IBM Informix
Guide to SQL

Reference

IBM Informix Extended Parallel Server, Version 8.4
IBM Informix Dynamic Server, Version 9.4

March 2003
Part No. CT1SPNA

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”

This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

ii 1BM Informix Guide to SQL: Reference

Chapter 1

Table of Contents

Introduction
In This Introduction

About This Manual .
Types of Users .

Software Dependencies . .
Assumptions About Your Locale.
Demonstration Database

New Features in Dynamic Server, Version 9.4
SQL Enhancements

New Features in Extended Parallel Server Ver51on 8. 40

Documentation Conventions
Typographical Conventions

Icon Conventions .

Syntax Conventions . .

Example-Code Conventions .
Additional Documentation .
Related Reading . .
Compliance with Industry Standards
IBM Welcomes Your Comments

System Catalog Tahles

In This Chapter .

Objects That the System Catalog Tables Track
Using the System Catalog

Structure of the System Catalog
SYSAGGREGATES

SYSAMS .
SYSATTRTYPES
SYSBLOBS
SYSCASTS

X NI N OO G O W

O e
QL U = N = O

1-5

1-6
1-13
1-15
1-16
1-19
1-20
1-21

SYSCHECKS 122
SYSCHECKUDRDEP 123
SYSCOLATTRIBS 124
SYSsCOLAUTH 125
SYSCOLDEPEND 126
SYSCOLUMNS 127
SYSCONSTRAINTS. 133
SYSDEFAULTS 134
SYSDEPEND 135
SYSDISTRIB 135
SYSDOMAINS 137
SYSERRORS 137
SYSEXTCOLS. 138
SYSEXTDFILES 139
SYSEXTERNAL 139
SYSFRAGAUTH. 140
SYSFRAGMENTS 14
SYSINDEXES 144
SYSINDICES 146
SYSINHERITS. 147
SYSLANGAUTH. 148
SYSLOGMAP. 148
SYSNEWDEPEND 149
SYSOBJSTATE. 150
SYSOPCLASSES 151
SYSOPCLSTR. 152
SYSPROCAUTH. 154
SYSPROCBODY 155
SYSPROCEDURES 156
SYSPROCPLAN 160
SYSREFERENCES 161
SYSREPOSITORY 161
SYSROLEAUTH 162
SYSROUTINELANGS 163
SYSSEQUENCES. 163
SYSSYNONYMS. 1lo64
SYSSYNTABLE 1lo64
SYSTABAMDATA 165
SYSTABAUTH 166

iv IBM Informix Guide to SQL: Reference

Chapter 2

SYSTABLES . .
SYSTRACECLASSES .
SYSTRACEMSGS .
SYSTRIGBODY .
SYSTRIGGERS .
SYSUSERS
SYSVIEWS
SYSVIOLATIONS .
SYSXTDDESC .
SYSXTDTYPEAUTH .
SYSXTDTYPES .

Information Schema P
Generating the Information Schema Views

Accessing the Information Schema Views.

Structure of the Information Schema Views .

Data Types
In This Chapter
Summary of Data Types
Description of Data Types
BLOB
BOOLEAN
BYTE
CHAR(n) .
CHARACTER(n)
CHARACTER VARYING(m,r)
CLOB .
DATE .
DATETIME .
DEC. . .
DECIMAL
Distinct .o
DOUBLE PRECISION
FLOAT(n).
INT .
INTS8
INTEGER .
INTERVAL
LIST(e) .

1-67
1-69
1-70
1-71
1-72
1-73
1-73
1-74
1-75
1-75
1-76
1-77
1-78
1-78
1-78

23
2-3
27
27
2-8
2-8

2-10

2-11

211

2-11

2-13

2-13

217

217

2-19

2-20

2-21

2-21

2-21

2-22

2-22

2-25

Table of Contents v

LVARCHAR(m) .
MONEY(p,s) .
MULTISET(e) .
NCHAR().
NUMERIC(p,s)
NVARCHAR(m,r)
Opaque .

REAL.

ROW, Named .
ROW, Unnamed .
SERIAL(n) .
SERIALS8(n).
SET(e)
SMALLFLOAT
SMALLINT.
TEXT . .
VARCHAR(m,r) .

Built-In Data Types .
Large-Object Data Types .

Time Data Types .

Extended Data Types .
Complex Data Types

Distinct Data Types .
Opaque Data Types .

Data Type Casting and Conversion .
Using Built-in Casts .

Using User-Defined Casts.

Determining Which Cast to Apply.

Casts for Distinct Types .

What Extended Data Types Can Be Cast7
Operator Precedence .

vi IBM Informix Guide to SQL: Reference

2-27
2-27
2-28
2-30
2-30
2-30
2-30
2-31
2-31
2-33
2-35
2-36
2-38
2-39
2-40
2-40
2-42
2-44
2-45
2-48
2-54
2-55
2-58
2-58
2-58
2-59
2-62
2-63
2-64
2-65
2-66

Chapter 3

Environment Variables

In This Chapter . .

Types of Environment Varlables

Where to Set Environment Variables on UNIX
Where to Set Environment Variables on Windows

Using Environment Variables on UNIX .
Setting Environment Variables in a Conﬁguratlon Flle

Setting Environment Variables at Login Time

Syntax for Setting Environment Variables .

Unsetting Environment Variables .

Modifying an Environment-Variable Setting .

Viewing Your Environment-Variable Settings .
Checking Environment Variables with the chkenv Utility
Rules of Precedence

Using Environment Variables on Wmdows
Environment Settings for Native Windows Apphcat1ons

Environment Settings for Command-Prompt Utilities
Rules of Precedence
List of Environment Variables

Environment Variables .
AC_CONFIG

AFDEBUG .
BIG_FET_BUEF_SIZE .
CPFIRST .
DBACCNOIGN.
DBANSIWARN.
DBBLOBBUF
DBCENTURY
DBDATE .
DBDELIMITER .
DBEDIT
DBFLTMASK
DBLANG .
DBMONEY .
DBNLS.
DBONPLOAD .
DBPATH .

DBPRINT . .
DBREMOTECMD .

3-5
3-5
3-6
3-7
3-7
3-7
3-8
3-9
3-9

3-10

3-11

3-11

3-12

3-13

3-13

3-14

3-17

3-17

3-22

3-23

3-23

3-23

3-24

3-25

3-27

3-27

3-28

3-32

3-34

3-35

3-35

3-36

3-38

3-39

3-40

3-41

3-43

3-44

Table of Contents vii

DBSPACETEMP 345

DBTEMP 346
DBTIME. 347
DBUPSPACE 350
DEFAULT_ATTACH 351
DELIMIDENT. 351
ENVIGNORE. 352
FET_ BUFSIZE 353
IFMX_OPT_FACT_TABS 354
IFMX_OPT_NON_DIM_TABS 355
IFX_DEF_TABLE_ LOCKMODE 356
IFX_DIRECTIVES 357
IFX_ LONGID Co. 358
IFEX_NETBUF_PVTPOOL_ SIZE N o
IEX_NETBUF SIZE. 35
IEX_UPDDESC 360
IMCADMIN 360
IMCCONFIG 361
IMCSERVER 361
INFORMIXC e e 362
INFORMIXCONCSMCFG e e s 362
INFORMIXCONRETRY 363
INFORMIXCONTIME 363
INFORMIXCPPMAP 365
INFORMIXDIR 365
INFORMIXKEYTAB. 366
INFORMIXOPCACHE. 2366
INFORMIXSERVER. 367
INFORMIXSHMBASE 368
INFORMIXSQLHOSTS. 369
INFORMIXSTACKSIZE 370
INFORMIXTERM 370
INF_ROLE_SEP e
INTERACTIVE_DESKTOP_ OFF N 2
ISM_COMPRESSION 372
ISM_DEBUG_FILE 373
ISM_DEBUG_LEVEL 373
ISM_ENCRYPTION. 374
ISM_MAXLOGSIZE. 374

viii IBM Informix Guide to SQL: Reference

ISM_MAXLOGVERS .
JAR_TEMP_PATH .
JAVA_COMPILER .
JVM_MAX_HEAP_SIZE.
LD_LIBRARY_PATH .
LIBERAL_MATCH
LIBPATH .
NODEFDAC
ONCONFIG .
OPTCOMPIND.
OPTMSG .

OPTOFC .
OPT_GOAL .

PATH .
PDQPRIORITY .
PLCONFIG .
PLOAD_LO_PATH
PLOAD_SHMBASE .
PSORT_DBTEMP .
PSORT_NPROCS .

RTREE_COST_ADJUST_VALUE.

SHLIB_PATH
STMT_CACHE .
TERM .
TERMCAP
TERMINFO .
THREADLIB.
USETABLEAME
XFER_CONFIG.

Index of Environment Variables

3-75
3-75
3-76
3-76
3-77
3-77
3-78
3-79
3-79
3-80
3-81
3-82
3-82
3-83
3-84
3-85
3-86
3-86
3-87
3-88
3-89
3-90
3-90
3-91
3-91
3-92
3-93
3-93
3-94
3-94

Table of Contents ix

Appendix A The stores_demo Database
Appendix B The sales_demo and superstores_demo Databases
Appendix C Notices

Glossary

Index

X IBM Informix Guide to SQL: Reference

Introduction

In This Introduction

About This Manual.
Types of Users .

Software Dependencies . .
Assumptions About Your Locale.
Demonstration Database

New Features in Dynamic Server, Version 9.4
SQL Enhancements

New Features in Extended Parallel Server, Version 8.40

Documentation Conventions
Typographical Conventions

Icon Conventions .

Compliance Icons
Feature, Product, and Platform Icons
Comment Icons

Syntax Conventions .

Example-Code Conventions
Additional Documentation .
Related Reading .

Compliance with Industry Standards

IBM Welcomes Your Comments

==
O OO0 0 NI\ AN [e) NN U1 U1 = =W [68]

S e o S
g1 U = N =

2 IBM Informix Guide to SQL: Reference

In This Introduction

This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual

This manual includes information about system catalog tables, data types,
and environment variables that IBM Informix products use. It also includes a
glossary that contains definitions of common terms found in IBM Informix
documentation and a description of the demonstration databases that
Version 9.4 of IBM Informix Dynamic Server and Version 8.4 of IBM Informix
Extended Parallel Server provide.

This manual is one of a series of manuals that discusses the Informix imple-
mentation of SQL. The IBM Informix Guide to SQL: Syntax contains all the
syntax descriptions for SQL and stored procedure language (SPL). The

IBM Informix Guide to SQL: Tutorial shows how to use basic and advanced SQL
and SPL routines to access and manipulate the data in your databases. The
IBM Informix Database Design and Implementation Guide shows how to use SQL
to implement and manage your databases.

See the documentation notes files, which are described in the section
“Additional Documentation” on page 12 of this Introduction, for a list of the
manuals in the documentation set of your Informix database server.

Introduction 3

Types of Users

Types of Users

This manual is written for the following users:

Database users

Database administrators

Database server administrators
Database-application programmers

Performance engineers

This manual assumes that you have the following background:

A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

Some experience working with relational databases or exposure to
database concepts

Some experience with computer programming

Some experience with database server administration, operating-
system administration, or network administration

If you have limited experience with relational databases, SQL, or your
operating system, refer to the Getting Started Guide for your database server
for a list of supplementary titles.

Software Dependencies

This manual is written with the assumption that you are using one of the
following database servers:

IBM Informix Extended Parallel Server, Version 8.40

IBM Informix Dynamic Server, Version 9.40

4 |BM Informix Guide to SQL: Reference

Assumptions About Your Locale

Assumptions Ahout Your Locale

IBM Informix products can support many languages, cultures, and code sets.
All the information related to character set, collation, and representation of
numeric data, currency, date, and time is brought together in a single
environment, called a Global Language Support (GLS) locale.

This manual assumes that your database uses the default locale. This default
is en_us.8859-1 (ISO 8859-1) on UNIX platforms or en_us.1252 (Microsoft
1252) in Windows environments. This locale supports U.S. English format
conventions for displaying and entering date, time, number, and currency
values. It also supports the ISO 8859-1 (on UNIX and Linux) or Microsoft 1252
(on Windows) code set, which includes the ASCII code set plus many 8-bit
characters such as é, ¢, and .

If you plan to use nondefault characters in your data or in SQL identifiers, or
if you plan to use other collation rules for sorting character data, you need to
specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, and for additional
syntax and other considerations related to GLS locales, see the IBM Informix
GLS User’s Guide.

Demonstration Database

The DB-Access utility, which is provided with the database server products,
includes one or more of the following demonstration databases:

m The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in IBM Informix manuals are based on the
stores_demo database.

m Thesales_demo database illustrates a dimensional schema for data-
warehousing applications. For conceptual information about dimen-
sional data modeling, see the IBM Informix Database Design and
Implementation Guide. ¢

m The superstores_demo database illustrates an object-relational
schema. The superstores_demo database contains examples of
extended data types, type and table inheritance, and user-defined
routines. ¢

Introduction 5

New Features in Dynamic Server, Version 9.4

Databases.”

For information about how to create and populate the demonstration
databases, see the IBM Informix DB-Access User’s Guide. For descriptions of the
databases and their contents, see the Appendix A, “The stores_demo
Database” and Appendix B, “The sales_demo and superstores_demo

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR % \bin directory in Windows environments.

SQL Enhancements

New Features in Dynamic Server, Version 9.4

The following table provides information about the new features for

IBM Informix Dynamic Server, Version 9.4, that this manual describes. To go
to the desired page in an online view of this table, click a blue hyperlink. For
a description of all new features, see the Getting Started Guide.

Version 9.4 supports new features that are reflected in changes to some of the
system catalog tables, data types, and environment variables.

New Features

Reference

Nondefault creation-time localized collation
by database objects that sort NCHAR or
NVARCHAR data strings

Functional index on more than 16 columns
Sequence objects

INSTEAD OF triggers on views
LVARCHAR data types larger than 2Kb

Adjust cost estimates for I/O-intensive
queries that use indexes on UDT columns

No synonyms in ALTER (or DROP) TABLE

“SYSCONSTRAINTS” on page 1-33
“SYSPROCPLAN” on page 1-60,
“SYSINDICES” on page 1-46, etc.

“SYSINDICES” on page 1-46
“SYSSEQUENCES” on page 1-63
“SYSTRIGGERS” on page 1-72
“LVARCHAR(m)” on page 2-27

“RTREE_COST_ADJUST_VALUE”
on page 3-89

“USETABLEAME” on page 3-93

6 IBM Informix Guide to SQL: Reference

New Features in Extended Parallel Server, Version 8.40

New Features in Extended Parallel Server,
Version 8.40

For a comprehensive list of new database server features in IBM Informix
Extended Parallel Server, Version 8.40, see IBM Informix Extended Parallel
Server Getting Started Guide.

Documentation Conventions

This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

Typographical Conventions

This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Convention Meaning
KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.
italics Within text, new terms and emphasized words appear in italics.
italics Within syntax and code examples, variable values that you are
italics to specify appear in italics.
boldface Names of program entities (such as classes, events, and tables),
boldface environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.
monospace Information that the product displays and information that you
monospace enter appear in a monospace typeface.
(1of2)

Introduction 7

Icon Conventions

Convention Meaning

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

* The end of product- or platform-specific information.

s A menu item. For example, “Choose Tools—Options” means

choose the Options item from the Tools menu.

(2 of 2)

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Gonventions

Throughout the documentation, you will find text that is identified by several
different types of icons. If an icon appears to the left of a section heading, the
information ends at the next heading at the same or higher level. A ¢ symbol
indicates the end of specific information that appears in one or more
paragraphs within a section. This section describes these icons.

Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

Icon Description

Identifies information that is specific to an ANSI-compliant
database, according to the ANSI/ISO standard for SQL

X/ Identifies functionality that conforms to X/Open

Identifies information that is an Informix extension to the
ANSI SQL-92 entry-level standard for SQL

These icons can apply to an entire section or to one or more paragraphs
within a section.

8 IBM Informix Guide to SQL: Reference

Icon Conventions

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon

Description

Identifies information that is specific to C language
user-defined routines (UDRs)

HI

Identifies information that is specific to DB-Access

E/C

Identifies information that is specific to IBM Informix
ESQL/C

Identifies information that is specific to external routines;
that is, UDRs written in either the C or Java language

GLS

Identifies locale-dependent information that relates to the
IBM Informix Global Language Support (GLS) feature

Identifies information or syntax that is specific to
IBM Informix Dynamic Server

Java

Identifies information that is specific to UDRs written in
the Java language

Identifies information that is specific to the UNIX
operating system

Identifies information that applies to all Windows
environments

Identifies information or syntax that is specific to
IBM Informix Extended Parallel Server

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ¢ symbol indicates the end of the feature-specific, product-
specific, or platform-specific information, unless the icon marks a section
heading (to indicate that the scope of the icon is that entire section).

Introduction 9

Syntax Conventions

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,

cautions, or critical information

Important: 1dentifies paragraphs that contain significant
:> information about the feature or operation that is
being described
Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described
Syntax Conventions

This section describe syntax diagram conventions. Each diagram displays the
series of required and optional keywords, terms, and symbols that are valid
in a given statement, command line, or other specification, as in Figure 1.

Figure 1
Example of a Simple Syntax Diagram

l

GOTO \ I label \

Keep in mind these rules when you read syntax diagrams in this book:

m To make keywords (like GOTO in Figure 1) easy to identify, they are
shown in UPPERCASE letters, even though you can type them in
either uppercase or lowercase letters.

m Terms for which you must supply specific values are in italics.
In Figure 1, you must replace label with an identifier. A table below
the diagram explains what you can substitute for the italicized term.

10 IBM Informix Guide to SQL: Reference

Example-Code Conventions

m All the punctuation and other nonalphabetic characters are literal
symbols. In Figure 1, the colon is a literal symbol.

m Each syntax diagram begins at the upper-left corner and ends at the
upper-right corner with a vertical terminator (or with an arrow, if a
subdiagram). Between these points, any path that does not stop or
reverse direction describes a possible form of the statement.

m Asyntax diagram might include options that are mutually exclusive.
When such dependencies exist, notes in the Usage section identify
restrictions that cannot easily be shown in the syntax diagram.

Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise from
the right. Unless otherwise noted, at least one blank character separates
syntax elements. (Exceptions include identifiers, quoted strings, and literals.)

Example-Code Conventions

Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single IBM Informix application development
tool. If only SQL statements are listed in the example, they are not delimited
by semicolons. For instance, you might see code resembling this example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK

DISCONNECT CURRENT
To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access, you must delimit
multiple statements with semicolon (;) symbols. If you are using an SQL AP,
you must use EXEC SQL at the start of each statement and a semicolon (or
other appropriate delimiter) at the end of the statement.

Tip: Ellipsis (...) points in code examples indicate that more code would be added
in a full application, but it is not neded to illustrate the concept being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL AP, see the manual for your product.

Introduction 11

Additional Documentation

12

Additional Documentation

IBM Informix Dynamic Server documentation is provided in a variety of
formats:

m Online manuals. You can obtain online manuals at the IBM Informix
Online Documentation site at
http:/ /www.ibm.com/software/data/informix/pubs/library/.
This Web site enables you to print chapters or entire books.

m Online help. This facility can provide context-sensitive help, an
error message reference, language syntax, and more.

m Documentation notes and release notes. Documentation notes,
which contain additions and corrections to the manuals, and release
notes are located in the directory where the product is installed.

Please examine these files because they contain vital information
about application and performance issues. The following table
describes these files.

IBM Informix Guide to SQL: Reference

UNIX

Additional Documentation

On UNIX platforms that use the default locale, the following online
files appear in the $INFORMIXDIR/release/en_us/0333 directory.

Online File

Description

ids_sqlr_docnotes_9.40.html
(for Dynamic Server) or
xps_sqlr_docnotes_9.40.html
(for Extended Parallel Server)

ids_unix_release_notes_9.40.html
ids_unix_release_notes_9.40.txt
(for Dynamic Server) or
xps_release_notes_8.40.html
xps_release_notes_8.40.txt

(for Extended Parallel Server)

ids_machine_notes_9.40.txt
(for Dynamic Server) or
xps_machine_notes_8.40.txt
(for Extended Parallel Server)

The documentation notes file for
your version of this manual
describes topics that are not covered
in the manual or that were modified
since publication.

The release notes file describes
feature differences from earlier
versions of Dynamic Server and how
these differences might affect your
products. This file also contains
information about any known
problems and their workarounds.
(The .txt version is in ASCII text
format; the .html version can be
displayed in a browser.)

The machine notes file describes any
special actions that you must take to
configure and use IBM Informix
products on your computer.
Machine notes are named for the
product described.

Introduction 13

Related Reading

UNIX

14

The following items appear in the Informix folder. To display this
folder, choose Start—Programs—Informix from the task bar.

Program Group ltem

Description

Documentation Notes

This item includes additions or corrections to
manuals with information about features that
might not be covered in the manuals or that
have been modified since publication.

Release Notes

This item describes feature differences from
earlier versions of IBM Informix products and
how these differences might affect current
products. This file also contains information
about any known problems and their
workarounds.

Machine notes do not apply to Windows platforms. ¢

m Error message files. IBM Informix software products provide ASCII
files that contain error messages and their corrective actions.

To read the error messages on UNIX, you can use the finderr com-
mand to display the error messages online. ¢

To read error messages and corrective actions on Windows, use the
Informix Error Messages utility. To display this utility, choose
Start—Programs—Informix from the task bar. ¢

Related Reading

IBM Informix Guide to SQL: Reference

For a list of publications that provide an introduction to database servers and
operating-system platforms, refer to your Getting Started Guide.

Compliance with Industry Stanaards

Compliance with Industry Standards

The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is
identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open SQL
CAE (common applications environment) standards.

IBM Welcomes Your Comments

To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

m The name and version of your manual
® Any comments that you have about the manual

m Your name, address, and phone number
Send electronic mail to us at the following address:
docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.

Introduction 15

System Catalog Tables

In This Chapter 1-5
Objects That the System Catalog Tables Track. 1-5
Using the System Catalog 1-6

Structure of the System Catalog 113
SYSAGGREGATES 115

SYSAMS 116
SYSATTRTYPES 119
SYSBLOBS 120
SYSCASTS 121
SYSCHECKS 122
SYSCHECKUDRDEP. 123
SYSCOLATTRIBS 124
SYSCOLAUTH. 125
SYSCOLDEPEND. 126
SYSCOLUMNS. 127
SYSCONSTRAINTS 133
SYSDEFAULTS. 134
SYSDEPEND 135
SYSDISTRIB. 135
SYSDOMAINS 1737
SYSERRORS. 137
SYSEXTCOLS 138
SYSEXTDFILES. 139
SYSEXTERNAL 139
SYSFRAGAUTH 140
SYSFRAGMENTS. 141

SYSINDEXES 144
SYSINDICES. 146
SYSINHERITS 147
SYSLANGAUTH 148
SYSLOGMAP 148
SYSNEWDEPEND. 149
SYSOBJSTATE 150
SYSOPCLASSES 151
SYSOPCLSTR 152
SYSPROCAUTH 154
SYSPROCBODY 155
SYSPROCEDURES. 156
SYSPROCPLAN 160
SYSREFERENCES. 161
SYSREPOSITORY 1lel
SYSROLEAUTH 162
SYSROUTINELANGS 163
SYSSEQUENCES 163
SYSSYNONYMS 1lo4
SYSSYNTABLE. 1lo4
SYSTABAMDATA 165
SYSTABAUTH 166
SYSTABLES . le67
SYSTRACECLASSES 169
SYSTRACEMSGS 170
SYSTRIGBODY. 171
SYSTRIGGERS 172
SYSUSERS 173
SYSVIEWS 173
SYSVIOLATIONS 174
SYSXTDDESC 175
SYSXTDTYPEAUTH 175
SYSXTDTYPES 176

1-2 IBM Informix Guide to SQL: Reference

Information Schema . . . T 4

Generating the Information Schema Views 178
Accessing the Information Schema Views 178
Structure of the Information Schema Views. 1-78

System Catalog Tables 1-3

1-4 IBM Informix Guide to SQL: Reference

In This Chapter

The system catalog consists of tables that describe the structure of the
database. Sometimes called the “data dictionary,” these tables contain every-
thing that the database knows about itself. Each system catalog table contains
specific information about elements in the database.

This chapter provides information about the structure, contents, and use of
the system catalog tables. It also discusses the Information Schema, which
provides information about the tables, views, and columns on the current
database server.

Objects That the System Catalog Tables Track

The system catalog tables maintains information about the database,
including the following categories of database objects:

Tables, views, and synonyms

Columns, constraints, indexes, and fragments

Triggers

Procedures, functions, routines, and associated messages
Authorized users, roles, and privileges to access database objects
Data types

Aggregate functions

Access methods and operator classes

Sequence objects

Inheritance relationships ¢

System Catalog Tables 1-5

Using the System Catalog

1-6

Using the System Catalog

Informix database servers automatically generate the system catalog tables
when you create a database. You can query them as you would query any
other table in the database. The system catalog tables for a newly created
database reside in a common area of the disk called a dbspace. Every database
has its own system catalog tables. All tables in the system catalog have the
prefix sys (for example, the systables system catalog table).

Not all tables with the prefix sys are true system catalog tables. For example,
a common DataBlade module builds a sysbuiltintypes table that looks like a
system table and contains similar data, and the syscdr database supports the
Enterprise Replication feature. These tables, however, have a tabid > 99.
System catalog tables all have a tabid < 99. (See later in this section and
“SYSTABLES” on page 1-67 for more information about tabid numbers that
the database assigns to tables.)

Tip: Do not confuse the system catalog tables of a database with the tables in the
sysmaster, sysutils, or sysuuid databases. The names of tables in those databases
also have the sys prefix, but they contain information about an entire database server,
which might manage multiple databases. Information in the sysmaster, sysutils,
and sysuuid tables is primarily useful for database system administrators (DBSAs).
See also the “Administrator’s Guide” and “Administrator’s Reference.”

The database server accesses the system catalog constantly. Each time an SQL
statement is processed, the database server accesses the system catalog to
determine system privileges, add or verify table or column names, and so on.

For example, the following CREATE SCHEMA block adds the customer table,
with its respective indexes and privileges, to the stores_demo database. This
block also adds a view, california, that restricts the data of the customer table
to only the first and last names of the customer, the company name, and the
telephone number for all customers who reside in California.

CREATE SCHEMA AUTHORIZATION maryl
CREATE TABLE customer (customer num SERIAL(101), fname CHAR(15),
lname CHAR(15), company CHAR(20), addressl CHAR(20), address2 CHAR(20),
city CHAR(15), state CHAR(2), zipcode CHAR(5), phone CHAR(18))
GRANT ALTER, ALL ON customer TO cathl WITH GRANT OPTION AS maryl
GRANT SELECT ON customer TO public
GRANT UPDATE (fname, lname, phone) ON customer TO nhowe
CREATE VIEW california AS
SELECT fname, lname, company, phone FROM customer WHERE state = 'CA'
CREATE UNIQUE INDEX c_num ix ON customer (customer_num)
CREATE INDEX state_ix ON customer (state)

IBM Informix Guide to SQL: Reference

Using the System Catalog

To process this CREATE SCHEMA block, the database server first accesses the
system catalog to verify the following information:

The new table and view names do not already exist in the database.
(If the database is ANSI-compliant, the database server verifies that
the new names do not already exist for the specified owners.)

The user has permission to create tables and grant user privileges.

The column names in the CREATE VIEW and CREATE INDEX
statements exist in the customer table.

In addition to verifying this information and creating two new tables, the
database server adds new rows to the following system catalog tables:

systables
syscolumns
sysviews
systabauth
syscolauth
sysindexes

sysindices ¢

The following two new rows of information are added to the systables
system catalog table after the CREATE SCHEMA block is run.

Column Name First Row Second Row
tabname customer california
owner maryl maryl
partnum 16778361 0

tabid 101 102
rowsize 134 134

ncols 10 4

nindexes 2 0

Nrows 0 0

created 01/26/1999 01/26/1999
version 1 0

tabtype T \Y%

(10of2)

System Catalog Tables 1-7

Using the System Catalog

1-8

Column Name First Row Second Row
locklevel P B

npused 0 0

fextsize 16 0

nextsize 16 0

flags 0 0

site

dbname

(2 of 2)

Each table recorded in the systables system catalog table is assigned a tabid,
a system-assigned sequential number that uniquely identifies each table in
the database. The system catalog tables receive 2-digit tabid numbers, and
the user-created tables receive sequential tabid numbers that begin with 100.

The CREATE SCHEMA block adds 14 rows to the syscolumns system catalog
table. These rows correspond to the columns in the table customer and the
view california, as the following example shows.

colname tabid colno coltype collength colmin colmax
customer_num 101 1 262 4
fname 101 2 0 15
Iname 101 3 0 15
company 101 4 0 20
addressl 101 5 0 20
address2 101 6 0 20
city 101 7 0 15
state 101 8 0

zipcode 101 9 0 5
phone 101 10 0 18
fname 102 1 0 15
Iname 102 2 0 15
company 102 3 0 20
phone 102 4 0 18

IBM Informix Guide to SQL: Reference

Using the System Catalog

In the syscolumns table, each column within a table is assigned a sequential
column number, colno, that uniquely identifies the column within its table.
In the colno column, the fname column of the customer table is assigned the
value 2 and the fname column of the view california is assigned the value 1.

The colmin and colmax columns are empty. These columns contain values
when a column is the first key (or the only key) in an index, and has no NULL
or duplicate values, and the UPDATE STATISTICS statement has been run.

The database server also adds rows to the sysviews system catalog table,
whose viewtext column contains each line of the CREATE VIEW statement
that defines the view. In that column, the x0 that precedes the column names
in the statement (for example, x0.fname) operates as an alias that distin-
guishes among the same columns that are used in a self-join.

The CREATE SCHEMA block also adds rows to the systabauth system catalog
table. These rows correspond to the user privileges granted on customer and
california tables, as the following example shows.

grantor grantee tabid tabauth
maryl public 101 su-idx--
maryl cathl 101 SU-IDXAR
maryl nhowe 101 - Feeen
maryl 102 SU-ID---

The tabauth column specifies the table-level privileges granted to users on
the customer and california tables. This column uses an 8-byte pattern, such
as s (Select), u (Update), * (column-level privilege), i (Insert), d (Delete),

x (Index), a (Alter), and r (References), to identify the type of privilege. In
this example, the user nhowe has column-level privileges on the customer
table. Where a hyphen (-) appears, the user has not been granted the
privilege whose position the hyphen occupies within the tabauth value.

If the tabauth privilege code appears in uppercase (for example, s for Select),
the user has this privilege and can also grant it to others; but if the privilege
code is lowercase (for example, s for Select), the user cannot grant it to others.

System Catalog Tables 1-9

Using the System Catalog

In addition, three rows are added to the syscolauth system catalog table.
These rows correspond to the user privileges that are granted on specific
columns in the customer table, as the following example shows.

grantor grantee tabid colno colauth
maryl nhowe 101 2 -u-
maryl nhowe 101 3 -u-
maryl nhowe 101 10 -u-

The colauth column specifies the column-level privileges that are granted on
the customer table. This column uses a 3-byte pattern, such as s (Select),

u (Update), and r (References), to identify the type of privilege. For example,
the user nhowe has Update privileges on the second column (because the
colno value is 2) of the customer table (indicated by tabid value of 101).

The CREATE SCHEMA block adds two rows to the sysindexes system catalog
table (the sysindices table for Dynamic Server). These rows correspond to the
indexes created on the customer table, as the following example shows.

idxname c_num_ix state_ix

owner maryl maryl
tabid 101 101
idxtype U D
clustered
partl
part2
part3
part4
partb
part6
part7
part8
part9

O O O O O O O O O =
o O O O O O O O O @

partl0

(1 of 2)

1-10 IBM Informix Guide to SQL: Reference

Accessing the System Catalog

idxname C_num_ix state_ix
partll 0 0
partl2 0 0
partl3 0 0
partl4 0 0
partl5 0 0
partlé 0 0
levels

leaves

nunique

clust

idxflags

(2 of 2)

In this table, the idxtype column identifies whether the created index
requires unique values (U) or accepts duplicate values (D). For example, the
c_num_ix index on the customer.customer_num column is unique.

Accessing the System Catalog

Normal user access to the system catalog is read-only. Users with Connect or
Resource privileges cannot alter the catalog, but they can access data in the
system catalog tables on a read-only basis using standard SELECT statements.

For example, the following SELECT statement displays all the table names
and corresponding tabid codes of user-created tables in the database:

SELECT tabname, tabid FROM systables WHERE tabid > 99

When you use DB-Access, only the tables that you created are displayed. To
display the system catalog tables, enter the following statement:

SELECT tabname, tabid FROM systables WHERE tabid < 100

You can use SUBSTR or SUBSTRING function to select only part of a source
string. To display the list of tables in columns, enter the following statement:

SELECT SUBSTR (tabname, 1, 18), tabid FROM systables

System Catalog Tables 1-11

Updating System Catalog Data

o

Warning: Although user informix and DBAs can modify most system catalog tables
(only user informix can modify systables), it is strongly recommended that you do
not update, delete, or insert any rows in them. Modifying the system catalog tables
can destroy the integrity of the database. The use of the ALTER TABLE statement to
modify the size of the next extent of system catalog tables is not supported.

In certain catalog tables of Dynamic Server, however, it is valid to add entries to the
system catalog tables. For instance, in the case of the syserrors system catalog table
and the systracemsgs system catalog table, a developer of DataBlade modules can
directly insert message entries that appear in these system catalog tables. ¢

Updating System Catalog Data

The optimizer in Informix database servers determines the most efficient
strategy for executing SQL queries. The optimizer allows you to query the
database without having to consider fully which tables to search first in a join
or which indexes to use. The optimizer uses information from the system
catalog to determine the best query strategy.

If you use the UPDATE STATISTICS statement to update the system catalog,
you can ensure that the information provided to the optimizer is current.
When you delete or modify a table, the database server does not automati-
cally update the related statistical data in the system catalog. For example, if
you delete one or more rows in a table with the DELETE statement, the nrows
column in the systables system catalog table, which holds the number of
rows for that table, is not updated automatically.

The UPDATE STATISTICS statement causes the database server to recalculate
data in the systables, sysdistrib, syscolumns, and sysindexes (sysindices for
Dynamic Server) system catalog tables. After you run UPDATE STATISTICS,
the systables system catalog table holds the correct value in the nrows
column. If you specify MEDIUM or HIGH mode with the UPDATE STATISTICS
statement, the sysdistrib system catalog table holds the updated data-distri-
bution data after you run UPDATE STATISTICS.

Whenever you modify a data table extensively, use the UPDATE STATISTICS
statement to update data in the system catalog. For more information on
the UPDATE STATISTICS statement, see the IBM Informix Guide to SQL: Syntax.

1-12 IBM Informix Guide to SQL: Reference

Structure of the System Catalog

Structure of the System Catalog

The following system catalog tables describe the structure of an Informix
database. Here ¢ indicates that IDS (or XPS) supports the table.

System Catalog Tahle XPS IDS Page
sysaggregates v 1-15
sysams 4 1-16
sysattrtypes v 1-19
sysblobs v 4 1-20
syscasts v 1-21
syschecks 4 v 1-22
syscheckudrdep 4 1-23
syscolattribs v 1-24
syscolauth v 4 1-25
syscoldepend v v 1-26
syscolumns v 4 1-27
sysconstraints v v 1-33
sysdefaults 4 v 1-34
sysdepend v 4 1-35
sysdistrib 4 v 1-35
sysdomains 4 1-37
syserrors v 1-37
sysextcols 4 1-38
sysextdfiles v 1-39
sysexternal v 1-39
sysfragauth 4 1-40
sysfragments 4 v 1-41
sysindexes v 4 1-44
sysindices v 1-46
sysinherits v 1-47
(10f3)

System Catalog Tables 1-13

Structure of the System Catalog

System Catalog Tahle XPS IDS Page
syslangauth 4 1-48
syslogmap v 1-48
sysnewdepend 4 1-49
sysobjstate v 1-50
sysopclasses 4 1-51
sysopclstr v 4 1-52
sysprocauth 4 v 1-54
sysprocbody 4 v 1-55
sysprocedures v v 1-56
sysprocplan 4 v 1-60
sysreferences v 4 1-61
sysrepository v 1-61
sysroleauth v 4 1-62
sysroutinelangs v 1-63
syssequences 4 1-63
syssynonyms v v 1-64
syssyntable 4 v 1-64
systabamdata 4 1-65
systabauth 4 v 1-66
systables v 4 1-67
systraceclasses v 1-69
systracemsgs v 1-70
systrigbody v v 1-71
systriggers v v 1-72
sysusers v 4 1-73
sysviews 4 v 1-73
sysviolations v 4 1-74
sysxtddesc v 1-75
(20f3)

1-14 IBM Informix Guide to SQL: Reference

GLS

SYSAGGREGATES

System Catalog Tahle XPS IDS Page
systdtypeauth 4 1-75
sysxtdtypes v 1-76

(30f3)

If the database locale is the default (U. S. English, ISO 8859-1 codeset), then the
character column types are CHAR and VARCHAR. For all other locales and
collation orders, the character column types are national character types,
NCHAR and NVARCHAR. For more information about locales and collation
order of data types, see the IBM Informix GLS User’s Guide. For more infor-
mation about SQL data types, see Chapter 2 of this manual. ¢

SYSAGGREGATES

The sysaggregates system catalog table records user-defined aggregates
(UDAs). The sysaggregates table has the following columns.

Column Type Explanation

name VARCHAR(128) Name of the aggregate

owner CHAR(32) Name of the owner of the aggregate
aggid SERIAL Unique code identifying the aggregate
init_func VARCHAR(128) Name of initialization UDR

iter_func VARCHAR(128) Name of iterator UDR

combine_func VARCHAR(128) Name of combine UDR

final_func VARCHAR(128) Name of finalization UDR
handlesnulls BOOLEAN NULL handling indicator:

t = handles NULLs
f = does not handle NULLs

Each user-defined aggregate has one entry in sysaggregates that is uniquely
identified by its identifying code (the aggid value). Only user-defined aggre-
gates (aggregates that are not built in) have entries in sysaggregates.

System Catalog Tables 1-15

SYSAMS

BECEE | SYSAMS

1-16

Both a simple index on the aggid column and a composite index on the name
and owner columns require unique values.

The sysams system catalog table contains information that is needed to use
built-in access methods as well as those created by the CREATE ACCESS
METHOD statement of SQL that is described in the IBM Informix Guide to SQL:
Syntax. The sysams table has the following columns.

Column Type Explanation
am_name VARCHAR Name of the access method
(128)
am_owner CHAR(32) Name of the owner of the access method
am_id INTEGER Unique identifying code for an access method.
This corresponds to the am_id columns in the
systables, sysindices, and sysopclasses tables.
am_type CHAR(1) Type of access method: P = Primary
S =Secondary
am_sptype CHAR(3) Types of spaces where the access method can exist:
A or a = all types: extspaces, dbspaces, and
sbspaces. If the access method is not
user-defined (that is, if it is built-in or
registered during database creation by
the server), it supports dbspaces.
D or d = dbspaces only
Sors =sbspaces only (smart-large-object space)
X or x = extspaces only
am_defopclass INTEGER Unique identifying code for default-operator class.
Value is the opclassid from the entry for this
operator class in the sysopclasses table.
am_keyscan INTEGER = Whether a secondary access method supports a key

scan. (An access method supports a key scan if it
canreturn a key as well as a rowid from a call to the
am_getnext function.)

(0 =FALSE; Non-Zero = TRUE)

IBM Informix Guide to SQL: Reference

(1 of 3)

SYSAMS

Column Type Explanation
am_unique INTEGER = Whether a secondary access method can support
unique keys
(0 =FALSE; Non-Zero = TRUE)
am_cluster INTEGER Whether a primary access method supports
clustering (0 = FALSE; Non-zero = TRUE)
am_rowids INTEGER Whether a primary access method supports rowids
(0 =FALSE; Non-Zero = TRUE)
am_readwrite = INTEGER Whether a primary access method can both read
and write: 0 = access method is read-only
Non-Zero = access method is read / write
am_parallel INTEGER Whether an access method supports parallel
execution. (0 = FALSE; Non-zero = TRUE)
am_costfactor SMALL- The value to be multiplied by the cost of a scan in
FLOAT order to normalize it to costing done for built-in
access methods. The scan cost is the output of the
am_scancost function
am_create INTEGER Theroutine specified for the AM_CREATE purpose
for this access method; value = procid for the
routine in the sysprocedures table
am_drop INTEGER The routine specified for the AM_DROP purpose
function for this access method
am_open INTEGER The routine specified for the AM_OPEN purpose
function for this access method
am_close INTEGER The routine specified for the AM_CLOSE purpose
function for this access method
am_insert INTEGER The routine specified for the AM_INSERT purpose
function for this access method
am_delete INTEGER The routine specified for the AM_DELETE purpose
function for this access method
am_update INTEGER The routine specified for the AM_UPDATE
purpose function for this access method
am_stats INTEGER The routine specified for the AM_STATS purpose

function for this access method

(20f 3)

System Catalog Tables 1-17

SYSAMS

1-18

Column Type Explanation

am_scancost INTEGER The routine specified for the AM_SCANCOST
purpose function for this access method

am_check INTEGER The routine specified for the AM_CHECK purpose
function for this access method

am_beginscan INTEGER Routine specified for the AM_BEGINSCAN
purpose function for this access method

am_endscan INTEGER The routine specified for the AM_ENDSCAN
purpose function for this access method

am_rescan INTEGER The routine specified for the AM_RESCAN
purpose function for this access method

am_getnext INTEGER The routine specified for the AM_GETNEXT
purpose function for this access method

am_getbyid INTEGER The routine specified for the AM_GETBYID
purpose function for this access method

am_build INTEGER The routine specified for the AM_BUILD purpose
function for this access method

am_init INTEGER The routine specified for the AM_INIT purpose

function for this access method

IBM Informix Guide to SQL: Reference

(30f3)

For each of the last 18 columns (am_create through am_truncate), the value
is the sysprocedures.procid value for the routine.

The am_sptype column can have multiple entries. For example:

m A means the access method supports extspaces and sbspaces. If the
access method is built-in, such as a B-tree, it also supports dbspaces.

m DS means the access method supports dbspaces and sbspaces.

B sx means the access method supports sbspaces and extspaces.

A composite index on the am_name and am_owner columns in this table
allows only unique values. The am_id column has a unique index.

For information about access method functions, refer to the documentation
of your access method.

SYSATTRTYPES

SYSATTRTYPES

The sysattrtypes system catalog table contains information about members
of a complex data type. Each row of sysattrtypes contains information about
elements of a collection data type or fields of a ROW data type.

The sysattrtypes table has the following columns.

Column Type

Explanation

extended_id INTEGER

seqno SMALLINT

levelno SMALLINT
parent_no SMALLINT

fieldname VARCHAR(128)

fieldno SMALLINT
type SMALLINT
length SMALLINT

xtd_type_id INTEGER

Identifying code of an extended data type. Value
is the same as in the sysxtdtypes table (page 1-76).

Identifying code of an entry having extended_id
type

Position of member in collection hierarchy

Value in the seqno column of the complex data
type that contains this member

Name of the field in a ROW type. NULL for other
complex data types

Field number sequentially assigned by system
(from left to right within each row type)

Code for the data type; see the description of
syscolumns.coltype (page 1-27).

Length (in bytes) of the member

Code identifying this data type; see the
description of sysxtdtypes.extended_id
(page 1-76)

Two indexes on the extended_id column and the xtd_type_id column allow
duplicate values. A composite index on the extended_id and seqno columns

allows only unique values.

System Catalog Tables 1-19

SYSBLOBS

" s | SYSBLOBS

The sysblobs system catalog table specifies the storage location of BYTE and
TEXT column values. Its name is based on a legacy term for BYTE and TEXT
columns (also known as simple large objects). The sysblobs table contains one
row for each BYTE or TEXT column, and has the following columns.

Column Type Explanation

spacename VARCHAR(128) Name of partition, dbspace, or family

type CHAR(1) Code identifying the type of storage media:
M = Magnetic
O = Optical (IDS only)

tabid INTEGER Code identifying the table

colno SMALLINT Column number within its table

A composite index on tabid and colno allows only unique values.

For information about the location and size of chunks of blobspaces,
dbspaces, and sbspaces for TEXT, BYTE, BLOB, and CLOB columns, see the
Administrator’s Guide and the Administrator’s Reference.

1-20 IBM Informix Guide to SQL: Reference

SYSCASTS

SYSCASTS

The syscasts system catalog table describes the casts in the database. It
contains one row for each built-in cast, each implicit cast, and each explicit
cast that a user defines. The syscasts table has the following columns.

Column Type Explanation

owner CHAR(32) Owner of cast (user informix for built-in casts
and user name for implicit and explicit casts)

argument_type SMALLINT Source data type on which the cast operates

argument_xid INTEGER Code for the source data type specified in the
argument_type column

result_type SMALLINT Code for the data type returned by the cast

result_xid INTEGER Data type code of the data type named in the

result_type column
routine_name VARCHAR(128) Function or procedure implementing the cast

routine_owner CHAR(32) Name of owner of the function or procedure
specified in the routine_name column

class CHAR(1) Type of cast:
E = Explicit cast

I = Implicit cast
S = Built-in cast

If routine_name and routine_owner have NULL values, it indicates that the
cast is defined without a routine. This can occur if the data types specified in
the argument_type and result_type columns both have the same length and
alignment, and are both passed by reference or are both passed by value.

A composite index on columns argument_type, argument_xid, result_type,
and result_xid allows only unique values. A composite index on columns
result_type and result_xid allows duplicate values.

System Catalog Tables 1-21

SYSCHECKS

SYSCHECKS

The syschecks system catalog table describes each check constraint defined
in the database. Because the syschecks table stores both the ASCII text and a
binary encoded form of the check constraint, it contains multiple rows for
each check constraint. The syschecks table has the following columns.

Column Type Explanation
constrid INTEGER Unique code identifying the constraint
type CHAR(1) Form in which the check constraint is stored:
B = Binary encoded
s = Select
T = Text
seqno SMALLINT Line number of the check constraint
checktext CHAR(32) Text of the check constraint

The text in the checktext column associated with B type in the type column is
in computer-readable format. To view the text associated with a particular
check constraint, use the following query with the appropriate constrid code:

SELECT * FROM syschecks WHERE constrid=10 AND type='T'

Each check constraint described in the syschecks table also has its own row
in the sysconstraints table.

A composite index on the constrid, type, and seqno columns allows only
unique values.

1-22 IBM Informix Guide to SQL: Reference

SYSCHECKUDRDEP

SYSCHECKUDRDEP

The syscheckudrdep system catalog table describes each check constraint
that is referenced by a user-defined routine (UDR) in the database. The
syscheckudrdep table has the following columns.

Column Type Explanation

udr_id INTEGER Unique code identifying the UDR

constraint_id =~ INTEGER Unique code identifying the check constraint

Each check constraint described in the syscheckudrdep table also has its own
row in the sysconstraints system catalog table, where the constrid column
has the same value as the constraint_id column of syscheckudrdep.

A composite index on the udr_id and constraint_id columns requires that
combinations of these values be unique.

System Catalog Tables 1-23

SYSCOLATTRIBS

SYSCOLATTRIBS

The syscolattribs system catalog table describes the characteristics of smart
large objects, namely CLOB and BLOB data types. It contains one row for each
sbspace listed in the PUT clause of the CREATE TABLE statement.

Column Type Explanation
tabid INTEGER Code uniquely identifying the table
colno SMALLINT Number of the column that contains the smart large object
extentsize INTEGER Pages in smart-large-object extent, expressed in kilobytes
flags INTEGER Integer representation of the combination (by addition) of hexadecimal
values of the following parameters:
LO_NOLOG The smart large object is not logged.
(0x00000001 = 1)
LO_LOG Logging of smart- large-objects
(0x00000010 = 2) conforms to current log mode of the
database.
LO_KEEP_LASTACCESS_TIME A record is kept of the most recent
(10x00000100 = 4) access of this smart-large-object
column by a user.
LO_NOKEEP_LASTACCESS_TIME No record is kept of the most recent
(0x00001000 = 8) access of this smart-large-object
column by a user.
HI_INTEG Data pages have headers and
(0x00010000= 16) footers to detect incomplete writes
and data corruption.
MODERATE_INTEG Data pages do not have headers and
(Not available at this time) footers.
flagsl INTEGER Reserved for future use
sbspace VARCHAR(128) Name of the sbspace
A composite index on the tabid, colno, and sbspace columns allows only
unique combinations of these values.
1-24 IBM Informix Guide to SQL: Reference

SYSCOLAUTH

SYSCOLAUTH

The syscolauth system catalog table describes each set of privileges granted
on a column. It contains one row for each set of column privileges granted in
the database. The syscolauth table has the following columns.

Column Type Explanation

grantor CHAR(32) Name of the grantor of privilege

grantee CHAR(32) Name of the grantee of privilege

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Column number within its table

colauth CHAR(3) 3-byte pattern that specifies column privileges:

sor S = Select
uor U = Update
r or R = References

If the colauth privilege code is uppercase (for example, s for Select), a user
who has this privilege can also grant it to others. If the colauth privilege code
is lowercase (for example, s for Select), the user who has this privilege cannot
grant it to others. A hyphen (-) indicates the absence of the privilege corre-
sponding to that position within the colauth pattern.

A composite index on the tabid, grantor, grantee, and colno columns allows
only unique values. A composite index on the tabid and grantee columns
allows duplicate values.

System Catalog Tables 1-25

SYSCOLDEPEND

SYSCOLDEPEND

The syscoldepend system catalog table tracks the table columns specified in
check and NOT NULL constraints. Because a check constraint can involve
more than one column in a table, the syscoldepend table can contain multiple
rows for each check constraint; one row is created for each column involved
in the constraint. The syscoldepend table has the following columns.

Column Type Explanation

constrid INTEGER Code uniquely identifying the constraint
tabid INTEGER Code uniquely identifying the table
colno SMALLINT Column number within the table

A composite index on the constrid, tabid, and colno columns allows only
unique values. A composite index on the tabid and colno columns allows
duplicate values.

See also the syscheckudrdep system catalog table in “SYSCHECKUDRDEP”
on page 1-23, which lists every check constraint that is referenced by a user-
defined routine.

See also the sysnewdepend table in “SYSNEWDEPEND” on page 1-49,
which describes the column dependencies of generalized-key indexes.

See also the sysreferences table in “SYSREFERENCES” on page 1-61, which
describes dependencies of referential constraints.

1-26 IBM Informix Guide to SQL: Reference

XPS

SYSCOLUMNS

SYSCOLUMNS

The syscolumns system catalog table describes each column in the database.
One row exists for each column that is defined in a table or view.

Column Type

Explanation

colname VARCHAR(128)

tabid INTEGER
colno SMALLINT
coltype SMALLINT

collength SMALLINT
colmin INTEGER
colmax INTEGER

extended_id INTEGER
(IDS only)

Column name
Identifying code of table containing the column

Column number. The system sequentially assigns
this (from left to right within each table)

Code indicating the data type of the column:

0 =CHAR 13 = VARCHAR

1 =SMALLINT 14 = INTERVAL

2 =INTEGE R 15 = NCHAR

3 = FLOAT 16 = NVARCHAR

4 = SMALLFLOAT 17 = INT8

5 = DECIMAL 18 = SERIALS *

6 = SERIAL * 19 =SET

7 = DATE 20 = MULTISET

8 = MONEY 21 = LIST

9 =NULL 22 = Unnamed ROW
10 = DATETIME 40 = Variable-length
11 = BYTE opaque type
12 = TEXT 4118 = Named ROW

Column length (in bytes)
Minimum column length (in bytes)
Maximum column length (in bytes)

Data type code, from the sysxtdtypes table, of the
data type specified in the coltype column

* In DB-Access, an offset value of 256 is always added to these coltype codes
because DB-Access sets SERIAL and SERIALS columns to NOT NULL.

Extended Parallel Server does not support the following data types: INTS,
SERIALS, SET, MULTISET, LIST, unnamed and named ROW. ¢

A composite index on tabid and colno allows only unique values.

System Catalog Tables 1-27

SYSCOLUMNS

The coltype codes listed on the previous page can be incremented by bitmaps
showing the following features of the column.

Bit Value Significance When Bit Is Set
0x0100 NULL values are not allowed
0x0200 Value is from a host variable
0x0400 FLOAT-to-DECIMAL for networked database server
0x0800 DISTINCT data type
0x1000 Named ROW type
0x2000 DISTINCT type from LVARCHAR base type
0x4000 DISTINCT type from BOOLEAN base type
0x8000 Collection is processed on client system

For example, the coltype value 4118 for named ROW types is the decimal
representation of the hexadecimal value 0x1016, which is the same as the
hexadecimal coltype value for an unnamed ROW type (0 x 016), with the
named-ROW-type bit set. (The file SINFORMIXDIR/incl/esql/sqltypes.h
contains additional information about syscolumns.coltype codes.)

NOT NULL Constraints

Similarly, the coltype value is incremented by 256 if the column does not
allow NULL values. To determine the data type for such columns, subtract
256 from the value and evaluate the remainder, based on the possible coltype
values. For example, if the coltype value is 262, subtracting 256 from 262
leaves a remainder of 6, indicating that the column has a SERIAL data type.

1-28 IBM Informix Guide to SQL: Reference

SYSCOLUMNS

Storing Column Data Type

The database server stores the coltype value as bitmap, as listed in
“SYSCOLUMNS” on page 1-27. This section provides additional information
on coltype codes.

The BOOLEAN, BLOB, CLOB, and LVARCHAR data types are implemented by
the database server as built-in opaque data types.

A built-in opaque data type is one for which the database server provides the
type definition. Because these data types are built-in opaque types, they do
not have a unique coltype value. Instead, they have one of the coltype values
for opaque types: 41 (fixed-length opaque type), or 40 (varying-length
opaque type). The different fixed-length opaque types are distinguished by
the extended_id column in the sysxtdtypes system catalog table.

The following are the coltype values for the built-in opaque data types.

Predefined Data Type Value for coltype Column
BLOB 41
CLOB 41
BOOLEAN 41
LVARCHAR 40
.

System Catalog Tables 1-29

SYSCOLUMNS

Storing Column Length

The collength column value depends on the data type of the column.

Integer-Based Data Types

A collength value for a DATE, INTEGER, INTS, SERIAL, SERIAL8, or SMALLINT
column is machine-independent. The database server uses the following
lengths for these integer-based data types of the SQL language.

Integer-Based Data Type Length (in bytes)

SMALLINT 2
DATE 4
INTEGER 4
SERIAL 4
INTS 8
SERIALS 8 o

Varying-Length Character Data Types

For columns of the LVARCHAR data type, collength has the value of max from
the data type declaration, or 2048 if no maximum was specified. ¢

For VARCHAR, or NVARCHAR columns, the max_size and min_space values
are encoded in the collength column using one of these formulas:

m If the collength value is positive:
collength = (min space * 256) + max size
m If the collength value is negative:

collength + 65536 = (min space * 256) + max size

1-30 IBM Informix Guide to SQL: Reference

SYSCOLUMNS

Time Data Types
As noted earlier, DATE columns have a value of 4 in the collength column.

For columns of type DATETIME or INTERVAL, collength is determined using
the following formula:

(length * 256) + (first_qualifier * 16) + last_qualifier

The length is the physical length of the DATETIME or INTERVAL field, and
first_qualifier and last_gualifier have values that the following table shows.

Field Qualifier Value Field Qualifier Value
YEAR 0 FRACTION(1) 11
MONTH 2 FRACTION(2) 12
DAY 4 FRACTION(3) 13
HOUR 6 FRACTION(4) 14
MINUTE 8 FRACTION(5) 15
SECOND 10

For example, if a DATETIME YEAR TO MINUTE column has a length of 12
(such as YYYY:DD:MO:HH:M]I), a first_qualifier value of o (for YEAR), and a
last_qualifier value of 8 (for MINUTE), then the collength value is 3080 (from
(256 * 12) + (0 * 16) + 8).

Fixed-Point Data Types

The collength value for a MONEY or DECIMAL (p, s) column can be calculated
using the following formula:

(precision * 256) + scale

Simple-Large-Object Data Types

If the data type of the column is BYTE or TEXT, collength holds the length of
the descriptor.

System Catalog Tables 1-31

SYSCOLUMNS

Storing Maximum and Minimum Values

The colmin and colmax column values hold the second-smallest and second-
largest data values in the column, respectively. For example, if the values in
an indexed column are 1, 2, 3, 4, and 5, the colmin value is 2 and the colmax
value is 4. Storing the second-smallest and second-largest data values lets the
database server make assumptions about the range of values in a given
column and, in turn, further optimize searchi strategies.

The colmin and colmax columns contain values only if the column is indexed
and you have run the UPDATE STATISTICS statement. If you store BYTE or
TEXT data in the tblspace, the colmin value is -1.

The colmin and colmax columns are valid only for data types that fit into
four bytes: SMALLFLOAT, SMALLINT, INTEGER, and the first four bytes of
CHAR. The values for all other noninteger column types are the initial 4 bytes
of the maximum or minimum value, which are treated as an integer.

It is better to use UPDATE STATISTICS MEDIUM than to depend on colmin and
colmax values. UPDATE STATISTICS MEDIUM gives better information and is
valid for all data types.

The database server does not calculate colmin and colmax values for user-
defined data types. These columns, however, have values for user-defined
data types if a user-defined secondary access method supplies them. ¢

1-32 IBM Informix Guide to SQL: Reference

SYSCONSTRAINTS

SYSCONSTRAINTS

The sysconstraints system catalog table lists the constraints placed on the
columns in each database table. An entry is also placed in the sysindexes
system catalog table (or sysindices view for Dynamic Server) for each
unique, primary key, NOT NULL, or referential constraint that does not
already have a corresponding entry in sysindexes or sysindices. Because
indexes can be shared, more than one constraint can be associated with an
index. The sysconstraints table has the following columns.

Column Type Explanation

constrid SERIAL Code uniquely identifying the constraint

constrname VARCHAR(128) Name of the constraint

owner CHAR(32) Name of the owner of the constraint
tabid INTEGER Code uniquely identifying the table
constrtype CHAR(1) Code identifying the constraint type:

C = Check constraint
N = Not NULL

P = Primary key

R = Referential

T =Table

U = Unique
idxname VARCHAR(128) Name of index corresponding to the constraint
collation CHAR(32) Collating order at the time when the constraint

was created. ¢

A composite index on the constrname and owner columns allows only
unique values. An index on the tabid column allows duplicate values, and an
index on the constrid column allows only unique values.

For check constraints (where constrtype =), the idxname is always NULL.
Additional information about each check constraint is contained in the
syschecks and syscoldepend system catalog tables.

System Catalog Tables 1-33

SYSDEFAULTS

SYSDEFAULTS

The sysdefaults system catalog table lists the user-defined defaults that are
placed on each column in the database. One row exists for each user-defined
default value. The sysdefaults table has the following columns.

Column Type Explanation
tabid INTEGER Code uniquely identifying a table
colno SMALLINT Code uniquely identifying a column
type CHAR(1) Code identifying the type of default value:
C =Current
L = Literal value
N =NULL
S =Dbservername
T =Today
U = User
default CHAR(256) If sysdefaults.type = L, the literal default value

class (IDS only) CHAR(1) Code identifying what kind of column:

T = table
t =row type

If a default is not explicitly specified in the CREATE TABLE statement, no entry
exists in this table.

If you specify a literal for the default value, it is stored in the default column
as ASCII text. If the literal value is not of type NCHAR, the default column
consists of two parts. The first part is the 6-bit representation of the binary
value of the default value structure. The second part is the default value in
ASCII text. A blank space separates the two parts.

If the data type of the column is not NCHAR or NVARCHAR, a binary
representation is encoded in the default column.

A composite index on the tabid, colno, and class columns allows only unique
values. (For Extended Parallel Server, this index does not include the class
column.)

1-34 IBM Informix Guide to SQL: Reference

SYSDEPEND

SYSDEPEND

The sysdepend system catalog table describes how each view or table
depends on other views or tables. One row exists in this table for each depen-
dency, so a view based on three tables has three rows. The sysdepend table
has the following columns.

Column Type Explanation

btabid INTEGER Code uniquely identifying the base table or view
btype CHAR(1) Base object type:

T = Table
V = View

dtabid INTEGER Code uniquely identifying a dependent table or view

dtype CHAR(1) Code for the type of dependent object; currently, only
view (V = View) is implemented

The btabid and dtabid columns are indexed and allow duplicate values.

SYSDISTRIB

The sysdistrib system catalog table stores data-distribution information for
the database server to use. Data distributions provide detailed table-column
information to the optimizer to improve the choice of execution paths of
SELECT statements. The sysdistrib table has the following columns.

Column Type Explanation
tabid INTEGER Code uniquely identifying the table
where data values were gathered
colno SMALLINT Column number in the source table
seqno INTEGER Ordinal number for multiple entries
constructed DATE Date when the data distribution was
created
(10of2)

System Catalog Tables 1-35

SYSDISTRIB

Column Type Explanation
mode CHAR(1) Optimization level:
M = Medium
H = High
resolution SMALLFLOAT Specified in the UPDATE STATISTICS
statement
confidence SMALLFLOAT Specified in the UPDATE STATISTICS
statement
encdat STAT IDS Statistics information

CHAR(256) XPS
type (IDS only) CHAR(1) Type of statistics:

A = encdat has ASCII-encoded
histogram in fixed-length
character field

S = encdat has user-defined statistics

(20f2)
Information is stored in the sysdistrib table when an UPDATE STATISTICS

statement with mode MEDIUM or HIGH is executed for a table. (UPDATE
STATISTICS LOW does not insert a value into the mode column.)

Only user informix can select the encdat column.

Each row in the sysdistrib system catalog table is keyed by the tabid and
colno for which the statistics are collected.

For built-in data type columns, the type field is set to A. The encdat column
stores an ASCII-encoded histogram that is broken down into multiple rows,
each of which contains 256 bytes.

“ For columns of user-defined data types, the type field is set to S. The encdat

1-36

column stores the statistics collected by the statcollect user-defined routine
in multirepresentational form. Only one row is stored for each tabid and
colno pair.

A composite index on the tabid, colno, and seqno columns requires unique
combinations of values. ¢

IBM Informix Guide to SQL: Reference

SYSDOMAINS

SYSDOMAINS

The sysdomains view displays columns of other system catalog tables. It has
the following columns.

Column Type Explanation
id SERIAL Unique code identifying the domain
owner CHAR(32) Name of the owner of the domain

name VARCHAR(128) Name of the domain

type SMALLINT Code identifying the type of domain

There is no index on this view.

SYSERRORS

The syserrors system catalog table stores information about error, warning,
and informational messages returned by DataBlade modules and user-
defined routines using the mi_db_error_raise() DataBlade API function.

The syserrors table has the following columns.

Column Type Explanation

sqlstate CHAR(5) SQLSTATE value associated with the error
For more information about SQLSTATE values
and their meanings, see the GET DIAGNOSTICS
statement in the IBM Informix Guide to SQL:

Syntax.

locale CHAR(36) The locale with which this version of the message
is associated (for example, en_us.8859-1)

level SMALLINT Reserved for future use

seqno SMALLINT Reserved for future use

message VARCHAR(255) Message text

System Catalog Tables 1-37

SYSEXTCOLS

XPS

To create a new message, insert a row directly into the syserrors table. By
default, all users can view this table, but only users with the DBA privilege
can modify it.

A composite index on the sqlstate, locale, level, and seqno columns allows
only unique values.

SYSEXTCOLS

The sysextcols system catalog table contains a row that describes each of the
internal columns in external table tabid of format type (fmttype) FIXED. The
sysextcols table has the following columns.

Column Type Explanation
tabid INTEGER Unique identifying code of a table
colno SMALLINT Code identifying the column

exttype SMALLINT Code identifying an external column type

extstart SMALLINT Starting position of column in the external data file
extlength SMALLINT External column length (in bytes)

nullstr CHAR(256) Represents NULL in external data

picture CHAR(256) Reserved for future use

decimal SMALLINT Precision for external decimals

extstype CHAR(18) External type name

No entries are stored in sysextcols for DELIMITED or Informix format
external files.

