v Hidden elements are not included in the resulting time series.
v The resulting time series has the same regularity as the input time series.
v The first record in a resulting irregular time series has the timestamp of

the begin point and the value of the first record from the input time
series that is equal to or earlier than the begin point.

1 = The origin of the resulting time series is the earlier of the begin point
and the origin of the input time series. For regular time series, timepoints
that are before the origin of the time series are set to NULL. For irregular
time series, has no effect.

2 = Hidden elements are included and kept hidden in the resulting time
series.

4 = Hidden elements are included and revealed in the resulting time series.

8 = The resulting time series is irregular regardless of whether the input
time series is irregular.

16 = For irregular time series, the resulting time series begins with the first
record that is equal to or later than the begin point. For regular time series,
has no effect.

Chapter 7. Time series SQL routines 7-35

Description

Begin points before the time series origin are permitted. Negative counts with such
time stamps result in time series with no elements. Begin points before the
calendar origin are not permitted.

If there is no entry in the calendar exactly at the requested time stamp, ClipCount
uses the calendar's first valid time stamp that immediately follows the given time
stamp as the begin point of the range. If the begin point is NULL, the origin of the
time series is used.

The timestamp of the first record in a resulting irregular time series is later than or
equal to the begin point. However, the value of a record in an irregular time series
persists until the next record. Therefore, by default, the first record in the resulting
time series can have a value that corresponds to an earlier timestamp than the
begin point. You can specify that the first record in the resulting time series is the
first record whose timestamp is equal to or after the begin point by including the
flag argument value of 16.

You can specify that the resulting time series is irregular by including the flag
argument value of 8.

You can choose whether the origin of the resulting time series can be earlier than
the origin of the input time series by setting the flag argument. By default, the
origin of the resulting time series cannot be earlier than the origin of the input
time series. You can also control how hidden elements are handled with the flag
argument. By default, hidden elements from the input time series are not included
in the resulting time series. You can include hidden element in the resulting time
series and specify whether those elements remain hidden or are revealed in the
resulting time series.

Returns

A new time series containing only data from the requested range. The new series
has the same calendar as the original, but it can have a different origin and
number of entries.

Example

The following example clips the first 30 elements at or after March 14, 2011, at 9:30
a.m. for the stock with ID 600, and it returns the entire resulting time series:
select ClipCount(activity_data,

’2011-01-01 09:30:00.00000’, 30)
from activity_stocks
where stock_id = 600;

The following example clips the previous 60 elements at or before August 22, 2011,
at 12:00 midnight for the stock with ID 600:
select ClipCount(activity_data,

’2011-08-22 00:00:00.00000’, -60)
from activity_stocks
where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Apply function” on page 7-18
“Clip function” on page 7-31

7-36 IBM Informix TimeSeries Data User's Guide

“ClipCount function” on page 7-35
“ClipGetCount function”
“GetElem function” on page 7-52
“GetLastValid function” on page 7-58
“GetNthElem function” on page 7-62

ClipGetCount function
The ClipGetCount function returns the number of elements in the current time
series that occur in the period delimited by the time stamps.

Syntax
ClipGetCount(ts TimeSeries,

begin_stamp datetime year to fraction(5) default NULL,
end_stamp datetime year to fraction(5) default NULL,
flags integer default 0)

returns integer;

ts The source time series.

begin_stamp
The begin point of the range. Can be NULL.

end_stamp
The end point of the range. Can be NULL.

flags Valid values for the flags argument are described later in this topic.

Description

For an irregular time series, deleted elements are not counted. For a regular time
series, only entries that are non-null are counted, so ClipGetCount might return a
different value than GetNelems.

If the begin point is NULL, the time series origin is used. If the end point is NULL,
the end of the time series is used.

See “Clip function” on page 7-31 for more information about the begin and end
points of the range.

The flags argument values

The flags argument determines how a scan should work on the returned set. If you
set the flags argument to 0 (the default), null and hidden elements are not part of
the count. If the flags argument has a value of 512 (0x200) (the TS_SCAN_HIDDEN
bit is set), all non-null elements are counted whether they are hidden or not.

Flag Value Meaning

TSOPEN_RDWRITE 0 (Default) Hidden elements are not included in
the count.

TS_SCAN_HIDDEN 512 Hidden elements marked by HideElem are
included in the count (see “HideElem
function” on page 7-67).

Chapter 7. Time series SQL routines 7-37

Returns

The number of elements in the given time series that occur in the period delimited
by the time stamps.

Example

The following statement returns the number of elements between 10:30 a.m. on
March 14, 2011, and midnight on March 19, 2011, inclusive:
select ClipGetCount(activity_data,

’2011-03-14 10:30:00.00000’,’2011-03-19 00:00:00.00000’)
from activity_stocks
where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Apply function” on page 7-18
“Clip function” on page 7-31
“ClipCount function” on page 7-35
“GetIndex function” on page 7-55
“GetNelems function” on page 7-60
“GetNthElem function” on page 7-62
“GetStamp function” on page 7-66
“The ts_nelems() function” on page 9-41

Cos function
The Cos function returns the cosine of its argument.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Asin, Atan, Exp, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

CountIf function
The CountIf function counts the number of elements that match the criteria of a
simple arithmetic expression.

Syntax
CountIf (
ts TimeSeries,
expr lvarchar,
begin_stamp datetime year to fraction(5) default null,
end_stamp datetime year to fraction(5) default null)
returns integer

CountIf (
ts TimeSeries,
col lvarchar,
op lvarchar,
value lvarchar,
begin_stamp datetime year to fraction(5) default null,
end_stamp datetime year to fraction(5) default null)
returns integer

7-38 IBM Informix TimeSeries Data User's Guide

CountIf (
ts TimeSeries,
col lvarchar,
op lvarchar,
value decimal,
begin_stamp datetime year to fraction(5) default null,
end_stamp datetime year to fraction(5) default null)
returns integer

Syntax of expr

�� "
(

�

logical_operator

expr_col < expr_value
NOT <=

=
==
>=
>

IS NULL
NOT

"
)

��

ts The time series to count.

expr An expression to filter elements by comparing element values to a number
or string. You can combine multiple expressions with the AND or the OR
operator and use parentheses to nest multiple expressions. Use the
following arguments within an expression:

expr_col
The name of the column within a TimeSeries data type. If the
column is of type BSON, the expr_col must be the name of a field
in one or more BSON documents in the BSON column. If the
BSON field name is the same as another column in the TimeSeries
data type, you must precede the field name with the column name
and a dot: bson_column_name.bson_field_name.

expr_value
The value that is used in the comparison. Can be either a number,
a string, or NULL.

logical_operator
The AND or the OR operator.

begin_stamp (optional)
The begin point of the range. Can be NULL. By default, begin_stamp is the
beginning of the time series.

end_stamp (optional)
The end point of the range. Can be NULL. By default, end_stamp is the end
of the time series.

col The name of the column within a TimeSeries data type. Can be prefixed
with the words IS NULL OR. Must be surrounded by quotation marks. If
the column is of type BSON, the col must be the name of a field in one or
more BSON documents in the BSON column. If the BSON field name is
the same as another column in the TimeSeries data type, you must
precede the field name with the column name and a dot:
bson_column_name.bson_field_name.

Chapter 7. Time series SQL routines 7-39

op An operator. Can be <, <=, =, !=, >=, or >. Must be surrounded by
quotation marks.

value The value that is used in the comparison. Can be either a number, a string,
or NULL. Sting values must be surrounded by quotation marks.

Usage

Use the CountIf function to determine how many elements fit criteria that are
based on the values of the columns within the TimeSeries subtype. For example,
you can apply criteria on multiple columns or determine whether a column has
any null values. You can select a time range or query the entire time series.

Returns

An integer that represents the number of elements that fit the criteria.

Examples

The examples are based on the following time series:
INSERT INTO CalendarTable(c_name, c_calendar)

VALUES (’sm_15min’,
’startdate(2011-07-11 00:00:00.00000),
pattstart(2011-07-11 00:00:00.00000),
pattern({1 on,14 off}, minute)’);

1 row(s) inserted.

EXECUTE PROCEDURE TSContainerCreate(’sm0’, ’tsspace0’, ’sm_row’, 0, 0);
Routine executed.

CREATE ROW TYPE sm_row
(

t datetime year to fraction(5),
energy smallint,
ind smallint

);
Row type created.

CREATE TABLE sm (
meter_id varchar(255) primary key,
readings TimeSeries(sm_row)

) IN tsspace;
Table created.

INSERT INTO sm VALUES (’met0’, ’origin(2011-07-11 00:00:00.00000),
calendar(sm_15min),container(sm0),threshold(0),
regular,[(1,0),(2,1),(3,0),(4,2),(5,3),(6,9),
(7,3),(8,0),(9,0),(-123,0),(NULL,0),(NULL,0),
(400,3)]’);

1 row(s) inserted.

Example: Count elements when a column is null

The following statement counts the number of elements where the energy column
has a null value:
SELECT CountIf(readings,’energy IS NULL’)

FROM sm;

(expression)

7-40 IBM Informix TimeSeries Data User's Guide

2

1 row(s) retrieved.

Two elements contain null values for the energy column.

Example: Count elements that match a value in one of two
columns

The following statement counts the number of elements where either the value of
the energy column is equal to 1 or the value of the ind column is equal to 0:
SELECT CountIf(readings,’energy = 1 or ind = 0’)

FROM sm;

(expression)

5

1 row(s) retrieved.

Five elements meet the criteria.

Example: Count elements in a specific time range

The following statement counts the number of elements where the value of the
energy column is greater than or equal to 5, from 2011-07-11 01:00:00.00000 until
the end of the time series:
SELECT CountIf(readings,’energy >= 5’,’2011-07-11 01:00:00.00000’::datetime

year to fraction(5))
FROM sm;

(expression)

6

1 row(s) retrieved.

Six elements meet the criteria.

Example: Count elements greater than a value

The following statement counts the number of elements where the value of the
energy column is greater than -128:
SELECT CountIf(readings,’energy > -128’)

FROM sm;

(expression)

11

1 row(s) retrieved.

The following statement is equivalent to the previous statement, except that the
format uses separate arguments for the column name, the operator, and the
comparison value instead of a single expression argument:
SELECT CountIf(readings,’energy’, ’>’, -128)

FROM sm;

(expression)

Chapter 7. Time series SQL routines 7-41

11

1 row(s) retrieved.

Example: Count elements in a BSON column

This example is based on the following row type and time series definition. The
TimeSeries row type contains an INTEGER column that is named v1 and the
BSON column contains a field that is also named v1.
CREATE ROW TYPE rb(timestamp datetime year to fraction(5), data bson, v1 int);

INSERT INTO tj VALUES(1,’origin(2011-01-01 00:00:00.00000), calendar(ts_15min),
container(kontainer),threshold(0), regular,[({"v1":99},20)]’);

If a column and a BSON field have the same name, the column takes precedence.
The following statement counts the number of elements that have a value less than
50 for the v1 INTEGER column:
SELECT CountIf(tsdata,’v1 < 50’)

FROM tj;

(expression)

1

1 row(s) retrieved.

The following statement counts the number of elements that have a value less than
100 for the v1 field in the BSON data column:
SELECT CountIf(tsdata,’data.v1 < 100’)

FROM tj;

(expression)

1

1 row(s) retrieved.

Related reference:
“Time series routines that run in parallel” on page 7-7

DelClip function
The DelClip function deletes all elements in the specified time range, including the
delimiting timepoints, for the specified time series instance. The DelClip function
differs from the DelTrim function in its handling of deletions from the end of a
regular time series. DelTrim shortens the time series and reclaims space, whereas
DelClip replaces elements with null values.

Syntax
DelClip(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5)
flags integer default 0

)
returns TimeSeries;

ts The time series to act on.

begin_stamp
The begin point of the range.

7-42 IBM Informix TimeSeries Data User's Guide

end_stamp
The end point of the range.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default value is 0.

Description

You can use DelClip to delete hidden elements from a time series instance.

If the begin or end point of the range falls before the origin of the time series or
after the last element in the time series, an error is raised.

When DelClip operates on a regular time series instance, it replaces elements with
null elements; it never changes the number of elements in a regular time series.

Returns

A time series with all elements in the range between the specified timepoints
deleted.

Example

The following example removes all elements on the specified day for the specified
time series instance:
update activity_stocks
set activity_data = DelClip(activity_data,

’2011-01-05 00:00:00.00000’
::datetime year to fraction(5),

’2011-01-06 00:00:00.00000’
::datetime year to fraction(5))

where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Clip function” on page 7-31
“DelElem function”
“DelTrim function” on page 7-45
“HideElem function” on page 7-67
“InsSet function” on page 7-70
“PutSet function” on page 7-80
“UpdSet function” on page 7-160

DelElem function
The DelElem function deletes the element at the specified timepoint in the
specified time series instance.

Syntax
DelElem(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

tstamp The time stamp of the element to be deleted.

Chapter 7. Time series SQL routines 7-43

flags Valid values for the flags parameter are described in “The flags argument
values” on page 7-9. The default is 0.

Description

If there is no element at the specified timepoint, no elements are deleted and no
error is raised.

The API equivalent of DelElem is ts_del_elem().

Hidden time stamps cannot be deleted.

Returns

A time series with one element deleted.

Example

The following example deletes an element from a time series instance:
update activity_stocks
set activity_data = DelElem(activity_data,

’2011-01-05 12:58:09.23456’
::datetime year to fraction(5))

where stock_id = 600;

Related concepts:
“Delete time series data” on page 3-37
Related reference:
“Time series routines that run in parallel” on page 7-7
“DelClip function” on page 7-42
“DelTrim function” on page 7-45
“GetElem function” on page 7-52
“HideElem function” on page 7-67
“InsElem function” on page 7-69
“PutElem function” on page 7-77
“The ts_del_elem() function” on page 9-22
“UpdElem function” on page 7-159
“The ts_elem() function” on page 9-22

DelRange function
The DelRange function deletes all elements in the specified time range in the
specified time series instance, including the delimiting timepoints. The DelRange
function is similar to the DelTrim function except that the DelRange function
deletes elements and reclaims space from any part of a regular time series.

Syntax
DelRange(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

7-44 IBM Informix TimeSeries Data User's Guide

begin_stamp
The begin point of the range.

end_stamp
The end point of the range.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

Use the DelRange function to delete elements in a time series instance from a
specified time range and free any resulting empty pages. For example, you can
remove data from the beginning of a time series instance to archive the data.

If you use the DelRange function to delete hidden elements, or if the begin point
of the range falls before the origin of the time series, an error is raised.

Returns

A time series with all elements in the range between the specified timepoints
deleted.

Example

The following example removes all elements in a one-day range on the specified
day for the specified time series instance:
UPDATE ts_data
SET meter_data = DelRange(meter_data,

’2010-11-11 00:00:00.00000’
::datetime year to fraction(5),

’2010-11-11 00:00:00.00000’
::datetime year to fraction(5))

WHERE loc_esi_id = 4727354321000111;

Related concepts:
“Delete time series data” on page 3-37
Related reference:
“Time series routines that run in parallel” on page 7-7

DelTrim function
The DelTrim function deletes all elements in the specified time range in a time
series instance, including the delimiting timepoints. The DelTrim function is
similar to the DelClip function except that the DelTrim function deletes elements
and reclaims space from the end of a regular time series instance, whereas the
DelClip function replaces elements with null values. The DelTrim function is also
similar to the DelRange function except that the DelRange function deletes
elements and reclaims space from any part of a regular time series instance.

Syntax
DelTrim(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

Chapter 7. Time series SQL routines 7-45

begin_stamp
The begin point of the range.

end_stamp
The end point of the range.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

If you use the DelTrim function to delete elements from the end of a time series
instance, DelTrim trims off all null elements from the end of the time series and
thus reduces the number of elements in the time series.

If you use the DelTrim function to delete hidden elements, or if the begin point of
the range falls before the origin of the time series instance, an error is raised.

Returns

A time series with all elements in the range between the specified timepoints
deleted.

Example

The following example removes all elements in a one-day range on the specified
day for the specified time series instance:
update activity_stocks
set activity_data = DelTrim(activity_data,

’2011-01-05 00:00:00.00000’
::datetime year to fraction(5),

’2011-01-06 00:00:00.00000’
::datetime year to fraction(5))

where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“DelClip function” on page 7-42
“DelElem function” on page 7-43
“Clip function” on page 7-31
“HideElem function” on page 7-67
“InsSet function” on page 7-70
“PutSet function” on page 7-80
“UpdSet function” on page 7-160

Divide function
The Divide function divides one time series by another.

It is one of the binary arithmetic functions that work on time series. The others are
Atan2, Minus, Mod, Plus, Pow, and Times.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Binary arithmetic functions” on page 7-27

7-46 IBM Informix TimeSeries Data User's Guide

ElemIsHidden function
The ElemIsHidden function determines if an element is hidden.

Syntax
ElemIsHidden(ts TimeSeries,

offset integer)
returns Boolean;

ElemIsHidden(ts TimeSeries,
tstamp datetime year to fraction(5))

returns Boolean;

ts The time series to act on.

offset The offset of the element to examine.

tstamp The time stamp of the element to examine.

Description

Use either offset or time stamp to locate the element you want to examine.

Returns

Returns TRUE if the element is hidden and FALSE if it is not.
Related reference:
“Time series routines that run in parallel” on page 7-7
“ElemIsNull function”
“FindHidden function” on page 7-48

ElemIsNull function
The ElemIsNull function determines if an element contains no data.

Syntax
ElemIsNull(ts TimeSeries,

offset integer)
returns Boolean;

ElemIsNull(ts TimeSeries,
tstamp datetime year to fraction(5))

returns Boolean;

ts The time series to act on.

offset The offset of the element to examine.

tstamp The time stamp of the element to examine.

Description

Use either offset or time stamp to locate the element you want to examine.

Returns

Returns TRUE if the element has never been written to or was written to and the
data has since been deleted; returns FALSE if the element contains data or is
hidden.

Chapter 7. Time series SQL routines 7-47

Related reference:
“Time series routines that run in parallel” on page 7-7
“ElemIsHidden function” on page 7-47
“FindHidden function”

Exp function
The Exp function exponentiates the time series.

It is one of the unary arithmetic functions that work on time series. The others are
Abs, Acos, Asin, Atan, Cos, Logn, Negate, Positive, Round, Sin, Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

FindHidden function
The FindHidden function scans a time series and returns all elements that are
hidden.

Syntax
FindHidden(ts TimeSeries,

start datetime year to fraction(5) default NULL,
end datetime year to fraction(5) default NULL)

returns multiset;

ts The time series to act on.

start (optional)
The date from which to start the scan.

end (optional)
The date at which to end the scan.

Description

You can scan the whole time series or specify a start date and an end date for the
scan.

Returns

A multiset containing all the hidden elements in the date range you specify.
Related reference:
“ElemIsHidden function” on page 7-47
“ElemIsNull function” on page 7-47

GetCalendar function
The GetCalendar function returns the calendar associated with the given time
series.

Syntax
GetCalendar(ts TimeSeries)
returns Calendar;

ts The time series from which to obtain a calendar.

7-48 IBM Informix TimeSeries Data User's Guide

Returns

The calendar used by the time series.

Example

The following example returns the calendar used by the time series for IBM:
select GetCalendar(stock_data)
from daily_stocks
where stock_name = ’IBM’;

(expression) startdate(2011-01-01 00:00:00),pattstart(2011-
01-02 00:00:00),pattern({1 off,5 on,1 off},day)

Related reference:
“Time series routines that run in parallel” on page 7-7
“GetClosestElem function”
“GetInterval function” on page 7-55
“GetOrigin function” on page 7-64
“TSCreate function” on page 7-116
“GetCalendarName function”

GetCalendarName function
The GetCalendarName function returns the name of the calendar used by the
given time series.

Syntax
GetCalendarName(ts TimeSeries)
returns lvarchar;

ts The time series from which to obtain a calendar name.

Returns

The name of the calendar used by the time series.

Example

The following example returns the name of the calendar used by the time series for
IBM:
select GetCalendarName(stock_data)
from daily_stocks
where stock_name = ’IBM’;

(expression) daycal

Related reference:
“Time series routines that run in parallel” on page 7-7
“GetCalendar function” on page 7-48

GetClosestElem function
The GetClosestElem function returns the first element that is non-null and closest
to the given time stamp. Optionally, you can specify which column within the time
series element must be non-null to satisfy the search.

Chapter 7. Time series SQL routines 7-49

Syntax
GetClosestElem(ts TimeSeries,

tstamp datetime year to fraction(5),
cmp lvarchar,
column_list lvarchar default NULL,
flags integer default 0)

returns ROW

ts The time series to act on.

tstamp The time stamp to start searching from.

cmp A comparison operator used with tstamp to determine where to start the
search. Valid values for cmp are <, <=, =, ==, >=, and >.

column_list
To search for an element with one or more columns non-null, specify a list
of column names separated by a vertical bar (|). An error is raised if any
of the column names does not exist in the time series type

To search for a null element, set column_list to NULL.

flags Determines whether hidden elements should be returned. Valid for the
flags parameter values are defined in tseries.h. They are:
v TS_CLOSEST_NO_FLAGS (no special flags)
v TS_CLOSEST_RETNULLS_FLAGS (return hidden elements)

Description

The search algorithm ts_closest_elem is as follows:
v If cmp is any of : <=, =, ==, or >=, the search starts at tstamp.
v If cmp is <, the search starts at the first element before tstamp.
v If cmp is >, the search starts at the first element after tstamp.

The tstamp and cmp parameters are used to determine where to start the search.
The search continues in the direction indicated by cmp until an element is found
that qualifies. If no element qualifies, the return value is NULL.

Important: For irregular time series, values in an irregular element persist until the
next element. This means that any of the “equals” operations on an irregular time
series look for <= first. If cmp is >= and the <= operation fails, the operation then
looks forward for the next element; otherwise, NULL is returned.

Returns

An element meeting the described criteria that is non-null and closest to the given
time stamp.
Related reference:
“Time series routines that run in parallel” on page 7-7
“GetCalendar function” on page 7-48
“GetInterval function” on page 7-55
“GetOrigin function” on page 7-64

GetCompression function
The GetCompression function returns the compression string if the time series
data is compressed.

7-50 IBM Informix TimeSeries Data User's Guide

Syntax
GetCompression(ts TimeSeries)
returns string;

ts The name of the time series.

Description

Use the GetCompression function to determine the type of compression that is
used in a time series that contains compressed numeric data.

Returns

Returns a string that represents the compression type if the time series contains
compressed data; returns NULL if the time series does not contain compressed
data.

Example

The following statement indicates that the time series that is named compress_test
uses the compression type Quantization:
SELECT GetCompression(compress_test) FROM tstable;

(expression) n(),q(1,1,100),ls(0.10), lb(0.10),qls(2,0.15,100,100000),
qlb(2,0.25,100,100000)

1 row(s) retrieved.

Related concepts:
“Manage packed data” on page 3-37
Related reference:
“The ts_get_compressed() function” on page 9-29

GetContainerName function
The GetContainerName function returns the name of the container for the given
time series.

Syntax
GetContainerName(ts TimeSeries)
returns lvarchar;

ts The time series from which to obtain the container name.

Description

The API equivalent of this function is ts_get_containername().

Returns

The name of the container for the given time series.

An empty string is returned if the time series is not located in a container.

Example

The following example gets the name of the container holding the stock with ID
600:

Chapter 7. Time series SQL routines 7-51

select GetContainerName(activity_data)
from activity_stocks
where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“The ts_get_containername() function” on page 9-29

GetElem function
The GetElem function extracts the element for the given time stamp.

Syntax
GetElem(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns row;

ts The source time series.

tstamp The time stamp of the entry.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

If the time stamp is for a time that is not part of the calendar, or if it falls before
the origin of the given time series, NULL is returned. In some cases, GetLastValid,
GetNextValid, or GetPreviousValid might be more appropriate.

For a regular time series, the data extracted is associated with the time period
containing the time stamp. For example, if the time series is set to hourly, 8:00 a.m.
to 5:00 p.m., the time stamp 3:15 p.m. would return 3:00 p.m. and the data
associated with that time.

The API equivalent of this function is ts_elem().

Returns

A row type containing the time stamp and the data from the time series at that
time stamp. The type of the row is the same as the time series subtype.

Example

The following query retrieves the stock data of two stocks for a particular day:
select GetElem(stock_data,’2011-01-04 00:00:00.00000’)

from daily_stocks
where stock_name = ’IBM’ or stock_name = ’HWP’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Clip function” on page 7-31
“ClipCount function” on page 7-35
“DelElem function” on page 7-43
“GetLastElem function” on page 7-56
“GetLastValid function” on page 7-58
“GetNextValid function” on page 7-61

7-52 IBM Informix TimeSeries Data User's Guide

“GetNthElem function” on page 7-62
“GetPreviousValid function” on page 7-65
“InsElem function” on page 7-69
“PutElem function” on page 7-77
“Transpose function” on page 7-86
“The ts_elem() function” on page 9-22
“GetIndex function” on page 7-55
“GetStamp function” on page 7-66
“UpdElem function” on page 7-159
“The ts_first_elem() function” on page 9-25

GetFirstElem function
The GetFirstElem function returns the first element in a time series.

Syntax
GetFirstElem(ts TimeSeries,

flags integer default 0)
returns row;

ts The source time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

The API equivalent of this function is ts_first_elem().

Returns

A row type containing the first element of the time series, or NULL if there are no
elements. The type of the row is the same as the time series subtype.

Example

The following example gets the first element in the time series for the stock with
ID 600:
select GetFirstElem(activity_data)

from activity_stocks
where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“GetLastElem function” on page 7-56
“The ts_first_elem() function” on page 9-25

GetFirstElementStamp function
The GetFirstElementStamp function returns the timestamp of the first element in
the time series.

Chapter 7. Time series SQL routines 7-53

Syntax
GetFirstElementStamp(ts TimeSeries,

flag integer DEFAULT 0)
returns lvarchar;

ts The source time series.

flag 0 = Default. Return the timestamp of the first element, regardless of
whether the element is null.

1 = Return the timestamp of the first element that has data, which is stored
on the first page of the time series in a container.

Returns

The timestamp of the first element in the time series, as a DATETIME YEAR TO
FRACTION(5) value.
Related reference:
“Time series routines that run in parallel” on page 7-7

GetHertz function
The GetHertz function returns the frequency for packed hertz data.

Syntax
GetHertz(ts TimeSeries)
returns integer;

ts The name of the time series.

Description

Use the GetHertz function to determine how many records per second the time
series can store.

Returns

Returns an integer 1-255 if the time series contains packed hertz data; returns 0 if
the time series does not contain packed hertz data.

Example

The following statement indicates that the time series that is named hertz_test can
store 60 records per second:
EXECUTE FUNCTION GetHertz(hertz_test);

(expression)

60

Related concepts:
“Manage packed data” on page 3-37
Related reference:
“The ts_get_hertz() function” on page 9-30

7-54 IBM Informix TimeSeries Data User's Guide

GetIndex function
The GetIndex function returns the index (offset) of the time series entry associated
with the supplied time stamp.

Syntax
GetIndex(ts TimeSeries,

tstamp datetime year to fraction(5))
returns integer;

ts The source time series.

tstamp The time stamp of the entry.

Description

The data extracted is associated with the time period that the time stamp is in. For
example, if you have a time series set to hourly, 8:00 a.m. to 5:00 p.m., the time
stamp 3:15 p.m. would return the index associated with 3:00 p.m.

The API equivalent of this function is ts_index().

Returns

The integer offset of the entry for the given time stamp in the time series.

NULL is returned if the time stamp is not a valid day in the calendar, or if it falls
before the origin of the time series.

Example

The following example returns the offset for the supplied time stamp:
select stock_name, GetIndex(stock_data,

’2011-01-05 00:00:00.00000’)
from daily_stocks;

Related reference:
“Time series routines that run in parallel” on page 7-7
“ClipGetCount function” on page 7-37
“CalIndex function” on page 6-2
“CalRange function” on page 6-3
“GetElem function” on page 7-52
“GetNelems function” on page 7-60
“GetNthElem function” on page 7-62
“GetStamp function” on page 7-66
“The ts_index() function” on page 9-35

GetInterval function
The GetInterval function returns the interval used by a time series.

Syntax
GetInterval(ts TimeSeries)
returns lvarchar;

ts The source time series.

Chapter 7. Time series SQL routines 7-55

Description

The calendars used by time series values can record intervals of one second,
minute, hour, day, week, month, or year. The underlying interval of the calendar
describes how often a time series records data.

Returns

An LVARCHAR string that describes the time series interval.

Example

The following query finds all stocks that are not traded on a daily basis:
select stock_name
from daily_stocks
where GetInterval(stock_data) <> ’day’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“GetCalendar function” on page 7-48
“GetClosestElem function” on page 7-49
“CalendarPattern data type” on page 2-1
“GetOrigin function” on page 7-64
“TSCreate function” on page 7-116

GetLastElem function
The GetLastElem function returns the final entry stored in a time series.

Syntax
GetLastElem(ts TimeSeries,

flags integer default 0)
returns row;

ts The source time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

The API equivalent of this function is ts_last_elem().

Returns

A row-type value containing the time series data and time stamp of the last entry
in the time series. If the time series is empty, NULL is returned. The type of the row
is the same as the time series subtype.

Example

The following query returns the final entry in a time series:
select GetLastElem(stock_data)

from daily_stocks
where stock_name = ’IBM’;

The following query retrieves the final entries on a daily stocks table:

7-56 IBM Informix TimeSeries Data User's Guide

select GetLastElem(stock_data) from daily_stocks;

Related reference:
“Time series routines that run in parallel” on page 7-7
“GetElem function” on page 7-52
“GetFirstElem function” on page 7-53
“GetLastValid function” on page 7-58
“GetNthElem function” on page 7-62
“PutElem function” on page 7-77
“The ts_last_elem() function” on page 9-37
“GetPreviousValid function” on page 7-65

GetLastElementStamp function
The GetLastElementStamp function returns the timestamp of the last element in
the time series.

Syntax
GetLastElementStamp(ts TimeSeries,

flag integer DEFAULT 0)
returns lvarchar;

ts The source time series.

flag 0 = Default. Return the timestamp of the last element, regardless of
whether the element is null.

1 = Return the timestamp of the last element that has data, which is stored
on the last page of the time series in a container.

Returns

The timestamp of the last element in the time series, as a DATETIME YEAR TO
FRACTION(5) value.
Related reference:
“Time series routines that run in parallel” on page 7-7

GetLastNonNull function
The GetLastNonNull function returns the last non-null element on or before the
date you specify.

Syntax
GetLastNonNull(ts TimeSeries,

tstamp datetime year to fraction(5),
column_name lvarchar default null,
flags integer default 0

)
returns row;

ts The source time series.

tstamp The time stamp for the element you specify.

column_name (optional)
If you specify a column using the column_name argument, the
GetLastNonNull function returns the last non-null element on or before
the specified date that has a non-null value in the specified column.

Chapter 7. Time series SQL routines 7-57

If you do not specify the column_name argument, the GetLastNonNull
function returns the last non-null element on or before the date. It is
possible that all the columns except the time stamp could be NULL.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

There are no null elements in an irregular time series. Therefore, when you use the
GetLastNonNull function on an irregular time series, always specify a column
name. If you use the GetLastNonNull function on an irregular time series without
specifying a column name, its effect is equivalent to that of the GetLastValid
function.

Returns

A non-null element of the time series.
Related reference:
“Time series routines that run in parallel” on page 7-7

GetLastValid function
The GetLastValid function extracts the element for the given time stamp in a time
series.

Syntax
GetLastValid(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns row;

ts The source time series.

tstamp The time stamp for the element.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

For regular time series, this function returns the element at the calendar's latest
valid timepoint at or before the given time stamp. For irregular time series, it
returns the latest element at or preceding the given time stamp.

The equivalent API function is ts_last_valid().

Returns

A row type containing the nearest element at or before the given time stamp. The
type of the row is the same as the time series subtype.

If the time stamp is earlier than the origin of the time series, NULL is returned.

Example

The following query returns the last valid entry in a time series at or before a
given time stamp:

7-58 IBM Informix TimeSeries Data User's Guide

select GetLastValid(stock_data, ’2011-01-08 00:00:00.00000’)
from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Clip function” on page 7-31
“ClipCount function” on page 7-35
“GetElem function” on page 7-52
“GetLastElem function” on page 7-56
“GetNextValid function” on page 7-61
“GetNthElem function” on page 7-62
“GetPreviousValid function” on page 7-65
“PutElem function” on page 7-77
“The ts_last_valid() function” on page 9-38
“The ts_next_valid() function” on page 9-42

GetMetaData function
The GetMetaData function returns the user-defined metadata from the given time
series.

Syntax
create function GetMetaData(ts TimeSeries)
returns TimeSeriesMeta;

ts The time series to retrieve metadata from.

Returns

This function returns the user-defined metadata contained in the given time series.
If the time series does not contain user-defined metadata, then NULL is returned.
This return value must be cast to the source data type to be useful.
Related tasks:
“Creating a time series with metadata” on page 3-23
Related reference:
“GetMetaTypeName function”
“TSCreate function” on page 7-116
“TSCreateIrr function” on page 7-118
“UpdMetaData function” on page 7-159
“The ts_create_with_metadata() function” on page 9-18
“The ts_get_metadata() function” on page 9-31
“The ts_update_metadata() function” on page 9-54

GetMetaTypeName function
The GetMetaTypeName function returns the type name of the user-defined
metadata type stored in the given time series.

Syntax
create function GetMetaTypeName(ts TimeSeries)
returns lvarchar;

Chapter 7. Time series SQL routines 7-59

ts The time series to retrieve the metadata from.

Returns

The type name of the user-defined metadata type stored in the given time series.
Returns NULL if the given time series does not have user-defined metadata.
Related reference:
“GetMetaData function” on page 7-59
“TSCreate function” on page 7-116
“TSCreateIrr function” on page 7-118
“UpdMetaData function” on page 7-159
“The ts_create_with_metadata() function” on page 9-18
“The ts_get_metadata() function” on page 9-31
“The ts_update_metadata() function” on page 9-54

GetNelems function
The GetNelems function returns the number of elements stored in a time series.

Syntax
GetNelems(ts TimeSeries)
returns integer;

ts The source time series.

Description

For regular time series, GetNelems also counts null elements before the last
non-null element, so GetNelems might not return the same results as
ClipGetCount, which does not count null elements.

Returns

The number of elements in the time series.

Example

The following query returns all stocks containing fewer than 355 elements:
select stock_name from daily_stocks
where GetNelems(stock_data) < 355;

The following query returns the last five elements of each time series:
select Clip(stock_data, GetNelems(stock_data) - 4,

GetNelems(stock_data))
from daily_stocks where stock_name = ’IBM’;

This example only works if the time series has more than four elements.
Related reference:
“Time series routines that run in parallel” on page 7-7
“ClipGetCount function” on page 7-37
“GetIndex function” on page 7-55
“GetNthElem function” on page 7-62
“GetStamp function” on page 7-66

7-60 IBM Informix TimeSeries Data User's Guide

“The ts_nelems() function” on page 9-41

GetNextNonNull function
The GetNextNonNull function returns the next non-null element on or after the
date you specify.

Syntax
GetNextNonNull(ts TimeSeries,

tstamp datetime year to fraction(5),
column_name lvarchar default null
flags integer default 0

)
returns row;

ts The source time series.

tstamp The time stamp for the element.

column_name (optional)
If you specify a column using the column_name argument, the
GetNextNonNull function returns the next non-null element on or after
the specified date that has a non-null value in the specified column.

If you do not specify the column_name argument, the GetLastNonNull
function returns the next non-null element on or after the date specified by
tstamp. It is possible that all the columns except the time stamp could be
NULL.

flags Valid values for the flags parameter are described in “The flags argument
values” on page 7-9. The default is 0.

Description

There are no null elements in an irregular time series. Therefore, when you use the
GetNextNonNull function on an irregular time series, always specify a column
name. If you use the GetNextNonNull function on an irregular time series without
specifying a column name, the function's effect is equivalent to that of the
GetNextValid function.

Returns

A non-null element of the time series.
Related reference:
“Time series routines that run in parallel” on page 7-7

GetNextValid function
The GetNextValid function returns the nearest entry after a given time stamp.

Syntax
GetNextValid(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns row;

ts The source time series.

tstamp The time stamp of the entry.

Chapter 7. Time series SQL routines 7-61

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

For regular time series, GetNextValid returns the element at the calendar's earliest
valid timepoint following the given time stamp. For irregular time series, it returns
the earliest element following the given time stamp.

The equivalent API function is ts_next_valid().

Returns

A row type containing the nearest element after the given time stamp. The type of
the row is the same as the time series subtype.

NULL is returned if the time stamp is later than that of the last time stamp in the
time series.

Example

The following example gets the first element that follows time stamp 2011-01-03 in
a regular time series:
select GetNextValid(stock_data,’2011-01-03 00:00:00.00000’)

from daily_stocks
where stock_name = ’IBM’;

The following example gets the first element that follows time stamp 2011-01-03 in
an irregular time series:
select GetNextValid(activity_data,

’2011-01-03 00:00:00.00000’)
from activity_stocks
where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“GetElem function” on page 7-52
“GetLastValid function” on page 7-58
“GetNthElem function”
“GetPreviousValid function” on page 7-65
“The ts_next_valid() function” on page 9-42

GetNthElem function
The GetNthElem function extracts the entry at a particular offset or position in a
time series.

Syntax
GetNthElem(ts TimeSeries,

N integer,
flags integer default 0)

returns row;

ts The source time series.

N The offset or position of an entry in the time series. This value cannot be
less than 0.

7-62 IBM Informix TimeSeries Data User's Guide

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

For irregular time series, the GetNthElem function returns the Nth element that is
found. For regular time series, the Nth element is also the Nth interval from the
beginning of the time series.

The API equivalent of this function is ts_nth_elem().

Returns

A row value for the requested offset, including all the time series data at that
timepoint and the time stamp of the entry in the time series' calendar. The type of
the row is the same as the time series subtype.

If the offset is greater than the offset of the last element in the time series, NULL is
returned.

Example

The following query returns the last element in a time series:
select GetNthElem(stock_data,GetNelems(stock_data)-1)

from daily_stocks
where stock_name = ’IBM’;

The following query returns the element in a time series at a certain time stamp
(this could also be done with GetElem):
select GetNthElem(stock_data,GetIndex(stock_data,

’2011-01-04 00:00:00.00000’))
from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Clip function” on page 7-31
“ClipCount function” on page 7-35
“ClipGetCount function” on page 7-37
“GetElem function” on page 7-52
“GetIndex function” on page 7-55
“GetLastElem function” on page 7-56
“GetLastValid function” on page 7-58
“GetNelems function” on page 7-60
“GetNextValid function” on page 7-61
“GetPreviousValid function” on page 7-65
“PutElem function” on page 7-77
“Transpose function” on page 7-86
“The ts_nth_elem() function” on page 9-43
“GetStamp function” on page 7-66

Chapter 7. Time series SQL routines 7-63

GetOrigin function
The GetOrigin function returns the origin of the time series.

Syntax
GetOrigin(ts TimeSeries)
returns datetime year to fraction(5);

ts The source time series.

Description

Every time series value has a corresponding calendar and an origin within the
calendar. The calendar describes how often data values appear in the time series.
The origin of the time series is the first timepoint within the calendar for which the
time series can contain data; however, the time series does not necessarily have
data for that timepoint. The origin is set when the time series is created, and it can
be changed with SetOrigin.

Returns

The time series origin.

Example

The following example returns the time stamp of the origin of the time series for a
given stock:
select GetOrigin(stock_data)
from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“GetCalendar function” on page 7-48
“GetInterval function” on page 7-55
“GetClosestElem function” on page 7-49
“TSCreate function” on page 7-116
“SetOrigin function” on page 7-85
“The ts_get_origin() function” on page 9-31

GetPacked function
The GetPacked function returns whether the specified time series contains packed
data.

Syntax
GetPacked(ts TimeSeries)
returns integer;

ts The name of the time series.

Description

Use the GetPacked function to determine whether a time series stores either hertz
data or compressed numeric data in packed elements.

7-64 IBM Informix TimeSeries Data User's Guide

Returns

Returns 1 if the time series contains packed data; returns 0 if the time series does
not contain packed data.

Example

The following statement indicates that the time series that is named
historic_measure contains packed data:
EXECUTE FUNCTION GetPacked(historic_measure);

(expression)

1

Related concepts:
“Manage packed data” on page 3-37
Related reference:
“The ts_get_packed() function” on page 9-32

GetPreviousValid function
The GetPreviousValid function returns the last element before the given time
stamp.

Syntax
GetPreviousValid(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns row;

ts The source time series.

tstamp The time stamp of interest.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

The equivalent API function is ts_previous_valid().

Returns

A row containing the last element before the given time stamp. The type of the
row is the same as the time series subtype.

If the time stamp is less than or equal to the time series origin, NULL is returned.

Example

The following query gets the first element that precedes time stamp 2011-01-05 in a
regular time series:
select GetPreviousValid(stock_data,

’2011-01-05 00:00:00.00000’)
from daily_stocks
where stock_name = ’IBM’;

Chapter 7. Time series SQL routines 7-65

The following query gets the first element that precedes time stamp 2011-01-05 in
an irregular time series:
select GetPreviousValid(activity_data,

’2011-01-05 00:00:00.00000’)
from activity_stocks
where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“GetElem function” on page 7-52
“GetLastElem function” on page 7-56
“GetLastValid function” on page 7-58
“GetNextValid function” on page 7-61
“GetNthElem function” on page 7-62
“The ts_previous_valid() function” on page 9-45

GetStamp function
The GetStamp function returns the time stamp associated with the supplied offset
in a time series. Offsets can be positive or negative integers.

Syntax
GetStamp(ts TimeSeries,

offset integer)
returns datetime year to fraction(5);

ts The source time series.

offset The offset.

Description

The equivalent API function is ts_time().

Returns

The time stamp that begins the interval at the specified offset.

Example

The following query returns the time stamp of the beginning of a time series:
select GetStamp(stock_data,0)

from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“ClipGetCount function” on page 7-37
“GetIndex function” on page 7-55
“GetNelems function” on page 7-60
“CalIndex function” on page 6-2
“CalRange function” on page 6-3
“GetElem function” on page 7-52
“GetNthElem function” on page 7-62
“The ts_time() function” on page 9-51

7-66 IBM Informix TimeSeries Data User's Guide

GetThreshold function
The GetThreshold function returns the threshold associated with the specified time
series.

Syntax
GetThreshold(ts TimeSeries)
returns integer;

ts The source time series.

Description

The equivalent API function is ts_get_threshold().

Returns

The threshold of the supplied time series.

Example

The following query returns the threshold of the specified time series:
select GetThreshold(stock_data) from daily_stocks;

Related reference:
“Time series routines that run in parallel” on page 7-7
“The ts_get_threshold() function” on page 9-33

HideElem function
The HideElem function marks an element, or a set of elements, at a given time
stamp as invisible.

Syntax
HideElem(ts TimeSeries,

tstamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

HideElem(ts TimeSeries,
multiset_tstamps multiset(datetime year to fraction(5) not null),
flags integer default 0)

returns TimeSeries;

ts The source time series.

tstamp The time stamp to be made invisible.

multiset_tstamps
The multiset of time stamps to be made invisible.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

After an element is hidden, reading that element returns NULL and writing it results
in an error message. It is, however, possible to use ts_begin_scan() to read hidden
elements.

Chapter 7. Time series SQL routines 7-67

The API equivalent to this function is ts_hide_elem().

If the time stamp is not a valid timepoint in the time series, an error is raised.

Returns

The modified time series.

Example

The following example hides the element at 2011-01-03 in the time series for IBM:
select HideElem(stock_data, ’2011-01-03 00:00:00.00000’)

from daily_stocks
where stock_name = ’IBM’;

Related concepts:
“Calendar data type” on page 2-4
Related reference:
“Time series routines that run in parallel” on page 7-7
“CalendarPattern data type” on page 2-1
“DelClip function” on page 7-42
“DelElem function” on page 7-43
“DelTrim function” on page 7-45
“RevealElem function” on page 7-83
“The ts_begin_scan() function” on page 9-7
“The ts_hide_elem() function” on page 9-34
“The ts_reveal_elem() function” on page 9-50
“HideRange function”

HideRange function
The HideRange function marks as invisible a range of elements between a starting
time stamp and an ending time stamp.

Syntax
HideRange(ts TimeSeries,

start datetime year to fraction(5),
end datetime year to fraction(5),
flags integer default 0

)
returns TimeSeries;

ts The time series to act on.

start The starting time stamp.

end The ending time stamp.

flags Valid values for the flags parameter are described in “The flags argument
values” on page 7-9. The default is 0.

Description

After an element is hidden, reading that element returns NULL and writing it results
in an error message. It is, however, possible to use ts_begin_scan() to read hidden
elements, as described in “The ts_begin_scan() function” on page 9-7.

7-68 IBM Informix TimeSeries Data User's Guide

If the time stamp is not a valid timepoint in the time series, an error is raised.

Returns

The modified time series.
Related reference:
“Time series routines that run in parallel” on page 7-7
“HideElem function” on page 7-67
“RevealRange function” on page 7-83

InsElem function
The InsElem function inserts an element into a time series.

Syntax
InsElem(ts TimeSeries,

row_value row,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

row_value
The row type value to be added to the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

The element must be a row type of the correct type for the time series, beginning
with a valid time stamp. If there is already an element with that time stamp in the
time series, the insertion is void, and an error is raised. After the insertion is done,
the time series must be assigned to a row in a table, or the insertion is lost.

InsElem should be used only within UPDATE and INSERT statements. If it is used
within a SELECT statement or a qualification, unpredictable results can occur.

You cannot insert an element at a time stamp that is hidden.

The API equivalent of InsElem is ts_ins_elem().

Returns

The new time series with the element inserted.

Example

The following example inserts an element into a time series:
update activity_stocks
set activity_data =

InsElem(activity_data,
row(’2011-10-06 08:06:56.00000’, 6.50, 2000,

1, 007, 3, 1)::stock_trade)
where stock_id = 600;

Related reference:
“DelElem function” on page 7-43

Chapter 7. Time series SQL routines 7-69

“GetElem function” on page 7-52
“InsSet function”
“PutElem function” on page 7-77
“The ts_ins_elem() function” on page 9-36
“UpdElem function” on page 7-159

InsSet function
The InsSet function inserts every element of a specified set into a time series.

Syntax
InsSet(ts TimeSeries,

multiset_rows multiset,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

multiset_rows
The multiset of new row type values to store in the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

The supplied row type values must have a time stamp as their first attribute. This
time stamp is used to determine where in the time series the insertions are to be
performed. For example, to insert into a time series that stores a single
double-precision value, the row type values passed to InsSet would have to
contain a time stamp and a double-precision value.

If there is already an element at the specified timepoint, the entire insertion is void,
and an error is raised.

You cannot insert an element at a time stamp that has been hidden.

Returns

The time series with the multiset inserted.

Example

The following example inserts a set of stock_trade items into a time series:
update activity_stocks
set activity_data = (select InsSet(activity_data, set_data)

from activity_load_tab where stock_id = 600)
where stock_id = 600;

Related reference:
“DelClip function” on page 7-42
“DelTrim function” on page 7-45
“InsElem function” on page 7-69
“PutSet function” on page 7-80
“UpdSet function” on page 7-160

7-70 IBM Informix TimeSeries Data User's Guide

InstanceId function
The InstanceId function determines if the time series is stored in a container and,
if it is, returns the instance ID of that time series.

Syntax
InstanceId(ts TimeSeries)
returns bigint;

ts The source time series.

Description

The instance ID is used as an index in the container. It can also be used to lookup
information from the TSInstanceTable table.

Returns

The instance ID associated with the specified time series, unless the time series is
stored in a row rather than in a container, in which case the return value is -1.

Example

The following example gets the instance IDs for each stock in the activity_stocks
table:
select stock_id, InstanceId(activity_data) from activity_stocks;

Related concepts:
“TSInstanceTable table” on page 2-12

Intersect function
The Intersect function performs an intersection of the specified time series over the
entire length of each time series or over a clipped portion of each time series.

Syntax
Intersect(ts TimeSeries,

ts TimeSeries,...)
returns TimeSeries;

Intersect(set_ts set(TimeSeries))
returns TimeSeries;

Intersect(begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
ts TimeSeries,
ts TimeSeries,...)

returns TimeSeries;

Intersect(begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
set_ts set(TimeSeries))

returns TimeSeries;

ts The time series that form the intersection. Intersect can take from two to
eight time series arguments.

set_ts Indicates the intersection of a set of time series.

begin_stamp
The begin point of the clip.

Chapter 7. Time series SQL routines 7-71

end_stamp
The end point of the clip.

Description

The second and fourth forms of the function intersect a set of time series. The
resulting time series has one DATETIME YEAR TO FRACTION(5) column
followed by each column in each time series in order, not including the other time
stamps. When using the second or fourth form, it is important to ensure that the
order of the time series in the set is deterministic so that elements remain in the
correct order.

Since the resulting time series is a different type from the input time series, the
result of the intersection must be cast.

Intersect can be thought of as a join on the time stamp columns.

If any of the input time series is irregular, the resulting time series is irregular.

For the purposes of Intersect, the value at a specified timepoint is that of the most
recent valid element. For regular time series, this is the value corresponding to the
current interval, which can be NULL; it is not necessarily the most recent non-null
value. For irregular time series, this condition never occurs, because irregular time
series do not have null intervals.

For example, consider the intersection of two irregular time series, one containing
bid prices for a certain stock, and one containing asking prices. The intersection of
the two time series contains bid and ask values for each timepoint at which a price
was either bid or asked. Now consider a timepoint at which a bid was made but
no price was asked. The intersection at that timepoint contains the bid price
offered at that timepoint, along with the most recent asking price.

If an intersection involves one or more regular time series, the resulting time series
starts at the latest of the start points of the input time series and ends at the
earliest of the end points of the regular input time series. If all the input time
series are irregular, the resulting irregular time series starts at the latest of the start
points of the input time series and ends at the latest of the end points. If a union
involves one or more time series, the resulting time series starts at the first of the
start points of the input time series and ends at the latest of the end points of the
input time series. Other than this difference in start and end points, and of the
resulting calendar, there is no difference between union and intersection involving
time series.

In an intersection, the resulting time series has a calendar that is the combination
of the calendars of the input time series with the AND operator. The resulting
calendar is stored in the CalendarTable table. The name of the resulting calendar is
a string containing the names of the calendars of the input time series joined by an
ampersand (&). For example, if two time series are intersected, and mycal and
yourcal are the names of their corresponding calendars, the resulting calendar is
named mycal&yourcal.

To be certain of the order of the columns in the resultant time series when using
Intersect with the set_ts argument, use the ORDER BY clause.

Apply also combines multiple time series into a single time series. Therefore, using
Intersect within Apply is often unnecessary.

7-72 IBM Informix TimeSeries Data User's Guide

Returns

The time series that results from the intersection.

Example

The following example returns the intersection of two time series:
select Intersect(d1.stock_data,

d2.stock_data)::TimeSeries(stock_bar_union)
from daily_stocks d1, daily_stocks d2
where d1.stock_name=’IBM’ and d2.stock_name=’HWP’;

The following query intersects two time series and returns data only for time
stamps between 2011-01-03 and 2011-01-05:
select Intersect(’2011-01-03 00:00:00.00000’

::datetime year to fraction(5),
’2011-01-05 00:00:00.00000’
::datetime year to fraction(5),
d1.stock_data,
d2.stock_data

)::TimeSeries(stock_bar_union)
from daily_stocks d1, daily_stocks d2
where d1.stock_name = ’IBM’ and d2.stock_name = ’HWP’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Apply function” on page 7-18
“Union function” on page 7-157

IsRegular function
The IsRegular function tells whether a specified time series is regular.

Syntax
IsRegular(ts TimeSeries)
returns boolean;

ts The source time series.

Returns

TRUE if the time series is regular; otherwise FALSE.

Example

The following query gets stock IDs for all stocks in irregular time series:
select stock_id

from activity_stocks
where not IsRegular(activity_data);

Related reference:
“Time series routines that run in parallel” on page 7-7
“The ts_get_flags() function” on page 9-30

Lag function
The Lag function creates a new regular time series in which the data values lag the
source time series by a fixed offset.

Chapter 7. Time series SQL routines 7-73

Syntax
Lag(ts TimeSeries,

nelems integer)
returns TimeSeries;

ts The source time series.

nelems The number of elements to lag the series by. Positive values lag the result
behind the argument, and negative values lead the result ahead.

Description

Lag shifts only offsets, not the source time series. Therefore, a lag of -2 eliminates
the first two elements. For example, if there is a daily time series, Monday to
Friday, and a one-day lag (an argument of -1) is imposed, then there is no first
Monday, the first Tuesday is Monday, and the next Monday is Friday. It would be
more typical of a daily time series to lag a full week.

For example, this function allows the user to create a hypothetical time series, with
closing stock prices for each day moved two days ahead on the calendar.

Lag is valid only for regular time series.

Returns

A new time series with the same calendar and origin as the source time series but
that has its elements assigned to different offsets.

Example

The following query creates a new time series that lags the original time series by
three days:
select Lag(stock_data,3)
from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Time series routines that run in parallel” on page 7-7

Logn function
The Logn function returns the natural logarithm of a time series.

The Logn function is one of the unary arithmetic functions that work on time
series. The others are Abs, Acos, Asin, Atan, Cos, Exp, Negate, Positive, Round,
Sin, Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

Minus function
The Minus function subtracts one time series from another.

The Minus function is one of the binary arithmetic functions that work on time
series. The others are Atan2, Divide, Mod, Plus, Pow, and Times.
Related reference:

7-74 IBM Informix TimeSeries Data User's Guide

“Time series routines that run in parallel” on page 7-7
“Binary arithmetic functions” on page 7-27

Mod function
The Mod function computes the modulus or remainder of a division of one time
series by another.

The Mod function is one of the binary arithmetic functions that work on time
series. The others are Atan2, Divide, Minus, Plus, Pow, and Times.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Binary arithmetic functions” on page 7-27

Negate function
The Negate function negates a time series.

The Negate function is one of the unary arithmetic functions that work on time
series. The others are Abs, Acos, Asin, Atan, Cos, Exp, Logn, Positive, Round,
Sin, Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

NullCleanup function
The NullCleanup function frees any pages in a time series instance that contain
only null elements in a range or for the whole time series instance.

Syntax
NullCleanup(ts TimeSeries,

begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

NullCleanup(ts TimeSeries,
flags integer default 0)

returns TimeSeries;

NullCleanup(ts TimeSeries,
begin_stamp datetime year to fraction(5)
flags integer default 0)

returns TimeSeries;

NullCleanup(ts TimeSeries,
NULL,
end_stamp datetime year to fraction(5),
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

begin_stamp
The begin point of the range.

Chapter 7. Time series SQL routines 7-75

end_stamp
The end point of the range.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

Use the NullCleanup function to free empty pages from a time series instance in
one of the following time ranges:
v A specified begin point and a specified end point
v The whole time series instance
v A specified begin point and the end of the time series instance
v The beginning of the time series instance and a specified end point

If the begin point of the range falls before the origin of the time series instance, an
error is raised.

Returns

A time series with all the empty pages in the range freed.

Examples

Example 1: Free empty pages between specified begin and end points

The following example frees the empty pages in a one-day range on the specified
day in the time series instance for the location ID of 4727354321000111:
UPDATE ts_data
SET meter_data = NullCleanup(meter_data,

’2010-11-11 00:00:00.00000’
::datetime year to fraction(5),

’2010-11-11 00:00:00.00000’
::datetime year to fraction(5))

WHERE loc_esi_id = 4727354321000111;

Example 2: Free all empty pages in the time series instance

The following example frees all empty pages in the time series instance for the
location ID of 4727354321000111:
UPDATE ts_data
SET meter_data = NullCleanup(meter_data)
WHERE loc_esi_id = 4727354321000111;

Example 3: Free empty pages from the beginning of the time series instance to a
specified date

The following example frees empty pages from the beginning of the time series
instance to the specified end point in the time series instance for the location ID of
4727354321000111:
UPDATE ts_data
SET meter_data = NullCleanup(meter_data, NULL,

’2010-11-11 00:00:00.00000’
::datetime year to fraction(5))

WHERE loc_esi_id = 4727354321000111;

Related concepts:

7-76 IBM Informix TimeSeries Data User's Guide

“Delete time series data” on page 3-37
Related reference:
“Time series routines that run in parallel” on page 7-7

Plus function
The Plus function adds two time series together.

The Plus function is one of the binary arithmetic functions that work on time
series. The others are Atan2, Divide, Minus, Mod, Pow, and Times.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Binary arithmetic functions” on page 7-27

Positive function
The Positive function returns the argument. It is bound to the unary “+” operator.

The Positive function is one of the unary arithmetic functions that work on time
series. The others are Abs, Acos, Asin, Atan, Cos, Exp, Logn, Negate, Round, Sin,
Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

Pow function
The Pow function raises the first argument to the power of the second.

The Pow function is one of the binary arithmetic functions that work on time
series. The others are Atan, Divide, Minus, Mod, Plus, and Times.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Binary arithmetic functions” on page 7-27

PutElem function
The PutElem function adds an element to a time series at the timepoint indicated
in the supplied row type.

Syntax
PutElem(ts TimeSeries,

row_value row,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

row_value
The new row type value to store in the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Chapter 7. Time series SQL routines 7-77

Description

If the time stamp is NULL, the data is appended to the time series (for regular time
series) or an error is raised (for irregular time series).

For regular time series, if there is data at the given timepoint, it is updated with
the new data; otherwise, the new data is inserted.

For irregular time series, if there is no data at the given timepoint, the new data is
inserted. If there is data at the given timepoint, the following algorithm is used to
determine where to place the data:
1. Round the time stamp up to the next second.
2. Search backwards for the first element less than the new time stamp.
3. Insert the new data at this time stamp plus 10 microseconds.

The row type passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The API equivalent of PutElem is ts_put_elem().

Returns

A modified time series that includes the new values.

Example

The following example appends an element to a time series:
update daily_stocks
set stock_data = PutElem(stock_data,

row(NULL::datetime year to fraction(5),
2.3, 3.4, 5.6, 67)::stock_bar)
where stock_name = ’IBM’;

The following example updates a time series:
update activity_stocks
set activity_data = PutElem(activity_data,

row(’2011-08-25 09:06:00.00000’,
6.25, 1000, 1, 007, 2, 1)::stock_trade)

where stock_id = 600;

Related concepts:
“The TSVTMode parameter” on page 4-16
Related reference:
“DelElem function” on page 7-43
“GetElem function” on page 7-52
“GetLastElem function” on page 7-56
“GetLastValid function” on page 7-58
“GetNthElem function” on page 7-62
“InsElem function” on page 7-69
“PutElemNoDups function” on page 7-79
“PutSet function” on page 7-80
“TSCreate function” on page 7-116
“The ts_put_elem() function” on page 9-46

7-78 IBM Informix TimeSeries Data User's Guide

“PutNthElem function” on page 7-80
“UpdElem function” on page 7-159

PutElemNoDups function
The PutElemNoDups function inserts a single element into a time series. If there is
already an element at the specified timepoint, it is replaced by the new element.

Syntax
PutElemNoDups(ts TimeSeries,

row_value row,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

row_value
The new row type value to store in the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

If the time stamp is NULL, the data is appended to the time series (for regular time
series) or an error is raised (for irregular time series).

If there is data at the given timepoint, it is updated with the new data; otherwise,
the new data is inserted.

The row type passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The API equivalent of PutElemNoDups is ts_put_elem_no_dups().

Returns

A modified time series that includes the new values.

Example

The following example updates a time series:
update activity_stocks
set activity_data = PutElemNoDups(activity_data,

row(’2011-08-25 09:06:00.00000’, 6.25,
1000, 1, 007, 2, 1)::stock_trade)

where stock_id = 600;

Related concepts:
“The TSVTMode parameter” on page 4-16
Related reference:
“PutElem function” on page 7-77
“The ts_put_elem_no_dups() function” on page 9-47

Chapter 7. Time series SQL routines 7-79

PutNthElem function
The PutNthElem function puts the supplied row at the supplied offset in a regular
time series.

Syntax
PutNthElem(ts TimeSeries,

row_value row,
N integer,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

row_value
The new row type value to store in the time series.

N The offset. Must be greater than or equal to 0.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

This function is similar to PutElem, except PutNthElem takes an offset instead of a
time stamp.

If there is data at the given offset, it is updated with the new data; otherwise, the
new data is inserted.

The row type passed in must match the subtype of the time series.

Hidden elements cannot be updated.

Returns

A modified time series that includes the new values.

Example

The following example puts data in the first element of the IBM time series:
update daily_stocks
set stock_data =

PutNthElem(stock_data,
row(NULL::datetime year to fraction(5), 355, 309,
341, 999)::stock_bar, 0)

where stock_name = ’IBM’;

Related reference:
“PutElem function” on page 7-77

PutSet function
The PutSet function updates a time series with the supplied multiset of row type
values.

7-80 IBM Informix TimeSeries Data User's Guide

Syntax
PutSet(ts TimeSeries,

multiset_ts set,
flags integer default 0)

returns TimeSeries;

ts The time series to act on.

multiset_ts
The multiset of new row type values to store in the time series.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

For each element in the multiset of rows, if the time stamp is NULL, the data is
appended to the time series (for regular time series) or an error is raised (for
irregular time series).

For regular time series, if there is data at a specified timepoint, it is updated with
the new data; otherwise, the new data is inserted.

For irregular time series, if there is no data at a specified timepoint, the new data
is inserted. If there is data at the specified timepoint, the following algorithm is
used to determine where to place the data:
1. Round the time stamp up to the next second.
2. Search backward for the first element less than the new time stamp.
3. Insert the new data at this time stamp plus 10 microseconds.

The row type that is passed in must match the subtype of the time series.

Hidden elements cannot be updated.

Returns

A modified time series that includes the new values.

Example

The following example updates a time series with a multiset:
update activity_stocks
set activity_data = (select PutSet(activity_data, set_data)

from activity_load_tab where stock_id = 600)
where stock_id = 600;

Related reference:
“DelClip function” on page 7-42
“DelTrim function” on page 7-45
“InsSet function” on page 7-70
“PutElem function” on page 7-77
“TSCreate function” on page 7-116
“UpdSet function” on page 7-160
“PutTimeSeries function” on page 7-82

Chapter 7. Time series SQL routines 7-81

PutTimeSeries function
The PutTimeSeries function puts every element of the first time series into the
second time series.

Syntax
PutTimeSeries(ts1 TimeSeries,

ts2 TimeSeries,
flags integer default 0)

returns TimeSeries;

ts1 The time series to be inserted.

ts2 The time series into which the first time series is to be inserted.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

If both time series contain data at the same timepoint, the rule of PutElem is
followed (see “PutElem function” on page 7-77), unless the
TS_PUTELEM_NO_DUPS value of the flags parameter is set.

Both time series must have the same calendar. Also, the origin of the time series
that is specified by the first argument must be later than or equal to the origin of
the time series that is specified by the second argument.

This function can be used to convert a regular time series to an irregular one.

Important: Converting an irregular time series to regular often requires
aggregation information, which can be provided by the AggregateBy function.

Elements are added to the second time series by calling ts_put_elem() (if the
TS_PUTELEM_NO_DUPS value of the flags parameter is not set).

The API equivalent of this function is ts_put_ts().

Returns

A version of the second time series into which the first time series was inserted.

Example

The following example converts a regular time series to an irregular one. The
daily_stocks table holds regular time series data, and the activity_stocks table
holds irregular time series data. Additionally, the elements in the daily_stocks time
series are converted from stock_bar to stock_trade:
update activity_stocks

set activity_data = PutTimeSeries(activity_data, ’calendar(daycal),
irregular’::TimeSeries(stock_trade))

where stock_id = 600;

Related reference:
“AggregateBy function” on page 7-11
“PutSet function” on page 7-80
“The ts_put_ts() function” on page 9-49
“SetOrigin function” on page 7-85

7-82 IBM Informix TimeSeries Data User's Guide

RevealElem function
The RevealElem function makes an element at a specified time stamp available for
a scan. It reverses the effect of HideElem.

Syntax
RevealElem(ts TimeSeries,

tstamp datetime year to fraction(5))
returns TimeSeries;

RevealElem(ts TimeSeries,
set_stamps multiset(datetime year to fraction(5)))

returns TimeSeries;

ts The time series to act on.

tstamp The time stamp to be made visible to a scan.

set_stamps
The multiset of time stamps to be made visible to a scan.

Returns

The modified time series.

Example

The following example hides the element at 2011-01-03 in the IBM time series and
then reveals it:
select HideElem(stock_data, ’2011-01-03 00:00:00.00000’)

from daily_stocks
where stock_name = ’IBM’;

select RevealElem(stock_data, ’2011-01-03 00:00:00.00000’)
from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“HideElem function” on page 7-67
“The ts_reveal_elem() function” on page 9-50

RevealRange function
The RevealRange function makes hidden elements in a specified date range
visible. It reverses the effect of HideRange.

Syntax
RevealRange(ts TimeSeries,

start datetime year to fraction(5),
end datetime year to fraction(5),

)
returns TimeSeries;

ts The time series to act on.

start The time stamp at the start of the range.

end The time stamp at the end of the range.

Chapter 7. Time series SQL routines 7-83

Returns

The modified time series.
Related reference:
“Time series routines that run in parallel” on page 7-7
“HideRange function” on page 7-68

Round function
The Round function rounds a time series to the nearest whole number.

The Round function is one of the unary arithmetic functions that work on time
series. The others are Abs, Acos, Asin, Atan, Cos, Exp, Logn, Negate, Positive,
Sin, Sqrt, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

SetContainerName function
The SetContainerName function sets the container name for a time series, even if
the time series already has a container name.

Syntax
SetContainerName(ts TimeSeries,

container_name varchar(128,1))
returns TimeSeries;

ts The time series to act on.

container_name
The name of the container.

Description

If a time series is stored in a container, you can use the SetContainerName
function to copy the time series from one container to another. The time series is
copied to the container that you specify with the container_name parameter. The
original time series is unaffected.

Returns

A time series with a new container set.

Example

The following example creates the container tsirr and sets a time series to it:
execute procedure TSContainerCreate(’tsirr’, ’rootdbs’,

’stock_bar_union’, 0, 0);

select SetContainerName(Union(s1.stock_data,
s2.stock_data)::TimeSeries(stock_bar_union),
’tsirr’)

from daily_stocks s1, daily_stocks s2
where s1.stock_name = ’IBM’ and s2.stock_name = ’AA02’;

Related reference:

7-84 IBM Informix TimeSeries Data User's Guide

“TSContainerCreate procedure” on page 7-93

SetOrigin function
The SetOrigin function moves the origin of a time series back in time.

Syntax
SetOrigin(ts TimeSeries,

origin datetime year to fraction(5))
returns TimeSeries;

ts The time series to act on.

origin The new origin of the time series.

Description

If the supplied origin is not a valid timepoint in the given time series calendar, the
first valid timepoint following the supplied origin becomes the new origin. The
new origin must be earlier than the current origin. To move the origin forward, use
the Clip function.

Returns

The time series with the new origin.

Example

The following example sets the origin of the stock_data time series:
update daily_stocks

set stock_data = SetOrigin(stock_data,
’2011-01-02 00:00:00.00000’);

Related reference:
“Apply function” on page 7-18
“Clip function” on page 7-31
“GetOrigin function” on page 7-64
“PutTimeSeries function” on page 7-82

Sin function
The Sin function returns the sine of its argument.

The Sin function is one of the unary arithmetic functions that work on time series.
The others are Abs, Acos, Asin, Atan, Cos, Exp, Logn, Negate, Positive, Round,
and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

Sqrt function
The Sqrt function returns the square root of its argument.

Chapter 7. Time series SQL routines 7-85

The Sqrt function is one of the unary arithmetic functions that work on time series.
The others are Abs, Acos, Asin, Atan, Cos, Exp, Logn, Negate, Positive, Round,
Sin, and Tan.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

Tan function
The Tan function returns the tangent of its argument.

The Tan function is one of the unary arithmetic functions that work on time series.
The others are Abs, Acos, Asin, Atan, Cos, Exp, Logn, Negate, Positive, Round,
and Sin.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Unary arithmetic functions” on page 7-156

Times function
The Times function multiplies one time series by another.

The Times function is one of the binary arithmetic functions that work on time
series. The others are Atan2, Divide, Minus, Mod, Plus, and Pow.
Related reference:
“Time series routines that run in parallel” on page 7-7
“Binary arithmetic functions” on page 7-27

TimeSeriesRelease function
The TimeSeriesRelease function returns an LVARCHAR string containing
theTimeSeries extension version number and build date.

Syntax
TimeSeriesRelease()
returns lvarchar;

Returns

The version number and build date.

Example

The following example shows how to get the version number using DB-Access:
execute function TimeSeriesRelease();

Transpose function
The Transpose function converts time series data for processing in a tabular
format.

7-86 IBM Informix TimeSeries Data User's Guide

Syntax
Transpose (ts TimeSeries,

begin_stamp datetime year to fraction(5) default NULL,
end_stamp datetime year to fraction(5) default NULL,
flags integer default 0)

returns row;

Transpose (query lvarchar,
dummy row,
begin_stamp datetime year to fraction(5) default NULL,
end_stamp datetime year to fraction(5) default NULL,
col_name lvarchar default NULL,
flags integer default 0)

returns row with (iterator);

ts The time series to transpose.

begin_stamp
The begin point of the range. Can be NULL.

end_stamp
The end point of the range. Can be NULL.

flags Determines how a scan works on the returned set.

query A string that contains a SELECT statement that can return multiple
columns but only one time series column. The non-time-series columns are
concatenated with each time series element in the returned rows.

dummy
A row type that must be passed in as NULL and cast to the expected return
type of each row that is returned by the query string version of the
Transpose function.

col_name
If col_name is not NULL, only the column that is specified with this
parameter is used from the time series element, plus the non-time-series
columns.

Description

The Transpose function is an iterator function. You can run the Transpose function
with the EXECUTE FUNCTION statement or in a table expression.

Normally the transpose function skips NULL elements when returning the rows
found in a time series. If the TS_SCAN_NULLS_OK (0x40) bit of the flags
parameter is set, the Transpose function returns NULL elements.

If the beginning point is NULL, the scan starts at the first element of the time series,
unless the TS_SCAN_EXACT_START value of the flags parameter is set.

If the end point is NULL, the scan ends at the last element of the time series, unless
the TS_SCAN_EXACT_END value of the flags parameter is set.

The flags argument values

The flags argument determines how a scan works on the returned set. The value of
flags is the sum of the wanted flag values from the following table.

Chapter 7. Time series SQL routines 7-87

Table 7-3. The flags argument values

Flag Value Meaning

TS_SCAN_HIDDEN 512 Return hidden elements marked by HideElem
(see “HideElem function” on page 7-67).

TS_SCAN_EXACT_START 256 Return the element at the beginning
timepoint, adding null elements if necessary.

TS_SCAN_EXACT_END 128 Return elements up to the end point (return
NULL if necessary).

TS_SCAN_NULLS_OK 64 Return null time series elements (by default,
time series elements that are NULL are not
returned).

TS_SCAN_NO_NULLS 32 Instead of returning a null row, return a row
with the time stamp set and the other
columns set to NULL.

TS_SCAN_SKIP_END 16 Skip the element at the end timepoint of the
scan range.

TS_SCAN_SKIP_BEGIN 8 Skip the element at the beginning timepoint of
the scan range.

TS_SCAN_SKIP_HIDDEN 4 Used by ts_begin_scan() to tell ts_next() not
to return hidden elements.

Returns

Multiple rows that contain a time stamp and the other columns of the time series
elements.

Example 1: Convert time series data to a table

The following statement converts the data from stock_data for IBM to tabular
form:
execute function Transpose((select stock_data

from daily_stocks where stock_name = ’IBM’));

Example 2: Transpose clipped data

The following statement converts data for a clipped range into tabular form:
execute function Transpose((select stock_data from daily_stocks

where stock_name = ’IBM’),
datetime(2011-01-05) year to day,
NULL::datetime year to fraction(5));

The statement returns the following data in the form of a row data type:
ROW(’2011-01-06 00:00:00.00000’,99.00000
000000,54.00000000000,66.00000000000,888.0000000000)

Example 3: Convert time series and other data into tabular
format

The following example returns the time series columns together with the
non-time-series columns in tabular form:
execute function Transpose (’select * from daily_stocks’, NULL::row(stock_id
int, stock_name lvarchar,

t datetime year to fraction(5), high real, low real, final real, volume real));

7-88 IBM Informix TimeSeries Data User's Guide

Example 4: Display specific data as multiple fields within a
single column

The following statement selects the time and energy readings from a time series:
SELECT mr.t,mr.energy

FROM TABLE(transpose
((SELECT readings FROM smartmeters

WHERE meter_id = 13243))::smartmeter_row)
AS tab(mr);

The statements returns a table named tab that contains one column, named mr.
The mr column is an unnamed row type that has the same fields as the
TimeSeries subtype named smartmeter_row. The output has a field for time and a
field for energy:
t energy

2011-01-01 00:00:00.00000 29
2011-01-01 00:15:00.00000 18
2011-01-01 00:30:00.00000 13
2011-01-01 00:45:00.00000 26
2011-01-01 01:00:00.00000 21
2011-01-01 01:15:00.00000 15
2011-01-01 01:30:00.00000 20
2011-01-01 01:45:00.00000 24
2011-01-01 02:00:00.00000 30
2011-01-01 02:15:00.00000 30
2011-01-01 02:30:00.00000 29
2011-01-01 02:45:00.00000 32
2011-01-01 03:00:00.00000 29

Example 5: Display specific data in a table with multiple columns

The following statement uses the statement from the previous example inside a
table expression in the FROM clause:
SELECT * FROM (

SELECT mr.t,mr.energy,mr.temperature
FROM TABLE(transpose

((SELECT readings FROM smartmeters
WHERE meter_id = 13243))::smartmeter_row)

AS tab(mr)
) AS sm(t,energy,temp)

WHERE temp < -10;

The statement returns the following data in the form of a table named sm that
contains three columns:
t energy temp

2011-01-01 00:00:00.00000 29 -13.0000000000
2011-01-01 00:30:00.00000 13 -18.0000000000
2011-01-01 01:00:00.00000 21 -13.0000000000
2011-01-01 01:15:00.00000 15 -11.0000000000
2011-01-01 03:15:00.00000 22 -19.0000000000
2011-01-01 03:45:00.00000 28 -14.0000000000
2011-01-01 04:00:00.00000 19 -14.0000000000
2011-01-01 04:30:00.00000 27 -14.0000000000
2011-01-01 04:45:00.00000 27 -15.0000000000
2011-01-01 05:00:00.00000 28 -11.0000000000

Related reference:
“GetElem function” on page 7-52
“GetNthElem function” on page 7-62

Chapter 7. Time series SQL routines 7-89

“TSColNameToList function” on page 7-91
“TSColNumToList function” on page 7-92
“TSRowNameToList function” on page 7-145
“TSRowNumToList function” on page 7-146
“TSRowToList function” on page 7-147
“TSSetToList function” on page 7-153

TSAddPrevious function
The TSAddPrevious function sums all the values it is called with and returns the
current sum every time it is called. The current argument is not included in the
sum.

Syntax
TSAddPrevious(current_value smallfloat)
returns smallfloat;

TSAddPrevious(current_value double precision)
returns double precision;

current_value
The current value.

Description

Use the TSAddPrevious function within an AggregateBy or Apply function. The
TSAddPrevious function can take parameters that are columns of a time series.
Use the same parameter format as the AggregateBy or Apply function accepts.

Returns

The sum of all previous values returned by this function.

Example

The following example uses the TSAddPrevious function to calculate the
summation of the average dollars into or out of a market or equity:
select Apply(’TSAddPrevious($vol * (($final - $low) - ($high - $final) / (.0001
+ $high - $low)) * (($high + $low + $final) / 3))’,

’2011-01-03 00:00:00.00000’::datetime year to fraction(5),
’2011-01-08 00:00:00.00000’::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Apply function” on page 7-18
“TSCmp function”
“TSDecay function” on page 7-122
“TSPrevious function” on page 7-141
“TSRunningAvg function” on page 7-147
“TSRunningSum function” on page 7-151

TSCmp function
The TSCmp function compares two values.

7-90 IBM Informix TimeSeries Data User's Guide

Syntax
TSCmp(value1 smallfloat,

value2 smallfloat)
returns int;

TSCmp(value1 double precision,
value2 double precision)

returns int;

value1 The first value to be compared.

value2 The second value to be compared.

Description

Use the TSCmp function within the Apply function.

The TSCmp function takes either two SMALLFLOAT values or two DOUBLE
PRECISION values; both values must be the same type. The TSCmp function can
take parameters that are columns of a time series. Use the same parameter format
that the Apply function accepts.

Returns

-1 If the first argument is less than the second.

0 If the first argument is equal to the second.

1 If the first argument is greater than the second.

Example

The following example uses the TSCmp function to calculate the on-balance
volume, a continuous summation that adds the daily volume to the running total if
the stock or index advances and subtracts the volume if it declines:
select Apply

(’TSAddPrevious(TSCmp($final, TSPrevious($final)) * $vol)’,
’2011-01-03 00:00:00.00000’::datetime year to fraction(5),
’2011-01-08 00:00:00.00000’::datetime year to fraction(5),
stock_data)::TimeSeries(one_real)

from daily_stocks
where stock_name = ’IBM’;

Related reference:
“Apply function” on page 7-18
“TSAddPrevious function” on page 7-90
“TSDecay function” on page 7-122
“TSPrevious function” on page 7-141
“TSRunningAvg function” on page 7-147
“TSRunningSum function” on page 7-151

TSColNameToList function
The TSColNameToList function takes a TimeSeries column and returns a list
(collection of rows) containing the values of one of the columns in the elements of
the time series. Null elements are not added to the list.

Chapter 7. Time series SQL routines 7-91

Syntax
TSColNameToList(ts TimeSeries,

colname lvarchar)
returns list

ts The time series to act on.

colname
The column to return.

Description

Because this aggregate function can return rows of any type, the return value must
be explicitly cast at runtime.

Returns

A list (collection of rows).

Example

This query returns a list of all values in the column high:
select * from table((select

TSColNameToList(stock_data, ’high’)::list(real
not null) from daily_stocks));

Related reference:
“Transpose function” on page 7-86
“TSColNumToList function”
“TSRowNameToList function” on page 7-145
“TSRowNumToList function” on page 7-146
“TSSetToList function” on page 7-153
“TSRowToList function” on page 7-147

TSColNumToList function
The TSColNumToList function takes a TimeSeries column and returns a list
(collection of rows) containing the values of one of the columns in the elements of
the time series. Null elements are not added to the list.

Syntax
TSColNumToList(ts TimeSeries,

colnum integer)
returns list

ts The time series to act on.

colnum The column to return.

Description

The column is specified by its number; column numbering starts at 1, with the first
column following the time stamp column.

Because this aggregate function can return rows of any type, the return value must
be explicitly cast at runtime.

7-92 IBM Informix TimeSeries Data User's Guide

Returns

A list (collection of rows).

Example

This query returns a list of all values in the column high:
select * from table((select

TSColNumToList(stock_data, 1)::list(real
not null) from daily_stocks));

Related reference:
“TSColNameToList function” on page 7-91
“Transpose function” on page 7-86
“TSRowNameToList function” on page 7-145
“TSRowNumToList function” on page 7-146
“TSSetToList function” on page 7-153
“TSRowToList function” on page 7-147

TSContainerCreate procedure
The TSContainerCreate procedure creates a container to store the time series data
for the specified TimeSeries subtype. You can create a container in one dbspace, a
container that spans multiple partitions, or a rolling window container, which
controls the amount of data that is stored.

Only users with update privileges on the TSContainerTable table and the
TSContainerWindowTable can run this procedure.

Rolling window containers are a special type of container that requires additional
arguments. See “Syntax for rolling window containers” on page 7-94. Use the
rolling window container syntax to create a container that spans multiple
partitions.

Syntax
TSContainerCreate(container_name varchar(128,1),

dbspace_name varchar(128,1),
ts_type varchar(128,1),
container_size integer,
container_grow integer);

container_name
The name of the new container. The container name must be unique.

dbspace_name
The name of the dbspace that holds the container.

ts_type The name of the TimeSeries subtype that is stored in the container. This
argument must be the name of an existing row type that begins with a
time stamp.

container_size
The first extent size of the container, in KB.

The value must be equivalent to at least 4 pages. If you specify 0 or a
negative number, 16 KB is used. The maximum size of a container depends
on the page size:
v For 2-KB pages, the maximum size is 32 GB.

Chapter 7. Time series SQL routines 7-93

v For 4-KB pages, the maximum size is 64 GB.
v For 8-KB pages, the maximum size is 128 GB.
v For 16-KB pages, the maximum size is 256 GB.

container_grow
The increments by which the container grows, in KB. The value must be
equivalent to at least 4 pages. If you specify 0 or a negative number, 16 KB
is used.

Usage

By default, containers are created automatically as needed when you insert data
into a time series. However, you can create additional containers by using the
TSContainerCreate procedure.

You can create multiple containers in the same dbspace.

When you create a container, a row is inserted in the TSContainerTable table.

Example

The following example creates a container that is called new_cont in the space
rootdbs for the time series type stock_bar:
execute procedure TSContainerCreate(’new_cont’, ’rootdbs’,’stock_bar’, 0, 0);

Syntax for rolling window containers
TSContainerCreate(container_name varchar(128,1),

dbspace_name varchar(128,1),
ts_type varchar(128,1),
container_size integer,
container_grow integer,
window_origin datetime year to fraction(5));

TSContainerCreate(container_name varchar(128,1),
dbspace_name varchar(128,1),
ts_type varchar(128,1),
container_size integer,
container_grow integer,
window_origin datetime year to fraction(5),
window_interval lvarchar default ’month’,
active_windowsize integer default 0,
dormant_windowsize integer default 0,
window_spaces lvarchar(4096) default null,
window_control integer default 0,
rwi_firstextsize integer default 16,
rwi_nextextsize integer default 16
destroy_count integer default 0);

container_name
The name of the new container. The container name must be unique.

dbspace_name
The name of the dbspace that contains the container partition. If you do
not specify additional dbspaces with the window_spaces argument, this
dbspace also contains the partitions for time series elements.

ts_type The name of the TimeSeries subtype that is stored by the container. This
argument must be the name of an existing row type that begins with a
time stamp.

7-94 IBM Informix TimeSeries Data User's Guide

container_size
The first extent size for partitions, in KB.

The value must be equivalent to at least 4 pages. If you specify 0 or a
negative number, 16 KB is used. The maximum size of a partition depends
on the page size:
v For 2 KB pages, the maximum size is 32 GB.
v For 4 KB pages, the maximum size is 64 GB.
v For 8 KB pages, the maximum size is 128 GB.
v For 16 KB pages, the maximum size is 256 GB.

container_grow
The next extent size for partitions, in KB. The value must be equivalent to
at least 4 pages. If you specify 0 or a negative number, 16 KB is used.

window_origin
The first timestamp that is allowed for the rolling window container. The
rolling window container rejects time series values if the origin of the time
series is before the origin of the container.

window_interval
The range of time for which data is stored in each partition. By default, the
window interval is one month, which means that each window partition
contains data from one calendar month. Possible values are:
v day = The partitions contain data from one day. The container uses the

ts_1day calendar.
v week = The partitions contain data from one week. The container uses

the ts_1week calendar.
v month = Default. The partitions contain data from one calendar month.

The container uses the ts_1month calendar.
v year = The partitions container data from one calendar year. The

container uses the ts_1year calendar.

active_windowsize (Optional)
The maximum number of partitions in the active window:
v 0 = Default. No size limit.
v Positive integer = The maximum number of partitions in the active

window.

dormant_windowsize (Optional)
The maximum number of partitions in the dormant window:
v 0 = Default. No size limit.
v Positive integer = The maximum number of partitions in the dormant

window. Start with a value that is equal to or greater than the size of the
active window.

window_spaces (Optional)
The dbspaces in which partitions are stored:
v NULL = Default. Partitions are created in the dbspace that is specified

by the dbspace_name argument.
v A comma-separated list of dbspace names = Partitions are created in the

listed dbspaces in round-robin order. The list cannot include temporary
dbspaces or sbspaces.

window_control (Optional)
A flag that indicates how many partitions are destroyed and whether

Chapter 7. Time series SQL routines 7-95

active partitions can be destroyed when the number of partitions that must
be detached is greater than the dormant windows size:
v 0 = Default. As many as necessary dormant partitions are destroyed. If

the operation requires more new active partitions than the value of the
active_windowsize parameter, the operation fails.

v 1 = As many as necessary existing dormant partitions and older active
partitions are destroyed. Use this setting with caution. Destroyed data
cannot be recovered.

v 2 = Dormant partitions are destroyed, but limited to the number
specified by the destroy_count parameter. If the number of partitions that
must be destroyed for an operation exceeds the value of the
destroy_count parameter, the operation fails.

v 3 (2 + 1) = Existing dormant partitions and older active partitions are
destroyed, but limited to the number specified by the destroy_count
parameter. If the number of partitions that must be destroyed for an
operation exceeds the value of the destroy_count parameter, the operation
fails.

When you destroy a partition, the data that is stored in the partition is
deleted.

rwi_firstextsize (Optional)
The first extent size, in KB, for the container partition. The default size is
16 KB.

rwi_nextextsize (Optional)
The next extent size, in KB, for the container partition. The default size is
16 KB.

destroy_count (Optional)
How many partitions can be destroyed in an operation. Valid if the value
of the window_control parameter is 2 or 3.

0 = Default. No dormant partitions are destroyed.

A positive integer = The maximum number of partitions that can be
destroyed in an operation. If the number of partitions that must be
destroyed for an operation exceeds the value of the destroy_count
parameter, the operation fails.

Usage for rolling window containers

The rolling window container stores information about the properties of the
windows and information about the partitions. The partitions store the time series
data for specific date ranges. The TSContainerCreate procedure creates the rolling
window container when the procedure completes. Partitions are created as needed
when you insert time series elements.

To create a rolling window container that stores data in multiple dbspaces and
automatically deletes old data, set the following arguments to non-default values:
v active_windowsize: Set to a positive value to limit to the size of the active

window.
v dormant_windowsize: Set to a positive value to limit to the size of the dormant

window.
v window_spaces: Set to a list of dbspaces.

7-96 IBM Informix TimeSeries Data User's Guide

If you use the default size of 0 for the active window, you create a container that
grows until you manually detach partitions into the dormant window and
manually destroy partitions from the dormant window.

The container partitions and the partitions in the active and dormant windows can
require significantly different amounts of storage space. Plan the storage for rolling
window containers carefully.

When you create a rolling window container, a row is inserted in the
TSContainerTable and the TSContainerWindowTable table. As partitions are
added for time series data, rows are added to the
TSContainerUsageActiveWindowVTI and the
TSContainerUsageDormantWindowVTI tables.

Example 1: Create a rolling window container

The following example creates a rolling window container:
execute procedure TSContainerCreate(’readings_container’,

’containerdbs’, ’rt_raw_intvl’, 25600, 12800,
’2011-01-01 00:00:00.00000’::datetime year to fraction(5),
’month’, 4, 10, ’dbs0, dbs1, dbs2, dbs3, dbs4’, 1, 16, 8);

The example configures a rolling window container that has the following
properties:
v The container name is readings_container.
v The dbspace for the container partition is named containerdbs.
v The name of the time series is rt_raw_intvl.
v The first extent size of the partitions is 25600 KB.
v The next extent size of the partitions is 12800 KB.
v The active window contains up to 4 partitions.
v The dormant window contains up to 10 partitions.
v The origin of the container is 2011-01-01 00:00:00.00000.
v Partitions each hold a month of data.
v The dbspaces for partitions are named dbs0, dbs1, dbs2, dbs3, and dbs4.
v Partitions that no longer fit into the dormant window are automatically

destroyed.
v The first extent size of the dbspace containerdbs is 16 KB.
v The next extent size of the dbspace containerdbs is 8 KB.

Example 2: Create a container with multiple dbspaces

The following example creates a container that stores data in multiple dbspaces but
does not use a purging policy:
execute procedure TSContainerCreate(’readings_container’,

’containerdbs’, ’rt_raw_intvl’, 25600, 12800,
’2011-01-01 00:00:00.00000’::datetime year to fraction(5),
’month’, 0, 0, ’dbs0, dbs1, dbs2, dbs3, dbs4’, 0, 16, 8);

The example configures a container that has the following properties:
v The container name is readings_container.
v The dbspace for the container partition is named containerdbs.
v The name of the time series is rt_raw_intvl.

Chapter 7. Time series SQL routines 7-97

v The first extent size of the partitions is 25600 KB.
v The next extent size of the partitions is 12800 KB.
v The active window size is unlimited.
v The dormant window size is unlimited.
v The origin of the container is 2011-01-01 00:00:00.00000.
v Partitions each hold a month of data.
v The dbspaces for partitions are named dbs0, dbs1, dbs2, dbs3, and dbs4.
v Partitions are not automatically destroyed.
v The first extent size of the dbspace containerdbs is 16 KB.
v The next extent size of the dbspace containerdbs is 8 KB.

The container stores each month of data in a partition in one of the five dbspaces
for partitions. Because the active window size is unlimited, all partitions are active
until they are manually detached and then destroyed.
Related concepts:
“TSInstanceTable table” on page 2-12
“TSContainerTable table” on page 2-9
Related tasks:
“Creating containers” on page 3-15
“Configuring additional container pools” on page 3-20
Related reference:
“Rules for rolling window containers” on page 3-16
“SetContainerName function” on page 7-84
“TSContainerDestroy procedure”
“Planning for data storage” on page 1-20

TSContainerDestroy procedure
The TSContainerDestroy procedure deletes the container row from the
TSContainerTable table and removes the container and its corresponding system
catalog rows.

Syntax
TSContainerDestroy(container_name varchar(128,1));

container_name
The name of the container to destroy.

Description

You can destroy a container only if no time series exist in that container; even an
empty time series prevents a container from being destroyed.

Only users with update privileges on the TSContainerTable table can run this
procedure.