You can use the DBSCHEMA utility to write out the description of the external
tables. To query these system catalog tables about an external table, use the
tabid as stored in systables with tabtype = ‘E".

An index on the tabid column allows duplicate values.

1-38 IBM Informix Guide to SQL: Reference

XPS

XPS

SYSEXTDFILES

SYSEXTDFILES

For each external table, at least one row exists in the sysextdfiles system
catalog table, which has the following columns.

Column Type Explanation

tabid INTEGER Unique identifying code of an external table

dfentry CHAR(152) Data file entry

You can use DBSCHEMA to write out the description of the external tables. To
query these system catalog tables about an external table, use the tabid as
stored in systables with tabtype = ‘E".

An index on the tabid column allows duplicate values.

SYSEXTERNAL

For each external table, a single row exists in the sysexternal system catalog
table. The tabid column associates the external table in this system catalog
table with an entry in systables.

Column Type Explanation
tabid INTEGER Unique identifying code of an external table
fmttype CHAR(1) Type of format:

D = (delimited)

F = (fixed)

I = (Informix)
codeset CHAR(18) ASCII, EBCDIC
recdelim CHAR(4) The record delimiter
flddelim CHAR(4) The field delimiter
datefmt CHAR(8) Reserved for future use
moneyfmt CHAR(20) Reserved for future use

(1 of 2)

System Catalog Tables 1-39

SYSFRAGAUTH

Column Type Explanation

maxerrors INTEGER Number of errors to allow per coserver
rejectfile CHAR(128) Name of reject file

flags INTEGER Optional load flags

ndfiles INTEGER Number of data files in sysextdfiles

(2 of 2)

You can use DBSCHEMA to write out the description of the external tables. To
query these system catalog tables about an external table, use the tabid as
stored in systables with tabtype = ‘E’.

An index on the tabid column allows only unique values.

SYSFRAGAUTH

The sysfragauth system catalog table stores information about the privileges
that are granted on table fragments. This table has the following columns.

Column Type Explanation

grantor CHAR(32) Name of the grantor of privilege
grantee CHAR(32) Name of the grantee of privilege

tabid INTEGER Identifying code of the fragmented table

fragment VARCHAR(128) Name of dbspace where fragment is stored

fragauth CHAR(6) A 6-byte pattern that specifies fragment privileges
(including 3 bytes reserved for future use):
uor U = Update
iorI=Insert
d or D = Delete

In the fragauth column, an uppercase code (such as U for Update) means that
the grantee can grant the privilege to other users; a lowercase (for example, u
for Update) means the user cannot grant the privilege to others. Hyphen (-)
indicates the absence of the privilege for that position within the pattern.

1-40 IBM Informix Guide to SQL: Reference

SYSFRAGMENTS

A composite index on the tabid, grantor, grantee, and fragment columns
allows only unique values. A composite index on the tabid and grantee
columns allows duplicate values.

The following example displays the fragment-level privileges for one base
table, as they appear in the sysfragauth table. In this example, the grantee ted
can grant the Update, Delete, and Insert privileges to other users.

grantor grantee tabid fragment fragauth
dba dick 101 dbsp1 -ui---
dba jane 101 dbsp3 I
dba mary 101 dbsp4 --id--
dba ted 101 dbsp2 -UID--

SYSFRAGMENTS

The sysfragments system catalog table stores fragmentation information for
tables and indexes. One row exists for each table or index fragment.

The sysfragments table has the following columns.

Column Type Explanation

fragtype CHAR(1) Code indicating the type of fragmented object:

I = Original index fragment

i = Duplicated index fragment (XPS)

T = Original table fragment

t = Duplicated table fragment (XPS)

B = TEXT or BYTE data (XPS)

i =Index fragments of a duplicated table (XPS)
d = data fragments of a duplicated table (XPS)

tabid INTEGER Unique identifying code of table
indexname VARCHAR(128) Name of index

(10f3)

System Catalog Tables 1-41

SYSFRAGMENTS

Column Type Explanation
colno INTEGER Identifying code of TEXT or BYTE column (IDS)
Identifying code of replica identifier (XPS)
partn INTEGER Identifying code of physical location
strategy CHAR(1) Code for type of fragment distribution strategy:
R = Round-robin fragmentation strategy
E = Expression-based fragmentation strategy
I = IN DBSPACE clause specifies a specific
location as part of fragmentation strategy
T = Table-based fragmentation strategy
H = Hash-based fragmentation strategy (XPS)
location CHAR(1) Reserved for future use; shows L for local
servername VARCHAR(128) Reserved for future use
evalpos INTEGER Position of fragment in the fragmentation list
exprtext TEXT Expression for fragmentation strategy (IDS)
Contains names of the columns that are hashed and composite infor-
mation for hybrid fragmentation strategies; shows hashed columns
followed by the fragmentation expression of the dbslice. (XPS)
exprbin BYTE Binary version of expression
exprarr BYTE Range-partitioning data to optimize expression in range-expression
fragmentation strategy
flags INTEGER Used internally (IDS)
Bitmap indicating a hybrid fragmentation strategy (value = 0x00000010).
Also, an additional flag (value = 0x00000020) is set on the first fragment
of a globally detached index. (XPS)
dbspace VARCHAR(128) Name of dbspace for fragment
levels SMALLINT Number of B+ tree index levels
npused INTEGER For table-fragmentation strategy, npused is the number of data pages;

for index-fragmentation strategy, npused is the number of leaf pages.

(20f 3)

1-42 IBM Informix Guide to SQL: Reference

SYSFRAGMENTS

Column Type Explanation

Nrows INTEGER For tables, nrows represents the number of rows in the fragment;
for indexes, nrows represents the number of unique keys.

clust INTEGER Degree of index clustering; smaller numbers correspond to greater
clustering

hybdpos INTEGER Contains the relative position of the hybrid fragment within a dbslice or

list of dbspaces associated with a particular expression (IDS)

The hybrid fragmentation strategy and the set of fragments against which
the hybrid strategy is applied determines the relative position. The first
fragment has a hybdpos value of zero (0). (XPS)

XPS

(3 of 3)

In certain situations, you can duplicate selected tables across coservers to
improve performance. If you have a duplicate copy of a small table on each
coserver, then the database server can execute some small queries (queries
that do not need rows from a table fragment on any other coserver and that
do not require more than 128 kilobytes of memory per operator) as serial
plans instead of as parallel plans that the Resource Grant Manager (RGM)
manages. This performance feature applies only to OLTP-type transactions.

The following query returns the owner and name for each of the duplicated
tables in the current database:
SELECT DISTINCT st.owner, st.tabname
FROM systables st, sysfragments sf
WHERE st.tabid = sf.tabid AND sf.fragtype = ‘t’

For more information about duplicating tables, refer to the description of the
CREATE DUPLICATE statement in IBM Informix Guide to SQL: Syntax.

The strategy type T is used for attached indexes. (This is a fragmented index
whose fragmentation is the same as the table fragmentation.)

A composite index on the fragtype, tabid, indexname, and evalpos columns
allows duplicate values. ¢

A composite index on the fragtype, tabid, indexname, evalpos, and
hybdpos columns allows duplicate values. ¢

System Catalog Tables 1-43

SYSINDEXES

1-44

IBM Informix Guide to SQL: Reference

SYSINDEXES
The sysindexes table is a view on the sysindices table. It contains one row for
each index in the database. The sysindexes table has the following columns.
Column Type Explanation
idxname VARCHAR(128) Index name
owner VARCHAR(32) Owner of index (user informix for system catalog
tables and username for database tables) (IDS only)
tabid INTEGER Unique identifying code of table
idxtype CHAR(1) Index type: U = Unique
D = Duplicates allowed
G = Nonbitmap generalized-key index
g = Bitmap generalized-key index
u = unique, bitmap
d = nonunique, bitmap *
clustered CHAR(1) Clustered or nonclustered index
(C = Clustered)
partl SMALLINT Column number (colno) of a single index or the
1st component of a composite index
part2 SMALLINT 2nd component of a composite index
part3 SMALLINT 3rd component of a composite index
part4 SMALLINT 4th component of a composite index
part5 SMALLINT 5th component of a composite index
parté SMALLINT 6th component of a composite index
part7 SMALLINT 7th component of a composite index
part8 SMALLINT 8th component of a composite index
part9 SMALLINT 9th component of a composite index
part10 SMALLINT 10th component of a composite index
partll SMALLINT 11th component of a composite index
(10f2)

SYSINDEXES

Column Type Explanation

part12 SMALLINT 12th component of a composite index
partl3 SMALLINT 13th component of a composite index
partl4 SMALLINT 14th component of a composite index
partl5 SMALLINT 15th component of a composite index
partl6 SMALLINT 16th component of a composite index
levels SMALLINT Number of B-tree levels

leaves INTEGER Number of leaves

nunique INTEGER Number of unique keys in the first column
clust INTEGER Degree of clustering: smaller numbers

correspond to greater clustering

idxflags ~ INTEGER Bitmap storing the current locking mode of the
index: Normal = 0x00000001 (XPS only)
Coarse = 0x00000002 (XPS only)

(2 of 2)

As with most system catalog tables, changes that affect existing indexes are
reflected in this table only after you run the UPDATE STATISTICS statement.

Each partl through partl6 column in this table holds the column number
(colno) of one of the 16 possible parts of a composite index. If the component
is ordered in descending order, the colno is entered as a negative value. The
columns are filled in for B-tree indexes that do not use user-defined data
types nor functional indexes. For generic B-trees and all other access
methods, the partl through part16 columns all contain zeros.

The clust column is blank until the UPDATE STATISTICS statement is run on
the table. The maximum value is the number of rows in the table, and the
minimum value is the number of data pages in the table.

The tabid column is indexed and allows duplicate values. A composite index
on the idxname, owner, and tabid columns allows only unique values. ¢

System Catalog Tables 1-45

SYSINDICES

s SYSINDICES

1-46

The sysindices system catalog table describes the indexes in the database.
It contains one row for each index that is defined in the database.

Explanation

Column Type

idxname VARCHAR
(128)

owner VARCHAR
(32)

tabid INTEGER

idxtype CHAR(1)

clustered CHAR(1)
levels SMALLINT
leaves INTEGER
nunique INTEGER
clust INTEGER

Nrows FLOAT

indexkeys INDEX-
KEYARRAY

amid INTEGER

amparam LVARCHAR

Name of index

Name of owner of index (user informix for system
catalog tables and username for database tables)

Unique identifying code of table

Index type: U = Unique
D = Duplicates allowed

Clustered or nonclustered index (C = Clustered)
Number of tree levels

Number of leaves

Number of unique keys in the first column

Degree of clustering: smaller numbers correspond to
greater clustering. The maximum value is the number
of rows in the table, and the minimum value is the
number of data pages in the table. This column is blank
until UPDATE STATISTICS is run on the table.

Estimated number of rows in the table (zero until
UPDATE STATISTICS is run on the table).

Column can have up to three fields, in the format:
procid (coll, ..., coln) opclassid where 1 <n < 341

Unique identifying code of the access method that
implements this index. (Value = am_id for that access
method in the sysams table.)

List of parameters used to customize the behavior of
this access method.

collation CHAR(32)

Collating order at the time of index creation.

IBM Informix Guide to SQL: Reference

SYSINHERITS

Tip: This system catalog table is changed from Version 7.2 of Informix database
servers. The earlier schema of this system catalog table is still available as a view and
can be accessed under its original name: sysindexes.

Changes that affect existing indexes are reflected in this system catalog table
only after you run the UPDATE STATISTICS statement.

The fields within the indexkeys columns have the following significance:

m The procid (as in sysprocedures) appears only for a functional index
on return values of a function defined on columns of the table.

m The list of columns (coll, ..., coln) in the second field identifies the
columns on which the index is defined. The maximum is language-
dependent: up to 341 for an SPL or Java UDR; up to 102 for a C UDR.

m The opclassid identifies the secondary access method that the
database server used to build and to search the index. This is the
same as the sysopclasses.opclassid value for the access method.

The tabid column is indexed and allows duplicate values. A composite index
on the idxname, owner, and tabid columns allows only unique values.

SYSINHERITS

The sysinherits system catalog table stores information about table and
named ROW type inheritance. Every supertype, subtype, supertable, and
subtable in the database has a corresponding row in the sysinherits table.

Column Type Explanation

child INTEGER Identifying code of the subtable or subtype
parent INTEGER Identifying code of the supertable or supertype

class CHAR(1) Inheritance class: t =named row type
T =table

The child and parent values are from sysxtdtypes.extended_id for named
ROW types, or from systables.tabid for tables. Simple indexes on the child
and parent columns allow duplicate values.

System Catalog Tables 1-47

SYSLANGAUTH

" s | SYSLANGAUTH

The syslangauth system catalog table contains the authorization information
on computer languages that are used to write user-defined routines (UDRs).

Column Type

Explanation

langid INTEGER
langauth CHAR(1)

grantor VARCHAR(32) Name of the grantor of the language authorization
grantee = VARCHAR(32) Name of the grantee of the language authorization
Identifying code of language in sysroutinelangs table
The language authorization

u = Usage privilege granted

U = Usage privilege granted WITH GRANT
OPTION

duplicate values.

B | SYSLOGMAP

1-48

A composite index on the langid, grantor, and grantee columns allows only
unique values. A composite index on the langid and grantee columns allows

The syslogmap system catalog table contains fragmentation information.

Column Type Explanation

tabloc INTEGER Code for the location of an external table

tabid INTEGER Unique identifying code of the table

fragid INTEGER Identifying code of the fragment

flags INTEGER Bitmap of modifiers from declaration of fragment

IBM Informix Guide to SQL: Reference

A simple index on the tabloc column and a composite index on the tabid and
fragid columns do not allow duplicate values.

XPS

SYSNEWDEPEND

The sysnewdepend system catalog table contains information about gener-
alized-key indexes that is not available in the sysindexes table. The
dependencies between a generalized-key index and the tables in the FROM
clause of the CREATE INDEX statement are stored in the sysnewdepend table,
which has the following columns.

SYSNEWDEPEND

Column Type Explanation

scridl VARCHAR(128) Name of the generalized-key index

scrid2 INTEGER Unique identifying code (= tabid) of the indexed table

type INTEGER Code for the type of generalized-key index

destidl INTEGER The systables.tabid value for the table on which the
generalized-key index depends

destid2 INTEGER The column number within the destid1 table

A composite index on the scrid1, scrid2, and type columns allows duplicate
values. Another composite index on the destid1, destid2, and type columns
also allows duplicate values.

System Catalog Tables 1-49

SYSOBJSTATE

" s | SYSOBJSTATE

The sysobjstate system catalog table stores information about the state
(object mode) of database objects. The types of database objects that are listed
in this table are indexes, triggers, and constraints.

Every index, trigger, and constraint in the database has a corresponding row
in the sysobjstate table if a user creates the object. Indexes that the database
server creates on the system catalog tables are not listed in the sysobjstate
table because their object mode cannot be changed.

The sysobjstate table has the following columns.

Column Type Explanation

objtype CHAR(1) Code for the type of database object:
C = Constraint
I= Index
T = Trigger

owner VARCHAR(32) Name of the owner of the database object

name VARCHAR(128) Name of the database object

tabid INTEGER Identifying code of table on which the object is defined
state CHAR(1) The current state (object mode) of the database object.
This value can be one of the following codes:
D = Disabled
E =Enabled

F = Filtering with no integrity-violation errors
G = Filtering with integrity-violation errors

A composite index on the objtype, name, owner, and tabid columns allows
only unique combinations of values. A simple index on the tabid column
allows duplicate values.

1-50 IBM Informix Guide to SQL: Reference

SYSOPCLASSES

SYSOPCLASSES

The sysopclasses system catalog table contains information about operator
classes associated with secondary access methods. It contains one row for
each operator class that has been defined in the database. The sysopclasses
table has the following columns.

Column Type Explanation

opclassname VARCHAR(128) Name of the operator class

owner VARCHAR(32) Name of the owner of the operator class

amid INTEGER Identifying code of the secondary access method
associated with this operator class

opclassid SERIAL Identifying code of the operator class

ops LVARCHAR List of names of the operators that belong to this

operator class

support LVARCHAR List of names of support functions defined for
this operator class

The opclassid value corresponds to the sysams.am_defopclass value that
specifies the default operator class for the secondary access method that the
amid column specifies.

The sysopclasses table has a composite index on the opclassname and owner
columns and an index on opclassid column. Both indexes allow only unique
values.

System Catalog Tables 1-51

SYSOPCLSTR

1-52

IBM Informix Guide to SQL: Reference

SYSOPCLSTR

The sysopclstr system catalog table defines each optical cluster in the

database. It contains one row for each optical cluster. The sysopclstr table has

the following columns.
Column Type Explanation
owner VARCHAR(32) Name of the owner of the optical cluster
clstrname VARCHAR(128) Name of the optical cluster
clstrsize INTEGER Size of the optical cluster
tabid INTEGER Unique identifying code for the table
blobcoll SMALLINT BYTE or TEXT column number 1
blobcol2 SMALLINT BYTE or TEXT column number 2
blobcol3 SMALLINT BYTE or TEXT column number 3
blobcol4 SMALLINT BYTE or TEXT column number 4
blobcol5 SMALLINT BYTE or TEXT column number 5
blobcol6 SMALLINT BYTE or TEXT column number 6
blobcol7 SMALLINT BYTE or TEXT column number 7
blobcol8 SMALLINT BYTE or TEXT column number 8
blobcol9 SMALLINT BYTE or TEXT column number 9
blobcol10 SMALLINT BYTE or TEXT column number 10
blobcolll SMALLINT BYTE or TEXT column number 11
blobcol12 SMALLINT BYTE or TEXT column number 12
blobcol13 SMALLINT BYTE or TEXT column number 13
blobcol14 SMALLINT BYTE or TEXT column number 14
blobcoll5 SMALLINT BYTE or TEXT column number 15
blobcoll6 SMALLINT BYTE or TEXT column number 16

(10f2)

SYSOPCLSTR

Column Type Explanation

clstrkeyl SMALLINT Cluster key number 1
clstrkey2 SMALLINT Cluster key number 2
clstrkey3 SMALLINT Cluster key number 3
clstrkey4 SMALLINT Cluster key number 4
clstrkey5 SMALLINT Cluster key number 5
clstrkey6 SMALLINT Cluster key number 6
clstrkey?7 SMALLINT Cluster key number 7
clstrkey8 SMALLINT Cluster key number 8
clstrkey9 SMALLINT Cluster key number 9
clstrkey10 SMALLINT Cluster key number 10
clstrkey11 SMALLINT Cluster key number 11
clstrkey12 SMALLINT Cluster key number 12
clstrkey13 SMALLINT Cluster key number 13
clstrkey14 SMALLINT Cluster key number 14
clstrkey15 SMALLINT Cluster key number 15
clstrkey16 SMALLINT Cluster key number 16

(2 of 2)

The contents of this table are sensitive to CREATE OPTICAL CLUSTER, ALTER
OPTICAL CLUSTER, and DROP OPTICAL CLUSTER statements that have been
executed on databases that support optical cluster subsystems. Changes that
affect existing optical clusters are reflected in this table only after you run the

UPDATE STATISTICS statement.

A composite index on the clstrname and owner columns allows only unique
values. A simple index on the tabid column allows duplicate values.

System Catalog Tables 1-53

SYSPROCAUTH

SYSPROCAUTH

The sysprocauth system catalog table describes the privileges granted on a
procedure or function. It contains one row for each set of privileges that are
granted. The sysprocauth table has the following columns.

Column Type Explanation

grantor VARCHAR(32) Name of grantor of privileges to access the routine
grantee = VARCHAR(32) Name of grantee of privileges to access the routine
procid INTEGER Unique identifying code of the routine

procauth CHAR(1) Type of privilege granted on the routine:

e = Execute privilege on routine
E = Execute privilege WITH GRANT OPTION

A composite index on the procid, grantor, and grantee columns allows only
unique values. A composite index on the procid and grantee columns allows
duplicate values.

1-54 IBM Informix Guide to SQL: Reference

SYSPROCBODY

SYSPROCBODY

The sysprocbody system catalog table describes the compiled version of each
procedure or function in the database. Because the sysprocbody table stores
the text of the routine, each routine can have multiple rows. The sysprocbody
table has the following columns.

Column

Type Explanation

procid

INTEGER Unique identifying code for the routine

datakey CHAR(1) Type of information in the data column

seqno

data

D = User document text

E = Creation time information

L = Literal value (that is, literal number
or quoted string)

P = Interpreter instruction code (p-code)

R = Return value type list

S = Routine symbol table

T = Actual routine source

INTEGER Line number within the routine

CHAR(256) Actual text of the routine

The data column contains actual data, which can be in one of these formats:

Encoded return values list
Encoded symbol table

Literal data

P-code for the routine
Compiled code for the routine

Text of the routine and its documentation

A composite index on the procid, datakey, and seqno columns allows only
unique values.

System Catalog Tables 1-55

SYSPROCEDURES

SYSPROCEDURES

The sysprocedures system catalog table lists the characteristics for each
function and procedure in the database. It contains one row for each routine.

Each function in sysprocedures has a unique value, procid, called a routine
identifier. Throughout the system catalog, a functions is identified by its
routine identifier, not by its name.

“ For Extended Parallel Server, sysprocedures has the following columns.
Column Type Explanation
procname CHAR(18) Name of routine
owner CHAR(8) Name of owner (IDS only)
procid SERIAL Unique identifying code for the routine
mode CHAR(1) Mode type:
Dord =DBA

O or 0 = Owner
P or p = Protected
R or r = Restricted

retsize INTEGER Compiled size (in bytes) of values

symsize INTEGER Compiled size (in bytes) of symbol table

datasize = INTEGER Compiled size (in bytes) of constant data

codesize INTEGER Compiled size (in bytes) of routine instruction code
numargs INTEGER Number of arguments to routine

A composite index on procname and owner requires unique values. ¢

1-56 IBM Informix Guide to SQL: Reference

SYSPROCEDURES

For Dynamic Server, sysprocedures has the following columns.

Column Type Explanation
procname VARCHAR(128) Name of routine
owner VARCHAR(32) Name of owner
procid SERIAL Unique identifying code for the routine
mode CHAR(1) Mode type:
Dord =DBA
O or o = Owner
P or p = Protected
R or r = Restricted
retsize INTEGER Compiled size (in bytes) of returned values
symsize INTEGER Compiled size (in bytes) of symbol table
datasize INTEGER Compiled size (in bytes) of constant data
codesize INTEGER Compiled size (in bytes) of routine code
numargs INTEGER Number of arguments to routine
isproc CHAR(1) Whether routine is a procedure or a function
t = procedure
f = function
specificname VARCHAR(128) Specific name for the routine
externalname VARCHAR(255) Location of the external routine. This item is
language-specific in content and format.
paramstyle CHAR(1) Parameter style: I =Informix
langid INTEGER Language code (in sysroutinelangs table)
paramtypes = RTNPARAM- Information describing returned parameters
TYPES
variant BOOLEAN Whether the routine is VARIANT or not
t =is VARTANT
f =isnot VARIANT
client BOOLEAN Reserved for future use

(10f2)

System Catalog Tables 1-57

SYSPROCEDURES

1-58

Column Type Explanation
handlesnulls BOOLEAN NULL handling indicator:

t = handles NULLs

£ =does not handle NULLs
percallcost INTEGER Amount of CPU per call; integer cost to execute

UDR: cost/call - 0-(2"31-1)
commutator VARCHAR(128) Name of commutator function
negator VARCHAR(128) Name of negator function
selfunc VARCHAR(128) Name of function to estimate selectivity of UDR
internal BOOLEAN Whether the routine can be called from SQL
t = routine is internal, not callable from SQL

f = routine is external, callable from SQ
class CHAR(18) CPU class in which routine should be executed
stack INTEGER Stack size in bytes required per invocation
parallel- BOOLEAN Parallelization indicator for UDR:
izable t = parallelizable

f = not parallelizable
costfunc VARCHAR(128) Name of cost function for UDR
selconst SMALLFLOAT Selectivity constant for UDR

IBM Informix Guide to SQL: Reference

(2 of 2)

In the mode column, the R mode is a special case of the O mode. A routine is
in restricted (R) mode if it was created with a specified owner that is different
from the routine creator. If routine statements involving a remote database
are executed, the database server uses the permissions of the user that
executes the routine instead of the permissions of the routine owner. In all
other scenarios, R-mode routines behave the same as O-mode routines.

You cannot use the DROP FUNCTION, DROP ROUTINE, or DROP PROCEDURE
statements to delete a protected routine. Protected routines are indicated by
lowercase in the mode column. In earlier versions, protected SPL routines
(which cannot be deleted) were indicated by a p. Starting with Version 9.0,
protected SPL routines are treated as DBA routines and cannot be Owner
routines. Thus D and 0 indicate DBA and Owner routines, and d and o
indicate protected DBA and protected Owner routines.

SYSPROCEDURES

A database server can create protected SPL routines for internal use. These
protected SPL routines have p in the mode column. You cannot modify, drop,
or display protected SPL routines.

Important: After a SET SESSION AUTHORIZATION is done, all owner routines
created while using the new identity are given a restricted mode.

A database server can create protected routines for internal use. The
sysprocedures table identifies these protected routines with the letter » or p
in the mode column. You cannot modify or drop protected routines, nor can
you display them through DBSCHEMA.

A unique index is on the procid column. A composite index on the
procname, isproc, numargs, and owner columns allows duplicate values, as
does a composite index on the specificname and owner columns. ¢

System Catalog Tables 1-59

SYSPROCPLAN

SYSPROCPLAN

The sysprocplan system catalog table describes the query-execution plans
and dependency lists for data-manipulation statements within each routine.
Because different parts of a routine plan can be created on different dates, this
table can contain multiple rows for each routine.

Column Type Explanation

procid INTEGER Unique identifying code for the routine
planid INTEGER Unique identifying code for the plan
datakey = CHAR(1) Type of information stored in data column:
D = Dependency list
I = Information record
Q = Execution plan
seqno INTEGER Line number within the plan
created DATE Date when plan was created
datasize = INTEGER Size (in bytes) of the list or plan

data CHAR(256) Encoded (compiled) list or plan (IDS)

Text of the SPL routine (XPS)

collation CHAR(32) Collating order at the time when routine was created.

Before a routine is run, its dependency list in the data column is examined. If
the major version number of a table accessed by the plan has changed, or if
any object that the routine uses has been modified since the plan was
optimized (for example, if an index has been dropped), then the plan is
optimized again. When datakey is I, the data column stores information
about UPDATE STATISTICS and PDQPRIORITY.

It is possible to delete all the plans for a given routine by using the DELETE
statement on sysprocplan. When the routine is subsequently executed, new
plans are automatically generated and recorded in sysprocplan. The UPDATE
STATISTICS FOR PROCEDURE statement also updates this table.

A composite index on the procid, planid, datakey, and seqno columns
allows only unique values.

1-60 IBM Informix Guide to SQL: Reference

XPS

SYSREFERENCES

SYSREFERENCES

The sysreferences system catalog table lists all referential constraints on
columns. It contains a row for each referential constraint in the database.

Column Type

Explanation

constrid INTEGER
primary INTEGER
ptabid INTEGER
updrule CHAR(1)
delrule CHAR(1)

matchtype CHAR(1)
pendant CHAR(1)

Code uniquely identifying the constraint
Identifying code of the corresponding primary key
Identifying code of the table that is the primary key
Reserved for future use; displays an R

Whether constraint uses cascading delete or restrict rule:
C = Cascading delete
R = Restrict (default)

Reserved for future use; displays an N

Reserved for future use; displays an N

The constrid column is indexed and allows only unique values. The primary
column is indexed and allows duplicate values.

SYSREPOSITORY

The sysrepository system catalog table contains data about generalized-key
indexes that the sysindexes system catalog table does not provide.

Column Type

Explanation

id1 VARCHAR(128) Index from the generalized-key (GK) index

id2 INTEGER
type INTEGER

seqid SERIAL

Tabid of table with the generalized-key index

Integer code for type of object. In this release, the only
value that can appear is 1, indicating a GK index type.

Reserved for future use. This value is not related to
syssequences.seqid

(1 of 2)

System Catalog Tables 1-61

SYSROLEAUTH

Column Type Explanation
desc TEXT The CREATE INDEX statement of a GK index
bin BYTE Internal representation of the generalized-key index

(20f2)

The contents of the sysrepository table are useful when a generalized-key
index has to be rebuilt during a recovery, or if a user wants to see the CREATE
statement for a specific generalized-key index.

The contents of the sysrepository table are useful when a generalized-key
index has to be rebuilt during a recovery, or if a user wants to see the CREATE
statement for a specific generalized-key index.

The desc column contains the CREATE statement for each generalized-key
index in the database.

Anindex on the seqid column allows duplicate values. A composite index on
the id1, id2, and type columns requires unique combinations of values.

SYSROLEAUTH

The sysroleauth system catalog table describes the roles that are granted to
users. It contains one row for each role that is granted to a user in the
database. The sysroleauth table has the following columns.

Column Type Explanation

rolename VARCHAR(32) Name of the role

grantee VARCHAR(32) Name of the grantee of the role
is_grantable = CHAR(1) Specifies whether the role is grantable:

Y = Grantable
N = Not grantable

The is_grantable column indicates whether the role was granted with the
WITH GRANT OPTION of the GRANT statement.

A composite index on the rolename and grantee columns allows only unique
values.

1-62 IBM Informix Guide to SQL: Reference

SYSROUTINELANGS

SYSROUTINELANGS

The sysroutinelangs system catalog table lists the supported programming
languages for user-defined routines (UDRs). It has these columns.

Column Type Explanation
langid SERIAL Code uniquely identifying a supported language
langname CHAR(30) Name of the language, such as C or SPL

langinitfunc VARCHAR(128)

langpath

langclass

CHAR(255)
CHAR(18)

Name of initialization function for the language
Directory path for the UDR language

Name of the class of the UDR language

An index on the langname column allows duplicate values.

SYSSEQUENCES

The syssequences system catalog table lists the sequence objects that exist in
the database. The syssequences table has the following columns.

Column Type Explanation

seqid SERIAL Code uniquely identifying the sequence object
tabid INTEGER Identifying code of the sequence as a table object
start_val INTS8 Starting value of the sequence

inc_val INTS8 Value of the increment between successive values
max_val INTS Largest possible value of the sequence

min_val INTS Smallest possible value of the sequence

cycle CHAR(1) Zero means NOCYCLE, 1 means CYCLE

cache INTEGER Number of preallocated values in sequence cache
order CHAR(1) Zero means NOORDER, 1 means ORDER

System Catalog Tables 1-63

SYSSYNONYMS

SYSSYNONYMS

The syssynonyms system catalog table lists the synonyms for each table,
sequence, or view. The syssynonyms table contains a row for every synonym
that is defined in the database. It has the following columns:

Column Type Explanation

owner VARCHAR(32) Name of the owner of the synonym
synname VARCHAR(128) Name of the synonym
created DATE Date when the synonym was created

tabid INTEGER Identifying code of a table, sequence, or view

A composite index on the owner and synonym columns allows only unique
values. The tabid column is indexed and allows duplicate values.

SYSSYNTABLE

The syssyntable system catalog table outlines the mapping between each
public synonym and the database object (a table, sequence, or view) that it
represents. It contains one row for each entry in the systables table that has a
tabtype value of s. The syssyntable table has the following columns.

Column Type Explanation

tabid INTEGER Identifying code of the public synonym
servername VARCHAR(128) Name of an external database server
dbname VARCHAR(128) Name of an external database

owner VARCHAR(32) Name of the owner of an external object
tabname VARCHAR(128) Name of an external table or view

btabid INTEGER Identifying code of a base table, sequence, or view

m In an ANSI-compliant database, public synonyms are not supported; for this
reason, the syssyntable table remains empty. ¢

1-64 IBM Informix Guide to SQL: Reference

SYSTABAMDATA

If you define a synonym for an object that is in your current database, only

the tabid and btabid columns are used. If you define a synonym for a table
that is external to your current database, the btabid column is not used, but
the tabid, servername, dbname, owner, and tabname columns are used.

The tabid column maps to systables.tabid. With the tabid information, you
can determine additional facts about the synonym from systables.

Anindex on the tabid column allows only unique values. The btabid column
is indexed to allow duplicate values.

SYSTABAMDATA

The systabamdata system catalog table stores the table-specific hashing
parameters of tables that were created with a primary access method.

The systabamdata table has the following columns.

Column Type Explanation
tabid INTEGER Identifying code of the table
am_param CHAR(256) Access method parameter choices

am_space VARCHAR(128) Name of the space where the data values are stored

The am_param column stores configuration parameters that determine how
a primary access method accesses a given table. Each configuration
parameter in the am_param list has the format keyword=value or keyword.

The am_space column specifies the location of the table. It might reside in a
cooked file, a different database, or an sbspace within the database server.

The tabid column is the primary key to the systables table. This column is
indexed and must contain unique values.

System Catalog Tables 1-65

SYSTABAUTH

SYSTABAUTH

The systabauth system catalog table describes each set of privileges that are
granted on a table, view, sequence, or synonym. It contains one row for each
set of table privileges that are granted in the database; the REVOKE statement
can modify a row. The systabauth table has the following columns.

Column Type Explanation

grantor VARCHAR(32) Name of the grantor of privilege (IDS only)

grantee VARCHAR(32) Name of the grantee of privilege (IDS only)

tabid INTEGER Value from systables.tabid for database object

tabauth CHAR(9) IDS Pattern that specifies privileges on the table,
CHAR(8) XPS view, synonym, or (IDS only) sequence:

s or S = Select
uor U = Update
* = Column-level privilege
i or I =Insert
d or D = Delete
x or X = Index
a or A = Alter
r or R = References
n or N = Under privilege (IDS)

If the tabauth column shows a privilege code in uppercase (for example, s for
select), this indicates that the user also has the option to grant that privilege
to others. Privilege codes listed in lowercase (for example, s for select)

indicate that the user has the specified privilege, but cannot grant it to others.

A hyphen (-) indicates the absence of the privilege corresponding to that
position within the tabauth pattern.

A tabauth value with an asterisk (*) symbol means column-level privileges
exist; see also syscolauth (page 1-44). (In DB-Access, the Privileges option of
the Info command for a specified table can display the column-level privi-
leges on that table.)

A composite index on tabid, grantor, and grantee allows only unique values.
A composite index on tabid and grantee allows duplicate values.

1-66 IBM Informix Guide to SQL: Reference

SYSTABLES

The systables system catalog table contains a row for each table, sequernce,
view, or synonym defined in the database, including the system catalog.

SYSTABLES

Column Type Explanation
tabname VARCHAR(128) Name of table, view, synonym, or (for IDS) sequence
owner VARCHAR(32) Owner of table (user informix for system catalog
tables and username for database tables)
partnum INTEGER Physical location code
tabid SERIAL System-assigned sequential identifying number
rowsize SMALLINT Row size
ncols SMALLINT Number of columns in the table
nindexes SMALLINT Number of indexes on the table
nrows INTEGER Number of rows in the table
created DATE Date when the table was created
version INTEGER Number that changes when table is altered
tabtype CHAR(1) Code indicating the type of object:
T = Table E = External Table
V = View Q = Sequence (IDS)
P = Private synonym
S = Public synonym (Type S is not available
in an ANSI-compliant database.)
locklevel CHAR(1) Lock mode for the table:
B = Page P = Page R = Row
T =Table (XPS)
npused INTEGER Number of data pages that have ever been initialized
in the tablespace by the database server
fextsize INTEGER Size of initial extent (in kilobytes)
nextsize INTEGER Size of all subsequent extents (in kilobytes)

(1 of 2)

System Catalog Tables 1-67

SYSTABLES

Column Type Explanation

flags SMALLINT Codes for classifying permanent tables:

ST_RAW(= 0x00000010) (IDS)

RAW(= 0x00000002) (XPS)

STATIC(= 0x00000004) (XPS)
OPERATIONAL(= 0x00000008) (XPS)
STANDARD(= 0x00000010) (XPS)
EXTERNAL(= 0x00000020) (XPS)

site VARCHAR(128) Reserved for future use

dbname VARCHAR(128) Reserved for future use

type_xid INTEGER Code from sysxtdtypes.extended_id for typed
(IDS only) tables, or 0 for untyped tables.
am_id INTEGER Access method code (key to sysams table); NULL or
(IDS only) 0 indicates built-in storage manager
(20f2)

Each table, view, sequence, and synonym recorded in the systables table is
assigned a tabid, which is a system-assigned SERIAL value that uniquely
identifies the object. The first 99 tabid numbers are reserved for system
catalog tables; values for user-defined objects begin with 100.

The tabid column is indexed and contains only unique values. A composite
index on the tabname and owner columns also requires unique values.

The version column contains an encoded number that is stored in systables
when a new table is created. Portions of this value are incremented when
data-definition statements, such as ALTER INDEX, ALTER TABLE, DROP
INDEX, and CREATE INDEX, are performed on the table.

In the flags column, ST_RAW represents a nonlogging permanent table in a
database that supports transaction logging.

When a prepared statement that references a database table is executed, the
version value is checked to make sure that nothing has changed since the
statement was prepared. If the version value has changed, the prepared
statement is not executed, and you must prepare the statement again.

The npused column does not reflect the number of pages used for BYTE or
TEXT data, nor the number of pages that are freed in DELETE operations.

1-68 IBM Informix Guide to SQL: Reference

GLS

SYSTRACECLASSES

The systables table has two rows that store information about the database
locale: GL_COLLATE with a tabid of 90 and GL_CTYPE with a tabid of 91. To
view these rows, enter the following SELECT statement:

SELECT * FROM systables WHERE tabid=90 OR tabid=91

SYSTRACECLASSES

The systraceclasses system catalog table contains the names and identifiers
of trace classes. The systraceclasses table has the following columns.

Column Type Explanation
name CHAR(18) Name of the class of trace messages
classid SERIAL Identifying code of the trace class

A trace class is a category of trace messages that you can use in the devel-
opment and testing of new DataBlade modules and user-defined routines.
Developers use the tracing facility by calling the appropriate DataBlade API
routines within their code.

To create a new trace class, insert a row directly into the systraceclasses table.
By default, all users can view this table, but only users with the DBA privilege
can modify it.

The database cannot support tracing unless the MITRACE_OFF configuration
parameter is undefined.

A unique index on the name column requires each trace class to have a
unique name. The database server assigns to each class a unique sequential
code. The index on this classid column also allows only unique values.

System Catalog Tables 1-69

SYSTRACEMSGS

" bs | SYSTRACEMSGS

The systracemsgs system catalog table stores internationalized trace
messages that you can use in debugging user-defined routines.

The systracemsgs table has the following columns.

Column Type Explanation

name VARCHAR(128) Name of the message
msgid SERIAL Identifying code of the message template

locale CHAR(36) Locale with which this version of the message is
associated (for example, en_us.8859-1)

seqno SMALLINT Reserved for future use

message VARCHAR(255) The message text

DataBlade module developers create a trace message by inserting a row
directly into the systracemsgs table. Once a message is created, the devel-
opment team can specify it either by name or by msgid code, using trace
statements that the DataBlade API provides.

To create a trace message, you must specify its name, locale, and text. By
default, all users can view the systracemsgs table, but only users with the
DBA privilege can modify it.

The database cannot support tracing unless the MITRACE_OFF configuration
parameter is undefined.

A unique composite index is defined on the name and locale columns.
Another unique index is defined on the msgid column.

1-70 IBM Informix Guide to SQL: Reference

SYSTRIGBODY

SYSTRIGBODY

The systrigbody system catalog table contains the ASCII text of the trigger
definition and the linearized code for the trigger. Linearized code is binary data
and code that is represented in ASCII format.

Important: The database server uses the linearized code that is stored in
systrigbody. You must not alter the content of rows that contain linearized code.

The systrigbody table has the following columns.

Column Type Explanation

trigid INTEGER Identifying code of the trigger
datakey CHAR(1) Code specifying the type of data:

A = ASCII text for the body, triggered actions

B = Linearized code for the body

D = English text for the header, trigger definition
H = Linearized code for the header

S = Linearized code for the symbol table

seqno INTEGER Page number of this data segment

data CHAR(256) English text or linearized code

collation =~ CHAR(32) Collating order at the time when trigger was created.

A composite index on the trigid, datakey, and seqno columns allows only
unique values.

System Catalog Tables 1-71

SYSTRIGGERS

SYSTRIGGERS

The systriggers system catalog table contains information about the SQL
triggers in the database. This information includes the triggering event and
the correlated reference specification for the trigger. The systriggers table has
the following columns.

Column Type Explanation

trigid SERIAL Identifying code of the trigger

trigname VARCHAR(128) Name of the trigger

owner VARCHAR(32) Name of the owner of the trigger
tabid INTEGER Identifying code of the triggering table
event CHAR(1) Code for the type of triggering event:

D = Delete trigger
I =Insert trigger
U = Update trigger

“ S =Select trigger
d = INSTEAD OF Delete trigger
i =INSTEAD OF Insert trigger
u =INSTEAD OF Update trigger ¢

old VARCHAR(128) Name of value before update
new VARCHAR(128) Name of value after update
mode CHAR(1) Reserved for future use

A composite index on the trigname and owner columns allows only unique
values. An index on the trigid column also requires unique values. An index
on the tabid column allows duplicate values.

1-72 IBM Informix Guide to SQL: Reference

SYSUSERS

SYSUSERS

The sysusers system catalog table describes each set of privileges that are
granted on the database. It contains one row for each user who has privileges
on the database. This system catalog table has the following columns.

Column Type Explanation

username VARCHAR(32) Name of the database user or role

usertype CHAR(1) Code specifying database-level privileges:
C = Connect (work within existing tables)
D = DBA (all privileges)
G =Role

R = Resource (CREATE permanent tables,
user-defined data types, and indexes)

priority SMALLINT Reserved for future use

password CHAR(16) Reserved for future use

An index on username allows only unique values. The username value can
be the login name of a user or the name of a role.

SYSVIEWS

The sysviews system catalog table describes each view in the database.
Because it stores the SELECT statement that created the view, sysviews can
contain multiple rows for each view. It has the following columns.

Column Type Explanation

tabid INTEGER Identifying code of the view

seqno SMALLINT Line number of the SELECT statement

viewtext CHAR(64) Actual SELECT statement used to create the view

A composite index on tabid and seqno allows only unique values.

System Catalog Tables 1-73

SYSVIOLATIONS

SYSVIOLATIONS

The sysviolations system catalog table stores information about the
constraint violations for base tables. Every table in the database that has a
violations table and a diagnostics table associated with it has a corresponding
row in the sysviolations table, which has the following columns.

Column Type Explanation

targettid INTEGER Identifying code of the target table (the base table on which
the violations table and the diagnostic table are defined).

viotid INTEGER Identifying code of the violations table
diatid INTEGER Identifying code of the diagnostics table

maxrows INTEGER Maximum number of rows that can be inserted into the
diagnostics table by a single insert, update, or delete
operation on a target table that has a filtering mode object
defined on it (IDS)

The maximum number of rows allowed in the violations
table for each coserver (XPS)

The maxrows column also signifies the maximum number of rows that can
be inserted in the diagnostics table during a single operation that enables a
disabled object or that sets a disabled object to filtering mode (provided that
a diagnostics table exists for the target table). If no maximum is specified for
the diagnostics or violations table, then maxrows contains a NULL value.

Extended Parallel Server does not use the diagnostic table when a constraint
violation occurs. Rather, the database server stores additional information in
the violations table. The violations table contains the data that the transaction
refused and an indication of the cause. ¢

The primary key of this table is the targettid column. An additional unique
index is also defined on the viotid column.

Dynamic Server also has a unique index on the diatid column. ¢

1-74 IBM Informix Guide to SQL: Reference

SYSXTDDESC

SYSXTDDESC

The sysxtddesc system catalog table provides a text description of each UDT
defined in the database. The sysxtddesc table has the following columns.

Column Type Explanation

extended_id INTEGER Code uniquely identifying the extended data types

seqno SMALLINT Value to order and identify one line of the
description of the UDT. A new line is created only
if the remaining text string is larger than 255 bytes.

description CHAR(256) Textual description of the extended data type

A composite index on extended_id and seqno allows duplicate values.

SYSXTDTYPEAUTH

The sysxtdtypeauth system catalog table identifies the privileges for each
UDT (user-defined data type). The sysxtdtypeauth table contains one row for
each set of privileges granted and has the following columns.

Column Type Explanation

grantor VARCHAR(32) Name of grantor of privilege

grantee VARCHAR(32) Name of grantee of privilege

type INTEGER Code identifying the UDT

auth CHAR(2) Code identifying privileges on the UDT:

nor N = Under privilege
u or U = Usage privilege

If the privilege code in the auth column is uppercase (for example, 'U' for
usage), a user who has this privilege can also grant it to others. If the code is
in lowercase, a user who has the privilege cannot grant it to others.

A composite index on type, grantor, and grantee allows only unique values.
A composite index on the type and grantee columns allows duplicate values.

System Catalog Tables 1-75

SYSXTDTYPES

[s | SYSXTDTYPES

1-76

The sysxtdtype system catalog table has an entry for each UDT (user-defined
data type), including OPAQUE and DISTINCT data types and complex data
types (named ROW type, unnamed ROW type, and COLLECTION type) that is
defined in the database. The sysxtdtypes table has the following columns.

Column Type

Explanation

extended_id SERIAL

domain CHAR(1)

mode CHAR(1)
owner VARCHAR(32)
name VARCHAR(128)
type SMALLINT
source INTEGER
maxlen INTEGER
length INTEGER
byvalue CHAR(1)

cannothash CHAR(1)

align SMALLINT

locator INTEGER

Unique identifying code for extended data type
Code for the domain of the UDT
Code classifying the UDT:
B = Base (opaque) type
C = Collection type or unnamed row type
D = Distinct type
R = Named row type
"' (blank) = Built-in type
Name of the owner of the UDT
Name of the UDT
Code classifying the UDT

The sysxtdtypes reference (for distinct types
only). Zero (0) indicates that a distinct UDT was
created from a built-in data type.

The maximum length for variable-length data
types. Zero indicates a fixed-length UDT.

The length in bytes for fixed-length data types.
Zero indicates a variable-length UDT.

'T" = UDT is passed by value
'F' = UDT is not passed by value

'T" = UDT is hashable by default hash function
'F' = UDT is not hashable by default function

Alignment (=1, 2, 4, or 8) for this UDT

Locator key for unnamed ROW type

IBM Informix Guide to SQL: Reference

Information Schema

Each extended data type is characterized by a unique identifier, called an
extended identifier (extended_id), a data type identifier (type), and the
length and description of the data type.

For DISTINCT types created from built-in data types, the type column codes
correspond to the value of the syscolumns.coltype column (indicating the
source type) as listed on page 1-27, but incremented by the hexadecimal
value 0x0000800. The file SINFORMIXDIR/incl/esql/sqltypes.h contains
information about sysxtdtypes.type and syscolumns.coltype codes.

An index on the extended_id column allows only unique values. An index

on the locator column allows duplicate values, as does a composite indexes
on the name and owner columns. A composite index on the type and source
columns also allows duplicate values.

Information Schema

The Information Schema consists of read-only views that provide infor-
mation about all the tables, views, and columns in the current database
server to which you have access. These views also provide information about
SQL dialects (such as Informix, Oracle, or Sybase) and SQL standards.

This version of the Information Schema views are X/Open CAE standards.
These are provided so that applications developed on other database systems
can obtain Informix system catalog information without accessing the
Informix system catalog tables directly.

Important: Because the X/Open CAE standards Information Schema views differ
from ANSI-compliant Information Schema views, it is recommended that you do not
install the X/Open CAE Information Schema views on ANSI-compliant databases.

The following Information Schema views are available:

m tables

m columns

m sql_languages
]

server_info

Sections that follow contain information about how to generate and access
Information Schema views as well as information about their structure.

System Catalog Tables 1-77

Generating the Information Schema Views

1-78

Generating the Information Schema Views

The Information Schema views are generated automatically when you, as
DBA, run the following DB-Access command:

dbaccess database-name $INFORMIXDIR/etc/xpg4 is.sqgl

The views display data from the system catalog tables. If tables, views, or
routines exist with any of the same names as the Information Schema views,
you must either rename those database objects or rename the views in the
script before you can install the views. You can drop the views with the DROP
VIEW statement on each view. To re-create the views, rerun the script.

Important: In addition to the columns specified for each Information Schema view,
individual vendors might include additional columns or change the order of the
columns. It is recommended that applications not use the forms SELECT * or SELECT
table-name* to access an Information Schema view.

Accessing the Information Schema Views

All Information Schema views have the Select privilege granted to PUBLIC
WITH GRANT OPTION so that all users can query the views. Because no other
privileges are granted on the Information Schema views, they cannot be
updated.

You can query the Information Schema views as you would query any other
table or view in the database.

Structure of the Information Schema Views
The following Information Schema views are described in this section:

tables
columns

sql_languages

server_info

In order to accept long identifier names, most of the columns in the views are
defined as VARCHAR data types with large maximum sizes.

IBM Informix Guide to SQL: Reference

Structure of the Information Schema Views

The tables Information Schema View

The tables Information Schema view contains one row for each table to
which you have access. It contains the following columns.

Column Data Type Explanation

table_schema VARCHAR(128) Name of owner of table

table_name VARCHAR(128) Name of table or view

table_type VARCHAR(128) BASE TABLE for table or VIEW for view
remarks VARCHAR(255) Reserved for future use

The visible rows in the tables view depend on your privileges. For example,
if you have one or more privileges on a table (such as Insert, Delete, Select,
References, Alter, Index, or Update on one or more columns), or if privileges
are granted to PUBLIC, you see the row that describes that table.

The columns Information Schema View

The columns Information Schema view contains one row for each accessible
column. It contains the following columns.

Column Data Type Explanation

table_schema VARCHAR(128) Name of owner of table

table_name VARCHAR(128) Name of table or view

column_name VARCHAR(128) Name of the column in the table or view

ordinal_position INTEGER Position of the column within its table.
The ordinal_position value is a
sequential number that starts at 1 for the
first column. This is an Informix
extension to XPG4.

data_type VARCHAR(254) Name of the data type of the column,

such as CHARACTER or DECIMAL

(1 of 2)

System Catalog Tables 1-79

Structure of the Information Schema Views

1-80

Column

Data Type

Explanation

char_max_length

numeric_precision

numeric_prec_radix

numeric_scale

datetime_precision

is_nullable

remarks

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

VARCHAR(3)

VARCHAR(254)

Maximum length (in bytes) for character
data types; NULL otherwise
Uses one of the following values:

m Total number of digits for exact
numeric data types (DECIMAL,
INTEGER, MONEY, SMALLINT)

m Number of digits of mantissa precision
(machine-dependent) for approximate
data types (FLOAT, SMALLFLOAT)

m NULL for all other data types.

Uses one of the following values:

m 2 = approximate data types (FLOAT
and SMALLFLOAT)

m 10 = exact numeric data types
(DECIMAL, INTEGER, MONEY, and
SMALLINT)

m NULL for all other data types
Number of significant digits to the right

of the decimal point for DECIMAL and
MONEY data types

o0 for INTEGER and SMALLINT types
NULL for all other data types

Number of digits in the fractional part of
the seconds for DATE and DATETIME

columns; NULL otherwise. This column
is an Informix extension to XPG4.

Indicates whether a column allows
NULLs; either YES or NO

Reserved for future use

IBM Informix Guide to SQL: Reference

(2 of 2)

Structure of the Information Schema Views

The sql_languages Information Schema View

The sql_languages Information Schema view contains a row for each
instance of conformance to standards that the current database server
supports. The sql_languages view contains the following columns.

Column Data Type Explanation

source VARCHAR(254) Organization defining this SQL version
source_year VARCHAR(254) Year the source document was approved
conformance VARCHAR(254) Standard to which the server conforms
integrity VARCHAR(254) Indicates whether this is an integrity

enhancement feature; either YES or NO
implementation VARCHAR(254) Identifies the SQL product of the vendor
binding_style VARCHAR(254) Direct, module, or other binding style

programming_lang VARCHAR(254) Host language for which binding style is
adapted

The sql_languages view is completely visible to all users.

The server_info Information Schema View

The server_info Information Schema view describes the database server to
which the application is currently connected. It contains two columns.

Column Data Type Explanation

server_attribute VARCHAR(254) An attribute of the database server

attribute_value = VARCHAR(254) Value of the server_attribute as it applies to
the current database server

Each row in this view provides information about one attribute.
X/Open-compliant databases must provide applications with certain
required information about the database server.

System Catalog Tables 1-81

Structure of the Information Schema Views

1-82

The server_info view includes the following server_attribute information.

server_attribute

Explanation

identifier_length
row_length
userid_length

txn_isolation

collation_seq

Maximum number of bytes for a user-defined identifier
Maximum number of bytes in a row
Maximum number of bytes in a user name

Initial transaction isolation level for the database server:

Read Committed
Default isolation level for databases with no logging

Read Uncommitted
Default isolation level for databases that are not ANSI-
compliant but support transaction logging

Serializable
Default isolation level for ANSI-compliant databases

Assumed ordering of the character set for the database server.
The following values are possible:

ISO 8859-1
EBCDIC
The Informix representation shows ISO 8859-1.

IBM Informix Guide to SQL: Reference

The server_info view is completely visible to all users.

Data Types

In This Chapter . 23
Summary of Data Types 23

Description of Data Types 2-7
BLOB27

BOOLEAN 2-8
BYTE 2-8
CHAR(MM). 270
CHARACTER(n) 21
CHARACTER VARYING(m,r) 211
CLOB 21
DATE . 213
DATETIME . 213
DEC27
DECIMAL 207
Distinet . 219
DOUBLE PRECISION 22
FLOAT(m).« 22
INT. 221
INT8221
INTEGER. 222
INTERVAL . 222
LIST(e). 225
LVARCHAR(m) 227
MONEY(p,s).« 227
MULTISET(e¢) 228
NCHARMm) 23
NUMERIC(p,s). 230

NVARCHAR(m,r) .
Opaque

REAL .

ROW, Named
ROW, Unnamed
SERIAL(n)
SERIAL8(n) .
SET(e) . .
SMALLFLOAT .
SMALLINT .
TEXT)
VARCHAR(m,r)

Built-In Data Types . .
Large-Object Data Types.
Simple Large Objects
Smart Large Objects .

Time Data Types

Extended Data Types .
Complex Data Types .

Collection Data Types
ROW Data Types .
Distinct Data Types

Opaque Data Types

Data Type Casting and Conversion

Using Built-in Casts .
Converting from Number to Number
Converting Between Number and Character
Converting Between INTEGER and DATE .
Converting Between DATE and DATETIME

Using User-Defined Casts . e
Implicit Casts .
Explicit Casts . .

Determining Which Cast to Apply .

Casts for Distinct Types .

What Extended Data Types Can Be Cast’

Operator Precedence

2-2 IBM Informix Guide to SQL: Reference

2-30
2-30
2-31
2-31
2-33
2-35
2-36
2-38
2-39
2-40
2-40
2-42

2-44
2-45
2-45
2-46
2-48

2-54
2-55
2-56
2-57
2-58
2-58

2-58
2-59
2-60
2-61
2-61
2-61
2-62
2-62
2-62
2-63
2-64
2-65

2-66

In This Chapter

Every column in a table in a database is assigned a data type. The data type
precisely defines the kinds of values that you can store in that column.

This chapter built-in and extended data types, casting between two data
types, and operator precedence.

Summary of Data Types

Figure 2-1 shows the logical categories of data types that Informix database
servers support. Shaded categories are for Dynamic Server only.

Figure 2-1
Overview of Supported Data Types

’ Data types ‘

=

’ Built-in data types Extended data types

Numer;\ Large object / \

’T|me ‘ | Complex data types | User-defined data types |

| Collection | | Row | | Opaque | | Distinct |

This diagram is simplified: some built-in types are implemented as opaque
types, and are only supported on Dynamic Server. That is, opaque and built-in
are not disjunct categories, though most built-in data types are not opaque.

Data Types 2-3

Summary of Data Types

2-4

Built-in data types (which are system-defined) and extended data types
(which you can define) share the following characteristics. You can:

Use them to create columns within database tables.

Declare them as arguments and as returned types of routines.

Use them as base types from which to create DISTINCT data types.
Cast them to other data types.

Declare and access host variables of these types in SPL and ESQL/C.

For exceptions, see the description of each data type. For an overview, see
“Built-In Data Types” on page 2-44 and “Extended Data Types” on page 2-54.

You assign data types to columns with the CREATE TABLE statement and
change them with the ALTER TABLE statement. When you change an existing
column data type, all data is converted to the new data type, if possible.

For information on the ALTER TABLE and CREATE TABLE statements, SQL
statements that create specific data types and create and drop casts, and other
data type topics, refer to the IBM Informix Guide to SQL: Syntax.

For information about how to create and use complex data types, see the
IBM Informix Database Design and Implementation Guide. For information about
how to create user-defined data types, see IBM Informix User-Defined Routines
and Data Types Developer’s Guide. ¢

All Informix database servers support the data types that Figure 2-2 lists.
This chapter describes each of these built-in data types.

Figure 2-2
Data Types That All Informix Database Servers Support
Data Type Explanation Page
BYTE Stores any kind of binary data, up to 23! bytes in length ~ 2-8
CHAR(n) Stores character strings; collation is in code-set order 2-10
CHARACTER(n) Is a synonym for CHAR 2-11
CHARACTER Stores character strings of varying length 2-11
VARYING(m,r) (ANSI compliant); collation is in code-set order
DATE Stores calendar dates 2-13
(1of2)

IBM Informix Guide to SQL: Reference

Summary of Data Types

Data Type Explanation Page

DATETIME Stores calendar date combined with time of day 2-13

DEC Is a synonym for DECIMAL 2-17

DECIMAL(p) Stores floating-point numbers with definable precision; 2-17
if database is ANSI-compliant, the scale is zero.

DECIMAL(p, s) Stores fixed-point numbers of defined scale and 2-18
precision

DOUBLE Synonym for FLOAT 2-20

PRECISION

FLOAT(n) Stores double-precision floating-point numbers 2-21
corresponding to the double data type in C

INT Is a synonym for INTEGER 2-21

INTEGER Stores whole numbers in a range from —2,147,483,647 to 2-22
+2,147,483,647

INTERVAL Stores a span of time (or level of effort) in units of years 2-22

(Year | Month) and/or months.

INTERVAL Stores a span of time in a contiguous set of units of days, 2-22

(Day | Fraction) hours, minutes, seconds, and / or fractions of a second.

MONEY(p,s) Stores currency amount 2-27

NCHAR(n) Same as CHAR, but can support localized collation 2-30

NUMERIC(p,s) Synonym for DECIMAL(p,s) 2-30

NVARCHAR(m,r) Same as VARCHAR, but can support localized collation 2-30

REAL Is a synonym for SMALLFLOAT 2-31
SERIAL Stores sequential integers in same range as INT 2-35
SMALLFLOAT Stores single-precision floating-point numbers 2-39
corresponding to the float data type of the C language
SMALLINT Stores whole numbers from —32,767 to +32,767 2-40
TEXT Stores any kind of text data, up to 23! bytes in length 2-40

VARCHAR(m,r) Stores character strings of varying length (up to 255 2-42
bytes); collation is in code-set order.

(20f2)

Data Types 2-5

Summary of Data Types

2-6

For the character data types (CHAR, CHAR VARYING, LVARCHAR, NCHAR,
NVARCHAR, and VARCHAR), a data string can include letters, digits, punctu-
ation, whitespace, diacritical marks, ligatures, and other printable symbols
from the code set of the database locale. (For some East Asian locales,
multibyte characters are supported within data strings.)

“ Dynamic Server also supports additional data types that Figure 2-3 lists.
Figure 2-3
Additional Data Types That Dynamic Server Supports
Data Type Explanation Page
BLOB Stores binary data in random-access chunks 2-7
BOOLEAN Stores Boolean values true and false 2-8
CLOB Stores text data in random-access chunks 2-11
Distinct Stores data in a user-defined type that has the same 2-19

format as a source type on which it is based, but its casts
and functions can differ from those on the source type

INT8 Stores 8-byte integer values in range —(2%% —1) to 203 -1~ 2-21

LIST(e) Stores a sequentially ordered collection of elements, all of 2-25
the same data type, e; allows duplicate values

LVARCHAR(m) Stores variable-length strings of up to 32,739 bytes 2-27

MULTISET(e) Stores a non-ordered collection of values, with elements ~ 2-28
all of the same data type, ¢; allows duplicate values.

Opaque Stores a user-defined data type whose internal structureis 2-30
inaccessible to the database server

ROW, Named Stores a named ROW type 2-31
ROW, Unnamed Stores an unnamed ROW type 2-33
SERIALS Stores large sequential integers in same range as INT8 2-36
SET(e) Stores a non-ordered collection of elements, all of the 2-38

same data type, ¢; does not allow duplicate values

Distributed queries that access remote tables cannot retrieve these extended
data types, which are individually described in this chapter. ¢

IBM Informix Guide to SQL: Reference

Description of Data Types

For information about Informix internal data types that SQL statements
support (such as IMPEX, IMPEXBIN, and SENDRECV), see IBM Informix User-
Defined Routines and Data Types Developer’s Guide.

Description of Data Types

This section describes the data types that Informix database servers support.
Icons mark the data types that only Dynamic Server supports.

BLOB

The BLOB data type stores any kind of binary data in random-access chunks,
called sbspaces. Binary data typically consists of saved spreadsheets,
program-load modules, digitized voice patterns, and so on. The database
server performs no interpretation on the contents of a BLOB column. A BLOB
column can be up to 4 terabytes (4*2% bytes) in length, though your system
resources might impose a lower practical limit.

The term smart large object refers to BLOB and CLOB data types. Use CLOB data
types (see page 2-11) for random access to text data. For general information
about BLOB and CLOB data types, see “Smart Large Objects” on page 2-46.

You can use these SQL functions to perform operations on a BLOB column:

m FILETOBLOB copies a file into a BLOB column.

m LOTOFILE copies a BLOB (or CLOB) value into an operating-system
file.

m LOCOPY copies an existing smart large object to a new smart large
object.

For more information on these SQL functions, see the IBM Informix Guide to
SQL: Syntax.

No casts exist for BLOB data. Therefore, the database server cannot convert
data of type BLOB to any other data type. Within SQL, you are limited to the
equality (=) comparison operation for BLOB data. To perform additional
operations, you must use one of the application programming interfaces
(APIs) from within your client application.

Data Types 2-7

BOOLEAN

You can insert data into BLOB columns in the following ways:

With the dbload or onload utilities

With the LOAD statement (DB-Access)

With the FILETOBLOB function

From BLOB (ifx_lo_t) host variables (IBM Informix ESQL/C)

If you select a BLOB column using DB-Access, only the string <SBlob value>
is returned; no actual value is displayed.

BOOLEAN

The BOOLEAN data type stores TRUE/FALSE data as a single byte. This table
shows internal and literal representations of the BOOLEAN data type.

Logical Value Internal Representation Literal Representation
TRUE \O 't

FALSE \1 'f'

NULL Internal Use Only NULL

You can compare two BOOLEAN values to test for equality or inequality.
You can also compare a BOOLEAN value to the Boolean literals 't' and 'f".
BOOLEAN values are case insensitive; 't' is equivalent to 'T" and 'f' to 'F'.

You can use a BOOLEAN column to store what a Boolean expression returns.
In the following example, the value of boolean_column is 't' if column1 is
less than column2, 't' if column1 is greater than or equal to column2, and
NULL if the value of either column1 or column2 is unknown:

UPDATE my table SET boolean column = lessthan(columnl < column2)

BYTE

The BYTE data type stores any kind of binary data in an undifferentiated byte
stream. Binary data typically consists of digitized information, such as
spreadsheets, program load modules, digitized voice patterns, and so on.
The term simple large object refers to BYTE and TEXT data types. No more than
195 columns of the same table can be declared as BYTE and TEXT data types.

2-8 IBM Informix Guide to SQL: Reference

BYTE

The BYTE data type has no maximum size. A BYTE column has a theoretical
limit of 23! bytes and a practical limit that your disk capacity determines.