Example

The following example destroys the container ctnr_stock:
execute procedure TSContainerDestroy(’ctnr_stock’);

Related concepts:

7-98 IBM Informix TimeSeries Data User's Guide

“TSInstanceTable table” on page 2-12
“TSContainerTable table” on page 2-9
Related tasks:
“Creating containers” on page 3-15
Related reference:
“TSContainerCreate procedure” on page 7-93

TSContainerLock procedure
The TSContainerLock procedure controls whether multiple sessions can write to a
container at one time.

Syntax
TSContainerLock(

container_name varchar(128),
flag integer);

container_name
The name of the container. Must be an existing container name.

flag Controls whether multiple sessions can write to the container:

0 = Multiple sessions can write to the container at the same time. Multiple
locks are available for the container.

1 = Only one session at a time can write to the container. One lock is
available for the container.

Usage

By default, multiple sessions can write to a container at the same time. You can
prevent more than one session from writing to a container by setting the flags
argument to 1. Data is loaded faster when a single session writes to a container
and the flags argument is set to 1. If your application enforces that one session
writes to a container at a time, set the flags argument to 1 to improve performance.

Example

The following statement restricts the number of sessions that can write to the
container named ctn_sm0 to 1:
EXECUTE PROCEDURE TSContainerLock(’ctn_sm0’,1);

Related tasks:
“Creating containers” on page 3-15

TSContainerManage function
The TSContainerManage function changes the properties of containers.

Only users with update privileges on the TSContainerTable table and the
TSContainerWindowTable table can run this function.

Syntax
TSContainerManage(container_name lvarchar,

command lvarchar);

Chapter 7. Time series SQL routines 7-99

Syntax of command

�� detach datetime
active partitions before

attach datetime
dormant partitions after

destroy datetime
dormant partitions before

set active number
window size to

set dormant number
window size to

set pool
containterpool

set extent first_ext next_ext
container first next

set wcontrol flag
destroy_count

��

container_name
The name of the container. The container name must exist.

command
A command that changes the properties of the container:

detach active partitions before datetime
For rolling window containers, detaches any active partitions that
are before the specified timestamp to the dormant window.

The keywords active partitipants and before are optional and do
not change the command.

attach dormant partitions after datetime
For rolling window containers, attaches any dormant partitions
that are after the specified timestamp into the active window.
However, the maximum number of partitions in the active window
is not exceeded, even if more partitions fit the timestamp criteria.

The keywords dormant partitions and after are optional and do
not change the command.

destroy dormant partitions before datetime
For rolling window containers, destroys any dormant partitions
that are before the specified timestamp. The partitions can contain
data. Any active partitions that meet the timestamp criteria are not
destroyed.

The keywords dormant partitions and before are optional and do
not change the command.

set active window size to number
For rolling window containers, sets the number of partitions in the
active window:
v 0 = No size limit.
v Positive integer = The maximum number of partitions in the

active window. If you decrease the size, the number of oldest
active partitions that exceed the active window size are detached
to the dormant window. If you increase the size, partitions in the
dormant window are not attached into the active window.

The keywords window size and to are optional and do not change
the command.

7-100 IBM Informix TimeSeries Data User's Guide

set dormant window size to number
For rolling window containers, sets the number of partitions in the
dormant window:
v 0 = Default. No size limit.
v Positive integer = The maximum number of partitions in the

dormant window. If you decrease the size, the number of
dormant partitions that exceed the dormant window size are
destroyed.

The keywords window size and to are optional and do not change
the command.

set pool containerpool
Moves the container into the specified container pool.

set pool
Removes the container from its container pool. Same as the
TSContainerSetPool procedure.

set extent container first first_ext next next_ext
Sets the size, in KB, of the first and next extents for the container
partition.

The keywords first and next are optional and do not change the
command.

set extent first first_ext next next_ext
Sets the sizes, in KB, of the first and next extents for the partitions
that contain time series elements. For rolling window containers,
changes the sizes of the existing partitions in the active and
dormant windows and sets the size of new partitions.

The keywords first and next are optional and do not change the
command.

set wcontrol flagdestroy_count
Sets a flag that indicates whether active partitions can be destroyed
when the number of partitions that must be detached is greater
than the dormant windows size and optionally sets how many
partitions can be destroyed. The values for flag are:
v 0 = Default. As many as necessary dormant partitions are

destroyed. If the operation requires more new active partitions
than the value of the active_windowsize parameter, the operation
fails.

v 1 = As many as necessary existing dormant partitions and older
active partitions are destroyed. Use this setting with caution.
Destroyed data cannot be recovered.

v 2 = Dormant partitions are destroyed, but limited to the number
specified by the destroy_count value. If the number of partitions
that must be destroyed for an operation exceeds the value of the
destroy_count value, the operation fails.

v 3 (2 + 1) = Existing dormant partitions and older active
partitions are destroyed, but limited to the number specified by
the destroy_count value. If the number of partitions that must be
destroyed for an operation exceeds the value of the destroy_count
value, the operation fails.

The destroy_count value is valid if the value of the flag parameter is
2 or 3:

Chapter 7. Time series SQL routines 7-101

v 0 = Default. No dormant partitions are destroyed.
v A positive integer = The maximum number of partitions that can

be destroyed in an operation. If the number of partitions that
must be destroyed for an operation exceeds the value of the
destroy_count value, the operation fails.

Usage

For all containers, you can change the container pool and the extent sizes of the
partitions. For rolling window containers, you can also change the window sizes
and attach, detach, or destroy partitions.

Returns

A message that describes the result of the command.

Examples

The following examples are based on a rolling window container named
readings_container that has a day interval, an active window size of 5, and a
dormant window size of 10. The time series elements use a 15-minute calendar
with the range from 2012-01-01 00:00:00.00000 to 2012-01-10 23:45:00.00000.

The partitions are distributed between the active and the dormant windows in the
following way:
v Partitions that are in the active window:

– P6: elements for 2012-01-06
– P7: elements for 2012-01-07
– P8: elements for 2012-01-08
– P9: elements for 2012-01-09
– P10: elements for 2012-01-10

v Partitions that are in the dormant window:
– P1: elements for 2012-01-01
– P2: elements for 2012-01-02
– P3: elements for 2012-01-03
– P4: elements for 2012-01-04
– P5: elements for 2012-01-05

Example 1: Detach partitions

The following example moves partitions from the active window to the dormant
window:
execute function TSContainerManage(
"readings_container",
"detach active partitions before 2012-01-08")

The following message describes the result:
detach succeeded: 2 partitions moved

The partitions are now distributed between the active and the dormant windows
in the following way:
v Partitions that are in the active window:

7-102 IBM Informix TimeSeries Data User's Guide

– P8: elements for 2012-01-08
– P9: elements for 2012-01-09
– P10: elements for 2012-01-10

v Partitions that are in the dormant window:
– P1: elements for 2012-01-01
– P2: elements for 2012-01-02
– P3: elements for 2012-01-03
– P4: elements for 2012-01-04
– P5: elements for 2012-01-05
– P6: elements for 2012-01-06
– P7: elements for 2012-01-07

Partitions P6 and P7 moved into the dormant window.

Example 2: Attach partitions

The following example moves a partition from the dormant window to the active
window:
execute function TSContainerManage(
"readings_container",
"attach dormant partitions after 2012-01-06")

The following message describes the result:
attach succeeded: 1 partition moved

The partitions are now distributed between the active and the dormant windows
in the following way:
v Partitions that are in the active window:

– P7: elements for 2012-01-07
– P8: elements for 2012-01-08
– P9: elements for 2012-01-09
– P10: elements for 2012-01-10

v Partitions that are in the dormant window:
– P1: elements for 2012-01-01
– P2: elements for 2012-01-02
– P3: elements for 2012-01-03
– P4: elements for 2012-01-04
– P5: elements for 2012-01-05
– P6: elements for 2012-01-06

Partition P7 moved into the active window.

Example 3: Increase the active window size

The following example increases the size of the active window to 10:
execute function TSContainerManage(
"readings_container",
"set active window size to 10");

The following message describes the result:

Chapter 7. Time series SQL routines 7-103

Set active window size succeeded: 0 partitions moved

Although the active window size is larger, partitions in the dormant window are
not moved back into the active window.

Example 4: Destroy partitions

The following example destroys partitions in the dormant window:
execute function TSContainerManage(
"readings_container",
"destroy dormant partitions before 2012-01-08");

The following message describes the result:
destroy succeeded: 6 partitions destroyed

The partitions are now distributed between the active and the dormant windows
in the following way:
v Partitions that are in the active window:

– P7: elements for 2012-01-07
– P8: elements for 2012-01-08
– P9: elements for 2012-01-09
– P10: elements for 2012-01-10

v No partitions in the dormant window.

Although some of the active partitions are before 2012-01-08, they are not
destroyed.

Example 5: Change the destroy behavior

The following statement changes the behavior when partitions are destroyed to
allow up to seven dormant and active partitions to be destroyed in an operation:
execute function TSContainerManage(’readings_container’,’set wcontrol 3 7’);

Related reference:
“Rules for rolling window containers” on page 3-16

TSContainerNElems function
The TSContainerNElems function returns the number of time series data elements
stored in the specified container or in all containers.

Syntax
TSContainerNElems(container_name varchar(128,1));

TSContainerNElems(container_name varchar(128,1)
rw_flag integer default 0);

container_name
Specifies which container to return information about. Must be an existing
container name. You can include wildcard characters from the MATCHES
operator: *, ?, [...], \, ^. The function returns information for all containers
that have names that match the expression. See MATCHES operator.

The value NULL returns information about all containers for the database.

7-104 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1389.htm#ids_sqs_1389

rw_flag
For rolling window containers, specifies for which partitions to return the
sum of number of elements:

0 = The partitions in the active window

1 = The partitions in the dormant window

3 = The container partition. The number of elements equals the number of
intervals in the active and dormant windows.

4 = All partitions.

Description

Use the TSContainerNElems function to view the number of elements stored in a
container. For rolling window containers, the TSContainerNElems function returns
the sum of the number of elements in the specified set of partitions.

Returns

The number of elements.

Example

The following statement returns the number of elements stored in the container
named mult_container:
EXECUTE FUNCTION TSContainerNElems("mult_container");

elements

26

1 row(s) retrieved.

The following statement returns the number of elements stored in all containers:
EXECUTE FUNCTION TSContainerNElems(NULL);

elements

241907

1 row(s) retrieved.

Related concepts:
“Monitor containers” on page 3-18
Related reference:
“TSContainerUsage function” on page 7-114
“TSContainerTotalPages function” on page 7-112
“TSContainerTotalUsed function” on page 7-113
“TSContainerPctUsed function”
“Time series storage” on page 1-14

TSContainerPctUsed function
The TSContainerPctUsed function returns the percentage of space that is used in
the specified container or in all containers.

Chapter 7. Time series SQL routines 7-105

Syntax
TSContainerPctUsed(container_name varchar(128,1));

TSContainerPctUsed(container_name varchar(128,1)
rw_flag integer default 0);

container_name
Specifies which container to return information about. Must be an existing
container name. You can include wildcard characters from the MATCHES
operator: *, ?, [...], \, ^. The function returns information for all containers
that have names that match the expression. See MATCHES operator.

The value NULL returns information about all containers for the database.

rw_flag
For rolling window containers, specifies for which partitions to return the
percentage of the used space:

0 = The partitions in the active window

1 = The partitions in the dormant window

2 = The container partition.

3 = All partitions.

Description

Use the TSContainerPctUsed function to view the percentage of used space in a
container or in all containers. For rolling window containers, the
TSContainerPctUsed function returns the percentage of the space in the specified
set of partitions that is used.

Returns

The percentage of used space.

Example

The following statement returns the percentage of used space in the container
named mult_container:
EXECUTE FUNCTION TSContainerPctUsed("mult_container");

percent

60.000

1 row(s) retrieved.

The following statement returns the percentage of used space in all containers:
EXECUTE FUNCTION TSContainerPctUsed(NULL);

percent

93.545

1 row(s) retrieved.

Related concepts:
“Monitor containers” on page 3-18
Related reference:
“TSContainerUsage function” on page 7-114

7-106 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1389.htm#ids_sqs_1389

“TSContainerTotalPages function” on page 7-112
“TSContainerTotalUsed function” on page 7-113
“TSContainerNElems function” on page 7-104
“Time series storage” on page 1-14

TSContainerPoolRoundRobin function
The TSContainerPoolRoundRobin function provides a round-robin policy for
inserting time series data into containers in the specified container pool.

Syntax
TSContainerPoolRoundRobin(

table_name lvarchar,
column_name lvarchar,
subtype lvarchar,
irregular integer,
pool_name lvarchar)

returns lvarchar;

table_name
The table into which the time series data is being inserted.

column_name
The name of the time series column into which data is being inserted.

subtype
The name of the TimeSeries subtype.

irregular
Whether the time series is regular (0) or irregular (1).

pool_name
The name of the container pool.

Description

Use the TSContainerPoolRoundRobin function to select containers in which to
insert time series data from the specified container pool. The container pool must
exist before you can insert data into it, and at least one container within the
container pool must be configured for the same TimeSeries subtype as used by the
data being inserted. Set the TSContainerPoolRoundRobin function to a container
pool name and use it as the value for the container argument in the VALUES
clause of an INSERT statement. The TSContainerPoolRoundRobin function
returns container names to the INSERT statements in round-robin order.

Returns

The container name in which to store the time series value.

Example

The following statement inserts data into a time series. The
TSContainerPoolRoundRobin function specifies that the container pool named
readings is used in the container argument.
INSERT INTO smartmeters(meter_id,rawreadings)

VALUES(’met00001’,’origin(2006-01-01 00:00:00.00000),
calendar(smartmeter),regular,threshold(0),
container(TSContainerPoolRoundRobin(readings)),

Chapter 7. Time series SQL routines 7-107

[(33070,-13.00,100.00,9.98e+34),
(19347,-4.00,100.00,1.007e+35),
(17782,-18.00,100.00,9.83e+34)]’);

When the INSERT statement runs, the TSContainerPoolRoundRobin function runs
with the following values:
TSContainerPoolRoundRobin(’smartmeters’,’rawreadings’,

’smartmeter_row’,0,’readings’)

The TSContainerPoolRoundRobin function sorts the container names
alphabetically and returns the first container name to the INSERT statement. The
next time an INSERT statement is run, the TSContainerPoolRoundRobin function
returns the second container name, and so on.
Related tasks:
“Configuring additional container pools” on page 3-20
Related reference:
“User-defined container pool policy” on page 3-21

TSContainerPurge function
The TSContainerPurge function deletes time series data through a specified
timestamp from one or more containers.

Syntax
TSContainerPurge(

control_file lvarchar,
location lvarchar default ’client’,
flags integer default 0);

returns lvarchar

control_file
The name of the text file that contains information about which elements to
delete from which containers. The file must have one or more lines in the
following format:
container_name|instance_id|end_range|

container_name
The name of the container from which to delete elements.

instance_id
The unique identifier of a time series instance. An instance is a row
in a table that includes a TimeSeries column.

end_range
The ending time of the deletion range. For a regular time series,
the index of the last timestamp to delete. For irregular time series,
the last timestamp to delete.

location (Optional)
The location of the control file. Can be either of the following values:

’client’
Default. The control file is on the client computer.

’server’
The control file is on the same computer as the database server.

flags (Optional)
Determines delete behavior. Can be either of the following values:

7-108 IBM Informix TimeSeries Data User's Guide

0 Elements that match the delete criteria are deleted only if all
elements on a page match the criteria. The resulting empty pages
are freed.

1 Elements on pages where all the elements match the delete criteria
are deleted and the pages are freed. Remaining elements that
match the delete criteria are set to NULL.

Usage

Use the TSContainerPurge function to remove old data from containers. The
TSContainerPurge function deletes pages where all elements have a timestamp
that is equal to or older than the specified ending time in the specified containers
for the specified time series instances. The resulting empty pages are freed.

You can use the TSContainerPurge function to remove data from row that use a
different TimeSeries subtype than the subtype specified in the container definition.
However, the TimeSeries subtype that is named in the container definition must
exist.

You can create a control file by unloading the results of a SELECT statement that
defines the delete criteria into a file. Use the following TimeSeries functions in the
SELECT statement to populate the control file with the container names, instance
IDs, and, for regular time series, the indexes of the end range for reach instance:
v GetContainerName function
v InstanceId function
v GetIndex function (regular time series only)

If you intend to delete a large amount of data at one time, running multiple
TSContainerPurge functions to delete data from different containers might be
faster than running a single TSContainerPurge function.

Returns

An LVARCHAR string that describes how many containers were affected, how
many pages were freed, and how many elements were deleted. For example:
"containers(4) deleted_pages(2043) deleted_slots(260300)"

Example 1: Delete regular time series data from multiple
containers

The following statement creates a control file named regular_purge.unl to delete
elements from 10 regular time series instances in all containers that store those
instances:
UNLOAD TO ’regular_purge.unl’

SELECT GetContainerName(readings),InstanceId(readings),
GetIndex(readings,’2011-10-01 23:45:00.00000’::datetime year to

fraction(5))::varchar(25)
FROM sm
WHERE meter_id IN (’met0’,’met1’,’met11’,’met4’,’met5’,’met6’,

’met61’,’met7’,’met8’,’met9’);

The resulting control file has the following contents:
sm0|1|7871|
sm0|8|7295|
sm0|13|6911|
sm1|2|7775|

Chapter 7. Time series SQL routines 7-109

sm1|9|7199|
sm1|14|6815|
sm2|3|7679|
sm2|10|7103|
sm3|7|7391|
sm3|12|7007|

The 10 time series instances that are specified in the WHERE clause are stored in
the four different containers, which are listed in the first column. The second
column lists the ID for each time series instance. The third column lists the element
index number that corresponds to the timestamp 2011-10-01 23:45:00.00000.

The following statement deletes all elements at and before 2011-10-01
23:45:00.00000 for the 10 time series instances:
EXECUTE FUNCTION TSContainerPurge(’regular_purge.unl’,1);

Any deleted elements that remain are marked as NULL.

Example 2: Delete elements from a specific container

The following statement creates a control file named regular_purge2.unl to delete
elements from all time series instances in the container named sm0:
UNLOAD TO regular_purge2.unl

SELECT GetContainerName(readings),InstanceId(readings),
GetIndex(readings,’2011-10-01 23:00:00.00000’::datetime

year to fraction(5))::varchar(25)
FROM sm
WHERE GetContainerName(readings) = ’sm0’;

The resulting control file has entries for a single container:
sm0|1|7871|
sm0|8|7295|
sm0|13|6911|

Example 3: Deleting irregular time series data

The following statement creates a control file named irregular_purge.unl to delete
elements from four irregular time series instances:
UNLOAD TO irregular_purge.unl

SELECT GetContainerName(readings),InstanceId(readings),
’2011-10-01 23:00:00.00000’::varchar(25)

FROM sm
WHERE meter_id IN (’met12’,’met2’,’met3’,’met62’);

The resulting control file includes the ending timestamp instead of the element
index number, for example:
sm4|4|2011-10-01 23:45:00.00000|
sm4|6|2011-10-01 23:45:00.00000|
sm5|5|2011-10-01 23:45:00.00000|
sm5|11|2011-10-01 23:45:00.00000|

Related concepts:
“Delete time series data” on page 3-37
Related tasks:
“Creating containers” on page 3-15
Related reference:
“GetIndex function” on page 7-55
“GetContainerName function” on page 7-51

7-110 IBM Informix TimeSeries Data User's Guide

“InstanceId function” on page 7-71

TSContainerSetPool procedure
The TSContainerSetPool procedure moves the specified container into the
specified container pool.

Syntax
TSContainerSetPool(

container_name varchar(128,1),
pool_name varchar(128,1) default null);

TSContainerSetPool(
container_name varchar(128,1));

container_name
The name of the container to move.

pool_name
The name of the container pool in which to move the container.

Description

You can use the TSContainerSetPool procedure to move a container into a
container pool, move a container from one container pool to another, or remove a
container from a container pool. Containers that created automatically are in the
container pool named autopool by default. If you create a container with the
TSContainerCreate procedure, the container does not belong to a container pool
until you run the TSContainerSetPool procedure to move it into a container pool.

If the container pool specified in the TSContainerSetPool procedure does not exist,
the procedure creates it.

To move a container from one container pool to another, run the
TSContainerSetPool procedure and specify the destination container pool name.

To move a container out of a container pool, run the TSContainerSetPool
procedure without a container pool name.

The TSContainerTable table contains a row for each container and the container
pool to which the container belongs.

Example 1: Move a container into a container pool

The following statement moves a container named ctn_1 into a container pool that
is named smartmeter_pool:
EXECUTE PROCEDURE TSContainerSetPool

(’ctn_1’, ’smartmeter_pool’);

Example 2: Remove a container from a container pool

The following statement removes a container named ctn_1 from its container pool:
EXECUTE PROCEDURE TSContainerSetPool

(’ctn_1’);

Related concepts:
“TSInstanceTable table” on page 2-12
Related tasks:

Chapter 7. Time series SQL routines 7-111

“Creating containers” on page 3-15
“Configuring additional container pools” on page 3-20

TSContainerTotalPages function
The TSContainerTotalPages function returns the total number of pages that are
allocated to the specified container or in all containers.

Syntax
TSContainerTotalPages(container_name varchar(128,1));

TSContainerTotalPages(container_name varchar(128,1),
rw_flag integer default 0);

container_name
Specifies which container to return information about. Must be an existing
container name. You can include wildcard characters from the MATCHES
operator: *, ?, [...], \, ^. The function returns information for all containers
that have names that match the expression. See MATCHES operator.

The value NULL returns information about all containers for the database.

rw_flag
For rolling window containers, specifies for which partitions to return the
sum of the total pages that are allocated:

0 = The partitions in the active window

1 = The partitions in the dormant window

2 = The container partition.

3 = All partitions.

Description

Use the TSContainerTotalPages function to view the size of a container or all
containers. For rolling window containers, the TSContainerTotalPages function
returns the sum of size of the specified set of partitions.

Returns

The number of allocated pages.

Example

The following statement returns the number of pages that are allocated to the
container named mult_container:
EXECUTE FUNCTION TSContainerTotalPages("mult_container");

total

50

1 row(s) retrieved.

The following statement returns the number of pages allocated to all the
containers:
EXECUTE FUNCTION TSContainerTotalPages(NULL);

total

7-112 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1389.htm#ids_sqs_1389

2169

1 row(s) retrieved.

Related concepts:
“Monitor containers” on page 3-18
Related reference:
“TSContainerUsage function” on page 7-114
“TSContainerTotalUsed function”
“TSContainerPctUsed function” on page 7-105
“TSContainerNElems function” on page 7-104
“Time series storage” on page 1-14

TSContainerTotalUsed function
The TSContainerTotalUsed function returns the total number of pages that contain
time series data in the specified container or in all containers.

Syntax
TSContainerTotalUsed(container_name varchar(128,1));

TSContainerTotalUsed(container_name varchar(128,1),
rw_flag integer default 0);

container_name
Specifies which container to return information about. Must be an existing
container name. You can include wildcard characters from the MATCHES
operator: *, ?, [...], \, ^. The function returns information for all containers
that have names that match the expression. See MATCHES operator.

The value NULL returns information about all containers for the database.

rw_flag
For rolling window containers, specifies for which partitions to return the
sum of the total number of pages that contain time series elements:

0 = The partitions in the active window

1 = The partitions in the dormant window

2 = The container partition.

3 = All partitions.

Description

Use the TSContainerTotalUsed function to view the amount of data in a container
or in all containers. For rolling window containers, the TSContainerTotalUsed
function returns the sum of the amount of data in the specified set of partitions.

Returns

The number of pages that contain time series data.

Example

The following statement returns the number of pages that are used by time series
data in the container named mult_container:

Chapter 7. Time series SQL routines 7-113

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1389.htm#ids_sqs_1389

EXECUTE FUNCTION TSContainerTotalUsed("mult_container");

pages

30

1 row(s) retrieved.

The following statement returns the number of pages that are used by time series
data in all containers:
EXECUTE FUNCTION TSContainerTotalUsed(NULL);

pages

2029

1 row(s) retrieved.

Related concepts:
“Monitor containers” on page 3-18
Related reference:
“TSContainerUsage function”
“TSContainerTotalPages function” on page 7-112
“TSContainerPctUsed function” on page 7-105
“TSContainerNElems function” on page 7-104
“Time series storage” on page 1-14

TSContainerUsage function
The TSContainerUsage function returns information about the size and capacity of
the specified container or of all containers.

Syntax
TSContainerUsage(container_name varchar(128,1));

TSContainerUsage(container_name varchar(128,1),
rw_flag integer default 0);

container_name
Specifies which container to return information about. Must be an existing
container name. You can include wildcard characters from the MATCHES
operator: *, ?, [...], \, ^. The function returns information for all containers
that have names that match the expression. See MATCHES operator.

The value NULL returns information about all containers for the database.

rw_flag
For rolling window containers, specifies for which partitions to return the
sum of storage space usage:

0 = The partitions in the active window

1 = The partitions in the dormant window

2 = The container partition.

3 = All partitions.

7-114 IBM Informix TimeSeries Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1389.htm#ids_sqs_1389

Description

Use the TSContainerUsage function to monitor how full the specified container is.
For rolling window containers, the TSContainerTotalUsage function returns
summary values for how full the specified set of partitions is. You can use the
information from this function to determine how quickly your containers are filling
and whether you must allocate more storage space.

Returns

The number of pages that contain time series data in the pages column, the
number of elements in the slots column, and the number of pages that are
allocated to the container in the total column.

Example: Monitor a container

The following statement returns the information for the container that is named
mult_container:
EXECUTE FUNCTION TSContainerUsage("mult_container");

pages slots total

30 26 50

1 row(s) retrieved.

This container has 26 time series data elements that use 30 pages out of the total 50
pages of space. Although the container is almost half empty, the container can
probably accommodate fewer than 20 more time series elements.

Example: Monitor all containers

The following statement returns the information for all containers:
EXECUTE FUNCTION TSContainerUsage(NULL);

pages slots total

2029 241907 2169

1 row(s) retrieved.

The containers have only 140 pages of available space.

Example: Monitor a group of containers

Suppose that you have containers that have the following names:
v active_cnt1

v active_cnt2

v historical_cnt1

The following statement returns the information for the two containers that have
names that begin with active:
EXECUTE FUNCTION TSContainerUsage(active*);

pages slots total

Chapter 7. Time series SQL routines 7-115

202 4197 169

1 row(s) retrieved.

Related concepts:
“Monitor containers” on page 3-18
Related reference:
“TSContainerTotalPages function” on page 7-112
“TSContainerTotalUsed function” on page 7-113
“TSContainerPctUsed function” on page 7-105
“TSContainerNElems function” on page 7-104
“Time series storage” on page 1-14

TSCreate function
The TSCreate function creates an empty regular time series or a regular time series
populated with the given set of data. The new time series can also have
user-defined metadata attached to it.

Syntax
TSCreate(cal_name lvarchar,

origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar)

returns TimeSeries with (handlesnulls);

TSCreate(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar,
set_rows set)

returns TimeSeries with (handlesnulls);

TSCreate(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar,
metadata TimeSeriesMeta)

returns TimeSeries with (handlesnulls);

TSCreate(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
zero integer,
nelems integer,
container_name lvarchar,
metadata TimeSeriesMeta,
set_rows set)

returns TimeSeries with (handlesnulls);

cal_name
The name of the calendar for the time series.

origin The origin of the time series. This is the first valid date from the calendar
for which data can be stored in the series.

7-116 IBM Informix TimeSeries Data User's Guide

threshold
The threshold for the time series. If the time series stores more than this
number of elements, it is converted to a container. Otherwise, it is stored
directly in the row that contains it, not in a container. The default is 20.
The size of a row containing an in-row time series should not exceed 1500
bytes.

If a time series has too many bytes to fit in a row before this threshold is
reached, the time series is put into a container at that point.

zero Must be 0.

nelems The number of elements allocated for the resultant time series. If the
number of elements exceeds this value, the time series is expanded
through reallocation.

container_name
The name of the container used to store the time series. Can be NULL.

metadata
The user-defined metadata to be put into the time series. See “Creating a
time series with metadata” on page 3-23 for more information about
metadata.

set_rows
A set of row type values used to populate the time series. The type of
these rows must be the same as the subtype of the time series.

Description

If TSCreate is called with a metadata argument, then the metadata is saved in the
time series.

Returns

A regular time series that is empty or populated with the given set and optionally
contains user-defined metadata.

Example

The following example creates an empty time series using TSCreate:
insert into daily_stocks values(

901,’IBM’, TSCreate(’daycal’,
’2011-01-03 00:00:00.00000’,20,0,0, NULL));

The following example creates a populated regular time series using TSCreate:
select TSCreate(’daycal’,

’2011-01-05 00:00:00.00000’,
20,
0,
NULL,
set_data)::TimeSeries(stock_trade)

from activity_load_tab
where stock_id = 600;

Related tasks:
“Creating a time series with metadata” on page 3-23
Related reference:
“Create a time series” on page 3-22
“GetCalendar function” on page 7-48

Chapter 7. Time series SQL routines 7-117

“GetInterval function” on page 7-55
“GetMetaData function” on page 7-59
“GetMetaTypeName function” on page 7-59
“GetOrigin function” on page 7-64
“PutElem function” on page 7-77
“PutSet function” on page 7-80
“TSCreateIrr function”
“UpdMetaData function” on page 7-159
“The ts_create() function” on page 9-17
“The ts_create_with_metadata() function” on page 9-18
“The ts_get_metadata() function” on page 9-31
“The ts_update_metadata() function” on page 9-54

TSCreateIrr function
The TSCreateIrr function creates an empty irregular time series or an irregular
time series that is populated with the specified multiset of data. The new time
series can also have user-defined metadata that is attached to it.

Syntax
TSCreateIrr(cal_name lvarchar,

origin datetime year to fraction(5),
threshold integer,
hertz integer,
nelems integer,
container_name lvarchar)

returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
hertz integer,
container_name lvarchar,
multiset_rows multiset)

returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
hertz integer,
container_name lvarchar,
metadata TimeSeriesMeta)

returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
hertz integer,
container_name lvarchar,
metadata TimeSeriesMeta,
multiset_rows multiset)

returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
container_name lvarchar,
compression lvarchar)

returns TimeSeries with (handlesnulls);

7-118 IBM Informix TimeSeries Data User's Guide

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
container_name lvarchar,
compression lvarchar,
multiset_rows multiset)

returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
container_name lvarchar,
compression lvarchar,
metadata TimeSeriesMeta

)
returns TimeSeries with (handlesnulls);

TSCreateIrr(cal_name lvarchar,
origin datetime year to fraction(5),
container_name lvarchar,
compression lvarchar,
metadata TimeSeriesMeta,
multiset_rows multiset

)
returns TimeSeries with (handlesnulls);

cal_name
The name of the calendar for the time series.

origin The origin of the time series, which is the first valid date from the calendar
for which data can be stored in the series.

threshold
The threshold for the time series. If the time series stores more than this
number of elements, it is converted to a container. Otherwise, it is stored
directly in the row that contains it. The default is 20. The size of a row that
contains an in-row time series cannot exceed 1500 bytes.

If a time series has too many bytes to fit in a row before this threshold is
reached, the time series is put into a container.

hertz (Optional)
An integer that specifies whether the times series stores hertz data:

0 = The time series does not contain hertz data.

1 - 255 = The number of records per second.

If you set the hertz parameter to a value other than 0, the values of the
threshold parameter must be 0.

nelems (Optional)
The number of elements that are allocated for the resultant time series. If
the number of elements exceeds this value, the time series is expanded
through reallocation.

container_name
The name of the container that is used to store the time series. Can be
NULL.

compression (Optional)

Syntax of the compression parameter

Chapter 7. Time series SQL routines 7-119

�� �

,

n ()
q (compress_size , lower_bound , upper_bound)
lb (max_deviation)
ls
qlb (compress_size , max_deviation , lower_bound , upper_bound)
qls

��

A string that includes a compression definition for each column in the
TimeSeries subtype except the first column. List the compression
definition for each field in the order of the fields in the subtype, which are
separated by commas. The compression definition consists of the
compression type and the corresponding compression attributes:

Compression types:
v n = None. The column is not compressed.
v q = Quantization
v lb = Linear boxcar
v ls = Linear swing door
v qlb = Quantization linear boxcar
v qls = Quantization linear swing door

Compression attributes:
v compress_size = The number of bytes to store: 1, 2, or 4. The value must

be smaller than the size of the associated column.
v lower_bound = A number that represents the lower boundary of

acceptable values. The range of values is the same as the data type of
the associated column.

v upper_bound = A number that represents the upper boundary of
acceptable values. The range of values is the same as the data type of
the associated column.

v max_deviation = A positive floating point number that represents the
maximum deviation between the actual value and the compressed value.
The range of values is 0 through the largest value of the data type of the
associated column. The value 0 indicates that no deviation is allowed.

See “Compressed numeric time series” on page 1-10.

metadata (Optional)
The user-defined metadata to be put into the time series.

multiset_rows (Optional)
A multiset of rows to populate the time series. The type of these rows
must be the same as the subtype of the time series.

Description

If the TSCreateIrr function is called with the metadata parameter, then metadata is
saved in the time series.

If you include the compression parameter, each time series element is packed with
compressed records until the size of the element approaches 4 KB or the
transaction is committed. You must run the TSCreateIrr function within an explicit
transaction.

If you include the hertz parameter, each time series element is packed with the
number of records that are specified by the hertz parameter. An element is saved to
disk after a record for the last subsecond boundary is inserted or the transaction is

7-120 IBM Informix TimeSeries Data User's Guide

committed. You must run the TSCreateIrr function within an explicit transaction.

Returns

An irregular, hertz, or compressed time series.

Example: Create an empty time series

The following example creates an empty irregular time series:
select TSCreateIrr(’daycal’,

’2011-01-05 00:00:00.00000’,
20,
0,
NULL,
set_data)::TimeSeries(stock_trade)

from activity_load_tab
where stock_id = 600;

Example: Create a populated time series

The following example creates a populated irregular time series:
insert into activity_stocks

select 1234,
TSCreateIrr(’daycal’,

’2011-01-03 00:00:00.00000’::datetime year to fraction(5),
20, 0, NULL,
set_data)::timeseries(stock_trade)

from activity_load_tab;

Example: Create a compressed time series

When you create a compressed time series, you need to know the structure of the
TimeSeries subtype and characteristics about the data in each column. The
following statement creates a TimeSeries row type that has a timestamp column
and six other columns of numeric data:
CREATE ROW TYPE irregular_t
(
tstamp DATETIME YEAR TO FRACTION(5),
key1 smallint,
key2 int,
key3 bigint,
key4 smallfloat,
key5 float,
key6 int
);

The following statement creates a compressed time series instance in the table
tstable:
BEGIN;
INSERT INTO tstable VALUES(1,

TSCreateIrr(’ts_1sec’, ’2013-01-01 00:00:00.00000’,
’container_2k’, ’n(),q(1,1,100),ls(0.10),
lb(0.10),qls(2,0.15,100,100000),qlb(2,0.25,100,100000)’))

COMMIT;

The columns in the irregular_t row type are compressed in the following ways:
v The key1 column is not compressed.
v The key2 column is compressed by the quantization compression type with a

compression size of 1 byte, a lower bound of 1 and an upper bound of 100.

Chapter 7. Time series SQL routines 7-121

v The key3 column is compressed by the linear swing door compression type with
a maximum deviation of 0.10.

v The key4 column is compressed by the linear boxcar compression type with a
maximum deviation of 0.10.

v The key5 column is compressed by the quantization linear swing door
compression type with a compression size of 2 bytes, a maximum deviation of
0.15, a lower bound of 100, and an upper bound of 100000.

v The key6 column is compressed by quantization linear boxcar with a
compression size of 2 bytes, a maximum deviation of 0.25, a lower bound of 100,
and an upper bound of 100000.

Example: Create a hertz time series

The following statement creates a time series that stores 50 records per second in
each element:
BEGIN;
INSERT INTO tstable VALUES(1,

TSCreateIrr(’ts_1sec’, ’2014-01-01 00:00:00.00000’,
0, 50, 0, ’container1’))

COMMIT;

Related concepts:
“Hertz time series” on page 1-8
“Compressed numeric time series” on page 1-10
Related tasks:
“Creating a time series with metadata” on page 3-23
Related reference:
“Create a time series” on page 3-22
“GetMetaData function” on page 7-59
“GetMetaTypeName function” on page 7-59
“TSCreate function” on page 7-116
“The ts_create_with_metadata() function” on page 9-18
“The ts_create() function” on page 9-17
“UpdMetaData function” on page 7-159
“The ts_get_metadata() function” on page 9-31
“The ts_update_metadata() function” on page 9-54

TSDecay function
The TSDecay function computes a decay function over its arguments.

Syntax
TSDecay(current_value smallfloat,

initial_value smallfloat,
decay_factor smallfloat)

returns smallfloat;

TSDecay(current_value double precision,
initial_value double precision,
decay_factor double precision)

returns double precision;

current_value
The current datum (vj in the sum shown next).

7-122 IBM Informix TimeSeries Data User's Guide

initial_value
The initial value (initial in the sum shown next).

decay_factor
The decay factor (decay in the sum shown next).

Description

All three arguments must be of the same type.

The function maintains a sum of all the arguments it has been called with so far.
Every time it is called, the sum is multiplied by the supplied decay factor. Given a
decay factor between 0 and 1, this causes the importance of older arguments to fall
off over time. The first time that TSDecay is called, it includes the supplied initial
value in the running sum. The actual function that TSDecay computes is:

i

((decayi)initial)+∑((vj)decay
i-j)

j=i

In this computation, i is the number of times the function has been called so far,
and vj is the value it was called with in its jth invocation.

This function is useful only when used within the Apply function.

Returns

The result of the decay function.

Example

The following example computes the decay:
create function ESA18(a smallfloat) returns smallfloat;
return (.18 * a) + TSDecay(.18 * a, a, .82);
end function;

Related reference:
“Apply function” on page 7-18
“TSAddPrevious function” on page 7-90
“TSCmp function” on page 7-90
“TSPrevious function” on page 7-141
“TSRunningAvg function” on page 7-147
“TSRunningSum function” on page 7-151

TSL_Attach function
The TSL_Attach function opens a database session for loading data.

Syntax
TSL_Attach(

table_name varchar(128),
column_name varchar(128),
reject_file varchar(255) default NULL)

returns lvarchar

Chapter 7. Time series SQL routines 7-123

TSL_Attach(
table_name varchar(128),
column_name varchar(128),

returns lvarchar

table_name
The name of the time series table. Must not contain uppercase letters. Must
match the table name supplied to the TSL_Init function to initialize the
loader session.

column_name
The name of the TimeSeries column. Must not contain uppercase letters.
Must match the column name supplied to the TSL_Init function to
initialize the loader session.

reject_file (optional)
The path and file name for storing records that were not applied. For
example, records with an incorrect number of fields or a formatting error
are not applied. By default, only the number of rejected records is
recorded. Overwrites the reject file specified in the TSL_Init function.

Usage

Use the TSL_Attach function to open an additional database session to load time
series data in parallel. You must run the TSL_Attach function in the context of a
loader session that was initialized by the TSL_Init function.

Returns
v A session handle that consists of a table name and a TimeSeries column name.
v An exception or NULL if the session was not initialized.

Example

The following statement opens a database session for the table ts_data and the
TimeSeries column raw_reads:
EXECUTE FUNCTION TSL_Attach(’ts_data’,’raw_reads’);

TSL_Commit function
The TSL_Commit function flushes data for all containers to disk in multiple
transactions.

Syntax
TSL_Commit(

handle lvarchar,
writeflag integer DEFAULT 1,
commit_interval integer DEFAULT NULL)

returns integer

handle The table and column name combination that is returned by the
TSL_Attach or the TSL_Init function.

writeflag (Optional)
An integer that represents whether the duplicate elements are allowed for
irregular time series and whether logging is reduced. You must supply a
value for the duplicate element behavior (1 or 5) and can optionally add
the value for reduced logging (256).

1 = Default. Duplicate elements are allowed.

7-124 IBM Informix TimeSeries Data User's Guide

5 = Duplicate elements replace existing elements.

(1+ 256 = 257) = Duplicate elements are allowed. Logging is reduced. See
the description of the TSOPEN_REDUCED_LOG flag in “The flags
argument values” on page 7-9.

(5 + 256 = 261) = Duplicate elements replace existing elements. Logging is
reduced.

commit_interval (Optional)
A positive integer that represents the maximum number of elements to
insert per transaction. The default value if the argument is omitted or set
to NULL is 10000.

Usage

Use the TSL_Commit function to write time series data to disk as part of a loader
program. You must run the TSL_Commit function in the context of a loader
session that was initialized by the TSL_Init function. You run the TSL_Commit
function to save data that is loaded by the TSL_Put, TSL_PutSQL, or
TSL_PutRow function. The TSL_Commit function is useful when the amount of
data that you are loading is too large for your logical log to flush as one
transaction.

The TSL_Commit function commits transactions after flushing the specified
number of elements, or when all elements for a container are flushed. For example,
suppose that you set the commit_interval argument to 5000. If you load 10 000
elements into a container, the TSL_Commit function commits two transactions. If
you insert 10 000 elements in equal amounts into five containers, the TSL_Commit
function commits five transactions of 2000 elements. If you run the TSL_Commit
function within an explicit transaction, then the TSL_Commit function does not
commit transactions.

If you specify that duplicate elements are allowed for irregular time series with the
writeflag argument value of 1 (the default) or 257 (1 + 256), the TSL_Commit
function inserts data in the same way as the PutElem function. You can specify
that duplicate elements replace existing elements that have the same timestamps
with the writeflag argument value of 5 or 261 (5 + 256), so that the TSL_Commit
function inserts data in the same way as the PutElemNoDups function.

If you specify reduced logging with the writeflag argument value of 257 (1 + 256)
or 261 (5 + 256), you must run TSL_Commit function in a transaction that can
include only other functions that use reduced logging with the
TSOPEN_REDUCED_LOG flag. The elements that are saved are not visible by
dirty reads until after the transaction commits.

The TSL_FlushInfo function returns eight categories of information about the last
flush operation that saved data to disk.

Returns

An integer that indicates the status of the function:
v A positive integer = The number of elements that were inserted.
v -1 = Process was interrupted or encountered a severe error.

Chapter 7. Time series SQL routines 7-125

Example: Run the TSL_Commit function

The following statement saves the data to disk after every 5000 elements are
inserted for the table ts_data and the TimeSeries column raw_reads:
EXECUTE FUNCTION TSL_Commit(’ts_data|raw_reads’, 1, 5000);

Example: Run the TSL_Commit function with reduced logging

The following statement saves the data to disk with reduced logging after every 20
000 elements are inserted:
EXECUTE FUNCTION TSL_Commit(’ts_data|raw_reads’, 257, 20000);

Example: Run the TSL_Commit function with reduced logging
and no duplicate elements

The following statement saves the data to disk with reduced logging and replaces
existing elements that have the same timestamps as new elements:
EXECUTE FUNCTION TSL_Commit(’ts_data|raw_reads’, 261, 200000);

Related tasks:
“Writing a loader program” on page 3-31
Related reference:
“TSL_FlushInfo function” on page 7-129

TSL_Flush function
The TSL_Flush function flushes data for one or all containers to disk in a single
transaction.

Syntax
TSL_Flush(

handle lvarchar,
container integer DEFAULT NULL,
writeflag integer DEFAULT 1)

returns integer

handle The table and column name combination that is returned by the
TSL_Attach or the TSL_Init function.

container (Optional)
The container identifier. Default is NULL, which indicates all containers.

writeflag (Optional)
An integer that represents whether the duplicate elements are allowed for
irregular time series and whether logging is reduced. You must supply a
value for the duplicate element behavior (1 or 5) and can optionally add
the value for reduced logging (256).

1 = Default. Duplicate elements are allowed.

5 = Duplicate elements replace existing elements.

(1+ 256 = 257) = Duplicate elements are allowed. Logging is reduced. See
the description of the TSOPEN_REDUCED_LOG flag in “The flags
argument values” on page 7-9.

(5 + 256 = 261) = Duplicate elements replace existing elements. Logging is
reduced.

7-126 IBM Informix TimeSeries Data User's Guide

Usage

Use the TSL_Flush function to write time series data to disk as part of a loader
program. You must run the TSL_Flush function in a transaction in the context of a
loader session that was initialized by the TSL_Init function. You run the
TSL_Flush function to save data that is loaded by the TSL_Put, TSL_PutSQL, or
TSL_PutRow function.

If you specify that duplicate elements are allowed for irregular time series with the
writeflag argument value of 1 (the default) or 257 (1 + 256), the TSL_Flush function
inserts data in the same way as the PutElem function. You can specify that
duplicate elements replace existing elements that have the same timestamps with
the writeflag argument value of 5 or 261 (5 + 256), so that the TSL_Flush function
inserts data in the same way as the PutElemNoDups function.

If you specify reduced logging with the writeflag argument value of 257 (1 + 256)
or 261 (5 + 256), you must run TSL_Flush function in a transaction that can
include only other functions that use reduced logging with the
TSOPEN_REDUCED_LOG flag. The elements that are saved are not visible by
dirty reads until after the transaction commits.