You can store, retrieve, update, or delete the contents of a BYTE column. You
cannot, however, use BYTE operands in arithmetic or string operations, nor

assign literals to BYTE columns with the SET clause of the UPDATE statement.
You also cannot use BYTE items in any of the following ways:

With aggregate functions

With the IN clause

With the MATCHES or LIKE clauses

With the GROUP BY clause

With the ORDER BY clause

BYTE operands are valid in Boolean expressions only when you are testing for
NULL values with the IS NULL or IS NOT NULL operators.

You can insert data into BYTE columns in the following ways:

m With the dbload or onload utilities
m With the LOAD statement (DB-Access)
m From BYTE host variables (IBM Informix ESQL/C)

You cannot use a quoted text string, number, or any other actual value to
insert or update BYTE columns.

When you select a BYTE column, you can choose to receive all or part of it. To
retrieve it all, use the regular syntax for selecting a column. You can also
select any part of a BYTE column by using subscripts, as the next example,
which reads the first 75 bytes of the cat_picture column associated with the
catalog number 10001:

SELECT cat_picture [1,75] FROM catalog WHERE catalog num = 10001

A built-in cast converts BYTE values to BLOB values. For more information,
see the IBM Informix Database Design and Implementation Guide.

If you select a BYTE column using the DB-Access Interactive Schema Editor,
only the string “<BYTE value>”" is returned; no data value is displayed.

Important: If you try to return a BYTE column from a subquery, an error results,
even if the column is not used in a Boolean expression nor with an aggregate.

Data Types 2-9

CHAR(n)

GLS

GLS

CHAR(n)

The CHAR data type stores any string of letters, numbers, and symbols. It can
store single-byte and multibyte characters, based on the database locale. (For
more information on East Asian locales that support multibyte code sets, see
“Multibyte Characters with VARCHAR” on page 2-43.)

A CHAR(n) column has a length of n bytes, where 1 <n <32,767. If you do not
specify n, CHAR(1) is the default length. Character columns typically store
alphanumeric strings, such as names, addresses, phone numbers, and so on.
When a value is retrieved or stored as CHAR(n), exactly n bytes of data are
transferred. If the string is shorter than n bytes, the string is extended with
blank spaces up to the declared length. If the data value is longer than n
bytes, a data string of length n that has been truncated from the right is
inserted or retrieved, without the database server raising an exception.

This does not create partial characters in multibyte locales. In right-to-left
locales, such as Arabic, Hebrew, or Farsi, the truncation is from the left. ¢

Treating CHAR Values as Numeric Values

If you plan to perform calculations on numbers stored in a column, you
should assign a number data type to that column. Although you can store
numbers in CHAR columns, you might not be able to use them in some arith-
metic operations. For example, if you insert a sum into a CHAR column, you
might experience overflow problems if the CHAR column is too small to hold
the value. In this case, the INSERT fails. Numbers that have leading zeros
(such as some zip codes) have the zeros stripped if they are stored as number
types INTEGER or SMALLINT. Instead, store these numbers in CHAR columns.

Sorting and Relational Comparisons

In general, the collating order for sorting CHAR values is the order of
characters in the code set. (An exception is the MATCHES operator with
ranges; see “Collating VARCHAR Values” on page 2-43.) For more infor-
mation about collation order, see the IBM Informix GLS User’s Guide.

For multibyte locales, the database supports any multibyte characters in the
code set. When storing multibyte characters in a CHAR data type, make sure
to calculate the number of bytes needed. For more information on multibyte
characters and locales, see the IBM Informix GLS User’s Guide.

2-10 IBM Informix Guide to SQL: Reference

CHARACTER(n)

CHAR values are compared to other CHAR values by padding the shorter
value on the right with blank spaces until the values have equal length, and
then comparing the two values, using the code-set order for collation.

Nonprintable Characters with CHAR

A CHAR value can include tab, newline, whitespace, and nonprintable
characters. You must, however, use an application to INSERT nonprintable
characters into host variables and the host variables into your database. After
passing nonprintable characters to the database server, you can store or
retrieve them. After you SELECT nonprintable characters, FETCH them into
host variables and display them with your own display mechanism.

If you try to display nonprintable characters with DB-Access, your screen
returns inconsistent results. (Which characters are nonprintable is locale-
dependent. See also the discussion of code-set conversion between the client
and the database server in the IBM Informix GLS User’s Guide.)

CHARACTER(n)

The CHARACTER data type is a synonym for CHAR.

CHARACTER VARYING(m,r)

The CHARACTER VARYING data type stores a string of letters, digits, and
symbols of varying length, where m is the maximum size of the column (in
bytes) and r is the minimum number of bytes reserved for that column.

The CHARACTER VARYING data type complies with ANSI/ISO standard for
SQL; the non-ANSI VARCHAR data type supports the same functionality. See
the description of the VARCHAR type in “VARCHAR(m,r)” on page 2-42.

CLOB

The CLOB data type stores of any kind of text data in random-access chunks,
called sbspaces. Text data can include text-formatting information, as long as
this information is also textual, such as PostScript, Hypertext Markup
Language (HTML), Standard Graphic Markup Language (SGML), or Exten-
sible Markup Language (XML) data.

Data Types 2-11

CLOB

GLS

2-12

The term smart large object refers to CLOB and BLOB data types. The CLOB data
type supports special operations for character strings that are inappropriate
for BLOB values. A CLOB value can be up to 4 terabytes (424 bytes) in length.

Use the BLOB data type (see “BLOB” on page 2-7) for random access to binary
data. For general information about the CLOB and BLOB data types, see
“Smart Large Objects” on page 2-46.

The following SQL functions can perform operations on a CLOB column:

m FILETOCLOB copies a file into a CLOB column.
m LOTOFILE copies a CLOB (or BLOB) value into a file.
m LOCOPY copies a CLOB (or BLOB) value to a new smart large object.

For more information on these SQL functions, see the IBM Informix Guide to
SQL: Syntax.

No casts exist for CLOB data. Therefore, the database server cannot convert
data of the CLOB type to any other data type. Within SQL, you are limited to
the equality (=) comparison operation for CLOB data. To perform additional
operations, you must use one of the application programming interfaces
from within your client application.

Multibyte Characters with CLOB

You can insert data into CLOB columns in the following ways:

m With the dbload or onload utilities
m With the LOAD statement (DB-Access)
m From CLOB (ifx_lo_t) host variables (IBM Informix ESQL/C)

For examples of CLOB types, see the IBM Informix Guide to SQL: Tutorial and the
IBM Informix Database Design and Implementation Guide.

With GLS, the following rules apply:

m Multibyte CLOB characters must be defined in the database locale.
m The CLOB data type is collated in code-set order.
m The database server handles code-set conversions for CLOB data.

For more information on database locales, collation order, and code-set
conversion, see the IBM Informix GLS User’s Guide. ¢

IBM Informix Guide to SQL: Reference

GLS

DATE

DATE

The DATE data type stores the calendar date. DATE data types require 4 bytes.
A calendar date is stored internally as an integer value equal to the number
of days since December 31, 1899.

Because DATE values are stored as integers, you can use them in arithmetic
expressions. For example, you can subtract a DATE value from another DATE
value. The result, a positive or negative INTEGER value, indicates the number
of days that elapsed between the two dates. (You can use a UNITS DAY
expression to convert the result to an INTERVAL DAY TO DAY data type.)

The following example shows the default display format of a DATE column:

mm/dd/yyyy

In this example, mm is the month (1-12), dd is the day of the month (1-31), and
yyyy is the year (0001-9999). You can specify a different order of time units
and a different time-unit separator than / (or no separator) by setting the
DBDATE environment variable; see “DBDATE” on page 3-32.

If you enter only a 2-digit value for the year, IBM Informix products expand
the year to 4 digits. If you enter the year as 99, whether this is interpreted as
1999 or as 2099 depends on the DBCENTURY environment variable setting
and the system clock-calendar. If you do not set DBCENTURY, IBM Informix
products use the leading digits of the current year to expand abbreviated
years. For information on DBCENTURY, refer to page 3-28.

In non-default locales, you can display dates in culture-specific formats. The
locale and the GL_DATE and DBDATE environment variables (as described in
the next chapter) affect the display formatting of DATE values. They do not,
however, affect the internal storage format for DATE columns in the database.
For more information, see the IBM Informix GLS User’s Guide. ¢

DATETIME

The DATETIME data type stores an instant in time expressed as a calendar
date and time of day. You choose how precisely a DATETIME value is stored;
its precision can range from a year to a fraction of a second.

DATETIME stores a data value as a contiguous series of fields that represents
each time unit (year, month, day, and so forth) in the data type declaration.

Data Types 2-13

DATETIME

2-14 IBM Informix Guide to SQL: Reference

Field qualifiers to specify a DATETIME data type have this format:

DATETIME largest gualifier TO smallest gqualifier

This resembles an INTERVAL field qualifier (“INTERVAL” on page 2-22), but
DATETIME represents a point in time, rather than (like INTERVAL) a span of
time. These differences exist between DATETIME and INTERVAL qualifiers:

m The DATETIME keyword replaces the INTERVAL keyword.

m DATETIME field qualifiers cannot specify a non-default precision for
the largest_qualifier time unit.

m A DATETIME value that includes YEAR and /or MONTH time units
can also include smaller time units, whereas an INTERVAL data type
that stores days (or smaller time units) cannot store months or years.

The largest_qualifier and smallest_qualifier of a DATETIME data type can be any
of the fields that Figure 2-4 lists, provided that smallest_qualifier does not
specify a larger time unit than largest_qualifier. (The largest and smallest time
units can be the same; for example, DATETIME YEAR TO YEAR.)

Figure 2-4
DATETIME Field Qualifiers
Qualifier Field Valid Entries
YEAR A year numbered from 1 to 9,999 (A.D.)
MONTH A month numbered from 1 to 12
DAY A day numbered from 1 to 31, as appropriate to the month
HOUR An hour numbered from 0 (midnight) to 23
MINUTE A minute numbered from 0 to 59
SECOND A second numbered from 0 to 59
FRACTION A decimal fraction-of-a-second with up to 5 digits of scale.

The default scale is 3 digits (a thousandth of a second). For
smallest_qualifier to specify another scale, write FRACTION(n),
where 1 is the desired number of digits from 1 to 5.

The declaration of a DATETIME column need not include the full YEAR to
FRACTION range of time units. It can include any contiguous subset of these
time units, or even only a single time unit.

DATETIME

For example, you can enter a MONTH TO HOUR value in a column declared
as YEAR TO MINUTE, as long as each entered value contains information for
a contiguous series of time units. You cannot, however, enter a value for only
the MONTH and HOUR; the entry must also include a value for DAY.

If you use the DB-Access TABLE menu, and you do not specify the DATETIME
qualifiers, a default DATETIME qualifier, YEAR TO YEAR, is assigned. ¢

A valid DATETIME literal must include the DATETIME keyword, the values to
be entered, and the field qualifiers. You must include these qualifiers because,
as noted earlier, the value that you enter can contain fewer fields than were
declared for that column. Acceptable qualifiers for the first and last fields are
identical to the list of valid DATETIME fields that Figure 2-4 lists.

Write values for the field qualifiers as integers and separate them with
delimiters. Figure 2-5 lists the delimiters that are used with DATETIME values
in the default U.S. English locale. (These are a superset of the delimiters that
are used in INTERVAL values; see “INTERVAL Delimiters” on page 2-24.)

Figure 2-5
Delimiters Used with DATETIME
Delimiter Placement in DATETIME Literal
Hyphen (-) Between the YEAR, MONTH, and DAY time-unit values

Blank space () Between the DAY and HOUR time-unit values
Colon (=) Between the HOUR, MINUTE, and SECOND time-unit values

Decimal point (.) Between the SECOND and FRACTION time-unit values

Figure 2-6 shows a DATETIME YEAR TO FRACTION(3) value with delimiters.

Figure 2-6
Example DATETIME

2003-09-23 12:42:06.001 Value with

T A Y I

Year Day Minute Fraction
Month Hour Second

Data Types 2-15

DATETIME

When you enter a value with fewer time-unit fields than in the column, the
value that you enter is expanded automatically to fill all the declared time-
unit fields. If you leave out any more significant fields, that is, time units
larger than any that you include, those fields are filled automatically with the
current values for those time units from the system clock-calendar. If you
leave out any less-significant fields, those fields are filled with zeros (or with
1 for MONTH and DAY) in your entry.

You can also enter DATETIME values as character strings. The character string
must include information for each field defined in the DATETIME column.
The INSERT statement in the following example shows a DATETIME value
entered as a character string:

INSERT INTO cust calls (customer num, call dtime, user_ id,
call _code, call_descr)
VALUES (101, '2001-01-14 08:45', 'maryj', 'D',
'Order late - placed 6/1/00")

If call_dtime is declared as DATETIME YEAR TO MINUTE, the character string
must include values for the year, month, day, hour, and minute fields.

If the character string does not contain information for all the declared fields
(or if it adds additional fields), then the database server returns an error.

All fields of a DATETIME column are two-digit numbers except for the year
and fraction fields. The year field is stored as four digits. When you enter a
two-digit value in the year field, how the abbreviated year is expanded to
four digits depends on the setting of the DBCENTURY environment variable.

For example, if you enter 02 as the year value, whether the year is interpreted
as 1902, 2002, or 2102 depends on the setting of DBCENTURY and on the
value of the system clock-calendar at execution time. If you do not set
DBCENTURY, then the leading digits of the current year are appended by
default. For information about setting DBCENTURY, see “DBCENTURY” on
page 3-28.

The fraction field requires n digits where 1 <7 <5, rounded up to an even
number. You can use the following formula (rounded up to a whole number
of bytes) to calculate the number of bytes that a DATETIME value requires:

(total number of digits for all fields) /2 + 1

For example, a YEAR TO DAY qualifier requires a total of eight digits (four
for year, two for month, and two for day). According to the formula, this data
value requires 5, or (8/2) + 1, bytes of storage.

2-16 IBM Informix Guide to SQL: Reference

GLS

DEC

For information on how to use DATETIME values in arithmetic and relational
expressions, see “Manipulating DATE with DATETIME and

INTERVAL Values” on page 2-51. For more information on the DATETIME
data type, see the IBM Informix Guide to SQL: Syntax and the IBM Informix GLS
User’s Guide.

If you specify a locale other than U.S. English, the locale defines the culture-
specific display formats for DATETIME values. To change the default display
format, change the setting of the GL_DATETIME environment variable.

With an ESQL API, the DBTIME environment variable also affects DATETIME
formatting. Non-default locales and settings of the GL_DATE and DBDATE
environment variables also affect the display of DATETIME data. They do not,
however, affect the internal storage format of a DATETIME column.

The USEOSTIME configuration parameter can affect the subsecond granu-
larity when the database server obtains the current time from the operating
system in SQL statements; for details, see the Administrator’s Reference.

For more information on DBTIME, see “DBTIME” on page 3-47. For more
information on DBCENTURY, see “DBCENTURY” on page 3-28. For more
information on locales and GLS environment variables that can specify end-
user DATETIME formats, see the IBM Informix GLS User’s Guide. ¢

DEC

The DEC data type is a synonym for DECIMAL.

DECIMAL

The DECIMAL data type can take two forms: DECIMAL(p) floating point and
DECIMAL(p,s) fixed point. In an ANSI-compliant database, however, all

DECIMAL numbers are fixed point. By default, literal numbers that include a
decimal (.) point are interpreted by the database server as DECIMAL values.

DECIMAL(p) Floating Point

The DECIMAL data type stores decimal floating-point numbers up to a
maximum of 32 significant digits, where p is the total number of significant
digits (the precision).

Data Types 2-17

DECIMAL

Specifying precision is optional. If you specify no precision (p), DECIMAL is
treated as DECIMAL(16), a floating-point decimal with a precision of 16
places. DECIMAL(p) has an absolute exponent range between 103 and 10124,

If you declare a DECIMAL(p) column in an ANSI-compliant database, the scale
defaults to DECIMAL(p, 0), meaning that only whole-number values can be
stored in this data type.

DECIMAL (p,s) Fixed Point

In fixed-point numbers, DECIMAL(p,s), the decimal point is fixed at a specific
place, regardless of the value of the number. When you specify a column of
this type, you declare its precision (p) as the total number of digits that it can
store, from 1 to 32. You declare its scale (s) as the total number of digits in the
fractional part (that is, to the right of the decimal point).

All numbers with an absolute value less than 0.5 * 107 have the value zero.
The largest absolute value of a DECIMAL(p,s) data type that you can store
without an overflow error is 107 —10. A DECIMAL column typically stores
numbers with fractional parts that must be stored and displayed exactly (for
example, rates or percentages). In an ANSI-compliant database, all DECIMAL
numbers must have absolute values in the range 1072 to 10*3!.

DECIMAL Storage

The database server uses one byte of disk storage to store two digits of a
decimal number, plus an additional byte to store the exponent and sign, with
the first byte representing a sign bit and a 7-bit exponent in excess-65 format.
The rest of the bytes express the mantissa as base-100 digits. The significant
digits to the left of the decimal and the significant digits to the right of the
decimal are stored in separate groups of bytes. At the maximum precision
specification, DECIMAL(32,s) data types can store s-1 decimal digits to the
right of the decimal point, if s is an odd number.

How the database server stores DECIMAL numbers is illustrated in the
following example. If you specify DECIMAL(6,3), the data type consists of
three significant digits in the integral part and three significant digits in the
fractional part (for instance, 123.456). The three digits to the left of the
decimal are stored on 2 bytes (where one of the bytes only holds a single
digit) and the three digits to the right of the decimal are stored on another 2
bytes, as Figure 2-7 illustrates.

2-18 IBM Informix Guide to SQL: Reference

Distinct

(The exponent byte is not shown.) With the additional byte required for the
exponent and sign, DECIMAL(6,3) requires a total of 5 bytes of storage.

Figure 2-7
Byte 1 Byte 2 Byte 3 Byte 4 Schematic That
Illustrates the
’ -1 ‘ ’ 2 3 ‘ ’ 4 5 ‘ ’ 6 - ‘ Storage of Digits in
~— T ~ a Decimal Value
Significant digits to the Significant digits to the
left of decimal right of decimal

You can use the following formulas (rounded down to a whole number of
bytes) to calculate the byte storage (N) for a decimal data type (where N
includes the byte that is required to store the exponent and the sign):

If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, the data type DECIMAL(5,3) requires 4 bytes of storage (9/2
rounded down equals 4).

There is one caveat to these formulas. The maximum number of bytes the
database server uses to store a decimal value is 17. One byte is used to store
the exponent and sign, leaving 16 bytes to store up to 32 digits of precision.
If you specify a precision of 32 and an odd scale, however, you lose 1 digit of
precision. Consider, for example, the data type DECIMAL(32,31). This
decimal is defined as 1 digit to the left of the decimal and 31 digits to the right.
The 1 digit to the left of the decimal requires 1 byte of storage. This leaves
only 15 bytes of storage for the digits to the right of the decimal. The 15 bytes
can accommodate only 30 digits, so 1 digit of precision is lost.

| Distinct

A distinct type is a data type that is derived from one of the following source
types (called the base type):

A built-in type

An existing distinct type

An existing named ROW type

An existing opaque type

Data Types 2-19

DOUBLE PRECISION

2-20

A DISTINCT type inherits from its source type the length and alignment on
the disk. A DISTINCT type thus makes efficient use of the preexisting
functionality of the database server.

When you create a DISTINCT data type, the database server automatically
creates two explicit casts: one cast from the DISTINCT type to its source type
and one cast from the source type to the DISTINCT type. A DISTINCT type
based on a built-in source type does not inherit the built-in casts that are
provided for the built-in type. A DISTINCT type does inherit, however, any
user-defined casts that have been defined on the source type.

A DISTINCT type cannot be compared directly to its source type. To compare
the two types, you must first explicitly cast one type to the other.

You must define a DISTINCT type in the database. Definitions of DISTINCT
types are stored in the sysxtdtypes system catalog table. The following SQL
statements maintain the definitions of DISTINCT types in the database:

m The CREATE DISTINCT TYPE statement adds a DISTINCT type to the
database.

m The DROP TYPE statement removes a previously defined DISTINCT
type from the database.

For more information about the SQL statements mentioned above, see the
IBM Informix Guide to SQL: Syntax. For information about casting DISTINCT
data types, see “Casts for Distinct Types” on page 2-64. For examples that
show how to create and register cast functions for a DISTINCT type, see the
IBM Informix Database Design and Implementation Guide.

DOUBLE PRECISION

The DOUBLE PRECISION keywords are a synonym for the FLOAT keyword.

IBM Informix Guide to SQL: Reference

FLOAT(n)

FLOAT(n)

The FLOAT data type stores double-precision floating-point numbers with up
to 17 significant digits. FLOAT corresponds to IEEE 4-byte floating-point, and
to the double data type in C. The range of values for the FLOAT data type is
the same as the range of the C double data type on your computer.

You can use 7 to specify the precision of a FLOAT data type, but SQL ignores
the precision. The value n must be a whole number between 1 and 14.

A column with the FLOAT data type typically stores scientific numbers that
can be calculated only approximately. Because floating-point numbers retain
only their most significant digits, the number that you enter in this type of
column and the number the database server displays can differ slightly.

The difference between the two values depends on how your computer
stores floating-point numbers internally. For example, you might enter a
value of 1.1000001 into a FLOAT field and, after processing the SQL statement,
the database server might display this value as 1.1. This situation occurs
when a value has more digits than the floating-point number can store. In this
case, the value is stored in its approximate form with the least significant
digits treated as zeros.

FLOAT data types usually require 8 bytes of storage per value. Conversion of
a FLOAT value to a DECIMAL value results in 17 digits of precision.

INT

The INT data type is a synonym for INTEGER.

INT8

The INT8 data type stores whole numbers that can range in value from
-9,223,372,036,854,775,807 to 9,223,372,036,854,775,807 [or —(2°3-1) to 203-1],
for 18 or 19 digits of precision. The number -9,223,372,036,854,775,808 is a
reserved value that cannot be used. The INT8 data type is typically used to
store large counts, quantities, and so on.

Data Types 2-21

INTEGER

The way that the database server stores the INT8 data is platform-dependent.
On 64-bit platforms, INTS is stored as a signed binary integer; the data type

requires 8 bytes per value. On 32-bit platforms, the database server uses an

internal format that can require up to 10 bytes of storage.

Arithmetic operations and sort comparisons are performed more efficiently
on integer data than on floating-point or fixed-point decimal data, but INT8
cannot store data with absolute values beyond | 291 I. If a value exceeds the
numeric range of INTS, the database server does not store the value.

INTEGER

The INTEGER data type stores whole numbers that range from —2,147,483,647
to 2,147,483,647, for 9 or 10 digits of precision. The number —2,147,483,648 is
areserved value and cannot be used. The INTEGER value is stored as a signed
binary integer and is typically used to store counts, quantities, and so on.

Arithmetic operations and sort comparisons are performed more efficiently
on integer data than on float or decimal data. INTEGER columns, however,
cannot store absolute values beyond (23!-1). If a data value lies outside the
numeric range of INTEGER, the database server does not store the value.

INTEGER data types require 4 bytes of storage per value.

INTERVAL

The INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes: year-month intervals and
day-time intervals. A year-month interval can represent a span of years and
months, and a day-time interval can represent a span of days, hours, minutes,
seconds, and fractions of a second.

An INTERVAL value is always composed of one value, or a series of values,
that represents time units. Within a data-definition statement such as CREATE
TABLE or ALTER TABLE that defines the precision of an INTERVAL data type,
the qualifiers must have the following format:

INTERVAL largest qualifier(n) TO smallest gqualifier

Here the largest_qualifier and smallest_qualifier keywords are taken from one
of the two INTERVAL classes, as shown in Figure 2-8 on page 2-23.

2-22 IBM Informix Guide to SQL: Reference

INTERVAL

If SECOND (or a larger time unit) is the largest_gualifier, the declaration of an
INTERVAL data type can optionally specify 7, the precision of the largest time
unit (for n ranging from 1 to 9); this is not a feature of DATETIME data types.

If smallest_qualifier is FRACTION, you can also specify a scale in the range from
1to 5. For FRACTION TO FRACTION qualifiers, the upper limit of n is 5, rather
than 9. There are two incommensurable classes of INTERVAL data types:

m Those with a smallest_qualifier larger than DAY

m Those with a largest_qualifier smaller than MONTH

Figure 2-8
Interval Classes

Interval Class Time Units Valid Entry

YEAR-MONTH YEAR A number of years
INTERVAL

MONTH A number of months
DAY-TIME DAY A number of days
INTERVAL

HOUR A number of hours

MINUTE A number of minutes
SECOND A number of seconds

FRACTION A decimal fraction of a second, with up to 5 digits.
The default scale is 3 digits (thousandth of a
second). To specify a non-default scale, write
FRACTION(n), where 1 <n <5.

As with DATETIME data types, you can define an INTERVAL to include only
the subset of time units that you need. But because the construct of “month”
(as used in calendar dates) is not a time unit that has a fixed number of days,
a single INTERVAL value cannot combine months and days; arithmetic that
involves operands of the two different INTERVAL classes is not supported.

A value entered into an INTERVAL column need not include the full range of
time units that were specified in the data-type declaration of the column. For
example, you can enter a value of HOUR TO SECOND precision into a column
defined as DAY TO SECOND. A value must always consist, however, of
contiguous time units. In the previous example, you cannot enter only the
HOUR and SECOND values; you must also include MINUTE values.

Data Types 2-23

INTERVAL

A valid INTERVAL literal contains the INTERVAL keyword, the values to be
entered, and the field qualifiers. (See the discussion of literal intervals in the
IBM Informix Guide to SQL: Syntax.) When a value contains only one field, the
largest and smallest fields are the same.

When you enter a value in an INTERVAL column, you must specify the largest
and smallest fields in the value, just as you do for DATETIME values. In
addition, you can optionally specify the precision of the first field (and the
scale of the last field if it is a FRACTION). If the largest and smallest field
qualifiers are both FRACTION, you can specify only the scale in the last field.

Acceptable qualifiers for the largest and smallest fields are identical to the list
of INTERVAL fields that Figure 2-8 on page 2-23 displays.

If you use the DB-Access TABLE menu but you specify no INTERVAL field
qualifiers, then a default INTERVAL qualifier, YEAR TO YEAR, is assigned. ¢

The largest_gualifier in an INTERVAL value can be up to nine digits (except for
FRACTION, which cannot be more than five digits), but if the value that you
want to enter is greater than the default number of digits allowed for that
field, you must explicitly identify the number of significant digits in the value
that you enter. For example, to define an INTERVAL of DAY TO HOUR that can
store up to 999 days, you could specify it the following way:

INTERVAL DAY (3) TO HOUR

INTERVAL literals use the same delimiters as DATETIME literals (except that
MONTH and DAY time units are not valid within the same INTERVAL value).
Figure 2-9 shows the INTERVAL delimiters.

Figure 2-9
INTERVAL Delimiters
Delimiter Placement in DATETIME Expression
Hyphen Between the YEAR and MONTH portions of the value
Blank space Between the DAY and HOUR portions of the value
Colon Between the HOUR, MINUTE, and SECOND portions of the value

Decimal point Between the SECOND and FRACTION portions of the value

2-24 IBM Informix Guide to SQL: Reference

LIST(e)

You can also enter INTERVAL values as character strings. The character string
must include information for the same time units that were specified in the
data-type declaration for the column. The INSERT statement in the following
example shows an INTERVAL value entered as a character string:

INSERT INTO manufact (manu_code, manu_name, lead_time)
VALUES ('BRO', 'Ball-Racquet Originals', '160')

Because the lead_time column is defined as INTERVAL DAY(3) TO DAY, this
INTERVAL value requires only one field, the span of days required for lead
time. If the character string does not contain information for all fields (or
adds additional fields), the database server returns an error. For additional
information on entering INTERVAL values as character strings, see the

IBM Informix Guide to SQL: Syntax.

By default, all fields of an INTERVAL column are two-digit numbers, except
for the year and fraction fields. The year field is stored as four digits. The
fraction field requires n digits where 1 <n <5, rounded up to an even number.
You can use the following formula (rounded up to a whole number of bytes)
to calculate the number of bytes required for an INTERVAL value:

(total number of digits for all fields)/2 + 1

For example, INTERVAL YEAR TO MONTH requires six digits (four for year
and two for month), and requires 4, or (6/2) + 1, bytes of storage.

For information on using INTERVAL data in arithmetic and relational
operations, see “Manipulating DATE with DATETIME and

INTERVAL Values” on page 2-51. For information on using INTERVAL as a
constant expression, see the description of the INTERVAL Field Qualifier in
the IBM Informix Guide to SQL: Syntax.

LIST(e)

The LIST data type is a collection type that stores ordered, non-unique
elements; that is, it allows duplicate element values. The elements of a LIST
have ordinal positions; That is, the list has a first element, a second element,
and so on. (For a collection type with no ordinal positions, see
“MULTISET(e)” on page 2-28 and “SET(e)” on page 2-38.)

No more than 97 columns of the same table can be declared as LIST data
types. (The same restriction applies to SET and MULTISET collection types.)

Data Types 2-25

LIST(e)

By default, the database server inserts LIST elements at the end of the list. To
support the ordinal position of a LIST, the INSERT statement provides the AT
clause. This clause allows you to specify the position at which you want to
insert a list-element value. For more information, see the INSERT statement in
the IBM Informix Guide to SQL: Syntax.

All elements in a LIST have the same element type. To specify the element
type, use the following syntax:

LIST (element type NOT NULL)
The element_type of a LIST can be any of the following data types:
A built-in type, except SERIAL, SERIALS, BYTE, and TEXT
A DISTINCT type
An unnamed or named ROW type

Another collection type
An OPAQUE type

You must specify the NOT NULL constraint for LIST elements. No other
constraints are valid for LIST columns. For more information on the syntax of
the LIST data type, see the IBM Informix Guide to SQL: Syntax.

You can use LIST where any other data type is valid. For example:

m After the IN predicate in the WHERE clause of a SELECT statement to
search for matching LIST values

m Asanargument to the CARDINALITY or mi_collection_card()
function to determine the number of elements in a LIST column

You cannot use LIST values as arguments to an aggregate function such as
AVG, MAX, MIN, or SUM.

Two LIST values are equal if they have the same elements in the same order.
The following examples both are LIST values but are not equal:

LIST{"blue", "green", "yellow"}
LIST{"yellow", "blue", "green"}

The above statements are not equal because the values are not in the same
order. To be equal, the second statement would have to be:

LIST{"blue", "green", "yellow"}

2-26 IBM Informix Guide to SQL: Reference

LVARCHAR(m)

LVARCHAR(m)

You can use the LVARCHAR data type to create a column for storing variable-
length character strings whose upper limit () can be up to 32,739 bytes. (You
can use the VARCHAR data type for strings no longer than 255 bytes.)

By default, the database server interprets quoted strings as LVARCHAR types.
It also uses LVARCHAR for input and output casts for opaque data types.

The LVARCHAR data type stores opaque data types in the string (external)
format. Each opaque type has an input support function and cast, which
convert it from LVARCHAR to a form that database servers can manipulate.
Each opaque type also has an output support function and cast, which
convert it from its internal representation to LVARCHAR.

Important: When LVARCHAR is declared (with no size specification) as the data type
of a column in a database table, the default maximum size is 2 kilobytes (2048 bytes),
but you can specify an explicit maximum length of up to 32,739 bytes. When
LVARCHAR is used in 1/O operations on an opaque data type, however, the maximum
size is limited only by the operating system.

LVARCHAR is implemented as a built-in opaque UDT. Only a subset of the
string operations on CHAR and VARCHAR values are valid for LVARCHAR,
and like other opaque types, LVARCHAR columns of remote tables are not
accessible in distributed queries. For more information about LVARCHAR, see
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

MONEY(p,s)

The MONEY data type stores currency amounts. Like the DECIMAL(p,s) data
type, MONEY can store fixed-point numbers up to a maximum of 32 signif-
icant digits, where p is the total number of significant digits (the precision)
and s is the number of digits to the right of the decimal point (the scale).

Unlike the DECIMAL data type, the MONEY data type is always treated as a
fixed-point decimal number. The database server defines the data type
MONEY(p) as DECIMAL(p,2). If the precision and scale are not specified, the
database server defines a MONEY column as DECIMAL(16,2).

Data Types 2-27

MULTISET(e)

GLS

You can use the following formula (rounded down to a whole number of
bytes) to calculate the byte storage for a MONEY data type:

If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, a MONEY data type with a precision of 16 and a scale of 2
(MONEY(16,2)) requires 10 or (16 + 3)/2, bytes of storage.

In the default locale, client applications format values from MONEY columns
with the following currency notation:

m A currency symbol: a dollar sign ($) at the front of the value

m A thousands separator: acomma (,) that separates every three digits
in the integer part of the value

m A decimal point: a period (.) between the integer and fractional
parts of the value

To change the format for MONEY values, change the DBMONEY environment
variable. For valid DBMONEY settings, see “DBMONEY” on page 3-38.

The default value that the database server uses for scale is locale-dependent.
The default locale specifies a default scale of two. For non-default locales, if
the scale is omitted from the declaration, the database server creates MONEY
values with a locale-specific scale.

The currency notation that client applications use is locale-dependent. If you
specify a nondefault locale, the client uses a culture-specific format for
MONEY values that might differ from the default U.S. English format in the
leading (or trailing) currency symbol, thousands separator, and decimal
separator, depending on what the locale files specify. For more information
on locale dependency, see the IBM Informix GLS User’s Guide. ¢

MULTISET(e)

The MULTISET data type is a collection type that stores non-unique elements:
it allows duplicate element values. The elements in a MULTISET have no
ordinal position. That is, there is no concept of a first, second, or third element
in a MULTISET. (For a collection type with ordinal positions for elements, see
the LIST data type on page 2-25.)

2-28 IBM Informix Guide to SQL: Reference

Named Row

All elements in a MULTISET have the same element type. To specify the
element type, use the following syntax:

MULTISET (element type NOT NULL)
The element_type of a collection can be any of the following types:
®m Any built-in type, except SERIAL, SERIALS, BYTE, and TEXT

m Anunnamed or a named ROW type

m Another collection type or opaque type

You can use MULTISET anywhere that you use any other data type, unless
otherwise indicated. For example:

m After the IN predicate in the WHERE clause of a SELECT statement to
search for matching MULTISET values

m Asanargument to the CARDINALITY or mi_collection_card()
function to determine the number of elements in a MULTISET column

You cannot use MULTISET values as arguments to an aggregate function such
as AVG, MAX, MIN, or SUM.

You must specify the NOT NULL constraint for MULTISET elements. No other
constraints are valid for MULTISET columns. For more information on the
MULTISET collection type, see the IBM Informix Guide to SQL: Syntax.

Two MULTISET data values are equal if they have the same elements, even if
the elements are in different positions within the set. The following examples
are both MULTISET values but are not equal:

MULTISET {"blue", "green", "yellow"}
MULTISET {"blue", "green", "yellow", "blue"}

The following MULTISET values are equal:

MULTISET {"blue", "green", "blue", "yellow"}
MULTISET {"blue", "green", "yellow", "blue"}

No more than 97 columns of the same table can be declared as MULTISET data
types. (The same restriction applies to SET and LIST collection types.)

Named Row
See “ROW, Named” on page 2-31.

Data Types 2-29

NCHAR(n)

GLS

GLS

NCHAR(n)

The NCHAR data type stores fixed-length character data. The data can be a
string of single-byte or multibyte letters, digits, and other symbols that are
supported by the code set of the database locale. The main difference
between CHAR and NCHAR data types is the collating order.

The collation order of the CHAR data type follows the code-set order, but
the collating order of the NCHAR data type can be a localized order, if
DB_LOCALE (or SET COLLATION) specifies a localized collation. For more
information about NCHAR, see the IBM Informix GLS User’s Guide. See also the
description of “DBNLS” on page 3-39.

NUMERIC(p,s)

The NUMERIC data type is a synonym for fixed-point DECIMAL.

NVARCHAR(m,r)

The NVARCHAR data type stores strings of varying lengths. The string can
include digits, symbols, and single-byte and (in some locales) multibyte
characters. The main difference between VARCHAR and NVARCHAR data
types is the collation order. Collation of VARCHAR data follows code-set
order, but NVARCHAR collation can be locale specific, if DB_LOCALE (or SET
COLLATION) has specified a localized collation. (The section “Collating
VARCHAR Values” on page 2-43 describes an exception.) For more infor-
mation about NVARCHAR, see the IBM Informix GLS User’s Guide.

No more than 195 columns of the same table can be NVARCHAR data types.

An opaque type is a data type for which you must provide the following
information to the database server:
m A data structure for how the data values are stored on disk

m Support functions to determine how to convert between the disk
storage format and the user format for data entry and display

2-30 IBM Informix Guide to SQL: Reference

REAL

m Secondary access methods that determine how the index on this data
type is built, used, and manipulated
m User functions that use the data type

m A system catalog entry to register the opaque type in the database

The internal structure of an opaque type is not visible to the database server,
and can only be accessed through user-defined routines. Definitions for
opaque types are stored in the sysxtdtypes system catalog table. These SQL
statements maintain the definitions of opaque types in the database:

m The CREATE OPAQUE TYPE statement adds an opaque type to the
database.

m The DROP TYPE statement removes a previously defined opaque
type from the database.

For more information on the above-mentioned SQL statements, see the
IBM Informix Guide to SQL: Syntax. For information on how to create opaque
types and an example of an opaque type, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

REAL

The REAL data type is a synonym for SMALLFLOAT.

ROW, Named

A named ROW type is declared by its name. That identifier must be unique
within the schema. An unnamed ROW type is a ROW type that contains fields
but has no user-defined name. Only named ROW types support data type
inheritance. For more information, see “ROW Data Types” on page 2-57.

Defining Named ROW Types

You must define a named ROW type in the database. Definitions for named
ROW types are stored in the sysxtdtypes system catalog table.

The fields of a ROW type can be any built-in data type or UDT, but TEXT or
BYTE fields of a ROW type are valid in typed tables only. If you want to assign
a ROW type to a column, its elements cannot be TEXT or BYTE data types.

Data Types 2-31

ROW Named

In general, the data type of a field of a ROW type can be any of these types:

A built-in type (except for the TEXT or BYTE data types)
A collection type (LIST, MULTISET, or SET)

A distinct type

Another named or unnamed ROW type

An opaque type
These SQL statements maintain the definitions of named ROW data types:

m The CREATE ROW TYPE statement adds a named ROW type to the
database.

m The DROP ROW TYPE statement removes a previously defined
named ROW type from the database.

No more than 195 columns of the same table can be named ROW types.

For details about these SQL syntax statements, see the IBM Informix Guide to
SQL: Syntax. For examples of how to create and use named ROW types, see the
IBM Informix Database Design and Implementation Guide.

Equivalence and Named Row Types

No two named ROW types can be equal, even if they have identical struc-
tures, because they have different names. For example, the following named
ROW types have the same structure (the same number of fields, and the same
order of data types of fields within the row) but are not equal:

name_t (lname CHAR(15), initial CHAR(1l), fname CHAR(15))
emp_t (lname CHAR(15), initial CHAR(1), fname CHAR(15))

Named Row Types and Inheritance

Named ROW types can be part of a type-inheritance hierarchy. One named
ROW type can be the parent (or supertype) of another named ROW type. A
subtype in a hierarchy inherits all the properties of its supertype. Type inher-
itance is discussed in the CREATE ROW TYPE statement in the IBM Informix
Guide to SQL: Syntax and in the IBM Informix Database Design and Implemen-
tation Guide.

2-32 IBM Informix Guide to SQL: Reference

ROW. Unnamed

Typed Tables

Tables that are part of an inheritance hierarchy must be typed tables. Typed
tables are tables that have been assigned a named ROW type. For the syntax
you use to create typed tables, see the CREATE TABLE statement in the

IBM Informix Guide to SQL: Syntax. Table inheritance and how it relates to type
inheritance is also discussed in that section. For information about how to
create and use typed tables, see the IBM Informix Database Design and Imple-
mentation Guide.

ROW, Unnamed

An unnamed ROW type contains fields but has no user-defined name. An
unnamed ROW type is defined by its structure. Two unnamed ROW types are
equal if they have the same structure (meaning the ordered list of the data
types of the fields). If two unnamed ROW types have the same number of
fields, and if the order of the data type of each field in one ROW type matches
the order of data types of the corresponding fields in the other ROW data
type, then the two unnamed ROW data types are equal.

For example, the following unnamed ROW types are equal:

ROW (lname char(15), initial char(l) fname char (15))
ROW (dept char(15), rating char(l) name char(15))

The following ROW types have the same number of fields and the same data
types, but are not equal, because their fields are not in the same order:

ROW (x integer, y varchar(20), z real)
ROW (x integer, z real, y varchar(20))

A field of an unnamed ROW type can be any of the following data types:
A built-in type
A collection type

A distinct type
Another ROW type

An opaque type

Data Types 2-33

ROW. Unnamed

Unnamed ROW types cannot be used in typed tables or in type inheritance
hierarchies. For more information on unnamed ROW types, see the

IBM Informix Guide to SQL: Syntax and the IBM Informix Database Design and
Implementation Guide.

Creating Unnamed Row Types
You can create an unnamed ROW type in several ways:

m You can declare an unnamed ROW type using the ROW keyword.
Each field in a ROW can have a different field type. To specify the
field type, use the following syntax:

ROW(field name field type, ...)

The field_name must conform to the rules for SQL identifiers. (See the
Identifier section in the IBM Informix Guide to SQL: Syntax.)

m To generate an unnamed ROW type, use the ROW keyword as a
constructor with a series of values. A corresponding unnamed ROW
type is created, using the default data types of the specified values.
For example, the following declaration

ROW(1, 'abc', 5.30)
defines this unnamed ROW data type:
ROW (x INTEGER, y VARCHAR, z DECIMAL)

m You can create an unnamed ROW type by an implicit or explicit cast
from a named ROW type or from another unnamed ROW type.

m The rows of any table (except a table defined on a named ROW type)
are unnamed ROW types.

No more than 195 columns of the same table can be unnamed ROW types.

Inserting Values into Unnamed Row Type Columns

When you specify field values for an unnamed ROW type, list the field values
after the constructor and between parentheses. For example, suppose you
have an unnamed ROW-type column. The following INSERT statement adds
one group of field values to this ROW column:

INSERT INTO tablel VALUES (ROW(4, 'abc'))

2-34 IBM Informix Guide to SQL: Reference

SERIAL(n)

You can specify a ROW column in the IN predicate in the WHERE clause of a
SELECT statement to search for matching ROW values. For more information,
see the Condition section in the IBM Informix Guide to SQL: Syntax.

SERIAL(n)

The SERIAL data type stores a sequential integer that is automatically
assigned by the database server when a new row is inserted. You can define
only one SERIAL column in a table.

SERIAL values in a column are not automatically unique. You must apply a
unique index or primary key constraint to this column to prevent duplicate
SERIAL numbers. If you use the interactive schema editor in DB-Access to
define the table, a unique index is applied automatically to a SERIAL column.

Also, SERIAL numbers might not be contiguous due to such factors as
multiuser systems and rollbacks.

The DEFINE variable LIKE column syntax of SPL for indirect typing declares a
variable of the INTEGER data type if column is a SERIAL data type.

The default SERIAL starting number is 1, but you can assign a non-default
initial value, 7, when you create or alter the table. Any number greater than
0 can be your starting number. The maximum SERIAL is 2,147,483,647. If you
assign a number greater than 2,147,483,647, you receive a syntax error. (Use
the SERIALS data type, rather than SERIAL, if you need a larger range.)

After a nonzero number is assigned, it cannot be changed. You can insert a
value into a SERIAL column (using the INSERT statement) or reset a SERIAL
column (using the ALTER TABLE statement), if the new value does not
duplicate any existing value in the column. To insert into a SERIAL column,
your database server increments by 1 the previous value (or the reset value,
if that is larger) and assigns the result as the entered value. If ALTER TABLE
has reset the next value of a SERIAL column to a value smaller than values
already in that column, however, the next value follows this formula:

(maximum existing value in SERIAL column) + 1

For example, if you reset the SERIAL value of customer.customer_num to 50,
when the largest existing value is 128, the next assigned number will be 129.
For more details on SERIAL data entry, see the IBM Informix Guide to SQL:
Syntax.

Data Types 2-35

SERIALS(n)

A SERIAL column can store unique codes (for example, order, invoice, or
customer numbers). SERIAL data values require 4 bytes of storage, and have
the same precision as the INTEGER data type. For details of another way to
assign unique whole numbers to each row of a database table, see the CREATE
SEQUENCE statement in IBM Informix Guide to SQL: Syntax.

SERIAL8(n)

The SERIALS data type stores a sequential integer assigned automatically by
the database server when a new row is inserted. It behaves like the SERIAL
data type, but with a larger range. (For more information on how to insert
values into SERIAL8 columns, see the IBM Informix Guide to SQL: Syntax.)

A SERIAL8 data column is commonly used to store large, unique numeric
codes (for example, order, invoice, or customer numbers). SERIAL8 data
values have the same precision and storage requirements as INT8 values
(page 2-21). The following restrictions apply to SERIAL8 columns:
® You can define only one SERIALS8 column in a table.
However, a table can have one SERIALS and one SERIAL column.
m SERIALS column values are not automatically unique.

You must apply a unique index or primary key constraint to this col-
umn to prevent duplicate SERIAL8 numbers.

m The SERIALS data type does not allow a NULL value.

If you are using the interactive schema editor in DB-Access to define the table,
a unique index is applied automatically to a SERIAL8 column.

The DEFINE variable LIKE column syntax of SPL for indirect typing declares a
variable of the INT8 data type if column is a SERIALS data type.

2-36 IBM Informix Guide to SQL: Reference

SERIALS(n)

Assigning a Starting Value for SERIAL8

The default serial starting number is 1, but you can assign an initial value, #,
when you create or alter the table. To start the values at 1 in a SERIALS column
of a table, give the value 0 for the SERIAL8 column when you insert rows into
that table. The database server will assign the value 1 to the SERIAL8 column
of the first row of the table. The highest SERIAL8 number you can assign is
2031 (9,223,372,036,854,775,807). If you assign a number greater than this
value, you receive a syntax error. When the database server generates a
SERIALS value of this maximum number, it wraps around and starts gener-
ating values beginning at 1.

After a nonzero number is assigned, it cannot be changed. You can, however,
insert a value into a SERIAL8 column (using the INSERT statement) or reset the
serial value 7 (using the ALTER TABLE statement), as long as that value does
not duplicate any existing values in the table.

When you insert a number into a SERIAL8 column or reset the next value of a
SERIALS column, your database server assigns the next number in sequence
to the number entered. If you reset the next value of a SERIALS column to a
value that is less than the values already in that column, however, the next
value is computed using the following formula:

maximum existing value in SERIAL8 column + 1

For example, if you reset the serial value of the customer_num column in the
customer table to 50, when the highest-assigned customer number is 128, the
next customer number assigned is 129.

Using SERIALS with INT8

All the arithmetic operators that are valid for INT8 (such as +, -, *, and /) and
all the SQL functions that are legal for INT8 (such as ABS, MOD, POW, and so
on) are also valid for SERTIALS8 values. Data conversion rules that apply to
INT8 also apply to SERIALS, but with a NOT NULL constraint on SERIALS.

The value of a SERIALS column of one table can be stored in an INT8 columns
of another table. In the second table, however, the INT8 values are not subject
to the constraints on the original SERIAL8 column.

Data Types 2-37

SET(e)

SET(e)

The SET data type is a collection type that stores unique elements; duplicate
element values are not valid. (For a collection type that supports duplicate
values, see the description of MULTISET in “MULTISET(e)” on page 2-28.)

No more than 97 columns of the same table can be declared as SET data types.
(The same restriction also applies to MULTISET and LIST collection types.)

The elements in a SET have no ordinal position. That is, no construct of a first,
second, or third element in a SET exists. (For a collection type with ordinal
positions for elements, see “LIST(e)” on page 2-25.) All elements in a SET
have the same element type. To specify the element type, use this syntax:

SET (element_type NOT NULL)
The element_type of a collection can be any of the following tye followinpes:

A built-in type, except SERIAL, SERIALS, BYTE, and TEXT
A named or unnamed ROW type
Another collection type

An opaque type

You must specify the NOT NULL constraint for SET elements. No other
constraints are valid for SET columns. For more information on the syntax of
the SET collection type, see the IBM Informix Guide to SQL: Syntax.

You can use SET anywhere that you use any other data type, unless otherwise
indicated. For example:

m After the IN predicate in the WHERE clause of a SELECT statement to
search for matching SET values

B Asanargument to the CARDINALITY or mi_collection_card()
function to determine the number of elements in a SET column

SET values are not valid as arguments to an aggregate function such as AVG,
MAX, MIN, or SUM. For more information, see the Condition and Expression
sections in the IBM Informix Guide to SQL: Syntax.

The following examples declare two sets. The first statement declares a set of
integers and the second declares a set of character elements.

SET (INTEGER NOT NULL)
SET (CHAR (20) NOT NULL)

2-38 IBM Informix Guide to SQL: Reference

SMALLFLOAT

The following examples construct the same sets from value lists:

SET{1, 5, 13}
SET{"Oakland", "Menlo Park", "Portland", "Lenexa"}

In the following example, a SET constructor function is part of a CREATE
TABLE statement:

CREATE TABLE tab
(

c CHAR(5),

s SET (INTEGER NOT NULL)
)

The following SET values are equal:

SET{"blue", "green", "yellow"}
SET{"yellow", "blue", "green"}

SMALLFLOAT

The SMALLFLOAT data type stores single-precision floating-point numbers
with approximately nine significant digits. SMALLFLOAT corresponds to the
float data type in C. The range of values for a SMALLFLOAT data type is the
same as the range of values for the C float data type on your computer.

A SMALLFLOAT data type column typically stores scientific numbers that can
be calculated only approximately. Because floating-point numbers retain
only their most significant digits, the number that you enter in this type of
column and the number the database displays might differ slightly
depending on how your computer stores floating-point numbers internally.

For example, you might enter a value of 1.1000001 in a SMALLFLOAT field
and, after processing the SQL statement, the application might display this
value as 1.1. This difference occurs when a value has more digits than the
floating-point number can store. In this case, the value is stored in its
approximate form with the least significant digits treated as zeros.

SMALLFLOAT data types usually require 4 bytes of storage. Conversion of a
SMALLFLOAT value to a DECIMAL value results in 9 digits of precision.

Data Types 2-39

SMALLINT

SMALLINT

The SMALLINT data type stores small whole numbers that range from -32,767
to 32,767. The maximum negative number, -32,768, is a reserved value and
cannot be used. The SMALLINT value is stored as a signed binary integer.

Integer columns typically store counts, quantities, and so on. Because the
SMALLINT data type requires only 2 bytes per value, arithmetic operations
are performed efficiently. SMALLINT, however, stores only a limited range of
values, compared to other built-in numeric data types. If a number is outside
the range of the minimum and maximum SMALLINT values, the database
server does not store the data value, but instead issues an error message.

TEXT

The TEXT data type stores any kind of text data. It can contain both single-
byte and multibyte characters that the locale supports. The term simple large
object refers to the TEXT and BYTE data types.

A TEXT column has a theoretical limit of 23! bytes (two gigabytes) and a
practical limit that your available disk storage determines.

Important: An error results if you try to return a TEXT column from a subquery,
even if no TEXT column is used in a comparison condition or with the IN predicate.

No more than 195 columns of the same table can be declared as TEXT data
types. (The same restriction also applies to BYTE data types.)

You can store, retrieve, update, or delete the values in a TEXT column. You
cannot, however, use TEXT operands in arithmetic or string expressions, nor
can you assign literals to TEXT columns in the SET clause of the UPDATE
statement. You also cannot use TEXT values in any of the following ways:
With aggregate functions

With the IN clause

With the MATCHES or LIKE clauses

With the GROUP BY clause

With the ORDER BY clause

You can use TEXT operands in Boolean expressions only when you are testing
for NULL values with the IS NULL or IS NOT NULL operators.

2-40 IBM Informix Guide to SQL: Reference

TEXT

You can insert data into TEXT columns in the following ways:

m With the dbload or onload utilities
m With the LOAD statement (DB-Access)
m From TEXT host variables (IBM Informix ESQL/C)

You cannot use a quoted text string, number, or any other actual value to
insert or update TEXT columns.

When you select a TEXT column, you can choose to receive all or part of it. To
retrieve it all, use the regular syntax for selecting a column. You can also
select any part of a TEXT column by using subscripts, as this example shows:

SELECT cat_descr [1,75] FROM catalog WHERE catalog num = 10001

This statement reads the first 75 bytes of the cat_descr column associated
with the catalog_num value 10001.

A built-in cast exists to convert TEXT objects to CLOB objects. For more infor-
mation, see the IBM Informix Database Design and Implementation Guide.

Strings of the TEXT data type are collated in code-set order. For more infor-
mation on collating orders, see the IBM Informix GLS User’s Guide.

Nonprintable Characters in TEXT Values

TEXT columns typically store documents, program source files, and so on. In
the default U.S. English locale, data objects of type TEXT can contain a combi-
nation of printable ASCII characters and the following control characters:

m Tab (CTRL-)

m New line (CTRL-])

m New page (CTRL-L)
Both printable and nonprintable characters can be inserted in TEXT columns.
IBM Informix products do not do any checking of data values that are
inserted in a column of the TEXT data type. (Applications may have difficulty,
however, in displaying TEXT values that include non-printable characters.)

For detailed information on entering and displaying nonprintable characters,
refer to “Nonprintable Characters with CHAR” on page 2-11.

Data Types 2-41

Unnamed Row

Unnamed Row
See “ROW, Unnamed” on page 2-33.

VARCHAR(m,)

The VARCHAR data type stores character strings of varying length that
contain single-byte and (if the locale supports them) multibyte characters,
where m is the maximum size (in bytes) of the column and r is the minimum
number of bytes reserved for that column.

The VARCHAR data type is the Informix implementation of a character
varying data type. The ANSI standard data type for varying-length character
strings is CHARACTER VARYING and is described in “CHARACTER
VARYING(m,r)” on page 2-11.

You must specify the maximum size (i) of the VARCHAR column. The size of
this parameter can range from 1 to 255 bytes. If you are placing an index on
a VARCHAR column, the maximum size is 254 bytes. You can store character
strings that are shorter, but not longer, than the m value that you specify.

Specifying the minimum reserved space (1) parameter is optional. This value
can range from 0 to 255 bytes but must be less than the maximum size (1) of
the VARCHAR column. If you do not specify any minimum value, it defaults
to 0. You should specify this parameter when you initially intend to insert
rows with short or NULL character strings in the column, but later expect the
data to be updated with longer values.

For variable-length strings longer than 255 bytes, you can use the LVARCHAR
data type, whose upper limit is 32,739 bytes, instead of VARCHAR. Because
LVARCHAR is implemented as a built-in opaque data type, however, you
cannot access LVARCHAR columns in distributed queries of remote tables. ¢

Although the use of VARCHAR economizes on space used in a table, it has no
effect on the size of an index. In an index based on a VARCHAR column, each
index key has length m, the declared maximum size of the column.

When you store a string in an VARCHAR column, only the actual data
characters are stored. The database server does not strip a VARCHAR string
of any user-entered trailing blanks, nor pad a VARCHAR value to the declared
length of the column. If you specify a reserved space (r), but some data
strings are shorter than r bytes, some space reserved for rows goes unused.

2-42 IBM Informix Guide to SQL: Reference

GLS

VARCHAR(m,r)

VARCHAR values are compared to other VARCHAR values (and to other
character-string data types) in the same way that CHAR values are compared.
The shorter value is padded on the right with blank spaces until the values
have equal lengths; then they are compared for the full length.

No more than 195 columns of the same table can be VARCHAR data types.

Nonprintable Characters with VARCHAR

Nonprintable VARCHAR characters are entered, displayed, and treated in the
same way that nonprintable characters in CHAR values are treated. For
details, see the section “Nonprintable Characters with CHAR” on page 2-11.

Storing Numeric Values in a VARCHAR Column

When you insert a numeric value in a VARCHAR column, the stored value
does not get padded with trailing blanks to the maximum length of the
column. The number of digits in a numeric VARCHAR value is the number of
characters that you need to store that value. For example, in the next
example, the value stored in table mytab is 1.

create table mytab (coll varchar(10));
insert into mytab values (1) ;

Tip: VARCHAR treats C NULL (binary 0) and string terminators as termination
characters for nonprintable characters.

Multibyte Characters with VARCHAR

In some East Asian locales, VARCHAR data types can store multibyte
characters if the database locale supports a multibyte code set. If you store
multibyte characters, make sure to calculate the number of bytes needed. For
more information, see the IBM Informix GLS User’s Guide.

Collating VARCHAR Values

The main difference between the NVARCHAR and the VARCHAR data types
(like the difference between CHAR and NCHAR) is the difference in collating
order. In general, collation of VARCHAR (like CHAR and LVARCHAR) values
is in the order of the characters as they appear in the code set.

Data Types 2-43

Built-In Data Types

An exception is the MATCHES operator, which applies a localized collation to
NVARCHAR and VARCHAR values (as well as to CHAR, LVARCHAR, and
NCHAR values) if you use bracket ([]) symbols to define ranges when
DB_LOCALE (or SET COLLATION) has specified a localized collating order.
For more information, see the IBM Informix GLS User’s Guide.

Built-In Data Types
Informix database servers support the following built-in data types.
Category Data Types
Character CHAR, CHARACTER VARYING, LVARCHAR,
NCHAR, NVARCHAR, VARCHAR
Numeric DECIMAL, FLOAT, INT8, INTEGER, MONEY,
SERIAL, SERIALS, SMALLFLOAT, SMALLINT
Large-object Simple-large-object types: BYTE, TEXT
Smart-large-object types: BLOB, CLOB
Time DATE, DATETIME, INTERVAL
Miscellaneous BOOLEAN

Extended Parallel Server does not support BLOB, CLOB, LVARCHAR, INTS,
nor SERIALS. For a description of character, numeric, and miscellaneous data
types, refer to the appropriate entry in “Description of Data Types” on

page 2-7. Page references are in the alphabetical list in Figure 2-2 on page 2-4.

Sections that follow provide additional information on large-object and time
data types.

2-44 IBM Informix Guide to SQL: Reference

Large-Object Data Types

Large-Object Data Types

A large object is a data object that is logically stored in a table column but
physically stored independently of the column. Large objects are stored
separately from the table because they typically store a large amount of data.
Separation of this data from the table can increase performance.

Figure 2-10 shows the large-object data types.

Figure 2-10
Large-Object Data Types

’ Large objects ‘

/\

’ Simple large objects ‘ ’ Smart large objects ‘
| syte | [TtexT | | BoB | [coB |
“ Only Dynamic Server supports BLOB and CLOB data types. ¢

For the relative advantages and disadvantages of simple and smart large
objects, see the IBM Informix Database Design and Implementation Guide.

Simple Large Objects

Simple large objects are a category of large objects that have a theoretical size
limit of 23! bytes and a practical limit that your disk capacity determines.
Informix database servers support these simple-large-object data types:

BYTE Stores binary data. For more detailed information about this
data type, see the description on page 2-8.

TEXT Stores text data. For more detailed information about this data
type, see the description on page 2-40.

Data Types 2-45

Large-Object Data Types

2-46

No more than 195 columns of the same table can be declared as BYTE or TEXT
data types. Unlike smart large objects, simple large objects do not support
random access to the data. When you transfer a simple large object between
a client application and the database server, you must transfer the entire BYTE
or TEXT value. If the data cannot fit into memory, you must store the data
value in an operating-system file and then retrieve it from that file.

The database server stores simple large objects in blobspaces. A blobspace is a
logical storage area that contains one or more chunks that only store

BYTE and TEXT data. For information on how to define blobspaces, see
your Administrator’s Guide.

Smart Large Objects

Smart large objects are a category of large objects that support random access
to the data and are generally recoverable. The random access feature allows
you to seek and read through the smart large object as if it were an operating-
system file.

Smart large objects are also useful for opaque data types with large storage
requirements. (See the description of opaque data types in “Opaque Data
Types” on page 2-58.) They have a theoretical size limit of 2*? bytes and a
practical limit that your disk capacity determines.

Dynamic Server supports the following smart-large-object data types:

BLOB Stores binary data. For more information about this data type,
see the description on page 2-7.

CLOB Stores text data. For more information about this data type, see
the description on page 2-11.

Dynamic Server stores smart large objects in sbspaces. An sbspace is a logical
storage area that contains one or more chunks that store only BLOB and CLOB
data. For information on how to define sbspaces, see your Performance Guide.

IBM Informix Guide to SQL: Reference

Large-Object Data Types

When you define a BLOB or CLOB column, you can determine the following
large-object characteristics:

LOG and NOLOG: whether the database server should log the smart
large object in accordance with the current database log mode

KEEP ACCESS TIME and NO KEEP ACCESS TIME: whether the
database server should keep track of the last time the smart large
object was accessed

HIGH INTEG and MODERATE INTEG: whether the database server
should use page headers to detect data corruption

Use of these characteristics can affect performance. For information, see your
Performance Guide.

When an SQL statement accesses a smart-large-object, the database server
does not send the actual BLOB or CLOB data. Instead, it establishes a pointer
to the data and returns this pointer. The client application can then use this
pointer in open, read, or write operations on the smart large object.

To access a BLOB or CLOB column from within a client application, use one of
the following application programming interfaces (APIs):

From within an IBM Informix ESQL/C program, use the smart-large-
object APL (For more information, see the IBM Informix ESQL/C
Programmer’s Manual.)

From within a DataBlade module, use the Client and Server APIL
(For more information, see the IBM Informix DataBlade API
Programmer’s Guide.)

For information on smart large objects, see the IBM Informix Guide to SQL:
Syntax and IBM Informix Database Design and Implementation Guide.

Data Types 2-47

Time Data Types

Time Data Types

DATE and DATETIME data values represent zero-dimensional points in time;
INTERVAL data values represent 1-dimensional spans of time, withe positive
or negative values. DATE precision is always an integer count of days, but
various field qualifiers can define the DATETIME and INTERVAL precision.
You can use DATE, DATETIME, and INTERVAL data in arithmetic and
relational expressions. You can manipulate a DATETIME value with another
DATETIME value, an INTERVAL value, the current time (specified by the
keyword CURRENT), or some unit of time (using the keyword UNITS).

You can use a DATE value in most contexts where se a DATETIME value is

valid, and vice versa. You also can use an INTERVAL operand in arithmetic
operations where a DATETIME value is valid. In addition, you can add two
INTERVAL values, and multiply or divide an INTERVAL value by a number.

An INTERVAL column can hold a value that represents the difference between
two DATETIME values or the difference between (or sum of) two INTERVAL
values. In either case, the result is a span of time, which is an INTERVAL value.
Conversely, if you add or subtract an INTERVAL from a DATETIME value,
another DATETIME value is produced, because the result is a specific time.

Figure 2-11 lists the binary arithmetic operations that you can perform on
DATE, DATETIME, and INTERVAL operands, as well as the data type that is
returned by the arithmetic expression.

Figure 2-11
Arithmetic Operations on DATE, DATETIME, and INTERVAL Values
Operand 1 Operator Operand 2 Result
DATE - DATETIME INTERVAL
DATETIME - DATE INTERVAL
DATE + or - INTERVAL DATETIME
DATETIME - DATETIME INTERVAL
DATETIME +or - INTERVAL DATETIME
INTERVAL + DATETIME DATETIME
INTERVAL +or - INTERVAL INTERVAL
DATETIME - CURRENT INTERVAL

(1 of 2)

2-48 IBM Informix Guide to SQL: Reference

Time Data Types

Operand 1 Operator Operand 2 Result

CURRENT - DATETIME INTERVAL
INTERVAL + CURRENT DATETIME
CURRENT +or - INTERVAL DATETIME
DATETIME + or - UNITS DATETIME
INTERVAL +or- UNITS INTERVAL
INTERVAL % or/ NUMBER INTERVAL

(2 of 2)

No other combinations are allowed. You cannot add two DATETIME values
because this operation does not produce either a specific time or a span of
time. For example, you cannot add December 25 and January 1, but you can
subtract one from the other to find the time span between them.