The TSL_FlushInfo function returns eight categories of information about the last
flush operation that saved data to disk.

Returns

An integer that indicates the status of the function:
v Positive 4-byte number = The top 16 bits represent the number of time series

instances that were affected. The lower 16 bits represent the number of elements
that were inserted. The returned number of elements that were inserted does not
exceed 65535, even if more than 65535 elements were successfully inserted. You
can run the TSL_Flush function through the TSL_FlushStatus function to return
the number of containers that are affected and the number of elements that are
inserted as integers.

v -1 = Process was interrupted or encountered a severe error.

Example: Run the TSL_Flush function

The following statement saves the data to disk for the table ts_data and the
TimeSeries column raw_reads:
BEGIN WORK;
EXECUTE FUNCTION TSL_Flush(’ts_data|raw_reads’);
COMMIT WORK;

Example: Run the TSL_Flush function with reduced logging

The following statement saves the data to disk with reduced logging:
BEGIN WORK;
EXECUTE FUNCTION TSL_Flush(’ts_data|raw_reads’, NULL, 257);
COMMIT WORK;

Example: Run the TSL_Flush function with reduced logging and
no duplicate elements

The following statement saves the data to disk with reduced logging and replaces
existing elements that have the same timestamps as new elements:

Chapter 7. Time series SQL routines 7-127

BEGIN WORK;
EXECUTE FUNCTION TSL_Flush(’ts_data|raw_reads’, NULL, 261);
COMMIT WORK;

Related reference:
“TSL_FlushInfo function” on page 7-129
“TSL_FlushStatus function” on page 7-131

TSL_FlushAll function
The TSL_FlushAll function flushes data for all containers to disk in a single
transaction.

Syntax
TSL_FlushAll(

handle lvarchar,
writeflag integer DEFAULT 1)

returns integer

handle The table and column name combination that is returned by the
TSL_Attach or the TSL_Init function.

writeflag (Optional)
An integer that represents whether the duplicate elements are allowed for
irregular time series and whether logging is reduced. You must supply a
value for the duplicate element behavior (1 or 5) and can optionally add
the value for reduced logging (256).

1 = Default. Duplicate elements are allowed.

5 = Duplicate elements replace existing elements.

(1+ 256 = 257) = Duplicate elements are allowed. Logging is reduced. See
the description of the TSOPEN_REDUCED_LOG flag in “The flags
argument values” on page 7-9.

(5 + 256 = 261) = Duplicate elements replace existing elements. Logging is
reduced.

Usage

Use the TSL_FlushAll function to write time series data to disk as part of a loader
program. You must run the TSL_FlushAll function in a transaction in the context
of a loader session that was initialized by the TSL_Init function. You run the
TSL_FlushAll function to save data that is loaded by the TSL_Put, TSL_PutSQL,
or TSL_PutRow function.

If you specify that duplicate elements are allowed for irregular time series with the
writeflag argument value of 1 (the default) or 257 (1 + 256), the TSL_FlushAll
function inserts data in the same way as the PutElem function. You can specify
that duplicate elements replace existing elements that have the same timestamps
with the writeflag argument value of 5 or 261 (5 + 256), so that the TSL_FlushAll
function inserts data in the same way as the PutElemNoDups function.

If you specify reduced logging with the writeflag argument value of 257 (1 + 256)
or 261 (5 + 256), you must run TSL_FlushAll function in a transaction that can
include only other functions that use reduced logging with the
TSOPEN_REDUCED_LOG flag. The elements that are saved are not visible by
dirty reads until after the transaction commits.

7-128 IBM Informix TimeSeries Data User's Guide

The TSL_FlushInfo function returns eight categories of information about the last
flush operation that saved data to disk.

Returns

An integer that indicates the status of the function:
v A positive integer = The number of elements that were inserted.
v -1 = Process was interrupted or encountered a severe error.

Example: Run the TSL_FlushAll function

The following statement saves the data to disk for the table ts_data and the
TimeSeries column raw_reads:
BEGIN WORK;
EXECUTE FUNCTION TSL_FlushAll(’ts_data|raw_reads’);
COMMIT WORK;

Example: Run the TSL_FlushAll function with reduced logging

The following statement saves the data to disk with reduced logging:
BEGIN WORK;
EXECUTE FUNCTION TSL_FlushAll(’ts_data|raw_reads’, 257);
COMMIT WORK;

Example: Run the TSL_FlushAll function with reduced logging
and no duplicate elements

The following statement saves the data to disk with reduced logging and replaces
existing elements that have the same timestamps as new elements:
BEGIN WORK;
EXECUTE FUNCTION TSL_FlushAll(’ts_data|raw_reads’, 261);
COMMIT WORK;

Related tasks:
“Writing a loader program” on page 3-31
Related reference:
“TSL_FlushInfo function”

TSL_FlushInfo function
The TSL_FlushInfo function returns information about the last flush operation that
saved data to disk.

Syntax
TSL_FlushInfo(

handle lvarchar)
returns TSL_FlushInfo_r

handle The table and column name combination that was included in a
TSL_Flush, TSL_FlushAll, or TSL_Commit function.

Usage

Use the TSL_FlushInfo function to view information about the last time that time
series data for the specified table and column name was saved to disk as part of a
loader program. You can flush data to disk with the TSL_Flush, TSL_FlushAll, or
TSL_Commit function. You must run the TSL_FlushInfo function in the context of

Chapter 7. Time series SQL routines 7-129

a loader session that was initialized by the TSL_Init function.

Returns

A row type that has the following format:
TSL_FlushInfo_r
(

containers integer,
elements integer,
duplicates integer,
instance_ids integer,
commits integer,
rollbacks integer,
exceptions integer,
errors integer

);

containers
The number of containers that were affected by the flush.

elements
The number of elements that were affected by the flush.

duplicates
The number of duplicate values that were inserted for irregular time series,
if the writeflag value was 1 or 257.

instance_ids
The number of time series instances that were affected by the flush.

commits
The number of committed transactions, for the TSL_Commit function. For
the TSL_Flush and TSL_FlushAll functions, this number is always 0.

rollbacks
For the TSL_Commit function, whether transactions were rolled back:

0 = no rolled back transactions

1 = a transaction was interrupted by the user

exceptions
The number of exceptions that were raised during the flush. For example,
attempting to insert an element that has a timestamp that is before the
origin results in an exception. Attempting to save data into a container that
does not have enough available space also results in an exception.

errors The number of errors in the load operation. For example, incorrectly
formatted input data results in an error.

Example

The following statement returns the results of the TSL_FlushInfo function as a
table:
SELECT mr.*
FROM TABLE(TSL_FlushInfo(’ts_data|raw_reads’)) AS TAB(mr);

containers 4
elements 198458
duplicates 0
instance_ids 522

7-130 IBM Informix TimeSeries Data User's Guide

commits 4
rollbacks 0
exceptions 0
errors 0

Related tasks:
“Writing a loader program” on page 3-31
Related reference:
“TSL_Commit function” on page 7-124
“TSL_FlushAll function” on page 7-128
“TSL_Flush function” on page 7-126

TSL_FlushStatus function
The TSL_FlushStatus function presents the return value of the TSL_Flush function
in a format that is easier to read.

Syntax
TSL_FlushStatus(

value integer)
returns integer, integer

value The TSL_Flush function.

Returns

Two 16-bit integers that indicate the status of the TSL_Flush function:
v The number of containers into which elements are inserted.
v The total number of elements that are inserted.

A return value of -1 indicates that the process was interrupted or encountered a
severe error.

Example

The following statement runs the TSL_Flush function and returns the number of
containers that are affected and the number of elements that are inserted as
integers:
EXECUTE FUNCTION TSL_FlushStatus(TSL_FLush(’ts_data|raw_reads’));

Related reference:
“TSL_Flush function” on page 7-126

TSL_GetKeyContainer function
The TSL_GetKeyContainer function returns the name of the container that stores
the time series values for the specified primary key value.

Syntax
TSL_GetKeyContainer(

handle lvarchar,
key_value lvarchar)

returns varchar(128)

handle The table and column name combination returned by the TSL_Attach or
the TSL_Init function.

Chapter 7. Time series SQL routines 7-131

key_value
The primary key value. If the primary key contains multiple columns,
separate each value by a pipe character.

Usage

Use the TSL_GetKeyContainer function to determine into which container the
specified data is loaded. If you load data in multiple sessions, you can configure
the sessions to load into different containers. You must run the
TSL_GetKeyContainer function in the context of a loader session that was
initialized by the TSL_Init function.

Returns

The name of the container.

Examples

The following statement returns the name of the container associated with the time
series data for the primary key value of 1 in the meter table:
EXECUTE FUNCTION TSL_GetKeyContainer(’meter|readings’, ’1’);

Related tasks:
“Writing a loader program” on page 3-31

TSL_GetLogMessage function
The TSL_GetLogMessage function specifies how many messages are retrieved
from the loader message queue.

Syntax
TSL_GetLogMessage(

handle lvarchar,
max_messages integer)

returns lvarchar

handle The table and column name combination returned by the TSL_Attach
function.

max_messages
0 = All messages are retrieved.

A positive integer = The number of messages to retrieve. If the number is
greater than the total number of messages in the queue, all messages are
retrieved.

Usage

Use the TSL_GetLogMessage function to retrieve loader messages as part of a
loader program. To retrieve messages, the log mode must be set to 2 so that
messages are sent to the loader program. The log mode is set by the TSL_Init
function or reset by the TSL_SetLogMode function. You must run the
TSL_GetLogMessage function in the context of a loader session that was
initialized by the TSL_Init function. You can use the TSL_GetLogMessage
function to monitor that data that is loaded by the TSL_Put function and saved to
disk by the TSL_Flush function.

7-132 IBM Informix TimeSeries Data User's Guide

The TSL_GetLogMessage function is an iterator function. You can retrieve the
messages with an SQL cursor through a virtual table.

Returns

The specified number of messages from the loader message queue. If NULL is
returned, the loader message queue is empty.

Examples

In the context of a loader program, the following statement retrieves 50 messages
from the loader message log:
EXECUTE FUNCTION TSL_GetLogMessage(’ts_data-raw_reads’,50);

Related tasks:
“Writing a loader program” on page 3-31

TSL_Init function
The TSL_Init function initializes a session for loading data.

Syntax
TSL_Init(

table_name varchar(128),
column_name varchar(128))

returns lvarchar;

TSL_Init(
table_name varchar(128),
column_name varchar(128)
tstamp_format varchar(25))

returns lvarchar;

TSL_Init(
table_name varchar(128),
column_name varchar(128),
tstamp_format varchar(25),
reject_file varchar(255))

returns lvarchar;

TSL_Init(
table_name varchar(128),
column_name varchar(128),
log_type integer,
log_level integer,
logfile lvarchar)

returns lvarchar;

TSL_Init(
table_name varchar(128),
column_name varchar(128),
log_type integer,
log_level integer,
logfile lvarchar,
tstamp_format lvarchar)

returns lvarchar;

TSL_Init(
table_name varchar(128),
column_name varchar(128),
log_type integer,
log_level integer,
logfile lvarchar,

Chapter 7. Time series SQL routines 7-133

tstamp_format lvarchar,
reject_file lvarchar)

returns lvarchar;

TSL_Init(
table_name varchar(128),
column_name varchar(128),
log_type integer,
log_level integer,
logfile lvarchar,
tstamp_format lvarchar,
reject_file lvarchar,
where_clause lvarchar)

returns lvarchar;

table_name
The name of the time series table. Must not contain uppercase letters. The
table must contain a TimeSeries column and have a primary key.

column_name
The name of the TimeSeries column. Must not contain uppercase letters.

log_type (Optional)
The type of message log:

0 = No message log

1 = Log all messages to the specified file

2 = Log all messages in a queue for the loader program for retrieval by the
TSL_GetLogMessage function

3 = Default. Log all messages to the server message log

log_level (Optional)
The severity of information that is included in the message log file:

2 = Warning messages and error messages.

4 = Default. Error messages.

logfile (Optional)
If the value of the log_type argument is set to 1, the path and file name of
the loader message log file. If the log_type argument is set to a value other
than 1, the logfile argument is ignored.

tstamp_format (Optional)
The string that describes the format of the timestamp. The default format
is: %Y-%m-%d %H:%M:%S. The string must conform to the format
specified by the DBTIME environment variable, but can include a pipe
character (|) between the date portion and the time portion. The pipe
character indicates that the date and the time are in separate fields. For
example, you can use a two-field format: %Y-%m-%d|%H:%M:%S.

reject_file (Optional)
The path and file name for storing records that were not applied. For
example, records with an incorrect number of fields or a formatting error
are not applied. By default, only the number of rejected records is
recorded.

where_clause (Optional)
Additional predicate to append to the WHERE clause that is generated by
loader. The predicate can identify a subset of time series data to load.
Because the WHERE clause limits the entire loader session to a subset of

7-134 IBM Informix TimeSeries Data User's Guide

time series data, use caution when you include the WHERE clause. The
predicate must start with the keyword AND. For example: AND meter_id =
"A100"

Usage

Use the TSL_Init function to initialize a session as part of a loader program. The
TSL_Init function must be the first function that you run in your loader program.
The TSL_Init function creates a global context for the loader and opens a database
session. You can open additional database sessions by running the TSL_Attach
function. You can close a database session by running the TSL_SessionClose
function. The global context remains in effect until you run the TSL_Shutdown
function or restart the database server.

You must run the TSL_Init function within an EXECUTE FUNCTION statement.
You cannot run the TSL_Init function in a SELECT statement.

Returns
v A session handle that consists of a table name and a TimeSeries column name.
v An exception or NULL if the session was not initialized.

Example

The following statement initializes a loader session for a table named ts_data and a
TimeSeries column named raw_reads:
EXECUTE FUNCTION TSL_Init(’ts_data’,’raw_reads’,

’%Y-%m-%d %H:%M:%S’,’/tmp/rejects.log’,NULL);

The input data uses a single-column timestamp format. The rejected records are
saved in a file.
Related tasks:
“Writing a loader program” on page 3-31
Related reference:

DBTIME environment variable (SQL Reference)

TSL_Put function
The TSL_Put function loads time series data.

Syntax
TSL_Put(

handle lvarchar,
elementlist lvarchar)

returns integer

TSL_Put(
handle lvarchar,
elementlist CLOB)

returns integer

handle The table and column name combination that is returned by the
TSL_Attach or the TSL_Init function.

elementlist
A buffer that contains the time series data to load. That maximum size of a
buffer is 32 KB. Can be a file as a CLOB data type.

Chapter 7. Time series SQL routines 7-135

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_230.htm#ids_sqr_230

The element list must have the following format:
primary_key|timestamp|values|

primary_key
One or more column values that comprise the primary key, which
are separated by pipe characters. If this field is empty, the value
from the previous line is used.

timestamp
The format of the timestamp is specified by the timestamp_format
argument of the TSL_Init function. The default format of the
timestamp is: YYYY-mm-dd HH:MM:SS (year-month-day
hour:minute:seconds).

values

Values for the columns in the TimeSeries subtype. Separate
multiple values with pipe characters and end the list of values
with a pipe character.

Each element must be on a separate line. Each line must end with a
newline character (\n). If necessary, enable newline characters in quoted
strings by setting the ALLOW_NEWLINE configuration parameter or
running the IFX_ALLOW_NEWLINE() procedure.

Usage

Use the TSL_Put function to load time series data as part of a loader program. You
must run the TSL_Put function in the context of a loader session that was
initialized by the TSL_Init function. You can run the TSL_Put function multiple
times in the same session. The data is stored in the database server until you run
the TSL_Flush function to write the data to disk.

Returns
v An integer that indicates the number of records that were inserted.
v An exception if no records were inserted.

Examples

These examples run in the context of an initialized loader session.

Example: Load an element

The following statement loads one element into a table named tsdata that has a
primary key column named pkcol:
EXECUTE FUNCTION TSL_Put(’tsdata|pkcol’,’MX230001|2011-01-01|00:00:00|23.4|56.7|’);

Example 2: Load a file

The following statement loads data from a file name tsdata.unl that is converted
to a CLOB data type:
EXECUTE FUNCTION TSL_Put(’tsdata|pkcol’,FileToClob(’/data/tsdata.unl’,’server’));

Example 3: Element list format

The following element list contains a value for every primary key and date field,
even if the values are the same as the previous element:

7-136 IBM Informix TimeSeries Data User's Guide

MX230001|2011-01-01|00:00:00|23.4|56.7|
MX230001|2011-01-01|01:00:00|34.7|57.8|
MX230001|2011-01-01|02:00:00|12.8|58.3|
MX230001|2011-01-01|03:00:00|18.4|59.1|
MX672382|2011-01-01|00:00:00|3.2|0.0|
MX672382|2011-01-01|01:00:00|4.7|0.0|
MX672382|2011-01-01|02:00:00|5.8|0.0|
MX672382|2011-01-01|03:00:00|1.3|0.0|

The following element list is equivalent to the previous list, but requires less room
in the input buffer because duplicate primary key and date values are omitted:
MX230001|2011-01-01|00:00:00|23.4|56.7|
	01:00:00	34.7	57.8
	02:00:00	12.8	58.8
	03:00:00	18.4	59.1
MX672382	2011-01-01	00:00:00	3.2
	01:00:00	4.7	0.0
	02:00:00	5.8	0.0
	03:00:00	1.3	0.0

The following element list has a primary key that has multiple columns. The
values in the primary key that repeat are omitted:
MX23001|AQ74D|2011-01-01|00:00:00|23.11|98.43|
||AQ74E|||22.71|97.65|
||||00:01:00|22.69|94.56|
MX23002|AV90A|2011-01-01|00:00:00|23.12|91.43|

Related tasks:
“Writing a loader program” on page 3-31
Related reference:

ALLOW_NEWLINE configuration parameter (Administrator's Reference)

IFX_ALLOW_NEWLINE Function (SQL Syntax)

TSL_PutRow function
The TSL_PutRow function loads a row of time series data.

Syntax
TSL_PutRow(

handle lvarchar,
primary_key lvarchar,
row ROW)

returns integer

handle The table and column name combination returned by the TSL_Attach or
the TSL_Init function.

primary_key
A primary key value. Can be a composite of multiple values separated by
a pipe symbol. For example, if a primary key in the source table consists of
two columns, id1 and id2, a primary key value where id1 is 5 and id2 is 2
is represented as: '5|2'.

row A ROW data type with values that are compatible with the TimeSeries
column in the handle.

Chapter 7. Time series SQL routines 7-137

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0021.htm#ids_adr_0021
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1570.htm#ids_sqs_1570

Usage

Use the TSL_PutRow function to load a row of time series data as part of a loader
program. You must run the TSL_PutRow function in the context of a loader
session that was initialized by the TSL_Init function.

You can run the TSL_PutRow function multiple times in the same session. The
data is stored in the database server until you run the TSL_Flush function to write
the data to disk.

Returns
v An integer that indicates the number of records that were inserted.
v An exception if no records were inserted.

Examples

This example runs in the context of an initialized loader session.

The following statement loads a row of data from a ROW data type that is cast to
the TimeSeries data type named readings:
EXECUTE FUNCTION TSL_PutRow(’meter|readings’, ’5’,

row(datetime(2011-01-01 00:15:00.00000) year to fraction(5),
1.0)::reading);

Related tasks:
“Writing a loader program” on page 3-31

TSL_PutSQL function
The TSL_PutSQL function loads time series data from a table.

Syntax
TSL_PutSQL(

handle lvarchar,
statement lvarchar)

returns integer

handle The table and column name combination that is returned by the
TSL_Attach or the TSL_Init function.

statement
An SQL statement that selects data from an existing database table. The
projection clause of the statement must consist of a primary key and the
time series data. The time series data can be multiple columns or a ROW
data type and must be compatible with the data type of the TimeSeries
column in the handle. The project clause can be one of the following
formats:

primary_key, timestamp, values

primary_key, row(timestamp, values)

primary_key
The primary key column, represented in character format. Can
consist of multiple column names concatenated and separated by a
pipe symbol. Cast to an LVARCHAR data type, if necessary. For
example, if the primary key in the source table consists of two
columns, named id1 and id2, the primary key column in the
projection clause is id1 || '|' || id2.

7-138 IBM Informix TimeSeries Data User's Guide

timestamp
The format of the timestamp is specified by the timestamp_format
argument of the TSL_Init function. The default format of the
timestamp is: YYYY-mm-dd HH:MM:SS (year-month-day
hour:minute:seconds).

values

Values for the columns in the TimeSeries subtype. Separate
multiple values with commas.

Usage

Use the TSL_PutSQL function to load time series data from another table as part
of a loader program. You must run the TSL_PutSQL function in the context of a
loader session that was initialized by the TSL_Init function.

You can run the TSL_PutSQL function multiple times in the same session. The
data is stored in the database server until you run the TSL_Flush function to write
the data to disk.

Returns
v An integer that indicates the number of records that were inserted.
v An exception if no records were inserted.

Examples

These examples run in the context of an initialized loader session.

Example 1: Load a primary key and multiple columns

The following example selects data from a table named dataload from a primary
key column, a timestamp column, and a column with other values:
EXECUTE FUNCTION TSL_PutSQL(’meter|readings’,
’SELECT id::lvarchar, tstamp, value FROM dataload’);

Example 2: Load a primary key and a ROW data type

The following example selects data from a table named dataload from a primary
key column and a ROW data type that consists of a timestamp field and a value
field:
EXECUTE FUNCTION TSL_PutSQL(’meter|readings’,
’SELECT id::lvarchar, row(tstamp, value) FROM dataload’);

Related tasks:
“Writing a loader program” on page 3-31

TSL_SessionClose function
The TSL_SessionClose function closes the current database session.

Syntax
TSL_SessionClose(

handle lvarchar)
returns int

handle The table and column name combination returned by the TSL_Attach or
the TSL_Init function.

Chapter 7. Time series SQL routines 7-139

Usage

Use the TSL_SessionClose function to close the current database session. The
TSL_SessionClose function does not affect the global context. Call the TSL_Flush
function to flush data to disk before calling the TSL_SessionClose function.

Returns
v 0 = The session was closed.
v 1 = An error occurred.

Example

The following statement closes a database session for the table ts_data and the
TimeSeries column raw_reads:
EXECUTE FUNCTION TSL_SessionClose(’ts_data|raw_reads’);

Related tasks:
“Writing a loader program” on page 3-31

TSL_SetLogMode function
The TSL_SetLogMode function specifies how messages about the loader are
logged.

Syntax
TSL_SetLogMode(

handle lvarchar,
log_type integer,
log_level integer,
logfile lvarchar)

returns integer

TSL_SetLogMode(
handle lvarchar,
log_type integer,
log_level integer)

returns integer

TSL_SetLogMode(
handle lvarchar,
log_level integer)

returns integer

handle The table and column name combination returned by the TSL_Attach
function.

log_type (Optional)
The type of message log:

0 = No message log

1 = Log all messages to the specified file

2 = Log all messages in a queue for the loader program for retrieval by the
TSL_GetLogMessage function

3 = Default. Log all messages to the server message log

log_level
The severity of information that is included in the message log file:

2 = Warning messages and error messages.

7-140 IBM Informix TimeSeries Data User's Guide

4 = Default. Error messages.

logfile (Optional)
If the value of the log_type argument is set to 1, the path and file name of
the loader message log file. If the log_type argument is set to a value other
than 1, the logfile argument is ignored.

Usage

Use the TSL_SetLogMode function in a loader program to specify the severity of
messages that are saved in the loader message log. You must run the
TSL_SetLogMode function in the context of a loader session that was initialized
by the TSL_Init function. The TSL_SetLogMode function changes the log mode
that was specified by the TSL_Init function for all loading sessions.

Returns
v 0 = The log mode was set.
v An error if the function failed.

Examples

The following statement saves loader warning and error messages to a file:
EXECUTE FUNCTION TSL_SetLogMode(’tsdata|raw_reads’,1,2,’/tmp/messag.log’);

Related tasks:
“Writing a loader program” on page 3-31

TSL_Shutdown procedure
The TSL_Shutdown procedure shuts down the loader application and releases all
resources.

Syntax
TSL_Shutdown(

handle lvarchar)

handle The table and column name combination returned by the TSL_Init
function.

Usage

Use the TSL_Shutdown procedure when data loading is complete. The
TSL_Shutdown procedure closes the global context and releases the associated
resources that are used by the loader application. Any virtual tables that were
created during the session are removed. Run the TSL_SessionClose function to
close each database session before running the TSL_Shutdown procedure.

Example
EXECUTE PROCEDURE TSL_Shutdown(’ts_data|raw_reads’);

Related tasks:
“Writing a loader program” on page 3-31

TSPrevious function
The TSPrevious function records the supplied argument and returns the last
argument it was passed.

Chapter 7. Time series SQL routines 7-141

Syntax
TSPrevious(value int)
returns int;

TSPrevious(value smallfloat)
returns smallfloat;

TSPrevious(value double precision)
returns double precision;

value The value to save.

Description

Use the TSPrevious function within the Apply function.

TSPrevious function is useful in comparing a value in a time series with the value
immediately preceding it. The TSPrevious function can take parameters that are
columns of a time series. Use the same parameter format that the Apply function
accepts.

Returns

The value previously saved. The first time TSPrevious is called, it returns NULL.

Example

See the example for the “TSCmp function” on page 7-90.
Related reference:
“Apply function” on page 7-18
“TSAddPrevious function” on page 7-90
“TSCmp function” on page 7-90
“TSDecay function” on page 7-122
“TSRunningAvg function” on page 7-147
“TSRunningSum function” on page 7-151

TSRollup function
The TSRollup function aggregates time series values by time for multiple rows in
the table.

Syntax
TSRollup(

ts TimeSeries,
’agg_express’ lvarchar)

RETURNS TimeSeries;

agg_express
A comma-separated list of the following elements, in any order:

SQL aggregate operator = AVG, COUNT, MIN, MAX, SUM, or the FIRST
and LAST operators. The FIRST operator returns a time series that contains
the first element that was entered into the database for each timestamp.
The LAST operator returns the last element that is entered for each
timestamp. You can include multiple operators. Each operator requires an
argument that is the column of the input time series, which is specified by
one of the following column identifiers:

7-142 IBM Informix TimeSeries Data User's Guide

$colname
The colname is the name of the column to aggregate in the
TimeSeries data type. For example, if the column name is high,
the column identifier is $high.

$colnumber
The colnumber is the position of the column to aggregate in the
TimeSeries data type. For example if the column number is 1, the
column identifier is $1.

$bson_field_name
The bson_field_name is the name of a field in at least one BSON
document in the BSON column in the TimeSeries data type. For
example, if the field name is v1, the column identifier is $v1. If the
BSON field name is the same as another column in the TimeSeries
data type, you must qualify the field name in one of the following
ways:
v $colname.bson_field_name

For example, if the BSON column name is b_data and the field
name is v1, the column identifier is $b_data.v1.

v $colnumber.bson_field_name

For example, if the BSON column number is 1 and the field
name is v1, the column identifier is $1.v1.

You must cast the results of the TSRollup function on a BSON
field to a TimeSeries data type that has the appropriate type of
columns for the result of the expression.

start(start_time) = Optional. Specifies the start of the time range on which
to operate. The value of start_time must be in the form of a DATETIME
value. No value indicates that the time range starts at the origin of the
time series. If you include the start argument more than once in the
aggregate expression, only the last start argument is used.

end(end_time) = Optional. Specifies the end of the time range on which to
operate. The value of end_time must be in the form of a DATETIME value.
No value indicates that the time range ends at the last element in the time
series. If you include the end argument more than once in the aggregate
expression, only the last end argument is used.

ts The name of the TimeSeries data type or a function that returns a
TimeSeries data type, such as AggregateBy.

Description

Use the TSRollup function to run one or more aggregate operators on multiple
rows of time series data in a table.

You can specify a time range on which to run the aggregate expression by
including the start and end arguments in the aggregate expression. Specifying the
time range in the TSRollup function is faster than first clipping the data by
running the Clip or AggregateBy function.

Returns

A TimeSeries data type that is the result of the expression or expressions.

Chapter 7. Time series SQL routines 7-143

Example: Sum of all electricity usage in a postal code

The following statement adds all the electricity usage values for each time stamp
in the ts_data table in the stores_demo database for the customers that have a
postal code of 94063:
SELECT TSRollup(raw_reads, "sum($value)")

FROM ts_data, customer, customer_ts_data
WHERE customer.zipcode = "94063"

AND customer_ts_data.customer_num = customer.customer_num
AND customer_ts_data.loc_esi_id = ts_data.loc_esi_id;

Example: Sum of daily electricity usage by postal code

Suppose that you have a table named ts_table that contains a user ID, the postal
code of the user, and the electricity usage data for each customer, which is
collected every 15 minutes and stored in a column named value in a time series
named ts_col. The following query returns the total amounts of electricity used
daily for each postal code for one month:
SELECT zipcode,

TSRollup(
AggregateBy(’SUM($value)’, ’cal1day’, ts_col, 0,

’2011-01-01 00:00:00.00000’, ’2011-01-31 23:45:00:00.00000’),
’SUM($value)’

)
FROM ts_table
GROUP BY zipcode;

The first argument to the TSRollup function is an AggregateBy function, which
sums the electricity usage for each customer for each day of January 2011. The
second argument is a SUM operator that sums the daily electricity usage by postal
code.

The resulting table contains a row for each postal code. Each row has a time series
that contains the sum of the electricity that is used by customers who live in that
postal code for each day in January 2011.

Example: Sum of electricity usage for one hour

The following example adds all the electricity usage values for the specified time
range of one hour in the ts_data table in the stores_demo database for the
customers that have a postal code of 94063:
SELECT TSRollup(raw_reads, "SUM($value), start(2010-11-10 11:45:00),

end(2010-11-10 12:45:00)")
FROM ts_data, customer, customer_ts_data
WHERE customer.zipcode = "94063"

AND customer_ts_data.customer_num = customer.customer_num
AND customer_ts_data.loc_esi_id = ts_data.loc_esi_id;

Example: Maximum value of a field in a BSON column

This example is based on the following row type and time series definition. The
TimeSeries row type contains an INTEGER column that is named v1 and the
BSON column contains a field that is also named v1.
CREATE ROW TYPE rb(timestamp datetime year to fraction(5), data bson, v1 int);

INSERT INTO tj VALUES(1,’origin(2011-01-01 00:00:00.00000), calendar(ts_15min),
container(kontainer),threshold(0), regular,[({"v1":99},20)]’);

7-144 IBM Informix TimeSeries Data User's Guide

The following statement creates a TimeSeries data type to hold the results of the
aggregation on the BSON field in an INTEGER column:
CREATE ROW TYPE outrow(timestamp datetime year to fraction(5), x int);

If a column and a BSON field have the same name, the column takes precedence.
The following statement returns the maximum value from the v1 INTEGER
column:
SELECT TSRollup(tsdata, ’max($v1)’) FROM tj;

TSRollup origin(2011-01-01 00:00:00.00000), calendar(ts_15min), container(),
threshold(0), regular, [(20)]

1 row(s) retrieved.

The following two equivalent statements return the maximum value from the v1
field in the data BSON column, which is column 1 in the TimeSeries row type:
SELECT TSRollup(tsdata, ’max($data.v1)’)::timeseries(outrow) FROM tj;
SELECT TSRollup(tsdata, ’max($1.v1)’)::timeseries(outrow) FROM tj;

TSRollup origin(2011-01-01 00:00:00.00000), calendar(ts_15min), container(),
threshold(0), regular, [(99.00000000000)]

1 row(s) retrieved.

The aggregated time series that is returned has the TimeSeries data type outrow.
If you do not cast the result to a row type that has appropriate columns for the
results, the statement fails.
Related reference:
“AggregateBy function” on page 7-11

TSRowNameToList function
The TSRowNameToList function returns a list (collection of rows) containing one
individual column from a time series column plus the non-time-series columns of a
table. Null elements are not added to the list.

Syntax
TSRowNameToList(ts_row row,

colname lvarchar)
returns list (row not null)

ts_row The time series to act on.

colname
The time series column to return.

Description

The TSRowNameToList function can only be used on rows with one TimeSeries
column.

You must cast the return variable to match the names and types of the columns
being returned exactly.

Returns

A list (collection of rows).

Chapter 7. Time series SQL routines 7-145

Example

The query returns a list of rows, each containing the ID and high columns.
select

TSRowNameToList(d, ’high’)::list(
row(id integer, name lvarchar, high real) not null)

from daily_stocks d;

Related reference:
“TSColNameToList function” on page 7-91
“TSColNumToList function” on page 7-92
“Transpose function” on page 7-86
“TSRowNumToList function”
“TSRowToList function” on page 7-147
“TSSetToList function” on page 7-153

TSRowNumToList function
The TSRowNumToList function returns a list (collection of rows) containing one
individual column from a time series column plus the non-time-series columns of a
table. Null elements are not added to the list.

Syntax
TSRowNumToList(ts_row row,

colnum integer)
returns list (row not null)

ts_row The time series to act on.

colnum The number of the time series column to return.

Description

The TSRowNumToList function can only be used on rows with one TimeSeries
column.

The column is specified by its number; column numbering starts at 1, with the first
column following the time stamp column.

You must cast the return variable to match the names and types of the columns
being returned exactly.

Returns

A list (collection of rows).

Example

The query returns a list of rows, each containing the ID , name, and high columns.
select

TSRowNumToList(d, 1)::list(row
(id integer, name lvarchar, high real) not null)
from daily_stocks d;

Related reference:
“TSColNameToList function” on page 7-91
“TSColNumToList function” on page 7-92

7-146 IBM Informix TimeSeries Data User's Guide

“TSRowNameToList function” on page 7-145
“Transpose function” on page 7-86
“TSRowToList function”
“TSSetToList function” on page 7-153

TSRowToList function
The TSRowToList function returns a list (collection of rows) containing the
individual columns from a time series column plus the non-time-series columns of
a table. Null elements are not added to the list.

Syntax
TSRowToList(ts_row row)
returns list (row not null)

ts_row A row value that contains a time series as one of its columns.

Description

The TSRowToList function can only be used on rows with one TimeSeries
column.

You must cast the return variable to match the names and types of the columns
being returned exactly.

Returns

A list (collection of rows).

Example

The query returns a list of rows, each containing the following columns: stock_id,
stock_name, t, high, low, final, vol.
select TSRowToList(d)::list(row(stock_id integer,

stock_name lvarchar,
t datetime year to fraction(5),
high real,
low real,
final real,
vol real) not null)

from daily_stocks d;

Related reference:
“TSRowNameToList function” on page 7-145
“TSRowNumToList function” on page 7-146
“Transpose function” on page 7-86
“TSColNameToList function” on page 7-91
“TSColNumToList function” on page 7-92
“TSSetToList function” on page 7-153

TSRunningAvg function
The TSRunningAvg function computes a running average over SMALLFLOAT or
DOUBLE PRECISION values.

Chapter 7. Time series SQL routines 7-147

Syntax
TSRunningAvg(value double precision,

num_values integer)
returns double precision;

TSRunningAvg(value real,
num_values integer)

returns double precision;

value The value to include in the running average.

num_values
The number of values to include in the running average, k.

Description

Use the TSRunningAvg function within the Apply function.

A running average is the average of the last k values, where k is supplied by the
user. If a value is NULL, the previous value is used. The running average for the
first k-1 values is NULL.

The TSRunningAvg function can take parameters that are columns of a time
series. Use the same parameter format that the Apply function accepts.

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

Returns

A SMALLFLOAT or DOUBLE PRECISION running average of the last k values.

Example

The example is based on the following row type:
create row type if not exists stock_bar (

timestamp datetime year to fraction(5),
high real,
low real,
final real,
vol real);

The example uses the following input data:
2011-01-03 00:00:00.00000 3 2 1 3
2011-01-04 00:00:00.00000 2 2 2 3
2011-01-05 00:00:00.00000 2 2 3 3
2011-01-06 00:00:00.00000 2 2 3

Notice the null value for the final column on 2011-01-06.

The SELECT query in the following example returns the closing price from the
final column and the 4-day moving average from the stocks in the time series:
select stock_name, Apply(’TSRunningAvg($final,4)’,

’2011-01-03 00:00:00.00000’::datetime year to fraction(5),
’2011-01-06 00:00:00.00000’::datetime year to fraction(5),
stock_data::TimeSeries(stock_bar))::TimeSeries(one_real)

from first_stocks;

The query returns the following result:

7-148 IBM Informix TimeSeries Data User's Guide

stock_name IBM
(expression) origin(2011-01-03 00:00:00.00000), calendar(daycal), container(),

threshold(20), regular, [(1.000000000000), (1.500000000000), (2.
000000000000), (2.000000000000)]

The fourth result is the same as the third result because the fourth value in the
final column is null.
Related reference:
“Apply function” on page 7-18
“TSAddPrevious function” on page 7-90
“TSCmp function” on page 7-90
“TSDecay function” on page 7-122
“TSPrevious function” on page 7-141
“TSRunningSum function” on page 7-151
“TSRunningCor function”
“TSRunningMed function” on page 7-150
“TSRunningVar function” on page 7-152

TSRunningCor function
The TSRunningCor function computes the running correlation of two time series
over a running window. The TSRunningCor function returns NULL if the variance
of either input is zero or NULL over the window.

Syntax
TSRunningCor(value1 double precision,

value2 double precision,
num_values integer)

returns double precision;

TSRunningCor(value1 real,
value2 real,
num_values integer)

returns double precision;

value1 The column of the first time series to use to calculate the running
correlation.

value2 The column of the second time series to use to calculate the running
correlation.

num_values
The number of values to include in the running correlation, k.

Description

Use the TSRunningCor function within the Apply function.

The TSRunningCor function runs over a fixed number of elements, not over a
fixed length of time; therefore, it might not be appropriate for irregular time series.

The first set of (num_values - 1) outputs result from shorter windows (the first
output is derived from the first input time, the second output is derived from the
first two input times, and so on). Null elements in the input also result in
shortened windows.

Chapter 7. Time series SQL routines 7-149

The TSRunningCor function can take parameters that are columns of a time series.
Use the same parameter format that the Apply function accepts.

Returns

A DOUBLE PRECISION running correlation of the last k values.

Example

This statement finds the running correlation between stock data for IBM and AA1
over a 20 element window. Again, the first 19 output elements are exceptions
because they result from windows of fewer than 20 elements. The first is NULL
because correlation is undefined for just one element.
select Apply(’TSRunningCor($0.high, $1.high, 20)’,

ds1.stock_data::TimeSeries(stock_bar),
ds1.stock_data::TimeSeries(stock_bar))::TimeSeries(one_real)

from daily_stocks ds1, daily_stocks ds2
where ds1.stock_name = ’IBM’
and ds2.stock_name = ’AA1’;

Tip: When a start date is supplied to the Apply function, the first (num_values - 1)
output elements are still formed from incomplete windows. The Apply function
never looks at data before the specified start date.
Related reference:
“Apply function” on page 7-18
“TSRunningAvg function” on page 7-147
“TSRunningMed function”
“TSRunningSum function” on page 7-151
“TSRunningVar function” on page 7-152

TSRunningMed function
The TSRunningMed function computes the median of a time series over a running
window. This function is useful only when used within the Apply function.

Syntax
TSRunningMed(value double precision,

num_values integer)
returns double precision;

TSRunningMed(value real,
num_values integer)

returns double precision;

value The first input value to use to calculate the running median. Typically, the
name of a DOUBLE, FLOAT, or REAL column in your time series.

num_values
The number of values to include in the running median, k.

Description

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

The first (num_values - 1) outputs result from shorter windows (the first output is
derived from the first input time, the second output is derived from the first two

7-150 IBM Informix TimeSeries Data User's Guide

input times, and so on). Null elements in the input also result in shortened
windows.

Returns

A DOUBLE PRECISION running median of the last k values.

Example

This statement produces a time series from the running median over a 10-element
window of the column high of stock_data. You can refer to the columns of a time
series as $colname or $colnumber: for example, $high, or $1.
select stock_name, Apply(’TSRunningMed($high, 10)’,

stock_data::TimeSeries(stock_bar))::
TimeSeries(one_real)

from daily_stocks;

Related reference:
“TSRunningCor function” on page 7-149
“Apply function” on page 7-18
“TSRunningAvg function” on page 7-147
“TSRunningSum function”
“TSRunningVar function” on page 7-152

TSRunningSum function
The TSRunningSum function computes a running sum over SMALLFLOAT or
DOUBLE PRECISION values.

Syntax
TSRunningSum(value smallfloat,

num_values integer)
returns smallfloat;

TSRunningSum(value double precision,
num_values integer)

returns double precision;

value The input value to include in the running sum.

num_values
The number of values to include in the running sum, k.

Description

A running sum is the sum of the last k values, where k is supplied by the user. If a
value is NULL, the previous value is used.

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

This function is useful only when used within the Apply function.

Returns

A SMALLFLOAT or DOUBLE PRECISION running sum of the last k values.

Chapter 7. Time series SQL routines 7-151

Example

The following function calculates the volume accumulation percentage. The columns
represented by a through e are: high, low, close, volume, and number_of_days,
respectively:
create function VAP(a float, b float,c float,d float, e int) returns int;
return cast(100 * TSRunningSum(d * ((c - b) - (a - c))/
(.0001 + a - b), e)/(.0001 + TSRunningSum(d,e)) as int);
end function;

Related reference:
“Apply function” on page 7-18
“TSAddPrevious function” on page 7-90
“TSCmp function” on page 7-90
“TSDecay function” on page 7-122
“TSPrevious function” on page 7-141
“TSRunningAvg function” on page 7-147
“TSRunningCor function” on page 7-149
“TSRunningMed function” on page 7-150
“TSRunningVar function”

TSRunningVar function
The TSRunningVar function computes the variance of a time series over a running
window.

Syntax
TSRunningVar(value double precision,

num_values integer)
returns double precision;

TSRunningVar(value real,
num_values integer)

returns double precision;

value The first input value to use to calculate the running correlation.

num_values
The number of values to include in the running variance, k.

Description

Use the TSRunningVar function within the Apply function.

This function runs over a fixed number of elements, not over a fixed length of
time; therefore, it might not be appropriate for irregular time series.

The first (num_values - 1) outputs are exceptions because they result from shorter
windows (the first output is derived from the first input time, the second output is
derived from the first two input times, and so on). Null elements in the input also
result in shortened windows.

The TSRunningVar function can take parameters that are columns of a time series.
Use the same parameter format that the Apply function accepts.

7-152 IBM Informix TimeSeries Data User's Guide

Returns

A DOUBLE PRECISION running variance of the last k values.

Example

This statement produces a time series with the same length and calendar as
stock_data but with one data column other than the time stamp. Element n of the
output is the variance of column 1 of stock_bar elements n-19, n-18, ... n. The
first 19 elements of the output are a bit different: the first element is NULL, because
variance is undefined for a series of 1. The second output element is the variance
of the first two input elements, and so on.

If element i of stock_data is NULL, or if column 1 of element i of stock_data is NULL,
output elements i, i + 1, ... i + 19, are variances of just 19 numbers (assuming
that there are no other null values in the input window).
select stock_name, Apply(’TSRunningVar($0.high, 20)’,

stock_data::TimeSeries(stock_bar))::
TimeSeries(one_real)

from daily_stocks;

Related reference:
“Apply function” on page 7-18
“TSRunningAvg function” on page 7-147
“TSRunningCor function” on page 7-149
“TSRunningMed function” on page 7-150
“TSRunningSum function” on page 7-151

TSSetToList function
The TSSetToList function takes a TimeSeries column and returns a list (collection
of rows) containing all the elements in the time series. Null elements are not added
to the list.

Syntax
TSSetToList(ts TimeSeries)
returns list (row not null)

ts The time series to act on.

Description

Because this aggregate function can return rows of any type, the return value must
be explicitly cast at runtime.

Returns

A list (collection of rows).

Example

The following query collects all the elements in all the time series in the stock_data
column into a list and then selects out the high column from each element.
select high from table((select

TsSetToList(stock_data)::list(stock_bar
not null) from daily_stocks));

Chapter 7. Time series SQL routines 7-153

Related reference:
“TSColNameToList function” on page 7-91
“TSColNumToList function” on page 7-92
“TSRowNameToList function” on page 7-145
“TSRowNumToList function” on page 7-146
“Transpose function” on page 7-86
“TSRowToList function” on page 7-147

TSToXML function
The TSToXML function returns an XML representation of a time series.

Syntax
TSToXML(doctype lvarchar,

id lvarchar,
ts timeseries,
output_max integer default 0)

returns lvarchar;

TSToXML(doctype lvarchar,
id lvarchar,
ts timeseries)

returns lvarchar;

doctype
The name of the topmost XML element.

id The primary key value in the time series table that uniquely identifies the
time series.

ts The name of the TimeSeries subtype.

output_max
The maximum size, in bytes, of the XML output. If the parameter is absent,
the default value is 32 768. The following table describes the results for
each possible value of the output_max parameter.

Value Result

no value 32 768 bytes

negative integer 232-1 bytes

1 through 4096 4096 bytes

4096 through 232-1 the specified number of bytes

Description

Use the TSToXML function to provide a standard representation for information
exchange in XML format for small amounts of data.

The top-level tag in the XML output is the first argument to the TSToXML
function.

The id tag must uniquely identify the time series and refer the XML output to the
row on which it is based.

The AllData tag indicates whether all the data was returned or the data was
truncated because it exceeded the size set by the output_max parameter.

7-154 IBM Informix TimeSeries Data User's Guide

The remaining XML tags represent the TimeSeries subtype and its columns,
including the time stamp.

The special characters <, >, &, ', and " are replaced by their XML predefined
entities.

Returns

The specified time series in XML format, up to the size set by the output_max
parameter. The AllData tag indicates whether all the data was returned (1) or
whether the data was truncated (0).

Example

The following query selects the time series data for one hour by using the Clip
function from the TimeSeries subtype named actual to return in XML format:
SELECT TSToXML(’meterdata’, esi_id,

Clip(actual, ’2010-09-08 12:00:00’::datetime year to second,
’2010-09-08 13:00:00’::datetime year to second))

FROM ts_data
WHERE esi_id = ’2250561334’;

The following XML data is returned:
<meterdata>

<id>2250561334</id>
<AllData>1</AllData>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>0.9170000000</value>

</meter_data>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>0.4610000000</value>

</meter_data>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>4.1570000000</value>

</meter_data>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>6.3280000000</value>

</meter_data>
<meter_data>

<tstamp>2010-09-08 12:15:00.00000</tstamp>
<value>2.6690000000</value>

</meter_data>
</meterdata>

The name of the TimeSeries subtype is meter_data and its columns are tstamp and
value.

The value of 1 in the AllData tag indicates that for this example, all data was
returned.
Related concepts:
“Planning for accessing time series data” on page 1-24
Related reference:
“Time series routines that run in parallel” on page 7-7

Chapter 7. Time series SQL routines 7-155

Unary arithmetic functions
The standard unary functions Abs, Acos, Asin, Atan, Cos, Exp, Logn, Negate,
Positive, Round, Sin, Sqrt, and Tan are extended to operate on time series.

Syntax
Function(ts TimeSeries)
returns TimeSeries;

ts The time series to act on.

Description

The resulting time series has the same regularity, calendar, and sequence of time
stamps as the input time series. It is derived by applying the function to each
element of the input time series.

If there is a variant of the function that operates directly on the input element type,
then that variant is applied to each element. Otherwise, the function is applied to
each non-time stamp column of the input time series.

Returns

The same type of time series as the input; unless it is cast, then it returns the type
of time series to which it is cast.

Example

The following query converts the daily stock price and volume data into log space:
create table log_stock (stock_id int, data TimeSeries(stock_bar));
insert into log_stock

select stock_id, Logn(stock_data)
from daily_stocks;

Related reference:
“Abs function” on page 7-11
“Acos function” on page 7-11
“ApplyUnaryTsOp function” on page 7-26
“Asin function” on page 7-27
“Atan function” on page 7-27
“Binary arithmetic functions” on page 7-27
“Cos function” on page 7-38
“Exp function” on page 7-48
“Logn function” on page 7-74
“Negate function” on page 7-75
“Positive function” on page 7-77
“Round function” on page 7-84
“Sin function” on page 7-85
“Sqrt function” on page 7-85
“Tan function” on page 7-86
“Apply function” on page 7-18

7-156 IBM Informix TimeSeries Data User's Guide

Union function
The Union function performs a union of multiple time series, either over the entire
length of each time series or over a clipped portion of each time series.

Syntax
Union(ts TimeSeries,...)
returns TimeSeries;

Union(set_ts set(TimeSeries))
returns TimeSeries;

Union(begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
ts TimeSeries,...)

returns TimeSeries;

Union(begin_stamp datetime year to fraction(5),
end_stamp datetime year to fraction(5),
set_ts set(TimeSeries))

returns TimeSeries;

ts The time series that form the union. Union can take from two to eight time
series arguments.

set_ts A set of time series.

begin_stamp
The begin point of the clip.

end_stamp
The end point of the clip.

Description

The second and fourth forms of the function perform a union of a set of time
series. The resulting time series has one DATETIME YEAR TO FRACTION(5)
column, followed by each column in each time series, in order. When using the
second or fourth form, it is important to ensure that the order of the time series in
the set is deterministic so that the elements remain in the correct order.

Since the type of the resulting time series is different from that of the input time
series, the result of the union must be cast.

Union can be thought of as an outer join on the time stamp.

In a union, the resulting time series has a calendar that is the combination of the
calendars of the input time series with the OR operator. The resulting calendar is
stored in the CalendarTable table. The name of the resulting calendar is a string
containing the names of the calendars of the input time series, separated by a
vertical bar (|). For example, if two time series are combined, and mycal and
yourcal are the names of their corresponding calendars, the resulting calendar is
named mycal|yourcal. If all the time series have the same calendar, then Union
does not create a new calendar.

For a regular time series, if a time series does not have a valid element at a
timepoint of the resulting calendar, the value for that time series element is NULL.

To be certain of the order of the columns in the resultant time series when using
Union over a set, use the ORDER BY clause.

Chapter 7. Time series SQL routines 7-157

For the purposes of Union, the value at a given timepoint is that of the most
recent valid element. For regular time series, this is the value corresponding to the
current interval, which can be NULL; it is not necessarily the most recent non-null
value. For irregular time series, this condition never occurs since irregular time
series do not have null intervals.

For example, consider the union of two irregular time series, one containing bid
prices for a certain stock, and one containing asking prices. The union of the two
time series contains bid and ask values for each timepoint at which a price was
either bid or asked. Now consider a timepoint at which a bid was made but no
price was asked. The union at that timepoint contains the bid price offered at that
timepoint, along with the most recent asking price.

If an intersection involves one or more regular time series, the resulting time series
starts at the latest of the start points of the input time series and ends at the
earliest of the end points of the regular input time series. If all the input time
series are irregular, the resulting irregular time series starts at the latest of the start
points of the input time series and ends at the latest of the end points. If a union
involves one or more time series, the resulting time series starts at the first of the
start points of the input time series and ends at the latest of the end points of the
input time series. Other than this difference in start and end points, and of the
resulting calendar, there is no difference between union and intersection involving
time series.

Apply also combines multiple time series into a single time series. Therefore, using
Union within Apply is often unnecessary.

Returns

The time series that results from the union.

Example

The following query constructs the union of time series for two different stocks:
select Union(s1.stock_data,

s2.stock_data)::TimeSeries(stock_bar_union)
from daily_stocks s1, daily_stocks s2
where s1.stock_name = ’IBM’ and s2.stock_name = ’HWP’;

The following example finds the union of two time series and returns data only for
time stamps between 2011-01-03 and 2011-01-05:
select Union(’2011-01-03 00:00:00.00000’

::datetime year to fraction(5),
’2011-01-05 00:00:00.00000’
::datetime year to fraction(5),
s1.stock_data,
s2.stock_data)::TimeSeries(stock_bar_union)

from daily_stocks s1, daily_stocks s2
where s1.stock_name = ’IBM’ and s2.stock_name = ’HWP’;

Related reference:
“Time series routines that run in parallel” on page 7-7
“Apply function” on page 7-18
“Intersect function” on page 7-71

7-158 IBM Informix TimeSeries Data User's Guide

UpdElem function
The UpdElem function updates an existing element in a time series.

Syntax
UpdElem(ts TimeSeries,

row_value row,
flags integer default 0)

returns TimeSeries;

ts The time series to update.

row_value
The new row data.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

The element must be a row type of the correct type for the time series, beginning
with a time stamp. If there is no element in the time series with the given time
stamp, an error is raised.

Hidden elements cannot be updated.

The API equivalent of UpdElem is ts_upd_elem().

Returns

A new time series containing the updated element.

Example

The following example updates a single element in an irregular time series:
update activity_stocks
set activity_data = UpdElem(activity_data,

row(’2011-01-04 12:58:09.12345’, 6.75, 2000,
2, 007, 3, 1)::stock_trade)

where stock_id = 600;

Related tasks:
“Mapping time series data types” on page 8-4
Related reference:
“DelElem function” on page 7-43
“GetElem function” on page 7-52
“InsElem function” on page 7-69
“PutElem function” on page 7-77
“UpdSet function” on page 7-160
“The ts_upd_elem() function” on page 9-54

UpdMetaData function
The UpdMetaData function updates the user-defined metadata in the specified
time series.

Chapter 7. Time series SQL routines 7-159

Syntax
create function UpdMetaData(ts TimeSeries,

metadata TimeSeriesMeta)
returns TimeSeries;

ts The time series for which to update metadata.

metadata
The metadata to be added to the time series. Can be NULL.

Description

This function adds the supplied user-defined metadata to the specified time series.
If the metadata argument is NULL, then the time series is updated to contain no
metadata. If it is not NULL, then the user-defined metadata is stored in the time
series.

Returns

The time series updated to contain the supplied metadata, or the time series with
metadata removed, if the metadata argument is NULL.
Related tasks:
“Creating a time series with metadata” on page 3-23
Related reference:
“GetMetaData function” on page 7-59
“GetMetaTypeName function” on page 7-59
“TSCreate function” on page 7-116
“TSCreateIrr function” on page 7-118
“The ts_create_with_metadata() function” on page 9-18
“The ts_get_metadata() function” on page 9-31
“The ts_update_metadata() function” on page 9-54

UpdSet function
The UpdSet function updates a set of existing elements in a time series.

Syntax
UpdSet(ts TimeSeries,

set_ts multiset,
flags integer default 0)

returns TimeSeries;

ts The time series to update.

set_ts A set of rows that replace existing elements in the given time series, ts.

flags Valid values for the flags argument are described in “The flags argument
values” on page 7-9. The default is 0.

Description

The rows in set_ts must be of the correct type for the time series, beginning with a
time stamp; otherwise, an error is raised. If the time stamp of any element does
not correspond to an element already in the time series, an error is raised, and the
entire update is void.

7-160 IBM Informix TimeSeries Data User's Guide

Hidden elements cannot be updated.

Returns

The updated time series.

Example

The following example updates elements in a time series:
update activity_stocks
set activity_data = (select UpdSet(activity_data, set_data)

from activity_load_tab where stock_id = 600)
where stock_id = 600;

Related reference:
“DelClip function” on page 7-42
“DelTrim function” on page 7-45
“InsSet function” on page 7-70
“PutSet function” on page 7-80
“UpdElem function” on page 7-159

WithinC and WithinR functions
The WithinC and WithinR functions perform calendar-based queries, converting
among time units and doing the calendar math to extract periods of interest from a
time series value.

Syntax
WithinC(ts TimeSeries,

tstamp datetime year to fraction(5),
interval lvarchar,
num_intervals integer,
direction lvarchar)

returns TimeSeries;

WithinR(ts TimeSeries,
tstamp datetime year to fraction(5),
interval lvarchar,
num_intervals integer,
direction lvarchar)

returns TimeSeries;

ts The source time series.

tstamp The timepoint of interest.

interval
The name of an interval: second, minute, hour, day, week, month, or year.

num_intervals
The number of intervals to include in the output.

direction
The direction in time to include intervals. Possible values are:
v FUTURE, or F, or f
v PAST, or P, or p

Chapter 7. Time series SQL routines 7-161

Description

Every time series has a calendar that describes the active and inactive periods for
the time series and how often they occur. A regular time series records one value
for every active period of the calendar. Calendars can have periods of a second, a
minute, an hour, a day, a week, a month, or a year. Given a time series, you might
want to pose calendar-based queries on it, such as, “Show me all the values in this
daily series for six years beginning on May 31, 2004,” or “Show me the values in
this hourly series for the week including December 27, 2010.”

The Within functions are the primary mechanism for queries of this form. They
convert among time units and do the calendar math to extract periods of interest
from a time series value. There are two fundamental varieties of Within queries:
calibrated (WithinC) and relative (WithinR).

WithinC, or within calibrated, takes a time stamp and finds the period that
includes that time. Weeks have natural boundaries (Sunday through Saturday), as
do years (January 1 through December 31), months (first day of the month through
the last), 24-hour days, 60-minute hours, and 60-second minutes. WithinC allows
you to specify a time stamp and find the corresponding period (or periods) that
include it.

For example, July 2, 2010, fell on a Friday. Given an hourly time series, WithinC
allows you to ask for all the hourly values in the series beginning on Sunday
morning at midnight of that week and ending on Saturday night at 11:59:59. Of
course, the calendar might not mark all of those hours as active; only data from
active periods is returned by the Within functions.

WithinR, or within relative, takes a time stamp from the user and finds the period
beginning or ending at that time. For example, given a weekly time series,
WithinR can extract all the weekly values for two years beginning on June 3, 2008.
WithinR is able to convert weeks to years and count forward or backward from
the supplied date for the number of intervals requested. Relative means that you
supply the exact time stamp of interest as the begin point or end point of the
range.

WithinR behaves slightly differently for irregular than for regular time series. With
regular time series, the time stamp argument is always mapped to a timepoint in
accordance with the argument time series calendar interval. Relative offsetting is
then performed starting with that point.

In irregular time series, the corresponding calendar interval does not indicate
where time series elements are, and therefore offsetting begins at exactly the time
stamp specified. Also, since irregular elements can appear at any point within the
calendar time interval, WithinR returns elements with time stamps up to the last
instant of the argument interval.

For example, assume an irregular time series with a daily calendar turning on all
weekdays. The following function returns elements in the following interval
(excluding the endpoint):
WithinR(stock_data, ’2010-07-11 07:37:18’, ’day’, 3, ’future’)
[2010-07-11 07:37:18, 2010-07-14 07:37:18]

In a regular time series, the interval is as follows, since each timepoint corresponds
to the period containing the entire following day:
[2010-07-11 00:00:00, 2010-07-13 00:00:00]

7-162 IBM Informix TimeSeries Data User's Guide

Both functions take a time series, a time stamp, an interval name, a number of
intervals, and a direction.

The supplied interval name is not required to be the same as the interval stored by
the time series calendar, but it cannot be smaller than that interval. For example,
given an hourly time series, the Within functions can count forward or backward
for hours, days, weeks, months, or years, but not for minutes or seconds.

The direction argument indicates which periods other than the period containing
the time stamp should be included; if there is only one period, the direction
argument is moot.

For both WithinC and WithinR, the requested timepoint is included in the output.

Returns

A new time series with the same calendar as the original, but containing only the
requested values.

Example

The following query retrieves data from the calendar week that includes Friday,
January 4, 2011:
select WithinC(stock_data, ’2011-01-04 00:00:00.00000’,

’week’, 1, ’PAST’)
from daily_stocks
where stock_name = ’IBM’;

The query returns the following results:
(expression)

origin(2011-01-03 00:00:00.00000),calend ar(daycal),
container(),threshold(20),re
gular,[(356.0000000000,310.0000000000,340.000000000,
999.0000000000),(156.000000
0000,110.0000000000,140.0000000000,111.0000000000), NULL,
(99.00000000000,54.000 00000000,66.00000000000,
888.0000000000)]

The following query returns two weeks' worth of stock trades starting on January
4, 2011, at 9:30 a.m.:
select WithinR(activity_data, ’2011-01-04 09:30:00.00000’, ’week’, 2, ’future’)

from activity_stocks
where stock_id = 600;

The following query returns the preceding three months' worth of stock trades:
select WithinR(activity_data, ’2011-02-01 00:00:00.00000’,

’month’, 3, ’past’)
from activity_stocks
where stock_id = 600;

Related reference:
“Time series routines that run in parallel” on page 7-7
“CalendarPattern data type” on page 2-1
“Clip function” on page 7-31

Chapter 7. Time series SQL routines 7-163

7-164 IBM Informix TimeSeries Data User's Guide

Chapter 8. Time series Java class library

You can use the time series Java class library to create and manage a time series
from within Java applications or applets.

The time series Java class library uses the JDBC 2.0 specification for supporting
user-defined data types in Java.

When you write a Java application for time series data, you use the IBM Informix
JDBC Driver to connect to an IBM Informix database, as shown in the following
figure. See your IBM Informix JDBC Driver Programmer's Guide for information
about how to set up your Java programs to connect to Informix databases.

The Java application makes calls to the JDBC driver, which sends queries and other
SQL statements to the IBM Informix database. The database sends query results to
the JDBC driver, which sends them on to the Java application.

You can also use the time series Java classes in Java applets and servlets, as shown
in the following figures.

Java application

JDBC Driver

Calls to JDBC Results from the database

Queries and other
SQL statements

Query results

Database

Figure 8-1. Runtime architecture for Java programs that connect to a database

© Copyright IBM Corp. 2006, 2014 8-1

The database server is connected to the JDBC driver, which is connected to the
applet. The applet is also connected to a browser, which is connected to a web
server that communicates with the database.

A request from an application goes through a web server, an HTTP servlet
subclass, and the JDBC driver to the database. The database sends responses back
along the same path.

Summary of time series classes

The Java class library contains classes that you use to complete all necessary tasks
for creating and managing time series. You can create time series objects with the
Builder classes that are provided for each class. The following table lists the Java
class that you need for each of the tasks in creating and managing a time series.

Table 8-1. Time series tasks and the corresponding Java classes

Tasks Java classes

Create, query, and manage a custom type
map for time series data types

TimeSeriesTypeMap

TimeSeriesTypeMap.Builder

Create, query, and manage calendar patterns IfmxCalendarPattern

IfmxCalendarPattern.Builder

Web serverBrowserApplet

databaseJDBC driver

Figure 8-2. Runtime architecture for a Java applet

HTTP servlet subclass

Request

Response

database

JDBC driver

Web server

Figure 8-3. Runtime architecture for a Java servlet

8-2 IBM Informix TimeSeries Data User's Guide

Table 8-1. Time series tasks and the corresponding Java classes (continued)

Tasks Java classes

Create, query, and manage calendars IfmxCalendar

IfmxCalendar.Builder

Create, query, and manage containers TimeSeriesContainer

TimeSeriesContainer.Builder

Create, query, and manage TimeSeries row
types

TimeSeriesRowType

TimeSeriesRowType.Builder

Instantiate time series IfmxTimeSeries

IfmxTimeSeries.Builder

Query, insert, update, or delete time series
data

IfmxTimeSeries

Related concepts:

Connect to the database (JDBC Driver Guide)
“Planning for accessing time series data” on page 1-24
“Planning for creating a time series” on page 1-19

Java class files and sample programs
The time series Java class .jar file, Javadoc, and sample programs are included
with the database server.

The Java class file, IfmxTimeSeries.jar, is in the $INFORMIXDIR/extend/
TimeSeries.version/java/lib directory.

The Javadoc files are in the $INFORMIXDIR/extend/TimeSeries.version/java/doc
directory.

To access the sample programs, run the jar -xvf IfmxTimeSeries.jar command to
expand the IfmxTimeSeries.jar file. The examples are in the resulting
com/informix/docExamples directory. The examples include the SQL scripts
setup.sql and clean.sql to set up data for the examples and clean it up
afterward.

The TimeSeriesExample.java file provides a comprehensive example of using
Builders to create, load, and query time series.

Preparing the server for Java classes
You must prepare the database server so that you can include the time series Java
classes in your application by setting the CLASSPATH environment variable to the
location of the Java class files.

Your Java program must use the following versions of Java and JDBC:
v IBM Java Developer Kit 1.6 or later
v IBM Informix JDBC Driver, Version 4.10.JC4 or later

To prepare the database server for using Java classes:

Chapter 8. Time series Java class library 8-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.jdbc_pg.doc/ids_jdbc_032.htm#ids_jdbc_032

Set the CLASSPATH environment variable to the location of the .jar file or its
contents. For example, if you leave the .jar file in the default location, use the
following setting:
CLASSPATH=$INFORMIXDIR/extend/TimeSeries.version
/java/lib/IfmxTimeSeries.jar:$CLASSPATH;export CLASSPATH

If you move the .jar file or expand it, set the CLASSPATH environment variable
to the appropriate directory.

Mapping time series data types
To enable your Java program to retrieve or send a Calendar, CalendarPattern,
orTimeSeries data type to or from an IBM Informix database, you must create a
custom type map.

Create a type map with one of the following methods:
v Create an entry for each time series data type in the type map for each database

connection. Entries are valid only for the current connection. The following
example makes an entry in the type map of a connection for handling
TimeSeries data:
java.util.Map customTypeMap;
customTypeMap = conn.getTypeMap();

customTypeMap.put("timeseries(stock_bar)",
Class.forName("com.informix.timeseries.IfmxTimeSeries"));

The readSQL method extracts the time series data from the database result set.
There must be an entry in the type map for every TimeSeries type that your
program uses. You must also add entries for the Calendar and CalendarPattern
data types if your program selects those types from the database, for example:
customTypeMap.put("calendarpattern",

Class.forName("com.informix.timeseries.IfmxCalendarPattern"));

customTypeMap.put("calendar",
Class.forName("com.informix.timeseries.IfmxCalendar"));

v Create a custom map for the time series data types and reference the map in
your application. Use the Builder pattern from the TimeSeriesTypeMap class to
create a PatternClassMap for the TimeSeries, Calendar, and CalendarPattern
data types. For example, the following map provides case-insensitive access to
time series data types:
Map<String,Class<?>> typeMap = TimeSeriesTypeMap.builder().caseSensitive(false)
.build();

connection.setTypeMap(typeMap);

You can include the type map in your getObject method call, for example:
ts = (IfmxTimeSeries)rSet.getObject(1, typeMap);

Related reference:
“UpdElem function” on page 7-159

Querying time series data with the IfmxTimeSeries object
You can use a SELECT statement your Java program to retrieve TimeSeries data
with the IfmxTimeSeries object.

For example, the following code selected time series data into an IfmxTimeSeries
object:

8-4 IBM Informix TimeSeries Data User's Guide

String sqlCmd = "SELECT ts FROM test WHERE id = 1";
PreparedStatement pStmt = conn.prepareStatement(sqlCmd);
ResultSet rSet = pStmt.executeQuery();

com.informix.timeseries.IfmxTimeSeries ts;

rSet.next()
ts = (IfmxTimeSeries)rSet.getObject(1);

In this example, rSet is a valid java.sql.ResultSet object. After running the SELECT
statement, the getObject method is used to put the time series data into the
variable ts (an IfmxTimeSeries object). The TimeSeries type is at column 1 in the
result set. The example assumes that an entry has been made into the conn object
type map for the TimeSeries column, ts.

Because the IfmxTimeSeries class implements the JDBC ResultSet interface, you
can treat an IfmxTimeSeries object as if it is an ordinary result set. For example,
you can use the next method to iterate through the elements of the time series, as
shown in the following example:
ts.beforeFirst();
while (ts.next())
{

java.sql.Timestamp tStamp = ts.getTimestamp(1);
int col1 = ts.getInt(2);
int col2 = ts.getInt(3);

}

The example shows that you use the beforeFirst method to position the time series
cursor before the beginning of the time series and then the next method to iterate
through the elements. While looping through the elements, the program uses the
getTimestamp method to extract the time stamp into the variable tStamp and the
getInt method to extract the first column of data into col1 and the second column
into col2. The columns of a time series element are numbered, starting with the
time stamp column as column 1.

When you clip a time series, the resultant time series is read-only.

The sample programs demonstrate how to retrieve and update time series data.

Obtaining the time series Java class version
If requested by IBM Software Support, you can obtain the version stamp for the
time series Java classes.

To retrieve the version stamp for the time series Java classes, use one of the
following methods:
v Run the following command from the command line:

java com.informix.timeseries.TimeSeriesBuildInformation

v Construct an instance of com.informix.timeseries.TimeSeriesBuildInformation
from within an application:
import com.informix.TimeSeries.TimeSeriesBuildInformation;
TimeSeriesBuildInformation buildInfo = new TimeSeriesBuildInformation();
String version = buildInfo.getVersion();

Chapter 8. Time series Java class library 8-5

8-6 IBM Informix TimeSeries Data User's Guide

Chapter 9. Time series API routines

The time series application programming interface routines allow application
programmers to directly access a time series datum.

You can scan and update a set of time series elements, or a single element
referenced by either a time stamp or a time series index. These routines can be
used in client programs that fetch time series data in binary mode or in registered
server or client routines that have an argument or return value of a time series
type.

If there is a failure, these routines raise an error condition and do not return a
value.

On UNIX, these routines exist in two archives: tsfeapi.a and tsbeapi.a. To use
any of these routines, include the tsbeapi.a file when producing a shared library
for the server, or use tsfeapi.a when compiling a client application.

The tseries.h header file must be included when there are calls to any of the time
series interface routines.

On UNIX, tsfeapi.a, tsbeapi.a, and tseries.h are all in the lib directory in the
database server installation.

On Windows, these routines exist in two archives: tsfeapi.lib and tsbeapi.lib.
To use any of these routines, include the tsbeapi.lib file when producing a shared
library for the server, or use tsfeapi.lib when compiling a client application.

The tseries.h header file must be included when there are calls to any of the time
series interface routines.

On Windows, tsfeapi.lib, tsbeapi.lib, and tseries.h are all in the lib directory
in the database server installation.

Important: Because values returned by mi_value are valid only until the next
mi_next_row or mi_query_finish call, it might be necessary to put time series in
save sets or to use ts_copy to access time series outside an mi_get_results loop.
Related concepts:
“Planning for accessing time series data” on page 1-24

Differences in using functions on the server and on the client
There are significant differences between using the client version of the time series
API (tsfeapi) and the server version of the time series API (tsbeapi).

The client and server interfaces do not behave in exactly the same way when
updating a time series. This is because tsbeapi operates directly on a time series,
whereas tsfeapi operates on a private copy of a time series. This means that
updates through tsbeapi are always reflected in the database, while updates
through tsfeapi are not. For changes made by tsfeapi to become permanent, the
client must write the updated time series back into the database.

© Copyright IBM Corp. 2006, 2014 9-1

Another difference between the two interfaces is in how time series are passed as
arguments to the mi_exec_prepare_statement() function. On the server, no special
steps are required: a time series can be passed as is to this function. However, on
the client you must make a copy of the time series with ts_copy and pass the copy
as an argument to the mi_exec_prepare_statement() function.

There can be a difference in efficiency between the client and the server APIs.
Functions built to run on the server take advantage of the underlying paging
mechanism. For instance, if a function must scan across 20 years worth of data, the
tsbeapi interface keeps only a few pages in memory at any one time. For a client
program to do this, the entire time series must be brought over to the client and
kept in memory. Depending on the size of the time series and the memory
available, this might cause swapping problems on the client. However,
performance depends on many factors, including the pattern of usage and
distribution of your hardware. If hundreds of users are performing complex
analysis in the server, it can overwhelm the server, whereas if each client does their
portion of the work, the load can be better balanced.

Data structures for the time series API
The time series API uses four data structures.

The ts_timeseries structure
A ts_timeseries structure is the header for a time series. It can be stored in and
retrieved from a time series column of a table.

The ts_timeseries structure contains pointers, so it cannot be copied directly. Use
the ts_copy() function to copy a time series.

When you pass a binary time series value, ts, of type ts_timeseries, to
mi_exec_prepared_statement(), you must pass ts in the values array and 0 in the
lengths array.

The ts_tscan structure
A ts_tscan structure allows you to look at no more than two time series elements
at a time. It maintains a current scan position in the time series and has two
element buffers for creating elements. An element fetched from a scan is
overwritten after two ts_next() calls.

A ts_tscan structure is created with the ts_begin_scan() function and destroyed
with the ts_end_scan() procedure.

The ts_tsdesc structure
A ts_tsdesc structure contains a time series (ts_timeseries) and data structures for
working with it. Among other things, ts_tsdesc tracks the current element and
holds two element buffers for creating two elements.

Important: The two element buffers are shared by the element-fetching functions.
An element that is fetched is overwritten two fetch calls later. Elements fetched by
functions like ts_elem() should not be explicitly freed. They are freed when the
ts_tsdesc is closed.

9-2 IBM Informix TimeSeries Data User's Guide

If you must look at more than two elements at a time, open a scan or use the
ts_make_elem() or ts_make_elem_with_buf() routines to make a copy of one of
your elements.

A ts_tsdesc structure is created by the ts_open() function and destroyed by the
ts_close() procedure. It is used by most of the time series API routines.

The ts_tselem structure
A ts_tselem structure is a pointer to one element (row) of a time series.

When you use ts_tselem with a regular time series, the time stamp column in the
element is left as NULL, allowing you to avoid the expense of computing the time
stamp if it is not required. The time stamp is computed on demand in the
ts_get_col_by_name(), ts_get_col_by_number(), and ts_get_all_cols() routines. For
irregular time series, the time stamp column is never NULL.

You can convert a ts_tselem structure to and from an MI_ROW structure with the
ts_row_to_elem() and ts_elem_to_row() routines.

If the element was created by the ts_make_elem() or ts_make_elem_with_buf()
procedure, you must use the ts_free_elem() procedure to free the memory
allocated for a ts_tselem structure.

Time series API routines sorted by task
Time series API routines are sorted into logical areas based on the type of task.

The following table shows the time series interface routines listed by task type. An
uppercase routine name, such as TS_ELEM_NULL, denotes a macro.

Table 9-1. Time series API routines sorted by task

Task type Description

Open and close a time series Open a time series: “The ts_open() function” on page 9-44

Close a time series: “The ts_close() function” on page 9-12

Return a pointer to the time series associated with the specified time series descriptor:
“The ts_get_ts() function” on page 9-33

Create and copy a time
series

Create a time series: “The ts_create() function” on page 9-17

Create a time series with metadata: “The ts_create_with_metadata() function” on page
9-18

Copy a time series: “The ts_copy() function” on page 9-16

Free all memory associated with a time series created with ts_copy() or ts_create():
“The ts_free() procedure” on page 9-26

Copy all elements of one time series into another: “The ts_put_ts() function” on page
9-49

Chapter 9. Time series API routines 9-3

Table 9-1. Time series API routines sorted by task (continued)

Task type Description

Scan a time series Start a scan: “The ts_begin_scan() function” on page 9-7

Retrieve the next element from a scan: “The ts_next() function” on page 9-41

End a scan: “The ts_end_scan() procedure” on page 9-25

Find the time stamp of the last element retrieved from a scan: “The
ts_current_timestamp() function” on page 9-21

Return the offset for the last element returned by ts_next() (regular time series): “The
ts_current_offset() function” on page 9-20

Make elements visible or
invisible to a scan

Make an element invisible: “The ts_hide_elem() function” on page 9-34

Make an element visible: “The ts_reveal_elem() function” on page 9-50

Select individual elements
from a time series

Get the element closest to a specified time stamp: “The ts_closest_elem() function” on
page 9-13

Get the element associated with a specified time stamp: “The ts_elem() function” on
page 9-22

Get the element at a specified position: “The ts_nth_elem() function” on page 9-43

Get the first element: “The ts_first_elem() function” on page 9-25

Get the last element: “The ts_last_elem() function” on page 9-37

Find the next element after a specified time stamp: “The ts_next_valid() function” on
page 9-42

Find the last element before a specified time stamp: “The ts_previous_valid() function”
on page 9-45

Find the last element at or before a specified time stamp: “The ts_last_valid() function”
on page 9-38

Update a time series Insert an element: “The ts_ins_elem() function” on page 9-36

Update an element: “The ts_upd_elem() function” on page 9-54

Delete an element: “The ts_del_elem() function” on page 9-22

Put an element in a place specified by a time stamp: “The ts_put_elem() function” on
page 9-46 and “The ts_put_elem_no_dups() function” on page 9-47

Append an element (regular time series): “The ts_put_last_elem() function” on page
9-48

Put an element in a place specified by an offset (regular time series): “The
ts_put_nth_elem() function” on page 9-48

Modify metadata Update metadata: “The ts_update_metadata() function” on page 9-54

Convert between an index
and a time stamp

Convert time stamp to index (regular time series): “The ts_index() function” on page
9-35

Convert index to time stamp (regular time series): “The ts_time() function” on page
9-51

9-4 IBM Informix TimeSeries Data User's Guide

Table 9-1. Time series API routines sorted by task (continued)

Task type Description

Transform an element Create an element from an array of values and nulls: “The ts_make_elem() function”
on page 9-38 and “The ts_make_elem_with_buf() function” on page 9-39

Convert an MI_ROW value to an element: “The ts_row_to_elem() function” on page
9-50

Convert an element to an MI_ROW value: “The ts_elem_to_row() function” on page
9-24

Free memory from a time series element created by ts_make_elem() or
ts_row_to_elem(): “The ts_free_elem() procedure” on page 9-26

Extract column data from an
element

Get a column from an element by name: “The ts_colinfo_name() function” on page
9-15

Get a column from an element by number: “The ts_colinfo_number() function” on
page 9-15

Pull columns from an element into values and nulls arrays: “The ts_get_all_cols()
procedure” on page 9-27

Create and perform
calculations with time
stamps

Compare two time stamps: “The ts_datetime_cmp() function” on page 9-21

Get fields from a time stamp: “The ts_get_stamp_fields() procedure” on page 9-32

Create a time stamp: “The ts_make_stamp() function” on page 9-40

Calculate the number of intervals between two time stamps: “The
ts_tstamp_difference() function” on page 9-51

Subtract N intervals from a time stamp: “The ts_tstamp_minus() function” on page
9-52

Add N intervals to a time stamp: “The ts_tstamp_plus() function” on page 9-53

Get information about
element data

Find the number of a column: “The ts_col_id() function” on page 9-14

Return the number of columns contained in each element: “The ts_col_cnt() function”
on page 9-14

Get type information for a column specified by number: “The ts_colinfo_number()
function” on page 9-15

Get type information for a column specified by name: “The ts_colinfo_name()
function” on page 9-15

Determine whether an element is hidden: “The TS_ELEM_HIDDEN macro” on page
9-23

Determine whether an element is NULL: “The TS_ELEM_NULL macro” on page 9-24

Chapter 9. Time series API routines 9-5

Table 9-1. Time series API routines sorted by task (continued)

Task type Description

Get information about a
time series

Get the name of a calendar associated with a time series: “The ts_get_calname()
function” on page 9-27

Return the number of elements in a time series: “The ts_nelems() function” on page
9-41

Return the flags associated with the time series: “The ts_get_flags() function” on page
9-30

Get the name of the container: “The ts_get_containername() function” on page 9-29

Determine whether the time series is in a container: “The TS_IS_INCONTAINER
macro” on page 9-36

Get the origin of the time series: “The ts_get_origin() function” on page 9-31

Get the metadata associated with the time series: “The ts_get_metadata() function” on
page 9-31

Determine whether the time series is irregular: “The TS_IS_IRREGULAR macro” on
page 9-37

Determine whether a time series contains packed data: “The ts_get_packed() function”
on page 9-32

Get the frequency of hertz data: “The ts_get_hertz() function” on page 9-30

Get the compression type of compressed data: “The ts_get_compressed() function” on
page 9-29

Get information about a
calendar

Return the number of valid intervals between two time stamps: “The ts_cal_index()
function” on page 9-9

Return all valid timepoints between two time stamps: “The ts_cal_range() function” on
page 9-10

Return a specified number of time stamps starting at a specified time stamp: “The
ts_cal_range_index() function” on page 9-11

Return the time stamp at a specified number of intervals after a specified time stamp:
“The ts_cal_stamp() function” on page 9-11

The following functions are used only with regular time series:
v ts_current_offset()

v ts_index()

v ts_nth_elem()

v ts_put_last_elem()

v ts_put_nth_elem()

v ts_time()

Some of the API routines are much the same as SQL routines. The mapping is
shown in the following table.

API routine SQL routine

ts_cal_index() CalIndex
ts_cal_range() CalRange

9-6 IBM Informix TimeSeries Data User's Guide

API routine SQL routine

ts_cal_stamp() CalStamp
ts_create() TSCreate, TSCreateIrr
ts_create_with_metadata() TSCreate, TSCreateIrr
ts_del_elem() DelElem
ts_elem() GetElem
ts_first_elem() GetFirstElem
ts_get_calname() GetCalendarName
ts_get_containername() GetContainerName
ts_get_metadata() GetMetaData
ts_get_origin() GetOrigin
ts_hide_elem() HideElem
ts_index() GetIndex
ts_ins_elem() InsElem
ts_last_elem() GetLastElem
ts_nelems() GetNelems
ts_next_valid() GetNextValid
ts_nth_elem() GetNthElem
ts_previous_valid() GetPreviousValid
ts_put_elem() PutElem
ts_put_elem_no_dups() PutElemNoDups
ts_put_ts() PutTimeSeries
ts_reveal_elem() RevealElem
ts_time() GetStamp
ts_update_metadata() UpdMetaData
ts_upd_elem() UpdElem

The ts_begin_scan() function
The ts_begin_scan() function begins a scan of elements in a time series.

Syntax
ts_tscan *
ts_begin_scan(ts_tsdesc *tsdesc,

mi_integer flags,
mi_datetime *begin_stamp,
mi_datetime *end_stamp)

tsdesc Returned by ts_open().

flags Determines how a scan should work on the returned set.

begin_stamp
Pointer to mi_datetime, to specify where the scan should start. If
begin_stamp is NULL, the scan starts at the beginning of the time series. The
begin_stamp argument acts much like the begin_stamp argument to the Clip
function (“Clip function” on page 7-31) unless TS_SCAN_EXACT_START is
set.

end_stamp
Pointer to mi_datetime, to specify where the scan should stop. If end_stamp
is NULL, the scan stops at the end of the time series. When end_stamp is set,
the scan stops after the data at end_stamp is returned.

Chapter 9. Time series API routines 9-7

Description

This function starts a scan of a time series between two time stamps.

The scan descriptor is closed by calling ts_end_scan().

The flags argument values

The flags argument determines how a scan should work on the returned set. Valid
values for the flags argument are defined in tseries.h. The integer value is the
sum of the desired values from the following table.

Flag Value Meaning

TS_SCAN_HIDDEN 512
(0x200)

Return hidden elements marked by
ts_hide_elem()

TS_SCAN_EXACT_START 256
(0x100)

Return NULL if the begin point is earlier
than the time series origin. (Normally a
scan does not start before the time series
origin.)

TS_SCAN_EXACT_END 128
(0x80)

Return NULL until the end timepoint of the
scan is reached, even if the end timepoint is
beyond the end of the time series.

TS_SCAN_NO_NULLS 32 (0x20) Affects the way elements are returned that
have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if
an element has not been allocated it is
returned as NULL. If TS_SCAN_NO_NULLS
is set, an element is returned that has each
column set to NULL instead.

TS_SCAN_SKIP_END 16 (0x10) Skip the element at the end timepoint of
the scan range.

TS_SCAN_SKIP_BEGIN 8 (0x08) Skip the element at the beginning timepoint
of the scan range.

TS_SCAN_SKIP_HIDDEN 4 (0x04) Skip hidden elements.

Returns

An open scan descriptor, or NULL if the scan times are both before the origin of the
time series or if the end time is before the start time.

Example

See the ts_interp() function, in Appendix A, “The Interp function example,” on
page A-1, for an example of the ts_begin_scan() function.
Related reference:
“HideElem function” on page 7-67
“The ts_current_offset() function” on page 9-20
“The ts_current_timestamp() function” on page 9-21
“The ts_end_scan() procedure” on page 9-25
“The ts_next() function” on page 9-41
“The ts_open() function” on page 9-44
“The ts_first_elem() function” on page 9-25

9-8 IBM Informix TimeSeries Data User's Guide

The ts_cal_index() function
The ts_cal_index() function returns the number of valid intervals in a calendar
between two given time stamps.

Syntax
mi_integer *
ts_cal_index (MI_CONNECTION *conn,

mi_string *cal_name,
mi_datetime *begin_stamp,
mi_datetime *end_stamp)

conn A valid DataBlade API connection.

cal_name
The name of the calendar.

begin_stamp
The beginning time stamp. begin_stamp must not be earlier than the
calendar origin.

end_stamp
The time stamp whose offset from begin_stamp is to be determined. This
time stamp can be earlier than begin_stamp.

Description

The equivalent SQL function is CalIndex.

Returns

The number of valid intervals in the given calendar between the two time stamps.
If end_stamp is earlier than begin_stamp, then the result is a negative number.
Related reference:
“The ts_cal_range() function” on page 9-10
“The ts_cal_range_index() function” on page 9-11
“The ts_cal_stamp() function” on page 9-11
“The ts_index() function” on page 9-35

The ts_cal_pattstartdate() function
The ts_cal_pattstartdate() function takes a calendar name and returns the start date
of the pattern for that calendar.

Syntax
mi_datetime *
ts_cal_pattstartdate (MI_CONNECTION *conn,

mi_string *cal_name)

conn A pointer to a valid DataBlade API connection structure.

cal_name
The name of the calendar.

Description

The equivalent SQL function is CalPattStartDate.

Chapter 9. Time series API routines 9-9

Returns

An mi_datetime pointer that points to the start date of a calendar pattern. You
must free this value after use.
Related reference:
“CalPattStartDate function” on page 5-2
“The ts_cal_startdate() function” on page 9-12

The ts_cal_range() function
The ts_cal_range() function returns a list of time stamps containing all valid
timepoints in a calendar between two time stamps (inclusive of the specified time
stamps).

Syntax
MI_COLLECTION *
ts_cal_range (MI_CONNECTION *conn,

mi_string *cal_name,
mi_datetime *begin_stamp,
mi_datetime *end_stamp)

conn A valid DataBlade API connection.

cal_name
The name of the calendar.

begin_stamp
The begin point of the range. It must not be earlier than the calendar
origin.

end_stamp
The end point of the range.

Description

This function is useful if you must print out the time stamps of a series of regular
time series elements. If the range is known, getting an array of all of the time
stamps is more efficient than using ts_time() on each element.

The caller is responsible for freeing the result of this function.

The equivalent SQL function is CalRange.

Returns

A list of time stamps.
Related reference:
“CalIndex function” on page 6-2
“CalRange function” on page 6-3
“CalStamp function” on page 6-4
“The ts_cal_index() function” on page 9-9
“The ts_cal_range_index() function” on page 9-11
“The ts_time() function” on page 9-51
“The ts_cal_stamp() function” on page 9-11

9-10 IBM Informix TimeSeries Data User's Guide

The ts_cal_range_index() function
The ts_cal_range_index() function returns a list containing a specified number of
time stamps starting at a given time stamp.

Syntax
MI_COLLECTION *
ts_cal_range_index (MI_CONNECTION, *conn,

mi_string *cal_name,
mi_datetime *begin_stamp,
mi_integer num_stamps)

conn A valid DataBlade API connection.

cal_name
The name of the calendar.

begin_stamp
The beginning of the range. It must be greater than or equal to the
calendar origin.

num_stamps
The number of time stamps to return.

Description

This function is useful if you must print out the time stamps of a series of regular
time series elements. If the range is known, getting an array of all of the time
stamps is more efficient than using ts_time() on each element.

The caller is responsible for freeing the result of this function.

Returns

A list of time stamps.
Related reference:
“CalIndex function” on page 6-2
“CalRange function” on page 6-3
“CalStamp function” on page 6-4
“The ts_cal_index() function” on page 9-9
“The ts_cal_range() function” on page 9-10
“The ts_cal_stamp() function”
“The ts_time() function” on page 9-51

The ts_cal_stamp() function
The ts_cal_stamp() function returns the time stamp at a given number of calendar
intervals before or after a given time stamp. The returned time stamp is located in
allocated memory, so the caller should free it using mi_free().

Syntax
mi_datetime *
ts_cal_stamp (MI_CONNECTION *conn,

mi_string *cal_name,
mi_datetime *tstamp,
mi_integer offset)

Chapter 9. Time series API routines 9-11

conn A valid DataBlade API connection.

cal_name
The name of the calendar.

tstamp The input time stamp.

offset The number of calendar intervals before or after the input time stamp. Use
a negative number to indicate an offset before the specified time stamp and
a positive number to indicate an offset after the specified time stamp.

Description

The equivalent SQL function is CalStamp.

Returns

The time stamp representing the given offset, which must be freed by the caller.
Related reference:
“CalIndex function” on page 6-2
“CalRange function” on page 6-3
“CalStamp function” on page 6-4
“The ts_cal_index() function” on page 9-9
“The ts_cal_range_index() function” on page 9-11
“The ts_cal_range() function” on page 9-10

The ts_cal_startdate() function
The ts_cal_startdate() function returns the start date of a calendar.

Syntax
mi_datetime *
ts_cal_startdate (MI_CONNECTION *conn,

mi_string *cal_name)

conn A pointer to a valid DataBlade API connection structure.

cal_name
The name of the calendar.

Description

The equivalent SQL function is CalStartDate.

Returns

An mi_datetime pointer that points to the start date of a calendar. You must free
this value after use.
Related reference:
“CalStartDate function” on page 6-5
“The ts_cal_pattstartdate() function” on page 9-9

The ts_close() function
The ts_close() procedure closes the associated time series.

9-12 IBM Informix TimeSeries Data User's Guide

Syntax
void
ts_close(ts_tsdesc *tsdesc)

tsdesc A time series descriptor returned by ts_open.

Description

After a call to this procedure, tsdesc is no longer valid and so should not be passed
to any routine requiring the tsdesc argument.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_close().
Related reference:
“The ts_open() function” on page 9-44

The ts_closest_elem() function
The ts_closest_elem() function returns the first element, or column(s) of an
element, that is non-null and closest to the given time stamp.

Syntax
ts_tselem
ts_closest_elem(ts_tsdesc *tdesc,

mi_datetime *tstamp,
mi_string *cmp,
mi_string *col_list,
mi_integer flags, mi_integer *isNull,
mi_integer *off)

tdesc A time series descriptor returned by ts_open.

tstamp The time stamp to start searching from.

cmp A comparison operator. Valid values for cmp are <, <=, =, ==, '>=, and >.

col_list To search for an element with a particular set of columns non-null, specify
a list of column names separated by a vertical bar (|). An error is raised if
any of the column names do not exist in the time series sub-rowtype.