Manipulating DATETIME Values

You can subtract most DATETIME values from each other. Dates can be in any
order and the result is either a positive or a negative INTERVAL value. The
first DATETIME value determines the field precision of the result.

If the second DATETIME value has fewer fields than the first, the precision of
the second operand is increased automatically to match the first.

In the following example, subtracting the DATETIME YEAR TO HOUR value
from the DATETIME YEAR TO MINUTE value results in a positive interval
value of 60 days, 1 hour, and 30 minutes. Because minutes were not included
in the second operand, the database server sets the MINUTES value for the
second operand to 0 before performing the subtraction.

DATETIME (2003-9-30 12:30) YEAR TO MINUTE
- DATETIME (2003-8-1 11) YEAR TO HOUR

Result: INTERVAL (60 01:30) DAY TO MINUTE

If the second DATETIME operand has more fields than the first (regardless of
whether the precision of the extra fields is larger or smaller than those in the
first operand), the additional time unit fields in the second value are ignored
in the calculation.

Data Types 2-49

Time Data Types

In the next expression (and its result), the year is not included for the second
operand. Therefore, the year is set automatically to the current year (from the
system clock-calendar), in this example 2002, and the resulting INTERVAL is
negative, which indicates that the second date is later than the first.

DATETIME (2002-9-30) YEAR TO DAY
- DATETIME (10-1) MONTH TO DAY

Result: INTERVAL (1) DAY TO DAY [assuming that the current
year is 2002]

Manipulating DATETIME with INTERVAL Values

INTERVAL values can be added to or subtracted from DATETIME values. In
either case, the result is a DATETIME value. If you are adding an INTERVAL
value to a DATETIME value, the order of values is unimportant; however, if
you are subtracting, the DATETIME value must come first. Adding or
subtracting a positive INTERVAL value simply moves the DATETIME result
forward or backward in time. The expression shown in the following
example moves the date ahead by three years and five months:

DATETIME (2000-8-1) YEAR TO DAY
+ INTERVAL (3-5) YEAR TO MONTH

Result: DATETIME (2004-01-01) YEAR TO DAY

Important: Evaluate the logic of your addition or subtraction. Remember that
months can have 28, 29, 30, or 31 days and that years can have 365 or 366 days.

In most situations, the database server automatically adjusts the calculation
when the operands do not have the same precision. In certain contexts,
however, you must explicitly adjust the precision of one value to perform the
calculation. If the INTERVAL value you are adding or subtracting has fields
that are not included in the DATETIME value, you must use the EXTEND
function to increase the precision of the DATETIME value. (For more infor-
mation on the EXTEND function, see the Expression segment in the

IBM Informix Guide to SQL: Syntax.)

2-50 |IBM Informix Guide to SQL: Reference

Time Data Types

For example, you cannot subtract an INTERVAL MINUTE TO MINUTE value
from the DATETIME value in the previous example that has a YEAR TO DAY
field qualifier. You can, however, use the EXTEND function to perform this
calculation, as the following example shows:

EXTEND (DATETIME (2003-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE(3) TO MINUTE

Result: DATETIME (2003-07-31 12:00) YEAR TO MINUTE

The EXTEND function allows you to explicitly increase the DATETIME
precision from YEAR TO DAY to YEAR TO MINUTE. This allows the database
server to perform the calculation, with the resulting extended precision of
YEAR TO MINUTE.

Manipulating DATE with DATETIME and INTERVAL Values

You can use DATE operands in some arithmetic expressions with DATETIME
or INTERVAL operands by writing expressions to do the manipulating, as
Figure 2-12 shows.

Figure 2-12
Results of Expressions That Manipulate DATE with DATETIME or INTERVAL Values
Expression Result
DATE — DATETIME INTERVAL
DATETIME — DATE INTERVAL
DATE + or — INTERVAL DATETIME

In the cases that Figure 2-12 shows, DATE values are first converted to their
corresponding DATETIME equivalents, and then the expression is evaluated
by the rules of arithmetic.

Although you can interchange DATE and DATETIME values in many
situations, you must indicate whether a value is a DATE or a DATETIME data
type. A DATE value can come from the following sources:

m A column or program variable of type DATE

m The TODAY keyword

m The DATE() function

Data Types 2-51

Time Data Types

GLS

m The MDY function
m A DATE literal

A DATETIME value can come from the following sources:

A column or program variable of type DATETIME
The CURRENT keyword

The EXTEND function

A DATETIME literal

The database locale defines the default DATE and DATETIME formats. For the
default locale, U.S. English, these formats are 'mm/dd/yy' for DATE values
and 'yyyy-mm-dd hh:MM:ss' for DATETIME values.

To represent DATE and DATETIME values as character strings, the fields in the
strings must be in proper order. In other words, when a DATE value is
expected, the string must be in DATE format and when a DATETIME value is
expected, the string must be in DATETIME format. For example, you can use
the string '10/30/2003 ' as a DATE string but not as a DATETIME string.
Instead, you must use '2003-10-30"' or '03-10-30" as the DATETIME string.

In a nondefault locale, literal DATE and DATETIME strings must match the
formats that the locale defines. For more information, see the IBM Informix
GLS User’s Guide.

You can customize the DATE format that the database server expects with the
DBDATE and GL_DATE environment variables. You can customize the
DATETIME format that the database server expects with the DBTIME and
GL_DATETIME environment variables. For more information, see
“DBDATE” on page 3-32 and “DBTIME” on page 3-47. For more information
on all these environment variables, see the IBM Informix GLS User’s Guide. ¢

You can also subtract one DATE value from another DATE value, but the result
is a positive or negative INTEGER count of days, rather than an INTERVAL
value. If an INTERVAL value is required, you can either use the UNITS DAY
operator to convert the INTEGER value into an INTERVAL DAY TO DAY value,
or else use EXTEND to convert one of the DATE values into a DATETIME value
before subtracting.

2-52 IBM Informix Guide to SQL: Reference

Time Data Types

For example, the following expression uses the DATE() function to convert
character string constants to DATE values, calculates their difference, and
then uses the UNITS DAY keywords to convert the INTEGER result into an
INTERVAL value:

(DATE ('5/2/1994') - DATE ('4/6/1955')) UNITS DAY
Result: INTERVAL (12810) DAY (5) TO DAY

Important: Because of the high precedence of UNITS relative to other SQL operators,
you should generally enclose any arithmetic expression that is the operand of UNITS
within parentheses, as in the preceding example.

If you need YEAR TO MONTH precision, you can use the EXTEND function on
the first DATE operand, as the following example shows:

EXTEND (DATE ('5/2/1994'), YEAR TO MONTH) - DATE ('4/6/1955')

Result: INTERVAL (39-01) YEAR TO MONTH

The resulting INTERVAL precision is YEAR TO MONTH, because the
DATETIME value came first. If the DATE value had come first, the resulting
INTERVAL precision would have been DAY(5) TO DAY.

Manipulating INTERVAL Values

You can add or subtract INTERVAL values only if both values are from the
same class; that is, if both are year-month or both are day-time. In the
following example, a SECOND TO FRACTION value is subtracted from a
MINUTE TO FRACTION value:

INTERVAL (100:30.0005) MINUTE(3) TO FRACTION (4)
- INTERVAL (120.01) SECOND(3) TO FRACTION

Result: INTERVAL (98:29.9905) MINUTE TO FRACTION (4)

The use of numeric qualifiers alerts the database server that the MINUTE and
FRACTION in the first value and the SECOND in the second value exceed the
default number of digits.

When you add or subtract INTERVAL values, the second value cannot have a
field with greater precision than the first. The second INTERVAL, however,
can have a field of smaller precision than the first. For example, the second
INTERVAL can be HOUR TO SECOND when the first is DAY TO HOUR. The
additional fields (in this case MINUTE and SECOND) in the second INTERVAL
value are ignored in the calculation.

Data Types 2-53

Extended Data Types

2-54

Multiplying or Dividing INTERVAL Values

You can multiply or divide INTERVAL values by numbers. Any remainder
from the calculation is ignored, however, and the result is truncated to the
precision of the INTERVAL. The following expression multiplies an INTERVAL
value by a literal number that has a fractional part:

INTERVAL (15:30.0002) MINUTE TO FRACTION(4) * 2.5
Result: INTERVAL (38:45.0005) MINUTE TO FRACTION (4)

In this example, 15 * 2.5 = 37.5 minutes, 30 * 2.5 = 75 seconds, and

2 % 2.5 =5 fraction(4). The 0.5 minute is converted into 30 seconds and

60 seconds are converted into 1 minute, which produces the final result of
38 minutes, 45 seconds, and 0.0005 of a second. The result of any calculation
has the same precision as the original INTERVAL operand.

Extended Data Types

Dynamic Server enables you to create extended data types to characterize data
that cannot easily be represented with the built-in data types. (You cannot,
however, use extended data types in distributed transactions that query
external tables.) You can create these categories of extended data types:

m Complex data types
m DISTINCT data types
m OPAQUE data types

Sections that follow provide an overview of each of these data types.

For more information about extended data types, see the IBM Informix
Database Design and Implementation Guide and IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

IBM Informix Guide to SQL: Reference

supports:

Complex Data Types

Complex Data Types

A complex data type can store one or more values other built-in and extended
data types. Figure 2-13 shows the complex types that Dynamic Server

Figure 2-13
Supported Complex Data Types

’ Complex data types ‘

’ Collection data types ‘

’ ROW data types ‘

st | [Mulmiset | | sET

’ Named ROW type ‘ ’Unnamed ROWtype‘

The following table summarizes the structure of the complex data types:

Data Type Description
Collection types: Complex data types that are made up of elements, each
of which is of the same data type.
LIST A group of ordered elements, each of which need not
be unique within the group.
MULTISET A group of elements, each of which need not be
unique. The order of the elements is ignored.
SET A group of elements, each of which is unique.
The order of the elements is ignored.
ROW types: Complex data types that are made up of fields.
Named ROW type ROW types that are identified by their name.

Unnamed ROW type ROW types that are identified by their structure.

Complex data types can be nested. For example, you can construct a ROW
type whose fields include one or more SETs, MULTISETs, ROW types, and/or
LISTs. Likewise, a collection type can have elements whose data type is a
ROW type or a collection type.

Data Types 2-55

Complex Data Types

Complex types that include opaque types inherit these support functions:

input export LO_handles

output import_binary hash

send export_binary lessthan

recv assign equal

import destroy lessthan (ROW only)

Sections that follow summarize the complex data types. For more infor-
mation, see the IBM Informix Database Design and Implementation Guide.

Collection Data Types

A collection data type is a complex type that is made up of one or more
elements, all of the same data type. A collection element can be of any data
type (including other complex types) except BYTE, TEXT, SERIAL, or SERIALS.

Important: An element cannot have a NULL value. You must specify the NOT NULL
constraint for collection elements. No other constraints are valid for collections.

Dynamic Server supports three kinds of built-in collection types: LIST, SET,
and MULTISET. The keywords used to declare these collections are the names
of the type constructors or just constructors. For the syntax of collection types,
see the IBM Informix Guide to SQL: Syntax. No more than 97 columns of the
same table can be declared as collection data types.

When you specify element values for a collection, list the element values after
the constructor and between braces ({ }) symbols. For example, suppose you
have a collection column with the following MULTISET data type:
CREATE TABLE tablel
(
mset_col MULTISET (INTEGER NOT NULL)
)

The next INSERT statement adds one group of element values to this column.
(The word MULTISET in these two examples is the MULTISET constructor.)

INSERT INTO tablel VALUES (MULTISET{5, 9, 7, 5})
You can leave the braces empty to indicate an empty set:
INSERT INTO tablel VALUE (MULTISET{})

An empty collection is not equivalent to a NULL value for the column.

2-56 IBM Informix Guide to SQL: Reference

Complex Data Types

Accessing Collection Data

To access the elements of a collection column, you must fetch the collection
into a collection variable and modify the contents of the collection variable.
Collection variables can be either of the following types:
m Variables in an SPL routine
For more information, see the IBM Informix Guide to SQL: Tutorial.
m Host variables in an IBM Informix ESQL/C program
For more information, see the IBM Informix ESQL/C Programmer’s
Manual.

You can also use nested dot notation to access collection data. For more about
accessing elements of a collection, see the IBM Informix Guide to SQL: Tutorial.

Important: Collection data types are not valid as arguments to functions that are
used for functional indexes.

ROW Data Types

A ROW data type is an ordered collection of one or more elements, called
fields. Each field has a name and a data type. The fields of a ROW are compa-
rable to the columns of a table, but with important differences:

m A field has no DEFAULT clause.
®m You cannot define constraints on a field.

® You can only use fields with ROW types, not with tables.
Two kinds of ROW data types exist:

m Named ROW data types are identified by their names.
m Unnamed ROW data types are identified by their structure.

The structure of an unnamed ROW data type is the number (and the order of
data types) of its fields.

No more than 195 columns of the same table can be declared as ROW data
types. For more information about ROW data types, see “ROW, Named” on
page 2-31 and “ROW, Unnamed” on page 2-33.

You can cast between named and unnamed ROW data types; this is described
in the IBM Informix Database Design and Implementation Guide.

Data Types 2-57

Distinct Data Types

2-58

Distinct Data Types

A DISTINCT data type has the same internal structure as some other source
data type in the database. The source type can be a built-in or extended data
type. What distinguishes a DISTINCT type from its source type are support
functions that are defined on the DISTINCT type.

No more than 195 columns in the same table can be DISTINCT types that are
based on BYTE, TEXT, ROW, LVARCHAR, NVARCHAR, or VARCHAR source
types, and no more than 97 can have collection source types. For more infor-
mation, see the section “Distinct” on page 2-19. See also IBM Informix User-
Defined Routines and Data Types Developer’s Guide.

Opaque Data Types

An OPAQUE data type is a user-defined data type that is fully encapsulated.
That is, its internal structure is unknown to the database server. For more
information, see the section “Opaque” on page 2-30. See also IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

Data Type Casting and Conversion

Occasionally, the data type that was assigned to a column with the CREATE
TABLE statement is inappropriate. You might wish to change the data type of
a column when you need to store larger values than the current data type can
accommodate. The database server allows you to change the data type of the
column or to cast its values to a different data type with either of the
following methods:

m Use the ALTER TABLE statement to modify the data type of a column.

For example, if you create a SMALLINT column and later find that
you need to store integers larger than 32,767, you must change the
data type of that column to store the larger value. You can use ALTER
TABLE to change the data type to INTEGER. The conversion changes
the data type of all values that currently exist in the column as well
as any new values that might be added.

IBM Informix Guide to SQL: Reference

Using Built-in Casts

m Use the CAST AS keywords or the double colon (::) cast operator to
cast a value to a different data type.

Casting does not permanently alter the data type of a value; it
expresses the value in a more convenient form. Casting user-defined
data types into built-in types allows client programs to manipulate
data types without knowledge of their internal structure.

If you change data types, the new data type must be able to store all the old
value.

Both data-type conversion and casting depend on casts registered in the
syscasts system catalog table. For information about syscasts, see
“SYSCASTS” on page 1-21.

A cast is either built-in or user defined. Guidelines exist for casting DISTINCT
and extended data types. For more information about casting opaque data
types, see IBM Informix User-Defined Routines and Data Types Developer’s Guide.
For information about casting other extended data types, see the IBM Informix
Database Design and Implementation Guide.

Using Built-in Casts

User informix owns built-in casts. They govern conversions from one built-
in data type to another. Built-in casts allow the database server to attempt the
following data-type conversions:

m A character type to any other character type
m A character type to or from another built-in type

m A numeric type to any other numeric type

The database server automatically invokes appropriate built-in casts when
required. For time data types, conversion between DATE and DATETIME data
types requires explicit casts with the EXTEND function, and explicit casts with
the UNITS operator are required for number-to-INTERVAL conversion. Built-
in casts are not available for converting large (BYTE, BLOB, CLOB, and TEXT)
built-in types to other built-in data types.

When you convert a column from one built-in data type to another, the
database server applies the appropriate built-in casts to each value already in
the column. If the new data type cannot store any of the resulting values, the
ALTER TABLE statement fails.

Data Types 2-59

Using Built-in Casts

2-60

For example, if you try to convert a column from the INTEGER data type to
the SMALLINT data type and the following values exist in the INTEGER
column, the database server does not change the data type, because
SMALLINT columns cannot accommodate numbers greater than 32,767:

100 400 700 50000 700

The same situation might occur if you attempt to transfer data from FLOAT or
SMALLFLOAT columns to INTEGER, SMALLINT, or DECIMAL columns. Errors
of overflow, underflow, or truncation can occur during data type conversion.

Sections that follow describe database server behavior during certain types
of casts and conversions.

Converting from Number to Number

When you convert data from one number data type to another, you
occasionally find rounding errors. The following table indicates which
numeric data type conversions are acceptable and what kinds of errors you
can encounter when you convert between certain numeric data types.

Target Type
—» SMALLINT INTEGER INT8 SMALLFLOAT FLOAT DECIMAL
SMALLINT OK OK OK OK OK OK
INTEGER E OK OK E OK P
INTS E E OK D E P
SMALLFLOAT E E E OK OK P
FLOAT E E E D OK P
DECIMAL E E E D D P
Legend:

OK = No error
P = An error can occur, depending on the precision of the DECIMAL
E = An error can occur, depending on the data value
D= No error, but less significant digits might be lost

For example, if you convert a FLOAT value to DECIMAL(4,2), your database
server rounds off the floating-point number before storing it as DECIMAL.

IBM Informix Guide to SQL: Reference

Using Built-in Casts

This conversion can result in an error depending on the precision assigned to
the DECIMAL column.

Converting Between Number and Character

You can convert a character column (of a data type such as CHAR, NCHAR,
NVARCHAR, or VARCHAR) to a numeric column. If a data string, however,
contains any characters that are not valid in a number column (for example,
the letter] instead of the number 1), the database server returns an error.

You can also convert a numeric column to a character column. If the character
column is not large enough to receive the number, however, the database
server generates an error. If the database server generates an error, it cannot
complete the ALTER TABLE statement or cast, and leaves the column values
as characters. You receive an error message and the statement is rolled back
automatically (regardless of whether you are in a transaction).

Converting Between INTEGER and DATE

You can convert an integer column (SMALLINT, INTEGER, or INT8) to a DATE
value. The database server interprets the integer as a value in the internal
format of the DATE column. You can also convert a DATE column to an integer
column. The database server stores the internal format of the DATE column
as an integer representing a Julian date.

Converting Between DATE and DATETIME

You can convert DATE columns to DATETIME columns. If the DATETIME
column contains more fields than the DATE column, however, the database
server either ignores the fields or fills them with zeros. The illustrations in the
following list show how these two data types are converted (assuming that
the default date format is mm/dd/yyyy):

m If you convert DATE to DATETIME YEAR TO DAY, the database server
converts the existing DATE values to DATETIME values. For example,
the value 08/15/2002 becomes 2002-08-15.

m Ifyouconvert DATETIME YEAR TO DAY to the DATE format, the value
2002-08-15 becomes 08/15/2002.

Data Types 2-61

Using User-Defined Casts

2-62

m If you convert DATE to DATETIME YEAR TO SECOND, the database
server converts existing DATE values to DATETIME values and fills in
the additional DATETIME fields with zeros. For example, 08/15/2002
becomes 2002-08-15 00:00:00.

m If you convert DATETIME YEAR TO SECOND to DATE, the database
server converts existing DATETIME to DATE values but drops fields
for time units smaller than DAY. For example, 2002-08-15 12:15:37
becomes 08/15/2002.

Using User-Defined Casts

Implicit and explicit casts are owned by the users who create them. They
govern casts and conversions between user-defined data types and other
data types. Developers of user-defined data types must create certain implicit
and explicit casts and the functions that are used to implement them. The
casts allow user-defined types to be expressed in a form that clients can
manipulate.

For information on how to register and use implicit and explicit casts, see the
CREATE CAST statement in the IBM Informix Guide to SQL: Syntax and the
IBM Informix Database Design and Implementation Guide.

Implicit Casts

Implicit casts allow you to convert a user-defined data type to a built-in type
or vice versa. The database server automatically invokes a single implicit cast
when needed to evaluate and compare expressions or pass arguments.
Operations that require more than one implicit cast fail.

Users can explicitly invoke an implicit cast using the CAST AS keywords or
the double colon (::) cast operator.

Explicit Casts

Explicit casts, unlike implicit casts or built-in casts, are never invoked
automatically by the database server. Users must invoke them explicitly with
the CAST AS keywords or with the double colon (::) cast operator.

Explicit casts do not allow you to convert a user-defined data type to a built-
in data type or vice versa.

IBM Informix Guide to SQL: Reference

Determining Which Cast to Apply

Determining Which Cast to Apply

The database server uses the following rules to determine which cast to apply
in a particular situation:

To compare two built-in types, the database server automatically
invokes the appropriate built-in casts.

The database server applies only one implicit cast per operand. If
two or more casts are needed to convert the operand to the desired
type, the user must explicitly invoke the additional casts.

In the following example, the literal value 5. 55 is implicitly cast to
DECIMAL, and is then explicitly cast to MONEY, and finally to yen:

CREATE DISTINCT TYPE yen AS MONEY

iNéEﬁT INTO currency_ tab
VALUES (5.55::MONEY: :yen)
To compare a DISTINCT type to its source type, the user must
explicitly cast one type to the other.

To compare a DISTINCT type to a type other than its source, the
database server looks for an implicit cast between the source type
and the desired type.

If neither cast is registered, the user must invoke an explicit cast
between the DISTINCT type and the desired type. If this cast is not
registered, the database server automatically invokes a cast from the
source type to the desired type.

If none of these casts is defined, the comparison fails.

To compare an OPAQUE type to a built-in type, the user must
explicitly cast the opaque type to a data type that the database server
understands (such as LVARCHAR, SENDRECV, IMPEX, or IMPEXBIN).
The database server then invokes built-in casts to convert the results
to the desired built-in type.

To compare two opaque types, the user must explicitly cast one
opaque type to a form that the database server understands (such as
LVARCHAR, SENDRECV, IMPEX, or IMPEXBIN), and then explicitly
cast this type to the second opaque type.

For information about casting and the IMPEX, IMPEXBIN, LVARCHAR, and
SENDRECYV types, see IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

Data Types 2-63

Casts for Distinct Types

2-64

Casts for Distinct Types

You define a distinct type based on a built-in type or an existing opaque type
or ROW type. Although data of the distinct type has the same length and
alignment and is passed in the same way as data of the source type, the two
cannot be compared directly. To compare a distinct type and its source type,
you must explicitly cast one type to the other.

When you create a new distinct type, the database server automatically
registers two explicit casts:

m A cast from the distinct type to its source type

m A cast from the source type to the distinct type

You can create an implicit cast between a distinct type and its source type. To
create an implicit cast, however, you must first drop the default explicit cast
between the distinct type and its source type.

You also can use all casts that have been registered for the source type
without modification on the distinct type. You can also create and register
new casts and support functions that apply only to the distinct type.

For examples that show how to create a cast function for a distinct type and
register the function as cast, see the IBM Informix Database Design and Imple-
mentation Guide.

Important: For releases of Dynamic Server earlier than Version 9.21, distinct data
types inherited the built-in casts that are provided for the source type. The built-in
casts of the source type are not inherited by distinct data types in this release.

IBM Informix Guide to SQL: Reference

What Extended Data Types Can Be Cast?

What Extended Data Types Can Be Cast?

The next table shows the extended data type combinations that you can cast.

Target Type | Opaque Distinct Named Unnamed Collection Built-in
Type Type ROW Type ROW Type Type Type
Opaque Explicit ~ Explicit ~ Explicit ~ Not Not Explicit
Type or Allowed Allowed or
implicit implicit®
Distinct Exphcit3 Explicit ~ Explicit ~ Not Not Explicit
Type Allowed Allowed or
implicit
Named Explicit® Explicit ~ Explicit® Explicit' Not Not
ROW Type Allowed Allowed
Unnamed | Not Not Explicit! Implicit! Not Not
ROW Type| Allowed Allowed Allowed Allowed
Collection | Not Not Not Not Explicit? Not
Type Allowed Allowed Allowed Allowed Allowed
Built-in Explicit ~ Explicit Not Not Not System
Type or or Allowed Allowed Allowed defined
implicit3 implicit (implicit)

1 Applies when two ROW types are structurally equivalent or casts exist to handle
data conversions where corresponding field types are not the same.

2 Applies when a cast exists to convert between the element types of the respective
collection types.

3 Applies when a user-defined cast exists to convert between the two data types.

The table shows only whether or not a cast between a source type and a target
type are possible. In some cases, you must first create a user-defined cast
before you can perform a conversion between two data types. In other cases,
the database server provides either an implicit cast or a built-in cast that you
must explicitly invoke.

Data Types 2-65

Operator Precedence

Operator Precedence

An operator is a symbol or keyword that can appear in an SQL expression.
Most SQL operators are restricted in the data types of their operands and
returned values. Some operators only support operands of built-in data
types; others can support built-in and extended data types as operands.

The following table shows the precedence of the operators that Informix
database servers support, in descending (highest to lowest) order of prece-
dence. Operators with the same precedence are listed in the same row.

Operator Precedence Example in Expression
. (membership) [] (substring) customer.phone [1, 3]
UNITS x UNITS DAY
+ - (unary) -y
(cast) NULL::TEXT
* xly
+ - (binary) X -y
Il (concatenation) customer.fname || customer.Iname
ANY ALL SOME orders.ship_date > SOME
(SELECT paid_date FROM orders)
NOT NOT y
< <= = > >= = < X >=y

IN BETWEEN LIKE MATCHES customer.fname MATCHES y
AND x AND y
OR x OR y

See the IBM Informix Guide to SQL: Syntax for the syntax and semantics of these
SQL operators.

2-66 IBM Informix Guide to SQL: Reference

Environment Variables

In This Chapter . 35
Types of Environment Variables 3-5
Where to Set Environment Variableson UNIX 36
Where to Set Environment Variables on Windows 37
Using Environment Variables on UNIX. o 3-7
Setting Environment Variables in a Configuration Flle T 4
Setting Environment Variables at Login Time 3-8
Syntax for Setting Environment Variables. 3-9
Unsetting Environment Variables 39
Modifying an Environment-Variable Setting. 3-10
Viewing Your Environment-Variable Settings . . . B |
Checking Environment Variables with the chkenv Ut111ty 3
Rules of Precedence 312
Using Environment Variables on Windows 313
Environment Settings for Native Windows Apphcatlons 313
Environment Settings for Command-Prompt Utilities 3-14

Using the System Applet to Work with Environment Variables . 3-14

Using the Command Prompt to Work with Environment Variables 3-15
Using dbservername.cmd to Initialize a Command-Prompt

Environment 316

Rules of Precedence 317

List of Environment Variables 317

Environment Variables. 322
AC_CONFIG. 323

AFDEBUG . 323
BIG_FET BUF SIZE 323
CPFIRST .. 324
DBACCNOIGN. 32
DBANSIWARN. 327
DBBLOBBUF. 327
DBCENTURY 328
DBDATE 332
DBDELIMITER. 334
DBEDIT . 335
DBFLTMASK 33
DBLANG. 336
DBMONEY . 338
DBNLS.o s33
DBONPLOAD 340
DBPATH00 34
DBPRINT. 343
DBREMOTECMD 344
DBSPACETEMP 345
DBTEMP . 346
DBTIME . 347
DBUPSPACE. 350
DEFAULT ATTACH 351
DELIMIDENT 351
ENVIGNORE 3b
FET BUF SIZE. 353
IFMX_OPT_FACT_TABS 354
IFMX_OPT_NON_DIM_TABS. 355
IFX_DEF TABLE LOCKMODE 356
IFEX_DIRECTIVES 357
IFX_LIONGID 358
IFX_NETBUF_PVTPOOL_SIZE 35
IFEX_ NETBUF SIZE 35
IEX_UPDDESC. 360

3-2 IBM Informix Guide to SQL: Reference

IMCADMIN
IMCCONFIG .
IMCSERVER
INFORMIXC . .
INFORMIXCONCSMCFG
INFORMIXCONRETRY
INFORMIXCONTIME .
INFORMIXCPPMAP
INFORMIXDIR
INFORMIXKEYTAB.
INFORMIXOPCACHE .
INFORMIXSERVER .
INFORMIXSHMBASE .
INFORMIXSQLHOSTS.
INFORMIXSTACKSIZE
INFORMIXTERM
INF_ROLE_SEP . .o
INTERACTIVE_DESKTOP_OFF
ISM_COMPRESSION .
ISM_DEBUG_FILE .
ISM_DEBUG_LEVEL
ISM_ENCRYPTION .
ISM_MAXLOGSIZE.
ISM_MAXLOGVERS
JAR_TEMP_PATH
JAVA_COMPILER .
JVM_MAX_HEAP_SIZE .
LD_LIBRARY_PATH
LIBERAL_MATCH .
LIBPATH

NODEFDAC
ONCONFIG
OPTCOMPIND
OPTMSG

OPTOEFC.

OPT_GOAL

. 3-60
. 3-61
. 3-61
. 3-62
. 3-62
. 3-63
. 3-63
. 3-65
. 3-65
. 3-66
. 3-66
. 3-67
. 3-68
. 3-69
. 3-70
. 3-70
. 371
. 372
. 3-72
. 3-73
. 373
. 3-74
. 3-74
. 375
. 375
. 3-76
. 3-76
. 3-77
. 377
. 3-78
. 379
. 379
. 3-80
. 381
. 3-82
. 3-82

Environment Variables 3-3

3-4

PATH . .
PDQPRIORITY .

PLCONFIG .
PLOAD_LO_PATH
PLOAD_SHMBASE
PSORT_DBTEMP . .
PSORT_NPROCS
RTREE_COST_ADJUST_VALU
SHLIB_PATH

STMT_CACHE .

TERM .

TERMCAP

TERMINFO .

THREADLIB.
USETABLEAME
XFER_CONFIG .

Index of Environment Variables

IBM Informix Guide to SQL: Reference

3-83
3-84
3-85
3-86
3-86
3-87
3-88
3-89
3-90
3-90
391
3-91
3-92
3-93
3-93
3-94

3-94

GLS

In This Chapter

Various environment variables affect the functionality of your IBM Informix
products. You can set environment variables that identify your terminal,
specify the location of your software, and define other parameters.

Some environment variables are required; others are optional. You must
either set or accept the default setting for required environment variables.

This chapter describes how to use the environment variables that apply to
one or more IBM Informix products and shows how to set them.

Types of Environment Variables

Two types of environment variables are discussed in this chapter:

m Informix-specific environment variables

Set Informix environment variables when you want to work with
IBM Informix products. Each IBM Informix product manual specifies
the environment variables that you must set to use that product.

m Operating-system-specific environment variables

IBM Informix products rely on the correct setting of certain standard
operating-system environment variables. For example, you must
always set the PATH environment variable.

In a UNIX environment, you might also need to set the TERMCAP or
TERMINFO environment variable to use some products effectively.

The GLS environment variables that support nondefault locales are described
in the IBM Informix GLS User’s Guide. The GLS variables are included in the list
of environment variables in Figure 3-1 on page 3-18 and in the topic index in
Figure 3-2 on page 3-95, but are not discussed in this manual. ¢

Environment Variables 3-5

Where to Set Environment Variables on UNIX

E/C

The database server uses the environment variables that were in effect at the
time the database server was initialized.

The SET ENVIRONMENT statement lets you set certain routine-specific
environment options. For more information, refer to the IBM Informix Guide to
SQL: Syntax.

The onstat - g env utility lists the active environment settings.

Tip: Additional environment variables that are specific to your client application or
SQL API might be discussed in the manual for that product.

Important: Do not set any environment variable in the home directory of user
informix (nor in the file .informix in that directory) while initializing the database
server and creating the sysmaster database.

Where to Set Environment Variables on UNIX

You can set environment variables on UNIX in the following places:

m At the system prompt on the command line

When you set an environment variable at the system prompt, you
must reassign it the next time you log into the system. See also
“Using Environment Variables on UNIX” on page 3-7.

m In an environment-configuration file

An environment-configuration file is a common or private file where
you can set all the environment variables that IBM Informix products
use. The use of such files reduces the number of environment vari-
ables that you must set at the command line or in a shell file.

m Inalogin file

Values of environment variables set in your .login, .cshrc, or .profile
file are assigned automatically every time you log into the system.

In IBM Informix ESQL/C, you can set supported environment variables
within an application with the putenv() system call and retrieve values with
the getenv() system call, if your UNIX system supports these functions. For
more information on putenv() and getenv(), see the IBM Informix ESQL/C
Programmer’s Manual and your C documentation. ¢

3-6 IBM Informix Guide to SQL: Reference

E/C

UNIX

Where to Set Environment Variables on Windows

Where to Set Environment Variables on Windows

You might be able to set environment variables in several places on
Windows, depending on which IBM Informix application you use.

For native Windows IBM Informix applications, such as the database server,
environment variables can be set only in the Windows registry. Environment
variables set in the registry cannot be modified elsewhere.

For utilities that run in a command-prompt session, such as dbaccess,
environment variables can be set in several ways, as described in
“Environment Settings for Command-Prompt Ultilities” on page 3-14.

To use client applications such as ESQL/C or the Schema Tools on Windows
environment, use the Setnet32 utility to set environment variables. For infor-
mation about the Setnet32 utility, see the IBM Informix Client Products
Installation Guide for your operating system.

In IBM Informix ESQL/C, you can set supported environment variables
within an application with the ifx_putenv() function and retrieve values
with the ifx_getenv() function, if your Windows system supports them. For
more information on ifx_putenv() and ifx_getenv(), see the IBM Informix
ESQL/C Programmer’s Manual. ¢

Using Environment Variables on UNIX

The following sections discuss setting, unsetting, modifying, and viewing
environment variables. If you already use an IBM Informix product, some or
all of the appropriate environment variables might be set.

Setting Environment Variables in a Configuration File

The common (shared) environment-configuration file that is provided with
IBM Informix products resides in $INFORMIXDIR/etc/informix.rc. Permis-
sions for this shared file must be set to 644.

Environment Variables 3-7

Setting Environment Variables at Login Time

3-8

A user can override the system or shared environment variables by setting
variables in a private environment-configuration file. This file must have all
of the following characteristics:

m Stored in the user’s home directory

m Named .informix

m Permissions set to readable by the user
An environment-configuration file can contain comment lines (preceded by

the # comment indicator) and variable definition lines that set values
(separated by blank spaces or tabs), as the following example shows:

This is an example of an environment-configuration file

#

DBDATE DMY4 -

#

These are ESQL/C environment variable settings
#

INFORMIXC gcc
CPFIRST TRUE

You can use the ENVIGNORE environment variable, described in
“ENVIGNORE” on page 3-52, to override one or more entries in an
environment-configuration file. Use the Informix chkenv utility, described in
“Checking Environment Variables with the chkenv Utility” on page 3-11, to
perform a sanity check on the contents of an environment-configuration file.
The chkenv utility returns an error message if the file contains a bad
environment variable or if the file is too large.

The first time you set an environment variable in a shell file or environment-
configuration file, you must tell the shell process to read your entry before
you work with your IBM Informix product. If you use a C shell, source the
file; if you use a Bourne or Korn shell, use a period (.) to execute the file.

Setting Environment Variables at Login Time

Add the commands that set your environment variables to the appropriate
login file:

For the C shell Jogin or .cshrc

For the Bourne shell or Korn shell .profile

IBM Informix Guide to SQL: Reference

Syntax for Setting Environment Variables

Syntax for Setting Environment Variables

Use standard UNIX commands to set environment variables. The examples in
the following table show how to set the ABCD environment variable to value
for the C shell, Bourne shell, and Korn shell. The Korn shell also supports a
shortcut, as the last row indicates. Environment variables are case sensitive.

Shell Command
C setenv ABCD value
Bourne ABCD=value

export ABCD

Korn ABCD=value
export ABCD

Korn export ABCD=value

The following diagram shows how the syntax for setting an environment
variable is represented throughout this chapter. These diagrams indicate the
setting for the C shell; for the Bourne or Korn shells, use the syntax illustrated
in the preceding table.

ABCD value ‘

For more information on how to read syntax diagrams, see “Syntax Conven-
tions” on page 10 of the Introduction.

Unsetting Environment Variables

To unset an environment variable, enter the following command.

Shell Command
C unsetenv ABCD
Bourne or Korn unset ABCD

Environment Variables 3-9

Modifying an Environment-Variable Setting

3-10

Modifying an Environment-Variable Setting

Sometimes you must add information to an environment variable that is
already set. For example, the PATH environment variable is always set on
UNIX. When you use an IBM Informix product, you must add to the PATH
setting the name of the directory where the executable files for the

IBM Informix products are stored.

In the following example, the INFORMIXDIR is /ust/informix. (That is,
during installation, the IBM Informix products were installed in the /usr
/informix directory.) The executable files are in the bin subdirectory,
/ustr/informix/bin. To add this directory to the front of the C shell PATH
environment variable, use the following command:

setenv PATH /usr/informix/bin:$PATH

Rather than entering an explicit pathname, you can use the value of the
INFORMIXDIR environment variable (represented as SINFORMIXDIR), as the
following example shows:

setenv INFORMIXDIR /usr/informix
setenv PATH $INFORMIXDIR/bin:$PATH

You might prefer to use this version to ensure that your PATH entry does not
conflict with the search path that was set in INFORMIXDIR, and so that you
do not have to reset PATH whenever you change INFORMIXDIR. If you set
the PATH environment variable on the C shell command line, you might need
to include braces ({ }) with the existing INFORMIXDIR and PATH, as the
following command shows:

setenv PATH ${INFORMIXDIR}/bin:${PATH}

For more information about how to set and modify environment variables,
refer to the manuals for your operating system.

IBM Informix Guide to SQL: Reference

Viewing Your Environment-Variable Settings

Viewing Your Environment-Variable Settings

After you install one or more IBM Informix products, enter the following
command at the system prompt to view your current environment settings.

UNIX Version Command
BSD UNIX env
UNIX System V printenv

Checking Environment Variables with the chkenv Utility

The chkenv utility checks the validity of shared or private environment-
configuration files. It validates the names of the environment variables in the
file, but not their values. Use chkenv to provide debugging information
when you define, in an environment-configuration file, all the environment
variables that your IBM Informix products use.

chkenv

\ / filename ‘
pathname

filename is the name of the environment-configuration file to be debugged.

pathname is the full directory path in which the environment variable file is
located.

File SINFORMIXDIR/etc/informix.rc is the shared environment-configu-
ration file. A private environment-configuration file is stored as .informix in
the home directory of the user. If you specify no pathname for chkenv, the
utility checks both the shared and private environment configuration files. If
you provide a pathname, chkenv checks only the specified file.

Issue the following command to check the contents of the shared
environment-configuration file:

chkenv informix.rc

Environment Variables 3-11

Rules of Precedence

3-12

The chkenv utility returns an error message if it finds a bad environment-
variable name in the file or if the file is too large. You can modify the file and
rerun the utility to check the modified environment-variable names.

IBM Informix products ignore all lines in the environment-configuration file,
starting at the point of the error, if the chkenv utility returns the following
message:

-33523 filename: Bad environment variable on line number.

If you want the product to ignore specified environment-variables in the file,
you can also set the ENVIGNORE environment variable. For a discussion of
the use and format of environment-configuration files and the ENVIGNORE
environment variable, see page 3-52.

Rules of Precedence

When an IBM Informix product accesses an environment variable, normally
the following rules of precedence apply:

1. Ofhighest precedence is the value that is defined in the environment
(shell) by explicitly setting the value at the shell prompt.

2. The second highest precedence goes to the value that is defined in
the private environment-configuration file in the home directory of
the user (~/.informix).

3. The next highest precedence goes to the value that is defined in the
common environment-configuration file
(S$INFORMIXDIR/etc/informix.rc).

4. The lowest precedence goes to the default value, if one exists.

For precedence information about GLS environment variables, see the
IBM Informix GLS User’s Guide.

Important: If you set one or more environment variables before you start the database
server, and you do not explicitly set the same environment variables for your client
products, the clients will adopt the original settings.

IBM Informix Guide to SQL: Reference

Using Environment Variables on Windows

Using Environment Variables on Windows

The following sections discuss setting, viewing, unsetting, and modifying
environment variables for native Windows applications and command-
prompt utilities.

Environment Settings for Native Windows Applications

IBM Informix native Windows applications, such as the database server itself,
store their configuration information in the Windows registry. To modify this
information, you must use the Registry Editor, regedt32.exe.

Important: In order to use the Registry Editor to change database server
environment variables, you must belong to either the Administrators or Informix-
Admin groups. For information on assigning users to groups, see your operating-
system documentation.

To manipulate environment variables with the Registry Editor
1. Launch the Registry Editor, regedt32.exe, and choose the window
titled HKEY_LOCAL_MACHINE.

2. Intheleft pane, double-click the SOFTWARE registry key (shown as a
small, yellow file folder icon).

The SOFTWARE registry key expands to show several subkeys, one of
which is Informix. Continue down the tree in the following
sequence:

OnLine, dbservername, Environment.

Substitute the name of your database server in place of dbservername.

3. With the Environment registry key selected in the left pane, you
should see a list of environment variables and their values in the
right pane (for example, CLIENT_LOCALE:REG_SZ:EN_US.CP1252).

4. Change existing environment variables if needed.
a. Double-click the environment variable.
b. Type the new value in the String Editor dialog box.
c. Click OK to accept the value.

Environment Variables 3-13

Environment Settings for Command-Prompt Utilities

3-14

5. Add new environment variables if needed.
a. Choose Edit—=Add Value in the Registry Editor.

b. Enter the name of the environment variable in the Value Name
edit box and choose REG_SZ as the data type.

¢. Click OK and type a value for the environment variable in the
String Editor dialog box.

6. Delete an environment variable, if needed.
a. Select the variable name.
b. Choose Edit—Delete in the Registry Editor.

Environment Settings for Command-Prompt Utilities

You can set environment variables for command-prompt utilities in the
following ways:
m With the System applet in the Control Panel

m In a command-line session

Using the System Applet to Work with Environment Variables

The System applet provides a graphical interface to create, modify, and delete
system-wide and user-specific variables. Environment variables that are set
with the System applet are visible to all command-prompt sessions.

To change environment variables with the System applet in the control panel

1. Double-click the System applet icon from the Control Panel window.

Click the Environment tab near the top of the window. Two list boxes
display System Environment Variables and User Environment Vari-
ables. System Environment Variables apply to an entire system, and
User Environment Variables apply only to the sessions of the indi-
vidual user.

2. To change the value of an existing variable, select that variable.

The name of the variable and its current value appear in the boxes at
the bottom of the window.

3. Highlight the existing value and type the new value.

IBM Informix Guide to SQL: Reference

Environment Settings for Commana-Prompt Utilities

4. To add a new variable, highlight an existing variable and type the
new variable name in the box at the bottom of the window.

5. Next, enter the value for the new variable at the bottom of the
window and click the Set button.

6. To delete a variable, select the variable and click the Delete button.

Important: In order to use the System applet to change System environment
variables, you must belong to the Administrators group. For information on
assigning users to groups, see your operating-system documentation.

Using the Command Prompt to Work with Environment Variables

The following diagram shows the syntax for setting an environment variable
at a command prompt in Windows.

set — ABCD = value |

If no value is specified, the environment variable is unset, as if it did not exist.

For more information on how to read syntax diagrams, see “Syntax Conven-
tions” on page 10 of the introduction.

To view your current settings after one or more IBM Informix products are
installed, enter the following command at the command prompt.

set {

Sometimes you must add information to an environment variable that is
already set. For example, the PATH environment variable is always set in
Windows environments. When you use an IBM Informix product, you must
add the name of the directory where the executable files for the IBM Informix
products are stored to the PATH.

Environment Variables 3-15

Environment Settings for Command-Prompt Utilities

3-16

In the following example, INFORMIXDIR is d:\informix, (that is, during
installation, IBM Informix products were installed in the d: \informix
directory). The executable files are in the bin subdirectory, d:\informix\bin.
To add this directory at the beginning of the PATH environment-variable
value, use the following command:

set PATH=d:\informix\bin; $PATHS

Rather than entering an explicit pathname, you can use the value of the
INFORMIXDIR environment variable (represented as %INFORMIXDIR %), as
the following example shows:

set INFORMIXDIR=d:\informix
set PATH=%INFORMIXDIR%\bin;%PATH%

You might prefer to use this version to ensure that your PATH entry does
not contradict the search path that was set in INFORMIXDIR, and to avoid the
need to reset PATH whenever you change INFORMIXDIR.

For more information about setting and modifying environment variables,
refer to your operating-system manuals.

Using dbservername.cmd to Initialize a Command-Prompt
Environment

Each time that you open a Windows command prompt, it acts as an
independent environment. Therefore, environment variables that you set
within it are valid only for that particular command-prompt instance.

For example, if you open one command window and set the variable,
INFORMIXDIR, and then open another command window and type set to
check your environment, you will find that INFORMIXDIR is not set in the
new command-prompt session.

The database server installation program creates a batch file that you can use
to configure command-prompt utilities, ensuring that your command-
prompt environment is initialized correctly each time that you run a
command-prompt session. The batch file, dbservername.cmd, is located in
%INFORMIXDIR%, and is a plain text file that you can modify with any text
editor. If you have more than one database server installed in
%INFORMIXDIR%, there will be more than one batch file with the .emd
extension, each bearing the name of the database server with which it is
associated.

IBM Informix Guide to SQL: Reference

Rules of Precedence

To run dbservername.cmd from a command prompt, type dbservername or
configure a command prompt so that it runs dbservername.cmd automati-
cally at start up.

Rules of Precedence

When an IBM Informix product accesses an environment variable, normally
the following rules of precedence apply:

1. The highest precedence goes to the value that is defined in the
environment by explicitly setting the value at the command prompt.

2. The second highest precedence goes to the value that is defined in
the System control panel as a User Environment Variable.

3. The third highest precedence goes to the value that is defined in the
System control panel as a System Environment Variable.

4. The lowest precedence goes to the default value.

Important: Because Windows services access only environment variables that are set
in the registry, the preceding rules of precedence do not apply for IBM Informix native
Windows applications. For native Windows applications, the highest precedence goes
to variables that are explicitly defined in the registry, and the lowest precedence goes
to the default value. In addition, if you set one or more environment variables before
you start the database server, and you do not explicitly set the same environment
variables for client products, the clients will adopt the original settings.

List of Environment Variables

Figure 3-1 contains an alphabetical list of the environment variables that you
can set for an Informix database server and SQL API products. Most of these
environment variables are described in this chapter on the pages listed in the
“Page” column. The ¢ symbol indicates that XPS or Dynamic Server (or both,
if both columns are so marked) support the environment variable.

The notation “ERG” in the “Page” column indicates an environment variable
that must be set with the CDR_ENV configuration parameter, and is described
in the appendix on configuration parameters and environment variables of
the IBM Informix Dynamic Server Enterprise Replication Guide.

Environment Variables 3-17

List of Environment Variables

GLS

3-18

The notation “GLS” in the “Page” column indicates a GLS environment
variable that is valid in nondefault locales, and that is described in the GLS

environment variables chapter of IBM Informix GLS User’s Guide. ¢

Figure 3-1

Alphabetical List Of Environment Variables
Environment Variahle XPS IDS Restrictions Page
AC_CONFIG v v None 3-23
AFDEBUG JVM 3-23
BIG_FET_BUF_SIZE v SQL APIs, DB-Access 3-23

only

CCSBITLEVEL ESQL/C only GLS
CDR_LOGDELTA v ERonly ERG
CDR_PERFLOG v ERonly ERG
CDR_ROUTER v ERonly ERG
CDR_RMSCALEFACT v ERonly ERG
CLIENT_LOCALE vV ¢ None GLS
CPFIRST vV ¢ None 3-24
DBACCNOIGN v’ v DB-Access only 3-25
DBANSIWARN vV ¢ None 3-27
DBBLOBBUF vV ¢ None 3-27
DBCENTURY SQL APIs only 3-28
DBDATE vV ¢ None 3-32;
GLS
DBDELIMITER vV ¢ None 3-34
DBEDIT vV ¢ None 3-35
DBFLTMASK v’ v DB-Access only 3-35
DBLANG v ¢ None 3-36;
GLS

(1ofb)

IBM Informix Guide to SQL: Reference

List of Environment Variables

Environment Variahle XPS IDS Restrictions Page
DBMONEY v ¢ None 3-38;

GLS
DBNLS v 3-39
DBONPLOAD v HPL only 3-40
DBPATH v v None 3-41
DBPRINT v v UNIXonly 3-43
DBREMOTECMD v v UNIXonly 3-44
DBSPACETEMP v v None 3-45
DBTEMP v/ DB-Access, Gateways 3-46
DBTIME SQL APIs only 3-47;

GLS
DBUPSPACE v Vv None 3-50
DB_LOCALE v Vv None GLS
DEFAULT_ATTACH v Deprecated 3-51
DELIMIDENT vV ¢ None 3-51
ENVIGNORE v v UNIXonly 3-52
ESQLMF v v ESQL/Conly GLS
FET_BUF_SIZE v v SQL APIs, DB-Access 3-53

only

GLSSBITFSYS vV ¢ None GLS
GL_DATE vV ¢ None GLS
GL_DATETIME vV ¢ None GLS
IFMX_OPT_FACT_TABS v None 3-54
IFMX_OPT_NON_DIM_TABS v None 3-55
IFX_DEF_TABLE_LOCKMODE v None 3-56
IFX_DIRECTIVES vV ¢ None 3-57

(2 of 5)

Environment Variables 3-19

List of Environment Variables

Environment Variable XPS IDS Restrictions Page
IFX_LONGID v ¢ None 3-58
IFX_NETBUF_PVTPOOL_SIZE ¢ ¢ UNIXonly 3-59
IFX_NETBUF_SIZE v ¢ None 3-59
IFX_UPDDESC v None 3-60
IMCADMIN v 3-60
IMCCONFIG v 3-61
IMCSERVER v 3-61
INFORMIXC ESQL/C, UNIX only 3-62
INFORMIXCONCSMCFG v None 3-62
INFORMIXCONRETRY v ¢ None 3-63
INFORMIXCONTIME v ¢ None 3-63
INFORMIXCPPMAP v None 3-65
INFORMIXDIR v ¢ None 3-65
INFORMIXKEYTAB v v UNIXonly 3-66
INFORMIXOPCACHE v Optical Subsystem only 3-66
INFORMIXSERVER v ¢ None 3-67
INFORMIXSHMBASE v v UNIXonly 3-68
INFORMIXSQLHOSTS v ¢ None 3-69
INFORMIXSTACKSIZE v ¢ None 3-70
INFORMIXTERM v v DB-Access, UNIXonly 3-70
INF_ROLE_SEP v None 3-71
INTERACTIVE_DESKTOP_OFF v’ Windows only 3-72
ISM_COMPRESSION v’ v ISM, ON-Bar only 3-72
ISM_DEBUG_FILE v v ISMonly 3-73
ISM_DEBUG_LEVEL v’ v ISM, ON-Bar only 3-73
(3 of5)

3-20 |IBM Informix Guide to SQL: Reference

List of Environment Variables

Environment Variable XPS IDS Restrictions Page
ISM_ENCRYPTION v’ v ISM, ON-Bar only 3-74
ISM_MAXLOGSIZE v v ISMonly 3-74
ISM_MAXLOGVERS v v ISMonly 3-75
JAR_TEMP_PATH v JVM 3-75
JAVA_COMPILER v JVM 3-76
JVM_MAX_HEAP_SIZE v JVM 3-76
LD_LIBRARY_PATH SQL APIs, UNIX only 3-77
LIBERAL_MATCH v None 3-77
LIBPATH SQL APIs, UNIX only 3-78
NODEFDAC v ¢ None 3-79
ONCONFIG v ¢ None 3-79
OPTCOMPIND v ¢ None 3-80
OPTMSG ESQL/C only 3-81
OPTOFC ESQL/C only 3-82
OPT_GOAL v UNIX only 3-82
PATH v ¢ None 3-83
PDQPRIORITY v v None 3-84
PLCONFIG v HPL only 3-85
PLOAD_LO_PATH v HPL only 3-86
PLOAD_SHMBASE v HPL only 3-86
PSORT_DBTEMP v ¢ None 3-87
PSORT_NPROCS v ¢ None 3-88
RTREE_COST_ADJUST_VALUE v None 3-89
SERVER_LOCALE v ¢ None GLS
SHLIB_PATH v v UNIXonly 3-90
(4 of 5)

Environment Variables 3-21

Environment Variables

3-22

Environment Variahle XPS IDS Restrictions Page
STMT_CACHE v None 3-90
TERM v v UNIXonly 3-91
TERMCAP v v UNIXonly 3-91
TERMINFO v v UNIXonly 3-92
THREADLIB ESQL/C, UNIX only 3-93
USETABLENAME v None 3-93
XFER_CONFIG v None 3-94
(5 of 5)

Tip: You might encounter references to environment variables that are not listed in
Figure 3-1. Most likely, these environment variables are not supported in this release
or are used to maintain backward compatibility with certain earlier product versions.
For information, refer to an earlier version of your IBM Informix documentation.

Environment Variables

Sections that follow discuss (in alphabetical order) environment variables
that IBM Informix database server products and their utilities use.

Important: The descriptions of the following environment variables include the
syntax for setting the environment variable on UNIX. For a general description of
how to set these environment variables on Windows, see “Environment Settings for
Native Windows Applications” on page 3-13 and “Environment Settings for
Command-Prompt Utilities” on page 3-14.

IBM Informix Guide to SQL: Reference

AC_CONFIG

AC_CONFIG

You can set the AC_CONFIG environment variable to specify the path for the
ac_config.std configuration file for the archecker utility, which checks the
validity and completeness of an ON-Bar storage-space backup. The
ac_config.std file contains default archecker configuration parameters.

setenv AC_CONFIG —— pathname —| I

pathname is the location of the ac_config.std configuration file in
$INFORMIXDIR/etc or %INFORMIXDIR % \ etc.

For information on archecker, see your Backup and Restore Guide.

AFDEBUG

You can create files to hold verbose messages from the Java virtual machine
(JVM) about releasing memory that had been allocated to objects by setting
the AFDEBUG environment variable.

| setenv AFDEBUG | I

No value is required. You can also set the configuration parameter AFCRASH
to 0x00000010 to achieve the same result.

XPS BIG_FET_BUF_SIZE

The BIG_FET_BUF_SIZE environment variable functions the same as the
FET_BUF_SIZE environment variable, but supports a larger cursor buffer.

setenv — BIG_FET_BUF_SIZE size |

size is a positive integer that is larger than the default buffer size.

Environment Variables 3-23

CPFIRST

The size can be no greater than 4 Gigabytes, specifying the size (in bytes) of
the fetch buffer that holds data retrieved by a query. For example, to set a
buffer size to 5, 000 bytes on a UNIX system that uses the C shell, set the
BIG_FET_BUF_SIZE environment variable by entering the following
command:

setenv BIG FET BUF SIZE 5000

When BIG_FET_BUF_SIZE is set to a valid value, the new value overrides the
default value (or any previously set value of BIG_FET_BUF_SIZE). The default
setting for the fetch buffer is dependent on row size. The processing of BYTE
and TEXT values is not affected by BIG_FET_BUF_SIZE.

No error is raised if BIG_FET_BUF_SIZE is set to a value less than the default
size or out of the range of SMALLINT values. In these cases, however, the
invalid fetch buffer size is ignored, and the default size is in effect.

If you set BIG_FET_BUF_SIZE to a valid value, that value is in effect for the
local database server, as well as for any remote database server from which
you retrieve rows through a distributed query in which the local server is the
coordinator and the remote server is subordinate. The greater the size of the
buffer, the more rows can be returned, and the less frequently the client appli-
cation must wait for returned rows. A large buffer can improve performance
by reducing the overhead of filling the client-side buffer.

CPFIRST

Set the CPFIRST environment variable to specify the default compilation
order for all ESQL/C source files in your programming environment.

setenv ——

CPFIRST

\ TRUE f |
FALSE

3-24

IBM Informix Guide to SQL: Reference

DBACCNOIGN

When compiling an ESQL/C program with CPFIRST not set, the default order
is to run the ESQL/C preprocessor on the program source file and pass the
resulting file to the C language preprocessor and compiler. You can, however,
compile an ESQL/C program source file in the following order:

1. Run the C preprocessor
2. Run the ESQL/C preprocessor
3. Run the C compiler and linker
To use a nondefault compilation order for a specific program, you can either

give the program source file a .ecp extension, run the -cp option with the esql
command on a program source file with a .ec extension, or set CPFIRST.

Set CPFIRST to TRUE (uppercase only) to run the C preprocessor before the
ESQL/C preprocessor on all ESQL/C source files in your environment,
irrespective of whether the -cp option is passed to the esql command or the
source files have the .ec or the .ecp extension.

To restore the default order on a system where the CPFIRST environment
variable has been set to TRUE, you can set CPFIRST to FALSE. On UNIX
systems that support the C shell, the following command has the same effect:

unsetenv CPFIRST

DBACCNOIGN

The DBACCNOIGN environment variable affects the behavior of the
DB-Access utility if an error occurs under one of the following circumstances:
® You run DB-Access in nonmenu mode.
B You execute the LOAD command with DB-Access in menu mode. ¢
Set the DBACCNOIGN environment variable to 1 to roll back an incomplete

transaction if an error occurs while you run the DB-Access utility under either
of the preceding conditions.

| setenv

DBACCNOIGN 1 { I

Environment Variables 3-25

DBACCNOIGN

For example, assume DB-Access runs the following SQL commands:

DATABASE mystore
BEGIN WORK

INSERT INTO receipts VALUES (custl, 10)
INSERT INTO receipt VALUES (custl, 20)
INSERT INTO receipts VALUES (custl, 30)

UPDATE customer
SET balance =
(SELECT (balance-60)
FROM customer WHERE custid = 'custl')
WHERE custid = 'custl
COMMIT WORK

Here one statement has a misspelled table name: the receipt table does not
exist. If DBACCNOIGN is not set in your environment, DB-Access inserts two
records into the receipts table and updates the customer table. Now the
decrease in the customer balance exceeds the sum of the inserted receipts.

But if DBACCNOIGN is set to 1, messages appear, indicating that DB-Access
rolled back all the INSERT and UPDATE statements. The messages also
identify the cause of the error so that you can resolve the problem.

LOAD Statement Example

You can set DBACCNOIGN to protect data integrity during a LOAD
statement, even if DB-Access runs the LOAD statement in menu mode.

Assume you execute the LOAD statement from the DB-Access SQL menu.
Forty-nine rows of data load correctly, but the 50th row contains an invalid
value that causes an error. If you set DBACCNOIGN to 1, the database server
does not insert the forty-nine previous rows into the database. If
DBACCNOIGN is not set, the database server inserts the first forty-nine rows.

3-26 IBM Informix Guide to SQL: Reference

DBANSIWARN

DBANSIWARN

Setting the DBANSIWARN environment variable indicates that you want to
check for Informix extensions to ANSI-standard SQL syntax. Unlike most
environment variables, you do not need to set DBANSIWARN to a value. You
can set it to any value or to no value.

setenv

DBANSIWARN { I

Running DB-Access with DBANSIWARN set is functionally equivalent to
including the -ansi flag when you invoke DB-Access (or any IBM Informix
product that recognizes the -ansi flag) from the command line. If you set
DBANSIWARN before you run DB-Access, any syntax-extension warnings are
displayed on the screen within the SQL menu.

At runtime, the DBANSIWARN environment variable causes the sixth
character of the sqlwarn array in the SQL Communication Area (SQLCA) to
be set to w when a statement is executed that is recognized as including any
Informix extension to the ANSI/ISO standard for SQL syntax.

For details on SQLCA, see the IBM Informix ESQL/C Programmer’s Manual.

After you set DBANSIWARN, Informix extension checking is automatic until
you log out or unset DBANSIWARN. To turn off Informix extension checking,
you can disable DBANSIWARN by entering this command:

unsetenv DBANSIWARN

DBBLOBBUF

The DBBLOBBUF environment variable controls whether TEXT or BYTE
values are stored temporarily in memory or in a file while being processed by
the UNLOAD statement. DBBLOBBUF affects only the UNLOAD statement.

setenv

DBBLOBBUF size | I

size represents the maximum size of TEXT or BYTE data in kilobytes.

Environment Variables 3-27

DBCENTURY

If a TEXT or BYTE data size is smaller than the default of 10 kilobytes (or the
setting of DBBLOBBUF), the TEXT or BYTE value is temporarily stored in
memory. If the data size is larger than the default or the DBBLOBBUF setting,
the data value is written to a temporary file. For instance, to set a buffer size
of 15 kilobytes, set DBBLOBBUF as in the following example:

setenv DBBLOBBUF 15

Here any TEXT or BYTE value smaller than 15 kilobytes is stored temporarily
in memory. Values larger than 15 kilobytes are stored temporarily in a file.

DBCENTURY

To avoid problems in expanding abbreviated years, applications should
require entry of 4-digit years, and should always display years as four digits.
The DBCENTURY environment variable specifies how to expand literal DATE
and DATETIME values that are entered with abbreviated year values.

setenv

DBCENTURY R |
P

When DBCENTURY is not set (or is set to r), the first two digits of the current
year are used to expand 2-digit year values. For example, if today’s date is
09/30/2003, then the abbreviated date 12/31/99 expands to 12/31/2099,
and the abbreviated date 12/31/00 expands to 12/31/2000.

3-28 IBM Informix Guide to SQL: Reference

DBCENTURY

The R, P, E, and C settings choose algorithms for expanding two-digit years.

Setting Algorithm

R = Current Use the first two digits of the current year to expand the year value.

P = Past Expanded dates are created by prefixing the abbreviated year value
with “19” and “20.” Both dates are compared to the current date, and
the most recent date that is earlier than the current date is used.

F =Future Expanded dates are created by prefixing the abbreviated year value
with “20” and “21.” Both dates are compared to the current date, and
the earliest date that is later than the current date is used.

C =Closest Expanded dates are created by prefixing the abbreviated year value
with “19,” “20,” and “21.” These three dates are compared to the
current date, and the date that is closest to the current date is used.

Settings are case sensitive, and no error is issued for invalid settings. If you
enter “£” (for example), then the default (r) setting takes effect. The p and ¥
settings cannot return the current date, which is not in the past or future.

Years entered as a single digit are prefixed with 0 and then expanded. Three-
digit years are not expanded. Pad years earlier than 100 with leading zeros.

Examples of Expanding Year Values

The following examples illustrate how various settings of DBCENTURY cause
abbreviated years to be expanded in DATE and DATETIME values.

DBCENTURY =P

Example data type: DATE

Current date: 4/6/2003

User enters: 1/1/1

Prefix with "19" expansion : 1/1/1901

Prefix with "20" expansion: 1/1/2001

Analysis: Both are prior to current date, but 1/1/2001 is closer
to current date.

Important: The effect of DBCENTURY depends on the current date from the system
clock-calendar. Thus, 1/1/1, the abbreviated date this example, would instead be
expanded to 1/1/1901 if the current date were 1/1/2001 and DBCENTURY = P.

Environment Variables 3-29

DBCENTURY

DBCENTURY =F

Example data type: DATETIME year to month

Current date: 5/7/2005

User enters: 1-1

Prefix with "20" expansion: 2001-1

Prefix with "21" expansion: 2101-1

Analysis: Only date 2101-1 is after the current date, so it is
chosen.

DBCENTURY =C

Example data type: DATE

Current date: 4/6/2000

User enters: 1/1/1

Prefix with "19" expansion : 1/1/1901

Prefix with "20" expansion: 1/1/2001

Prefix with "21" expansion: 1/1/2101

Analysis: Here 1/1/2001 is closest to the current date, so it is
chosen.

DBCENTURY = R or DBCENTURY Not Set

Example data type: DATETIME year to month
Current date: 4/6/2000

User enters: 1-1

Prefix with "20" expansion: 2001-1

Example data type: DATE

Current date: 4/6/2003

User enters: 0/1/1

Prefix with "20" expansion: 2000/1

Analysis: In both examples, the Prefix with "20" algorithm is
used.

Setting DBCENTURY does not affect IBM Informix products when the locale
specifies a non-Gregorian calendar, such as Hebrew or Islamic calendars. The
leading digits of the current year are used for alternate calendar systems
when the year is abbreviated.

Abbreviated Years and Expressions in Database Objects

When an expression in a database object (including a check constraint,
fragmentation expression, SPL routine, trigger, or UDR) contains a literal
DATE or DATETIME value in which the year has 1 or 2 digits, the database
server evaluates the expression using the setting that DBCENTURY (and
other relevant environment variables) had when the database object was
created (or was last modified). If DBCENTURY has been reset to a new value,
the new value is ignored when the abbreviated year is expanded.

3-30 IBM Informix Guide to SQL: Reference

DBCENTURY

For example, suppose a user creates a table and defines the following check
constraint on a column named birthdate:

birthdate < '09/25/50"

The expression is interpreted according to the value of DBCENTURY when
the constraint was defined. If the table that contains the birthdate column is
created on 09/23/2000 and DBCENTURY =c, the check constraint expression
is consistently interpreted as birthdate < '09/25/1950' when inserts or
updates are performed on the birthdate column. Even if different values of
DBCENTURY are set when users perform inserts or updates on the birthdate
column, the constraint expression is interpreted according to the setting at
the time when the check constraint was defined (or was last modified).

Database objects created on some earlier versions of Dynamic Server do not
support the priority of creation-time settings.

For legacy objects to acquire this feature

1. Drop the objects.

2. Re-create them (or for fragmentation expressions, detach them and
then reattach them).

After the objects are redefined, date literals within expressions of the objects
will be interpreted according to the environment at the time when the object
was created or was last modified. Otherwise, their behavior will depend on
the runtime environment and might become inconsistent if this changes.

Administration of a database that includes a mix of legacy objects and new
objects might become difficult because of differences between the new and
the old behavior for evaluating date expressions. To avoid this, it is recom-
mended that you redefine any legacy objects.

The value of DBCENTURY and the current date are not the only factors that
determine how the database server interprets DATE and DATETIME values.
The DBDATE, DBTIME, GL_DATE, and GL_DATETIME environment
variables can also influence how dates are interpreted. For information about
GL_DATE and GL_DATETIME, see the IBM Informix GLS User’s Guide.

Important: The behavior of DBCENTURY for Dynamic Server and Extended Parallel
Server is not backwards compatible.

Environment Variables 3-31

DBDATE

DBDATE

The DBDATE environment variable specifies the end-user formats of DATE
values. On UNIX systems that use the C shell, set DBDATE with this syntax.

setenv ——

GLS

DBDATE MDAY4 /
DM Y2 -
Y4 MD)
O
Y2: :DM

The following formatting symbols are valid in the DBDATE setting:

-/ are characters that can appear as separators in a DATE format.
0 indicates that no separator is displayed between time units.
D,M are characters that represent the day and the month.

Y2,Y4 are characters that represent the year and the precision of the year.

Some East Asian locales support additional syntax for era-based dates. For
details of era-based formats, see IBM Informix GLS User’s Guide. ¢

DBDATE can specify the following attributes of the display format:

m The order of time units (the month, day, and year) in a date
m Whether the year appears with two digits (Y2) or four digits (Y4)

m The separator between the month, day, and year time units

For the U.S. English locale, the default for DBDATE is MDY4/, where M repre-
sents the month, D represents the day, v4 represents a four-digit year, and
slash (/) is the time-units separator (for example, 01/08/2002). Other valid
characters for the separator are a hyphen (-), a period (.), or a zero (0). To
indicate no separator, use the zero. The slash (/) is used by default if you
attempt to specify a character other than a hyphen, period, or zero as a
separator, or if you do not include any separator in the DBDATE specification.

If DBDATE is not set on the client, any DBDATE setting on the database server
overrides the MDY4/ default on the client. If DBDATE is set on the client, that
value (rather than the setting on the database server) is used by the client.

3-32 IBM Informix Guide to SQL: Reference

GLS

DBDATE

The following table shows some examples for setting DBDATE.

DBDATE Setting January 8, 2001, appears as:
MDY4/ 01/08/2001

DMY2- 08-01-01

MDY4 01/08/2001

Y2DM. 01.08.01

MDY20 010801

Y4MD* 2001/01/08

Formats v4MD* (because asterisk is not a valid separator) and Mpy4 (with no
separator defined) both display the default symbol (slash) as the separator.

Important: If you use the Y2 format, the setting of the DBCENTURY environment
variable can also affect how literal DATE values are evaluated in data entry.

Also, certain routines that IBM Informix ESQL/C calls can use the DBTIME
variable, rather than DBDATE, to set DATETIME formats to international
specifications. For more information, see the discussion of the DBTIME
environment variable in “DBTIME” on page 3-47 and the IBM Informix
ESQL/C Programmer’s Manual.

The setting of the DBDATE variable takes precedence over that of the
GL_DATE environment variable, as well as over any default DATE format
that CLIENT_LOCALE specifies. For information about GL_DATE and
CLIENT_LOCALE, see the IBM Informix GLS User’s Guide. ¢

End-user formats affect the following contexts:
m When you display DATE values, IBM Informix products use the
DBDATE environment variable to format the output.
m During data entry of DATE values, IBM Informix products use the

DBDATE environment variable to interpret the input.

For example, if you specify a literal DATE value in an INSERT statement, the
database server expects this literal value to be compatible with the format
that DBDATE specifies. Similarly, the database server interprets the date that
you specify as the argument to the DATE() function to be in DBDATE format.

Environment Variables 3-33

DBDELIMITER

DATE Expressions in Database Objects

When an expression in a database object (including a check constraint,
fragmentation expression, SPL routine, trigger, or UDR) contains a literal
DATE value, the database server evaluates the expression using the setting
that DBDATE (or other relevant environment variables) had when the
database object was created (or was last modified). If DBDATE has been reset
to a new value, the new value is ignored when the literal DATE is evaluated.

For example, suppose DBDATE is set to MDY2/ and a user creates a table
with the following check constraint on the column orderdate:

orderdate < '06/25/98"

The date of the preceding expression is formatted according to the value of
DBDATE when the constraint is defined. The check constraint expression is
interpreted as orderdate < '06/25/98"' regardless of the value of DBDATE
during inserts or updates on the orderdate column. Suppose DBDATE is
reset to DMY2/ when a user inserts the value '30/01/98"' into the orderdate
column. The date value inserted uses the date format bMy2/, whereas the
check constraint expression uses the date format Mpy2/.

See “Abbreviated Years and Expressions in Database Objects” on page 3-30
for a discussion of legacy objects from earlier versions of Informix database
servers that are always evaluated according to the runtime environment.
That section describes how to redefine objects so that dates are interpreted
according to environment variable settings that were in effect when the object
was defined (or when the object was last modified).

Important: The behavior of DBDATE for Dynamic Server and Extended Parallel
Server is not backwards compatible.

DBDELIMITER

The DBDELIMITER environment variable specifies the field delimiter used
with the dbexport utility and with the LOAD and UNLOAD statements.

setenv

DBDELIMITER ——— 'delimiter’ { I

delimiter is the field delimiter for unloaded data files.

3-34 IBM Informix Guide to SQL: Reference

DBEDIT

The delimiter can be any single character, except those in the following list:

m Hexadecimal digits (0 through 9, a through f, A through F)
m Newline or CTRL-J
m The backslash (\) symbol

The vertical bar (| = AscII 124)is the default. To change the field delimiter
to a plus (+) symbol, for example, you can set DBDELIMITER as follows:

setenv DBDELIMITER '+'

DBEDIT

The DBEDIT environment variable specifies the text editor to use with SQL
statements and command files in DB-Access. If DBEDIT is set, the specified
text editor is invoked automatically. If DBEDIT is not set, you are prompted
to specify a text editor as the default for the rest of the session.

setenv

DBEDIT editor { I

editor is the name of the text editor you want to use.

For most UNIX systems, the default text editor is vi. If you use another text
editor, be sure that it creates flat ASCII files. Some word processors in
document mode introduce printer control characters that can interfere with the
operation of your IBM Informix product.

To specify the EMACS text editor, set DBEDIT by entering the following
command:

setenv DBEDIT emacs

DBFLTMASK

The DB-Access utility displays the floating-point values of data types FLOAT,
SMALLFLOAT, and DECIMAL(p) within a 14-character buffer. By default,
DB-Access displays as many digits to the right of the decimal point as will fit
into this character buffer. Therefore, the actual number of decimal digits that
DB-Access displays depends on the size of the floating-point value.

Environment Variables 3-35

DBLANG

To reduce the number of digits displayed to the right of the decimal point in
floating-point values, set DBFLTMASK to the desired number of digits.

setenv ———— — DBFLTMASK ———— scale I I
|

scale is the number of decimal digits that you want the IBM Informix cli-
ent application to display in the floating-point values. Here scale
must be smaller than 16, the default number of digits displayed.

If the floating-point value contains more digits to the right of the decimal
than DBFLTMASK specifies, DB-Access rounds the value to the specified
number of digits. If the floating-point value contains fewer digits to the right
of the decimal, DB-Access pads the value with zeros. If you set DBFLTMASK
to a value greater than can fit into the 14-character buffer, however, DB-Access
rounds the value to the number of digits that can fit.

DBLANG

The DBLANG environment variable specifies the subdirectory of
$INFORMIXDIR or the full pathname of the directory that contains the
compiled message files that an IBM Informix product uses.

setenv —— DBLANG L relative_pamj—|

full_path

relative_path is a subdirectory of $INFORMIXDIR.

full_path is the pathname to the compiled message files.

3-36 IBM Informix Guide to SQL: Reference

GLS

DBLANG

By default, IBM Informix products put compiled messages in a locale-specific
subdirectory of the SINFORMIXDIR/msg directory. These compiled message
files have the file extension .iem. If you want to use a message directory other
than $INFORMIXDIR/msg, where, for example, you can store message files
that you create, you must perform the following steps:

To use a message directory other than SINFORMIXDIR/msg

1.

Use the mkdir command to create the appropriate directory for the
message files.

You can make this directory under the directory $INFORMIXDIR or
$INFORMIXDIR/msg, or you can make it under any other directory.

Set the owner and group of the new directory to informix and the
access permission for this directory to 755.

Set the DBLANG environment variable to the new directory. If this is
a subdirectory of SINFORMIXDIR or $INFORMIXDIR/msg, then you
need only list the relative path to the new directory. Otherwise, you
must specify the full pathname of the directory.

Copy the .iem files or the message files that you created to the new
message directory that $§DBLANG specifies.

All the files in the message directory should have the owner and
group informix and access permission 644.

IBM Informix products that use the default U.S. English locale search for
message files in the following order:

1.
2.

4
5.
6
7

In $DBLANG, if DBLANG is set to a full pathname

In SINFORMIXDIR/msg/$DBLANG, if DBLANG is set to a relative
pathname

In SINFORMIXDIR/$DBLANG, if DBLANG is set to a relative
pathname

In $INFORMIXDIR/msg/en_us/0333
In SINFORMIXDIR/msg/en_us.8859-1
In $INFORMIXDIR/msg

In $SINFORMIXDIR/msg/english

For more information on search paths for messages, see the description of
DBLANG in the IBM Informix GLS User’s Guide. ¢

Environment Variables 3-37

DBMONEY

DBMONEY

The DBMONEY environment variable specifies the display format of values
in columns of SMALLFLOAT, FLOAT, DECIMAL, or MONEY data types, and of
complex data types derived from any of these data types.

3-38

setenv

DBMONEY '$' \ . f |
front{ ’ } back {
'front ' 'back

$ is a currency symbol that precedes MONEY values in the default locale
if no other front symbol is specified, or if DBMONEY is not set.

,0r. isacomma or period (the default) that separates the integral part from
the fractional part of the FLOAT, DECIMAL, or MONEY value. Which-
ever symbol you do not specify becomes the thousands separator.

back is a currency symbol that follows the MONEY value.

front is a currency symbol that precedes the MONEY value.

The back symbol can be up to seven characters and can contain any character
that the locale supports, except a digit, a comma (,), or a period (.) symbol.
The front symbol can be up to seven characters and can contain any character
that the locale supports, except a digit, a comma (,), or a period (.) symbol.
If you specify any character that is not a letter of the alphabet for front or back,
you must enclose the front or back setting between single quotation (') marks.

When you display MONEY values, IBM Informix products use the DBMONEY
setting to format the output. DBMONEY has no effect, however, on the
internal format of data values that are stored in columns of the database.

If you do not set DBMONEY, then MONEY values for the default locale, U.S.
English, are formatted with a dollar sign ($) that precedes the MONEY value,
a period (.) that separates the integral from the fractional part of the MONEY
value, and no back symbol. For example, 100.50 is formatted as $100.50.

IBM Informix Guide to SQL: Reference

GLS

DBNLS

Suppose you want to represent MONEY values as DM (deutsche mark) units,
using the currency symbol DM and comma (,) as the decimal separator. Enter
the following command to set the DBMONEY environment variable:

setenv DBMONEY DM,

Here DM is the front currency symbol that precedes the MONEY value, and a
comma separates the integral from the fractional part of the MONEY value. As
a result, the value 100.50 is displayed as bM100, 50.

For more information about how DBMONEY formats MONEY values in
nondefault locales, see the IBM Informix GLS User’s Guide. ¢

DBNLS

The DBNLS environment variable specifies whether automatic data type
conversion is supported between NCHAR and NVARCHAR database columns
and CHAR and VARCHAR variables (respectively) of client systems.

Global Language Support (GLS) does not require the DBNLS environment
variable. But Dynamic Server databases continue to support the legacy
behavior of DBNLS, which supports applications that manipulate tables with
NCHAR or NVARCHAR columns.

setenv

DBNLS |
I2I

For UNIX systems that use the C shell, the following command line enables
client applications such as DB-Access, IBM Informix SQL, IBM Informix 4GL,
IBM Informix Dynamic 4GL, and embedded-SQL applications such as ESQL/C
or ESQL/COBOL to convert automatically between CHAR and VARCHAR
variables of the client application and NCHAR and NVARCHAR columns of
the database:

setenv DBNLS 1

This setting also supports the automatic conversion of values retrieved from
NCHAR columns into CHAR variables, and the conversion of NVARCHAR
column values into VARCHAR variables.

Environment Variables 3-39

DBONPLOAD

Similarly, when DBNLS = 1, character strings stored as CHAR variables can be
inserted into NCHAR columns, and character strings stored as VARCHAR
variables can be inserted into NVARCHAR database columns.

To support these features, DBNLS must also be set to 1 on the client system.
This setting also enables the client system to display dates, numbers, and
currency values in formats specified on the client locale.

Conversely, each of the following command lines disables automatic
conversion between CHAR and VARCHAR variables of the client application
and NCHAR and NVARCHAR columns of the database, and also prevents
Dynamic Server from using the locale files of the client system:

setenv DBNLS
unsetenv DBNLS

On UNIX systems that use the C shell, either of these commands disables
automatic conversion to and from NCHAR and NVARCHAR data values (by
setting no value for DBNLS).

Another possible setting for DBNLS is 2. If you enter at the command line
setenv DBNLS 2

then automatic data type conversion between NCHAR and CHAR and
between NVARCHAR and VARCHAR is supported (if the client system has
DBNLS set to 1 or 2), but the database server can have a different locale from
the client system.

DBONPLOAD

The DBONPLOAD environment variable specifies the name of the database
that the onpload utility of the High-Performance Loader (HPL) uses.

If DBONPLOAD is set, onpload uses the specified name as the name of the
database; otherwise, the default name of the database is onpload.

setenv

DBONPLOAD dbname { I

dbname specifies the name of the database that the onpload utility uses.

3-40 IBM Informix Guide to SQL: Reference

DBPATH

For example, to specify the name load_db as the name of the database, enter
the following command:

setenv DBONPLOAD load_db

For more information, see the IBM Informix High-Performance Loader User’s
Guide.

DBPATH

The DBPATH environment variable identifies database servers that contain
databases. DBPATH can also specify a list of directories (in addition to the
current directory) in which DB-Access looks for command scripts (.sql files).

The CONNECT, DATABASE, START DATABASE, and DROP DATABASE
statements use DBPATH to locate the database under two conditions:

m If the location of a database is not explicitly stated

m If the database cannot be located in the default server
The CREATE DATABASE statement does not use DBPATH.

To add a new DBPATH entry to existing entries, see “Modifying an
Environment-Variable Setting” on page 3-10.

setenv

DBPATH C /16\ pathname) ‘

1 I servername [full_pathname

— | | servername

full_pathname is the full path, from root, of a directory where .sql files are
stored.

pathname is the valid relative path of a directory where .sql files are
stored.

servername is the name of an Informix database server where databases
are stored. You cannot reference database files with a
servername.

Environment Variables 3-41

DBPATH

DBPATH can contain up to 16 entries. Each entry must be less than 128
characters. In addition, the maximum length of DBPATH depends on the
hardware platform on which you set DBPATH.

When you access a database with the CONNECT, DATABASE, START
DATABASE, or DROP DATABASE statement, the search for the database is
done first in the directory and/or database server specified in the statement.
If no database server is specified, the default database server that was
specified by the INFORMIXSERVER environment variable is used.

If the database is not located during the initial search, and if DBPATH is set,
the database servers and/or directories in DBPATH are searched for in the
specified database. These entries are searched in the same order in which
they are listed in the DBPATH setting.

Using DBPATH with DB-Access

If you use DB-Access and select the Choose option from the SQL menu
without having already selected a database, you see a list of all the .sql files
in the directories listed in your DBPATH. Once you select a database, the
DBPATH is not used to find the .sql files. Only the .sql files in the current
working directory are displayed.

Searching Local Directories

Use a pathname without a database server name to search for .sql scripts on
your local computer. In the following example, the DBPATH setting causes
DB-Access to search for the database files in your current directory and then
in Joachim’s and Sonja’s directories on the local computer:

setenv DBPATH /usr/joachim:/usr/sonja

As the previous example shows, if the pathname specifies a directory name
but not a database server name, the directory is sought on the computer that
runs the default database server that the INFORMIXSERVER specifies; see
“INFORMIXSERVER” on page 3-67. For instance, with the previous
example, if INFORMIXSERVER is set to quality, the DBPATH value is
interpreted, as the following example shows, where the double slash precedes
the database server name:

setenv DBPATH //quality/usr/joachim://quality/usr/sonja

3-42 IBM Informix Guide to SQL: Reference

DBPRINT

Searching Networked Computers for Databases

If you use more than one database server, you can set DBPATH explicitly to
contain the database server and/or directory names that you want to search
for databases. For example, if INFORMIXSERVER is set to quality but you
also want to search the marketing database server for /usr/joachim, set
DBPATH as the following example shows:

setenv DBPATH //marketing/usr/joachim:/usr/sonja

Specifying a Servername

You can set DBPATH to contain only database server names. This feature
allows you to locate only databases; you cannot use it to locate command
files.

The database administrator must include each database server mentioned by
DBPATH in the SINFORMIXDIR/etc/sqlhosts file. For information on commu-
nication-configuration files and dbservernames, see your Administrator’s
Guide and the Administrator’s Reference.

For example, if INFORMIXSERVER is set to quality, you can search for a
database first on the quality database server and then on the marketing
database server by setting DBPATH, as the following example shows:

setenv DBPATH //marketing

If you use DB-Access in this example, the names of all the databases on the
quality and marketing database servers are displayed with the Select option
of the DATABASE menu.

DBPRINT

The DBPRINT environment variable specifies the default printing program.

setenv ——————— DBPRINT ————— program { I

program is any command, shell script, or UNIX utility that produces stan-
dard ASCII output.

Environment Variables 3-43

DBREMOTECMD

UNIX

If you do not set DBPRINT, the default program is found in one of two places:

m For most BSD UNIX systems, the default program is lpr.
m For UNIX System V, the default program is usually Ip.

Enter the following command to set the DBPRINT environment variable to
specify myprint as the print program:

setenv DBPRINT myprint

DBREMOTECMD

Set the DBREMOTECMD environment variable to override the default remote
shell to perform remote tape operations with the database server. You can set
DBREMOTECMD to a simple command or to a full pathname.

setenv —— — DBREMOTECMD ﬁ commandf {
pathname

command is a command to override the default remote shell.

pathname is a pathname to override the default remote shell.

If you do not specify the full pathname, the database server searches your
PATH for the specified command. It is highly recommended that you use the
full pathname syntax on interactive UNIX platforms to avoid problems with
similarly named programs in other directories and possible confusion with
the restricted shell (/ust/bin/rsh).

The following command sets DBREMOTECMD for a simple command name:
setenv DBREMOTECMD rcmd

The next command to set DBREMOTECMD specifies a full pathname:
setenv DBREMOTECMD /usr/bin/remsh

For more information on DBREMOTECMD, see the discussion in your Archive
and Backup Guide about how to use remote tape devices with your database
server for archives, restores, and logical-log backups.

3-44 IBM Informix Guide to SQL: Reference

DBSPACETEMP

DBSPACETEMP

The DBSPACETEMP environment variable specifies the dbspaces in which
temporary tables are built

You can list dbspaces, separated by colon (:) or comma (,) symbols, to
spread temporary space across any number of disks.

]
—— DBSPACETEMP i temp_dbspace 3 ‘

temp_dbspace is the name of a valid existing temporary dbspace.

DBSPACETEMP overrides any default dbspaces that the DBSPACETEMP
parameter specifies in the configuration file of the database server.

Important: The dbspaces that you list in DBSPACETEMP must be composed of
chunks that are allocated as raw UNIX devices.

For example, the following command to set the DBSPACETEMP environment
variable specifies three dbspaces for temporary tables:

setenv DBSPACETEMP sorttmpl:sorttmp2:sorttmp3

Separate the dbspace entries with either colons or commas. The number of
dbspaces is limited by the maximum size of the environment variable, as
defined by your operating system. Your database server does not create a
dbspace specified by the environment variable if the dbspace does not exist.

The two classes of temporary tables are explicit temporary tables that the user
creates and implicit temporary tables that the database server creates. Use
DBSPACETEMP to specify the dbspaces for both types of temporary tables.

If you create an explicit temporary table with the CREATE TEMP TABLE
statement and do not specify a dbspace for the table either in the IN dbspace
clause or in the FRAGMENT BY clause, the database server uses the settings in
DBSPACETEMP to determine where to create the table.

If you create an explicit temporary table with the SELECT INTO TEMP
statement, the database server uses the settings in DBSPACETEMP to
determine where to create the table.

Environment Variables 3-45

DBTEMP

UNIX

If DBSPACETEMP is not set, the database server uses the ONCONFIG
parameter DBSPACETEMP. If this is not set, the database server creates the
explicit temporary table in the same dbspace where the database resides.

The database server creates implicit temporary tables for its own use while
executing join operations, SELECT statements with the GROUP BY clause,
SELECT statements with the ORDER BY clause, and index builds. When it
creates these implicit temporary tables, the database server uses disk space
for writing the temporary data, in the following order:

1. The operating-system directory or directories that the environment
variable PSORT_DBTEMP specifies, if it is set. ¢

2. The dbspace or dbspaces that the environment variable
DBSPACETEMP specifies, if it is set.

3. The dbspace or dbspaces that the ONCONFIG parameter
DBSPACETEMP specifies.

4. The operating-system file space in /tmp (UNIX) or %temp%
(Windows).

Important: If the DBSPACETEMP environment variable is set to an invalid value,
the database server defaults to the root dbspace for explicit temporary tables and to
ftmp for implicit temporary tables, not to the DBSPACETEMP configuration
parameter. In this situation, the database server might fill [tmp to the limit and
eventually bring down the database server or kill the file system.

DBTEMP

The DBTEMP environment variable is used by DB-Access and IBM Informix
Enterprise Gateway products, as well as by Dynamic Server and by earlier
database servers. DBTEMP resembles DBSPACETEMP, specifying the
directory in which to place temporary files and temporary tables.

| setenv

DBTEMP — pathname | I

pathname is the full pathname of the directory for temporary files and tables.

For DB-Access to work correctly on Windows platforms, DBTEMP should be
set to $SINFORMIXDIR/infxtmp. ¢

3-46 IBM Informix Guide to SQL: Reference

DBTIME

The following example sets DBTEMP to the pathname usr/magda/mytemp
for UNIX systems that use the C shell:

setenv DBTEMP usr/magda/mytemp

Important: DBTEMP can point to an NFS-mounted directory only if the vendor of
that NFS device is certified by IBM. For information about NFS products for
mounting storage space for an Informix database server, see the product compatibility
data at: http://lwww.ibm.com/softwareldatalinformix/pubs/smvlindex.html.

If DBTEMP is not set, the database server creates temporary files in the /tmp
directory, and temporary tables in the DBSPACETEMP directory. See
“DBSPACETEMP” on page 3-45 for the default if DBSPACETEMP is not set.
Similarly, if you do not set DBTEMP on the client system, temporary files
(such as those created for scroll cursors) are created in the /tmp directory.

You might experience unexpected behavior or failure in operations on values
of large or complex data types, such as BYTE or ROW, if DBTEMP is not set.

DBTIME

The DBTIME environment variable specifies a formatting mask for the
display and data-entry format of DATETIME values.

setenv — DBTIME—— ' (\ literal 'ﬁ

%

f \ / special
- min * precision

0
literal is a literal white space or any printable character.
min is a literal integer, setting the minimum number of characters in

the substring for the value that special specifies.

precision is the number of digits for the value of any time unit, or the max-
imum number of characters in the name of a month.

special is one of the placeholder characters that are listed on page 3-48.

Environment Variables 3-47

DBTIME

3-48

These terms and symbols are described in the pages that follow.

This quoted string can include literal characters as well as placeholders for
the values of individual time units and other elements of a DATETIME value.
DBTIME takes effect only when you call certain IBM Informix ESQL/C
DATETIME routines. (For details, see the IBM Informix ESQL/C Programmer’s
Manual.) If DBTIME is not set, the behavior of these routines is undefined, and
"YYYY-MM-DD hh:mm:ss.ff£££" is the default display and input format for
DATETIME YEAR TO FRACTION(5) literal values in the default locale.

The percentage (%) symbol gives special significance to the special place-
holder symbol that follows. Without a preceding % symbol, any character
within the formatting mask is interpreted as a literal character, even if it is the
same character as one of the placeholder characters in the following list. Note
also that the special placeholder symbols are case sensitive.

The following characters within a DBTIME format string are placeholders for
time units (or for other features) within a DATETIME value.

%b is replaced by the abbreviated month name.
%B isreplaced by the full month name.
%d isreplaced by the day of the month as a decimal number [01,31].

%Fn is replaced by a fraction of a second with a scale that the integer n
specifies. The default value of 7 is 2; the range of nis 0 <n <5.

%H is replaced by the hour (24-hour clock).

%l is replaced by the hour (12-hour clock).

%M is replaced by the minute as a decimal number [00,59].

%m is replaced by the month as a decimal number [01,12].

%p isreplaced by A.M. or PM. (or the equivalent in the locale file).
%S isreplaced by the second as a decimal number [00,59].

%y isreplaced by the year as a four-digit decimal number.

%Y isreplaced by the year as a four-digit decimal number. User must
enter a four-digit value.

%% is replaced by % (to allow % in the format string).

IBM Informix Guide to SQL: Reference

DBTIME

For example, consider this display format for DATETIME YEAR TO SECOND:
Mar 21, 2001 at 16 h 30 m 28 s

If the user enters a two-digit year value, this value is expanded to 4 digits
according to the DBCENTURY environment variable setting. If DBCENTURY
is not set, then the string 19 is used by default for the first two digits.

Set DBTIME as the following command line (for the C shell) shows:
setenv DBTIME '3b %d, %Y at $H h %M m 3S s

The default DBTIME produces the following ANSI SQL string format:
2001-03-21 16:30:28

You can set the default DBTIME as the following example shows:
setenv DBTIME '3$Y-3m-3d $H:3M:3S!

An optional field width and precision specification (w.p) can immediately
follow the percent (%) character. It is interpreted as follows:

w Specifies the minimum field width. The value is right-justified with
blank spaces on the left.

-w Specifies the minimum field width. The value is left-justified with blank
spaces on the right.

0w Specifies the minimum field width. The value is right-justified and pad-
ded with zeros on the left.

p Specifies the precisionof d, #, I, m, M, S, y, and Y time unit values, or
the maximum number of characters in b and B month names.

The following limitations apply to field-width and precision specifications:
m If the data value supplies fewer digits than precision specifies, the
value is padded with leading zeros.

m If a data value supplies more characters than precision specifies,
excess characters are truncated from the right.

m Ifno field width nor precision is specified ford, H, I, m, M, S, or y
placeholders, 0.2 is the default, or 0.4 for the v placeholder.

m A precision specification is significant only when converting a
DATETIME value to an ASCII string, but not vice versa.

Environment Variables 3-49

DBUPSPACE

GLS

The F placeholder does not support this field-width and precision syntax.

Like DBDATE, GL_DATE, or GL_DATETIME, the DBTIME setting controls
only the character-string representation of data values; it cannot change the
internal storage format of DATETIME column. (For information about
formatting DATE values, see the discussion of DBDATE on page 3-32.)

In East Asian locales that support era-based dates, DBTIME can also specify
Japanese or Taiwanese eras. See IBM Informix GLS User’s Guide for details of
additional placeholder symbols for setting DBTIME to display era-based
DATETIME values, and for descriptions of the GL_DATETIME and GL_DATE
environment variables. ¢

DBUPSPACE

The DBUPSPACE environment variable lets you specify and constrain the
amount of system disk space that the UPDATE STATISTICS statement can use
when trying to simultaneously construct multiple column distributions.

setenv

DBUPSPACE max { I

max is a positive integer, specifying the maximum disk space (in kilobytes).

For example, to set DBUPSPACE to 2,500 kilobytes, enter this command:
setenv DBUPSPACE 2500

After you set this value, the database server can use no more than 2,500
kilobytes of disk space during the execution of an UPDATE STATISTICS
statement. If a table requires 5 megabytes of disk space for sorting, then
UPDATE STATISTICS accomplishes the task in two passes; the distributions for
one half of the columns are constructed with each pass.

If you do not set DBUPSPACE, the default is a megabyte (= 1,024 kilobytes).
If you attempt to set DBUPSPACE to any value less than 1,024 kilobytes, it is
automatically set to 1,024 kilobytes, but no error message is returned. If
this value is not large enough to allow more than one distribution to be
constructed at a time, at least one distribution is done, even if the amount of
disk space required to do this is more than what DBUPSPACE specifies.

3-50 IBM Informix Guide to SQL: Reference

DEFAULT_ATTACH

DEFAULT_ATTACH

The DEFAULT_ATTACH environment variable supports the legacy behavior
of Version 7.x of Dynamic Server, which required that only nonfragmented
B-tree indexes on nonfragmented tables can be attached.

setenv

DEFAULT_ATTACH 1 { I

If DEFAULT_ATTACH is set to 1, then all other indexes, including R-trees and
UDR indexes, must be detached. (An attached index is one that is created
without specifying a fragmentation strategy or storage clause.)

If DEFAULT_ATTACH is not set, then the CREATE INDEX statement creates
detached indexes by default. This release of Dynamic Server can support
attached indexes that were created by Version 7.x of Dynamic Server.

Important: DEFAULT_ATTACH might not continue to be supported in future
releases of Informix database servers. It is not recommended that you develop new
database applications that depend on this deprecated feature.

DELIMIDENT

The DELIMIDENT environment variable specifies that strings enclosed
between double quotation (") marks are delimited database identifiers.

setenv ——

DELIMIDENT | I

No value is required; DELIMIDENT takes effect if it exists, and it remains in
effect while it is on the list of environment variables.

Delimited identifiers can include white space (such as "Vitamin E") or can be
identical to SQL keywords, (such as "TABLE" or "USAGE"). You can also use
them to declare database identifiers that contain characters outside the
default character set for SQL identifiers (such as "Column #6"). In the default
locale, this set consists of letters, digits, and the underscore (_) symbol.

You cannot, however, use DELIMIDENT to declare storage identifiers that
contain characters outside the default SQL character set.

Environment Variables 3-51

ENVIGNORE

UNIX

Database identifiers (also called SQL identifiers) are names for database objects,
such as tables and columns. Storage identifiers are names for storage objects,
such as dbspaces, blobspaces, and sbspaces (smart blob spaces).

Delimited identifiers are case sensitive.To use delimited identifiers, applica-
tions in ESQL/C must setDELIMIDENT at compile time and at runtime.

Warning: If DELIMIDENT is not already set, you should be aware that setting it can
cause the failure of existing .sql scripts or client applications that use double (")
quotation marks in contexts other than delimiting SQL identifiers, such as delimiters
of string literals. You must use single (") rather than double quotation marks for
delimited constructs that are not SQL identifiers if DELIMIDENT is set.

On UNIX systems that use the C shell and on which DELIMIDENT has been
set, you can disable this feature (which causes anything between double
quotes to be interpreted as an SQL identifier) by the command:

unsetenv DELIMIDENT

ENVIGNORE

The ENVIGNORE environment variable can deactivate specified
environment variable settings in the common (shared) and private
environment-configuration files, informix.rc and .informix respectively.

setenv

ENVIGNORE C variable) |

3-52

variable is the name of an environment variable to be deactivated.

Use colon (:) symbols between consecutive variable names. For example, to
ignore the DBPATH and DBMONEY entries in the environment-configuration
files, enter the following command:

setenv ENVIGNORE DBPATH:DBMONEY

The common environment-configuration file is stored in
$INFORMIXDIR/etc/informix.rc.

The private environment-configuration file is stored in the user’s home
directory as .informix.

IBM Informix Guide to SQL: Reference

FET_BUF_SIZE

For information on creating or modifying an environment-configuration file,
see “Setting Environment Variables in a Configuration File” on page 3-7.

ENVIGNORE itself cannot be set in an environment-configuration file.

FET_BUF_SIZE

The FET_BUF_SIZE environment variable can override the default setting for
the size of the fetch buffer for all data types except BYTE and TEXT values.

setenv —FET_BUF_SIZE size {

size is a positive integer that is larger than the default buffer size, but
no greater than 32,767, specifying the size (in bytes) of the fetch
buffer that holds data retrieved by a query.

For example, to set a buffer size to 5, 000 bytes on a UNIX system that uses
the C shell, set FET_BUF_SIZE by entering the following command:

setenv FET_BUF_SIZE 5000

When FET_BUF_SIZE is set to a valid value, the new value overrides the
default value (or any previously set value of FET_BUF_SIZE). The default
setting for the fetch buffer is dependent on row size.

The processing of BYTE and TEXT values is not affected by FET_BUF_SIZE.

No error is raised if FET_BUF_SIZE is set to a value that is less than the default
size or that is out of the range of SMALLINT values. In these cases, however,
the invalid fetch buffer size is ignored, and the default size is in effect.

A valid FET_BUF_SIZE setting is in effect for the local database server, as well
as for any remote database server from which you retrieve rows through a
distributed query in which the local server is the coordinator and the remote
database is subordinate. The greater the size of the buffer, the more rows can
be returned, and the less frequently the client application must wait while the
database server returns rows. A large buffer can improve performance by
reducing the overhead of filling the client-side buffer.

Environment Variables 3-53

IFMX_OPT_FACT_TABS

XPS

IFMX_OPT_FACT_TABS

The IFMX_OPT_FACT_TABS environment variable specifies a list of fact tables
that should be used in push-down hash joins whenever possible.

J
setenv — IFMX_OPT_FACT_TABS (fact_table L‘

owner. I

3-54

database:
database is name of a database.
fact_table is name of a fact table.
owner is name of table owner.

If you do not specify a database name or owner, the fact table can be in any
database or belong to any owner.

The environment variable lists fact tables for which you want to encourage
the optimizer to choose push-down hash-join plans. If you do not specify the
database name or owner, the table can be in any database or belong to any
owner.

When this environment variable is set, push-down hash-join restrictions for
the specified fact tables are relaxed to allow the optimizer to choose a push-
down plan even when the fact table is not larger than the dimension table or
when the dimension-table join columns are not unique.

You can use IFIMX_OPT_FACT_TABS alone to increase the possibility of push-
down hash joins. You can also use it in conjunction with the
IFMX_OPT_NON_DIM_TABS environment variable to fine tune the use of
push-down hash joins.

IBM Informix Guide to SQL: Reference

XPS

IFMX_OPT_NON_DIM_TABS

IFMX_OPT_NON_DIM_TABS

The IFMX_OPT_NON_DIM_TABS environment variable specifies a list of
dimension tables that cannot be used in push-down hash-join query plans. If
the optimizer detects a fact-dimension table query that joins one of these
dimension tables, it does not choose a push-down hash-join plan.

)
setenv — IFMX_OPT_NON_DIM_TABS C dim_table L‘

owner. f

database:
database is name of a database.
dim_table is name of a dimension table.
owner is name of table owner.

If the database name or owner is not specified, the table can be in any
database or can belong to any owner.

When this environment variable is set, if a query joins one of the dimension
tables in this list with any fact table, the optimizer never selects a push-down
hash join for the query, even if the fact table is included in the
IFMX_OPT_FACT_TABS list.

You can use the IFIMX_OPT_NON_DIM_TABS environment variable alone to
decrease the possibility of push-down hash joins. You can also use it in
conjunction with the IFMX_OPT_FACT_TABS environment variable to fine
tune the use of push-down hash joins.

Environment Variables 3-55

IFX_DEF_TABLE_LOCKMODE

IFX_DEF_TABLE_LOCKMODE

The IFX_DEF_TABLE_LOCKMODE environment variable can specify the
default lock mode for database tables that are subsequently created without
explicitly specifying the LOCKMODE PAGE or LOCKMODE ROW keywords.
This feature is convenient if you need to create several tables of the same lock
mode. UNIX systems that use the C shell support the following syntax:

setenv

IFX_DEF_TABLE_LOCKMODE XPAG EJ {
ROW

3-56

—

PAGE The default lock mode is page-level granularity.

ROW The default lock mode is row-level granularity.

Similar functionality is available by setting the DEF_TABLE_LOCKMODE
parameter of the ONCONFIG file to PAGE or ROW. When a table is created or
modified, any conflicting lock mode specifications are resolved according to
the following descending (highest to lowest) order of precedence:

1. Explicit LOCKMODE specification of CREATE TABLE or ALTER TABLE.
2. IFX_DEF_TABLE_LOCKMODE environment variable setting.

3. DEF _TABLE_LOCKMODE parameter setting in the ONCONFIG file.

4. The system default lock mode (= PAGE mode).

To make the DEF_TABLE_ LOCKMODE setting the default mode (or to restore
the system default, if DEF_TABLE_LOCKMODE is not set) use the command:

unsetenv IFX DEF TABLE LOCKMODE

If IFX_DEF_TABLE_LOCKMODE is set in the environment of the database
server before starting oninit, then its scope is all sessions of the database
server (just as if DEF_TABLE_ LOCKMODE were set in the ONCONFIG file).

If IFX_DEF_TABLE_LOCKMODE is set in the shell, or in the $SHOME/.informix
or $INFORMIXDIR/etc/informix.rc files, then the scope is restricted to the
current session (if you set it in the shell) or to the individual user.

Important: This has no effect on existing tables. If you specify ROW as the lock mode,
the database will use this to restore, recover, or copy data. For tables that were created
in PAGE mode, this might cause lock-table overflow or performance degradation.

IBM Informix Guide to SQL: Reference

IFX_DIRECTIVES

IFX_DIRECTIVES

The IFX_DIRECTIVES environment variable setting determines whether the
optimizer allows query optimization directives from within a query. The
IFX_DIRECTIVES environment variable is set on the client.

You can use either oN and oFF or 1 and o to set the environment variable.

setenv

IFX_DIRECTIVES ON |

OFF

ON Optimizer directives accepted
OFF Optimizer directives not accepted
1 Optimizer directives accepted

0 Optimizer directives not accepted

The setting of the IFX_DIRECTIVES environment variable overrides the value
of the DIRECTIVES configuration parameter that is set for the database server.
If the IFX_DIRECTIVES environment variable is not set, however, then all
client sessions will inherit the database server configuration for directives
that the ONCONFIG parameter DIRECTIVES determines. The default setting
for the IFX_DIRECTIVES environment variable is ON.

For more information about the DIRECTIVES parameter, see the Adminis-
trator’s Reference. For more information on the performance impact of
directives, see your Performance Guide.

Environment Variables 3-57

IFX_LONGID

IFX_LONGID

The IFX_LONGID environment variable setting and the version number of
the client application determine whether a given client application is capable
of handling long identifiers. (Older versions of Informix databases restricted
SQL identifiers to 18 or fewer bytes; long identifiers can have up to 128 bytes
when IFX_LONGID is set.) Valid IFX_LONGID values are 1 and 0.

setenv

IFX_LONGID L 1 J |
0

3-58

1 Client supports long identifiers.

0 Client cannot support long identifiers.

When IFX_LONGID is set to zero, applications display only the first 18 bytes
of long identifiers, without indicating (by +) that truncation has occurred.

If IFX_LONGID is unset or is set to a value other than 1 or 0, the determination
is based on the internal version of the client application. If the version is not
less than 9.0304, the client is considered capable of handling long identifiers.
Otherwise, the client application is considered incapable.

The IFX_LONGID setting overrides the internal version of the client appli-
cation. If the client cannot handle long identifiers despite a newer version
number, set IFX_LONGID to 0. If the client version can handle long identifiers
despite an older version number, set IFX_LONGID to 1.

If you set IFX_LONGID on the client, the setting affects only that client. If you
bring up the database server with IFX_LONGID set, all client applications use
that setting by default. If IFX_LONGID is set to different values on the client
and on the database server, however, the client setting takes precedence.

Important: ESQL executables that have been built with the -static option using the
libos.a library version that does not support long identifiers cannot use the
IFX_LONGID environment variable. You must recompile such applications with the
new libos.a library that includes support for long identifiers. Executables that use
shared libraries (no -static option) can use IFX_LONGID without recompilation
provided that they use the new libifos.so that provides support for long identifiers.
For details, see your ESQL product manual.

IBM Informix Guide to SQL: Reference

UNIX

IFX_NETBUF_PVTPOOL_SIZE

IFX_NETBUF_PVTPOOL_SIZE

The IFX_NETBUF_PVTPOOL_SIZE environment variable specifies the
maximum size of the free (unused) private network buffer pool for each
database server session.

setenv

IFX_NETBUF_PVTPOOL_SIZE count { I

count is an integer specifying the number of units (buffers) in the pool.

The default size is 1 buffer. If IFX_ NETBUF_PVTPOOL_SIZE is set to 0, then
each session obtains buffers from the free global network buffer pool. You
must specify the value in decimal form.

IFX_NETBUF_SIZE

The IFX_NETBUF_SIZE environment variable lets you configure the network
buffers to the optimum size. It specifies the size of all network buffers in the
free (unused) global pool and the private network buffer pool for each
database server session.

setenv

IFX_NETBUF_SIZE size { I

size is an integer specifying the size (in bytes) for one network buffer.

The default size is 4 kilobytes (4,096 bytes). The maximum size is 64 kilobytes
(65,536 bytes) and the minimum size is 512 bytes. You can specify the value
in hexadecimal or decimal form.

Tip: You cannot set a different size for each session.

Environment Variables 3-59

IFX_UPDDESC

" bs | IFX_UPDDESC

You must set the IFX_UPDDESC environment variable at execution time
before you can do a DESCRIBE of an UPDATE statement.

setenv — |FX_UPDDESC value {

value is any non-NULL value.

A NULL value (here meaning that IFX_UPDDESC is not set) disables the
DESCRIBE-for-UPDATE feature. Any non-NULL value enables the feature.

IMCADMIN

The IMCADMIN environment variable supports the imcadmin adminis-
trative tool by specifying the name of a database server through which
imcadmin can connect to MaxConnect. For imcadmin to operate correctly,
you must set IMCADMIN before you use an IBM Informix product.

setenv —— IMCADMIN dbservername {

dbservername is the name of a database server.

Here dbservername must listed in the sqlhosts file on the computer where the
MaxConnect runs. MaxConnect uses this setting to obtain the following
connectivity information from the sqlhosts file:
m Where the administrative listener port must be established
m The network protocol that the specified database server uses
m The host name of the system where the specified database server
resides

You cannot use the imcadmin tool unless IMCADMIN is set to a valid
database server name.

For more information about using IMCADMIN, refer to IBM Informix
MaxConnect.

3-60 IBM Informix Guide to SQL: Reference

IMCCONFIG

IMCCONFIG

The IMCCONFIG environment variable specifies a nondefault filename, and
optionally a pathname, for the MaxConnect configuration file. On UNIX
systems that support the C shell, this variable can be set by the following
command.

setenv

IMCCONFIG ——— pathname { I

pathname is a full pathname or a simple filename.

When the setting is a filename that is not qualified by a full pathname,
MaxConnect searches for the specified file in the SINFORMIXDIR/etc/
directory. Thus, if you set IMCCONFIG to IMCconfig.imc2, MaxConnect
searches for SINFORMIXDIR/etc/IMCconfig.imc2 as its configuration file.

If the IMCCONTFIG environment variable is not set, MaxConnect searches by
default for SINFORMIXDIR/etc/IMCconfig as its configuration file.

IMCSERVER

The IMCSERVER environment variable specifies the name of a database
server entry in the sqlhosts file that contains information on connectivity.

The database server can be either local or remote. On UNIX systems that
support the C shell, the IMCSERVER environment variable can be set by the
command.

setenv

IMCSERVER — dbservername { I

dbservername is the valid name of a database server.

Here dbservername must be the name of a database server in the sqlhosts file.
For more information about sqlhosts settings with MaxConnect, see your
Administrator’s Guide. You cannot use MaxConnect unless IMCSERVER is set
to a valid database server name.

Environment Variables 3-61

INFORMIXC

UNIX

INFORMIXC

The INFORMIXC environment variable specifies the filename or pathname of
the C compiler to be used to compile files that IBM Informix ESQL/C
generates. The setting takes effect only during the C compilation stage.

If INFORMIXC is not set, the default compiler on most systems is cc.

Tip: On Windows, you pass either -mcc or -bee options to the esql preprocessor to use
either the Microsoft or Borland C compilers.

setenv —— INFORMIXC ﬁ compiler f ‘

pathname

compiler is the filename of the C compiler.

pathname is the full pathname of the C compiler.

For example, to specify the GNU C compiler, enter the following command:

setenv INFORMIXC gcc

Important: If you use gcc, be aware that the database server assumes that strings are
writable, so you need to compile using the -fwritable-strings option. Failure to do
so can produce unpredictable results, possibly including core dumps.

INFORMIXCONCSMCFG

The INFORMIXCONCSMCEFG environment variable specifies the location of
the concsm.cfg file that describes communications support modules.

setenv

INFORMIXCONCSMCFG ———— pathname {

3-62

pathname specifies the full pathname of the concsm.cfg file.

The following command specifies that the concsm.cfg file is in /ust/myfiles:

setenv INFORMIXCONCSMCFG /usr/myfiles

IBM Informix Guide to SQL: Reference

INFORMIXCONRETRY

You can also specify a different name for the file. The following example
specifies a filename of csmconfig in the same directory:

setenv INFORMIXCONCSMCFG /usr/myfiles/csmconfig

The default location of the concsm.cfg file is in SINFORMIXDIR/etc. For more
information about communications support modules and the contents of the
concsm.cfg file, refer to the Administrator’s Reference.

INFORMIXCONRETRY

The INFORMIXCONRETRY environment variable sets the maximum number
of additional connection attempts that should be made to each database server
by the client during the time limit that INFORMIXCONTIME specifies.

setenv

INFORMIXCONRETRY- count { I

count is the number of additional attempts to connect to each
database server.

For example, the following command sets INFORMIXCONRETRY to specify
three additional connection attempts (after the initial attempt):

setenv INFORMIXCONRETRY 3

The default value for INFORMIXCONRETRY is one retry after the initial
connection attempt. The INFORMIXCONTIME setting, described in the
following section, takes precedence over the INFORMIXCONRETRY setting.

INFORMIXCONTIME

The INFORMIXCONTIME environment variable specifies for how many
seconds the CONNECT statement continues each attempt to establish a
connection to a database server before returning an error. If you set no value,
the default of 80 seconds can typically support a few hundred concurrent
client connections, but some systems might encounter very few connection
errors with a value as low as 15. The total distance between nodes, hardware
speed, the volume of traffic, and the concurrency level of the network can all
affect what value you should set to optimize INFORMIXCONTIME.

Environment Variables 3-63

INFORMIXCONTIME

The INFORMIXCONTIME and INFORMIXCONRETRY environment variables
let you configure your client-side connection capability to retry the
connection instead of returning a -908 error.

setenv —— INFORMIXCONTIME ——— seconds { I

seconds represents the minimum number of seconds spent in attempts to
establish a connection to a database server.

For example, enter this command to set INFORMIXCONTIME to 60 seconds:
setenv INFORMIXCONTIME 60

If INFORMIXCONTIME is set to 60 and INFORMIXCONRETRY is set to 3,
attempts to connect to the database server (after the initial attempt at 0
seconds) are made at 20, 40, and 60 seconds, if necessary, before aborting.
This 20-second interval is the result of INFORMIXCONTIME divided by
INFORMIXCONRETRY. If you attempt to set INFORMIXCONTIME to zero, the
database server automatically resets it to the default value of 80 seconds.

If execution of the CONNECT statement involves searching DBPATH, the
following rules apply:

m All appropriate servers in the DBPATH setting are accessed at least
once, even though the INFORMIXCONTIME value might be
exceeded. Thus, the CONNECT statement might take longer than the
INFORMIXCONTIME time limit to return an error that indicates
connection failure or that the database was not found.

m INFORMIXCONRETRY specifies how many additional connection
attempts should be made for each database server entry in DBPATH.

m The INFORMIXCONTIME value is divided among the number of
database server entries specified in DBPATH. Thus, if DBPATH
contains numerous servers, you should increase the INFORMIX-
CONTIME value accordingly. For example, if DBPATH contains three
entries, to spend at least 30 seconds attempting each connection, set
INFORMIXCONTIME to 90.

INFORMIXCONTIME takes precedence over the INFORMIXCONRETRY
setting. Retry efforts could end after the INFORMIXCONTIME value is
exceeded, but before the INFORMIXCONRETRY value is reached.

3-64 IBM Informix Guide to SQL: Reference

INFORMIXCPPMAP

INFORMIXCPPMAP

Set the INFORMIXCPPMAP environment variable to specify the fully
qualified pathname of the map file for C++ programs. Information in the map
file includes the database server type, the name of the shared library that
supports the database object or value object type, the library entry point for
the object, and the C++ library for which an object was built.

setenv —

INFORMIXCPPMAP ——— pathname { I

pathname is the directory path where the C++ map file is stored.

The map file is a text file that can have any filename. You can specify several
map files, separated by colons (:) on UNIX or semicolons (;) on Windows.

On UNIX, the default map file is SINFORMIXDIR/etc/c++map. On Windows,
the default map file is %INFORMIXDIR %\ etc\ c++map.

INFORMIXDIR

The INFORMIXDIR environment variable specifies the directory that
contains the subdirectories in which your product files are installed. You
must always set INFORMIXDIR. Verify that INFORMIXDIR is set to the full
pathname of the directory in which you installed your database server. If you
have multiple versions of a database server, set INFORMIXDIR to the appro-
priate directory name for the version that you want to access. For information
about when to set INFORMIXDIR, see your Installation Guide.

setenv ———

INFORMIXDIR ——— pathname | I

pathname is the directory path where the product files are installed.

To set INFORMIXDIR to usr/informix/, for example, as the installation
directory, enter the following command:

setenv INFORMIXDIR /usr/informix

Environment Variables 3-65

INFORMIXKEYTAB

INFORMIXKEYTAB

The INFORMIXKEYTAB environment variable specifies the location of the
keytab file. The keytab file contains authentication information that database
servers and clients access at connection time, if they use the DCE-GSS commu-
nications support module (CSM). It contains key tables that store keys, each
of which contains a principal name (database server or user name), type,
version, and value.

The database server uses the keytab file to find the key to register the
database server and to acquire a credential for it. A client application uses the
key if the user did not execute dce_login with the current operating-system
user name (which is the same as the DCE principle name) or did not explicitly
provide a credential.

setenv

INFORMIXKEYTAB pathname 4{ I

pathname specifies the full path of the keytab file.

For example, the following command specifies that the name and location of
the keytab file is /usr/myfiles/mykeytab:

setenv INFORMIXKEYTAB /usr/myfiles/mykeytab

For more information about the DCE-GSS communications support module,
see the Administrator’s Guide.

INFORMIXOPCACHE

The INFORMIXOPCACHE environment variable can specify the size of the
memory cache for the staging-area blobspace of the client application.

| setenv

INFORMIXOPCACHE kilobytes —| I

kilobytes specifies the value you set for the optical memory cache.

Set the INFORMIXOPCACHE environment variable by specifying the size of
the memory cache in kilobytes. The specified size must be equal to or smaller
than the size of the system-wide configuration parameter, OPCACHEMAX.

3-66 IBM Informix Guide to SQL: Reference

INFORMIXSERVER

If you do not set INFORMIXOPCACHE, the default cache size is 128 kilobytes
or the size specified in the configuration parameter OPCACHEMAX. The
default for OPCACHEMAX is 128 kilobytes. If you set INFORMIXOPCACHE to
a value of 0, Optical Subsystem does not use the cache.

INFORMIXSERVER

The INFORMIXSERVER environment variable specifies the default database
server to which an explicit or implicit connection is made by an SQL API

client, the DB-Access utility, or other IBM Informix products. This must be set
before you can use IBM Informix client products. It has the following syntax.

setenv

INFORMIXSERVER

dbservername { I

dbservername is the name of the default database server.

The value of INFORMIXSERVER can be a local or remote server, but must
correspond to a valid dbservername entry in the SINFORMIXDIR/etc/sqlhosts
file on the computer running the application. The dbservername must begin
with a lower-case letter and cannot exceed 128 bytes. It can include any
printable characters except uppercase characters, field delimiters (blank
space or tab), the newline character, and the hyphen (or minus) symbol.

For example, this command specifies the coral database server as the default:

setenv INFORMIXSERVER coral

INFORMIXSERVER specifies the database server to which an application
connects if the CONNECT DEFAULT statement is executed. It also defines the
database server to which an initial implicit connection is established if the
first statement in an application is not a CONNECT statement.

Important: You must set INFORMIXSERVER even if the application or DB-Access
does not use implicit or explicit default connections.

Environment Variables 3-67

INFORMIXSHMBASE

UNIX

For Extended Parallel Server, the INFORMIXSERVER environment variable
specifies the name of a dbserver group. To specify a coserver name, use the
following format:

dbservername.coserver number

Here dbservername is the value that you assigned to the DBSERVERNAME
configuration parameter in the ONCONFIG configuration file, and
coserver_number is the value that you assigned to the COSERVER configu-
ration parameter for the connection coserver.

Strictly speaking, INFORMIXSERVER is not required for initialization. If
INFORMIXSERVER is not set, however, Extended Parallel Server does not
build the sysmaster tables. ¢

INFORMIXSHMBASE

The INFORMIXSHMBASE environment variable affects only client
applications connected to Informix databases that use the interprocess
communications (IPC) shared-memory (ipcshm) protocol.

Important: Resetting INFORMIXSHMBASE requires a thorough understanding of
how the application uses memory. Normally you do not reset INFORMIXSHMBASE.

INFORMIXSHMBASE specifies where shared-memory communication
segments are attached to the client process so that client applications can
avoid collisions with other memory segments that it uses. If you do not set
INFORMIXSHMBASE, the memory address of the communication segments
defaults to an implementation-specific value such as 0x800000.

setenv

INFORMIXSHMBASE value {

3-68

value is an integer (in kilobytes) used to calculate the memory address.

The database server calculates the memory address where segments are
attached by multiplying the value of INFORMIXSHMBASE by 1, 024. For
example, on a system that uses the C shell, you can set the memory address
to the value 0x800000 by entering the following command:

setenv INFORMIXSHMBASE 8192

IBM Informix Guide to SQL: Reference

INFORMIXSQLHOSTS

For more information, see your Administrator’s Guide and the Administrator’s
Reference.

INFORMIXSQLHOSTS

The INFORMIXSQLHOSTS environment variable specifies where the SQL

setenv

client or the database server can find connectivity information.
INFORMIXSQLHOSTS pathname ‘ I

UNIX

pathname is the full pathname of the connectivity information file.

On UNIX systems, the default search path for the connectivity information
file is SINFORMIXDIR/etc/sqlhosts. ¢

The following command overrides this default to specify the mysqlhosts file
in the /work/envt directory:

setenv INFORMIXSQLHOSTS /work/envt/mysglhosts

On Windows, INFORMIXSQLHOSTS points to the computer whose registry
contains the SQLHOSTS subkey. ¢

The next example specifies that the client or database server look for connec-
tivity information on a computer named arizona:

set INFORMIXSQLHOSTS = \\arizona

For details of the information that sqlhosts (or a file with a non-default
filename) can provide about connectivity, see your Administrator’s Guide.

Environment Variables 3-69

INFORMIXSTACKSIZE

INFORMIXSTACKSIZE

INFORMIXSTACKSIZE environment variable specifies the stack size (in
kilobytes) that the database server uses for the primary thread of a client
session. You can use INFORMIXSTACKSIZE to override the value of the
ONCONFIG parameter STACKSIZE for a given application or user.

setenv —— — INFORMIXSTACKSIZE size { I

size is an integer, setting the stack size (in kilobytes) for SQL client threads.
For example, to decrease the INFORMIXSTACKSIZE to 20 kilobytes, enter the
following command:

setenv -STACKSIZE 20

If INFORMIXSTACKSIZE is not set, the stack size is taken from the database
server configuration parameter STACKSIZE, or else defaults to a platform-
specific value. The default stack size value for the primary thread of an SQL
client is 32 kilobytes for nonrecursive database activity.

Warning: For specific instructions on setting this value, see the “Administrator’s
Reference.” If you incorrectly set the value of INFORMIXSTACKSIZE, it can cause

the database server to fail.

INFORMIXTERM

The INFORMIXTERM environment variable specifies whether DB-Access
should use the information in the termcap file or the terminfo directory.

On character-based systems, the termcap file and terminfo directory
determine terminal-dependent keyboard and screen capabilities, such as the
operation of function keys, color and intensity attributes in screen displays,
and the definition of window borders and graphic characters.

setenv ——— INFORMIXTERM ﬁ termcap f {
terminfo

3-70 IBM Informix Guide to SQL: Reference

INF_ROLE_SEP

If INFORMIXTERM is not set, the default setting is termcap. When DB-Access
is installed on your system, a termcap file is placed in the etc subdirectory of
$INFORMIXDIR. This file is a superset of an operating-system termcap file.

You can use the termcap file that the database server supplies, the system
termcap file, or a termcap file that you create. You must set the TERMCAP
environment variable if you do not use the default termcap file. For infor-
mation on setting the TERMCAP environment variable, see page 3-91.

The terminfo directory contains a file for each terminal name that has been
defined. The terminfo setting for INFORMIXTERM is supported only on
computers that provide full support for the UNIX System V terminfo library.
For details, see the machine notes file for your product.

INF_ROLE_SEP

The INF_ROLE_SEP environment variable configures the security feature

of role separation when the database server is installed. Role separation
enforces separating administrative tasks by people who run and audit the
database server. If INF_ROLE_SEP is not set, then user informix (the default)
can perform all administrative tasks.

setenv

INF_ROLE_SEP n | I

n is any positive integer.
To enable role separation for database servers on Windows, choose the role-
separation option during installation. ¢

If INF_ROLE_SEP is set, role separation is implemented and a separate group
is specified to serve each of the following responsibilities:

m The database system security officer (DBSSO)
m The audit analysis officer (AAO)

m The standard user

For more information about the security feature of role separation, see the
Trusted Facility Guide. To learn how to configure role separation when you
install your database server, see your Installation Guide.

Environment Variables 3-71

INTERACTIVE_DESKTOP_OFF

INTERACTIVE_DESKTOP_OFF

This environment variable lets you prevent interaction with the Windows
desktop when an SPL routine executes a SYSTEM() command.

setenv ———— INTERACTIVE_DESKTOP_OFF L 1 j {
0

If INTERACTIVE_DESKTOP_OFF is 1 and an SPL routine attempts to interact
with the desktop (for example, with the notepad.exe or cmd.exe program),
the routine fails unless the user is a member of the Administrators group.

The valid settings (1 or 0) have the following effects:

1 Prevents the database server from acquiring desktop resources for the
user executing the stored procedure

0 SYSTEM() commands in a stored procedure can interact with the
desktop. This is the default value.

Setting INTERACTIVE_DESKTOP_OFF to 1 allows an SPL routine that does
not interact with the desktop to execute more quickly. This setting also allows
the database server to simultaneously call a greater number of SYSTEM()
commands because the command no longer depends on a limited operating-
system resource (Desktop and WindowStation handles).

ISM_COMPRESSION

Set this environment variable in the ON-Bar environment to specify whether
the IBM Informix Storage Manager (ISM) should use data compression.

setenv ——— ISM_COMPRESSION T TRUE I {
FALSE

3-72 IBM Informix Guide to SQL: Reference

ISM_DEBUG_FILE

If ISM_COMPRESSION is set to TRUE in the environment of the ON-Bar
process that makes a request, the ISM server uses a data-compression
algorithm to store or retrieve the requested data. If ISM_COMPRESSION is set
to FALSE or is not set, the ISM server does not use compression.

ISM_DEBUG_FILE

Set the ISM_DEBUG_FILE environment variable in the IBM Informix Storage
Manager server environment to specify where to write XBSA messages.

setenv ———

ISM_DEBUG_FILE

pathname { I

pathname specifies the location of the XBSA message log file.

If you do not set ISM_DEBUG_FILE, the XBSA message log is located in the
$INFORMIXDIR/ism/applogs/xbsa.messages directory on UNIX, or in the
c:\nsr\applogs\xbsa.messages directory on Windows systems.

ISM_DEBUG_LEVEL

Set the ISM_DEBUG_LEVEL environment variable in the ON-Bar environment
to control the level of reporting detail recorded in the XBSA messages log. The
XBSA shared library writes to this log.

setenv

—— ISM_DEBUG_LEVEL

value { I

value specifies the level of reporting detail, where 1 < value < 9.

If ISM_DEBUG_LEVEL is not set, has a NULL value, or has a value outside this
range, the default detail level is 1. A detail level of 0 suppresses all XBSA
debugging records. A detail level of 1 reports only XBSA failures.

Environment Variables 3-73

ISM_ENCRYPTION

ISM_ENCRYPTION

Set the ISM_ENCRYPTION environment variable in the ON-Bar environment
to specify whether IBM Informix Storage Manager (ISM) uses data encryption.

setenv

ISM_ENCRYPTION XOR {
NONE
TRUE

Three settings of ISM_ENCRYPTI are supported:

XOR uses encryption.
NONE does not use encryption.
TRUE uses encryption.

If ISM_ENCRYPTION is set to NONE or is not set, the ISM server does not use
encryption.

If the ISM_ENCRYPTION is set to TRUE or XOR in the environment of the
ON-Bar process that makes a request, the ISM server uses encryption to store
or retrieve the data specified in that request.

ISM_MAXLOGSIZE

Set the ISM_MAXLOGSIZE environment variable in the IBM Informix Storage
Manager (ISM) server environment to specify the size threshold of the ISM
activity log.

setenv ——— — ISM_MAXLOGSIZE ——— size 4{ I

size specifies the size threshold (in megabytes) of the activity log.

If ISM_MAXLOGSIZE is not set, then the default size limit is 1 megabyte. If
ISM_MAXLOGSIZE is set to a NULL value, then the threshold is 0 bytes.

3-74 IBM Informix Guide to SQL: Reference

ISM_MAXLOGVERS

ISM_MAXLOGVERS

Set the ISM_MAXLOGVERS environment variable in the IBM Informix
Storage Manager (ISM) server environment to specify the maximum number
of activity-log files to be preserved by the ISM server.

ISM_MAXLOGVERS value { I

value specifies the number of files to be preserved.