To search for a non-null element, set col_list to NULL.

flags Determines whether hidden elements should be returned. Valid values for
the flags parameter are defined in tseries.h. They are:
v TS_CLOSEST_NO_FLAGS (no special flags)
v TS_CLOSEST_RETNULLS_FLAGS (return hidden elements)

isNull The isNull parameter must not be NULL. On return, it is set with the null
indicator bits found in tseries.h. These are:
v 0 (element is not hidden and is allocated)
v TS_NULL_NOTALLOCED (element has not been written to)
v TS_NULL_HIDDEN (element is hidden)

off If the time series is regular, the offset of the returned element will be
returned in the off parameter, if off is not NULL.

Chapter 9. Time series API routines 9-13

Description

The search algorithm that ts_closest_elem uses is as follows:
v If cmp is any of <=, =, ==, or >=, the search starts at tstamp.
v If cmp is <, the search starts at the first element before tstamp.
v If cmp is >, the search starts at the first element after tstamp.

The tstamp and cmp parameters are used to determine where to start the search.
The search continues in the direction indicated by cmp until an element is found
that qualifies. If no element qualifies, then the return value is NULL.

Important: For irregular time series, values in an irregular element persist until the
next element. This means that any of the previous “equals” operations on an
irregular time series will look for <= first. If cmp is >= and the <= operations fails,
the operation then looks forward for the next element; otherwise, NULL is returned.

Returns

An element that meets the criteria described.

The ts_col_cnt() function
The ts_col_cnt() function returns the number of columns contained in each element
of a time series.

Syntax
mi_integer
ts_col_cnt (ts_tsdesc *tsdesc)

tsdesc A time series descriptor returned by ts_open.

Returns

The number of columns.
Related reference:
“The ts_get_all_cols() procedure” on page 9-27

The ts_col_id() function
The ts_col_id() function takes a column name and returns the associated column
number.

Syntax
mi_integer
ts_col_id(ts_tsdesc *tsdesc,

mi_string *colname)

tsdesc A time series descriptor returned by ts_open().

colname
The name of the column.

Description

Column numbers start at 0; therefore, the first time stamp column is always
column 0.

9-14 IBM Informix TimeSeries Data User's Guide

Returns

The number of the column associated with colname.
Related reference:
“The ts_colinfo_name() function”
“The ts_colinfo_number() function”

The ts_colinfo_name() function
The ts_colinfo_name() function gets type information for a column in a time series.

Syntax
ts_typeinfo *
ts_colinfo_name (ts_tsdesc *tsdesc,

mi_string *colname)

tsdesc A time series descriptor returned by ts_open().

colname
The name of the column to return information for.

Description

The resulting typeinfo structure and its ti_typename field must be freed by the
caller.

Returns

A pointer to a ts_typeinfo structure. This structure is defined as follows:
typedef struct _ts_typeinfo
{

MI_TYPEID *ti_typeid; /* type id */
mi_integer ti_typelen; /* internal length */
mi_smallint ti_typealign; /* internal alignment */
mi_smallint ti_typebyvalue; /* internal byvalue flag */
mi_integer ti_typebound; /* internal bound */
mi_integer ti_typeparameter; /* internal parameter */
mi_string *ti_typename; /* type name of the column */

} ts_typeinfo;

Related reference:
“The ts_col_id() function” on page 9-14
“The ts_colinfo_number() function”

The ts_colinfo_number() function
The ts_colinfo_number() function gets type information for a column in a time
series.

Syntax
ts_typeinfo *
ts_colinfo_number (ts_tsdesc *tsdesc,

mi_integer id)

tsdesc A time series descriptor returned by ts_open().

id The column number to return information for. The id argument must be
greater than or equal to 0 and less than the number of columns in a time
series element. An id of 0 corresponds to the time stamp column.

Chapter 9. Time series API routines 9-15

Description

The resulting typeinfo structure and its ti_typename field must be freed by the
caller.

Returns

A pointer to a ts_typeinfo structure. This structure is defined as follows:
typedef struct _ts_typeinfo
{

MI_TYPEID *ti_typeid; /* type id */
mi_integer ti_typelen; /* internal length */
mi_smallint ti_typealign; /* internal alignment */
mi_smallint ti_typebyvalue; /* internal byvalue flag */
mi_integer ti_typebound; /* internal bound */
mi_integer ti_typeparameter; /* internal parameter */
mi_string *ti_typename; /* type name of the column */

} ts_typeinfo;

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_colinfo_number().
Related reference:
“The ts_col_id() function” on page 9-14
“The ts_colinfo_name() function” on page 9-15

The ts_copy() function
The ts_copy() function makes and returns a copy of the given time series of the
type in the type_id argument.

Syntax
ts_timeseries *
ts_copy(MI_CONNECTION *conn,

ts_timeseries *ts,
MI_TYPEID *typeid)

conn A valid DataBlade API connection.

ts The time series to be copied.

typeid The ID of the row type of the time series to be copied.

Description

Since values returned by mi_value() are valid only until the next mi_next_row() or
mi_query_finish() call, it is sometimes necessary to use ts_copy() to access a time
series outside an mi_get_result() loop.

On the client, you must use the ts_copy() function to make a copy of a time series
before you pass the time series as an argument to the mi_exec_prepare() statement.

Returns

A copy of the given time series. This value must be freed by the user by calling
ts_free().
Related reference:

9-16 IBM Informix TimeSeries Data User's Guide

“The ts_free() procedure” on page 9-26
“The ts_get_typeid() function” on page 9-34

The ts_create() function
The ts_create() function creates a time series.

Syntax
ts_timeseries *
ts_create(MI_CONNECTION *conn,

mi_string *calname,
mi_datetime *origin,
mi_integer threshold,
mi_integer flags,
MI_TYPEID *typeid,
mi_integer nelem,
mi_string *container)

ts_timeseries *
ts_create(MI_CONNECTION *conn,

mi_string *calname,
mi_datetime *origin,
mi_integer threshold,
MI_TYPEID *typeid,
mi_integer nelem,
mi_string *container,
mi_integer hertz)

ts_timeseries *
ts_create(MI_CONNECTION *conn,

mi_string *calname,
mi_datetime *origin,
mi_integer threshold,
mi_integer flags,
MI_TYPEID *typeid,
mi_integer nelem,
mi_string *container,
mi_string compression)

conn A valid DataBlade API connection.

calname
The name of the calendar.

origin The time series origin.

threshold
The time series threshold. If the time series stores this number or more
elements, it is stored in a container. If the time series holds fewer than this
number, it is stored directly in the row that contains it. threshold must be
greater than or equal to 0 and less than 256.

flags 0 = Regular time series

1 = Irregular time series

3 = Hertz time series

5 = Compressed time series

typeid The ID of the new type for the time series to be created.

nelems The initial number of elements to create space for in the time series. This
space is reclaimed if not used, after the time series is written into the
database.

Chapter 9. Time series API routines 9-17

container
The container for holding the time series. Can be NULL if the time series can
fit in a row or is not going to be assigned to a table.

hertz (Optional)
An integer 1-255 that specifies the number of records per second. Implicitly
creates an irregular time series.

The value of the threshold parameter must be 0. The value of the flags
parameter must be 3.

compression (Optional)
A string that includes a compression definition for each column in the
TimeSeries subtype except the first column. For the syntax of the
compression parameter and descriptions of the compression types and
attributes, see “TSCreateIrr function” on page 7-118.

The value of the threshold parameter must be 0. The value of the flags
parameter must be 5.

Description

The equivalent SQL function is TSCreate or TSCreateIrr.

If you include the hertz or compression parameter, you must run the ts_create()
function within an explicit transaction.

Returns

A pointer to a new time series. The user can free this value by calling ts_free().
Related reference:
“TSCreateIrr function” on page 7-118
“TSCreate function” on page 7-116
“The ts_free() procedure” on page 9-26
“The ts_open() function” on page 9-44
“The ts_get_threshold() function” on page 9-33
“The ts_get_typeid() function” on page 9-34

The ts_create_with_metadata() function
The ts_create_with_metadata() function creates a time series with user-defined
metadata attached.

Syntax
ts_timeseries *
ts_create_with_metadata(MI_CONNECTION *conn,

mi_string *calname,
mi_datetime *origin,
mi_integer threshold,
mi_integer flags,
MI_TYPEID *typeid,
mi_integer nelem,
mi_string *container,
mi_lvarchar *metadata,
MI_TYPEID *metadata_typeid)

ts_timeseries *
ts_create_with_metadata(MI_CONNECTION *conn,

9-18 IBM Informix TimeSeries Data User's Guide

mi_string *calname,
mi_datetime *origin,
mi_integer threshold,
MI_TYPEID *typeid,
mi_integer nelem,
mi_string *container,
mi_lvarchar *metadata,
MI_TYPEID *metadata_typeid,
mi_integer hertz)

ts_timeseries *
ts_create_with_metadata(MI_CONNECTION *conn,

mi_string *calname,
mi_datetime *origin,
mi_integer threshold,
mi_integer flags,
MI_TYPEID *typeid,
mi_integer nelem,
mi_string *container,
mi_lvarchar *metadata,
MI_TYPEID *metadata_typeid,
mi_string compression)

conn A valid DataBlade API connection.

calname
The name of the calendar.

origin The time series origin.

threshold
The time series threshold. If the time series stores this number or more
elements, it is stored in a container. If the time series holds fewer than this
number, it is stored directly in the row that contains it. threshold must be
greater than or equal to 0 and less than 256.

flags 0 = Regular time series

1 = Irregular time series

3 = Hertz time series

5 = Compressed time series

typeid The ID of the new type for the time series to be created.

nelems The initial number of elements to create space for in the time series. This
space is reclaimed if not used, after the time series is written into the
database.

container
The container for holding the time series. This parameter can be NULL if the
time series can fit in a row or is not going to be assigned to a table.

metadata
The metadata to be put into the time series. For more information about
metadata, see “Creating a time series with metadata” on page 3-23. Can be
NULL.

metadata_typeid
The type ID of the metadata. Can be NULL if the metadata argument is
NULL.

hertz (Optional)
An integer 1-255 that specifies the number of records per second. Implicitly
creates an irregular time series.

Chapter 9. Time series API routines 9-19

The value of the threshold parameter must be 0. The value of the flags
parameter must be 3.

compression (Optional)
A string that includes a compression definition for each column in the
TimeSeries subtype except the first column. For the syntax of the
compression parameter and descriptions of the compression types and
attributes, see “TSCreateIrr function” on page 7-118.

The value of the threshold parameter must be 0. The value of the flags
parameter must be 5.

Description

This function behaves the same as ts_create(), plus it saves the supplied metadata
in the time series. The metadata can be NULL or a zero-length LVARCHAR; if either,
ts_create_with_metadata() acts exactly like ts_create(). If the metadata pointer
points to valid data, the metadata_typeid parameter must be a valid pointer to a
valid type ID for a user-defined type.

If you include the hertz or compression parameter, you must run the ts_create()
function within an explicit transaction.

The equivalent SQL function is TSCreate or TSCreateIrr.

Returns

A pointer to a new time series. The user can free this value by calling ts_free().
Related reference:
“GetMetaData function” on page 7-59
“GetMetaTypeName function” on page 7-59
“TSCreateIrr function” on page 7-118
“UpdMetaData function” on page 7-159
“TSCreate function” on page 7-116
“The ts_free() procedure” on page 9-26
“The ts_open() function” on page 9-44
“The ts_get_metadata() function” on page 9-31
“The ts_get_typeid() function” on page 9-34
“The ts_update_metadata() function” on page 9-54

The ts_current_offset() function
The ts_current_offset() function returns the offset for the last element returned by
ts_next().

Syntax
mi_integer
ts_current_offset(ts_tscan *tscan)

tscan The scan descriptor returned by ts_begin_scan().

9-20 IBM Informix TimeSeries Data User's Guide

Returns

The offset of the last element returned. If no element has been returned yet, the
offset of the first element is returned. For irregular time series, ts_current_offset()
always returns -1.
Related reference:
“The ts_begin_scan() function” on page 9-7

The ts_current_timestamp() function
The ts_current_timestamp() function finds the time stamp that corresponds to the
current element retrieved from the scan.

Syntax
mi_datetime *
ts_current_timestamp(ts_tscan *scan)

scan The scan descriptor returned by ts_begin_scan().

Returns

If no elements have been retrieved, the value returned is the time stamp of the first
element. This value cannot be freed by the user with mi_free().
Related reference:
“The ts_begin_scan() function” on page 9-7

The ts_datetime_cmp() function
The ts_datetime_cmp() function compares two time stamps and returns a value
that indicates whether tstamp1 is before, equal to, or after tstamp2.

Syntax
mi_integer
ts_datetime_cmp(mi_datetime *tstamp1,

mi_datetime *tstamp2)

tstamp1
The first time stamp to compare.

tstamp2
The second time stamp to compare.

Returns

< 0 If tstamp1 comes before tstamp2.

0 If tstamp1 equals tstamp2.

> 0 If tstamp1 comes after tstamp2.
Related reference:
“The ts_get_all_cols() procedure” on page 9-27
“The ts_get_col_by_name() function” on page 9-28
“The ts_get_col_by_number() function” on page 9-28

Chapter 9. Time series API routines 9-21

The ts_del_elem() function
The ts_del_elem() function deletes an element from a time series at a given
timepoint.

Syntax
ts_timeseries *
ts_del_elem(ts_tsdesc *tsdesc,

mi_datetime *tstamp)

tsdesc The time series descriptor returned by ts_open().

tstamp The timepoint from which to delete the element.

Description

If there is no element at the timepoint, no error is raised, and no change is made to
the time series. It is an error to delete a hidden element.

The equivalent SQL function is DelElem.

Returns

The original time series minus the element deleted, if there was one.
Related reference:
“DelElem function” on page 7-43
“The ts_ins_elem() function” on page 9-36
“The ts_put_elem() function” on page 9-46
“The ts_upd_elem() function” on page 9-54

The ts_elem() function
The ts_elem() function returns an element from the time series at the given time.

Syntax
ts_tselem
ts_elem(ts_tsdesc *tsdesc,

mi_datetime *tstamp,
mi_integer *STATUS,
mi_integer *off)

tsdesc The time series descriptor returned by ts_open().

tstamp A pointer to the time stamp for the desired element.

STATUS
Set on return to indicate whether the element is NULL or hidden. See “The
ts_hide_elem() function” on page 9-34 for an explanation of the isNull
argument.

off For regular time series, off is set to the offset on return. If the time series is
irregular, or if the time stamp is not in the calendar, off is set to -1. The
offset can be NULL.

9-22 IBM Informix TimeSeries Data User's Guide

Description

On return, off is filled in with the offset of the element for a regular time series or
-1 for an irregular time series. The element is overwritten after two calls to fetch
elements using this tsdesc (time series descriptor).

The equivalent SQL function is GetElem.

Returns

An element, its offset, and whether it is hidden, NULL, or both. This element must
not be freed by the caller.
Related reference:
“GetElem function” on page 7-52
“DelElem function” on page 7-43
“The TS_ELEM_HIDDEN macro”
“The ts_hide_elem() function” on page 9-34
“The ts_last_elem() function” on page 9-37
“The ts_nth_elem() function” on page 9-43
“The TS_ELEM_NULL macro” on page 9-24
“The ts_first_elem() function” on page 9-25
“The ts_ins_elem() function” on page 9-36
“The ts_make_elem() function” on page 9-38
“The ts_put_elem() function” on page 9-46
“The ts_put_elem_no_dups() function” on page 9-47
“The ts_put_last_elem() function” on page 9-48
“The ts_put_nth_elem() function” on page 9-48
“The ts_upd_elem() function” on page 9-54

The TS_ELEM_HIDDEN macro
The TS_ELEM_HIDDEN macro determines whether the STATUS indicator returned
by ts_elem(), ts_nth_elem(), ts_first_elem(), and similar functions is set because
the associated element was hidden.

Syntax
TS_ELEM_HIDDEN((mi_integer) STATUS)

STATUS
The mi_integer argument previously passed to ts_elem(), ts_nth_elem(),
ts_first_elem(), or a similar function.

Description

This macro returns a nonzero value if the associated element is hidden. This macro
is often used in concert with TS_ELEM_NULL.

Returns

A nonzero value if the element associated with the STATUS argument was
previously hidden by the ts_hide_elem() function.
Related reference:

Chapter 9. Time series API routines 9-23

“The ts_elem() function” on page 9-22
“The TS_ELEM_NULL macro”
“The ts_first_elem() function” on page 9-25
“The ts_hide_elem() function” on page 9-34
“The ts_last_elem() function” on page 9-37
“The ts_next() function” on page 9-41
“The ts_next_valid() function” on page 9-42
“The ts_nth_elem() function” on page 9-43
“The ts_previous_valid() function” on page 9-45

The TS_ELEM_NULL macro
The TS_ELEM_NULL macro determines whether the STATUS indicator returned by
ts_elem(), ts_nth_elem(), ts_first_elem(), or a similar function is NULL because the
associated element is NULL.

Syntax
TS_ELEM_NULL((mi_integer) STATUS)

STATUS
The mi_integer argument previously passed to ts_elem(), ts_nth_elem(),
ts_first_elem(), or a similar function.

Description

This macro returns a nonzero value if the associated element is NULL. This macro is
often used in concert with TS_ELEM_HIDDEN.

Returns

A nonzero value if the element returned by ts_elem(), ts_nth_elem(),
ts_first_elem(), or similar function was NULL.
Related reference:
“The TS_ELEM_HIDDEN macro” on page 9-23
“The ts_elem() function” on page 9-22
“The ts_first_elem() function” on page 9-25
“The ts_hide_elem() function” on page 9-34
“The ts_last_elem() function” on page 9-37
“The ts_next() function” on page 9-41
“The ts_next_valid() function” on page 9-42
“The ts_nth_elem() function” on page 9-43
“The ts_previous_valid() function” on page 9-45

The ts_elem_to_row() function
The ts_elem_to_row() function converts a time series element into a new row.

Syntax
MI_ROW *
ts_elem_to_row(ts_tsdesc *tsdesc,

ts_tselem elem,
mi_integer off)

9-24 IBM Informix TimeSeries Data User's Guide

tsdesc The descriptor for a time series returned by ts_open().

elem A time series element. It must agree in type with the time series described
by tsdesc.

off If the time series is regular and off is non-negative, off is used to compute
the time stamp value placed in the first column of the returned row.

If the time series is regular and off is negative, column 0 of the resulting
row will be taken from column 0 of the elem parameter (which will be NULL
if the element was created for or extracted from a regular time series).

If the time series is irregular, the off parameter is ignored.

Returns

A row. The row must be freed by the caller using the mi_row_free() procedure.
Related reference:
“The ts_free_elem() procedure” on page 9-26
“The ts_make_elem() function” on page 9-38
“The ts_make_elem_with_buf() function” on page 9-39
“The ts_row_to_elem() function” on page 9-50

The ts_end_scan() procedure
The ts_end_scan() procedure ends a scan of a time series. It releases resources
acquired by ts_begin_scan(). Upon return, no more elements can be retrieved
using the given ts_tscan pointer.

Syntax
void
ts_end_scan(ts_tscan *scan)

scan The scan to be ended.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_end_scan().
Related reference:
“The ts_begin_scan() function” on page 9-7

The ts_first_elem() function
The ts_first_elem() function returns the first element in the time series.

Syntax
ts_tselem
ts_first_elem(ts_tsdesc *tsdesc,

mi_integer *STATUS)

tsdesc The time series descriptor returned by ts_open().

STATUS
A pointer to an mi_integer value. See “The ts_hide_elem() function” on
page 9-34 for an explanation of the STATUS argument.

Chapter 9. Time series API routines 9-25

Description

If the time series is regular, the first element is always the origin of the time series.
If the time series is irregular, the first element is the one with the earliest time
stamp. The value must not be freed by the caller. The element is overwritten after
two calls to fetch elements using this tsdesc (time series descriptor).

The equivalent SQL function is GetFirstElem.

Returns

The first element in the time series.
Related reference:
“GetFirstElem function” on page 7-53
“The TS_ELEM_HIDDEN macro” on page 9-23
“The TS_ELEM_NULL macro” on page 9-24
“GetElem function” on page 7-52
“The ts_begin_scan() function” on page 9-7
“The ts_elem() function” on page 9-22
“The ts_next() function” on page 9-41
“The ts_next_valid() function” on page 9-42

The ts_free() procedure
The ts_free() procedure frees all memory associated with the given time series
argument. The time series argument must have been generated by a call to either
ts_create() or ts_copy().

Syntax
void
ts_free(ts_timeseries *ts)

ts The source time series.
Related reference:
“The ts_copy() function” on page 9-16
“The ts_create() function” on page 9-17
“The ts_create_with_metadata() function” on page 9-18
“The ts_get_ts() function” on page 9-33
“The ts_ins_elem() function” on page 9-36

The ts_free_elem() procedure
The ts_free_elem() procedure frees a time series element, releasing its resources. It
is used to free elements created by ts_make_elem() or ts_row_to_elem(). It must
not be called to free elements returned by ts_elem(), ts_first_elem(), ts_last_elem(),
ts_last_valid(), ts_next(), ts_next_valid(), ts_nth_elem(), or ts_previous_valid();
those elements are overwritten with subsequent calls or freed when the
corresponding scan or time series descriptor is closed.

Syntax
void
ts_free_elem(ts_tsdesc *tsdesc,

ts_tselem elem)

9-26 IBM Informix TimeSeries Data User's Guide

tsdesc The descriptor for a time series returned by ts_open().

elem A time series element. It must agree in type with the time series described
by tsdesc.

Related reference:
“The ts_elem_to_row() function” on page 9-24
“The ts_make_elem() function” on page 9-38
“The ts_make_elem_with_buf() function” on page 9-39
“The ts_row_to_elem() function” on page 9-50

The ts_get_all_cols() procedure
The ts_get_all_cols() procedure loads the values in the element into the values and
nulls arrays.

Syntax
void
ts_get_all_cols(ts_tsdesc *tsdesc,

ts_tselem tselem,
MI_DATUM *values,
mi_boolean *nulls,
mi_integer off)

tsdesc A time series pointer returned by ts_open().

tselem The element to extract data from.

values The array to put the column data into. This array must be large enough to
hold data for all the columns of the time series.

nulls An array that indicates null values.

off For a regular time series, off is the offset of the element. For an irregular
time series, off is ignored.

Returns

None. The values and nulls arrays are filled in with data from the element. The
values array is filled with values or pointers to values depending on whether the
corresponding column is by reference or by value. The values in the values array
must not be freed by the caller.
Related reference:
“The ts_datetime_cmp() function” on page 9-21
“The ts_col_cnt() function” on page 9-14

The ts_get_calname() function
The ts_get_calname() function returns the name of the calendar associated with the
given time series.

Syntax
mi_string *
ts_get_calname(ts_timeseries *ts)

ts The source time series.

Chapter 9. Time series API routines 9-27

Description

The equivalent SQL function is GetCalendarName.

Returns

The name of the calendar. This value must be freed by the caller with mi_free().

The ts_get_col_by_name() function
The ts_get_col_by_name() function pulls out the individual piece of data from an
element in the column with the given name.

Syntax
MI_DATUM
ts_get_col_by_name(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_string *colname,
mi_boolean *isNull,
mi_integer off)

tsdesc A pointer returned by ts_open().

tselem An element to get column data from.

colname
The name of the column in the element.

isNull A pointer to a null indicator.

off For a regular time series, off is the offset of the element in the time series.
For an irregular time series, off is ignored.

Returns

The data in the specified column. If the type of the column is by reference, a
pointer is returned. If the type is by value, the data itself is returned. The caller
cannot free this value. On return, isNull is set to indicate whether the column is
NULL.
Related reference:
“The ts_datetime_cmp() function” on page 9-21
“The ts_get_col_by_number() function”

The ts_get_col_by_number() function
The ts_get_col_by_number() function pulls the individual pieces of data from an
element. The column 0 (zero) is always the time stamp.

Syntax
MI_DATUM
ts_get_col_by_number(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_integer colnumber,
mi_boolean *isNull,
mi_integer off)

tsdesc A pointer returned by ts_open().

tselem An element to get column data from.

9-28 IBM Informix TimeSeries Data User's Guide

colnumber
The column number. Column numbers start at 0, which represents the time
stamp.

isNull A pointer to a null indicator.

off For a regular time series, off is the offset of the element in the time series.
For an irregular time series, off is ignored.

Returns

The data in the specified column. If the type of the column is by reference, a
pointer is returned. If the type is by value, the data itself is returned. The caller
cannot free this value. On return, isNull is set to indicate whether the column is
NULL.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_get_col_by_number().
Related reference:
“The ts_datetime_cmp() function” on page 9-21
“The ts_get_col_by_name() function” on page 9-28

The ts_get_compressed() function
The ts_get_compressed() function returns the compression string if the time series
data is compressed.

Syntax
mi_string
ts_get_compressed(ts_timeseries *ts)

ts The name of the time series.

Description

Use the ts_get_compressed() function to determine the type of compression that is
used in a time series that contains compressed numeric data.

Returns

Returns a string that represents the compression type if the time series contains
compressed data; returns NULL if the time series does not contain compressed
data.
Related reference:
“GetCompression function” on page 7-50

The ts_get_containername() function
The ts_get_containername() function gets the container name of the given time
series.

Syntax
mi_string *
ts_get_containername(ts_timeseries *ts)

Chapter 9. Time series API routines 9-29

ts The source time series.

Description

The equivalent SQL function is GetContainerName.

Returns

The name of the container for the given time series. This value must not be freed
by the user.
Related reference:
“GetContainerName function” on page 7-51

The ts_get_flags() function
The ts_get_flags() function returns the flags associated with the given time series.

Syntax
mi_integer
ts_get_flags(ts_timeseries *ts)

ts The source time series.

Description

The return value is a collection of flag bits. The possible flag bits set are
TSFLAGS_IRR, TSFLAGS_INMEM, and TSFLAGS_ASSIGNED.

To check whether the time series is regular, use TS_IS_IRREGULAR.

Returns

An integer containing the flags for the given time series.
Related reference:
“IsRegular function” on page 7-73
“The TS_IS_IRREGULAR macro” on page 9-37

The ts_get_hertz() function
The ts_get_hertz() function returns the frequency for packed hertz data.

Syntax
mi_integer
ts_get_hertz(ts_timeseries *ts)

ts The name of the time series.

Description

Use the ts_get_hertz() function to determine how many records per second the
time series can store.

Returns

Returns an integer 1-255 if the time series contains packed hertz data; returns 0 if
the time series does not contain packed hertz data.

9-30 IBM Informix TimeSeries Data User's Guide

Related reference:
“GetHertz function” on page 7-54

The ts_get_metadata() function
The ts_get_metadata() function returns the user-defined metadata and its type ID
from the specified time series.

Syntax
mi_lvarchar *
ts_get_metadata(ts_timeseries *ts,

MI_TYPEID **metadata_typeid)

ts The time series to retrieve the metadata from.

metadata_typeid
The return parameter to hold the type ID of the user-defined metadata.

Description

The equivalent SQL function is GetMetaData.

Returns

The user-defined metadata contained in the specified time series. If the time series
does not contain any user-defined metadata, then NULL is returned and the
metadata_typeid pointer is set to NULL. This return value must be cast to the real
user-defined type to be useful. The value returned can be freed by the caller with
mi_var_free().
Related reference:
“GetMetaData function” on page 7-59
“GetMetaTypeName function” on page 7-59
“UpdMetaData function” on page 7-159
“TSCreate function” on page 7-116
“TSCreateIrr function” on page 7-118
“The ts_create_with_metadata() function” on page 9-18
“The ts_get_metadata() function”
“The ts_update_metadata() function” on page 9-54

The ts_get_origin() function
The ts_get_origin() function returns the origin of the given time series.

Syntax
mi_datetime *
ts_get_origin(ts_timeseries *ts)

ts The source time series.

Description

The equivalent SQL function is GetOrigin.

Chapter 9. Time series API routines 9-31

Returns

The origin of the given time series. This value must be freed by the caller using
mi_free().
Related reference:
“GetOrigin function” on page 7-64

The ts_get_packed() function
The ts_get_packed() function returns whether the specified time series contains
packed data.

Syntax
mi_integer
ts_get_packed(ts_timeseries *ts)

ts The name of the time series.

Description

Use the ts_get_packed() function to determine whether a time series stores either
hertz data or compressed numeric data in packed elements.

Returns

Returns 1 if the time series contains packed data; returns 0 if the time series does
not contain packed data.
Related reference:
“GetPacked function” on page 7-64

The ts_get_stamp_fields() procedure
The ts_get_stamp_fields() procedure takes a pointer to an mi_datetime structure
and returns the parameters with the year, month, day, hour, minute, second, and
microsecond.

Syntax
void
ts_get_stamp_fields (MI_CONNECTION *conn,

mi_datetime *dt,
mi_integer *year,
mi_integer *month,
mi_integer *day,
mi_integer *hour,
mi_integer *minute,
mi_integer *second,
mi_integer *ms)

conn A valid DataBlade API connection.

dt The time stamp to convert.

year Pointer to year integer that the procedure sets. Can be NULL.

month Pointer to month integer that the procedure sets. Can be NULL.

day Pointer to day integer that the procedure sets. Can be NULL.

hour Pointer to hour integer that the procedure sets. Can be NULL.

9-32 IBM Informix TimeSeries Data User's Guide

minute Pointer to minute integer that the procedure sets. Can be NULL.

second Pointer to second integer that the procedure sets. Can be NULL.

ms Pointer to microsecond integer that the procedure sets. Can be NULL.

Returns

On return, the non-null year, month, day, hour, minute, second, and microsecond
are set to the time that corresponds to the time indicated by the dt argument.
Related reference:
“The ts_make_stamp() function” on page 9-40

The ts_get_threshold() function
The ts_get_threshold() function returns the threshold of the specified time series.

Syntax
mi_integer
ts_get_threshold(ts_timeseries *ts)

ts The source time series.

Description

The equivalent SQL function is GetThreshold.

Returns

The threshold of the given time series.
Related reference:
“GetThreshold function” on page 7-67
“The ts_create() function” on page 9-17

The ts_get_ts() function
The ts_get_ts() function returns a pointer to the time series associated with the
given time series descriptor.

Syntax
ts_timeseries *
ts_get_ts(ts_tsdesc *tsdesc)

tsdesc The time series descriptor from ts_open().

Description

The ts_get_ts() function is useful when you must call a function that takes a time
series argument (for example, ts_get_calname()), but you only have a tsdesc (time
series descriptor).

Returns

A pointer to the time series associated with the given time series descriptor. This
value can be freed by the caller after ts_close() has been called if the original time
series was created by ts_create() or ts_copy(). To free it, use ts_free().

Chapter 9. Time series API routines 9-33

Related reference:
“The ts_free() procedure” on page 9-26
“The ts_put_elem() function” on page 9-46
“The ts_put_elem_no_dups() function” on page 9-47
“The ts_put_last_elem() function” on page 9-48
“The ts_put_nth_elem() function” on page 9-48

The ts_get_typeid() function
The ts_get_typeid() function returns the type ID of the specified time series.

Syntax
mi_typeid *
ts_get_typeid(MI_CONNECTION *conn,

ts_timeseries *ts)

conn A valid DataBlade API connection.

ts The source time series.

Description

This function returns the type ID of the specified time series. Usually, a time series
type ID is located in an MI_FPARAM structure. This function is useful when there
is no easy access to an MI_FPARAM structure.

Returns

A pointer to an MI_TYPEID structure that contains the type ID of the specified
time series. You must not free this value after use.
Related reference:
“The ts_copy() function” on page 9-16
“The ts_create() function” on page 9-17
“The ts_create_with_metadata() function” on page 9-18
“The ts_open() function” on page 9-44

The ts_hide_elem() function
The ts_hide_elem() function marks the element at the given time stamp as
invisible to a scan unless TS_SCAN_HIDDEN is set.

Syntax
ts_timeseries
ts_hide_elem(ts_tsdesc *tsdesc,

mi_datetime *tstamp)

tsdesc The time series descriptor returned by ts_open() for the source time series.

tstamp The time stamp to be made invisible to the scan.

Description

When an element is hidden, element retrieval API functions such as ts_elem() and
ts_nth_elem() return the hidden element; however, their STATUS argument has the
TS_NULL_HIDDEN bit set. The values for the element's STATUS argument are:

9-34 IBM Informix TimeSeries Data User's Guide

v If STATUS is TS_NULL_HIDDEN, the element is hidden.
v If STATUS is TS_NULL_NOTALLOCED, the element is NULL.
v If STATUS is both TS_NULL_HIDDEN and TS_NULL_NOTALLOCED, the

element is both hidden and NULL.
v If STATUS is 0 (zero), the element is not hidden and is not NULL.

The TS_ELEM_HIDDEN and TS_ELEM_NULL macros are provided to check the
value of STATUS.

Hidden elements cannot be modified; they must be revealed first using
ts_reveal_elem().

The equivalent SQL function is HideElem.

Returns

The modified time series. If there is no element at the given time stamp, an error is
raised.
Related reference:
“HideElem function” on page 7-67
“The ts_elem() function” on page 9-22
“The TS_ELEM_HIDDEN macro” on page 9-23
“The TS_ELEM_NULL macro” on page 9-24
“The ts_reveal_elem() function” on page 9-50
“The ts_previous_valid() function” on page 9-45

The ts_index() function
The ts_index() function converts from a time stamp to an index (offset) for a
regular time series.

Syntax
mi_integer
ts_index(ts_tsdesc *tsdesc,

mi_datetime *tstamp)

tsdesc The time series descriptor returned by ts_open().

tstamp The time stamp to convert.

Description

Consider a time series that starts on Monday, January 1 and keeps track of
weekdays. Calling ts_index() with a time stamp argument that corresponds to
Monday, January 1, would return 0; a time stamp argument corresponding to
Tuesday, January 2, would return 1; a time stamp argument corresponding to
Monday, January 8, would return 5; and so on.

The equivalent SQL function is GetIndex.

Returns

An offset into the time series. If the time stamp falls before the time series origin,
or if it is not a valid point in the calendar, -1 is returned; otherwise, the return
value is always a positive integer.

Chapter 9. Time series API routines 9-35

Related reference:
“GetIndex function” on page 7-55
“The ts_cal_index() function” on page 9-9
“The ts_nth_elem() function” on page 9-43
“The ts_put_nth_elem() function” on page 9-48
“The ts_time() function” on page 9-51

The ts_ins_elem() function
The ts_ins_elem() function puts an element into an existing time series at a given
timepoint.

Syntax
ts_timeseries *
ts_ins_elem(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_datetime *tstamp)

tsdesc A descriptor of the time series to be modified, returned by ts_open().

tselem The element to add.

tstamp The timepoint at which to add the element. The time stamp column of the
tselem is ignored.

Description

The equivalent SQL function is InsElem.

Returns

The original time series with the new element added. If the time stamp is not a
valid timepoint in the time series, an error is raised. If there is already an element
at the given time stamp, an error is raised.
Related reference:
“InsElem function” on page 7-69
“The ts_del_elem() function” on page 9-22
“The ts_elem() function” on page 9-22
“The ts_free() procedure” on page 9-26
“The ts_make_elem() function” on page 9-38
“The ts_make_elem_with_buf() function” on page 9-39
“The ts_put_elem() function” on page 9-46
“The ts_upd_elem() function” on page 9-54
“The ts_put_elem_no_dups() function” on page 9-47

The TS_IS_INCONTAINER macro
The TS_IS_INCONTAINER macro determines whether the time series data is
stored in a container.

Syntax
TS_IS_INCONTAINER((ts_timeseries *) ts)

ts A pointer to a time series.

9-36 IBM Informix TimeSeries Data User's Guide

Returns

This function returns nonzero if the time series data is in a container, rather than in
memory or in a row.

The TS_IS_IRREGULAR macro
The TS_IS_IRREGULAR macro determines whether the given time series is
irregular.

Syntax
TS_IS_IRREGULAR((ts_timeseries *) ts)

ts A pointer to a time series.

Returns

A nonzero value if the given time series is irregular; otherwise, 0 is returned.
Related reference:
“The ts_get_flags() function” on page 9-30

The ts_last_elem() function
The ts_last_elem() function returns the last element from a time series.

Syntax
ts_tselem
ts_last_elem(ts_tsdesc *tsdesc,

mi_integer *STATUS,
mi_integer *off)

tsdesc The descriptor for a time series returned by ts_open().

STATUS
A pointer to a mi_integer value. See “The ts_hide_elem() function” on
page 9-34 for a description of STATUS.

off If the time series is regular, off is set to the offset of the returned element. If
the time series is irregular, or if the time series is empty, off is set to -1.
This argument can be passed in as NULL.

Description

This function fills in off with the element's offset if off is not NULL and the time
series is regular, and it sets STATUS to indicate if the element is NULL or hidden.

The equivalent SQL function is GetLastElem.

Returns

The last element of the specified time series, its offset, and whether it is NULL or
hidden. If the time series is irregular, the offset is set to -1. This value must not be
freed by the caller. The element is overwritten after two calls to fetch elements
with this tsdesc (time series descriptor).
Related reference:
“GetLastElem function” on page 7-56
“The ts_elem() function” on page 9-22

Chapter 9. Time series API routines 9-37

“The TS_ELEM_HIDDEN macro” on page 9-23
“The TS_ELEM_NULL macro” on page 9-24
“The ts_nth_elem() function” on page 9-43
“The ts_upd_elem() function” on page 9-54

The ts_last_valid() function
The ts_last_valid() function extracts the entry for a particular timepoint.

Syntax
ts_tselem
ts_last_valid(ts_tsdesc *tsdesc,

mi_datetime *tstamp,
mi_integer *STATUS,
mi_integer *off)

tsdesc The descriptor for a time series returned by ts_open().

tstamp The time stamp of interest.

STATUS
A pointer to an mi_integer value. See “The ts_hide_elem() function” on
page 9-34 for a description of STATUS.

off If the time series is regular, off is set to the offset of the returned element. If
the time series is irregular, or if the time series is empty, off is set to -1.
This argument can be passed as NULL.

Description

For regular time series, this function returns the first element with a time stamp
less than or equal to tstamp. For irregular time series, it returns the latest element
at or preceding the given time stamp.

Returns

The nearest element at or before the given time stamp. If there is no such element
before the time stamp, NULL is returned.

NULL is returned if:
v The element at the timepoint is NULL and the time series is regular.
v The timepoint is before the origin.
v The time series is irregular and there are no elements at or before the given time

stamp.

This element must not be freed by the caller; it is valid until the next element is
fetched from the descriptor.
Related reference:
“GetLastValid function” on page 7-58
“The ts_previous_valid() function” on page 9-45

The ts_make_elem() function
The ts_make_elem() function makes an element from an array of values and nulls.
Each array has one value for each column in the element.

9-38 IBM Informix TimeSeries Data User's Guide

Syntax
ts_tselem
ts_make_elem(ts_tsdesc *tsdesc,

MI_DATUM *values,
mi_boolean *nulls,
mi_integer *off)

tsdesc The descriptor for a time series returned by ts_open().

values An array of data to be placed in the element. Data that is by value is
placed in the array, and data that is by reference stores pointers.

nulls Stores columns in the element that should be NULL.

off For a regular time series, off contains the offset of the element on return.
For an irregular time series, off is set to -1. This argument can be NULL.

Returns

An element and its offset. If tsdesc is a descriptor for a regular time series, the time
stamp column in the element is set to NULL; if tsdesc is a descriptor for an irregular
time series, the time stamp column is set to whatever was in values[0]. This
element must be freed by the caller using ts_free_elem().
Related reference:
“The ts_elem_to_row() function” on page 9-24
“The ts_free_elem() procedure” on page 9-26
“The ts_ins_elem() function” on page 9-36
“The ts_elem() function” on page 9-22
“The ts_make_elem_with_buf() function”
“The ts_put_elem() function” on page 9-46
“The ts_put_elem_no_dups() function” on page 9-47
“The ts_put_last_elem() function” on page 9-48
“The ts_put_nth_elem() function” on page 9-48
“The ts_row_to_elem() function” on page 9-50
“The ts_upd_elem() function” on page 9-54

The ts_make_elem_with_buf() function
The ts_make_elem_with_buf() function creates a time series element using the
buffer in an existing time series element. The initial data in the element is
overwritten.

Syntax
ts_tselem
ts_make_elem_with_buf(ts_tsdesc *tsdesc,

MI_DATUM *values,
mi_boolean *nulls,
mi_integer *off,
ts_tselem elem)

tsdesc The descriptor for a time series returned by ts_open().

values An array of data to be placed in the element. Data that is by value is
placed in the array, and data that is by reference stores pointers.

nulls Stores which columns in the element should be NULL.

Chapter 9. Time series API routines 9-39

off For a regular time series, off contains the offset of the element on return.
For an irregular time series, off is set to -1. This argument can be NULL.

elem The time series element to be overwritten. It must agree in type with the
subtype of the time series. If this argument is NULL, a new element is
created.

Returns

A time series element. If the elem argument is non-null, that is returned containing
the new values. If the elem argument is NULL, a new time series element is returned.
Related reference:
“The ts_elem_to_row() function” on page 9-24
“The ts_free_elem() procedure” on page 9-26
“The ts_ins_elem() function” on page 9-36
“The ts_make_elem() function” on page 9-38
“The ts_put_last_elem() function” on page 9-48
“The ts_upd_elem() function” on page 9-54

The ts_make_stamp() function
The ts_make_stamp() function constructs a time stamp from the year, month, day,
hour, minute, second, and microsecond values and puts them into the mi_datetime
pointed to by the dt argument.

Syntax
mi_datetime *
ts_make_stamp (MI_CONNECTION *conn,

mi_datetime *dt,
mi_integer year,
mi_integer month,
mi_integer day,
mi_integer hour,
mi_integer minute,
mi_integer second,
mi_integer ms)

conn A valid DataBlade API connection.

dt The time stamp to fill in. The caller should supply the buffer.

year The year to put into the returned mi_datetime.

month The month to put into the returned mi_datetime.

day The day to put into the returned mi_datetime.

hour The hour to put into the returned mi_datetime.

minute The minute to put into the returned mi_datetime.

second The second to put into the returned mi_datetime.

ms The microsecond to put into the returned mi_datetime.

Returns

A pointer to the same mi_datetime structure that was passed in.
Related reference:
“The ts_get_stamp_fields() procedure” on page 9-32

9-40 IBM Informix TimeSeries Data User's Guide

The ts_nelems() function
The ts_nelems() function returns the number of elements in the time series.

Syntax
mi_integer
ts_nelems(ts_tsdesc *tsdesc)

tsdesc The time series descriptor returned by ts_open().

Description

The equivalent SQL function is GetNelems.

Returns

The number of elements in the time series.
Related reference:
“ClipGetCount function” on page 7-37
“GetNelems function” on page 7-60

The ts_next() function
After a scan has been started with ts_begin_scan(), elements can be retrieved from
the time series with ts_next().

Syntax
mi_integer
ts_next(ts_tscan *tscan,

ts_tselem *tselem)

tscan The specified scan.

tselem A pointer to an element that ts_next() fills in.

Description

On return, the ts_tselem contains the next element in the time series, if there is
one.

When ts_tselem is valid, it can be passed to other routines in the time series API,
such as ts_put_elem(), ts_get_col_by_name(), and ts_get_col_by_number().

Returns

TS_SCAN_ELEM
The tselem parameter contains a valid element.

TS_SCAN_NULL
The value in the element was NULL or hidden; if tselem is not NULL, then the
element was hidden; otherwise, the element was NULL.

TS_SCAN_EOS
The scan has completed; tselem is not valid.

The return value must not be freed by the caller; it is freed when the scan is
ended. It is overwritten after two ts_next() calls.

Chapter 9. Time series API routines 9-41

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_next().
Related reference:
“The ts_begin_scan() function” on page 9-7
“The TS_ELEM_HIDDEN macro” on page 9-23
“The TS_ELEM_NULL macro” on page 9-24
“The ts_first_elem() function” on page 9-25
“The ts_next_valid() function”
“The ts_previous_valid() function” on page 9-45
“The ts_put_elem() function” on page 9-46
“The ts_put_elem_no_dups() function” on page 9-47
“The ts_put_last_elem() function” on page 9-48
“The ts_put_nth_elem() function” on page 9-48
“The ts_upd_elem() function” on page 9-54

The ts_next_valid() function
The ts_next_valid() function returns the nearest entry after a given time stamp.

Syntax
ts_tselem
ts_next_valid(ts_tsdesc *tsdesc,

mi_datetime *tstamp,
mi_integer *STATUS,
mi_integer *off)

tsdesc The time series descriptor returned by ts_open().

tstamp Points to the time stamp that precedes the element returned.

STATUS
Points to an mi_integer value that is filled in on return. See the discussion
of ts_hide_elem() (“The ts_hide_elem() function” on page 9-34) for a
description of STATUS.

off For regular time series, off points to an mi_integer value that is filled in on
return with the offset of the returned element. For irregular time series, off
is set to -1. Can be NULL.