If ISM_MAXLOGYVERS is not set, then the default number of files is four. If the
setting is a NULL value, then the ISM server preserves no activity log files.

JAR_TEMP_PATH

Set the JAR_TEMP_PATH variable to specify a non-default local file system
location where jar management procedures such as install_jar() and
replace_jar() can store temporary .jar files of the Java virtual machine.

—————— JAR_TEMP_PATH —— pathname ———| I

pathname specifies a local directory for temporary .jar files.

This directory must have read and write permissions for the user who brings
up the database server. If the JAR_TEMP_PATH environment variable is not
set, temporary copies of .jar files are stored in the /tmp directory of the local
file system for the database server.

Environment Variables 3-75

JAVA_COMPILER

B | JAVA_COMPILER

You can set the JAVA_COMPILER environment variable in the Java virtual
machine environment to disable JIT compilation.

setenv ——— JAVA_COMPILER \ none 7—{
NONE

The NONE and none settings are equivalent. On UNIX systems that support the
C shell and on which JAVA_COMPILER has been set to NONE or none, you can
enable the JIT compiler for the JVM environment by the following command:

unset JAVA COMPILER

BECEE | JVM_MAX_HEAP_SIZE

The JVM_MAX_HEAP_SIZE environment variable can set a non-default
upper limit on the size of the heap for the Java virtual machine.

setenv ——— X XX JVM_MAX_HEAP_SIZE size {

size is a positive integer that specifies the maximum size (in megabytes).

For example, the following command sets the maximum heap size at 12 MB:
set JVM_MAX_HEAP_SIZE 12

If you do not set JVM_MAX_HEAP_SIZE, 16 MB is the default maximum size.

3-76 IBM Informix Guide to SQL: Reference

UNIX

LD_LIBRARY_PATH

LD_LIBRARY_PATH

The LD_LIBRARY_PATH environment variable tells the shell on Solaris
systems which directories to search for client or shared Informix general
libraries. You must specify the directory that contains your client libraries
before you can use the product.

setenv —— LD_LIBRARY_PATH —— $PATH:(::;xﬂhnanmzi:>{

XPS

pathname specifies the search path for the library.
For INTERSOLYV DataDirect ODBC Driver on AIX, set LIBPATH. For INTERSOLV
DataDirect ODBC Driver on HP-UX, set SHLIB_PATH.

The following example sets the LD_LIBRARY_PATH environment variable to
the desired directory:

setenv LD LIBRARY PATH
${INFORMIXDIR}/1lib:${INFORMIXDIR}/lib/esql:$LD LIBRARY PATH

LIBERAL_MATCH

The LIBERAL_MATCH environment variable allows the database server to
ignore trailing blanks when the LIKE and MATCHES operators occur in SQL
statements that compare two column values.

setenv

LIBERAL_MATCH | I

When this environment variable is set, the database server ignores trailing
blanks in a LIKE or MATCHES condition. For example, if LIBERAL_MATCH is
set, and you specify “M LIKE P” when P contains trailing blank spaces that
do not occur in M, the result is TRUE. When this environment variable is not
set, the database server returns FALSE for string comparisons like this that
differ only in trailing blank characters.

Environment Variables 3-77

LIBPATH

This environment variable supports behavior consistent with that of the LIKE
and MATCHES operators in database servers, Versions 7.x and 9.x. This
behavior (like the MATCHES operator) is an extension to the ANSI/ISO
standard for SQL.

For more information about the LIKE and MATCHES operators, refer to the
IBM Informix Guide to SQL: Syntax.

LIBPATH

The LIBPATH environment variable tells the shell on AIX systems which
directories to search for dynamic-link libraries for the INTERSOLV DataDirect
ODBC Driver. You must specify the full pathname for the directory where you
installed the product.

setenv — LIBPATH () |

pathname \

pathname specifies the search path for the libraries.

On Solaris, set LD_LIBRARY_PATH. On HP-UX, set SHLIB_PATH.

3-78 IBM Informix Guide to SQL: Reference

NODEFDAC

NODEFDAC

When the NODEFDAC environment variable is set to yes, it prevents default
table privileges (Select, Insert, Update, and Delete) from being granted to
PUBLIC when a new table is created in a database that is not ANSI compliant.
If you do not set the NODEFDAC variable, it is, by default, set to no.

setenv

|

NODEFDAC no f |
\ yes

no allows default table privileges to be granted to PUBLIC. Also allows
the Execute privilege on a new user-defined routine to be granted to
PUBLIC when the user-defined routine is created in Owner mode.

yes prevents default table privileges from being granted to PUBLIC on
new tables in a database that is not ANSI compliant. This setting also
prevents the Execute privilege for a new user-defined routine from
being granted to PUBLIC when the routine is created in Owner mode.

ONCONFIG

The ONCONFIG environment variable specifies the name of the active file
that holds configuration parameters for the database server. This file is read
as input during the initialization procedure. After you prepare the
ONCONFIG configuration file, set the ONCONFIG environment variable to
the name of the file.

setenv

ONCONFIG —— filename { I

filename is the name of a file in $INFORMIXDIR/etc that contains the
configuration parameters for your database.

Environment Variables 3-79

OPTCOMPIND

XPS

To prepare the ONCONFIG file, make a copy of the onconfig.std file and
modify the copy. It is recommended that you name the ONCONFIG file so that
it can easily be related to a specific database server. If you have multiple
instances of a database server, each instance must have its own uniquely
named ONCONFIG file.

To prepare the ONCONFIG file for Extended Parallel Server, make a copy of
the onconfig.std file if you are using a single coserver configuration or make
a copy of the onconfig.xps file if you are using a multiple coserver configu-
ration. You can use the onconfig.std file for a multiple coserver
configuration, but you would have to add additional keywords and configu-
ration parameters such as END, NODE, and COSERVER, which are already
provided for you in the onconfig.xps file. ¢

If the ONCONTFIG environment variable is not set, the database server uses
configuration values from either the SONCONFIG file or the
$INFORMIXDIR/etc/onconfig file.

For more information on configuration parameters and the ONCONFIG file,
see the Administrator’s Reference.

OPTCOMPIND

You can set the OPTCOMPIND environment variable so that the optimizer

setenv OPTCOMPIND

can select the appropriate join method.
|
2 !
1
0

0 A nested-loop join is preferred, where possible, over a sort-merge join
or a hash join.

1 When the isolation level is not Repeatable Read, the optimizer behaves
as in setting 2; otherwise, the optimizer behaves as in setting o.

2 Nested-loop joins are not necessarily preferred. The optimizer bases its
decision purely on costs, regardless of transaction isolation mode.

3-80 IBM Informix Guide to SQL: Reference

OPTMSG

When OPTCOMPIND is not set, the database server uses the OPTCOMPIND
value from the ONCONFIG configuration file. When neither the environment
variable nor the configuration parameter is set, the default value is 2.

For more information on the ONCONFIG configuration parameter
OPTCOMPIND, see the Administrator’s Reference. For more information on the
different join methods that the optimizer uses, see your Performance Guide.

OPTMSG

Set the OPTMSG environment variable at runtime before you start an
IBM Informix ESQL/C application to enable (or disable) optimized message
transfers (message chaining) for all SQL statements in an application.

setenv OPTMSG \ 0 / ‘
1

0 disables optimized message transfers.

1 enables optimized message transfers and implements the feature for
any subsequent connection.

The default value is 0 (zero), which explicitly disables message chaining. You
might wish, for example, to disable optimized message transfers for state-
ments that require immediate replies, for debugging, or to ensure that the
database server processes all messages before the application terminates.

When you set OPTMSG within an application, you can activate or deactivate
optimized message transfers for each connection or within each thread. To
enable optimized message transfers, you must set OPTMSG before you
establish a connection.

For more information about setting OPTMSG and defining related global
variables, see the IBM Informix ESQL/C Programmer’s Manual.

Environment Variables 3-81

OPTOFC

OPTOFC

Set the OPTOFC environment variable to enable optimize-OPEN-FETCH-
CLOSE functionality in an IBM Informix ESQL/C application or other APIs
(such as JDBC, ODBC, OLE DB, LIBDMI, and Lib C++) that use DECLARE and
OPEN statements to execute a cursor.

setenv OPTOFC \ 0 f |
1

0 disables OPTOFC for all threads of the application.
1 enables OPTOFC for every cursor in every thread of the application.

The default value is o0 (zero).

The OPTOFC environment variable reduces the number of message requests
between the application and the database server.

If you set OPTOFC from the shell, you must set it before you start the appli-
cation. For more information about enabling OPTOFC and related features,
see the IBM Informix ESQL/C Programmer’s Manual.

OPT_GOAL

Set the OPT_GOAL environment variable in the user environment, before you
start an application, to specify the query performance goal for the optimizer.

setenv OPT_GOAL \ -1 J |
0

0 specifies user-response-time optimization.
-1 specifies total-query-time optimization.

The default behavior is for the optimizer to choose query plans that optimize
the total query time.

3-82 IBM Informix Guide to SQL: Reference

PATH

You can also specify the optimization goal for individual queries with
optimizer directives or for a session with the SET OPTIMIZATION statement.

Both methods take precedence over the OPT_GOAL environment variable
setting. You can also set the OPT_GOAL configuration parameter for the
Dynamic Server system; this method has the lowest level of precedence.

For more information about optimizing queries for your database server,
see your Performance Guide. For information on the SET OPTIMIZATION
statement, see the IBM Informix Guide to SQL: Syntax.

PATH

The UNIX PATH environment variable tells the shell which directories to
search for executable programs. You must add the directory containing your
IBM Informix product to your PATH setting before you can use the product.

PATH —— $PATH: ghname j ‘

pathname specifies the search path for the executables.

Include a colon (:) separator between the pathnames on UNIX systems. (Use
the semicolon (;) separator between pathnames on Windows systems.)

You can specify the search path in various ways. The PATH environment
variable tells the operating system where to search for executable programs.
You must include the directory that contains your IBM Informix product in
your PATH setting before you can use the product. This directory should
appear before $INFORMIXDIR/bin, which you must also include.

For additional information about how to modify your path, see “Modifying
an Environment-Variable Setting” on page 3-10.

Environment Variables 3-83

PDQPRIORITY

PDQPRIORITY

The PDQPRIORITY environment variable determines the degree of
parallelism that the database server uses and affects how the database server
allocates resources, including memory, processors, and disk reads.

XPS For Extended Parallel Server, the PDQPRIORITY environment variable deter-
mines only the allocation of memory resources. ¢
setenv — PDQPRIORITY HIGH |
LOW
OFF
resources
\—m — , high_valu

resources Is an integer in the range 0 to 100. Value 1 is the same as LOW.
Value 0 is the same as OFF (for supported database servers
other than Extended Parallel Server only).

high_value Optional integer value that requests the maximum percentage
of memory (for Extended Parallel Server only). When you
specify this value after the resources value, you request a range
of memory, expressed as a percentage.

Here the HIGH, LOW, and OFF keywords have the following effects:

HIGH When the database server allocates resources among all users,
it gives as many resources as possible to the query.

LOW Data is fetched from fragmented tables in parallel.

OFF PDQ processing is turned off (for supported database servers
other than Extended Parallel Server).

For supported database servers other than Extended Parallel Server, the

resources value specifies the query priority level and the amount of resources

that the database server uses to process the query. When you specify LOW, the

database server uses no forms of parallelism.

3-84 IBM Informix Guide to SQL: Reference

PLCONFIG

When PDQPRIORITY is not set, the default value is OFF.

When PDQPRIORITY is set to HIGH, the database server determines an
appropriate value to use for PDQPRIORITY based on several criteria. These
include the number of available processors, the fragmentation of tables
queried, the complexity of the query, and additional factors. ¢

The resources value establishes the minimum percentage of memory when
you also specify high_value to request a range of memory allocation. Other
parallel operations can occur when the PDQPRIORITY setting is LOW.

When the PDQPRIORITY environment variable is not set, the default value is
the value of the PDQPRIORITY configuration parameter.

When PDQPRIORITY is set to 0, the database server can execute a query in
parallel, depending on the number of available processors, the fragmentation
of tables queried, the complexity of the query, and so on. PDQPRIORITY does
not affect the degree of parallelism in Extended Parallel Server. ¢

Usually, the more resources a database server uses, the better its performance
for a given query. If the server uses too many resources, however, contention
among the resources can result and take resources away from other queries,
resulting in degraded performance. For more information on performance
considerations for PDQPRIORITY, refer to your Performance Guide.

An application can override the setting of this environment variable when it
issues the SQL statement SET PDQPRIORITY, which the IBM Informix Guide to
SQL: Syntax describes.

PLCONFIG

The PLCONFIG environment variable specifies the name of the configuration
file that the High-Performance Loader (HPL) uses. This file must reside in the
$INFORMIXDIR/ etc directory. If the PLCONFIG environment variable is not
set, then SINFORMIXDIR/ etc/ plconfig is the default configuration file.

setenv

PLCONFIG —— filename { I

filename specifies the simple filename of the configuration file that the
High-Performance Loader uses.

Environment Variables 3-85

PLOAD_LO_PATH

For example, to specify the SINFORMIXDIR/etc/ custom.cfg file as the config-
uration file for the High-Performance Loader, enter the following command:

setenv PLCONFIG custom.cfg

For more information, see the IBM Informix High-Performance Loader User’s
Guide.

PLOAD_LO_PATH

The PLOAD_LO_PATH environment variable lets you specify the pathname
for smart-large-object handles (which identify the location of smart large
objects such as BLOB and CLOB data types).

setenv

PLOAD_LO_PATH——— pathname | I

pathname specifies the directory for the smart-large-object handles.

If PLOAD_LO_PATH is not set, the default directory is /tmp.

For more information, see the IBM Informix High-Performance Loader User’s
Guide.

PLOAD_SHMBASE

The PLOAD_SHMBASE environment variable lets you specify the shared-
memory address at which the High-Performance Loader (HPL) onpload
processes will attach. If PLOAD_SHMBASE is not set, the HPL determines
which shared-memory address to use.

setenv

PLOAD_SHMBASE value { I

value is used to calculate the shared-memory address.

If the onpload utility cannot attach, an error appears and you must specify a
new value.

3-86 IBM Informix Guide to SQL: Reference

PSORT_DBTEMP

The onpload utility tries to determine at which address to attach, as follows:

1. Attach at the same address (SHMBASE) as the database server.
2. Attach beyond the database server segments.
3. Attach at the address specified in PLOAD_SHMBASE.
Tip: 1t is recommended that you let the HPL decide where to attach and that you set

PLOAD_SHMBASE only if necessary to avoid shared-memory collisions between
onpload and the database server.

For more information, see the IBM Informix High-Performance Loader User’s
Guide.

PSORT_DBTEMP

The PSORT_DBTEMP environment variable specifies where the database
server writes the temporary files it uses when it performs a sort.

’ j
setenv ——— PSORT_DBTEMP jpamname ‘

pathname is the name of the UNIX directory used for intermediate writes
during a sort.

To set the PSORT_DBTEMP environment variable to specify the directory (for
example, /usr/leif/tempsort), enter the following command:

setenv PSORT DBTEMP /usr/leif/tempsort

For maximum performance, specify directories that reside in file systems on
different disks.

You might also want to consider setting the environment variable
DBSPACETEMP to place temporary files used in sorting in dbspaces rather
than operating-system files. See the discussion of the DBSPACETEMP
environment variable in “DBSPACETEMP” on page 3-45.

Environment Variables 3-87

PSORT_NPROCS

The database server uses the directory that PSORT_DBTEMP specifies, even
if the environment variable PSORT_NPROCS is not set. For additional infor-
mation about the PSORT_DBTEMP environment variable, see your
Administrator’s Guide and your Performance Guide.

PSORT_NPROCS

The PSORT_NPROCS environment variable enables the database server
to improve the performance of the parallel-process sorting package by
allocating more threads for sorting.

PSORT_NPROCS does not necessarily improve sorting speed for Extended
Parallel Server because the database server sorts in parallel whether this
environment variable is set or not. ¢

Before the sorting package performs a parallel sort, make sure that the
database server has enough memory for the sort.

| setenv

PSORT_NPROCS threads { I

threads is an integer, specifying the maximum number of threads to be
used to sort a query. This value cannot be greater than 10.

The following command sets PSORT_NPROCS to 4:
setenv PSORT NPROCS 4

To disable parallel sorting, enter the following command:
unsetenv PSORT_NPROCS

It is recommended that you initially set PSORT_NPROCS to 2 when your
computer has multiple CPUs. If subsequent CPU activity is lower than I/O
activity, you can increase the value of PSORT_NPROCS.

Tip: If the PDQPRIORITY environment variable is not set, the database server
allocates the minimum amount of memory to sorting. This minimum memory is
insufficient to start even two sort threads. If you have not set PDQPRIORITY, check
the available memory before you perform a large-scale sort (such as an index build)
to make sure that you have enough memory.

3-88 IBM Informix Guide to SQL: Reference

RTREE_COST_ADJUST_VALUE

Default Values for Detached Indexes

If the PSORT_NPROCS environment variable is set, the database server uses
the specified number of sort threads as an upper limit for ordinary sorts. If
PSORT_NPROCS is not set, parallel sorting does not take place. The database
server uses one thread for the sort. If PSORT_NPROCS is set to 0, the database
server uses three threads for the sort.

Default Values for Attached Indexes
The default number of threads is different for attached indexes.

If the PSORT_NPROCS environment variable is set, you get the specified
number of sort threads for each fragment of the index that is being built.

If PSORT_NPROCS is not set, or if it is set to 0, you get two sort threads for
each fragment of the index unless you have a single-CPU virtual processor.
If you have a single-CPU virtual processor, you get one sort thread for each
fragment of the index.

For additional information about the PSORT_NPROCS environment variable,
see your Administrator’s Guide and your Performance Guide.

RTREE_COST_ADJUST_VALUE

The RTREE_COST_ADJUST_VALUE environment variable specifies a coeffi-
cient that support functions of user-defined data types can use to estimate the
cost of using an R-tree index for queries on UDT columns.

—— RTREE_COST_ADJUST_VALUE ——— value 4{ I

value is a floating-point number, where 1 < value < 1000, specifying a multi-
plier for estimating the cost of using an index on a UDT column.

For spatial queries, the I/O overhead tends to exceed by far the CPU cost, so
by multiplying the uncorrected estimated cost by an appropriate value from
this setting, the database server can make better cost-based decisions on how
to implement queries on UDT columns for which an R-tree index exists.

Environment Variables 3-89

SHLIB_PATH

UNIX

SHLIB_PATH

The SHLIB_PATH environment variable tells the shell on HP-UX systems
which directories to search for dynamic-link libraries. This is used, for
example, with the INTERSOLV DataDirect ODBC Driver. You must specify the
full pathname for the directory where you installed the product.

setenv

SHLIB_PATH ————— $PATH: ghname : |

pathname specifies the search path for the libraries.

On Solaris systems, set LD_LIBRARY_PATH. On AIX systems, set LIBPATH.

STMT_CACHE

Use the STMT_CACHE environment variable to control the use of the shared-
statement cache on a session. This feature can reduce memory consumption
and can speed query processing among different user sessions. Valid
STMT_CACHE values are 1 and o.

1 |

setenv STMT_CACHE L J ‘
0

1 enables the SQL statement cache.

0 disables the SQL statement cache.

Set the STMT_CACHE environment variable for applications that do not use
the SET STMT_CACHE statement to control the use of the SQL statement cache.
By default, a statement cache of 512 kilobytes is enabled, but this feature can
be disabled or set to a non-default size through the STMT_CACHE parameter
of the onconfig.std file or by the SET STMT_CACHE statement.

This environment variable has no effect if the SQL statement cache is disabled
through the configuration file setting. Values set by the SET STMT_CACHE
statement in the application override the STMT_CACHE setting.

3-90 IBM Informix Guide to SQL: Reference

UNIX

TERM

TERM

The TERM environment variable is used for terminal handling. It lets
DB-Access (and other character-based applications) recognize and commu-
nicate with the terminal that you are using.

| setenv

TERM type | I

UNIX

type specifies the terminal type.
The terminal type specified in the TERM setting must correspond to an entry
in the termcap file or terminfo directory.

Before you can set the TERM environment variable, you must obtain the code
for your terminal from the database administrator.

For example, to specify the vt100 terminal, set the TERM environment
variable by entering the following command:

setenv TERM vt100

TERMCAP

The TERMCAP environment variable is used for terminal handling. It tells
DB-Access (and other character-based applications) to communicate with the
termcap file instead of the terminfo directory.

setenv

TERMCAP — pathname | I

pathname specifies the location of the termcap file.

The termcap file contains a list of various types of terminals and their
characteristics. For example, to provide DB-Access terminal-handling infor-
mation, which is specified in the /usr/informix/etc/termcap file, enter the
following command:

setenv TERMCAP /usr/informix/etc/termcap

Environment Variables 3-91

TERMINFO

UNIX

You can use set TERMCAP in any of the following ways. If several termcap
files exist, they have the following (descending) order of precedence:

1. The termcap file that you create

2. The termcap file that the database server supplies (that is,
$INFORMIXDIR/etc/termcap)

3. The operating-system termcap file (that is, /etc/termcap)

If you set the TERMCAP environment variable, be sure that the
INFORMIXTERM environment variable is set to the default, termcap.

If you do not set the TERMCAP environment variable, the system file (that is,
/etc/termcap) is used by default.

TERMINFO

The TERMINFO environment variable is used for terminal handling.

The environment variable is supported only on platforms that provide full
support for the terminfo libraries that System V and Solaris UNIX systems
provide.

setenv

TERMINFO ——/usr/lib/terminfo { I

TERMINFO tells DB-Access to communicate with the terminfo directory
instead of the termcap file. The terminfo directory has subdirectories that
contain files that pertain to terminals and their characteristics.

To set TERMINFO, enter the following command:
setenv TERMINFO /usr/lib/terminfo

If you set the TERMINFO environment variable, you must also set the
INFORMIXTERM environment variable to terminfo.

3-92 IBM Informix Guide to SQL: Reference

UNIX

THREADLIB

THREADLIB

Use the THREADLIB environment variable to compile multithreaded ESQL/C
applications. A multithreaded ESQL/C application lets you establish as many
connections to one or more databases as there are threads. These connections
can remain active while the application program executes.

The THREADLIB environment variable indicates which thread package to
use when you compile an application. Currently only the Distributed
Computing Environment (DCE) is supported.

setenv

THREADLIB DCE | I

The THREADLIB environment variable is checked when the -thread option is
passed to the ESQL/C script when you compile a multithreaded ESQL/C
application. When you use the -thread option while compiling, the ESQL/C
script generates an error if THREADLIB is not set, or if THREADLIB is set to
an unsupported thread package.

USETABLEAME

The USETABLENAME environment variable can prevent users from using

a synonym to specify the table in ALTER TABLE or DROP TABLE statements.
Unlike most environment variables, USETABLENAME does not need to be set
to a value. It takes effect if you set it to any value, or to no value

setenv

————USETABLENAME | I

By default, ALTER TABLE or DROP TABLE statements accept a valid synonym
for the name of the table to be altered or dropped. (In contrast, RENAME
TABLE issues an error if you specify a synonym, as do the ALTER SEQUENCE,
DROP SEQUENCE, and RENAME SEQUENCE statements, if you attempt to
substitute a synonym for the sequence name in those statements.)

If you set USETABLENAME, an error results if a synonym appears in ALTER
TABLE or DROP TABLE statements. Setting USETABLENAME has no effect on
the DROP VIEW statement, which accepts a valid synonym for the view.

Environment Variables 3-93

XFER_CONFIG

" xes | XFER_CONFIG

The XFER_CONFIG environment variable specifies the location of the
xfer_config configuration file.

| setenv XFER_CONFIG ——— pathname { I

pathname specifies the location of the xfer_config file.

The xfer_config file works with the onxfer utility to help users migrate from
Version 7.x to Version 8.x. It contains various configuration parameter
settings that users can modify and a list of tables that users can select to be
transferred.

The default xfer_config file is located in the SINFORMIXDIR/etc directory on
UNIX systems or in the %INFORMIXDIR % \etc directory in Windows.

Index of Environment Variables

Figure 3-2 on page 3-95 provides an overview of the uses for the various
Informix and UNIX environment variables that Version 8.40 and Version 9.2
support. This serves as an index to general topics and lists the related
environment variables and the pages where the environment variables are
introduced. Where the Topic column is empty, the entry refers to the previ-
ously listed topic.

GLS The term GLS Guide in the Page column in Figure 3-2 indicates environment
variables that are described in the IBM Informix GLS User’s Guide. ¢

3-94 IBM Informix Guide to SQL: Reference

Index of Environment Variables

Figure 3-2
Uses for Environment Variables
Topic Environment Variahle Page
Abbreviated year values DBCENTURY 3-28
ANSI/ISO SQL compliance
Informix syntax extensions DBANSIWARN 3-27
default table privileges NODEFDAC 3-79
archecker utility AC_CONFIG 3-23
Buffer: fetch size FET_BUF_SIZE 3-53
network size IFX_NETBUF_SIZE 3-59
network pool size IFX_NETBUF_PVTPOOL_SIZE 3-59
BYTE or TEXT data buffer DBBLOBBUF 3-27
Cache: enabling STMT_CACHE 3-90
size for Optical Subsystem INFORMIXOPCACHE 3-66
Client/server:
default server INFORMIXSERVER 3-67
shared memory segments INFORMIXSHMBASE 3-68
stacksize for client session INFORMIXSTACKSIZE 3-70
locale of client, server CLIENT_LOCALE, DBLOCALE GLS Guide
locale for file I/O SERVER_LOCALE GLS Guide
Code-set conversion
code set of client, server CLIENT_LOCALE, DB_LOCALE GLS Guide
character-string conversion DBNLS 3-39
Communication Support INFORMIXKEYTAB 3-66
Module: DCE-GSS
concsm.cfg file INFORMIXCONCSMCFG 3-62
(1of9)

Environment Variables 3-95

Index of Environment Variables

3-96

Topic Environment Variable Page
Compiler: INFORMIXC 3-62
multibyte characters CCS8BITLEVEL GLS Guide
C++ INFORMIXCPPMAP 3-65
ESQL/C THREADLIB 3-93
Configuration file: ONCONFIG 3-79
database server
ignore variables ENVIGNORE 3-52
Configuration parameter: INFORMIXSERVER 3-67
COSERVER
DBSERVERNAME INFORMIXSERVER 3-67
DBSPACETEMP DBSPACETEMP 3-45
DIRECTIVES IFX_DIRECTIVES 3-57
OPCACHEMAX INFORMIXOPCACHE 3-66
OPTCOMPIND OPTCOMPIND 3-80
OPT_GOAL OPT_GOAL 3-82
PDQPRIORITY PDQPRIORITY 3-84
STACKSIZE INFORMIXSTACKSIZE 3-70
Connecting INFORMIXCONRETRY 3-63
INFORMIXCONTIME 3-63
INFORMIXSERVER 3-67
INFORMIXSQLHOSTS
Data distributions DBUPSPACE 3-50
Database locale DB_LOCALE GLS Guide
(2019)

IBM Informix Guide to SQL: Reference

Index of Environment Variables

Topic Environment Variable Page
Database server INFORMIXSERVER 3-67
locale for file I/O SERVER_LOCALE GLS Guide
configuration file ONCONFIG 3-79
parallel sorting PSORT_DBTEMP 3-87
PSORT_NPROCS 3-88
parallelism PDQPRIORITY 3-84
role separation INF_ROLE_SEP 3-71
shared memory INFORMIXSHMBASE 3-68
stacksize INFORMIXSTACKSIZE 3-70
temporary tables DBSPACETEMP 3-45
DBTEMP 3-46
PSORT_DBTEMP 3-87
Date and time values, formats DBCENTURY 3-28
DBDATE 3-32:
GL_DATE GLS Guide
DBTIME 3-47:
GL_DATETIME GLS Guide
DB-Access utility DBANSIWARN 3-27
DBDELIMITER 3-34
DBEDIT 3-35
DBFLTMASK 3-35
DBNLS 3-39
DBPATH 3-41
FET_BUF_SIZE 3-53
INFORMIXSERVER 3-67
INFORMIXTERM 3-70
TERM 3-91
TERMCAP 3-91
TERMINFO 3-92
dbexport utility DBDELIMITER 3-34
Delimited identifiers DELIMIDENT 3-51
Disk space DBUPSPACE 3-50
(30f9)

Environment Variables 3-97

Index of Environment Variables

Topic Environment Variable Page
Editor DBEDIT 3-35
Enterprise Replication CDR_LOGDELTA ER Guide
CDR_PERFLOG
CDR_ROUTER
CDR_RMSCALEFACT
ESQL/C: ANSI compliance DBANSIWARN 3-27
C compiler INFORMIXC 3-62
DATETIME formatting DBTIME 3-47;
GLS Guide
delimited identifiers DELIMIDENT 3-51
multibyte characters CLIENT_LOCALE, ESQLMF GLS Guide
multithreaded applications THREADLIB 3-93
C preprocessor CPFIRST 3-24
Executable programs PATH 3-83
Fetch buffer size FET_BUF_SIZE 3-53
Filenames: multibyte GLS8BITSYS GLS Guide
Files: field delimiter DBDELIMITER 3-34
Files: installation INFORMIXDIR 3-65
Files: locale CLIENT_LOCALE GLS Guide
DB_LOCALE
SERVER_LOCALE
Files: map for C++ INFORMIXCPPMAP 3-65
Files: message DBLANG 3-36
Files: temporary DBSPACETEMP 3-45
Files: temporary, for Gateways DBTEMP 3-46
Files: temporary sorting PSORT_DBTEMP 3-87
(4 0of9)

IBM Informix Guide to SQL: Reference

Index of Environment Variables

Topic Environment Variable Page
Files: termcap, terminfo INFORMIXTERM 3-70
TERM 3-91
TERMCAP 391
TERMINFO 3-92
Formats: date and time DBDATE 3-32:
GL_DATE GLS Guide
DBTIME 3-47:
GL_DATETIME GLS Guide
Format: money DBMONEY 3-38
GLS Guide
Gateways DBTEMP 3-46
High-Performance Loader DBONPLOAD 3-40
PLCONFIG 3-85
PLOAD_LO_PATH 3-86
PLOAD_SHMBASE 3-86
Identifiers: delimited DELIMIDENT 3-51
Identifiers: longer than 18 bytes IFX_LONGID 3-58
Identifiers: multibyte characters CLIENT_LOCALE, ESQLMF GLS Guide
IBM Informix Storage Manager =~ ISM_COMPRESSION 3-72
ISM_DEBUG_FILE 3-73
ISM_DEBUG_LEVEL 3-73
ISM_ENCRYPTION 3-74
IBM Informix Storage Manager ISM_MAXLOGSIZE 3-74
ISM_MAXLOGVERS 3-75
Installation INFORMIXDIR 3-65
PATH 3-83
Language environment DBLANG 3-36;
See also “Nondefault Locale” GLS Guide
Libraries LD_LIBRARY_PATH 3-77
LIBPATH 3-78
SHLIB_PATH 3-90
(50f9)

Environment Variables 3-99

Index of Environment Variables

Topic Environment Variable Page
Locale CLIENT_LOCALE GLS Guide

DB_LOCALE

SERVER_LOCALE
Lock Mode IFX_DEF_TABLE_LOCKMODE 3-56
Long Identifiers IFX_LONGID 3-58
Map file for C++ INFORMIXCPPMAP 3-65
Message chaining OPTMSG 3-81
Message files DBLANG 3-36;

GLS Guide
Money format DBMONEY 3-38;
GLS Guide

Multibyte characters CLIENT_LOCALE GLS Guide

DB_LOCALE

SERVER_LOCALE
Multibyte filter ESQLMF GLS Guide
Multithreaded applications THREADLIB 3-93
Network DBPATH 3-41
Nondefault locale DBNLS 3-39,

CLIENT_LOCALE GLS Guide

DB_LOCALE

SERVER_LOCALE
ON-Bar utility ISM_COMPRESSION 3-72

ISM_DEBUG_LEVEL 3-73

ISM_ENCRYPTION 3-74
ONCONFIG parameters See “Configuration parameter” 3-96 to 3-96
Optical Subsystem INFORMIXOPCACHE 3-66
Optimization: directives IFX_DIRECTIVES 3-57
Optimization: message transfers OPTMSG 3-81
Optimization: join method OPTCOMPIND 3-80

(6 of 9)

IBM Informix Guide to SQL: Reference

Index of Environment Variables

Topic Environment Variable Page
Optimization: performance goal OPT_GOAL 3-82
OPTOEFC feature OPTOFC 3-82
Parameters See “Configuration parameter” 3-96 to 3-96
Pathname: archecker config file =~ AC_CONFIG 3-23
Pathname: C compiler INFORMIXC 3-62
Pathname: database files DBPATH 3-41
Pathname: executable programs PATH 3-83
Pathname: HPL sblob handles PLOAD_LO_PATH 3-86
Pathname: installation INFORMIXDIR 3-65
Pathname: libraries LD_LIBRARY_PATH 3-77
LIBPATH 3-78
SHLIB_PATH 3-90
Pathname: message files DBLANG 3-36;
GLS Guide
Pathname: parallel sorting PSORT_DBTEMP 3-87
Pathname: remote shell DBREMOTECMD 3-44
Pathname: xfer_config file XFER_CONFIG 3-94
Printing DBPRINT 3-43
Privileges NODEFDAC 3-71
Query: optimization IFX_DIRECTIVES 3-57
IFMX_OPT_FACT_TABS 3-54
IFMX_OPT_NON_DIM_TABS 3-55
OPTCOMPIND 3-80
OPT_GOAL 3-82
RTREE_COST_ADJUST_VALUE 3-89
Query: prioritization PDQPRIORITY 3-84
Remote shell DBREMOTECMD 3-44
(7 of 9)

Environment Variables 3-101

Index of Environment Variables

3-102

Topic Environment Variable Page
Role separation INF_ROLE_SEP 3-71
Routine: DATETIME formatting DBTIME 3-47;
GLS Guide
Server See “Database server” 3-96
Server locale SERVER_LOCALE GLS Guide
Shared memory INFORMIXSHMBASE 3-68
PLOAD_SHMBASE 3-86
Shell: remote DBREMOTECMD 3-44
Shell: search path PATH 3-83
Sorting PSORT_DBTEMP 3-87
PSORT_NPROCS 3-88
SQL statements: caching STMT_CACHE 3-90
CONNECT INFORMIXCONTIME 3-63
INFORMIXSERVER 3-67
CREATE TEMP TABLE DBSPACETEMP 3-45
DESCRIBE FOR UPDATE IFX_UPDDESC 3-60
LOAD, UNLOAD DBDELIMITER 3-34
LOAD, UNLOAD DBBLOBBUF 3-27
SELECT INTO TEMP DBSPACETEMP 3-45
SET PDQPRIORITY PDQPRIORITY 3-84
SET STMT_CACHE STMT_CACHE 3-90
UPDATE STATISTICS DBUPSPACE 3-50
Stacksize INFORMIXSTACKSIZE 3-70
String search: trailing blanks LIBERAL_MATCH 3-77
(8 of 9)

IBM Informix Guide to SQL: Reference

Index of Environment Variables

Topic Environment Variable Page
Temporary tables DBSPACETEMP 3-45
DBTEMP 3-46
PSORT_DBTEMP 3-87
Terminal handling INFORMIXTERM 3-70
TERM 3-91
TERMCAP 3-91
TERMINFO 3-92
Utilities: DB-Access DBANSIWARN 3-27
DBDELIMITER 3-34
DBEDIT 3-35
DBFLTMASK 3-35
DBNLS 3-39
DBPATH 3-41
FET_BUF_SIZE 3-53
INFORMIXSERVER 3-67
INFORMIXTERM 3-70
TERM 3-91
TERMCAP 3-91
TERMINFO 3-92
Utilities: dbexport DBDELIMITER 3-34
Utilities: ON-Bar ISM_COMPRESSION 3-72
ISM_DEBUG_LEVEL 3-73
ISM_ENCRYPTION 3-74
Variables: overriding ENVIGNORE 3-52
Year values (abbreviated) DBCENTURY 3-28
9 of9)

Environment Variables 3-103

Appendix

The stores_demo
Datahase

The stores_demo database contains a set of tables that describe
an imaginary business. The examples in the IBM Informix Guide to
SQL: Syntax, the IBM Informix Guide to SQL: Tutorial, and other
IBM Informix manuals are based on this demonstration database.
The stores_demo database uses the default (U.S. English) locale
and is not ANSI compliant.

This appendix contains the following sections:

The first section describes the structure of the tables in
the stores_demo database. It identifies the primary key
of each table, lists the name and data type of each
column, and indicates whether the column has a default
value or check constraint. Indexes on columns are also
identified and classified as unique allowing duplicate
values.

The second section (“The stores_demo Database Map”
on page A-8) shows a graphic map of the tables in the

stores_demo database and indicates the relationships

among columns.

The third section (“Primary-Foreign Key Relationships”
on page A-10) describes the primary-foreign key
relationships among columns in tables.

The final section (“Data in the stores_demo Database”
on page A-17) lists the data contained in each table of the
stores_demo database.

For information on how to create and populate the stores_demo
database, see the IBM Informix DB-Access User’s Guide. For infor-

mation on how to design and implement a relational database,

see the IBM Informix Database Design and Implementation Guide.

Structure of the Tables

Structure of the Tables

The stores_demo database contains information about a fictitious sporting-
goods distributor that services stores in the western United States. This
database includes the following tables:

customer (page A-2)

orders (page A-3)

items (page A-4)

stock (page A-4)

catalog (page A-5)

cust_calls (page A-6)

call_type (page A-7)

manufact (page A-7)

state (page A-8)

Sections that follow describe each table. The unique identifying value for
each table (primary key) is shaded and indicated by a key (@-=lt) symbol.

The customer Table

The customer table contains information about the retail stores that place
orders from the distributor. Figure A-1 shows the columns of the customer
table.

The zipcode column in Figure A-1 is indexed and allows duplicate values.

Figure A-1
The customer Table
Column Name Data Type Description
o—u customer_num SERIAL(101) System-generated customer number
fname CHAR(15) First name of store representative
Iname CHAR(15) Last name of store representative

(10f2)

A-2 BM Informix Guide to SQL: Reference

The orders Table

Column Name Data Type Description

company CHAR(20) Name of store

address1 CHAR(20) First line of store address
address2 CHAR(20) Second line of store address
city CHAR(15) City

state CHAR(2) State (foreign key to state table)
zipcode CHAR(5) Zipcode

phone CHAR(18) Telephone number

The orders Tahle

(2 of 2)

The orders table contains information about orders placed by the customers
of the distributor. Figure A-2 shows the columns of the orders table.

Figure A-2
The orders Table
Column Name Data Type Description
order_num SERIAL(1001) System-generated order number
order_date DATE Date order entered
customer_num INTEGER Customer number (foreign key to customer
table)
ship_instruct CHAR(40) Special shipping instructions
backlog CHAR(1) Indicates order cannot be filled because the item
is backlogged:
B y=Yyes
® n=no
po_num CHAR(10) Customer purchase order number
ship_date DATE Shipping date

(10of2)

The stores_demo Database A-3

The items Table

A-4

Column Name

Data Type

Description

ship_weight
ship_charge
paid_date

DECIMAL(8,2) Shipping weight

MONEY(6)

DATE

Shipping charge

Date order paid

The items Tahle

(20f2)

An order can include one or more items. One row exists in the items table for
each item in an order. Figure A-3 shows the columns of the items table.

Figure A-3
The items Table
Column Name Data Type Description
o—u item_num = SMALLINT Sequentially assigned item number for an order
e—“ order num INTEGER Order number (foreign key to orders table)
stock_num SMALLINT Stock number for item (foreign key to stock table)
manu_code CHAR(3) Manufacturer code for item ordered (foreign key to
manufact table)
quantity SMALLINT Quantity ordered (value must be > 1)
total_price MONEY(8) Quantity ordered * unit price = total price of item

IBM Informix Guide to SQL: Reference

The stock Tahle

The distributor carries 41 types of sporting goods from various manufac-
turers. More than one manufacturer can supply an item. For example, the
distributor offers racing goggles from two manufacturers and running shoes
from six manufacturers.

The stock table is a catalog of the items sold by the distributor. Figure A-4
shows the columns of the stock table.

[

The catalog Table

Figure A-4
The stock Table

Column Name

Data Type

Description

stock_num

SMALLINT

Stock number that identifies type of item

manu_code CHAR(3) Manufacturer code (foreign key to manufact table)
description CHAR(15) Description of item
unit_price = MONEY(6,2) Unit price
unit CHAR(4) Unit by which item is ordered:
m Each
m Pair
m Case
m Box
unit_descr CHAR(15) Description of unit
The catalog Table

The catalog table describes each item in stock. Retail stores use this table
when placing orders with the distributor. Figure A-5 shows the columns of

the catalog table.
Figure A-5
The catalog Table
Column Name Data Type Description
catalog num SERIAL(10001) System-generated catalog number
stock num SMALLINT Distributor stock number (foreign key to
stock table)
manu_code CHAR(3) Manufacturer code (foreign key to manufact

table)

(1 of 2)

The stores_demo Database A-5

The cust_calls Table

A-6

Column Name

Data Type

Description

cat_descr
cat_picture

cat_advert

TEXT
BYTE

Description of item
Picture of item (binary data)

VARCHAR(255, 65) Tag line underneath picture

The cust_calls Table

(20f2)

All customer calls for information on orders, shipments, or complaints are
logged. The cust_calls table contains information about these types of
customer calls. Figure A-6 shows the columns of the cust_calls table.

Figure A-6
The cust_calls Table
Column Name Data Type Description
o—u customer_ num INTEGER Customer number (foreign key
to customer table)
e—“ call_dtime DATETIME YEAR TO MINUTE Date and time when call was
received
user_id CHAR(18) Name of person logging call
(default is user login name)
call_code CHAR(1) Type of call (foreign key to
call_type table)
call_descr CHAR(240) Description of call
res_dtime DATETIME YEAR TO MINUTE Date and time when call was
resolved
res_descr CHAR(240) Description of how call was

resolved

IBM Informix Guide to SQL: Reference

The call_type Table

The call_type Table

The call codes associated with customer calls are stored in the call_type table.
Figure A-7 shows the columns of the call_type table.

Figure A-7
The call_type Table
Column Name Data Type Description
call_code CHAR(1) Call code
code_descr CHAR (30) Description of call type

The manufact Tahle

Information about the nine manufacturers whose sporting goods are handled
by the distributor is stored in the manufact table. Figure A-8 shows the
columns of the manufact table.

Figure A-8
The manufact Table
Column Name Data Type Description
manu_code CHAR(3) Manufacturer code
manu_name CHAR(15) Name of manufacturer

lead_time INTERVAL DAY (3) TO DAY Lead time for shipment of orders

The stores_demo Database A-7

The state Table

The state Tahle

The state table contains the names and postal abbreviations for the 50 states
of the United States. Figure A-9 shows the columns of the state table.

Figure A-9
The state Table

Column Name DataType Description

code CHAR(2) State code

sname CHAR(15) State name

The stores_demo Database Map

Figure A-10 displays the joins in the stores_demo database. The grey shading
that connects a column in one table to a column with the same name in
another table indicates the relationships, or joins, between tables.

A-8 IBM Informix Guide to SQL: Reference

p

The stores_demo Database Ma

Joejnuew

wnu~Bojejes

fiojejes

wnu~wayl

swayl

8)epI3pI0

s1api0

Jawojsnd

s||ea”isna

auoyd
9poadiz
alep pred ajels
ab1eyodiys JTh) 1053~ s8l
wBiem—diys 2ssalppe awIpsal
10s3pun alep—diys | SSaIppe 10s3p~|[Bo 1959p~8p02
1aApET 1) nun wnu—od Auedwod
AWl pes) aImaIdTes 8o1d™un 3011d7Jel0] B6oyoeq auey| pIiasn adfy[jes
3WeUNUBW 10S3pT1BD uonduasap fyuenb 1onasur—diys aleU} aWpeo

aseqe]eq OLWaP ~SaJ0]S Y] Uf SUOP
01 3By

The stores_demo Database A-9

Primary-Foreign Key Relationships

A-10

Primary-Foreign Key Relationships

The tables of the stores_demo database are linked by the primary-foreign key
relationships that Figure A-10 shows and are identified in this section. This
type of relationship is called a referential constraint because a foreign key in
one table references the primary key in another table. Figure A-11 through
Figure A-18 show the relationships among tables and how information
stored in one table supplements information stored in others.

The customer and orders Tables

The customer table contains a customer_num column that holds a number
that identifies a customer and columns for the customer name, company,
address, and telephone number. For example, the row with information
about Anthony Higgins contains the number 104 in the customer_num
column. The orders table also contains a customer_num column that stores
the number of the customer who placed a particular order. In the orders table,
the customer_num column is a foreign key that references the
customer_num column in the customer table. Figure A-11 shows this
relationship.

Figure A-11
customer Table (detail) Tables That the
customer_num
customer_num fname Iname i
. . Column Joins
101 Ludwig Pauli
102 Carole Sadler
103 Philip Currie
104 Anthony Higgins

orders Table (detail)

order_num order_date customer_num
1001 05/20/1998 104
1002 05/21/1998 101
1003 05/22/1998 104
1004 05/22/1998 106

IBM Informix Guide to SQL: Reference

The orders and items Tables

According to Figure A-11, customer 104 (Anthony Higgins) has placed two
orders, as his customer number appears in two rows of the orders table.
Because the customer number is a foreign key in the orders table, you can
retrieve Anthony Higgins’s name, address, and information about his orders

at the same time.

The orders and items Tables

The orders and items tables are linked by an order_num column that
contains an identification number for each order. If an order includes several
items, the same order number appears in several rows of the items table. In
the items table, the order_num column is a foreign key that references the
order_num column in the orders table. Figure A-12 shows this relationship.

Figure A-12
orders Table (detail) Tables That the
order_num Column
order_num order_date customer_num Joins
1001 05/20/1998 104
1002 05/21/1998 101
1003 05/22/1998 104
items Table (detail)
item_num order_num stock_num manu_code
1 1001 1 HRO
4 1002 4 HSK
3 1002 3 HSK
9 1003 9 ANZ
8 1003 8 ANZ
5 1003 5 ANZ

The stores_demo Database A-11

The items and stock Tables

A-12

The items and stock Tables

IBM Informix Guide to SQL: Reference

items Table (detail)
item_num order_num stock_num manu_code
1 1001 1 HRO
1 1002 4 HSK
2 1002 3 HSK
1 1003 9 ANZ
2 1003 8 ANZ
3 1003 5 ANZ
1 1004 1 HRO
stock Table (detail)
stock_num manu_code description
1 HRO baseball gloves
1 HSK baseball gloves
1 SMT baseball gloves

The items table and the stock table are joined by two columns: the
stock_num column, which stores a stock number for an item, and the
manu_code column, which stores a code that identifies the manufacturer.
You need both the stock number and the manufacturer code to uniquely
identify an item. For example, the item with the stock number 1 and the
manufacturer code HRO is a Hero baseball glove; the item with the stock
number 1 and the manufacturer code #sk is a Husky baseball glove.

The same stock number and manufacturer code can appear in more than one
row of the items table, if the same item belongs to separate orders. In the
items table, the stock_num and manu_code columns are foreign keys that
reference the stock_num and manu_code columns in the stock table.
Figure A-13 shows this relationship.

Figure A-13
Tables That the
stock_num and
manu_code
Columns Join

The stock and catalog Tables

The stock and catalog Tables

The stock table and catalog table are joined by two columns: the stock_num
column, which stores a stock number for an item, and the manu_code
column, which stores a code that identifies the manufacturer. You need both
columns to uniquely identify an item. In the catalog table, the stock_num
and manu_code columns are foreign keys that reference the stock_num and
manu_code columns in the stock table. Figure A-14 shows this relationship.

Figure A-14
stock Table (detail) Tables That the
o stock_num and
stock_num manu_code description manu_code
1 HRO baseball gloves Co/umng Join
1 HSK baseball gloves
1 SMT baseball gloves

catalog Table (detail)

catalog_num stock_num manu_code
10001 1 HRO
10002 1 HSK
10003 1 SMT
10004 2 HRO

The stores_demo Database A-13

The stock and manufact Tables

The stock and manufact Tables

The stock table and the manufact table are joined by the manu_code column.
The same manufacturer code can appear in more than one row of the stock
table if the manufacturer produces more than one piece of equipment. In the
stock table, the manu_code column is a foreign key that references the
manu_code column in the manufact table. Figure A-15 shows this

relationship.

Figure A-15
stock Table (detail) Tables That the
o manu_code Column
stock_num manu_code description Joins

1 HRO baseball gloves

1 HSK baseball gloves

1 SMT baseball gloves

manufact Table (detail)

manu_code manu_name
NRG Norge
HSK Husky
HRO Hero

A-14 IBM Informix Guide to SQL: Reference

The cust_calls and customer Tables

The cust_calls and customer Tables

The cust_calls table and the customer table are joined by the customer_num
column. The same customer number can appear in more than one row of the
cust_calls table if the customer calls the distributor more than once with a

problem or question. In the cust_calls table, the customer_num column is a
foreign key that references the customer_num column in the customer table.
Figure A-16 shows this relationship.

customer Table (detail)

customer_num fname
101 Ludwig
102 Carole
103 Philip
104 Anthony
105 Raymond
106 George

cust_calls Table (detail)

customer_num call_dtime
106 1998-06-12 08:20
127 1998-07-31 14:30
116 1997-11-28 13:34
116 1997-12-21 11:24

Iname

Pauli
Sadler
Currie
Higgins
Vector
Watson

user_id
maryj
maryj
mannyh
mannyh

Figure A-16
Tables That the
customer_num

Column Joins

The stores_demo Database A-15

The call_type and cust_calls Tables

The call_type and cust_calls Tables

The call_type and cust_calls tables are joined by the call_code column. The
same call code can appear in more than one row of the cust_calls table
because many customers can have the same type of problem. In the cust_calls
table, the call_code column is a foreign key that references the call_code
column in the call_type table. Figure A-17 shows this relationship.

Figure A-17
call_type Table (detail) Tables That the
call_code code_descr call_code Co/umn
Joins
B billing error
D damaged goods
I incorrect merchandise sent
L late shipment
(e other

cust_calls Table (detail)

customer_num call_dtime call_code
106 1998-06-12 08:20 D
127 1998-07-31 14:30 I
116 1997-11-28 13:34 I
116 1997-12-21 11:24 1

A-16 IBM Informix Guide to SQL: Reference

The state and customer Tables

The state and customer Tables

The state table and the customer table are joined by a column that contains
the state code. This column is called code in the state table and state in the
customer table. If several customers live in the same state, the same state
code appears in several rows of the table. In the customer table, the state
column is a foreign key that references the code column in the state table.
Figure A-18 shows this relationship.

Figure A-18
customer Table (detail) Relationship
Between the state
customer_num fname Iname - state Column and the
101 Ludwig Pauli - CA code Column
102 Carole Sadler -—- CA
103 Philip Currie - CA

state Table (detail)

code sname
AK Alaska
AL Alabama
AR Arkansas
AZ Arizona
CA California

Data in the stores_demo Databhase

The following tables display the data in the stores_demo database.

The stores_demo Database A-17

Data in the stores_aemo Database

(¢3071)

63.8 PAIg

-€7L-80F 980F6 VO o[eaduung ssOY Ghes MeN Arejkely pmigodg WA auef 601
678 1D sp0dg

HP6-069 €90¥6 VO poompay OpRIBA[Y /8 suumd uwumpd peuoq 801
9/86 NUDAY sorpddng

-96¢-069 F0EP6 VO OV Oofed uepiof 1y SRRV wedy SIRYD L01
63.8 MITA aoe[]

-68€-059 €90F6 VO UIRJUNON IOATRD) CFT] UOG TP UOSIEAy uOsjepy 981099 901
6¥ce aAu(q spodg

-9/£-089 TOV6 VO SOV SO ewo] e 6681 SOJ[V SO 1027 puowhey S0t
0011 L1 L)

-89¢-059 920¥6 VO poompay peoy Aeg gy Surddoysiseg ilreg Aeyg ~ suiddry Auoyuy P01
crs

-87€-059 €0€¥6 VO OV Oled 86¥E x0d ‘O d redog $G9 smodss,yg dmn) drryq 201
6871 0dsIdURI]

-TT8-S1¥ LIIF6 VD ueg 1ong Ao 68/ 30dg sprodg Bpes dore) 201
SL08 1mnoD sorpddng

-68/-80F 980¥6 VO o[eaduung prmisig ¢l sModg iy neg Smpn7y 101
auoyd apoadiz aje)s A9 Zssalppe Lssaippe Auedwos aweu| aweuj wnu~Idwolsnd

8/qe| JaLoIsn

IBM Informix Guide to SQL: Reference

A-18

Data in the Stores_demo Database

(€3070)
6£09 LemySiy qnpD 939

-€99-609 0080 [N TIH £11yD s3un Gopz -WPMLAYL 19M0ys qog 611
1100 syrodg

-669-0S9 609%6 VD puepeQ 939[10D LTS uoqqry onig 1)xeg PIa 811
8.5 L1

-GFC-099 €90¥6 VD Poompay 3MoD uopA] oG8 IPUIOY Spry sodig proury LTT
7788 MIIA aAl(

-$€G-099 0F0F6 VD UIRIUNON esourdg 7011 41D didwi|O esEuIe] ues(91T
€Cll anuaAy sy10dg

-966-099 STOV6 VD Hed O[uSIN A1 97/ [ePSN PIOD el pagy o
1299 L1 ERIIR| ERIIR |

-988-099 790¥6 VO POOMpPY AR M /F6 Suniods uospeqry Suer] PIT
7866

-966-099 STOP6 VO Hed O[uSIN JA0ID MO FG9 umoisyods Apeag eue] TT
cees Kepm s1™YIO

-/88-069 TTO¥6 VD SOV SO ajopueApm FEZ W sBUUNY uosme] JareSIe|n Zi
ches 3moD

-LLT-80F S80F¥6 VD o[eaduung SuIIs 661€ TIURD) sp10ds sofoy soduel] 11T
119¢ £1D

-€%/-059 T90¥6 VD Poompay Kepm zedo], 0z SOHRIWWV VV 193ae(Koy 0Tl
auoyd apoadiz ajels A9 Zssalppe Lssaippe Auedwoa aweu| awieuj wnu~IdwoIsnd

The stores_demo Database A-19

Data in the stores_aemo Database

(€30¢)

2181 peoy sewoy, juounredsq Aysmoarun
-€£9-¢09 80058 ZV XTua0YJ ‘N ZI8T ORIV XIUa0Yyq 10ss9] Juelq 8¢l
1695 SEEVAl arenbg doyg
PH6-CIE 9009 AN pueps|anjg A1088197z7el pue[s] an[g aig anyg Sig Iajnes wy LCL
sy10dg
162 19215 JUnodSI(J
-9¢6-¢0¢ 61C08 OD IaAus(g O] YINos 6¢£5¢ S,91[99N II[9dN U9ty 9Cl
dNUDAY
6S1¥ I[eamuouruio)) sy10dg
-¢eC-L19 SC€1C0 VIN uopy3rig 0SP1 sseuirq [ejo] Arusy sowe(acl
¥/20¢C pAlg SIOPNJ
-G6e-816 900%Z O 9l[iassfeg D606 23NS swepy ‘'S qILY sunumng - wnung SLIYD 4"
6£Cy peoy SMOpPEIIA
-€78-%06 9S¢ce 14 olrauosye(0201 93ng Keg 0010T spodg Aeg uojuey UIATRIA €cl
500 1931315 I
-TPE-609 0¥S80 [N uojeduLL] nesseN ¢ps Suprodgayl ueng,0 Ayed 4}
1184 199135 eI
-99¢-70¢ 86861 A UOISUIWIAY PIEZ M 0SE droung e spodg KD perrem uose(x4
¥6/8 Kepy doys
-G9¢-¢09 91058 ZV Xm0y] UILL N £Z99 01d Amnjua) [eMmaf Paig 0ct
auoyd apoadiz ajels A9 Zssalppe Lssaippe Auedwos aweu| awieuj wnu~IdwoIsnd

IBM Informix Guide to SQL: Reference

A-20

Data in the stores_demo Database

items Table

item_num order num stock_num manu_code quantity total_price
1 1001 1 HRO 1 250.00
1 1002 4 HSK 1 960.00
2 1002 3 HSK 1 240.00
1 1003 9 ANZ 1 20.00
2 1003 8 ANZ 1 840.00
3 1003 5 ANZ 5 99.00
1 1004 1 HRO 1 250.00
2 1004 2 HRO 1 126.00
3 1004 3 HSK 1 240.00
4 1004 1 HSK 1 800.00
1 1005 5 NRG 10 280.00
2 1005 5 ANZ 10 198.00
3 1005 6 SMT 1 36.00
4 1005 6 ANZ 1 48.00
1 1006 5 SMT 5 125.00
2 1006 5 NRG 5 140.00
3 1006 5 ANZ 5 99.00
4 1006 6 SMT 1 36.00
5 1006 6 ANZ 1 48.00
1 1007 1 HRO 1 250.00
2 1007 2 HRO 1 126.00
3 1007 3 HSK 1 240.00
4 1007 4 HRO 1 480.00
(10of3)

The stores_demo Database A-21

Data in the stores_aemo Database

item_num order_num stock_num manu_code quantity total_price
5 1007 7 HRO 1 600.00
1 1008 8 ANZ 1 840.00
2 1008 9 ANZ 5 100.00
1 1009 1 SMT 1 450.00
1 1010 6 SMT 1 36.00
2 1010 6 ANZ 1 48.00
1 1011 5 ANZ 5 99.00
1 1012 8 ANZ 1 840.00
2 1012 9 ANZ 10 200.00
1 1013 5 ANZ 1 19.80
2 1013 6 SMT 1 36.00
3 1013 6 ANZ 1 48.00
4 1013 9 ANZ 2 40.00
1 1014 4 HSK 1 960.00
2 1014 4 HRO 1 480.00
1 1015 1 SMT 1 450.00
1 1016 101 SHM 2 136.00
2 1016 109 PRC 3 90.00
3 1016 110 HSK 1 308.00
4 1016 114 PRC 1 120.00
1 1017 201 NKL 4 150.00
2 1017 202 KAR 1 230.00
3 1017 301 SHM 2 204.00
1 1018 307 PRC 2 500.00
(20f3)

A-22 IBM Informix Guide to SQL: Reference

Data in the stores_demo Database

item_num order num stock_num manu_code quantity total_price
2 1018 302 KAR 3 15.00
3 1018 110 PRC 1 236.00
4 1018 5 SMT 4 100.00
5 1018 304 HRO 1 280.00
1 1019 111 SHM 3 1499.97
1 1020 204 KAR 2 90.00
2 1020 301 KAR 4 348.00
1 1021 201 NKL 2 75.00
2 1021 201 ANZ 3 225.00
3 1021 202 KAR 3 690.00
4 1021 205 ANZ 2 624.00
1 1022 309 HRO 1 40.00
2 1022 303 PRC 2 96.00
3 1022 6 ANZ 2 96.00
1 1023 103 PRC 2 40.00
2 1023 104 PRC 2 116.00
3 1023 105 SHM 1 80.00
4 1023 110 SHM 1 228.00
5 1023 304 ANZ 1 170.00
6 1023 306 SHM 1 190.00
(3 0of 3)

The stores_demo Database A-23

Data in the stores_aemo Database

A-24

call_type Table

call_code

code_descr

B

D

I

billing error

damaged goods

incorrect merchandise sent
late shipment

other

IBM Informix Guide to SQL: Reference

Data in the Stores_demo Database

(¢301)
0CvlL 0804 8661/6C/90 1048/ U yARS 8661/81/90 C10t
8661/62/80 00'S 0701 8661/€0/40 L684Ld VU ssardxa 01 8661/81/90 1101
JTomMsue ou JI 1§
8661/TC/80 0€TL 09°0¥ 8661/62/90 06ty U 3ury 97/ 1AIPP q11 8661/41/90 010t
A190018
8661/12/80 0001 0%°0¢ 8661/12/90 vy U 0} }Xau 100p 111 8661/%1/90 6001
8661/1C/40 08°€l 09°6Y 8661/90/L0 o0cTz1 A Kepuopy pasopd 0TI 8661/L0/90 8001
0C'q¢ 06°9¢L 8661/G0/90 €698/ U yANS 8661/1¢/90 £001
0cvl 08°04 L86e10 £ V0T 1o1e [41! 8661/0¢/90 9001
JSEYNIET)
8661/12/90 0291 0808 8661/60/90 98¢ U 210j3q [[ed 911 8661/%2/90 G001
061 08'96 8661/0€/90 9008 £ a01M} [[oq ULt 901 8661/7C/S0 $001
866L/%¥1/90 080T 09°6¢ 8661/€7/90 06844 U ssaxdxe 701 8661/7¢/S0 €001
Auo
I00P Yoeq IDAI[PP
8661/€0/90 0eql 09°09 8661/92/90 04c6 U xoquo Od 101 8661/12/S0 <001
8661/TC/L0 0001 0%°0¢ 8661/10/90 9¢8//d U ssaxdxe 701 8661/02/S0 100T
ayep pied ahfieys diys whiam diys aep diys wnu od Hopjaeq 19nasul diys wnu"1awoisng 3jep 1apao wnu13pio

a/qe| SIapJo

The stores_demo Database A-25

Data in the stores_aemo Database

(z3072)

wrd ¢ 19)5e
8661/22/80 00°'ST 00°09 8661/0€/40 196Cd U SOLIBAI[OP OU qs 8661/¥2/L0 €201
8661/20/60 00°¢t 00°sT 8661/0€/40 ST66M U ssa1dxa 9¢C1 8661/¥2/L0 ¢a0t
8661/22/80 00Tl 00°0¥ 8661/SC/L0 88T€D U Qure[y 10§ Jse 4! 8661/€2/L0 1201
8661/02/60 0S8 0071 8661/91/40 98CTcM U ssaxdxa €l 8661/11/L0 0¢01
sAepuon
8661/90/80 00°€T 0006 8661/91/40 60456Z U uoou [Pasod [44) 8661/11/L0 6101
[TeIN 210U I
8661/90/80 000 0504 8661/€1/L0 TW6CIS U JO I3UI0d MS 11 8661/01/£40 8101
1€ asnoyqnp
0081 0009 8661/€1/L0 €PSENA U JO 9pIS Y3ION 0¢t 8661/60/£0 101
g dure) pjo
08°'TL 00°s¢ 8661/CL/L0 78/9Dd U DULHULS AIDATPP 611 8661/6¢/90 9101
8661/1¢/80 0€9 09°0¢ 8661/91/40 €0OVIN U sKepuojy pasop 0TI 8661/42/90 S10t
Arpnor 100p
8661/01/40 0€TL 09°0% 8661/€0/L0 ¢s08 U o] ‘[roq Sun 901 8661/92/90 ¥10T
8661/1€/40 0TTL 0809 8661/01/40 0¢64d U ssardxa $01 8661/22/90 €10t
ayep pied abieys diys whiam diys 9yep diys wnu od Hopjaeq 19nasul diys wnu~1awoisng 3jep I13pIo wnu - 13pio

IBM Informix Guide to SQL: Reference

A-26

Data in the stores_demo Database

stock Table
stock_num manu_code description unit_price unit unit_descr
1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/ case
3 HSK baseball bat 240.00 case 12/case
3 SHM baseball bat 280.00 case 12/case
4 HSK football 960.00 case 24/ case
4 HRO football 480.00 case 24/ case
5 NRG tennis racquet 28.00 each each
5 SMT tennis racquet 25.00 each each
5 ANZ tennis racquet 19.80 each each
6 SMT tennis ball 36.00 case 24 cans/case
6 ANZ tennis ball 48.00 case 24 cans/case
7 HRO basketball 600.00 case 24/case
8 ANZ volleyball 840.00 case 24/case
9 ANZ volleyball net 20.00 each each
101 PRC bicycle tires 88.00 box 4/box
101 SHM bicycle tires 68.00 box 4/box
102 SHM bicycle brakes 220.00 case 4 sets/case
102 PRC bicycle brakes 480.00 case 4sets/case
103 PRC front derailleur 20.00 each each
104 PRC rear derailleur 58.00 each each
105 PRC bicycle wheels 53.00 pair pair
105 SHM bicycle wheels 80.00 pair pair

(10f3)

The stores_demo Database A-27

Data in the stores_aemo Database

stock_num manu_code description unit_price unit unit_descr
106 PRC bicycle stem 23.00 each each
107 PRC bicycle saddle 70.00 pair pair
108 SHM crankset 4500 each each
109 PRC pedal binding 30.00 case 6 pairs/case
109 SHM pedal binding 200.00 case 4 pairs/case
110 PRC helmet 236.00 case 4/case
110 ANZ helmet 24400 case 4/case
110 SHM helmet 228.00 case 4/case
110 HRO helmet 260.00 case 4/case
110 HSK helmet 308.00 case 4/case
111 SHM 10-spd, assmbld 499.99 each each
112 SHM 12-spd, assmbld 549.00 each each
113 SHM 18-spd, assmbld 685.90 each each
114 PRC bicycle gloves 120.00 case 10 pairs/case
201 NKL golf shoes 3750 each each
201 ANZ golf shoes 75.00 each each
201 KAR golf shoes 90.00 each each
202 NKL metal woods 174.00 case 2 sets/case
202 KAR std woods 230.00 case 2 sets/case
203 NKL irons/wedges 670.00 case 2 sets/case
204 KAR putter 4500 each each
205 NKL 3 golf balls 312.00 case 24/ case
205 ANZ 3 golf balls 312.00 case 24/case
205 HRO 3 golf balls 312.00 case 24/case
301 NKL running shoes 97.00 each each
(2 of 3)

A-28 BM Informix Guide to SQL: Reference

Data in the stores_demo Database

stock_num manu_code description unit_price unit unit_descr
301 HRO running shoes 4250 each each
301 SHM running shoes 102.00 each each
301 PRC running shoes 75.00 each each
301 KAR running shoes 87.00 each each
301 ANZ running shoes 95.00 each each
302 HRO ice pack 450 each each
302 KAR ice pack 500 each each
303 PRC socks 48.00 box 24 pairs/box
303 KAR socks 36.00 box 24 pair/box
304 ANZ watch 170.00 box 10/box
304 HRO watch 280.00 box 10/box
305 HRO first-aid kit 48.00 case 4/case
306 PRC tandem adapter 160.00 each each
306 SHM tandem adapter 190.00 each each
307 PRC infant jogger 250.00 each each
308 PRC twin jogger 280.00 each each
309 HRO ear drops 40.00 case 20/case
309 SHM ear drops 40.00 case 20/case
310 SHM kick board 80.00 case 10/ case
310 ANZ kick board 89.00 case 12/case
311 SHM water gloves 48.00 box 4 pairs/box
312 SHM racer goggles 96.00 box 12 /box
312 HRO racer goggles 72.00 box 12 /box
313 SHM swim cap 7200 box 12/box
313 ANZ swim cap 60.00 box 12/box
(3 of 3)

The stores_demo Database A-29

(€13071)

suonedwo)
31e189[[0) pue [00YPS YSTH

10§ [TeqaO0 Ayrren) 3sayStH - <on[ea FLAG> upisSid SIS TIN. O¥H 14 80001
amyeuSig uIpPoIg
ueA WION im un(s3rg LAyrend) <anjea gIAG> 9[Als arnjeuds urpporg uep wioN MSH ¥ 20001
*ZO §¢ 10 ZO 77 /. €€ ‘z0
S91R[UIY 9JLISI[[0D) pue [00YdG €210 70 [*,7€ 20 ¢ 10 20 (0T *, 1€
YSIH 10§ winurwn|y d[qein(<enjea gIAg> ode3 yoe[q yim onjg ‘wmurumy AHS € 90001
10dg 19amg oy spuedxg "GE FE ‘€€ ‘TET¢
ulisa(q ASofouyoay Y31y <onfeA gIAG> :SOZIS Ul 9[qe[leAy "poom 9[41s-01] MSH ¢ S000T
amjeudIg uosuIqoy -an3ea [euoneN Aq
oy} 03 SurydIng-puey] Ay} Woiy pasn “Ayrenb Teuorssajoi 1S9y
‘alqe[reay Jeg Ayend) 1soyStH <enjea JIAg> 9A0[3 armjeudis uosuiqoy anpe[OYH 4 $000T
390 399519 Y3} ‘papuey-yar 10 -ydu Ayadg
WIM HIAL S, 19yp1e) ApImig v - <onfea gLAd> TOUJed] UMOIG "PIW S, PyRe LINS 1 €000T
0r) 197 3,UOM 16} "papuey-3391 10 -y £jadg
Surqgapm Apinig ‘syaxpog-dea(y *9141S p[aANO / pIayU] IaY3ea|
‘payPIG-purH “BYIRI-[[Y <on[eA HLAG> o[2A0[3 arnjeudis yyny aqeqg MSH 1 20001
‘papuey-y397 10 -)y3ix Ajadg
9A0[D) ‘91418 P[oYINO / P[OYUL IO S, Uewaseq
[[egaseq s,uoseag ISIL] INOK <on[eA FIAL> s1yg Ayadg woypesf umolrg ONH 1 10001
Manpe e aimaidjes 19S3pT1ea apod nuew wnu H20)s wnu Bojejes

a/qe] bojered

Data in the stores_aemo Database

IBM Informix Guide to SQL: Reference

A-30

(€13070)

uonnaduo)) ayerdsod
pue [eUOISS9j01] I00pU] 10§

Data in the Stores_demo Database

'$8913U0D) DAY [eUOHEN
ay} Aq pauonpueg “paypIs-a[qno

SunmjeN [Teq4AS[[OA pauonpueg <anjeA gIAL> ‘Burp10o UOTAN 'SIP[PAS [991S ZNV 6 91001
suoradwo)) 100puy AyTenb
10 S[[eqAS[[OA [BUOISSAJOI] <oN[eA JIAG> [LUOISSIJOI] TAYJRI[}SoUl 1I00pU] ZNV 8 S100T
SWINISLUWALD) “Iayea|
I00pu] 10 s[[eqiayseq I -SU0 <dnfeA HIAF> Umoig d[A)s YN dIsse[D 1oopu] OYH L $100T
dlqerresy
SI0[0D) 1Sy 31Ig Y3 YIm “urd pue “uea13
pardno) uononysuo)) a[qeIn(] <dNeA FLAL> ‘MO[[PA UOSU U S[e[IRAY I00-0I] ZNV 9 €1001
WSIN ‘Wy31] TePYRIE 10 JYSIUNS Ut
10 e ‘stuua], ANMIGISIA-YSIH <onfea FIA> AN[IqISIA Ases 10§ 10[00 MO[PA 1JOS TIAS 9 21001
sgurng o
-JeD) Yim Jmg jenboey uspoops
orssep) jo eorjdey anbnuy <enjea grxg> ‘sgurns ng-jed ‘owrery poopry ZNV o 11001
1a£e[Suraoxdug
oy} 105 Jonboey pazig-prl <enjea FIAG> SSULNS dUOYIUAG durely wnurwun[y LIAS o 01001
ud1s9(drureu
-Aporay y8noIyy oMo IO
Surpraoi Aq saniqy [einjeN
mog soyrdury Apog opIM <onfea JIAG> - sSums opaypuhg owey ayyder YN q 60001
paape jes ainaidjes 19SapTjea apod nuew wnu)a0)s wnu fojeyes

The stores_demo Database A-31

Data in the stores_aemo Database

(€r30¢9)

‘asnqe peox
-JJO }SISa1 0} UOT)ONIISUO0D SUOINS

gLV INOK 0} 9SSauL] Sppy enxy ‘s1ead Auueid [ews-adns

INJY[reIa(] yUoi] s,9[P4)01] 10§ 93ed das(*3unyrys sedoueyuo
UTRJUNOIA AUy quII) <anfea gLAg> uSrsap uonoe-Gurpeay oedwo) d €01 12001

'S9[qeD puk ‘SI9AI]

‘s1ad1[ed SOpNOUI 395 "SIDAJ] OIOY

‘Burnysngq zadired A3oaq pue siadifed

S9¥RIg 92I]-UOHRI]IA J9K PISTy Kopre padoy-pro) sped argyoxd
s12ATR(Q USIsa(] endwo) <anpea FIAg> -MO[pm uSisap papre-renduwo) NId 201 02001

"S9[qed

pue ‘s19A97 “s1adfed sepnpur 305

‘Juawyear) yured auo}-oM[‘SPooYy

UOIPY Jjoowsg wnS 3JOS Y3IM SIDAJ] PIHO[S "Uorde

SovjUERIENN) }3G I BIY SAI[S ypoows 10§ 9A39[s Jurrds /Iaysem
-3unidg pue Surresag-isnayy, <anjea gIAg> joard pajeod pue Surreaq isniy], JNHS 201 61001

“UOTSeIqe }SISal

S[[eMIPIS Pajeo)) *dPIs SUOqIULLIdY

UM pedr paqqri-I1ajua))

Surureiy, 10 “uorjuL)a1 Ire roredns 105 aqny
$9pRY qn[D 10§ AIIL P9JI2J YL <onfea FIAG> [Anq yim Sursed uofudqemg INHS 101 81001

*d118 preos pue 1eom 1adns

Surpry 10§ pean) paxiA ‘sammjound jsureSe

Ay1D-ur 10§ paudIsa(] sairy, SATIORNH "Pa3[Rq dURYISINA[O]
U010 J 2INPUNJ UTdjewn) <dnfea JLAG> Te[nqnj paysiug-puey ‘padiojudy nId 101 /1001
Manpe jes aimaid jes 19S3pT1e9 3poJ nuew wnu }20)s wnu Bojejes

IBM Informix Guide to SQL: Reference

A-32

(€130 %)

j10ddng
[edTWOFeUY YIIM 1YSPMIYSI]

Data in the Stores_demo Database

Surd jou/3de[q 10

Oe[g TOA0D RIDA] YITM UOTONIISUOD
[98 [edTuIojeUY S, USWOA

pue ‘3urmoy s,us ‘Surer

‘JI0JwoD SUIpry U W[AL, <onfes FLAG> S,USIA :SI[AIS 921y Uraqeresy DAd L0T 92001
*SJUSWDIOUT WIW()|
Ut Wi I-06 JO SYSUS] Ul Aqe[reAy
"dIeMpIRY }[0q XY W9 "YSIUY
USTUL] [189] 3IM WIS 9PPAD0I] <onfea gIXg> [1ead yim Lofpe pazipoue pre D¥d 901 2001
*SSOID-¢ /3G Pade[a1k S[PIYM Jedy
Surmoy, "SS0ID-7 /3GT paoe[Ik S[oayM JUOI]
9dUPULIOJId J-YSIE] 10 Sururery, panNg-a[qno(] ‘sqny ases[ar-yomb
10§ S[PAYM IYSPMIYSI XXy <onfeA FLAG> “Burreag-pafeag Aofe paysiod JNHS GoT1 ¥c00t
‘urened
SUOT)TPUO)) ssox-¢ e ur sayids ST yyim paoe|
3$9U8noy, epun aniy, ploy S[eaYMm 1eay "ureped ssor-¢ e ur
yey spayM Sururer] ajqeing <enfea gIAg> saods ST yim pade[spaymuor] DY <ot €200T
‘[eoymaary Aue yrm
INS[IRId(] 183y S,9[DAD0L] Ou] yuawuSire wnuwndQ Ayoeded Y00y
Kyoede)) yyoor-001 swaurduyg -001 ‘swre wexdoayrered P e1XD
u8rsa papry-omdwo)) <onfea HIAG> YIm Anpowoad prozaden Suneory NId $01 22001
paape jes ainaidjes 19SapTjea apod nuew wnu)a0)s wnu fojeyes

The stores_demo Database A-33

Data in the stores_aemo Database

(€109

JOWOH UOT}0930L] WINWIXRIA
‘aseaay[-oINY) WSr1-19yrea

Sunyorun 1seq
pue IoMOJ WINWIXEA SIDATR(]
uSrsa(diD/Tepa g snorusdug

apng dipD e SSaULI0gG JUSASI]
0} paaoxduy drpsoy, o1sser)

JesyueID) o[qeIn-en Xy UM
I UTeJUNOJA INOX SZIWO0ISND)

‘9poNng Mopeys asea[ax
-omy) 'zo G/ “uondajoid joedur
IO0J spIepueis [[auUS pue [SNV
<onfea gLA4> 0q S9N ySremysr-adng Yd 01T 0£00T

‘Junowrered

ST Ay[Iqeraanauews uaym Kjayes
samsue Sunporun jseq mod

[y 28e8us 03 yuem nok uaym
punoze 3urysy ou—payols are
srepad jo wonoq pue doy yjoq uesw
sayerd oy -Sunyoor renaed 1o [y
asooy)) “Kousioyge Surprr ut suondo
Mmau s1apt1 213 03 ajerd repad

© U0 O[S 3IM d0US JO [0S U0 Uong

<onpea gIAg> saurquiod ugisap mau snoruddu] JAHS 601 62001
-aanssaxd
90MPaI 03 PO e SPIM BIIXY

<anfea gLAG> ‘dens uorAu yyim sdrpd 203 19919 NId 601 97001

399} §§-F Woxy
sGurrureyp 4asyuen ordin 10 399}
$G-g¢ woxy sSurrureyd “Jasyuesd
3[qnOp 104 "SSULIUTEYD JO IIOYD
<onfeA HIAd> ynm jesyyuend orduy 10 s[qnoq INHS 801 242001

Manpe jes

aimaidjes 19S3pT1e9 apos nuew wnu y20}s wnu Gojees

IBM Informix Guide to SQL: Reference

A-34

Data in the Stores_demo Database

(€1309)

2InsedJ YIM
SSaUISNE] SIXTIA] O J2INWIWIOD)

SNOLIdG 3y} 10§ pauldsa(y

"Sq[€€ "SIYS1[10jeIouad

103 SuLIIm [euIau] ‘sIdTe} 9[24d1q
IO SYORI [[e-A11ed 10 S)3[24d PI[LIP
pue 310§ Juoy SUIqIOSqe-3[d0yS YITm

RnuIwod A1 3y} 10§ pauldsay

apAorg paddmby Ay <enpea grxg> "paads 1 Sunyrys uonoeysry WHS I1T G001

"ZO G/ "[eLI}-9WI} dDURL] 9P INOJ,

UI QW) S, IOUULM WO S[TUI/SPU0DIS

SDURIHI(] Y} 7 Suraeys yym paypaid

wirf, ue)) Nox “SA3s1a(MO[[PX "dLIqR] SeIp-Tjue YjIMm PaIdA0d
£Aq pasn uBisa(q dorpiea], <onjea gLAg> jowrfay (dorpieay) orwreudporoy MSH 011 €001

"ZO G'g "1y Iew

U01}09)01] SuDyLIeS 9y} UO JPouWPY Aue JO S[PUURYD

JNOYIIA HOJWOD) [00)) SAINSSY uone[nuaA ysadre] ‘[@Yys onserd
SJUBA IM Ousel] YSPmMySr] <onfea ILAG> sasn Jowey ySenn 39MaN O¥H 011 €€001

20 0'

‘uonpoajord joedwr 10§ sprepuess

UOT}09)01] WINWIXEJA] [[PUS pue [SNV Y10] SIS

SIDAT[R(] Ing sSeug ysnig -ysniq uo Surddeus ou ‘19400 ysaw

JO ALIOA 9Y} SojeUTWII[H I19A0D) 9} 9}LUTWI[S O} I9AR[IQUUI I9}JOS
YI00Wg JOWO}] ¥I UILJUNOJA <on[eA gIAG> UM SOUIquIOd IoAe[N0 asud(JNHS 011 €001

“I9A0D BIDAT "Z0 G/ "uondajoid

JoWIOH UO1}9)01] joedwr 105 sprepuess [[oug

winwixep Y3r-1ayrea Pue [SNV Y30 SI99A "UIyd oA
40RIU0D) UryD) WNWIULN <dnfeA JLAg> sapnoj onsefd ou os apPNqON ZNV 011 1€00T
paape jes ainaidjes 19SapTjea apod nuew wnu)a0)s wnu fojeyes

The stores_demo Database A-35

Data in the stores_aemo Database

(€150 2)

sayewr) IV uI Ajiqeing
pue 110JWo)) WNWIXeIA

-az1s Ajadg
"9N[q pue “U9aI3 “‘UMOI] ‘U0q
‘arym ur o[qerreay ‘1addn oyjesy

samsug uondajoi] Joordisyepy <onfea gLAG> [y -jooidisyem pasjuerens 7NV 102 0%001
‘az1s Ajadg umoiq 3
USWION| pUe USJA 10§ S90YS J[0O) JJIYM I0 N[3P ATYM UI J[qR[IRAY
Surreap-3uUo “JIOJUWIOD[[N] <dNeA HIAG> AN[IeIs pue 310jwod 10§ paudisa(] TIN 102 6€00T
“IX 1IN ’S 9715
“WeaId pue “OB[(‘Ue)} Ul A[qR[IeAY
Uuond9}01] yoeq A119) ypim padrowr ysow
PUE HI0JWO)) 10 SIA0D) SUIpRy <on[eA HIAG> Yojoxs pue wied 1oyjes] papped D¥d a8 8¢00T
‘saxyods papelq ‘s[eaym
JSI(] “sqny ases[aI-dmy) “Surread
soueurrojrad-ySry 3unyrys xapuy
aune Sumey "S9¥eIq IDAJ[HURD) "SIegI[puRy
ajardwo) ay [, aoinpadwo) SrwreuAporae 105 g Aouwosd
SNOLISG AU} 10 PAUBISa <onfeA JLAG> dwey Supey WSPMydI-en|) NHS e1L ££001
araymAIoAT 9INseI[J
WINWIXEJA ‘Speoy a3 UO aduew 'Sq[87 “SumyIys
-I0513 J-YS1L] :Tea(a8exde Syl X9PUI 9SIDAI] “UOTONLI}SUOD SWEI)
ojuy 3] pawiny uay} ‘yuawrdmbyg panng-ardin payeonsnydog -3urmoy
ay1g Surmoy, jo uoneu y31[pue SapLI qnpd 10§ [eIP]
-IqUIOD) [e3P] B3 PAIdR[AG I\ <dNJeA HLAG> ISEISNUJUD IUUI3aq ayy 10y pajear) NHS [41!1 9¢€00T
Manpe jes aimaid jes 19S3pT1e9 3poJ nuew wnu }20)s wnu Bojejes

IBM Informix Guide to SQL: Reference

A-36

Data in the Stores_demo Database

(€1308)
SIMYM :S[[eg JIOD AL Suo] <PnfeA FIAL> ATuo ym ZNV q0c V00T
MO[[3X JUSDSAION[]
s[[eg J[oD aau Suo <anjea gIAG> ‘mo[h Juadsaronyy TIN S0¢ 9%00T
suoniaduwo)) [ooyog
Y31y 103 9yerrdorddy suoig "}JeyS PAIdA0D-UOTAN TOIJUOD
§0 195 Suruuidag Aend-ySiH <onfea gIAg> wnuydo 105 paduereq Aeap YV 0T SH00T
aur] panunuodsiq "00°68%$ 1e paoud Aqreurduo
:s3uraeg snopusuraiy, ye A1030e,] ‘98pam Sunpyd pue suoir ¢
WOL] S[qe[IeAY SUOI] 039G <dnfea FIAG> YySnoxyp ¢ sopnpursuoiriysejords TIN €0c Y001
sImajewry
SNoTIag 10 suofiaduio)) -souewrrojrad
Tooydg Y3 105 ayerxd 1amod pue joryuod uorswaid
-oxddy spoom Anend-y3ry <onfea gLAg> 10j paudIsap spoom Jjo s g YV 20 €7001
sasse)
aerda[o) pue [ooydg Y3y ‘1omod 10y paouereq ‘siyeys
10 [eaP] ‘SPOOM JO 19G I9}Ie)g <anfeA GIAG> P[oS soziun 39s soreys oidwod TIN 202 ZH001
-az1s Ajadg
K101 pue 931ym 10 Aeid pue ajym
SO ur o[qereAy ‘A1p 3993 dosy 03 Surury
I93ed] pue I9Yjea| SSUIqUIO)) Joo1d193ep) "UOTIR[UDA WINWIXEW
aoyg Ayrend) dog s,usystey] <anfea FIAg> 10§ Ysaw ISe] pue e YV 102 T$001

The stores_demo Database A-37

Manpe jed aimoid jes 19S3p 1e9 3pod nuew wnu)90)s wnu fojejes

Data in the stores_aemo Database

(€1506)

SIaUUNY dULISI(]
-eI)[(] pUe SISUOYJRILA 10]

"9Z1S
s, uowioM /s, udur Ayradg -Gururen
Aysuoyur-y3ry Surmp uonoajord

Ppapuaixe 10y 3erd [o1uod 30039105

pue wogierd uoneuordnue rear
sasn wdysAs Ayqiqeig -uoryedissip
2IM)SIOW JUS[[20%d S9AI3 soddn
O1RYIUAS /ysaA wrrogierd aqels
‘aanproddns ‘ajqeinp e pasu pue

pamvsurduyg soyg ururel] sy <onjeA IAG> So[w Aaeay o[oym swuuniioy NHS 10€ 16001
ronuoD "9Z18 ‘s, udwioMm /s, uswr Ajadg
UOTJOJA PRIN OYM SISuUUNY I0] ‘Ayiqenp yearn) -uondiosqe Yooys
90yg Sururely snouag v }Jea] snonqe, ‘Aqiqess reuondodxa ym
oye], s1ojeurdng pue S10jeuor] <dNeA FIAL> Sururen snouas 10§ pareduisugy O¥H 10€ 0S00T
-9z1s Aj1adg "ATuo s,UatA 01U
UOTJOUI JB3I5) "}I0JUW0D PAUOTYSND
Areurproexxs 105 suefd [eyuozrioy
szauuny 33ea[IA e ojur A810uo [ednIaA asIadsip
-ySIL] 104 UODR)OI] WINWIXC]N <dN[eA FIAL> sped 28 Surqrosqe-ypoys radng TN 10§ 6%00T
AMYM plepuelg
pue MOJ[9X JUSDSION[")IYM pIepue)s pue
sapnpuyase) s[ied JI0D WIJIH <dnfea JLAG> Mo[aA Jusdsazonfy uoneurquio) O¥H S0c 87001
Manpe jes aimaid jes 19S3pT1e9 3poJ nuew wnu }20)s wnu Bojejes

IBM Informix Guide to SQL: Reference

A-38

Data in the Stores_demo Database

(€130 01)

SY205 YNOA

‘a8ueIo pue “usa1d ‘morRA urd
JUSaION[] :I0[0D 3)ETPU] "SIIGOIIE

WM HO $20S TBY L Yoouy <enfea FIAG> IO SUIUUNIT 10§ 0013 “UO[AU U0ON D¥d €0€ 95001
IO Y} 0} e, UeD) NOX ‘s3a[10 swre 0} uonedridde Asea
yey [, syurpdg uryg pue sermfug smorpre dexs 0 "asn [erousd 10
SIY[IPY I0J 3ok 0] ue ‘A[reur] <anjea gIAg> ‘dens omppa ypimpedadrajqesnay YV 20€ GG00T
-az1s Ajadg s, uswom
pUe S,UsW Ul S[e[TBAY "0YS dPIM ©
Pa3U OYM SIQUUINI 10§ [EIP] "XOq 30}
ardure yjm soys uonoen} 9aARISOJ
WO0Y X0ga0], eIX ‘punogaz A319us pue uondiosqe
pue “U0T}D301] ‘[OIU0D) UOIO]N <dn[ea gLAg> 3ooys sopraoid o[os LadMmUE) ZNV 10§ $S00T
*9ZIS S,UaWIOM /S, udwW AJadg
“yepy Sumoer e jo ssousarsuodsar o)
S SISAT[OpP Juruorysnd
uoyeIe|A ySnoIy] nox Arred) ySrom-1ayyea] -aoerd ur Afuriy
ueD Jey] e[Surure] ajqeimn(<anfea gIAg> 100§ InOA SploY jse| [EdIWOleUY YV 10¢ €5001
"9Z18
Ayadg -arqerreae syypim (A[uo
[99H I9PU[S © IIA\ UOLID0I] S,UdWOAA “[OIIUOD UOLIOW pappe
JO0J310,] BIIXH SAUIqUIO)) Y3m SUuruoTysnd 300§210§ JO AJua(]
yeyJ, Jef Sumey S,UPWOp| V¥ <anjeA gIAG> ‘yepy Sumer o[qess ‘eantoddng DY J 10€ 25001
Manpe jed aimoid jes 19S3p 1e9 3pod nuew wnu)90)s wnu fojejes

The stores_demo Database A-39

Data in the stores_aemo Database

(€130 11)

19yeg 3unno
Arure Iog 9EA ‘WopUR] € U0

SUOLONLISUL A[qUUdSSe Pajsa}
-19s(] "9YIq P[IYD/}HNpe ue ojur

PIIYD Mox yim Surphorg ofug <onjea XG> 9YIq WApue) pIepuels e SHoAU0D D¥d 90¢ 19001
Soed
PIO2-}Ue)SUI pUR ‘SIZIS PIJIOSSe
Suraely weay, jo sa8epueq aarsaype ‘sped
‘S90130RIJ WeI], 10§ [BHUISSH Sursuead [oyoo[e “Wead [eraeq
1D Prv-3sit] aasuayarduio) <onpea gLAg> -nue ‘o3epueq aoe sureyuo) OYH S0¢ 0900T
“yoerq aoeds ‘usard
s10[0D) uonnadwo)) jurux “syurd 3O} :10[0d 93edIpu]
Ul Yo3ep S3oTuperi] jooxdiojepa <onjea gIAd> ‘wig 0y jooxdrayem ‘rowy ydg O¥H $0€ 65001
“pueq 0I[AA “W()G 03 Joordioyem
QU INOY “urLrere ‘1w JusAd
JOWIT} UMOP-}Unod Iy O] ‘Arowauwr
K1owap der-g “syrfds aanemumo /deg
de-§/M UoIeM dHR[YIY <dnjea FIAG> Jo Ae[dsip [enp ‘sjep ‘owin sapraoid ZNV ¥0¢ 85001
*S,USWOM IO
s, uaw AJ109dg "uotoayur 10§ AJTUNY
-10ddo ayy sonpaz pue s193s1[q JO
3SLI 9} SJeUTWI[d 0} U0}0D 3} N0
uopoD UaYe} 9A, 9/ HOJWO0Dd pue JunpPim
ON - $320G pud[g UOJAN %001 <on[ea gLAd> rewndo 10§ pus[q uojAu %001 AV €0¢ £9001
Manpe jes aimaid jes 19S3pT1e9 3poJ nuew wnu }20)s wnu Bojejes

IBM Informix Guide to SQL: Reference

A-40

Data in the Stores_demo Database

(€130 21)

souenpuy pue yidusng
WY p[ing S9AO[D WIMG

‘uonypeduwod
Ul pasn 3q jouue)) ‘SuLIe
jo Suruayy3uans sajowoid sraGury

PaqgaM - [00], Surures] JoH <onfeA FIAd> udaM3aq BUIqQaM "SIA0[3 WIMG NHS 453 69001
paeog>Py Ayend-ysSiy <onfea FLAL> "9ZIS pIepuels "HyM ZNV 01e 89001
ondeI]
wea], 10§ preogdry pedwo)) ‘0301 urea) 10 erewnyg
‘ajqean(y A[reuondadxy <onfea FLAG> WM preoq weoy Anp-Aaeayanyg INHS 01€ £9001
“IE9 S, ISUIWIMS JO JUSWI} a1}
USIP[IYD) 10§ PIIL[NULIO] 10 uonuaAaid 10y Aep K149
A[rewadg sdoi(q req s, JowuIMg <onjea JLAG> Pasn aq ue) ‘e[NuLIoy apuLaS-enxy JNHS 60€ 99001
SuoT uoseag [y uondayul
Ief JUSARIJ URD) SISWIWIMG <onjeA gLAg> Ie9 S, IOWIWIMS SJUaAdL] O¥H 60€ G900T
‘spunod
NOX YIM Smoin) 10830(QT 01 dn UBIPIIYD 10§ pajey jUSIPITYD
jueju] ‘smoiIn) A[iuue INOK Sy <dnfeAa JLAL> Yi0q 9ye) 0} pep 10 Wow SMO[[Y D¥d 80¢ $900T
“wiLn yoe[q yim anjq AaeN ‘spunod
1ayja8o], Afrure 12 03 dn uaIpIyd SjL ‘003 N0
Suruuny v sdeay 10330(juejuy <anea FIAG> Aqeq oyl axe) 0] pep I0 WoW SMO[[Y NId 20§ €9001
PIYD pue juareq
10§ wapue], Sunmoy ySom ‘epow ySrom
Y817 v A aumuy ay -Y3r "M1q PR /Npe ue ojur
I0j uorjedEA SULINOL © I9PISU0) <dnfeAa JLAG> YIq WApUR) pIepuels e spLAU0D) JNHS 90¢ 29001
Manpe jed aimoid jes 19S3p 1e9 3pod nuew wnu)90)s wnu fojejes

The stores_demo Database A-41

Data in the stores_aemo Database

(€130 €1)

‘901

jusujeaiy], orpadoyir0 pue I9)eM 3)ePOUWLLOIE 0} b_ummwu.
rewndQO apraoi 03 3] YA RIIXH "Pre-1SIy JUR)SUI 10§ I9ZI1J
saurquio)) jusumiredwio)) 19jepy <onpea gLAg> oy ur 203G yoed sor o[qesn-ay O¥H GIE $/001
deny wimg AIYM '9ZIS dUQ
auodI(Ig Jjo-parenbg ajqem(y <anfea gLAg> ‘doj jjo-parenbg ‘de> wiims auodtig ZNV ¥1E €001
-9[qerreay Sunurrduy o807 ures],
‘AA®U IO “IOA[IS “9}IUM UI S[qe[IeAY
dep wimg auodrig 0307 weay, <anea gLAgG> *9z1s au() "ded> wims auodIIs INHS) 22001
}I0JWO0D)
I9}BAIN) 10 SUDT PIpUNoy| 93rym 10 ‘K218 ‘on[q ur apqereay
reuonpery, :s9[8300 wimg <anfea gIAg> so[3808 orfis-uonnadwod ajqemq OYH rago 12001
"9YOWS IO SN[q UI d[R[IeAY
Junodsi(] Ayuengd) ‘S)UdwWde S0J-ue UI-punoio)
:$9[3300) s, JowwImg 30J-Tjuy <onjea gIAg> sud[padeys-33a orweudpoipAy NHS rans 04001
Manpe jes aimaidjes 19S3pT1e9 8po9s nuew wnu yJ0)s wnu Hojejes

IBM Informix Guide to SQL: Reference

R-42

(z3071)

Data in the Stores_demo Database

“19p10 2oerd 03 oeq
11e2 TIIM “sxa33ol yueyur Jo
sad4y axowr Y03s om Jeyy

's1938ol yueyur ur 3sazeyur jo 90 %1 sysanbay] -astpueydIow SO
dnoi3 Supexrew o3 ouuds O1-£0-8661 INO SN[JOWOISND) 0 (Arewr O1-£0-8661 X4
IOWOISND
0} [[Iq Mau Surpuss st pue
JIOLId 9} PUNOJ 9YG "9OUBUL] 12:8 “19p10 snoradxd woiy 00:ST
urjuexy oue[pim ajods 70-£0-866T ITPAID JI[JT 10U S0P [[1g q PP T0-£0-8661 611
‘A1eSSadau J1 Ae[ap yaim [red
[IIm 9w N "ZNV Woxy
spoo3 10y Surjrem 2I9M aM
-Kep1aysak Juas 1opIQ (YITwS 0€:01 “paAradaI1 Jou (£, /9) ode ¥2:01
pH) Surddiys yym poxpayd £0-£0-8661 yruows suo paderd 1opIiQ 1 OYd £0-£0-8661 011
‘warqoid v ayj 110da1 0y Kydws azom
1R4ng ZNV pareD “8orode 95D A} UTY}IM S[[eq STUUD}
PoNSSI “IaWwo)snd 03 sued for) 7NV JO Sued 33 JOo 0m} 0T:8
OM} 10§ }PAId> PAZHOYIY ZT[-90-8661 1N ‘PIAISIAI SeM 19pIQ a (Arewr 21-90-8661 901
19sap sau awnp sal 19Sap (e 8pos e pPI iasn Awmp I wWnu I3wo)snd

aJqe] S//eaIsna

The stores_demo Database A-43

(z3072)

Keprjoy

JO 9snedaq uonN[OsdI JO
SS9URJE[pUE SSUSJJO PUOIIS
03 anp rowojsnd ayede[d

0} JUNOdSIp 9,6 Junsanboar
Suriq 03 owewr ‘ased Juoim

.mmﬂ—mwﬁ ased auo mO ﬁmmumﬁw
(O¥H 1) $9A0[3 I2p[PYINO

dn spoid “saao[8 papuey papuey-3ySLI sased omy
-1J9[JO dsED puULds 0} (UMOoIg 61:80 POAISOY (I9WIO}STD ST} YT IL
eay) Suiddiys o owdN £z-Tl-/4661 woxy jure[duwod puodsg I ukuuew 1Z-71-2661 911
Joow "(NHS €1¢) 0307
WIMS JOJ SWI} UT I pajrewt wed} YHm AAeu jo pesjsur
ssardxa pue asnoyarem ur V91 (ZNV €1¢) sdeo utms PECT
ased 0a1100 punoy Surddiyg QT-T1-2661 arym urerd paateday I ukuuewr QzZ-11-/661 911
'1/8 ‘MOoII0WO0}
9UOP 9 PINOYS "SaydIem
O¥H dnypoid pue rowoisno ‘SsaPIeM ZNV
0} $0€ W ZNV Puss JO peaISUI (H0E # W) 0c¥1
0} Surddrys 03 owawr jusg S9UD}EM OIOL] POATIINY I [Arewr 1¢-20-8661 /21
19S3p~Sal awnp sai 19S3pT[|e9 9po9 [[ed priasn SwppP B9 WNU I3W0}SnI

Data in the stores_aemo Database

IBM Informix Guide to SQL: Reference

R-44

Data in the stores_demo Database

manufact Table

manu_code manu_name lead_time
ANZ Anza 5

HSK Husky 5

HRO Hero 4

NRG Norge 7

SMT Smith 3

SHM Shimara 30

KAR Karsten 21

NKL Nikolus 8

PRC ProCycle 9

state Table

code sname code sname

AK Alaska MT Montana

AL Alabama NE Nebraska

AR Arkansas NC North Carolina
AZ Arizona ND North Dakota
CA California NH New Hampshire
CT Connecticut NJ New Jersey
CcO Colorado NM New Mexico
DC Washington, D.C. NV Nevada

DE Delaware NY New York

FL Florida OH Ohio

(1 of 2)

The stores_demo Database A-45

Data in the stores_aemo Database

R-46

code sname code sname

GA Georgia OK Oklahoma
HI Hawaii OR Oregon

IA Iowa PA Pennsylvania
ID Idaho PR Puerto Rico
IL Mlinois RI Rhode Island
IN Indiana SC South Carolina
KY Kentucky N Tennessee
LA Louisiana X Texas

MA Massachusetts uT Utah

MD Maryland VA Virginia

ME Maine VT Vermont

MI Michigan WA Washington
MN Minnesota WI Wisconsin
MO Missouri Wv West Virginia
MS Mississippi WY Wyoming

IBM Informix Guide to SQL: Reference

(20f2)

Appendix

XPS

The sales demo and
superstores_demo
Databhases

In addition to the stores_demo database that is described in
detail in Appendix A, IBM Informix products include the
following demonstration databases:

m The sales_demo database illustrates a dimensional
schema for data-warehousing applications. ¢

m The superstores_demo database illustrates an
object-relational schema. ¢

This appendix discusses the structures of these two demon-
stration databases.

For information on how to create and populate the demon-
stration databases, including relevant SQL files, see the

IBM Informix DB-Access User’s Guide. For conceptual information
about demonstration databases, see the IBM Informix Database
Design and Implementation Guide.

XPS

The sales_aemo Database

The sales_demo Database

Your database server product contains SQL scripts for the sales_demo dimen-
sional database. The sales_demo database provides an example of a simple
data-warehousing environment and works in conjunction with the
stores_demo database. The scripts for the sales_demo database create new
tables and add extra rows to the items and orders tables of stores_demo.

To create the sales_demo database, you must first create the stores_demo
database with the logging option. Once you create the stores_demo database,
you can execute the scripts that create and load the sales_demo database
from DB-Access. The files are named createdw.sql and loaddw.sq]l.

Dimensional Model of the sales_demo Database

Figure B-1 gives an overview of the tables in the sales_demo database.

i Figure B-1
Product _Time The sales_demo
Dimension Dimension Dimensional Data
product code - — time code Model
roduct name
\Eendor order date
vendor name Fact Table: Sales month code
product line ——{ product code monih name
) uarter code
product line name fime code — guarter e
— district code year
customercode ——
revenue
cost
Geography units sold Customer
Dimension net profit Dimension
district code — —— customer code
district customer name
state company name
state name
region

- —

B-2

IBM Informix Guide to SQL: Reference

Structure of the sales_demo Tables

For information on how to create and populate the sales_demo database, see
the IBM Informix DB-Access User’s Guide. For information on how to design
and implement dimensional databases, see the IBM Informix Database Design
and Implementation Guide. For information on the stores_demo database, see
Appendix A.

Structure of the sales_demo Tahles

The sales_demo database includes the following tables:

customer
geography
product

sales

time

The tables are listed alphabetically, not in the order in which they are created.
The customer, geography, product, and time tables are the dimensions for
the sales fact table.

The sales_demo database is not ANSI compliant.

The following sections describe the column names, data types, and column
descriptions for each table. A SERIAL field serves as the primary key for the
district_code column of the geography table. However, the primary and
foreign key relationships that exist between the fact (sales) table and its
dimension tables are not defined because data-loading performance
improves dramatically when the database server does not enforce constraint
checking.

The sales_demo and superstores_demo Databases B-3

Structure of the sales_demo Tables

The customer Table

The customer table contains information about sales customers. Figure B-2
shows the columns of the customer table.

Figure B-2
The customer Table
Name Type Description
customer_code INTEGER Customer code
customer_name CHAR(31) Customer name
company_name CHAR(20) Company name
The geography Table

The geography table contains information about the sales district and region.
Figure B-3 shows the columns of the geography table.

Figure B-3
The geography Table
Name Type Description
district_code SERIAL District code
district_name CHAR(15) District name
state_code CHAR(2) State code
state_name CHAR(18) State name
region SMALLINT Region name

B-4 IBM Informix Guide to SQL: Reference

Structure of the sales_demo Tables

The product Table

The product table contains information about the products sold through the
data warehouse. Figure B-4 shows the columns of the product table.

Figure B-4
The product Table
Name Type Description
product_code INTEGER Product code
product_name CHAR(31) Product name
vendor_code CHAR(3) Vendor code
vendor_name CHAR(15) Vendor name
product_line_code SMALLINT Product line code
product_line_name CHAR(15) Name of product line

The sales Table

The sales fact table contains information about product sales and has a
pointer to each dimension table. For example, the customer_code column
references the customer table, the district_code column references the
geography table, and so on. The sales table also contains the measures for the
units sold, revenue, cost, and net profit. Figure B-5 shows the columns of the
sales table.

Figure B-5
The sales Table
Name Type Description
customer_code INTEGER Customer code (references customer)
district_code SMALLINT District code (references geography)
time_code INTEGER Time code (references time)
product_code INTEGER Product code (references product)

(1 of 2)

The sales_demo and superstores_demo Databases B-5

Structure of the sales_demo Tables

Name Type Description
units_sold SMALLINT Number of units sold
revenue MONEY(8,2) Amount of sales revenue
cost MONEY(8,2) Cost of sale
net_profit MONEY(8,2) Net profit of sale
(20f2)
The time Table

The time table contains time information about the sale. Figure B-6 shows the
columns of the time table.

Figure B-6
The time Table
Name Type Description
time_code INTEGER Time code
order_date DATE Order date
month_code SMALLINT Month code
month_name CHAR(10) Name of month
quarter_code SMALLINT Quarter code
quarter_name CHAR(10) Name of quarter
year INTEGER Year

IBM Informix Guide to SQL: Reference

The superstores_demo Database

The superstores_demo Database

SQL files and user-defined routines (UDRs) that are provided with DB-Access
let you derive the superstores_demo object-relational database.

The superstores_demo database uses the default locale and is not ANSI
compliant.

This section provides the following superstores_demo information:

m The structure of all the tables in the superstores_demo database

m Alist and definition of the extended data types that
superstores_demo uses

m A map of table hierarchies
m The primary-foreign key relationships among the columns in the
database tables

For information on how to create and populate the superstores_demo
database, see the IBM Informix DB-Access User’s Guide. For information on how
to work with object-relational databases, see the IBM Informix Database Design
and Implementation Guide. For information on the stores_demo database on
which superstores_demo is based, see Appendix A.

Structure of the superstores_demo Tables

The superstores_demo database includes the following tables. Although
many tables have the same name as stores_demo tables, they are different.
The tables are listed alphabetically, not in the order in which they are created.
m call_type

m catalog

m cust_calls

m customer

o retail_customer (new)

o whlsale_customer (new)

m items

The sales_demo and superstores_demo Databases B-7

Structure of the superstores_ademo Tables

location (new)

o location_non_us (new)
o location_us (new)
manufact

orders

region (new)

sales_rep (new)

state

stock

stock_discount (new)

units (new)

This section lists the names, data types, and descriptions of the columns for
each table in the superstores_demo database. The unique identifying value
for each table (primary key) is shaded and indicated by a key (@) symbol.
Columns that represent extended data types are discussed in “User-Defined
Routines and Extended Data Types” on page B-22. Primary-foreign key

relationships between the tables are outlined in “Referential Relationships”
on page B-25.

The call_type Table

The call codes associated with customer calls are stored in the call_type table.
Figure B-7 shows the columns of the call_type table.

Figure B-7
The call_type Table
Name Type Description
call_code CHAR(1) Call code
codel_descr CHAR (30) Description of call code

IBM Informix Guide to SQL: Reference

T1

Structure of the superstores_ademo Tables

The catalog Tahle

The catalog table describes each item in stock. Retail stores use this table
when placing orders with the distributor. Figure B-8 shows the columns of
the catalog table.

Figure B-8
The catalog Table
Name Type Description
catalog num SERIAL(1001) System-generated catalog number
stock_num SMALLINT Distributor stock number (foreign key to
stock table)
manu_code CHAR(3) Manufacturer code (foreign key to stock
table)
unit CHAR(4) Unit by which item is ordered (foreign key
to stock table)
advert ROW (picture BLOB, Picture of item and caption
caption LVARCHAR)
advert_descr CLOB Tag line underneath picture

The cust_calls Table

All customer calls for information on orders, shipments, or complaints are
logged. The cust_calls table contains information about these types of
customer calls. Figure B-9 shows the columns of the cust_calls table.

Figure B-9
The cust_calls Table
Name Type Description
customer num INTEGER Customer number (foreign key to

customer table)

call_dtime DATETIME YEAR Date and time call received
TO MINUTE

(1 of 2)

The sales_demo and superstores_demo Databases B-9

Structure of the superstores_ademo Tables

B-10

Name Type Description

user_id CHAR(18) Name of person logging call (default is
user login name)

call_code CHAR(1) Type of call (foreign key to call_type
table)

call_descr CHAR(240) Description of call

res_dtime DATETIME YEAR Date and time call resolved

TO MINUTE
res_descr CHAR(240) Description of how call was resolved

shows.

The customer Table

(2 of 2)

The customer, retail_customer, and whisale_customer Tables
In this hierarchy, retail_customer and whlsale_customer are subtables that

are created under the customer supertable, as Figure B-25 on page B-25

For information about table hierarchies, see the IBM Informix Database Design
and Implementation Guide.

The customer table contains information about the retail stores that place
orders from the distributor. Figure B-10 shows the columns of the customer

table.
Figure B-10
The customer Table
Name Type Description
o—u customer_num SERIAL Unique customer identifier
customer_type CHAR(1) Code to indicate type of customer:

m R =retail

m W = wholesale

IBM Informix Guide to SQL: Reference

(1 of 2)

Structure of the superstores_ademo Tables

Name Type Description

customer_name name_t Name of customer

customer_loc INTEGER Location of customer (foreign key to

location table)

contact_dates LIST(DATETIME Dates of contact with customer
YEAR TO DAY
NOT NULL)

cust_discount percent Customer discount

credit_status CHAR(1) Customer credit status:

m D = deadbeat
m L =lost
m N =new
m P = preferred

m R =regular

The retail_customer Table

2 of2)

The retail_customer table contains general information about retail
customers. Figure B-11 shows the columns of the retail_customer table.

Figure B-11
The retail_customer Table
Name Type Description
customer_num SERIAL Unique customer identifier
customer_type CHAR(1) Code to indicate type of customer:
m R =retail
m W = wholesale
customer_name name_t Name of customer
customer_loc INTEGER Location of customer

(10f2)

The sales_demo and superstores_demo Databases B-11

Structure of the superstores_ademo Tables

Name Type Description
contact_dates LIST(DATETIME Dates of contact with customer
YEAR TO DAY
NOT NULL)
cust_discount percent Customer discount
credit_status CHAR(1) Customer credit status:
m D = deadbeat
m L =lost
m N = new
m P = preferred
m R =regular
credit_num CHAR(19) Credit card number
expiration DATE Expiration data of credit card

The whisale_customer Table

(2 of 2)

The whlsale_customer table contains general information about wholesale
customers. Figure B-12 shows the columns of the whlsale_customer table.

Figure B-12
The whisale_customer Table
Name Type Description
customer_num SERIAL Unique customer identifier
customer_type CHAR(1) Code to indicate type of customer:
m R =retail
m W = wholesale
customer_name name_t Name of customer
customer_loc INTEGER Location of customer

B-12 IBM Informix Guide to SQL: Reference

(1 of 2)

Tt

Structure of the superstores_ademo Tables

Name Type Description
contact_dates LIST(DATETIME Dates of contact with customer
YEAR TO DAY
NOT NULL)
cust_discount percent Customer discount
credit_status CHAR(1) Customer credit status:
m D = deadbeat
m L =lost
m N =new

m P = preferred

m R =regular

resale_license CHAR(15) Resale license number
terms_net SMALLINT Net term in days
(20f2)
The items Table

An order can include one or more items. One row exists in the items table for
each item in an order. Figure B-13 shows the columns of the items table.

Figure B-13
The items Table
Name Type Description
item_num SMALLINT Sequentially assigned item number for
an order
order_num INTS8 Order number (foreign key to orders
table)
stock_num SMALLINT Stock number for item (foreign key to
stock table)
manu_code CHAR(3) Manufacturer code for item ordered

(foreign key to stock table)

(1 of 2)

The sales_demo and superstores_demo Databases B-13

Structure of the superstores_ademo Tables

B-14

Name Type Description

unit CHAR(4) Unit by which item is ordered (foreign
key to stock table)

quantity SMALLINT Quantity ordered (value must be > 1)

item_subtotal MONEY(8,2) Quantity ordered * unit price = total

price of item

(2 of 2)

The location, location_non_us, and location_us Tables

In this hierarchy, location_non_us and location_us are subtables that are
created under the location supertable, as shown in the diagram in “Table
Hierarchies” on page B-25. For information about table hierarchies, see the
IBM Informix Database Design and Implementation Guide.

The location Table

The location table contains general information about the locations
(addresses) that the database tracks. Figure B-14 shows the columns of the
location table.

Figure B-14
The location Table
Name Type Description
o—u location_id SERIAL Unique identifier for location
loc_type CHAR(2) Code to indicate type of location
company VARCHAR(20) Name of company
street_addr LIST(VARCHAR(25) Street address
NOT NULL)
city VARCHAR(25) City for address
country VARCHAR(25) Country for address

IBM Informix Guide to SQL: Reference

Structure of the superstores_ademo Tables

The location_non_us Table

The location_non_us table contains specific address information for
locations (addresses) that are outside the United States. Figure B-15 shows
the columns of the location_non_us table.

Figure B-15
The location_non_us Table
Name Type Description
location_id SERIAL Unique identifier for location
loc_type CHAR(2) Code to indicate type of location
company VARCHAR(20) Name of company
street_addr LIST(VARCHAR(25) Street address
NOT NULL)
city VARCHAR(25) City for address
country VARCHAR(25) Country for address
province_code CHAR(2) Province code
zipcode CHAR(©9) Zip code
phone CHAR(15) Phone number

The sales_demo and superstores_demo Databases B-15

Structure of the superstores_ademo Tables

B-16

The location_us Table

The location_us table contains specific address information for locations
(addresses) that are in the United States. Figure B-16 shows the columns of
the location_us table.

Figure B-16
The location_us Table
Name Type Description
o—u location_id SERIAL Unique identifier for location
loc_type CHAR(2) Code to indicate type of location
company VARCHAR(20) Name of company
street_addr LIST(VARCHAR(25) Street address
NOT NULL)
city VARCHAR(25) City for address
country VARCHAR(25) Country for address
state_code CHAR(2) State code (foreign key to state table)
zip CHAR(©9) Zip code
phone CHAR(15) Phone number

IBM Informix Guide to SQL: Reference

Structure of the superstores_ademo Tables

The manufact Table

Information about the manufacturers whose sporting goods are handled by
the distributor is stored in the manufact table. Figure B-17 shows the
columns of the manufact table.

Figure B-17
The manufact Table
Name Type Description
manu_code CHAR(3) Manufacturer code
manu_name VARCHAR(15) Name of manufacturer
lead_time INTERVAL DAY(3) Lead time for shipment of orders
TO DAY
manu_loc INTEGER Manufacturer location (foreign key to
location table)
manu_account CHAR(32) Distributor account number with
manufacturer
account_status CHAR(1) Status of account with manufacturer
terms_net SMALLINT Distributor terms with manufacturer
(in days)
discount percent Distributor volume discount with

manufacturer

The sales_demo and superstores_demo Databases B-17

Structure of the superstores_ademo Tables

B-18

The orders Table

The orders table contains information about orders placed by the customers
of the distributor. Figure B-18 shows the columns of the orders table.

Figure B-18
The orders Table
Name Type Description
e—“‘ order_ num SERTALS8(1001) System-generated order number
order_date DATE Date order entered
customer_num INTEGER Customer number (foreign key to
customer table)
shipping ship_t Special shipping instructions
backlog BOOLEAN Indicates order cannot be filled because
the item is back ordered
po_num CHAR(10) Customer purchase order number
paid_date DATE Date order paid
The region Table

The region table contains information about the sales regions for the
distributor. Figure B-19 shows the columns of the region table.

Figure B-19
The region Table

Name Type Description
o—u region_num SERIAL System-generated region number
region_name VARCHAR(20) Name of sales region
UNIQUE
region_loc INTEGER Location of region office (foreign key to

location table)

IBM Informix Guide to SQL: Reference

Structure of the superstores_ademo Tables

The sales_rep Table

The sales_rep table contains information about the sales representatives for
the distributor. Figure B-20 shows the columns of the sales_rep table.

Figure B-20
The sales_rep Table
Name Type Description
rep_num SERIAL(101) System-generated sales rep number
name name_t Name of sales rep
region_num INTEGER Region in which sales rep works

(foreign key to the region table)

home_office BOOLEAN Home office location of sales rep
sales SET(ROW (month Amount of monthly sales for rep
DATETIME YEAR TO
MONTH, amount
MONEY) NOT NULL)
commission percent Commission rate for sales rep
The state Table

The state table contains the names and postal abbreviations for the 50 states
of the United States as well as sales tax information. Figure B-21 shows the
columns of the state table.

Figure B-21
The state Table
Name Type Description
code CHAR(2) State code
sname CHAR(15) State name
sales_tax percent State sales tax

The sales_demo and superstores_demo Databases B-19

Structure of the superstores_ademo Tables

B-20

The stock Table

The stock table is a catalog of the items sold by the distributor. Figure B-22
shows the columns of the stock table.

Figure B-22
The stock Table
Name Type Description
9—“‘ stock_num SMALLINT Stock number that identifies type of
item
9—“‘ manu_code CHAR(3) Manufacturer code (foreign key to
manufact)
9—“‘ unit CHAR(4) Unit by which item is ordered
description VARCHAR(15) Description of item
unit_price MONEY(6,2) Unit price
min_reord_qty SMALLINT Minimum reorder quantity
min_inv_qty SMALLINT Quantity of stock below which item
should be reordered
manu_item_num CHAR(20) Manufacturer item number
unit_cost MONEY(6,2) Distributor cost per unit of item from
manufacturer
status CHAR(1) Status of item:
m A = active
m D = discontinued
m N = no order
bin_num INTEGER Bin number
qty_on_hand SMALLINT Quantity in stock
bigger_unit CHAR(®4) Stock unit for next larger unit (for
same stock_num and manu_code)
per_bigger_unit SMALLINT How many of this item in

bigger_unit

IBM Informix Guide to SQL: Reference

The stock discount Table

Structure of the superstores_ademo Tables

The stock_discount table contains information about stock discounts. (There
is no primary key). Figure B-23 shows the columns of the stock_discount

table.
Figure B-23
The stock_discount Table
Name Type Description
discount_id SERIAL System-generated discount identifier
stock_num SMALLINT Distributor stock number (part of foreign
key to stock table)
manu_code CHAR(3) Manufacturer code (part of foreign key to
stock table)
unit CHAR(4) Unit by which item is ordered (each, pair,
case, and so on) (foreign key to units table;
part of foreign key to stock table)
unit_discount percent Unit discount during sale period
start_date DATE Discount start date
end_date DATE Discount end date

The sales_demo and superstores_demo Databases B-21

User-Defined Routines and Extended Data Types

B-22

The units Table

The units table contains information about the units in which the inventory
items can be ordered. Each item in the stock table is available in one or more
types of container. Figure B-24 shows the columns of the units table.

Figure B-24
The units Table
Name Type Description
unit_name CHAR(®4) Units by which an item is ordered (each,

pair, case, box)

unit_descr VARCHAR(15) Description of units

User-Defined Routines and Extended Data Types

The superstores_demo database uses user-defined routines (UDRs) and
extended data types.

A UDR is a routine that you define that can be invoked within an SQL
statement or another UDR. A UDR can either return values or not.

The data type system of Dynamic Server is an extensible and flexible system
that supports the creation of following kinds of data types:

m Extensions of existing data types, by redefining some of the behavior
for data types that the database server provides

m Definitions of customized data types by a user

This section lists the extended data types and UDRs created for the
superstores_demo database. For information about creating and using UDRs
and extended data types, see IBM Informix User-Defined Routines and Data
Types Developer’s Guide.

The superstores_demo database creates the distinct data type, PERCENT, in a
UDR, as follows:

CREATE DISTINCT TYPE percent AS DECIMAL(5,5) ;
DROP CAST (DECIMAL(5,5) AS percent) ;
CREATE IMPLICIT CAST (DECIMAL(5,5) AS percent);

IBM Informix Guide to SQL: Reference

User-Defined Routines and Extended Data Types

The superstores_demo database creates the following named row types:

m location hierarchy:
o location_t
o loc us_t
o loc_non_us_t
m customer hierarchy:
0 name_t
Q customer_t
o retail t
o whisale_t
m orders table

o ship_t

location_t definition

location_id SERIAL

loc_type CHAR (2)

company VARCHAR (20)

street addr LIST(VARCHAR (25) NOT NULL)
city VARCHAR (25)

country VARCHAR (25)

loc_us _t definition

state_code CHAR (2)
zip ROW (code INTEGER, suffix SMALLINT)
phone CHAR (18)

loc_non_us _t definition

province code CHAR(2)

zipcode
phone

name_t definition

first
last

CHAR (9)
CHAR (15)

VARCHAR (15)
VARCHAR (15)

The sales_demo and superstores_demo Databases B-23

User-Defined Routines and Extended Data Types

customer _t definition

customer num SERIAL

customer_ type CHAR (1)

customer name name_t

customer loc INTEGER

contact dates LIST(DATETIME YEAR TO DAY NOT NULL)
cust_discount percent

credit status CHAR (1)

retail_t definition

credit num CHAR (19)
expiration DATE

whisale t definition

resale license CHAR (15)
terms_net SMALLINT

ship_t definition

date DATE

weight DECIMAL(8,2)
charge MONEY (6, 2)
instruct VARCHAR (40)

B-24 IBM Informix Guide to SQL: Reference

Table Hierarchigs

Table Hierarchies

Figure B-25 shows how the hierarchical tables of the superstores_demo
database are related.

Figure B-25
customer Hierarchies of
u -
customer_num location SupefoorES_g%IIT;g
customer_type I location_id
customer_name loc_type
customer_loc company

contact_dates street_addr
cust_discount city

credit_status country
retail_customer whisale_customer location_us location_non_us
credit_num resale_license state_code province_code
expiration terms_net zp zipcode
phone phone

Referential Relationships

The tables of the superstores_demo database are linked by the primary-
foreign key relationships that are identified in this section. This type of
relationship is called a referential constraint because a foreign key in one table
references the primary key in another table.

The customer and orders Tahles

The customer table contains a customer_num column that holds a number
that identifies a customer. The orders table also contains a customer_num
column that stores the number of the customer who placed a particular order.
In the orders table, the customer_num column is a foreign key that references
the customer_num column in the customer table.

The sales_demo and superstores_demo Databases B-25

Referential Relationships

B-26

The orders and items Tables

The orders and items tables are linked by an order_num column that
contains an identification number for each order. If an order includes several
items, the same order number appears in several rows of the items table. In
the items table, the order_num column is a foreign key that references the
order_num column in the orders table.

The items and stock Tables

The items table and the stock table are joined by three columns: the
stock_num column, which stores a stock number for an item, the manu_code
column, which stores a code that identifies the manufacturer, and the units
column, which identifies the types of unit in which the item can be ordered.
You need the stock number, the manufacturer code, and the units to uniquely
identify an item. The same stock number and manufacturer code can appear
in more than one row of the items table, if the same item belongs to separate
orders. In the items table, the stock_num, manu_code, and unit columns are
foreign keys that reference the stock_num, manu_code, and unit columns in
the stock table.

The stock and catalog Tables

The stock table and catalog table are joined by three columns: the stock_num
column, which stores a stock number for an item, the manu_code column,
which stores a code that identifies the manufacturer, and the unit column,
which identifies the type of units in which the item can be ordered. You need
all three columns to uniquely identify an item. In the catalog table, the
stock_num, manu_code, and unit columns are foreign keys that reference
the stock_num, manu_code, and unit columns in the stock table.

The stock and manufact Tables

The stock table and the manufact table are joined by the manu_code column.
The same manufacturer code can appear in more than one row of the stock
table if the manufacturer produces more than one piece of equipment. In the
stock table, the manu_code column is a foreign key that references the
manu_code column in the manufact table.

IBM Informix Guide to SQL: Reference

Referential Relationships

The cust_calls and customer Tables

The cust_calls table and the customer table are joined by the customer_num
column. The same customer number can appear in more than one row of the
cust_calls table if the customer calls the distributor more than once with a

problem or question. In the cust_calls table, the customer_num column is a
foreign key that references the customer_num column in the customer table.

The call_type and cust_calls Tahles

The call_type and cust_calls tables are joined by the call_code column. The
same call code can appear in more than one row of the cust_calls table,
because many customers can have the same type of problem. In the
cust_calls table, the call_code column is a foreign key that references the
call_code column in the call_type table.

The state and customer Tables

The state table and the customer table are joined by a column that contains
the state code. This column is called code in the state table and state in the
customer table. If several customers live in the same state, the same state
code appears in several rows of the table. In the customer table, the state
column is a foreign key that references the code column in the state table.

The customer and location Tables

In the customer table, the customer_loc column is a foreign key that refer-
ences the location_id of the location table. The customer_loc and location_id
columns each uniquely identify the customer location.

The manufact and location Tables

The manu_loc column in the manufact table is a foreign key that references
the location_id column, which is the primary key in the location table. Both
manu_loc and location_id uniquely identify the manufacturer location.

The sales_demo and superstores_demo Databases B-27

Referential Relationships

B-28

The state and location_us Tables

The state and location_us tables are joined by the column that contains the
state code. The state_code column in the location_us table is a foreign key
that references the code column in the state table.

The sales_rep and region Tables

The region_num column is the primary key in the region table. It is a system-
generated region number. The region_num column in the sales_rep table is

a foreign key that references and joins the region_num column in the region

table.

The region and location Tables

The region_loc column in the region table identifies the regional office
location. It is a foreign key that references the location_id column in the
location table, which is a unique identifier for location.

The stock and stock _discount Tables

The stock table and the stock_discount table are joined by three columns:
stock_num, manu_code, and unit. These columns form the primary key for
the stock table. The stock_discount table has no primary key and references
the stock table.

The stock and units Tables

The unit_name column of the units table is a primary key that identifies the
kinds of units that can be ordered, such as case, pair, box, and so on. The unit
column of the stock table joins the unit_name column of the units table.

IBM Informix Guide to SQL: Reference

Notices

IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

C-2

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not

apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation

J46A /G4

555 Bailey Avenue

San Jose, CA 95141-1003
US.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.

IBM Informix Guide to SQL: Reference

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Notices G-3

Trademarks

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; 0S/2, 0S/390, and OS/400; IBM Informix®;
C-ISAM®; Foundation.2000™; IBM Informix® 4GL; IBM Informix®
DataBlade® Module; Client SDK™:; Cloudscape™; Cloudsync™;

IBM Informix® Connect; IBM Informix® Driver for JDBC; Dynamic
Connect™; IBM Informix® Dynamic Scalable Architecture™ (DSA);

IBM Informix® Dynamic Server™; IBM Informix® Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix™~ Extended Parallel
Server™; i.Financial Services™; J/Foundation™; MaxConnect™; Object
Translator™; Red Brick Decision Server™; IBM Informix® SE;

IBM Informix® SQL; InformiXML™; RedBack®; SystemBuilder™; U2™,;
UniData®; UniVerse®; wintegrate® are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.

C-4 IBM Informix Guide to SQL: Reference

Glossary

Glossary

Tip: For additional product-specific information, refer to the glossaries

provided in the “IBM Informix Storage Manager Administrator’s
Guide,” the “IBM Informix SNMP Subagent Guide,” and other manuals
in the IBM Informix documentation set.

8-bit character A single-byte character that consists of eight bits, which means
that the code point is in the range 128 through 255. Examples
from the ISO8859-1 code set include the non-English é, i, and 6
characters. They can be interpreted correctly only if the software
that interprets them is 8-bit clean. See also non-ASCII character.

8-bit clean An operating system or database server that can process
character data that contains 8-bit characters. The operating sys-
tem or the database server reads the eighth bit as part of the code
value. In other words, it does not ignore the eighth bit nor make
its own interpretation of the eighth bit.

16-bit code set A code set (such as JIS X0208) in which approximately 65,000
distinct characters can be encoded.

access method A group of routines that access or manipulate a table or an index.
In the output of a SET EXPLAIN statement, access method refers to
the mode of table access in a query (for example, SEQUENTIAL
SCAN as opposed to INDEX PATH). See also primary access
method and secondary access method.

accessprivileges The types of operations that a user has permission to perform in
a specific database or database object. The Informix database,
table, table-fragment, index, and column-access privileges are
independent of operating-system access permissions.

active set The collection of rows that satisfies a query associated with a cur-
sor.

aggregate
function

aggregate
support function

alias

ALS

ANSI

ANSI compliant

API

application
development tool

application
process

application-
productivity tools

application
program

An SQL function that returns one value for a group of retrieved rows; for
example, the frequency, sum, average, maximum, or minimum of an expres-
sion in a query or report. See also user-defined aggregate.

One of a group of user-defined functions that the database server uses to calcu-
late a user-defined aggregate.

A temporary alternative name for a table in a query; usually used in complex
subqueries and required for a self-join. In a form-specification file or any SQL
query, alias refers to a single-word alternative name used in place of a
qualified table name (for example, t1 as an alias for owner.table_name).