Description

For regular time series, this function returns the element at the calendar's earliest
valid timepoint following the given time stamp. For irregular time series, it returns
the earliest element following the given time stamp.

Tip: The ts_next_valid() function is less efficient than ts_next(), so it is better to
iterate through a time series using ts_begin_scan() and ts_next() rather than using
ts_first_elem() and ts_next_valid().

The equivalent SQL function is GetNextValid.

9-42 IBM Informix TimeSeries Data User's Guide

Returns

The element following the given time stamp. If no valid element exists or the time
series is regular and the next valid interval contains a null element, NULL is
returned. The value pointed to by off is either -1 if the time series is irregular or the
offset of the element if the time series is regular. The element returned must not be
freed by the caller. It is overwritten after two fetch calls.

See “The ts_hide_elem() function” on page 9-34 for an explanation of STATUS.
Related reference:
“GetNextValid function” on page 7-61
“The TS_ELEM_HIDDEN macro” on page 9-23
“The TS_ELEM_NULL macro” on page 9-24
“The ts_first_elem() function” on page 9-25
“GetLastValid function” on page 7-58
“The ts_next() function” on page 9-41
“The ts_previous_valid() function” on page 9-45

The ts_nth_elem() function
The ts_nth_elem() function returns the element at the nth position of the given
time series.

Syntax
ts_tselem
ts_nth_elem(ts_tsdesc *tsdesc,

mi_integer N,
mi_integer *STATUS)

tsdesc The descriptor returned by ts_open().

N The time series offset or position to read the element from. This value must
not be less than 0.

STATUS
A pointer to an mi_integer value that is set on return to indicate whether
the element is NULL. See “The ts_hide_elem() function” on page 9-34 for a
description of STATUS.

Description

The equivalent SQL function is GetNthElem.

Returns

The element at the nth position of the given time series, and whether it was NULL.
This value must not be freed by the caller. It is overwritten after two fetch calls.
Related reference:
“GetNthElem function” on page 7-62
“The ts_elem() function” on page 9-22
“The TS_ELEM_HIDDEN macro” on page 9-23
“The TS_ELEM_NULL macro” on page 9-24
“The ts_index() function” on page 9-35
“The ts_last_elem() function” on page 9-37

Chapter 9. Time series API routines 9-43

The ts_open() function
The ts_open() function opens a time series.

Syntax
ts_tsdesc *
ts_open(MI_CONNECTION *conn,

ts_timeseries *ts,
MI_TYPEID *type_id,
mi_integer flags)

conn A database connection. This argument is unused in the server.

ts The time series to open.

type_id The ID for the type of the time series to be opened. The ID is generally
determined by looking in the MI_FPARAM structure.

flags Valid values for the flags parameter are defined in tseries.h.

The flags argument values

Valid values for the flags argument are defined in the file tseries.h. (the integer
value you use for the flags argument is the sum of the desired values). Valid
options are:

TSOPEN_RDWRITE
The default mode for opening a time series. Indicates that the time series
can be read and written to.

TSOPEN_READ_HIDDEN
Indicates that hidden elements should be treated as if they are not hidden.

TSOPEN_READ_ONLY
Indicates that the time series can only be read.

TSOPEN_WRITE_HIDDEN
Allows hidden elements to be written to without first revealing the
element.

TSOPEN_WRITE_AND_HIDE
Causes any elements written to a time series also to be marked as hidden.

TSOPEN_WRITE_AND_REVEAL
Reveals any hidden element that is written.

TSOPEN_NO_NULLS
Affects the way elements are returned that have never been allocated
(TS_NULL_NOTALLOCATED). Usually, if an element has not been
allocated, it is returned as NULL. If TSOPEN_NO_NULLS is set, an element
that has each column set to NULL is returned instead.

These flags can be used in any combination except the following four
combinations:
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN and TSOPEN_WRITE_AND_REVEAL
v TSOPEN_WRITE_AND_REVEAL and TSOPEN_WRITE_AND_HIDE
v TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_HIDE, and

TSOPEN_WRITE_AND_REVEAL

9-44 IBM Informix TimeSeries Data User's Guide

The TSOPEN_WRITE_HIDDEN, TSOPEN_WRITE_AND_REVEAL, and
TSOPEN_WRITE_AND_HIDE flags cannot be used with
TSOPEN_READ_HIDDEN.

Description

Almost all other functions depend on this function being called first.

Use ts_close to close the time series.

Returns

A descriptor for the open time series.

Example

See the ts_interp() function, Appendix A, “The Interp function example,” on page
A-1, for an example of ts_open().
Related reference:
“The ts_begin_scan() function” on page 9-7
“The ts_close() function” on page 9-12
“The ts_create() function” on page 9-17
“The ts_create_with_metadata() function” on page 9-18
“The ts_get_typeid() function” on page 9-34

The ts_previous_valid() function
The ts_previous_valid() function returns the last element preceding the given time
stamp.

Syntax
ts_tselem
ts_previous_valid(ts_tsdesc *tsdesc,

mi_datetime *tstamp,
mi_integer *STATUS,
mi_integer *off)

tsdesc The time series descriptor returned by ts_open().

tstamp Points to the time stamp that follows the element returned.

STATUS
Points to an mi_integer value that is filled in on return. If no element
exists before the time stamp, or if the time stamp falls before the time
series origin, STATUS is set to a nonzero value. See “The ts_hide_elem()
function” on page 9-34 for a description of STATUS.

off For regular time series, off points to an mi_integer value that is filled in on
return with the offset of the returned element. For irregular time series, off
is set to -1. This argument can be passed as NULL.

Description

The equivalent SQL function is GetPreviousValid.

Chapter 9. Time series API routines 9-45

Returns

The element, if any, preceding the given time stamp. The element returned must
not be freed by the caller. It is overwritten after two calls to fetch an element using
this tsdesc (time series descriptor).

For irregular time series, if no valid element precedes the given time stamp, NULL is
returned. NULL is also returned if the given time stamp is less than or equal to the
origin of the time series.
Related reference:
“GetPreviousValid function” on page 7-65
“The TS_ELEM_HIDDEN macro” on page 9-23
“The TS_ELEM_NULL macro” on page 9-24
“The ts_last_valid() function” on page 9-38
“The ts_next_valid() function” on page 9-42
“The ts_hide_elem() function” on page 9-34
“The ts_next() function” on page 9-41

The ts_put_elem() function
The ts_put_elem() function puts new elements into an existing time series.

Syntax
ts_timeseries *
ts_put_elem(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_datetime *tstamp)

tsdesc A descriptor of the time series to be modified, returned by ts_open().

tselem The element to add.

tstamp The time stamp at which to put the element. The time stamp column of
tselem is ignored.

Description

If the time stamp is NULL, the data is appended to the time series (for regular time
series) or an error is raised (for irregular time series).

For regular time series, if there is data at the given timepoint, it is updated with
the new data; otherwise, the new data is inserted.

For irregular time series, if there is no data at the given timepoint, the new data is
inserted. If there is data at the given timepoint, then the following algorithm is
used to determine where to place the data:
1. Round the time stamp up to the next second.
2. Search backward for the first element less than the new time stamp.
3. Insert the new data at this time stamp plus 10 microseconds.

The element passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The equivalent SQL function is PutElem.

9-46 IBM Informix TimeSeries Data User's Guide

Returns

The original time series with the element added.
Related reference:
“PutElem function” on page 7-77
“The ts_del_elem() function” on page 9-22
“The ts_get_ts() function” on page 9-33
“The ts_ins_elem() function” on page 9-36
“The ts_make_elem() function” on page 9-38
“The ts_elem() function” on page 9-22
“The ts_next() function” on page 9-41
“The ts_put_elem_no_dups() function”
“The ts_put_last_elem() function” on page 9-48
“The ts_upd_elem() function” on page 9-54
“The ts_put_ts() function” on page 9-49

The ts_put_elem_no_dups() function
The ts_put_elem_no_dups() function puts a new element into an existing time
series. The element is inserted even if there is already an element with the given
time stamp in the time series.

Syntax
ts_timeseries *
ts_put_elem_no_dups(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_datetime *tstamp)

tsdesc A descriptor of the time series to be modified, returned by ts_open().

tselem The element to add.

tstamp The time stamp at which to put the element. The time stamp column of
tselem is ignored.

Description

If the time stamp is NULL, the data is appended to the time series (for regular time
series) or an error is raised (for irregular time series).

If there is data at the given timepoint, it is updated with the new data; otherwise,
the new data is inserted.

The element passed in must match the subtype of the time series.

Hidden elements cannot be updated.

The equivalent SQL function is PutElemNoDups.

Returns

The original time series with the element added.
Related reference:
“PutElemNoDups function” on page 7-79

Chapter 9. Time series API routines 9-47

“The ts_put_elem() function” on page 9-46
“The ts_elem() function” on page 9-22
“The ts_get_ts() function” on page 9-33
“The ts_ins_elem() function” on page 9-36
“The ts_make_elem() function” on page 9-38
“The ts_next() function” on page 9-41
“The ts_put_last_elem() function”
“The ts_upd_elem() function” on page 9-54

The ts_put_last_elem() function
The ts_put_last_elem() function puts new elements at the end of an existing
regular time series.

Syntax
ts_timeseries *
ts_put_last_elem(ts_tsdesc *tsdesc,

ts_tselem tselem)

tsdesc The time series to be updated.

tselem The element to add; any time stamp in the element is ignored.

Returns

The original time series with the element added. If the time series is irregular, an
error is raised.
Related reference:
“The ts_put_elem() function” on page 9-46
“The ts_put_elem_no_dups() function” on page 9-47
“The ts_elem() function” on page 9-22
“The ts_get_ts() function” on page 9-33
“The ts_make_elem() function” on page 9-38
“The ts_make_elem_with_buf() function” on page 9-39
“The ts_next() function” on page 9-41

The ts_put_nth_elem() function
The ts_put_nth_elem() function puts new elements into an existing regular time
series at a specified offset.

Syntax
ts_timeseries *
ts_put_nth_elem(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_integer N)

tsdesc The time series to be updated.

tselem The element to add; any time stamp in the element is ignored.

N The offset, indicating where the element to add should be placed. Offsets
start at 0.

9-48 IBM Informix TimeSeries Data User's Guide

Returns

The original time series with the element added. If the time series is irregular, an
error is raised.
Related reference:
“The ts_index() function” on page 9-35
“The ts_elem() function” on page 9-22
“The ts_get_ts() function” on page 9-33
“The ts_make_elem() function” on page 9-38
“The ts_next() function” on page 9-41

The ts_put_ts() function
The ts_put_ts() function updates a destination time series with the elements from
the source time series.

Syntax
ts_timeseries *
ts_put_ts(ts_tsdesc *src_tsdesc,

ts_tsdesc *dst_tsdesc,
mi_boolean nodups)

src_tsdesc
The source time series descriptor.

dst_tsdesc
The destination time series descriptor.

nodups Determines whether to overwrite an element in the destination time series
if there is an element at the same time stamp in the source time series. This
argument is ignored if the destination time series is regular.

Description

The two descriptors must meet the following conditions:
v The origin of the source time series must be after or equal to that of the

destination time series.
v The two time series must have the same calendar.

If nodups is MI_TRUE, the element from the source time series overwrites the
element in the destination time series. For irregular time series, if nodups is
MI_FALSE and there is already a value at the existing timepoint, the update is
made at the next microsecond after the last element in the given second. If the last
microsecond in the second already contains a value, an error is raised.

The equivalent SQL function is PutTimeSeries.

Returns

The time series associated with the destination time series descriptor.
Related reference:
“PutTimeSeries function” on page 7-82
“The ts_put_elem() function” on page 9-46

Chapter 9. Time series API routines 9-49

The ts_reveal_elem() function
The ts_reveal_elem() function makes the element at a given time stamp visible to a
scan. It reverses the effect of ts_hide_elem().

Syntax
ts_timeseries
ts_reveal_elem(ts_tsdesc *tsdesc,

mi_datetime *tstamp)

ts_desc The time series descriptor returned by ts_open() for the source time series.

tstamp The time stamp to be made visible to the scan.

Description

The equivalent SQL function is RevealElem.

Returns

The modified time series. No error is raised if there is no element at the given time
stamp.
Related reference:
“HideElem function” on page 7-67
“The ts_hide_elem() function” on page 9-34
“RevealElem function” on page 7-83

The ts_row_to_elem() function
The ts_row_to_elem() function converts an MI_ROW structure into a new
ts_tselem structure. The new element does not overwrite elements returned by any
other time series API function.

Syntax
ts_tselem
ts_row_to_elem(ts_tsdesc *tsdesc,

MI_ROW *row,
mi_integer *offset_ptr)

tsdesc The descriptor for a time series returned by ts_open().

row A pointer to an MI_ROW structure. The row must have the same type as
the subtype of the time series.

offset_ptr
If the time series is regular, the offset of the element in the time series is
returned in offset_ptr. In this case, column 0 (the time stamp column) must
not be NULL. If the time series is irregular, -1 is returned in offset_ptr.

The offset_ptr argument can be NULL. In this case, calendar computations are
avoided and column 0 can be NULL.

Returns

An element and its offset. If the time series is regular, column 0 (the time stamp
column) of the element is NULL.

The element must be freed by the caller using the ts_free_elem() procedure.

9-50 IBM Informix TimeSeries Data User's Guide

Related reference:
“The ts_elem_to_row() function” on page 9-24
“The ts_free_elem() procedure” on page 9-26
“The ts_make_elem() function” on page 9-38

The ts_time() function
The ts_time() function converts a regular time series offset to a time stamp.

Syntax
mi_datetime *
ts_time(ts_tsdesc *tsdesc,

mi_integer N)

ts_desc The time series descriptor returned by ts_open() for the source time series.

N The offset to convert. Negative values are allowed.

Description

For example, for a daily time series that starts on Monday, January 1, with a
five-day-a-week pattern starting on Monday, this function returns Monday, January
1, when the argument is set to 0; Tuesday, January 2, when the argument is set to
1; Monday, January 8, when the argument is 5; and so on.

The equivalent SQL function is GetStamp.

Returns

The time stamp corresponding to the offset. This value must be freed by the user
with mi_free().
Related reference:
“GetStamp function” on page 7-66
“The ts_cal_range() function” on page 9-10
“The ts_cal_range_index() function” on page 9-11
“The ts_index() function” on page 9-35

The ts_tstamp_difference() function
The ts_tstamp_difference() function subtracts one date from another and returns
the number of complete intervals between the two dates.

Syntax
mi_integer
ts_tstamp_difference(mi_datetime *date1,

mi_datetime *date2,
mi_integer interval)

date1 The first date.

date2 The date to subtract from the first date.

interval
The interval, as described next.

Chapter 9. Time series API routines 9-51

Description

Before the difference is calculated, both time stamps are truncated to the given
interval. For example, if the interval is an hour and the first date is 2011-01-03
01:02:03.12345, its truncated value is 2011-01-03 01:00:00.00000.

Valid values for the interval parameter can be found in tseries.h. They are:
v TS_SECOND
v TS_MINUTE
v TS_HOUR
v TS_DAY
v TS_WEEK
v TS_MONTH
v TS_YEAR

Returns

The number of intervals of the type you specify between the two dates.

Example

For example, if the interval is day and the dates are 2011-01-01 00:00:00.00000 and
2011-01-01 00:00:00.00001, the result is 0. If the dates are 2011-01-01 00:00:00.0000
and 2011-01-02 00:10:00.12345, the result is 1.
Related reference:
“The ts_tstamp_minus() function”
“The ts_tstamp_plus() function” on page 9-53

The ts_tstamp_minus() function
The ts_tstamp_minus() function returns a time stamp at a specified number of
intervals before a starting date you specify.

Syntax
mi_datetime *
ts_tstamp_minus(mi_datetime *startdate,

mi_integer cnt,
mi_integer interval,
mi_datetime *result)

startdate
The date to start from.

cnt The number of intervals to subtract from the start date.

interval
The interval, as described next.

result The resulting date.

Description

Valid values for the interval parameter can be found in tseries.h. They are:
v TS_SECOND
v TS_MINUTE

9-52 IBM Informix TimeSeries Data User's Guide

v TS_HOUR
v TS_DAY
v TS_WEEK
v TS_MONTH
v TS_YEAR

If the result parameter is NULL, then a result mi_datetime structure is allocated and
returned; otherwise, the return value is the given result parameter.

Returns

The time stamp at the specified number of intervals before the start date.
Related reference:
“The ts_tstamp_difference() function” on page 9-51
“The ts_tstamp_plus() function”

The ts_tstamp_plus() function
The ts_tstamp_plus() function returns a time stamp at a specified number of
intervals after a starting date you specify.

Syntax
mi_datetime *
ts_tstamp_plus(mi_datetime *startdate,

mi_integer cnt,
mi_integer interval,
mi_datetime *result)

startdate
The date to start from.

cnt The number of intervals to add to the start date.

interval
The interval, as described next.

result The resulting date.

Description

Valid values for the interval parameter can be found in tseries.h. They are:
v TS_SECOND
v TS_MINUTE
v TS_HOUR
v TS_DAY
v TS_WEEK
v TS_MONTH
v TS_YEAR

If the result parameter is NULL, then a result mi_datetime structure is allocated and
returned; otherwise, the return value is the given result parameter.

Chapter 9. Time series API routines 9-53

Returns

The time stamp at the specified number of intervals after the start date.
Related reference:
“The ts_tstamp_difference() function” on page 9-51
“The ts_tstamp_minus() function” on page 9-52

The ts_update_metadata() function
The ts_update_metadata() function adds the supplied user-defined metadata to the
specified time series.

Syntax
ts_timeseries *
ts_update_metadata(ts_timeseries *ts,

mi_lvarchar *metadata,
MI_TYPEID *metadata_typeid)

ts The time series for which to update metadata.

metadata
The metadata to add to the time series. Can be NULL.

metadata_typeid
The type ID of the metadata.

Description

The equivalent SQL function is UpdMetaData.

Returns

A copy of the specified time series updated to contain the supplied metadata, or if
the metadata argument is NULL, a copy of the specified time series with the
metadata removed.
Related reference:
“GetMetaData function” on page 7-59
“UpdMetaData function” on page 7-159
“GetMetaTypeName function” on page 7-59
“TSCreate function” on page 7-116
“TSCreateIrr function” on page 7-118
“The ts_create_with_metadata() function” on page 9-18
“The ts_get_metadata() function” on page 9-31

The ts_upd_elem() function
The ts_upd_elem() function updates an element in an existing time series at a
given timepoint.

Syntax
ts_timeseries *
ts_upd_elem(ts_tsdesc *tsdesc,

ts_tselem tselem,
mi_datetime *tstamp)

tsdesc A descriptor of the time series to be updated, returned by ts_open().

9-54 IBM Informix TimeSeries Data User's Guide

tselem The element to update.

tstamp The timepoint at which to update the element.

Description

There must already be an element at the given time stamp. For irregular time
series, hidden elements cannot be updated.

The equivalent SQL function is UpdElem.

Returns

An updated copy of the original time series.
Related reference:
“The ts_del_elem() function” on page 9-22
“The ts_ins_elem() function” on page 9-36
“The ts_put_elem() function” on page 9-46
“The ts_put_elem_no_dups() function” on page 9-47
“UpdElem function” on page 7-159
“The ts_elem() function” on page 9-22
“The ts_last_elem() function” on page 9-37
“The ts_make_elem() function” on page 9-38
“The ts_make_elem_with_buf() function” on page 9-39
“The ts_next() function” on page 9-41

Chapter 9. Time series API routines 9-55

9-56 IBM Informix TimeSeries Data User's Guide

Appendix A. The Interp function example

The Interp function is an example of a server function that uses the time series
API. This function interpolates between values of a regular time series to fill in
null elements.

This function does not handle individual null columns. It assumes that all columns
are of type FLOAT.

Interp might be used as follows:
select Interp(stock_data) from daily_stocks where stock_name = ’IBM’;

This example, along with many others, is supplied in the $INFORMIXDIR/extend/
TimeSeries.version directory.

To use the Interp function, create a server function:
create function Interp(TimeSeries) returns TimeSeries
external name ’/tmp/Interpolate.bld(ts_interp)’
language c not variant;

You can now use the Interp function in a DB-Access statement. For example,
consider the difference in output between the following two queries (the output
has been reformatted; the actual output you would see would not be in tabular
format):
select stock_data from daily_stocks where stock_name = ’IBM’;

2011-01-03 00:00:00 1 1 1 1
2011-01-04 00:00:00 2 2 2 2
NULL
2011-01-06 00:00:00 3 3 3 3

select Interp(stock_data) from daily_stocks where stock_name = ’IBM’;

2011-01-03 00:00:00 1 1 1 1
2011-01-04 00:00:00 2 2 2 2
2011-01-05 00:00:00 2.5 2.5 2.5 2.5
2011-01-06 00:00:00 3 3 3 3

/*
* SETUP:
* create function Interp(TimeSeries) returns TimeSeries
* external name ’Interpolate.so(ts_interp)’
* language c not variant;
*
*
* USAGE:
* select Interp(stock_data) from daily_stocks where stock_id = 901;
*/

#include <stdio.h>
#include <mi.h>
#include <tseries.h>

define TS_MAX_COLS 100
define DATATYPE "smallfloat"

/*

© Copyright IBM Corp. 2006, 2014 A-1

* This example interpolates between values to fill in null elements.
* It assumes that all columns are of type smallfloat and that there
are
* less than 100 columns in each element.
*/

ts_timeseries *
ts_interp(tsPtr, fParamPtr)

ts_timeseries *tsPtr;
MI_FPARAM *fParamPtr;

{
ts_tsdesc *descPtr;
ts_tselem tselem;
ts_tscan *scan;
MI_CONNECTION *conn;
ts_typeinfo *typeinfo;
int scancode;
mi_real *values[TS_MAX_COLS];
mi_real lastValues[TS_MAX_COLS], newValues[TS_MAX_COLS];
mi_boolean nulls[TS_MAX_COLS];
mi_integer minElem, curElem, elem;
mi_integer i;
mi_boolean noneYet;
mi_integer ncols;
char strbuf[100];

/* get a connection for libmi */
conn = mi_open(NULL,NULL,NULL);

/* open a descriptor for the timeseries */
descPtr = ts_open(conn, tsPtr, mi_fp_rettype(fParamPtr, 0), 0);

if ((ncols = (mi_integer) mi_fp_funcstate(fParamPtr)) == 0) {
ncols = ts_col_cnt(descPtr);

if (ncols > TS_MAX_COLS) {
sprintf(strbuf, "Timeseries elements have too many columns,

100 is
the max, got %d instead.", ncols);

mi_db_error_raise(NULL, MI_FATAL, strbuf, 0);
}

for (i = 1; i < ncols; i++) {
typeinfo = ts_colinfo_number(descPtr, i);

if (strlen(typeinfo->ti_typename) != strlen(DATATYPE) &&
memcmp(typeinfo->ti_typename, DATATYPE, strlen(DATATYPE)) !=

0){
sprintf(strbuf, "column was not a %s, got %s instead.", DATATYPE,

typeinfo->ti_typename);
mi_db_error_raise(NULL, MI_FATAL, strbuf, 0);
}

}

mi_fp_setfuncstate(fParamPtr, (void *) ncols);
}

noneYet = MI_TRUE;
minElem = -1;
curElem = 0;
/* begin a scan of the whole timeseries */
scan = ts_begin_scan(descPtr, 0, NULL, NULL);
while ((scancode = ts_next(scan, &tselem)) != TS_SCAN_EOS)

{
switch(scancode) {

case TS_SCAN_ELEM:

A-2 IBM Informix TimeSeries Data User's Guide

/* if this element is not null expand its values */
noneYet = MI_FALSE;
ts_get_all_cols(descPtr, tselem, (void **) values, nulls, curElem);
if (minElem == -1) {

/* save each element */
for (i = 1; i < ncols; i++)
lastValues[i] = *values[i];

}
else {

/* calculate the average */
for (i = 1; i < ncols; i++) {
newValues[i] = (*values[i] + lastValues[i])/2.0;
lastValues[i] = *values[i];
values[i] = &newValues[i];
}

/* update the missing elements */

tselem = ts_make_elem(descPtr, (void **) values, nulls, &elem);
for (elem = minElem; elem < curElem; elem++)
ts_put_nth_elem(descPtr, tselem, elem);

minElem = -1;
}

break;
case TS_SCAN_NULL:
if (noneYet)

break;
/* remember the first null element */
if (minElem == -1)

minElem = curElem;
break;

}

curElem++;
}
ts_end_scan(scan);
ts_close(descPtr);
return(tsPtr);

}

Appendix A. The Interp function example A-3

A-4 IBM Informix TimeSeries Data User's Guide

Appendix B. The TSIncLoad procedure example

The TSIncLoad procedure loads data into a database that contains a time series of
corporate bond prices.

The TSIncLoad procedure loads time-variant data from a file into a table that
contains time series. It assumes that the table is already populated with the
time-invariant data. If the table already has time series data, the new data
overwrites the old data or is appended to the existing time series, depending on
the time stamps.

To set up the TSIncLoad example, create the procedure, the row subtype, and the
database table as shown in the following example. The code for this example is in
the $INFORMIXDIR/extend/TimeSeries.version/examples directory.
create procedure if not exists TSIncLoad(table_name lvarchar,

file_name lvarchar,
calendar_name lvarchar,
origin datetime year to fraction(5),
threshold integer,
regular boolean,
container_name lvarchar,
nelems integer)

external name ’/tmp/Loader.bld(TSIncLoad)’
language C;

create row type day_info (
ValueDate datetime year to fraction(5),
carryover char(1),
spread integer,
pricing_bmk_id integer,
price float,
yield float,
priority char(1));

create table corporates (
Secid integer UNIQUE,
series TimeSeries(day_info));

create index if not exists corporatesIdx on corporates(Secid);

execute procedure TSContainerCreate(’ctnr_daily’, ’rootdbs’,
’day_info’, 0, 0);

insert into corporates values (25000006, ’container(ctnr_daily),
origin(2011-01-03 00:00:00.00000),
calendar(daycal), threshold(0)’);

execute procedure TSIncLoad(’corporates’,
’/tmp/daily.dat’,
’daycal’,
’2011-01-03 00:00:00.00000’,
0,
’t’,
’ctnr_daily’,
1);

Any name can be used for the corporates table. The corporates table can have any
number of columns in addition to the Secid and series columns.

© Copyright IBM Corp. 2006, 2014 B-1

Each line of the data file has the following format:
Secid year-mon-day carryover spread pricing_bmk_id price yield priority

For example:
25000006 2010-1-7 m 2 12 2.2000000000 22.2 6

You can run the TSIncLoad procedure with an SQL statement like:
execute procedure TSIncLoad(’corporates’,

’data_file_name’,
’cal_name’,
’2010-1-1’,
20,
’t’,
’container-name’,
1);

#include <ctype.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "datetime.h"
#include "mi.h"
#include "tseries.h"

#define DAY_INFO_TYPE_NAME "day_info"
#define DAILY_COL_COUNT 7

typedef struct
{
mi_integer fd;
mi_unsigned_integer flags;

#define LDBUF_LAST_CHAR_EOL 0x1

mi_integer buf_index;
mi_integer buf_len;
mi_integer line_no;
mi_lvarchar *file_name;
mi_string data[2048];
}

FILE_BUF;

#define STREAM_EOF (-1)

typedef struct sec_entry_s
{
mi_integer sec_id;
ts_tsdesc *tsdesc;
int in_row; /* Indicates whether the time series is stored in

row. */
struct sec_entry_s *next;
}

sec_entry_t;

typedef struct
{
mi_lvarchar *table_name;
MI_TYPEID ts_typeid; /* The type id of timeseries(day_info) */
mi_string *calendar_name;
mi_datetime *origin;
mi_integer threshold;
mi_boolean regular;
mi_string *container_name;
mi_integer nelems; /* For created time series. */

B-2 IBM Informix TimeSeries Data User's Guide

mi_integer hash_size;
MI_CONNECTION *conn;
sec_entry_t **hash;
/* Value buffers -- only allocated once. */
MI_DATUM col_data[DAILY_COL_COUNT];
mi_boolean col_is_null[DAILY_COL_COUNT];
char *carryover;
char *priority;
mi_double_precision price, yield;

mi_integer instances_created;
/* A count of the number of tsinstancetable entries added. Used

to
* decide when to update statistics on this table.
*/
MI_SAVE_SET *save_set;
}

loader_context_t;

/*

* name: init_context
*
* purpose: Initialize the loader context structure.
*
* notes:

*/
static void
init_context(mi_lvarchar *table_name,

mi_lvarchar *calendar_name,
mi_datetime *origin,
mi_integer threshold,
mi_boolean regular,
mi_lvarchar *container_name,
mi_integer nelems,
loader_context_t *context_ptr)

{
mi_string buf[256];
mi_integer table_name_len = mi_get_varlen(table_name);
MI_ROW *row = NULL;
MI_DATUM retbuf = 0;
mi_integer retlen = 0;
mi_lvarchar *typename = NULL;
MI_TYPEID *typeid = NULL;
mi_integer err = 0;

if(table_name_len > IDENTSIZE)
mi_db_error_raise(NULL, MI_EXCEPTION, "The table name is too long");

memset(context_ptr, 0, sizeof(*context_ptr));
context_ptr->conn = mi_open(NULL, NULL, NULL);

typename = mi_string_to_lvarchar
("timeseries(" DAY_INFO_TYPE_NAME ")");

typeid = mi_typename_to_id(context_ptr->conn, typename);
mi_var_free(typename);
if(NULL == typeid)
mi_db_error_raise(NULL, MI_EXCEPTION,

"Type timeseries(" DAY_INFO_TYPE_NAME ") not defined.");
context_ptr->ts_typeid = *typeid;

context_ptr->table_name = table_name;

context_ptr->calendar_name = mi_lvarchar_to_string(calendar_name);

Appendix B. The TSIncLoad procedure example B-3

context_ptr->origin = origin;
context_ptr->threshold = threshold;
context_ptr->regular = regular;
context_ptr->container_name = mi_lvarchar_to_string(container_name);
context_ptr->nelems = nelems;

/* Use the size (count) of the table as the hash table size. */
sprintf(buf, "select count(*) from %.*s;",

table_name_len,
mi_get_vardata(table_name));

if(MI_OK != mi_exec(context_ptr->conn, buf, MI_QUERY_BINARY))
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_exec failed");
if(MI_ROWS != mi_get_result(context_ptr->conn))
{
sprintf(buf, "Could not get size of %.*s table.",

table_name_len,
mi_get_vardata(table_name));

mi_db_error_raise(NULL, MI_EXCEPTION, buf);
}
if(NULL == (row = mi_next_row(context_ptr->conn, &err)))
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_next_row failed");
if(MI_NORMAL_VALUE != mi_value(row, 0, &retbuf, &retlen)
|| 0 != dectoint((mi_decimal *) retbuf, &context_ptr->hash_size))
context_ptr->hash_size = 256;
(void) mi_query_finish(context_ptr->conn);
context_ptr->hash
= mi_zalloc(context_ptr->hash_size*sizeof(*context_ptr->hash));

context_ptr->col_data[1] = (MI_DATUM) mi_new_var(1); /* carryover
*/

context_ptr->col_data[6] = (MI_DATUM) mi_new_var(1); /* priority
*/

if(NULL == context_ptr->hash
|| NULL == context_ptr->col_data[1]
|| NULL == context_ptr->col_data[6])
mi_db_error_raise(NULL, MI_EXCEPTION, "Not enough memory.");

context_ptr->carryover
= mi_get_vardata((mi_lvarchar *) context_ptr->col_data[1]);
context_ptr->col_data[4] = (MI_DATUM) &context_ptr->price;
context_ptr->col_data[5] = (MI_DATUM) &context_ptr->yield;
context_ptr->priority
= mi_get_vardata((mi_lvarchar *) context_ptr->col_data[6]);

context_ptr->save_set = mi_save_set_create(context_ptr->conn);
} /* End of init_context. */

/*

* name: close_context
*
* purpose: Close the context structure. Free up all allocated memory.
*

*/
static void
close_context(loader_context_t *context_ptr)
{

mi_free(context_ptr->hash);
context_ptr->hash = NULL;
context_ptr->hash_size = 0;

mi_var_free((mi_lvarchar *) context_ptr->col_data[1]);
mi_var_free((mi_lvarchar *) context_ptr->col_data[6]);
context_ptr->col_data[1] = context_ptr->col_data[6] = 0;

B-4 IBM Informix TimeSeries Data User's Guide

context_ptr->carryover = context_ptr->priority = NULL;

(void) mi_save_set_destroy(context_ptr->save_set);
context_ptr->save_set = NULL;

(void) mi_close(context_ptr->conn);

mi_free(context_ptr->calendar_name);
context_ptr->calendar_name = NULL;
mi_free(context_ptr->container_name);
context_ptr->container_name = NULL;

context_ptr->conn = NULL;
} /* End of close_context. */

/*

* name: update_series
*
* purpose: Update all the time series back into the table.
*
* returns:
*
* notes:

*/
static void
update_series(loader_context_t *context_ptr)
{

mi_integer i = 0;
register struct sec_entry_s *entry_ptr = NULL;
struct sec_entry_s *next_entry_ptr = NULL;
MI_STATEMENT *statement = NULL;
char buf[256];
mi_integer rc = 0;
MI_DATUM values[2] = {0, 0};
mi_integer lengths[2] = {-1, sizeof(mi_integer)};
static const mi_integer nulls[2] = {0, 0};
static const mi_string const *types[2]
= {"timeseries(day_info)", "integer"};
mi_unsigned_integer yield_count = 0;

sprintf(buf, "update %.*s set series = ? where Secid = ?;",
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name));

statement = mi_prepare(context_ptr->conn, buf, NULL);
if(NULL == statement)
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_prepare failed");

/* Look at all the entries in the hash table. */
for(i = context_ptr->hash_size - 1; 0 <= i; i--)
{
for(entry_ptr = context_ptr->hash[i];

NULL != entry_ptr;
entry_ptr = next_entry_ptr)
{
if(NULL != entry_ptr->tsdesc)
{
yield_count++;
if(0 == (yield_count & 0x3f))

{
if(mi_interrupt_check())
mi_db_error_raise(NULL, MI_EXCEPTION, "Load aborted.");
mi_yield();
}

Appendix B. The TSIncLoad procedure example B-5

values[0] = ts_get_ts(entry_ptr->tsdesc);
values[1] = (MI_DATUM) entry_ptr->sec_id;
lengths[0] = mi_get_varlen(ts_get_ts(entry_ptr->tsdesc));

if(mi_exec_prepared_statement(statement,
MI_BINARY,
1,
2,
values,
lengths,
(int *) nulls,
(char **) types,
0,
NULL)

!= MI_OK)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_exec_prepared_statement(update) failed");
ts_close(entry_ptr->tsdesc);
}
next_entry_ptr = entry_ptr->next;
mi_free(entry_ptr);
}

context_ptr->hash[i] = NULL;
}

} /* End of update_series. */

/*

* name: open_buf
*
* purpose: Open a file for reading and attach it to a buffer.
*

*/
static void
open_buf(mi_lvarchar *file_name,

FILE_BUF *buf_ptr)
{

mi_string *file_name_str = mi_lvarchar_to_string(file_name);

memset(buf_ptr, 0, sizeof(*buf_ptr));
buf_ptr->fd = mi_file_open(file_name_str, O_RDONLY, 0);
mi_free(file_name_str);
buf_ptr->file_name = file_name;

if(MI_ERROR == buf_ptr->fd)
{
char buf[356];
mi_integer name_len = (256 < mi_get_varlen(file_name))

? 256 : mi_get_varlen(file_name);

sprintf(buf, "mi_file_open(%.*s) failed",
name_len, mi_get_vardata(file_name));

mi_db_error_raise(NULL, MI_EXCEPTION, buf);
}
buf_ptr->buf_index = 0;
buf_ptr->buf_len = 0;
buf_ptr->line_no = 1;

} /* End of open_buf. */

/*

* name: get_char

B-6 IBM Informix TimeSeries Data User's Guide

*
* purpose: Get the next character from a buffered file.
*
* returns: The character or STREAM_EOF
*

*/
static mi_integer
get_char(FILE_BUF *buf_ptr)
{

register mi_integer c = STREAM_EOF;

if(buf_ptr->buf_index >= buf_ptr->buf_len)
{
buf_ptr->buf_index = 0;
buf_ptr->buf_len = mi_file_read(buf_ptr->fd,

buf_ptr->data,
sizeof(buf_ptr->data));

if(MI_ERROR == buf_ptr->buf_len)
{
char buf[356];
mi_integer name_len = (256 < mi_get_varlen(buf_ptr->file_name))
? 256 : mi_get_varlen(buf_ptr->file_name);

sprintf(buf, "mi_file_read(%.*s) failed",
name_len, mi_get_vardata(buf_ptr->file_name));

mi_db_error_raise(NULL, MI_EXCEPTION, buf);
}

if(0 == buf_ptr->buf_len)
return(STREAM_EOF);

}

/* Increment buf_ptr->line_no until we have started on the next
line,

* not when the newline character is seen.
*/
if(buf_ptr->flags & LDBUF_LAST_CHAR_EOL)
{
buf_ptr->line_no++;
buf_ptr->flags &= ~LDBUF_LAST_CHAR_EOL;
}

c = buf_ptr->data[buf_ptr->buf_index++];
if(’\n’ == c)
buf_ptr->flags |= LDBUF_LAST_CHAR_EOL;
return(c);

} /* End of get_char. */

/*

* name: close_buf
*
* purpose: Close a file attached to a buffer.
*
* notes:

*/
static void
close_buf(FILE_BUF *buf_ptr)
{

mi_file_close(buf_ptr->fd);
buf_ptr->fd = MI_ERROR;
buf_ptr->buf_index = 0;
buf_ptr->buf_len = 0;
buf_ptr->file_name = NULL;

Appendix B. The TSIncLoad procedure example B-7

} /* End of close_buf. */

/*

* name: get_token
*
* purpose: Get the next token from an input stream.
*
* returns: The token in a buffer and the next character after the
buffer.
*
* notes: Assumes that the tokens are separated by white space.

*/
static mi_integer
get_token(FILE_BUF *buf_ptr,

mi_string *token,
size_t token_buf_len)

{
register mi_integer c = get_char(buf_ptr);
register mi_integer i = 0;

while(STREAM_EOF != c && isspace(c))
c = get_char(buf_ptr);

for(;STREAM_EOF != c && ! isspace(c); c = get_char(
buf_ptr))

{
if(i >= token_buf_len - 1)

{
char err_buf[128];

sprintf(err_buf, "Word is too long on line %d.", buf_ptr->line_no);
mi_db_error_raise(NULL, MI_EXCEPTION, err_buf);
}

token[i++] = c;
}
token[i] = 0;

return(c);
} /* End of get_token. */

/*

* name: increment_instances_created
*
* purpose: Increment the instances_created field and update statistics
* when it crosses a threshold. If the statistics for the
* time series instance table were never updated then the
server
* would not use the index on the instance table, and time
series
* opens would be very slow.
*
* returns: nothing
*
* notes:

*/
static void
increment_instances_created(loader_context_t *context_ptr)
{

context_ptr->instances_created++;
if(50 != context_ptr->instances_created)
return;

B-8 IBM Informix TimeSeries Data User's Guide

(void) mi_exec(context_ptr->conn,
"update statistics high for table tsinstancetable(id);",
MI_QUERY_BINARY);

} /* End of increment_instances_created. */

/*

* name: get_sec_entry
*
* purpose: Get the security entry for a security ID
*
* returns: A pointer to security entry
*
* notes: If the entry is not found in the hash table then the
security
* is looked up in the table and a new entry made in the
hash
* table. A warning message will be emitted if the security
ID
* cannot be found. In this case the security entry will
have
* a NULL tsdesc.

*/
static sec_entry_t *
get_sec_entry(loader_context_t *context_ptr,

mi_integer sec_id,
mi_integer line_no)

{
mi_unsigned_integer i
= ((mi_unsigned_integer) sec_id) % context_ptr->hash_size;
sec_entry_t *entry_ptr = context_ptr->hash[i];
mi_string buf[256];
mi_integer rc = 0;

/* Look the security ID up in the hash table. */
for(; NULL != entry_ptr; entry_ptr = entry_ptr->next)
{
if(sec_id == entry_ptr->sec_id)

return(entry_ptr);
}
/* This is the first time this security ID has been seen. */
entry_ptr = mi_zalloc(sizeof(*entry_ptr));
entry_ptr->sec_id = sec_id;
entry_ptr->next = context_ptr->hash[i];
context_ptr->hash[i] = entry_ptr;

/* Look up the security ID in the database table. */
sprintf(buf,

"select series from %.*s where Secid = %d;",
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name),
sec_id);

if(MI_OK != mi_exec(context_ptr->conn, buf, MI_QUERY_BINARY))
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_exec failed.");

rc = mi_get_result(context_ptr->conn);
if(MI_NO_MORE_RESULTS == rc)
{
sprintf(buf, "Security %d (line %d) not in %.*s.",

sec_id, line_no,
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name));

mi_db_error_raise(NULL, MI_MESSAGE, buf);
/* Mi_db_error_raise returns after raising messages of type MI_MESSAGE.

Appendix B. The TSIncLoad procedure example B-9

*/
}
else if(MI_ROWS != rc)
mi_db_error_raise(NULL, MI_EXCEPTION, "mi_get_result failed.");
else
{
mi_integer err = 0;
MI_ROW *row = mi_next_row(context_ptr->conn, &err);
MI_DATUM ts_datum = 0;
mi_integer retlen = 0;

/* Save the row so that the time series column will not be erased
when

* the query is finished.
*/
if(NULL != row

&& MI_NORMAL_VALUE == mi_value(row, 0, &ts_datum, &retlen))
{
if(NULL == (row = mi_save_set_insert(context_ptr->save_set,

row)))
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_save_set_insert failed");
}

if(NULL != row)
rc = mi_value(row, 0, &ts_datum, &retlen);

else
rc = MI_ERROR;

if(MI_NORMAL_VALUE != rc && MI_NULL_VALUE != rc)
{
if(0 != err)
{
sprintf(buf, "Look up of security ID %d in %.*s failed.",

sec_id,
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name));

mi_db_error_raise(NULL, MI_EXCEPTION, buf);
}
else
{
sprintf(buf, "Security %d (line %d) not in %.*s.",

sec_id, line_no,
mi_get_varlen(context_ptr->table_name),
mi_get_vardata(context_ptr->table_name));

mi_db_error_raise(NULL, MI_MESSAGE, buf);
return(entry_ptr);
}
}

if(MI_NULL_VALUE != rc)
entry_ptr->in_row = (TS_IS_INCONTAINER((ts_timeseries *) ts_datum)

!= 0);
else

{
/* No time series has been created for this security yet.
* Start one.
*/
ts_datum = ts_create(context_ptr->conn,

context_ptr->calendar_name,
context_ptr->origin,
context_ptr->threshold,
context_ptr->regular ? 0 : TS_CREATE_IRR,
&context_ptr->ts_typeid,
context_ptr->nelems,
context_ptr->container_name);

entry_ptr->in_row = (TS_IS_INCONTAINER((ts_timeseries *) ts_datum)
== 0);

if(entry_ptr->in_row)

B-10 IBM Informix TimeSeries Data User's Guide

increment_instances_created(context_ptr);
}

entry_ptr->tsdesc = ts_open(context_ptr->conn,
ts_datum,
&context_ptr->ts_typeid,
0);

}
return(entry_ptr);

} /* End of get_sec_entry. */

/*

* name: is_null
*
* purpose: Determine whether a token represents a null value.
*
* returns: 1 if so, 0 if not
*

*/
static int
is_null(register mi_string *token)
{

return((’N’ == token[0] || ’n’ == token[0])
&& (’U’ == token[1] || ’u’ == token[1])
&& (’L’ == token[2] || ’l’ == token[2])
&& (’L’ == token[3] || ’l’ == token[3])
&& 0 == token[4]);

} /* End of is_null. */

/*

* name: read_day_data
*
* purpose: Read in the daily data for one security.
*
* returns: Fills in the timestamp structure, the col_data and col_is_null
* arrays.
*
* notes: Assumes that the col_is_null array is initialized to
all TRUE.

*/
static void
read_day_data(loader_context_t *context_ptr,

FILE_BUF *buf_ptr,
mi_string *token,
size_t token_buf_len,
mi_datetime *tstamp_ptr)

{
register mi_integer i = 0;
register mi_integer c;

/* ValueDate DATETIME year to day*/
c = get_token(buf_ptr, token, token_buf_len);
if(STREAM_EOF== c && 0 == strlen(token)
|| ’\n’ == c)
return;
tstamp_ptr->dt_qual = TU_DTENCODE(TU_YEAR, TU_DAY);
if(is_null(token))
tstamp_ptr->dt_dec.dec_pos = DECPOSNULL;
else
{
if(0 == dtcvasc(token, tstamp_ptr))

{

Appendix B. The TSIncLoad procedure example B-11

context_ptr->col_is_null[0] = MI_FALSE;
context_ptr->col_data[0] = (MI_DATUM) tstamp_ptr;
}

else
{
mi_string err_buf[128];

sprintf(err_buf, "Illegal date on line %d", buf_ptr->line_no);
mi_db_error_raise(NULL, MI_MESSAGE, err_buf);
}

}

/* carryover char(1) */
c = get_token(buf_ptr, token, token_buf_len);
if(STREAM_EOF== c && 0 == strlen(token) || ’\n’ == c)
return;
if(! is_null(token))
{
*(context_ptr->carryover) = token[0];
context_ptr->col_is_null[1] = MI_FALSE;
}

/* spread integer,
* pricing_bmk_id integer
*/
for(i = 2; i < 4; i++)

{
c = get_token(buf_ptr, token, token_buf_len);
if(STREAM_EOF== c && 0 == strlen(token)

|| ’\n’ == c)
return;

if(! is_null(token))
{
context_ptr->col_data[i] = (MI_DATUM) atoi(token);
context_ptr->col_is_null[i] = MI_FALSE;
}

}

/* price float,
* yield float
*/
for(i = 4; i < 6; i++)
{
c = get_token(buf_ptr, token, token_buf_len);
if(STREAM_EOF== c && 0 == strlen(token)

|| ’\n’ == c)
return;

if(! is_null(token))
{
*((double *) context_ptr->col_data[i]) = atof(token);
context_ptr->col_is_null[i] = MI_FALSE;
}

}

/* priority char(1) */
c = get_token(buf_ptr, token, token_buf_len);
if((STREAM_EOF == c || ’\n’ == c) && 0 == strlen(token))
return;
if(! is_null(token))
{
*(context_ptr->priority) = token[0];
context_ptr->col_is_null[6] = MI_FALSE;
}

} /* End of read_day_data. */

/*

B-12 IBM Informix TimeSeries Data User's Guide

* name: read_line
*
* purpose: Read a line from the file, fetch the time series descriptor
* corresponding to the Secid, create a time series element
for
* the line, and convert the date into an mi_datetime structure.
*
* returns: 1 if there was more data in the file,
* 0 if the end of the file was found.
*
* notes: Creates a new time series if the series column for the
Secid is
* NULL.

*/
int
read_line(loader_context_t *context_ptr,

FILE_BUF *buf_ptr,
ts_tsdesc **tsdesc_ptr,
ts_tselem *day_elem_ptr,
int *null_line,
mi_datetime *tstamp_ptr,
sec_entry_t **sec_entry_ptr_ptr)

{
mi_integer sec_id = -1;
sec_entry_t *sec_entry_ptr = NULL;
mi_string token[256];
mi_integer c = 0; /* Next character from file. */
mi_integer i = 0;

*sec_entry_ptr_ptr = NULL;
*null_line = 1;
for(i = 0; i < DAILY_COL_COUNT; i++)
context_ptr->col_is_null[i] = MI_TRUE;

c = get_token(buf_ptr, token, sizeof(token));
if(STREAM_EOF== c && 0 == strlen(token))
return(0);

sec_id = atoi(token);

*sec_entry_ptr_ptr = sec_entry_ptr
= get_sec_entry(context_ptr, sec_id, buf_ptr->line_no);

read_day_data(context_ptr,
buf_ptr,
token,
sizeof(token),
tstamp_ptr);

*tsdesc_ptr = sec_entry_ptr->tsdesc;
if(NULL == sec_entry_ptr->tsdesc)
/* An invalid security ID. */
return(1);

if(context_ptr->col_is_null[0]
&& TS_IS_IRREGULAR(ts_get_ts(sec_entry_ptr->tsdesc)))
{
mi_string err_buf[128];

sprintf(err_buf, "Missing date on line %d.", buf_ptr->line_no);
mi_db_error_raise(NULL, MI_MESSAGE, err_buf);
return(1);
}
*null_line = 0;

Appendix B. The TSIncLoad procedure example B-13

*day_elem_ptr = ts_make_elem_with_buf(sec_entry_ptr->tsdesc,
context_ptr->col_data,
context_ptr->col_is_null,
NULL,
*day_elem_ptr);

return(1);
} /* End of read_line. */

/*

* name: TSIncLoad
*
* purpose: UDR for incremental loading of timeseries from a file.
*

*/
void
TSIncLoad(mi_lvarchar *table_name, /* the table that holds the time
series. */

mi_lvarchar *file_name,
/* The name of the file containing the data. It must be accessible
* on the server machine.
*/
/*
* The following parameters are only used to create new time
* series.
*/
mi_lvarchar *calendar_name,
mi_datetime *origin,
mi_integer threshold,
mi_boolean regular,
mi_lvarchar *container_name,
mi_integer nelems,
MI_FPARAM *fParamPtr)

{
FILE_BUF buf = {0};
ts_tselem day_elem = NULL;
ts_tsdesc *tsdesc = NULL;
ts_timeseries *ts = NULL;
mi_datetime tstamp = {0};
loader_context_t context = {0};
mi_unsigned_integer yield_count = 0;
sec_entry_t *sec_entry_ptr = NULL;
int null_line = 0;

init_context(table_name,
calendar_name,
origin,
threshold,
regular,
container_name,
nelems,
&context);

open_buf(file_name, &buf);

while(read_line(&context,
&buf,
&tsdesc,
&day_elem,
&null_line,
&tstamp,
&sec_entry_ptr))

{
yield_count++;

B-14 IBM Informix TimeSeries Data User's Guide

/* Periodically (once every 64 input lines) check for interrupts
and

* yield the processor to other threads.
*/
if(0 == (yield_count & 0x3f))

{
if(mi_interrupt_check())
mi_db_error_raise(NULL, MI_EXCEPTION, "Load aborted.");
mi_yield();
}

if(null_line)
continue;

ts = ts_put_elem_no_dups(tsdesc, day_elem, &tstamp);
if(sec_entry_ptr->in_row && TS_IS_INCONTAINER(ts))

{
sec_entry_ptr->in_row = 0;
increment_instances_created(&context);
}

}

if(NULL != day_elem)
ts_free_elem(tsdesc, day_elem);

close_buf(&buf);
update_series(&context);
close_context(&context);

} /* End of TSIncLoad. */

Appendix B. The TSIncLoad procedure example B-15

B-16 IBM Informix TimeSeries Data User's Guide

Appendix C. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http://www.ibm.com/able.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 2006, 2014 C-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

C-2 IBM Informix TimeSeries Data User's Guide

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix C. Accessibility C-3

C-4 IBM Informix TimeSeries Data User's Guide

Notices

This information was developed for products and services offered in the U.S.A.
This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2006, 2014 D-1

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

D-2 IBM Informix TimeSeries Data User's Guide

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices D-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

D-4 IBM Informix TimeSeries Data User's Guide

Index

A
Abs function 7-11
Absolute value, determining 7-11
Accessibility C-1

dotted decimal format of syntax diagrams C-1
keyboard C-1
shortcut keys C-1
syntax diagrams, reading in a screen reader C-1

Acos function 7-11
Adding previous values to current 7-90
Adding two time series 7-77
AggregateBy function 7-11, 7-15
Aggregating time series values 7-11
ALTER TYPE statement 1-26
AndOp function 5-1, 6-1
Applets 8-1
Apply function 7-18

virtual tables 4-8
ApplyBinaryTsOp function 7-23
ApplyCalendar function 7-24
Applying a calendar to a time series 7-24
Applying an expression to a time series 7-18
ApplyOpToTsSet function 7-25
ApplyUnaryTsOp function 7-26
Arc cosine, determining 7-11
Arc sine, determining 7-27
Arc tangent, determining 7-27
Arithmetic functions

binary 7-27
unary 7-156

Asin function 7-27
Atan function 7-27
Atan2 function 7-27
autopool container pool 3-19
Average, computing running 7-148

B
BaseTableName parameter 4-5
beforeFirst method 8-4
Binary arithmetic functions

Atan2 7-27
description of 7-27
Divide 7-46
Minus 7-74
Mod 7-75
Plus 7-77
Pow 7-77
Times 7-86

BulkLoad function 3-35, 7-30

C
Calendar 1-4
Calendar data type 2-4
Calendar pattern 1-4
Calendar pattern routines 5-1
Calendar patterns 1-13

collapsing 5-3
data type for 2-1

Calendar patterns (continued)
expanding 5-4
getting 7-48
intersection of two 5-1
interval options 2-1
reversing intervals for 5-4
specification for 2-1
start date for 2-4
system table for 2-8
union of two 5-5

Calendar routines 6-1
CalendarPattern data type 2-1
CalendarPatterns system table

defined 2-8
Calendars 1-13

applying new to time series 7-24
calibrated search using 7-161
data type for 2-4
getting 7-49
intersection of time series, from 7-71
intervals, determining number of between time

stamps 6-2
intervals, determining number of between timestamps 9-9
lagging 7-74
names of, getting 9-27
predefined 3-13
relative search using 7-161
returned time series and 2-8
specifying 2-4, 3-24
start date for 2-4
system table for 2-8
timestamp, getting after intervals 6-4, 9-11
timestamps, getting in a range 6-3, 9-10, 9-11
union of two 6-5

CalendarTable system table
defined 2-8

Calibrated search type 7-161
CalIndex function 6-2
CalPattStartDate function 5-2
CalRange function 6-3
CalStamp function 6-4
CalStartDate function 6-5
Change Data Capture and time series 1-24
CLASSPATH variable 8-3
Clip function 7-31
ClipCount function 7-35
ClipGetCount function 7-37
Clipping a time series 7-18, 7-31, 7-35
Closing a time series 9-12
Collapse function 5-3
Collapsing a calendar pattern 5-3
Columns

data, getting 9-28
ID number, getting 9-14, 9-15
number of in a time series, getting 9-14
numbering with Java 8-4
TimeSeries type 3-13
type information, getting for 9-15

Command-line loader application 3-29, 3-30
Comparing two time stamps 9-21
Comparing two values 7-91

© Copyright IBM Corp. 2006, 2014 X-1

compliance with standards xviii
Compressed data 1-10

creating time series 7-118
deleting 3-37
inserting 3-37

Compression
specifying 3-24

Container pool
default 3-19
round-robin order 3-20
user-defined policy 3-20

Container pools 1-15
creating 3-19
user-defined policy 3-21

Containers 1-15
creating 3-15, 7-93
dbspaces 1-15
destroying 7-98
determining implicitly 3-27
instance ID of a time series in a, getting 7-71
managing 7-99
monitor 3-18
moving 3-19
multiple writers 7-99
name of, getting 7-51, 9-29
name, setting 7-84
rolling window 1-15, 3-16
specifying 3-24
system table for 2-9, 2-10, 2-11, 2-12
time series, determining if it is in a 9-36
TSContainerNElems 7-104
TSContainerPctUsed 7-106
TSContainerTotalPages 7-112
TSContainerTotalUsed 7-113
TSContainerUsage 7-114

Converting
element to a row 9-24
row to element 9-50
time series data to tabular form 7-87

Copying
one time series into another 9-49
time series 9-16

Cos function 7-38
Cosine, determining 7-38
CountIf function 7-38
Counting elements returned by an expression 7-38
CREATE ROW TYPE statement 3-13
CREATE TABLE statement 3-14
Creating

irregular time series 7-118
regular time series 7-116
table for time series 3-14
time series 3-22, 3-27, 9-17, 9-18
time series from function output 3-27
time series subtype 3-13
time series with input function 3-24
time series with metadata 3-23
virtual tables 4-5

D
Data

file formats 3-35
loading from a file 7-30
loading into a time series with BulkLoad 3-35

Data structures
ts_timeseries 9-2

Data structures (continued)
ts_tscan 9-2
ts_tsdesc 9-2
ts_tselem 9-3

Data Studio 1-3
TimeSeries plug-in 3-27, 3-28, 3-29

Data type mapping 8-4
Data types

Calendar 2-4
CalendarPattern 2-1
DATETIME 3-13
restrictions for time series 3-13
TimeSeriesMeta 3-23

Database
requirements 1-26

DATETIME data type 3-13
dbload utility 3-34
dbspace, time series containers 1-15
Decay, computing 7-122
DelClip function 7-42
DelElem function 7-43
Deleting

element 7-43, 9-22
elements in a clip 7-42, 7-45
elements in a range 7-44
null elements 7-75

Deleting time series data 3-37, 7-108
DelRange function 7-44
DelTrim function 7-45
Directory 1-27, 1-28
Disabilities, visual

reading syntax diagrams C-1
Disability C-1
Divide function 7-46
Dividing one time series by another 7-46
Documentation files, Java 8-3
Dotted decimal format of syntax diagrams C-1
DROP statement, virtual tables 4-26

E
Eclipse command-line loader application 3-29, 3-30
Element 1-4
Elements

columns in, getting number of 9-14
converting to a row 9-24
data from one column in, getting 9-28
deleting 7-43, 9-22
deleting from a clip 7-42, 7-45
deleting from a range 7-44
deleting null 7-75
first in a time series, getting 7-53, 9-25
freeing memory for 9-26
getting 7-52, 9-22, 9-27
hidden, determining if 9-23
hidden, revealing 7-83, 9-50
hiding 7-67, 9-34
inserting 7-69, 7-77, 7-79, 9-36, 9-38, 9-46, 9-47
inserting a set of 7-70, 7-81
inserting at an offset 7-80, 9-48
inserting at end of a time series 9-48
last valid, getting 7-58
last, getting 7-56, 9-37
next valid, getting 7-61
next, getting 9-41
null, determining if 9-24
number in time series clip, getting 7-37

X-2 IBM Informix TimeSeries Data User's Guide

Elements (continued)
number of, getting 7-60, 9-41
offset, getting for an 7-62, 9-20, 9-43
timestamp, getting for an 9-38
timestamp, getting last before 7-65, 9-45
timestamp, getting nearest to an 9-42
updating 7-159, 9-46, 9-47, 9-54
updating a set of 7-160

Enterprise Replication and time series 1-24
Examples

directory 1-27, 1-28
stock data 1-28
virtual tables 4-8

Exp function 7-48
Expand function 5-4
Expanding a calendar pattern 5-4
Exponentiating a time series 7-48

F
Flags

argument 7-9
getting for a time series 9-30
TS_CREATE_IRR 9-17, 9-18
TS_PUTELEM_NO_DUPS 7-9
TS_SCAN_EXACT_START 7-87, 9-7
TS_SCAN_HIDDEN 7-37, 7-87, 9-7
TS_SCAN_SKIP_BEGIN 7-87, 9-7
TS_SCAN_SKIP_END 7-87, 9-7
TSOPEN_NO_NULLS 7-9
TSOPEN_RDWRITE 7-9
TSOPEN_READ_HIDDEN 7-9
TSOPEN_REDUCED_LOG 7-9
TSOPEN_WRITE_AND_HIDE 7-9
TSOPEN_WRITE_HIDDEN 7-9
TSWRITE_AND_REVEAL 7-9

Freeing memory for a time series 9-26
Freeing memory for a time series element 9-26
Function output, creating time series with 3-27

G
GetCalendar function 7-48
GetCalendarName function 7-49
GetCompression function 7-51
GetContainerName function 7-51
GetElem function 7-52
GetFirstElem function 7-53
GetFirstElementStamp function 7-54
GetHertz function 7-54
GetIndex function 7-55
getInt method 8-4
GetInterval function 7-55
GetLastElem function 7-56, 7-57, 7-61
GetLastElementStamp function 7-57
GetLastValid function 7-58
GetMetaData function 7-59
GetMetaTypeName function 7-59
GetNelems function 7-60
GetNextValid function 7-61
GetNthElem function 7-62
GetOrigin function 7-64
GetPacked function 7-64
GetPreviousValid function 7-65
GetStamp function 7-66
GetThreshold function 7-67

getTimestamp method 8-4
getVersion method 8-5
GMT, converting to 9-40

H
Hardware requirements 1-25
HDR and time series 1-24
Hertz data 1-8

creating time series 7-118
deleting 3-37
inserting 3-37
specifying 3-24

Hidden elements 4-3
HideElem function 7-67
Hiding an element 7-67, 9-34

I
IfmxTimeSeries object 8-4
IfmxTimeSeries.jar 8-3
Indexes

base tables 4-2
industry standards xviii
Informix JDBC Driver 8-1
Informix Warehouse Accelerator

virtual tables 4-2
Input function, creating time series with 3-24
InsElem function 3-36, 7-69
INSERT statement 3-24
Inserting

element 7-69, 7-77, 7-79, 9-36, 9-38, 9-46, 9-47
element at an offset 7-80, 9-48
element at end of a time series 9-48
elements, set of 7-70, 7-81
time series into another time series 7-82

InsSet function 3-36, 7-70
Instance ID, getting for a time series 7-71
InstanceId function 7-71
Intersect function 7-71
Intersection

calendar patterns, of 5-1
calendars, of 6-1
time series, of 7-71

Interval
calendar pattern, for 1-13, 2-1
getting for a time series 7-55
number of between time stamps, determining 9-9

Irregular time series 1-7
creating with metadata 7-118
creating with TSCreateIrr 7-118
determining if 9-37
specifying 3-24

IsRegular function 7-73

J
jar file 8-3
Java class library 8-1

directory 8-3
sample programs 8-3

Java Developers' Kit 8-3
javadoc 8-3
Javadoc 8-3
JDBC 8-1
JDBC 2.0 specification 8-1

Index X-3

JSON
time series 1-12

JSON data
loading 3-33

L
Lag function 7-74
Lagging, creating new time series 7-74
LessThan operator 1-26
load command 3-34
Loader program 3-31
Loading data 3-27

from a file 3-35, 7-30
JSON 3-33
time series 1-23
using virtual tables 3-34

Loading data from a database 3-29
Loading data from a file 3-28
Loading time series data 3-1

command-line loader application 3-29, 3-30
Local time, converting to 9-32
Logn function 7-74

M
Mapping API functions to SQL functions 9-3
Mapping data types

Java programs 8-4
Metadata

adding to a time series 7-160, 9-54
creating a time series with 7-116, 7-118, 9-18
creating for a time series 3-23
getting from a time series 7-59, 9-31
getting the type name of 7-59
getting type ID from a time series 9-31
using distinct type TimeSeriesMeta 3-23

mi_set_trace_file() API routine, virtual tables 4-26
mi_set_trace_level() API routine, virtual tables 4-27
Minus function 7-74
Mod function 7-75
Modulus, computing of division of two time series 7-75
Multiplying one time series by another 7-86

N
Natural logarithm, determining 7-74
Negate function 7-75
Negating a time series 7-75
next method 8-4
NotOp function 5-4
Null elements 4-3
NullCleanup function 7-75

O
Offsets 1-7

converting to time stamp 9-51
determining 9-20
element, getting for 9-43
inserting an element at 7-80, 9-48
timestamp, getting for 7-55, 7-66, 9-35

onpload utility 3-34
OpenAdmin Tool for Informix 1-3
Opening a time series 9-44

Operators
LessThan 1-26

Optim Developer Studio
TimeSeries plug-in 3-27

ORDER BY clause, virtual tables 4-8
Origin 1-4
Origin of a time series

changing 7-85
getting 7-64, 9-31
specifying 3-24

OrOp function 5-5, 6-5
Output of a function, creating time series with 3-27

P
Packed elements

compressed data 1-10
Packed time series 1-8
Patterns 1-13
Performance, virtual tables 4-2
planning 1-19
pload utility 3-34
Plus function 7-77
Positive function 7-77
Pow function 7-77
Properties of time series 1-19
PutElem function 3-36, 7-77
PutElemNoDups function 7-79
PutNthElem function 7-80
PutSet function 3-36, 7-81
PutTimeSeries function 7-82

R
Raising one time series to the power of another 7-77
readSQL method 8-4
Regular time series 1-7

creating with metadata 7-116
creating with TSCreate 7-116
determining if 7-73
specifying 3-24

Regularity 1-4
Relative search type 7-161
Replicating time series data 1-24
ResultSet interface 8-4
Retrieving time series data (Java) 8-4
RevealElem function 7-83
Revealing a hidden element 7-83, 9-50
Rolling window containers 3-16
Round function 7-84
Rounding a time series to a whole number 7-84
Routines

API
ts_begin_scan 9-7
ts_cal_index 9-9
ts_cal_pattstartdate 9-9
ts_cal_range 9-10
ts_cal_range_index 9-11
ts_cal_stamp 9-11, 9-12
ts_close 9-12
ts_col_cnt 9-14
ts_col_id 9-14
ts_colinfo_name 9-15
ts_colinfo_number 9-15
ts_copy 9-16
ts_create 9-17

X-4 IBM Informix TimeSeries Data User's Guide

Routines (continued)
API (continued)

ts_create_with_metadata 9-18
ts_current_offset 9-20
ts_current_timestamp 9-21
ts_datetime_cmp 9-21
ts_del_elem 9-22
ts_elem 9-22
TS_ELEM_HIDDEN 9-23
TS_ELEM_NULL 9-24
ts_elem_to_row 9-24
ts_end_scan 9-25
ts_first_elem 9-25
ts_free 9-26
ts_free_elem 9-26
ts_get_all_cols 9-27
ts_get_calname 9-27
ts_get_col_by_name 9-28
ts_get_col_by_number 9-28
ts_get_compressed() 9-29
ts_get_containername 9-29
ts_get_flags 9-30
ts_get_hertz() 9-30
ts_get_metadata 9-31
ts_get_origin 9-31
ts_get_packed() 9-32
ts_get_stamp_fields 9-32
ts_get_threshold 9-33
ts_get_ts 9-33
ts_get_typeid 9-34
ts_hide_elem 9-34
ts_index 9-35
ts_ins_elem 9-36
TS_IS_INCONTAINER 9-36
TS_IS_IRREGULAR 9-37
ts_last_elem 9-37
ts_last_valid 9-38
ts_make_elem 9-38
ts_make_elem_with_buf 9-39
ts_make_stamp 9-40
ts_nelems 9-41
ts_next 9-41
ts_next_valid 9-42
ts_nth_elem 9-43
ts_open 9-44
ts_previous_valid 9-45
ts_put_elem 9-46
ts_put_elem_no_dups 9-47
ts_put_last_elem 9-48
ts_put_nth_elem 9-48
ts_put_ts 9-49
ts_reveal_elem 9-50
ts_row_to_elem 9-50
ts_time 9-13, 9-51, 9-52, 9-53
ts_upd_elem 9-54
ts_update_metadata 9-54

SQL, calendar
AndOp 6-1
CalIndex 6-2
CalRange 6-3
CalStamp 6-4
CalStartDate 6-5
OrOp 6-5

SQL, calendar pattern
AndOp 5-1
CalPattStartDate 5-2
Collapse 5-3

Routines (continued)
SQL, calendar pattern (continued)

Expand 5-4
NotOp 5-4
OrOp 5-5

SQL, time series
Abs 7-11
Acos 7-11
AggregateBy 7-11, 7-15
Apply 7-18
ApplyBinaryTsOp 7-23
ApplyCalendar 7-24
ApplyOpToTsSet 7-25
ApplyUnaryTsOp 7-26
Asin 7-27
Atan 7-27
Atan2 7-27
BulkLoad 3-35, 7-30
Clip 7-31
ClipCount 7-35
ClipGetCount 7-37
Cos 7-38
CountIf 7-38
DelClip 7-42
DelElem 7-43
DelRange 7-44
DelTrim 7-45
Divide 7-46
Exp 7-48
GetCalendar 7-48
GetCalendarName 7-49
GetCompression 7-51
GetContainerName 7-51
GetElem 7-52
GetFirstElem 7-53
GetFirstElementStamp 7-54
GetHertz 7-54
GetIndex 7-55
GetInterval 7-55
GetLastElem 7-56, 7-57, 7-61
GetLastElementStamp 7-57
GetLastValid 7-58
GetMetaData 7-59
GetMetaTypeName 7-59
GetNelems 7-60
GetNextValid 7-61
GetNthElem 7-62
GetOrigin 7-64
GetPacked 7-64
GetPreviousValid 7-65
GetStamp 7-66
GetThreshold 7-67
HideElem 7-67
InsElem 3-36, 7-69
InsSet 3-36, 7-70
InstanceId 7-71
Intersect 7-71
IsRegular 7-73
Lag 7-74
Logn 7-74
Minus 7-74
Mod 7-75
Negate 7-75
NullCleanup 7-75
Plus 7-77
Positive 7-77
Pow 7-77

Index X-5

Routines (continued)
SQL, time series (continued)

PutElem 3-36, 7-77
PutElemNoDups 7-79
PutNthElem 7-80
PutSet 3-36, 7-81
PutTimeSeries 7-82
RevealElem 7-83
Round 7-84
SetContainerName 7-84
SetOrigin 7-85
Sin 7-85
Sqrt 7-86
Tan 7-86
Times 7-86
TimeSeriesRelease 7-86
Transpose 7-87
TSAddPrevious 7-90
TSCmp 7-91
TSContainerCreate 7-93
TSContainerDestroy 7-98
TSContainerLock 7-99
TSContainerManage 7-99
TSContainerPurge 7-108
TSCreate 7-116
TSCreateIrr 7-118
TSDecay 7-122
TSL_Attach 7-123
TSL_Commit 7-124
TSL_Flush 7-126
TSL_FlushAll 7-128
TSL_FlushInfo 7-129
TSL_FlushStatus 7-131
TSL_GetKeyContainer 7-131
TSL_GetLogMessage 7-132
TSL_Init 7-133
TSL_Put 7-135
TSL_PutRow 7-137
TSL_PutSQL 7-138
TSL_SessionClose 7-139
TSL_SetLogMode 7-140
TSL_Shutdown 7-141
TSPrevious 7-142
TSRollup 7-142
TSRunningAvg 7-92, 7-148
TSRunningCor 7-149
TSRunningMed 7-150
TSRunningSum 7-151
TSRunningVar 7-152
TSSetToList 7-153
TSToXML 7-154
Union 7-157
UpdElem 7-159
UpdMetaData 7-160
UpdSet 7-160
WithinC 7-161
WithinR 7-161

Row converting to an element 9-50
RSS and time series 1-24
Running average, computing 7-148
Running sum, computing 7-151

S
Scanning

beginning for a time series 9-7
ending for a time series 9-25

Screen reader
reading syntax diagrams C-1

SDS and time series 1-24
SELECT DISTINCT statement 1-26
Servlets 8-1
session_number.trc file 4-26
SetContainerName function 7-84
SetOrigin function 7-85
Shortcut keys

keyboard C-1
Sin function 7-85
Sine, determining 7-85
Software requirements 1-25
SQL statements

ALTER TYPE 1-26
CREATE ROW TYPE 3-13
CREATE TABLE 3-14
INSERT 3-24
restrictions for time series 1-26
SELECT DISTINCT 1-26
UPDATE 3-35
virtual tables 4-1

Sqrt function 7-86
Square root, determining 7-86
standards xviii
Start date

calendar of 2-4
calendar pattern of 2-4

Storage
time series data 1-20

Storage, for time series 1-15
Subtracting, one time series from another 7-74
Sum, running 7-151
Syntax diagrams

reading in a screen reader C-1
System tables

CalendarPatterns 2-8
CalendarTable 2-8
TSContainerTable 2-9
TSContainerUsageActiveWindowVTI 2-11
TSContainerUsageDormantWindowVTI 2-12
TSContainerWindowTable 2-10
TSInstanceTable 2-12

T
Table 2-10, 2-11, 2-12
Table. 2-9
Tables, virtual 4-1, 4-8
Tabular form, converting time series data to 7-87
Tan function 7-86
Tangent, determining 7-86
Threshold for containers

specifying 3-24
time series

examples directory 1-27, 1-28
Time series 1-19

accessing 1-24
calendar pattern routines 5-1
calendar routines 6-1
compressed 1-10
concepts 1-4
creating 3-1
data types 2-8
decisions 1-19
deleting data 3-37
deleting elements 7-108

X-6 IBM Informix TimeSeries Data User's Guide

Time series (continued)
example of creating and loading 3-1
example of creating for compressed data 3-7
example of creating for hertz data 3-5
example of creating for JSON data 3-10
hardware and software requirements 1-25
Informix Warehouse Accelerator 1-24
insert through virtual tables 4-4
loading data 1-23
loading from a database 3-29
loading from a file 3-28
loading methods 3-27
loading with the plug-in 3-27
overview 1-1
planning 1-19
properties 1-19
solution architecture 1-3
SQL restrictions for 1-26
SQL routines 3-31
storage planning 1-20

Time series data
command-line loader application 3-29, 3-30

Time series functions
TSContainerNElems 7-104
TSContainerPctUsed 7-106
TSContainerTotalPages 7-112
TSContainerTotalUsed 7-113
TSContainerUsage 7-114
TSCreateExpressionVirtualTab 4-13

Time Series Java class version 8-5
Timepoint 1-4
Timepoints

arbitrary 1-7
Times function 7-86
TimeSeries

database requirements 1-26
loading data 3-29, 3-30, 3-31
replicating 1-24

TimeSeries data type 1-5, 2-6, 3-1
TimeSeries plug-in 1-3, 3-1, 3-27, 3-28, 3-29

command-line loader application 3-29, 3-30
TimeSeries routines

parallelizable 7-7
TimeSeriesMeta distinct type 3-23
TimeSeriesRelease function 7-86
Timestamps

calendar, getting from a 9-11
comparing 9-21
current, getting 9-21
getting after intervals 6-4
GMT, converting to 9-40
local time, converting to 9-32
offset associated with 1-7
offset, converting from 9-51
offset, getting for 7-66
offset, getting from 9-35
range, getting from a calendar 9-10, 9-11
returning set of valid in range 6-3

traceFileName parameter 4-26
traceLevelSpec parameter 4-27
Tracing, virtual tables 4-26
Transpose function 7-87
ts_begin_scan function 9-7
ts_cal_index function 9-9
ts_cal_pattstartdate function 9-9
ts_cal_range function 9-10
ts_cal_range_index function 9-11

ts_cal_stamp function 9-11, 9-12
ts_close procedure 9-12
ts_col_cnt function 9-14
ts_col_id function 9-14
ts_colinfo_name function 9-15
ts_colinfo_number function 9-15
ts_copy function 9-16
ts_create function 9-17
TS_CREATE_IRR flag 9-17, 9-18
ts_create_with_metadata function 9-18
ts_current_offset function 9-20
ts_current_timestamp function 9-21
ts_datetime_cmp function 9-21
ts_del_elem function 9-22
ts_elem function 9-22
TS_ELEM_HIDDEN macro 9-23
TS_ELEM_NULL macro 9-24
ts_elem_to_row 9-24
ts_end_scan procedure 9-25
ts_first_elem function 9-25
ts_free procedure 9-26
ts_free_elem procedure 9-26
ts_get_all_cols procedure 9-27
ts_get_calname function 9-27
ts_get_col_by_name function 9-28
ts_get_col_by_number function 9-28
ts_get_compressed() function 9-29
ts_get_containername function 9-29
ts_get_flags function 9-30
ts_get_hertz() function 9-30
ts_get_metadata function 9-31
ts_get_origin function 9-31
ts_get_packed() function 9-32
ts_get_stamp_fields procedure 9-32
ts_get_threshold function 9-33
ts_get_ts function 9-33
ts_get_typeid function 9-34
ts_hide_elem function 9-34
ts_index function 9-35
ts_ins_elem function 9-36
TS_IS_INCONTAINER macro 9-36
TS_IS_IRREGULAR macro 9-37
ts_last_elem function 9-37
ts_last_valid function 9-38
ts_make_elem function 9-38
ts_make_elem_with_buf function 9-39
ts_make_stamp function 9-40
ts_nelems function 9-41
ts_next function 9-41
ts_next_valid function 9-42
ts_nth_elem function 9-43
ts_open function 9-44
ts_previous_valid function 9-45
ts_put_elem function 9-46
ts_put_elem_no_dups function 9-47
ts_put_last_elem function 9-48
ts_put_nth_elem function 9-48
ts_put_ts function 9-49
TS_PUTELEM_NO_DUPS flag 7-9
ts_reveal_elem function 9-50
ts_row-to_elem function 9-50
TS_SCAN_EXACT_END flag 9-7
TS_SCAN_EXACT_START flag 7-87, 9-7
TS_SCAN_HIDDEN flag 7-37, 7-87, 9-7
TS_SCAN_SKIP_BEGIN flag 7-87, 9-7
TS_SCAN_SKIP_END flag 7-87, 9-7
ts_time function 9-13, 9-51, 9-52, 9-53

Index X-7

ts_timeseries data structure 9-2
ts_tscan data structure 9-2
ts_tsdesc data structure 9-2
ts_tselem data structure 9-3
ts_upd_elem function 9-54
ts_update_metadata function 9-54
TS_VTI_DEBUG trace class 4-27
TSAddPrevious function 7-90
TSCmp function 7-91
TSColName parameter 4-5
TSContainerCreate procedure 7-93
TSContainerDestroy procedure 7-98
TSContainerLock procedure 7-99
TSContainerManage procedure 7-99
TSContainerNElems 7-104
TSContainerPctUsed 7-106
TSContainerPurge function 7-108
TSContainerTable system table 2-9
TSContainerTotalPages 7-112
TSContainerTotalUsed 7-113
TSContainerUsage 7-114
TSContainerUsageActiveWindowVTI virtual table 2-11
TSContainerUsageDormantWindowVTI virtual table 2-12
TSContainerWindowTable system table 2-10
TSCreate function 7-116
TSCreateExpressionVirtualTab 4-5, 4-13
TSCreateIrr function 7-118
TSCreateVirtualTab procedure 4-5
TSDecay function 7-122
TSInstanceTable system table 2-12
TSL_Attach function 7-123
TSL_Commit function 7-124
TSL_Flush function 7-126
TSL_FlushAll function 7-128
TSL_FlushInfo function 7-129
TSL_FlushStatus function 7-131
TSL_GetKeyContainer function 7-131
TSL_GetLogMessage function 7-132
TSL_Init function 7-133
TSL_Put function 7-135
TSL_PutRow function 7-137
TSL_PutSQL function 7-138
TSL_SessionClose function 7-139
TSL_SetLogMode function 7-140
TSL_Shutdown procedure 7-141
TSOPEN_NO_NULLS flag 7-9
TSOPEN_RDWRITE flag 7-9
TSOPEN_READ_HIDDEN flag 7-9
TSOPEN_WRITE_AND_HIDE flag 7-9
TSOPEN_WRITE_HIDDEN flag 7-9
TSPrevious function 7-142
TSRollup function 7-142
TSRowNameToList function 7-145
TSRowNumToList function 7-146
TSRowToList function 7-147
TSRunningAvg function 7-92, 7-148
TSRunningCor function 7-149
TSRunningMed function 7-150
TSRunningSum function 7-151
TSRunningVar function 7-152
TSSetToList function 7-153
TSSetTraceFile function 4-26
TSSetTraceLevel function 4-26, 4-27
TSToXML function 7-154
TSVTMode parameter 4-16
TSWRITE_AND_REVEAL flag 7-9
Type map 8-4

U
Unary arithmetic functions

Abs 7-11
Acos 7-11
Asin 7-27
Atan 7-27
Cos 7-38
description 7-156
Exp 7-48
Logn 7-74
Negate 7-75
Positive 7-77
Round 7-84
Sin 7-85
Sqrt 7-86
Tan 7-86

Union function 7-157
Union of time series 7-157
UPDATE statement 3-35
UPDATE STATISTICS statement 4-2
Updating

element 9-46, 9-47
element in a time series 9-54
metadata in a time series 9-54

Updating a set of elements 7-160
Updating an element 7-159
UpdElem function 7-159
UpdMetaData function 7-160
UpdSet function 7-160

V
Version, TimeSeries Java class 8-5
Virtual table 4-1
Virtual table interface 4-8
Virtual tables

creating 4-16
creating fragmented tables 4-10
creating with expressions 4-13
display of data 4-3
insert time series data 4-4
performance 4-2
structure 4-2

VirtualTableName parameter 4-5
Visual disabilities

reading syntax diagrams C-1

W
WithinC function 7-161
WithinR function 7-161

X-8 IBM Informix TimeSeries Data User's Guide

����

Printed in USA

SC27-4535-03

Sp
in
e
in
fo
rm
at
io
n:

In
fo

rm
ix

Pr
od

uc
tF

am
ily

In
fo

rm
ix

Ve
rs

io
n

12
.1

0
IB

M
In

fo
rm

ix
Ti

m
eS

er
ie

s
Da

ta
Us

er
's

Gu
id

e
�
�

�

	Contents
	Introduction
	About this publication
	Types of users
	Assumptions about your locale

	What's new in TimeSeries data for Informix, Version 12.10
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Informix TimeSeries solution
	Informix TimeSeries solution architecture
	Time series concepts
	TimeSeries data type technical overview
	Regular time series
	Irregular time series
	Packed time series
	Hertz time series
	Compressed numeric time series

	JSON time series
	Calendar
	Time series storage

	Getting started with the Informix TimeSeries solution
	Planning for creating a time series
	Planning for data storage
	Planning for loading time series data
	Planning for replication of time series data
	Planning for accessing time series data

	Hardware and software requirements
	Installing the IBM Informix TimeSeries Plug-in for Data Studio
	Database requirements for time series data
	SQL restrictions for time series data
	Time series global language support

	Sample smart meter data
	Setting up stock data examples

	Chapter 2. Data types and system tables
	CalendarPattern data type
	Calendar data type
	TimeSeries data type
	Time series return types
	CalendarPatterns table
	CalendarTable table
	TSContainerTable table
	TSContainerWindowTable
	TSContainerUsageActiveWindowVTI Table
	TSContainerUsageDormantWindowVTI Table

	TSInstanceTable table

	Chapter 3. Create and manage a time series through SQL
	Example: Create and load a regular time series
	Creating a TimeSeries data type and table
	Creating regular, empty time series
	Creating the data load file
	Loading the time series data
	Accessing time series data through a virtual table

	Example: Create and load a hertz time series
	Example: Create and load a compressed time series
	Example: Create and load a time series with JSON data
	Defining a calendar
	Predefined calendars

	Create a time series column
	Creating a TimeSeries subtype
	Create the database table

	Creating containers
	Rules for rolling window containers
	Monitor containers
	Manage container pools
	Configuring additional container pools

	Create a time series
	Creating a time series with metadata
	Time series input function
	Create a time series with the output of a function

	Load data into an existing time series
	IBM Informix TimeSeries Plug-in for Data Studio
	Creating a load job to load data from a file
	Create a load job to load data from a database
	Running a load job from the command line
	Command-line loader application

	Writing a loader program
	Loading JSON data
	Loading data from a file into a virtual table
	Load data with the BulkLoad function
	Data file formats for BulkLoad
	Example: Load data with BulkLoad

	Load small amounts of data with SQL functions

	Delete time series data
	Manage packed data

	Chapter 4. Virtual tables for time series data
	Performance of queries on virtual tables
	The structure of virtual tables
	The display of data in virtual tables
	Insert data through virtual tables
	Creating a time series virtual table
	TSCreateVirtualTab procedure
	Example of creating a virtual table
	Example of creating a fragmented virtual table

	TSCreateExpressionVirtualTab procedure
	The TSVTMode parameter
	Drop a virtual table
	Trace functions
	The TSSetTraceFile function
	TSSetTraceLevel function

	Chapter 5. Calendar pattern routines
	AndOp function
	CalPattStartDate function
	Collapse function
	Expand function
	NotOp function
	OrOp function

	Chapter 6. Calendar routines
	AndOp function
	CalIndex function
	CalRange function
	CalStamp function
	CalStartDate function
	OrOp function

	Chapter 7. Time series SQL routines
	Time series SQL routines sorted by task
	Time series routines that run in parallel
	The flags argument values
	Abs function
	Acos function
	AggregateBy function
	AggregateRange function
	Apply function
	ApplyBinaryTsOp function
	ApplyCalendar function
	ApplyOpToTsSet function
	ApplyUnaryTsOp function
	Asin function
	Atan function
	Atan2 function
	Binary arithmetic functions
	BulkLoad function
	Clip function
	ClipCount function
	ClipGetCount function
	Cos function
	CountIf function
	DelClip function
	DelElem function
	DelRange function
	DelTrim function
	Divide function
	ElemIsHidden function
	ElemIsNull function
	Exp function
	FindHidden function
	GetCalendar function
	GetCalendarName function
	GetClosestElem function
	GetCompression function
	GetContainerName function
	GetElem function
	GetFirstElem function
	GetFirstElementStamp function
	GetHertz function
	GetIndex function
	GetInterval function
	GetLastElem function
	GetLastElementStamp function
	GetLastNonNull function
	GetLastValid function
	GetMetaData function
	GetMetaTypeName function
	GetNelems function
	GetNextNonNull function
	GetNextValid function
	GetNthElem function
	GetOrigin function
	GetPacked function
	GetPreviousValid function
	GetStamp function
	GetThreshold function
	HideElem function
	HideRange function
	InsElem function
	InsSet function
	InstanceId function
	Intersect function
	IsRegular function
	Lag function
	Logn function
	Minus function
	Mod function
	Negate function
	NullCleanup function
	Plus function
	Positive function
	Pow function
	PutElem function
	PutElemNoDups function
	PutNthElem function
	PutSet function
	PutTimeSeries function
	RevealElem function
	RevealRange function
	Round function
	SetContainerName function
	SetOrigin function
	Sin function
	Sqrt function
	Tan function
	Times function
	TimeSeriesRelease function
	Transpose function
	TSAddPrevious function
	TSCmp function
	TSColNameToList function
	TSColNumToList function
	TSContainerCreate procedure
	TSContainerDestroy procedure
	TSContainerLock procedure
	TSContainerManage function
	TSContainerNElems function
	TSContainerPctUsed function
	TSContainerPoolRoundRobin function
	TSContainerPurge function
	TSContainerSetPool procedure
	TSContainerTotalPages function
	TSContainerTotalUsed function
	TSContainerUsage function
	TSCreate function
	TSCreateIrr function
	TSDecay function
	TSL_Attach function
	TSL_Commit function
	TSL_Flush function
	TSL_FlushAll function
	TSL_FlushInfo function
	TSL_FlushStatus function
	TSL_GetKeyContainer function
	TSL_GetLogMessage function
	TSL_Init function
	TSL_Put function
	TSL_PutRow function
	TSL_PutSQL function
	TSL_SessionClose function
	TSL_SetLogMode function
	TSL_Shutdown procedure
	TSPrevious function
	TSRollup function
	TSRowNameToList function
	TSRowNumToList function
	TSRowToList function
	TSRunningAvg function
	TSRunningCor function
	TSRunningMed function
	TSRunningSum function
	TSRunningVar function
	TSSetToList function
	TSToXML function
	Unary arithmetic functions
	Union function
	UpdElem function
	UpdMetaData function
	UpdSet function
	WithinC and WithinR functions

	Chapter 8. Time series Java class library
	Java class files and sample programs
	Preparing the server for Java classes
	Mapping time series data types
	Querying time series data with the IfmxTimeSeries object
	Obtaining the time series Java class version

	Chapter 9. Time series API routines
	Differences in using functions on the server and on the client
	Data structures for the time series API
	The ts_timeseries structure
	The ts_tscan structure
	The ts_tsdesc structure
	The ts_tselem structure

	Time series API routines sorted by task
	The ts_begin_scan() function
	The ts_cal_index() function
	The ts_cal_pattstartdate() function
	The ts_cal_range() function
	The ts_cal_range_index() function
	The ts_cal_stamp() function
	The ts_cal_startdate() function
	The ts_close() function
	The ts_closest_elem() function
	The ts_col_cnt() function
	The ts_col_id() function
	The ts_colinfo_name() function
	The ts_colinfo_number() function
	The ts_copy() function
	The ts_create() function
	The ts_create_with_metadata() function
	The ts_current_offset() function
	The ts_current_timestamp() function
	The ts_datetime_cmp() function
	The ts_del_elem() function
	The ts_elem() function
	The TS_ELEM_HIDDEN macro
	The TS_ELEM_NULL macro
	The ts_elem_to_row() function
	The ts_end_scan() procedure
	The ts_first_elem() function
	The ts_free() procedure
	The ts_free_elem() procedure
	The ts_get_all_cols() procedure
	The ts_get_calname() function
	The ts_get_col_by_name() function
	The ts_get_col_by_number() function
	The ts_get_compressed() function
	The ts_get_containername() function
	The ts_get_flags() function
	The ts_get_hertz() function
	The ts_get_metadata() function
	The ts_get_origin() function
	The ts_get_packed() function
	The ts_get_stamp_fields() procedure
	The ts_get_threshold() function
	The ts_get_ts() function
	The ts_get_typeid() function
	The ts_hide_elem() function
	The ts_index() function
	The ts_ins_elem() function
	The TS_IS_INCONTAINER macro
	The TS_IS_IRREGULAR macro
	The ts_last_elem() function
	The ts_last_valid() function
	The ts_make_elem() function
	The ts_make_elem_with_buf() function
	The ts_make_stamp() function
	The ts_nelems() function
	The ts_next() function
	The ts_next_valid() function
	The ts_nth_elem() function
	The ts_open() function
	The ts_previous_valid() function
	The ts_put_elem() function
	The ts_put_elem_no_dups() function
	The ts_put_last_elem() function
	The ts_put_nth_elem() function
	The ts_put_ts() function
	The ts_reveal_elem() function
	The ts_row_to_elem() function
	The ts_time() function
	The ts_tstamp_difference() function
	The ts_tstamp_minus() function
	The ts_tstamp_plus() function
	The ts_update_metadata() function
	The ts_upd_elem() function

	Appendix A. The Interp function example
	Appendix B. The TSIncLoad procedure example
	Appendix C. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