Legacy acronym for Asian Language Support (ALS), a feature for multibyte
East Asian locales. Supplanted by Global Language Support (GLS).

Acronym for the American National Standards Institute. This group sets
standards in many areas, including the computer industry and standards for
the SQL language.

A database conforming to ANSI/ISO standards for SQL. A database is either
ANSI compliant or not ANSI compliant. An ANSI-compliant database
enforces certain ANSI requirements, such as implicit transactions, explicit
owner naming, no public synonyms, and (for Dynamic Server) unbuffered
logging, that are not enforced in databases that are not ANSI compliant.

See application programming interface (API).

Software, such as INFORMIX-4GL, that you can use to create and maintain a
database. The software allows a user to send instructions and data to (and
receive information from) the database server.

The process that manages an ESQL or other program at runtime. It executes
the program logic and initiates SQL requests. Memory that is allocated for
program variables, program data, and the fetch buffer is part of this process.
See also database server process.

Tools that are used to write applications.

An executable file or a logically related set of files.

2 IBM Informix Guide to SQL: Reference

application
programming
interface (API)

arbitrary rule

archiving

argument

array

ASCHI

Asian Language
Support (ALS)

A set of related software components, such as those provided by IBM, that a
developer uses to create applications that communicate with a third-party
product. An API can include a library of functions, header files, graphic inter-
faces, and application programs. See also SQL API and DataBlade API.

A series of expressions that you define for expression-based fragmentation,
using SQL relational and logical operators. Unlike the range rule, an arbitrary
rule allows you to use any relational operator and any logical operator to
define the expressions (such as the OR operator to group data).

Copying all the data and indexes of a database onto a new medium, usually
a tape or a different physical device from the one that stores the database.
Archived material is used for recovering from a failure and is usually
performed by a Database Administrator. See also backup.

A value that is passed to a routine or command. Compare with parameter.

An ordered set of items of the same data type. An individual member of the
array is referred to as an element and usually is identified by an integer index
that gives the position of the element within the array.

Acronym for American Standards Committee for Information Interchange, a
coding scheme that assigns unique integer values to letters, digits, punctua-
tion marks, and certain other nonprintable and printable characters used in
computers and telecommunication. It contains 128 characters, each of which
can be represented with 7 bits of information. The code set of every Informix
locale includes the ASCII characters as a subset. See also single-byte character.

Acronym for Associated Services Facility. The code in the ASF portion of
IBM Informix products controls the connections between client applications
and database servers. System developers use this term; users of IBM Informix
products see this term only in occasional error messages.

A class of legacy products that support multibyte code sets whose characters
can require up to 32 bits of storage. ALS servers and tools were available for
certain Version 6.x and earlier families of products that were designed to han-
dle East Asian language processing. The functionality of ALS is replaced by
Global Language Support (GLS) in current IBM Informix products. For more
information about ALS and GLS, see the IBM Informix Migration Guide.

Glossary 3

attached index

audit event

audit file

audit mask

auxiliary
statements

B-tree

An index that is created without an explicit fragmentation strategy. You
create an attached index by omitting both the distribution scheme (specified
by the FRAGMENT BY clause) and the storage option (specified by the IN
clause) of the CREATE INDEX or ALTER FRAGMENT ON INDEX statements. An
attached index can be created on a fragmented table.

The location of the index data varies depending on the database server. In
most cases, index pages reside in the same tblspaces as the data pages to
which they refer.

For Dynamic Server, index pages for user indexes reside in separate tbl-
spaces, but within the same dbspaces, as the data pages to which they refer.
Only the syscatalogs indexes reside in the same tblspace as the correspond-
ing data pages.

For Extended Parallel Server, both user and system-catalog index pages
reside in separate tblspaces but in the same dbspaces as the corresponding
data pages. See also detached index.

(Not for Extended Parallel Server) Any database server activity or operation
that could potentially access and alter data, and which should be recorded
and monitored by the database secure auditing facility. Examples of audit
events include accessing tables, altering indexes, dropping chunks, granting
database access, updating the current row, running database utilities, and so
forth. (For a complete list of audit events, see the Trusted Facility Guide.)

(Not for Extended Parallel Server) A file that contains records of audit events
and resides in the specified audit directory. Audit files form an audit trail of
information that can be extracted by the database secure auditing facility for
analysis by the database administrator.

(Not for Extended Parallel Server) A structure that specifies which events
should be audited (or excluded from auditing) by the database secure audit-
ing facility.

The SQL statements that you use to obtain auxiliary information about tables
and databases. These statements include INFO, OUTPUT, WHENEVER, and
GET DIAGNOSTICS.

A method of organizing an index into a tree structure for efficient record
retrieval.

4 |BM Informix Guide to SQL: Reference

B-tree index

backup

hase table
hase type
hefore-image
bidirectional

bitmap index

BLOB

blobpage

blobhspace

A type of index that uses a balanced tree structure for efficient record
retrieval. A B-tree index is balanced when the leaf nodes are all at the same
level from the root node. B-tree indexes store a list of rowids for any duplicate
key value data in ascending or descending order. See also bitmap index and
R-tree index.

A duplicate of a computer file on another device or tape to preserve existing
work, in case of a computer failure or other mishap. A backup refers to dupli-
cating logical-log files while archiving refers to duplicating data.

See table.

See opaque data type.

The image of a row, page, or other item before any changes are made to it.
Of a locale, supporting both right-to-left and left-to-right text.

A hardware-determined storage method in which the most-significant byte
of a multibyte number has the lowest address. See also little-endian.

A type of index that stores a bitmap for any highly duplicate key value. The
bitmap indicates which rows have the duplicate key value. You create a
bitmap index with the USING BITMAP keywords in the CREATE INDEX
statement. See also B-tree index.

A legacy term for a large object that is now known as a simple large object
and includes TEXT or BYTE data types. These data objects effectively have no
maximum size (theoretically as large as 23! bytes). See also simple large object.

Acronym for binary large object. A data type for a smart large object that stores
any type of binary data, including images. It can be stored and retrieved in

pieces and has database properties such as recovery and transaction rollback.
See also CLOB.

(Not for Extended Parallel Server) The unit of disk allocation within a
blobspace. The database server administrator determines the size of a
blobpage. The size can vary, depending on the size of the TEXT or BYTE data
that the user inserts.

(Not for Extended Parallel Server) A logical collection of chunks that is used
to store TEXT and BYTE data.

A variable or an expression that can take on the logical values TRUE (1),
FALSE (0), or UNKNOWN (if NULL values are involved).

Glossary 5

BOOLEAN

Boolean function

branch node

buffer

huffered disk 1/0

huffered logging

built-in

built-in data type

hyte

BYTE

Cartesian
product

A built-in data type that supports single-byte true/false values. TRUE is rep-
resented internally as 0 and externally as t. FALSE is represented internally
as 1 and externally as £. A NULL value is represented as NULL.

A function that returns a Boolean value (true or false). A Boolean function can
act as a filter.

An index page that contains pointers to a leaf node or other branch nodes.
The database server creates a branch node when the root node and subse-
quent leaf nodes become full.

A portion of computer memory where a program temporarily stores data.
Data typically is read into or written out from buffers to disk.

Disk I/0O that the operating system controls instead of an application. With

buffered disk I/O, the operating system stores data in the kernel portion of

memory before periodically writing the data to disk. See also unbuffered disk
I/0 and disk I/0O.

A type of logging that holds transactions in a memory buffer until the buffer
is full, regardless of when the transaction is committed or rolled back. Infor-
mix database servers provide this option to speed up operations by reducing
the number of disk writes.

Provided by the database server, usually in the system catalog; not defined
by the user.

A predefined data type that the database server supports; for example,
INTEGER, CHAR, or SERIAL.

An physical computer storage unit of 8 bits. A character is not necessarily one
byte. In a multibyte code set, a character can require more than one byte.

A data type for a simple large object that stores any type of binary data and can
be as large as 23! bytes. See also TEXT.

The set that results when you pair each and every member of one set with
each and every member of another set. A Cartesian product results from a
multiple-table query when you do not specify the joining conditions among
tables. See also join.

6 IBM Informix Guide to SQL: Reference

cascading
deletes

case sensitivity

cast

cast function

character

character set

characterspecial
device

check constraint

checkpoint

child table

chunk

Deletion of rows from a child table that were associated by foreign key to a
row that is deleted from the parent table. When any rows are deleted from the
primary key column of a table, cascading deletes, if enabled, eliminate iden-
tical information from any foreign-key column in a related table.

The condition of distinguishing between uppercase and lowercase letters.
Case-sensitive commands and command options react differently to the
same letters entered as uppercase or lowercase characters. The locale files
specify which characters (if any) of a code set are uppercase or lowercase.

A database object that converts one data type to another. Most built-in data
types have built-in casts (that is, system-defined casts) to compatible data
types. See also user-defined cast, explicit cast, and implicit cast.

A user-defined function that implements a cast. The function must be regis-
tered with the CREATE CAST statement before it can be used.

A logical unit of storage for a code point. A character is equal to one or more
bytes and can be numeric, alphabetic, or a nonprintable character (such as a
control character). See also multibyte character and single-byte character.

One or more natural-language alphabets, together with additional symbols
for digits, punctuation, ligatures, diacritical marks, and whitespace. (A natu-
ral language is a written language that human beings use to communicate
with each other, such as English, Chinese, or German.) See also code set.

See unbuffered disk I/0.

A logical condition that must be satisfied before data values can be entered
into a column of a database table during an INSERT or UPDATE statement.

A point in time during a database server operation when the pages on disk
are synchronized with the pages in the shared memory buffer pool. It can be
a full checkpoint or a fuzzy checkpoint.

The referencing table in a referential constraint. See also parent table.

The largest contiguous section of disk space available for a database server.
A specified set of chunks defines a dbspace or blobspace. A database server
administrator allocates a chunk to a dbspace or blobspace when that dbspace
or blobspace approaches full capacity. A chunk contains a certain number of
pages. (Extended Parallel Server does not support blobspace chunks.)

Glossary 7

client
application

client computer

client locale

client/server
architecture

client/server
connection
statements

CLOB

close a cursor

close a database

close a file
cluster an index

cluster key

clustersize

code point

A program that requests services from a server program, typically a file
server or a database server. For the GLS feature, the term client application
includes database server utilities.

The computer on which a client application runs.

The locale that a client application uses to perform read and write operations
on the client computer. The CLIENT_LOCALE environment variable can
specify a nondefault locale. See also server locale.

A hardware and software design that allows the user interface and database
server to reside on separate nodes or platforms on a single computer or over
a network. See also ASF, client application, and server-processing locale.

The SQL statements that can make connections with databases. These state-
ments include CONNECT, DISCONNECT, and SET CONNECTION.

Acronym for character large object. A data type for a smart large object that
stores large text items, such as PostScript or HTML files. It can be stored
and retrieved in pieces and has database properties such as recovery and
transaction rollback. See also BLOB.

To drop the association between a cursor and the active set of rows that
results from a query.

To deactivate the connection between a client application and a database.
Only one database can be active at a time.

To deactivate the association between a file and a program.
To rearrange the physical data of a table according to a specific index.

The column in a table that logically relates a group of simple large objects or
smart large objects that are stored in an optical cluster.

The amount of space, specified in kilobytes, that is allocated to an optical
cluster on an optical volume.

A bit pattern that represents one character in a code set. For example, in the
ASCII code set, the uppercase A character has a code point of 0x41.

8 IBM Informix Guide to SQL: Reference

code set

code-set
conversion

code-set order

cogroup
collating
sequence

collation

collation order

collection

collection cursor

collection data
type

collection-
derived table

The representation of a character set that specifies how to map each element
of a character set to a unique code point. For example, ASCII, 1SO8859-1,
Microsoft 1252, and EBCDIC are code sets to represent the English language.
A locale name specifies a code set.

The process of converting character data from one code set (the source code
set) to another (the farget code set). Code-set conversion is useful when the
client and server computers use different code sets to represent the same
character data.

The serialized order of characters within a code set. For example, in the ASCII
code set, uppercase characters (A through Z) are ordered before lowercase
characters (a through z). See also collation order and localized order.

A named group of coservers. At initialization, the database server creates a
cogroup that is named cogroup_all from all configured coservers.

See collation order, code-set order, and localized order.

The process of sorting character strings according to some order. The term is
sometimes used as a synonym for collation order or for localized order.

The logical order in which the character-string values in a database are sorted
and indexed.This is based on either the order of the code set or else some
locale-specific order. Collating order is also known as collating sequence.

An instance of acollection data type; a group of elements of the same data type
stored in a SET, MULTISET, or LIST.

A database cursor that has an IBM Informix ESQL/C collection variable associ-
ated with it and provides access to the individual elements of a column whose
data type is a collection data type.

A complex data type whose instances are groups of elements of the same data
type, which can be any opaque data type, distinct data type, built-in data type,
collection data type, or row type.

A table that IBM Informix ESQL/C or SPL creates for a collection column when
it encounters the TABLE keyword in an INSERT, DELETE, UPDATE, or SELECT
statement. ESQL/C and SPL store this table in a collection variable to access
elements of the collection as rows of the collection-derived table.

Glossary 9

collection
subquery

collection
variable

collocated join

column

column

expression

column subscript

column substring

command file

comment

commit work

Committed Read

compatible data
types

A query that takes the result of a subquery and turns it into a expression by
using the MULTISET keyword to convert returned values into a MULTISET col-
lection.

An IBM Informix ESQL/C host variable or SPL variable that holds an entire col-
lection and provides access, through a collection cursor, to the individual ele-
ments of the collection.

A join that occurs locally on the coserver where the data resides. The local
coserver sends the data to the other coservers after the join is complete.

A data element that contains a specified type of information that occurs in
every row of the table. Also known as a display label or a field. See also row.

An expression that includes a column name and optionally uses column
subscripts to define a column substring.

A subscript (an integer enclosed between brackets) in a column expression,
showing the ordinal position of a byte within the column value. Two integers,
separated by a comma, as in col2[3, 91, define a column substring.

A substring of a character column. For example, the column expression
col2[3, 9]specifies a 7-byte substring of col2 that begins with the 3rd byte.

A system file that contains one or more statements or commands, such as SQL
statements.

Information in a program file that is not processed by the computer but that
documents the program. Special characters such as the sharp sign (#), braces
({}), slash mark followed by asterisk (/ *), or a double hyphen (--) can be
used to identify comments, depending on the programming context.

To complete a transaction by accepting all changes to the database since the
beginning of the transaction. See also roll back.

An Informix level of isolation in which the user can view only rows that are
currently committed at the moment when the query is requested; the user
cannot view rows that were changed as a part of a currently uncommitted
transaction. Committed Read is available through a database server and set
with the SET ISOLATION statement. It is the default level of isolation for
databases that are not ANSI compliant. See also Read Committed.

Two data types for which casts exist in the database. See also implicit cast.

10 IBM Informix Guide to SQL: Reference

compile-time
error

complex data
type

component

composite data
type

composite index

composite join

compressed
bitmap

concatenate

concatenation
operator

concurrency

configuration
management
(CM) coserver

configuration file

To translate source code (in a high-level language) into executable code. Com-
pare with execute and link. See also source file.

An error that occurs when you compile the program source code. This type of
error indicates syntax errors in the source code. Compare with runtime error.

A data type that is built from a combination of other data types using an SQL
type constructor and whose components can be accessed through SQL state-
ments. See also row type and collection data type.

In the High-Performance Loader (HPL), the information required to load or
unload data is organized in several components. The components are format,
map, filter, query, project, device array, load job, and unload job.

See row type.

An index constructed on two or more columns of a table. The ordering
imposed by the composite index varies least frequently on the first-named
column and most frequently on the last-named column.

A join between two or more tables based on the relationship among two or
more columns in each table. See also simple join.

Anindexing method that identifies records through a fragment identifier and
a record identifier.

To append a second string to the end of a first string.

An operator whose notation is composed of two pipe symbols (| |); this is
used in expressions to indicate the joining of two strings.

Access by two or more processes to the same database simultaneously.

A coserver designated to run CM software and store CM data.

A file read during database server disk or shared-memory initialization that
contains the parameters that specify values for configurable behavior. Data-
base server and its archiving tool use configuration files.

Glossary 11

connection

connection
coserver

connection
redirector

constant

constraint

constructed data
type

constructor

control character

cooked files

coordinating
server

A logical association between two applications or between an application
and a database environment, created by a CONNECT or DATABASE statement.
Database servers can also have connections to one another. See also explicit
connection, implicit connection, and multiplexed connection.

The coserver to which a client is directly connected. See also coserver and par-
ticipating coserver.

An Extended Parallel Server feature, enabled by a setting in the sqlhosts file,
whereby the database server attempts to establish a client connection with
each coserver in a dbserver group until a connection succeeds.

A value that cannot change during the execution of a program or command.
In some programming languages, a constant has a name that can be refer-
enced. Compare with variable. See also literal.

A restriction on what kinds of data can be inserted or updated in tables. See
also check constraint, primary-key constraint, referential constraint, not-null
constraint, and unique constraint.

See complex data type.

See type constructor.

A character whose occurrence in a particular context initiates, modifies, or
stops a control function (an operation to control a device, for example, in
moving a visual cursor or in reading data). In a program, you can define
actions that use the CTRL key with another key to execute some program-
ming action (for example, entering CTRL-W to obtain online Help in

IBM Informix products). A control character is sometimes referred to as a con-
trol key. Compare with printable character.

See buffered disk I/0.

In a query that spans multiple database servers, the server in which the query
is initiated is called the coordinator or coordinating server. This server is also
sometimes called the local server because it is the local server to the client ini-
tiating the query. To respond to the query, the coordinating server starts ses-
sions on the other servers involved in the query. See also distributed query,
subordinate servers, and remote servers.

12 IBM Informix Guide to SQL: Reference

correlated
subquery

correlation name

corrupted
database

corrupted index

coserver

current row

cross-server
query

cursor

cursor function

A subquery (or inner SELECT) that depends on a value produced by the outer
SELECT statement that contains it. Also a nested subquery whose WHERE
clause refers to an attribute of a relation that is declared in an outer SELECT.
Correlated subqueries reference one or more columns from one or more
tables of a parent query and need to be evaluated once for each row in the
parent query. See also independent subquery and subquery.

The prefix used with a column name in a triggered action to refer to an old
(before triggering statement) or a new (after triggering statement) column
value. The associated column must be in the triggering table. See also trigger.

A database whose tables or indexes contain incomplete, inconsistent, or
invalid data.

An index that does not correspond exactly to the data in its table.

The functional equivalent of a database server that operates on a single node.
See also connection coserver and participating coserver.

The most recently retrieved row of the active set of a query.

See distributed query.

In SQL, an identifier associated with a group of rows or with a collection data
type. Conceptually, the pointer to the current row or collection element. You
can use cursors for SELECT statements or EXECUTE PROCEDURE statements
(associating the cursor with the rows returned by a query) or INSERT state-
ments (associating the cursor with a buffer to insert multiple rows as a
group). A select cursor is declared for sequential only (regular cursor) or non-
sequential (scroll cursor) retrieval of rows. In addition, you can declare a
select cursor for update (initiating locking control for updated and deleted
rows) or WITH HOLD (so that completing the current transaction does not
close the cursor). In ESQL/C, a cursor can be dynamic, meaning that it can be
referenced by an identifier or by a character variable.

A user-defined routine (UDR) that returns one or more rows of data and there-
fore requires a cursor to execute. An SPL routine is a cursor function when its
RETURN statement contains the WITH RESUME keywords. An external func-
tion is a cursor function when it is defined as an iterator function. Compare
with noncursor function.

Glossary 13

cursor
manipulation
statements

Cursor Stability

data access
statements

data definition
statements

data dictionary

data distribution

data integrity

data integrity
statements

data
manipulation
statements

data partitioning

data replication

data restriction

The SQL statements that control cursors; specifically, the CLOSE, DECLARE,
FETCH, FLUSH, OPEN, and PUT statements.

An Informix level of isolation available through the SET ISOLATION state-
ment in which the database server must secure a shared lock on a fetched row
before the row can be viewed. The database server retains the lock until it
receives a request to fetch a new row. See also isolation.

The subset of SQL statements that you can use to grant and revoke
permissions and to lock tables.

The subset of SQL statements (sometimes called data definition language, or
DDL) to create, alter, drop, and rename data objects, including databases,
tables, views, synonyms, triggers, sequences, and user-defined routines.

The set of tables that keeps track of the structure of the database and the
inventory of database objects. This is also called the system catalog. Each
database that a database server supports has its own system catalog.

A mapping of the data values within a column into a set of equivalence cate-
gories, equivalent to a histogram or to a frequency distribution. You can use
the UPDATE STATISTICS statement (specifying the MEDIUM or HIGH keyword
options) to create data distributions.

The process of ensuring that data corruption does not occur when multiple
users simultaneously try to alter the same data. Locking, constraints, and
transaction logging are used to control data integrity.

SQL statements that you use to control transactions and audits. Data integrity
statements also include statements for repairing and recovering tables.

The SQL statements that can query tables, insert into tables, delete from
tables, or update tables (SELECT, INSERT, DELETE, UPDATE). The LOAD and
UNLOAD utilities also are sometimes called data manipulation statements.

See table fragmentation.

The ability to allow database objects to have more than one representation at
more than one distinct site.

Synonym for constraint.

14 IBM Informix Guide to SQL: Reference

data type

database

Database
Administrator

database
application

database
environment

database locale

database
management
system

database object

database server

database server
process

database server
utility

DataBlade API

A descriptor assigned to each column in a table or program variable, which
indicates the type of data the column or program variable is intended to hold.
Informix data types are discussed in Chapter 2, “Data Types.” Informix data
types for Global Language Support are discussed in the IBM Informix GLS
User’s Guide. See also built-in data type, complex data type, distinct data type,
opaque data type, and user-defined data type.

A collection of information (contained in tables) that is useful to some orga-
nization or that is used for a specific purpose. See also relational database.

See DBA.

A program that applies database management techniques to implement
specific data manipulation and reporting tasks.

Used in the CONNECT statement, either the database server or the database
server-and-database to which a user connects.

The locale that defines the code set, collation, and date, time, number, and cur-
rency display conventions of a database server. The DB_LOCALE environment
variable can specify this locale.

See DBMS.

An SQL entity that is recorded in a system catalog table, such as a table, col-
umn, constraint, access method, default value, cast, index, operator class, prepared
statement, privilege, role, sequence, synonym, trigger, user-defined aggregate, user-
defined cast, user-defined data type, user-defined routine, or view.

A software package that manages access to one or more databases for one or
more client applications. See also relational database server.

A virtual processor that functions similarly to a CPU in a computer. See also
application process.

A program that performs a specific task. For example, DB-Access, dbexport,
and onmode are Informix database server utilities.

An application programming interface (API) that allows a C user-defined rou-
tine access to the client application.

Glossary 15

DataBlade
module

DBA

DBA-privileged
DBMS

dhserver group

dbslice

dbspace

DDL

deadlock

debug file

A group of database objects and supporting code that extends an object-rela-
tional database to manage new kinds of data or add new features. A Dat-
aBlade module can include new data types, routines, casts, aggregates, access
methods, SQL code, client code, and installation programs.

Acronym for Database Administrator. The DBA is responsible for the contents
and use of a database, whereas the database server administrator (DBSA) is

responsible for managing one or more database servers. Also a level of priv-
ilege, typically for operations that most users are not authorized to perform.

A class of SPL routines that only a user with DBA database privileges creates.

Acronym for database management system. These are all the components nec-
essary to create and maintain a database, including the application develop-
ment tools and the database server.

A collection of coservers defined and named by entries in the sqlhosts file.
Dbserver groups make multiple coservers into a single logical entity for
establishing or changing client/server connections.

A named set of dbspaces that can span multiple coservers. A dbslice is man-
aged as a single storage object. See also logslice, physslice, and rootslice.

Alogical collection of one or more chunks. Because chunks represent specific
regions of disk space, the creators of databases and tables can control where
their data is physically located by placing databases or tables in specific
dbspaces. A dbspace provides a link between logical (such as tables) and
physical (such as chunks) units of storage. See also root dbspace.

Acronym for data definition language, a subset of the Structured Query Lan-
guage (SQL) for declaring, modifying, and dropping database objects (such
as tables, constraints, or indexes). See also data definition statements.

A situation in which two or more threads cannot proceed because each is
waiting for data locked by the other (or another) thread. The database server
monitors and prevents potential deadlock situations by sending an error
message to the application if a request for a lock might result in a deadlock.

A file that receives output used for debugging purposes.

16 IBM Informix Guide to SQL: Reference

decision-support
application

decision-support
query

declaration
statement

default

default locale

default value

delete

delimited
identifier

delimiter

deluxe mode

descriptor

An application that provides information that is used for strategic planning,
decision-making, and reporting. It typically executes in a batch environment
in a sequential scan fashion and returns a large fraction of the rows scanned.
Decision-support queries typically scan the entire database. See also online
transaction processing application.

A query that a decision-support application generates. It often requires mul-
tiple joins, temporary tables, and extensive calculations, and can benefit sig-
nificantly from PDQ. See also online transaction processing queries.

A programming language statement that describes or defines objects; for
example, defining a program variable. Compare with procedure. See also data
definition statements.

Values or behavior that take effect unless the user explicitly specifies another
value or action.

The locale that a product uses unless you specify a different (nondefault)
locale. For IBM Informix products, U.S. English is the default locale.

A value that is used when no explicit value is specified. For example, you can
assign default values to columns with the ALTER TABLE and CREATE TABLE
statements and to variables in SPL routines.

To remove any row or combination of rows with the DELETE statement.

If the DELIMIDENT environment variable is set, this is an SQL identifier
enclosed between double (") quotation marks. This supports identifiers that
are SQL-reserved keywords or that contain whitespace or other characters
outside the default SQL character set for identifiers.

A character used as a boundary on a field or as the terminator for a column
or row. Some files and prepared objects require semicolon (;), comma (,),
blank space (), or tab delimiters between statements. Statements of SQL can
have semicolon or other delimiters in some programming contexts.

A method of loading or unloading data that uses regular inserts.

A quoted string or variable that identifies an allocated system-descriptor area
or an sqlda structure. It is used for the Informix SQL APIs. See also identifier.

Glossary 17

detached index

device array

diagnostic area

diagnostics table

Dirty Read

disabled mode

disk
configuration

disk 1/0

display label
distinct data type

distributed query

As index whose distribution scheme (specified by the FRAGMENT BY clause)
and storage option (specified by the IN clause) of the CREATE INDEX or
ALTER FRAGMENT ON INDEX statement differ from the distribution scheme
of the underlying table. Index pages reside in separate dbspaces from the cor-
responding data pages. Compare with attached index.

A list of I/0O devices. See also component.

A data structure (sometimes called sqlda) that stores diagnostic information
about an executed SQL statement.

A special table that holds information about the integrity violations caused
by each row in a violations table. You use the START VIOLATIONS TABLE
statement to create violations tables and diagnostics tables and associate
them with a base table.

An Informix isolation level set with the SET ISOLATION statement that disre-
gards locks and allows viewing of any existing rows, even rows that cur-
rently can be altered from inside an uncommitted transaction. Dirty Read is
the lowest level of isolation (no isolation at all), and is thus the most efficient.
See also Read Uncommitted.

The object mode in which a database object is disabled. When a constraint,
index, or trigger is in the disabled mode, the database server acts as if the
object does not exist and does not take it into consideration during the execu-
tion of data manipulation statements.

The organization of data on a disk; also refers to the process of preparing a
disk to store data.

The process of transferring data between memory and disk. The I/ O refers to
input/output.

A temporary name for a column or expression in a query.

A data type that you declare with the CREATE DISTINCT TYPE statement. A
distinct data type has the same internal storage representation as its source
type (an existing opaque data type, built-in data type, named row type, or distinct
data type) but a different name, and can have different casts and routines. To
compare a distinct data type with its source type requires an explicit cast. A
distinct data type inherits all routines that are defined on its source type.

A query that accesses data from a database other than the current database.

18 IBM Informix Guide to SQL: Reference

distribution

distribution
scheme

DLL
DML

dominant table
DRDA

DSS
duplicate index

dynamic link
library (DLL)

dynamic
management
statements

dynamic
routine-name
specification

Dynamic Server
instance

dynamic
saL

dynamic
statements

EBCDIC

See data distribution.

See table fragmentation.

See dynamic link library (DLL).

Acronym for data manipulation language. See also data manipulation state-
ments.

See outer join.

Acronym for Distributed Relational Database Architecture. DRDA is an IBM-
defined set of protocols that software manufacturers can follow to develop
connectivity solutions between heterogeneous relational database
management environments.

Acronym for Decision Support System. See also decision-support application.
An index that allows duplicate values in the indexed column.

A shared-object file on a Windows system. See also shared library.

The SQL statements that describe, execute, and prepare other statements.

The execution of a user-defined routine whose name is determined at runtime
through an SPL variable in the EXECUTE PROCEDURE, EXECUTE ROUTINE, or
EXECUTE FUNCTION statement.

The set of processes, storage spaces, and shared memory that together com-
prise a complete database server. A single Dynamic Server instance can sup-
port more than one database.

The statements and structures that allow a program to form an SQL statement
at runtime, so that portions of the statement can be determined by user input.

The SQL statements that are specified at runtime (when the program is exe-
cuted), rather than when the program is compiled. You can use the PREPARE
statement to create dynamic SQL statements.

Acronym for Extended Binary Coded Decimal Interchange Code, a 256-element
8-bit character set, originally designed for IBM mainframe computers.

Glossary 19

element

element type

embedded SQL

enabled mode

end-user format

end-user routine

environment
variable

error log

error message
error trapping

escape
character

escape key

ESQL/C Smart
Large-Object API

A member of a collection, such as a LIST, MULTISET, or SET data type. An ele-
ment can be a value of any built-in data type, opaque data type, distinct data type,
named row type, unnamed row type, or collection data type.

The data type of the elements in a collection.

The SQL statements that are placed within some other host language. For
example, Informix supports embedded SQL in C.

The default object mode of database objects. When a constraint, index, or trig-
ger is in this mode, the database server recognizes the existence of the object
and takes the object into consideration while executing data manipulation
statements. See also object mode.

The format in which data appears within a client application as literal strings
or character variables. End-user formats are useful for data types whose data-
base format is different from the format to which users are accustomed.

A user-defined routine (UDR) that performs a task within an SQL statement that
the existing built-in routines do not perform. Examples of tasks include
encapsulating multiple SQL statements, creating trigger actions, and restrict-
ing who can access database objects.

A variable that the operating system maintains for each user and makes
available to all programs that the user runs.

A file that receives error information whenever a program runs.

A message that is associated with a (usually negative) number. IBM Informix
applications display error messages on the screen or write them to files.

See exception handling.

A character that indicates that the next character, normally interpreted by the
program as having special significance, is to be processed as a literal charac-
ter instead. The escape character precedes the special character (such as a
wildcard or delimiter) to “escape” (that is, ignore) the special significance.

The physical key of a keyboard, usually marked ESC, that is used to terminate
one mode and start another mode in most UNIX and DOS systems.

An AP] of C routines that an IBM Informix ESQL/C client application can use
to access smart large objects as operating-system files. The ESQL/C Smart
Large-Object APl is part of the IBM Informix ESQL/C SQL API. You can also
access smart large objects with a set of functions in the DataBlade API.

20 IBM Informix Guide to SQL: Reference

exception

exception
handling

exclusive access

exclusive lock

executable file

execute
explicit cast
explicit
connection
explicit

projection list

explicit
transaction

exponent

express mode

expression

An error or warning that the database server returns, or a state that a SPL
statement initiates.

The code in a program that anticipates and reacts to runtime errors and warn-
ings. Also referred to as error handling or error trapping.

Sole access to a database or table by a user. Other users are prevented from
using it.

A lock on an object (row, page, table, or database) that is held by a single
thread that prevents other processes from acquiring a lock of any kind on the
same object.

A file that contains code that can be executed directly. A C-language object
file can be an executable file; it contains the machine-level instructions that
correspond to the C-language source file.

To run a statement, program, routine, or a set of instructions. See also execut-
able file.

A user-defined cast that a user explicitly invokes with the CAST AS keyword or
cast operator (::). See also implicit cast.

A connection made to a database environment that uses the CONNECT
statement. See also implicit connection.

In a SELECT statement, a projection list that does not use the asterisk (*) nota-
tion, but explicitly lists the names of the columns from which the query
returns values. (The projection list is sometimes called the select list.)

A transaction that is initiated by the BEGIN WORK statement. This type of
transaction is available only in non-ANSI compliant databases that support
logging. See also implicit transaction and singleton implicit transaction.

The power to which a value is to be raised.

An Extended Parallel Server method of loading or unloading data that uses
light appends.

A specification that the database server can evaluate. This can include literal
values, constants, column values, functions, quoted strings, operators, and
parentheses (as delimiters). A Boolean expression evaluates as TRUE, FALSE,
or UNKNOWN. An arithmetic expression can contain the arithmetic operators
(+,—, %, /, and so on) and returns a number.

Glossary 21

expression-
based
fragmentation

extended data
type

extent

external function

external
procedure

external routine

external space

external table

extspace

family name

fault tolerance
fetch

fetch buffer

A distribution scheme that distributes rows to fragments according to a user-
specified expression that is defined in the WHERE clause of an SQL statement.

A term used to refer to data types that are not built in; namely complex data
types, opaque data types, and distinct data types.

A continuous segment of disk space that a database server allocated to a tbl-
space (a table). The user can specify both the initial extent size for a table and
the size of all subsequent extents that a database server allocates to the table.

An external routine that returns a single value.

An external routine that does not return a value.

A user-defined routine that is written in an external language that the database
supports. These external languages include the C and Java languages. The
routine names, parameters, and other information are registered in the sys-
tem catalog tables of a database. However, the executable code of an external
routine is stored outside the database. An external routine can be an external
function or an external procedure.

Storage space that a user-defined access method manages rather than the
database server. The IN clause of the CREATE TABLE and CREATE INDEX
statements can specify the name of an external space instead of a dbspace.

A database table that is not in the current database. It might or might not be
in a database that the same database server manages.

(Not for Extended Parallel Server) A logical name associated with an arbi-
trary string that signifies the location of external data. Access its contents
with a user-defined access method.

A quoted string constant that specifies a family name in the optical family. See
also optical family.

See high availability.

The action of moving a cursor to a new row and retrieving the row values into
memory.

A buffer in the application process that the database server uses to send
fetched row data (except TEXT and BYTE data) to the application.

22 |BM Informix Guide to SQL: Reference

field

file
file server
filename

extension

filter

filtering mode

fixchar

fixed-point
number

flag

flexihle
temporary tahle
floating-point

number

foreign key

format

A component of a named row type or unnamed row type that contains a name
and a data type and can be accessed in an SQL statement by using dot notation
in the form row type name.field name. See also column.

A collection of related information stored together on a system, such as the
words in a letter or report, a computer program, or a listing of data.

A network node that manages a set of disks and provides storage services to
computers on the network.

The part of a filename following the period. For example, DB-Access appends
the extension .sql to command files.

A set of conditions (sometimes called a predicate) for selecting rows or

records. In an SQL query, the conditional expression in the WHERE clause is a
filter that controls the active set of the query. The High-Performance Loader
(HPL) uses a filter component to screen data before loading it into a database.

An object mode of a database object, causing bad rows to be written to the
violations table during DML operations. During DML operations, the data-
base server enforces requirements of a constraint or of a unique index that is
in this mode, and identifies any rows that would violate the requirement.

A character data type in ESQL/C programs, for fixed-length character strings
that are padded (as needed) with trailing blanks, and not null-terminated.

A number where the decimal point is fixed at a specific place regardless of the
value of the number.

A command-line option, usually indicated by a minus (-) sign in UNIX
systems. For example, in DB-Access the -e flag echoes input to the screen.

An explicit temporary table that Extended Parallel Server automatically frag-
ments using a round-robin distribution scheme.

A number with fixed precision (total number of digits) and undefined scale
(number of digits to the left of the decimal point). The decimal point floats as
appropriate to represent an assigned value.

A column or set of columns that references a unique or primary key in a table.
For every entry in a foreign-key column containing only non-NULL values,
there must exist a matching entry in the unique or primary column.

A description of the organization of a data file. See also component.

Glossary 23

formatting
character

fragment

fragment
elimination

fragmentation

full checkpoint

function

function cursor

function
overloading

fuzzy checkpoint

gateway

generalized-key
(GK) index

gigabyte
Global Language
Support (GLS)

global variahle

For XPS, a percent sign (%) followed by a letter (c, n, o, or r). In a command
line, Extended Parallel Server expands the formatting character to designate
multiple coserver numbers (%c), multiple nodes (%n), multiple ordinal num-
bers designating dbspaces (%d), or a range of dbspaces (%r).

See index fragment and table fragment.

The process of applying a filter predicate to the fragmentation strategy of a
table or index and removing the fragments that do not apply to the operation.

The process of defining groups of rows within a table based on a rule and
then storing these groups, or fragments, in separate dbspaces that you
specify when you create a table or index fragmentation strategy.

A type of checkpoint where the pages on disk are synchronized with the
pages in the shared-memory buffer pool.

A routine that returns one or more values. See also user-defined function.

A cursor that is associated with an EXECUTE FUNCTION statement, which
executes routines that return values. See also cursor function.

See routine overloading.

A type of checkpoint where only certain pages on disk are synchronized with
the pages in the shared-memory buffer pool, and the logical log is used to
synchronize the rest of the pages during fast recovery.

A device that establishes data communications between networks.

A type of index for static tables with Extended Parallel Server that can speed
certain queries by storing the result of an expression as a key in a B+ tree or
bitmap index. Three types of GK index are selective, virtual column, and join.

A unit of storage, equal to 1024 megabytes or 10243 bytes.

A feature that enables Informix APIs and database servers to support differ-
ent languages, cultural conventions, and code sets. For information about the
GLS feature, see the IBM Informix GLS User’s Guide.

A variable or identifier whose scope of reference is all modules of a program.
Compare with local variable.

24 |BM Informix Guide to SQL: Reference

globally
detached index

GLS
GLS API

hash
fragmentation
hash rule
header file

help message

heterogeneous
commit

hierarchy

high availability

High-
Performance
Loader

For Extended Parallel Server, a type of index that has a fragmentation strat-
egy that is independent of the table fragmentation and where the database
server cannot verify that each index row resides on the same coserver as the
referenced data row. You can use an expression, system-defined hash, or
hybrid distribution scheme to create globally detached indexes for any table.
See also locally detached index.

See Global Language Support (GLS).

A legacy acronym for IBM Informix GLS. An API of C routines that a C-lan-
guage external routine can use to access IBM Informix GLS locales. This APIalso
includes functions that obtain culture-specific collation, and time, date, num-
ber, and currency, formats, and functions that provide a uniform way of
accessing character data, regardless of whether the locale is left-to-right or
bidirectional, or supports single-byte characters or multibyte characters.

See system-defined hash fragmentation.

A user-defined algorithm that maps each row in a table to a set of hash values
and that is used to determine the fragment in which a row is stored.

A source file that contains declarations for variables, constants, and macros that a
particular group of modules or programs share.

Online text displayed automatically or at the request of the user to assist the
user in interactive programs. Such messages are stored in help files.

A protocol governing a group of database servers, of which at least one
is a gateway participant. It ensures the all-or-nothing basis of distributed
transactions in a heterogeneous environment. See also two-phase commit.

A tree-like data structure in which some groups of data are subordinate to
others such that only one group (called root) exists at the highest level, and
each group except root is related to only one parent group on a higher level.

The ability of a system to resist failure and data loss. High availability
includes features such as fast recovery and mirroring. It is sometimes
referred to as fault tolerance.

The High-Performance Loader (HPL) utility is part of Dynamic Server. The
HPL loads and unloads data using parallel access to devices. See also external
table.

Glossary 25

highlight

hold cursor

host variable

HPL

hybrid
fragmentation

identifier

implicit
transaction

implicit cast
implicit
connection
implicit

projection list

incremental
archiving

A rectangular inverse-video area marking your place on the screen. A high-
light can indicate the current option on a menu, or the current character in an
editing session. If a terminal cannot display highlighting, the current option
can appear in angle (< >) brackets, with the current character underlined.

A cursor that is created using the WITH HOLD keywords. A hold cursor
remains open past the end of a transaction. It allows uninterrupted access to
a set of rows across multiple transactions.

The page that contains the first byte of the data row, specified by the rowid.
Even if a data row outgrows its original storage location, the home page does
not change. The home page contains a forward pointer to the new location of
the data row. See also remainder page.

An SQL API program variable that you use in an embedded statement to
transfer information between the SQL API program and the database.

See High-Performance Loader.

A distribution scheme that lets the user specify two fragmentation methods.
Usually one method is used globally and one method is used locally.

In the default locale, a sequence of letters, digits, and underscores (_) that is
the unqualified name of a database, storage, or program object. (Additional
characters are valid in other locales, or if the DELIMIDENT variable is set.)

A transaction that begins implicitly after the COMMIT WORK or ROLLBACK
WORK statement. This is the only type of transaction that ANSI compliant
databases support, but is also available for other databases that support log-
ging. See also explicit transaction and singleton implicit transaction.

A built-in or user-defined cast that the database server automatically invokes to
perform data-type conversion. See also explicit cast.

A connection that is made using the DATABASE, CREATE DATABASE, START
DATABASE, or DROP DATABASE statement. See also explicit connection.

In a SELECT statement, using the asterisk (*) wildcard symbol so that a query
returns values from all columns of the table. The projection list is sometimes
called the “select list,” because it immediately follows the SELECT keyword.

A system of archiving that allows the option to archive only those parts of the
data that have changed since the last archive was created.

26 IBM Informix Guide to SQL: Reference

independent
subquery

index

index fragment

Informix user ID

Informix user
password

inheritance

initialize

inmigration

inner join

input

A subquery that has no relationship to or dependency on any of its parent
queries. It needs to be evaluated only once and the results can be used there-
after. In independent subqueries, both the parent and subquery are parallel-
ized. See also correlated subquery and subquery.

A structure of entries, each of which contains a value or values and a pointer
to the corresponding location in a table or smart large object. An index might
improve the performance of database queries by ordering a table according
to key column values or by providing access to data inside of large objects.

Consists of zero or more index items grouped together, which can be stored
in the same dbspace as the associated table fragment or in a separate dbspace.
An index fragment also might occupy an sbspace or an extspace.

A login user ID (login user name or authorization identifier) that must be valid
on all computer systems (operating systems) involved in the client’s database
access. Often referred to as the client’s user ID. This need not refer to a fully
functional user account on the computer system; only the user identity com-
ponents of the user account information are significant to Informix database
servers. A given user typically has the same Informix user ID on all net-
worked computer systems involved in the database access. The authoriza-
tion identifier informix is required for some database objects and operations.

A user ID password that must be valid on all computer systems (operating
systems) involved in the client’s database access. When the client specifies an
explicit user ID, most computer systems require the Informix user password.

The process that allows an object to acquire the properties of another object.
Inheritance allows for incremental modification, so that an object can inherit
a general set of properties and add properties that are specific to itself. See also
type inheritance and table inheritance.

To prepare for execution. To initialize a variable, you assign it a starting value.
To initialize the database server, you start its operation.

The process by which Optical Subsystem migrates TEXT and BYTE data from
the optical storage subsystem into the Dynamic Server environment.

A query in which symmetrically combines rows from two or more tables. See
also simple inner join.

The information that is received from an external source (for example, from
the keyboard, a file, or another program) and processed by a program.

Glossary 27

input parameter

insert cursor

installation

interactive

international-
ization

interquery
parallelization

interrupt

interrupt key

intraquery
parallelization

IPX/SPX

ISAM

ISAM error

"o

In a prepared SQL statement, a value, represented by a “?” placeholder sym-
bol, that must be provided when the prepared statement is executed.

A cursor for insert operations, associated with an INSERT statement. Allows
bulk insert data to be buffered in memory and written to disk.

The loading of software from some medium (tape, cartridge, removable disk,
or CD onto a computer, and preparing the software for use.

Refers to a program that accepts input from the user, processes the input, and
then produces output on the screen, in a file, or on a printer.

The process of making IBM Informix products easily adaptable to the conven-
tions of various cultures and natural languages. Among other features, inter-
nationalized software can support culturally-specific collation and date,
time, and money formats. See also IBM Informix Guide to GLS Functionality.

The ability to process multiple queries simultaneously to avoid a perfor-
mance delay when multiple independent queries access the same table. See
also intraquery parallelization.

A signal from a user or another process that can stop the current process
temporarily or permanently. See also signal.

A key used to cancel or abort a program or to leave a current menu and return
to the menu one level above. On many systems, the interrupt key is
CONTROL-C; on some others, the interrupt key is DEL or CONTROL-Break.

Breaking of a single query into subqueries by a database server using PDQ
and then processing the subqueries in parallel. Parallel processing of this
type has important implications when each subquery retrieves data from a
fragment of a table. Because each partial query operates on a smaller amount
of data, the retrieval time is significantly reduced and performance is
improved. See also interquery parallelization.

Acronym for Internetwork Packet Exchange/Sequenced Packet Exchange. It
refers to the NetWare network protocol by Novell.

Acronym for Indexed Sequential Access Method. This allows you to find infor-
mation in a specific order, or to find specific items of information quickly
through an index. See also access method.

Operating system or file access error.

28 IBM Informix Guide to SQL: Reference

ISO

1S08859-1

isolation

iterator function

jagged rows

join index

jukebox

kernel

key

Acronym for the International Standards Organization. ISO sets worldwide
standards for the computer industry, including standards for character input
and manipulation, code sets, and SQL syntax.

A code set that contains 256 single-byte characters. Characters 0 through 127
are the ASCII characters. Characters 128 through 255 are mostly non-English
characters from European languages; for example, é, fi and 6.

When multiple users attempt to access common data, the level of indepen-
dence specifically relating to the locking strategy for read-only SQL requests.
The various levels of isolation are distinguished primarily by the length of
time that shared locks are (or can be) acquired and held. You can set the iso-
lation level with the SET ISOLATION or SET TRANSACTION statement.

A cursor function that returns a data set by successive calls. It can be written
in C or Java, or can be an SPL routine that includes RETURN WITH RESUME.

A query result in which rows differ in the number and type of columns they
contain because the query applies to more than one table in a table hierarchy.

The process of combining information from two or more tables based on
some common domain of information. Rows from one table are paired with
rows from another table when information in the corresponding rows match
on the joining criterion. For example, if a customer_num column exists in the
customer and the orders tables, you can construct a query that pairs each
customer row with all the associated orders rows based on the common
customer_num. See also Cartesian product and outer join.

A type of generalized-key (GK) index that contains keys that are the result of
a query that joins multiple tables.

A physical storage device that consists of one or more optical-disc drives,
slots for platters, optical platters, and a robotic arm to transfer platters
between the slots and the drives. A jukebox is also known as an autochanger.

Operating system component that controls processes and resource allocation.

The items of information that are used to locate a row of data. A key defines
the pieces of information for which you want to search as well as the order in
which you want to process information in a table. For example, you can index
the last_name column in a customer table to find specific customers or to
process the customers in alphabetical order (or in reverse alphabetical order)
by their last names (when last_name serves as the key).

Glossary 29

keyword

kilohyte

Language
Supplement

large object

leaf node

level of isolation

library

light append
link

LIST

literal

little-endian

A word that has a pre-defined meaning in a programming language. For
example, the word SELECT is a keyword in SQL.

A unit of storage that consists of 1024 bytes.

An IBM Informix product that provides the locale files and error messages to
support one or more languages. The International Language Supplement
supports several European languages. IBM Informix provides separate Lan-
guage Supplements for several Asian languages.

A data object that is logically stored in a column of a table, but physically
stored independently of the column, due to its size. Large objects can be sim-
ple large objects (TEXT, BYTE) or smart large objects (BLOB, CLOB).

Index page containing index items and horizontal pointers to other leaf
nodes. A database server creates leaf nodes when the root node becomes full.

See isolation.

A group of precompiled routines designed to perform tasks that are common
to a given kind of application. An application programming interface (API)
can include a library of routines that you can call from application programs.
See also dynamic link library (DLL), shared library, and shared-object file.

An unbuffered, unlogged insert operation.

To combine separately compiled program modules, usually into an
executable program. Compare with compile and execute.

A collection data type created with the LIST constructor in which elements are
ordered and duplicates are allowed.

The representation of a data type value in a format that the database server
accepts in data-entry operations. For example, 234 is a literal integer and
“abcd” is a literal character.

A hardware-determined storage method in which the least-significant byte of
a multibyte number has the lowest address. See also big-endian.

The information required to load data into a relational database using the
HPL. This information includes the format, map, filter, device array, project,
and special options.

30 IBM Informix Guide to SQL: Reference

local copy

local loophack

local variable

locale

localized order

locally-detached
index

lock coupling

lock mode

For Extended Parallel Server, a replica of a table on a local coserver that is
copied to multiple coservers. This allows faster access to the data for OLTP
transactions connected to those coservers because you do not have to send
the data across the communication links between coservers.

A connection between the client application and database server that uses a
network connection even though the client application and the database
server are on the same computer.

A variable or identifier whose scope of reference is only within the routine in
which it is defined. Compare with global variable.

A set of Informicx files that specify the linguistic conventions for a country,
region, culture, or language. IBM Informix products provide predefined
locales that customers cannot modify. A locale provides the name of the code
set that the application data uses, the collation order to use for character data,
and the end-user format. See also client locale, database locale, default locale,
server locale, and server-processing locale.

A collation order other than code-set order, if defined for a locale. Only NCHAR
and NVARCHAR data values are collated in a localized order. Database
objects collate in their creation-time order, if this is not the runtime order.

For Extended Parallel Server, a type of index that has a fragmentation strat-
egy that is independent of the table fragmentation but where the database
server recognizes that each index row resides on the same co-server as the
referenced data row. You can use an expression, system-defined hash, or
hybrid distribution scheme to create locally detached indexes for any table.
See also globally-detached index.

A locking feature that holds a lock on the child node until a lock is obtained
on the parent node during upward movement when updating an R-tree
index. Lock coupling is used if the bounding box of a leaf node has changed.
You must propagate the change to the parent node by moving upwards in the
tree until you reach a parent node that needs no change.

An option to specify whether a user who requests a lock on an already locked
object waits until the object is released to receive the lock, or immediately
receives an error, or waits for some span of time before receiving an error.

Glossary 31

locking

locking
granularity

login
login password
login user ID

logslice

LVARCHAR

macro

mantissa

massively
parallel
processing
system

megabyte

A concurrency feature temporarily limiting access to an object (database,
table, page, or row) to prevent conflicting interactions among concurrent pro-
cesses. An exclusive lock restricts read and write access to only one user; a
shared lock allows read-only access to other users. An update lock begins as
a shared lock, but is upgraded to an exclusive lock after a row is changed.

The size of a locked object. The size can be a database, table, page, or row.

An allocation of disk space that the database server manages that contains
records of all changes that were performed on a database during the period
when the log was active. It is used to roll back transactions, recover from sys-
tem failures, and restore databases from archives. See also physical log.

The process of identifying oneself to a computer.
See Informix user password.
See Informix user ID.

A dbslice whose contents are comprised solely of logical-log files. The logi-
cal-log files in the logslice can be owned by multiple coservers, one log file
per dbspace. See also dbslice, rootslice, and physslice.

A built-in data type that stores varying-length character data of up to
32 kilobytes.

A named set of instructions that the computer substitutes when it encounters
the name in source code.

The significant digits in a floating-point number.

A description of the relation between the records of a data file and the col-
umns of a relational database. See also component.

A system composed of multiple computers that are connected to a single
high-speed communication subsystem. MPP computers can be partitioned
into nodes. Compare with symmetric multiprocessing system.

A unit of storage that equals 1024 kilobytes or 10242 bytes.

32 IBM Informix Guide to SQL: Reference

Memory Grant
Manager (MGM)

mirroring

MODE ANSI

monochrome
MPP

multibyte
character

multiplexed
connection

MULTISET

multithreading

named row type

national
character

native character

(Not for Extended Parallel Server) A database server component that coordi-
nates the use of memory and I/0 bandwidth for decision-support queries.
MGM uses the DS_MAX_QUERIES, DS_TOTAL_MEMORY, DS_MAX_SCANS,
and PDQPRIORITY configuration parameters to determine what resources
can or cannot be granted to a decision-support query.

A screen display that allows you to choose the commands that you want the
computer to perform.

Acronym for Memory Grant Manager.

Storing the same data on two chunks simultaneously. If one chunk fails, the
data values are still usable on the other chunk in the mirrored pair. The data-
base server administrator handles this data storage option.

The keywords specified on the CREATE DATABASE or START DATABASE state-
ment to make a database ANSI compliant.

A term that describes a monitor that can display only one color.
Acronym for massively parallel processing system.

A character that might require from two to four bytes of storage. If alanguage
contains more than 256 characters, the code set must contain multibyte char-
acters. With a multibyte code set, an application cannot assume that one char-
acter requires only one byte of storage. See also single-byte character.

A single network connection between a database server and a client applica-
tion that handled multiple database connections from the client.

A collection data type created with the MULTISET constructor in which elements
are not ordered and duplicates are allowed.

Running of multiple threads within the same process. See thread.

A row type created with the CREATE ROW TYPE statement that has a declared
name and inheritance properties and can be used to construct a typed table.

In National Language Support (NLS), a character from the written form of a
natural language that can be stored in an NCHAR or NVARCHAR column.
Sometimes called a native character.

See national character.

Glossary 33

National
Language
Support (NLS)

NLS

non-ASCII
character

noncursor
function

nonvariant
function

not-null
constraint

NULL

ohject

A feature that supports single-byte code sets, using NCHAR and NVARCHAR
columns to store non-English character strings. This technology has been
superseded on IBM Informix databases by Global Language Support (GLS).

See National Language Support (NLS).

In the context of an index for a database, a node is an ordered group of key
values having a fixed number of elements. (A key is a value from a data
record.) A B-tree for example, is a set of nodes that contain keys and pointers
arranged in a hierarchy. See also branch node, leaf node, and root node.

In the context of a MPP system, a node is an individual computer. See also
massively parallel processing system.

In the context of a SMP system, a node can either be the entire SMP computer
or a fully functioning subsystem that uses a portion of the hardware
resources of that SMP system. See also symmetric multiprocessing system.

For Extended Parallel Server, a node is an individual computer with one or
more CPUs that runs a single instance of an operating system within a paral-
lel-processing platform. A node can be a uniprocessor, a cluster of stand-
alone computers, an SMP computer, or an independent subsystem configured
within an SMP computer.

A character that is not match of the 128 code points in the ASCII character set.
Non-ASCII characters include 8-bit characters and multibyte characters.

A user-defined function that returns a single group of values (one row of data)
and therefore does not require a cursor when it is executed. Compare with cur-
sor function.

A user-defined function that always returns the same value when passed the
same arguments. A nonvariant function must not contain SQL statements.
Compare with variant function.

A constraint on a column that specifies that the column cannot contain NULL
values.

A keyword of SQL, indicating that a value that is unknown, missing, or not
applicable. (A NULL value is not the same as a value of zero or blank.)

See database object.

34 IBM Informix Guide to SQL: Reference

ohject mode

object-relational
database

OLTP

online

transaction
processing
application

online
transaction
processing
queries

opaque data type

opague-type
support function

operational table

operator

operator hinding

The state of a database object as recorded in the sysobjstate system catalog
table. A constraint or unique index can be in enabled, disabled, or filtering
mode. A trigger or duplicate index can be in enabled or disabled mode. You
use SET statements to change the mode of an object.

A database that adds object-oriented features to a relational database, includ-
ing support for user-defined data types, user-defined routines, user-defined casts,
user-defined access methods, and inheritance.

Acronym for Online Transaction Processing. See also online transaction pro-
cessing application.

Characterized by quick, indexed access to a small number of data items. The
applications are typically multiuser, and response times are measured in
fractions of seconds. See also decision-support application.

The transactions that OLTP applications handle are usually simple and pre-
defined. A typical OLTP system is an order-entry system where only a limited
number of rows are accessed by a single transaction many times. See also deci-
sion-support query.

A data type whose inner structure is not visible to the database server. Opaque
types that are not built-in need user-defined routines and user-defined operators
that work on them. Synonym for base type and user-defined base type.

One of a group of user-defined functions that the database server uses to per-
form operations on opaque data types (such as converting between the internal
and external representations of the type).

The process of making a resource available, such as preparing a file for access,
activating a column, or initiating a window.

A logging permanent table that uses light appends for fast update opera-
tions. Operational tables do not perform record-by-record logging.

In an SQL statement, a keyword (such as UNITS or UNION) or a symbol (such
as =, >, <,+, -, or *) that invokes an operator function. The operands to the oper-
ator are arguments to the operator function.

The implicit invocation of an operator function when an operator is used in an
SQL statement.

Glossary 35

operator class

operator-class
function

operator-class
strategy function

operator-class
support function

operator function

optical cluster

optical family
optical platter

optical
statements

optical volume

outer join

outmigration

An association of operator-class functions with a secondary access method. The
database server uses an operator class to optimize queries and build an index
of that secondary access method.

One of the operator-class support functions or operator-class strategy functions
that constitute an operator class. For user-defined operator classes, the opera-
tor-class functions are user-defined functions.

An operator-class function that can appear as a filter in a query. The query opti-
mizer uses the strategy functions to determine if an index of a particular sec-
ondary access method can be used to process the filter. You register operator-
class strategy functions in the STRATEGIES clause of the CREATE OPCLASS
statement.

An operator-class function that a secondary access method uses to build or
search an index. You register operator-class support functions in the SUPPORT
clause of the CREATE OPCLASS statement.

A function that processes one or more arguments (its operands) and returns a
value. Many operator functions have corresponding operators, such as plus()
and +. You can overload an operator function so that it handles a user-defined
data type. See also routine overloading.

An amount of space on an optical disc that is reserved for storing a group of
logically related simple large objects or smart large objects.

A group of optical discs, theoretically unlimited in number.
A removable optical disc that stores data in an optical storage subsystem.

The SQL statements that you use to control optical clustering.

One side of a removable Write-Once-Read-Many (WORM) optical disc.

An asymmetric joining of a dominant (outer) table and one or more “subser-
vient” tables in a query, where the values for the outer table are preserved
even if no matching rows exist in the subservient table. In the result set, any
outer-table row that has no matching row in the subservient table has NULL
values in the columns selected from the subservient table.

The process by which Optical Subsystem migrates TEXT or BYTE data from
the Dynamic Server environment to an optical storage subsystem.

36 IBM Informix Guide to SQL: Reference

output

overloading

owner-privileged

packed decimal

pad

parallel database

query

parallel-
processing
platform

parallelism

parameter

parent-child
relationship

parent table

participating
coserver

The result that the computer produces in response to a query or a request for
a report.

See routine overloading.

A class of SPL routines that any user can create who has Resource database
privileges.

A storage format that represents either two decimal digits or a sign and one
decimal digit in each byte.

Usually, to fill empty places at the beginning or end of a line, string, or field
with spaces or blanks when the input is shorter than the field.

The physical unit of disk storage and basic unit of memory storage that the
database server uses to read from and write to Informix databases. Page size
is fixed for a particular operating system and platform. A page is always
entirely contained within a chunk. See also home page and remainder page.

The execution of SQL queries in parallel rather than sequential order. The
tasks a query requires are distributed across several processors. This type of
distribution enhances database performance.

A parallel-processing platform is a set of independent computers that oper-
ate in parallel and communicate over a high-speed network, bus, or intercon-
nect. See also symmetric multiprocessing system and massively parallel
processing system.

Ability of an Informix database server to process a task in parallel by break-
ing the task into subtasks and processing the subtasks simultaneously, thus
improving performance.

A variable that is given a value for a specified application. In the signature of
a user-defined routine, a parameter serves as a placeholder for an argument.
The parameter specifies the data type of the value that the user-defined rou-
tine expects when it receives the associated argument at runtime. See also con-
figuration file, input parameter, and routine signature.

See referential constraint.

The referenced table in a referential constraint. See also child table.

A coserver that controls one or more fragments of a table that Extended Par-
allel Server accesses. See also coserver and connection coserver.

Glossary 37

partition
pattern

PDQ

PDQ priority

permission

phantom row

physical log

physslice

pointer

polymorphism

precision

predefined
opaque data type

predicate

predicate lock

See table fragment.
An identifiable or repeatable series of characters or symbols.
Acronym for parallel database query.

Determines the amount of resources that a database server allocates to pro-
cess a query in parallel. These resources include memory, threads (such as
scan threads), and sort space. The level of parallelism is established by using
the PDQPRIORITY environment variable or various database server
configuration parameters (including PDQPRIORITY and MAX_PDQPRIORITY)
or dynamically through the SET PDQPRIORITY statement.

On some operating systems, the right to access files and directories.

A row of a table that is initially modified or inserted during a transaction but
is subsequently rolled back. Another user can see a phantom row if the isola-
tion level is Informix Dirty Read or ANSI compliant Read Uncommitted. No
other isolation level allows a user to see a changed but uncommitted row.

A set of contiguous disk pages in shared memory where the database server
stores an unmodified copy (before-image) of pages before the changed pages
are recorded. The pages in the physical log can be any database server page
except a blobspace blobpage.

A dbslice that contains the physical log. See also dbslice, logslice, and
rootslice.

A value that specifies the address in memory of the data or variable, rather
than the contents of the data or variable.

See routine overloading and type substitutability.

The total number of significant digits in a real number, both to the right and
left of the decimal point. For example, the number 1437.2305 has a precision
of 8. See also scale.

An opaque data type for which the database server provides the data type
definition. See also BLOB, BOOLEAN, CLOB, LVARCHAR and pointer.

See filter.

A lock held on index keys that qualifies for a predicate. In a predicate lock,
exclusive predicates consist of a single key value, and shared predicates con-
sist of a query rectangle and a scan operation such as inclusion or overlap.

38 IBM Informix Guide to SQL: Reference

prepared
statement

preprocessor

primary access
method

primary key

primary-key
constraint

printable
character
privilege
procedure

procedure
overloading

process

project

projection

promotable lock

protocol

An SQL statement that is generated by the PREPARE statement from a
character string or from a variable that contains a character string. This fea-
ture allows you to form your request while the program is executing without
having to modify and recompile the program.

A program that takes high-level programs and produces code that a standard
language compiler such as C can compile.

An access method whose routines access a table with such operations as insert-
ing, deleting, updating, and scanning. See also secondary access method.

The information from a column or set of columns that uniquely identifies
each row in a table. The primary key sometimes is called a unique key.

Specifies that each entry in a column or set of columns contains a unique non-
NULL value.

A character that can be displayed on a terminal, screen, or printer. Printable
characters include A-Z, a-z, 0-9, and punctuation marks. Compare with control
character.

The right to use or change the contents of a database, table, table fragment,
or column. See also access privileges.

A routine that does not return values. See also user-defined procedure.

See routine overloading.

A discrete task, generally a program, that the operating system executes.

A group of related components that the High-Performance Loader (HPL)
uses. See also component.

Taking a subset of the columns in a table. Projection is implemented through
the Projection clause of the SELECT statement and returns some of the col-
umns and all the qualifying rows of a table. The set of columns in the Projec-
tion clause is sometimes called the “select list.” See also selection and join.

A lock that can be changed from a shared lock to an exclusive lock. See also
update lock.

A set of conventions that govern communication among computers. These
conventions govern format, timing, sequencing, and error control.

Glossary 39

query

query
optimization
information
statements

query unnesting

R-tree index

range
fragmentation

range rule

raw device
raw disk
raw table

Read Committed

Read
Uncommitted

A request to the database to retrieve data that meet certain criteria, usually
made with the SELECT statement.

The SQL statements that are used to optimize the performance of queries.
These statements include SET EXPLAIN, SET OPTIMIZATION, and UPDATE
STATISTICS.

An execution strategy for nested SQL subqueries whereby Extended Parallel
Server rewrites such subqueries to use modified joins rather than iteration
mechanisms. The sqexplain.out file reflects the query plan that has been
selected after subquery unnesting has occurred.

(Not for Extended Parallel Server) A type of index that uses a tree structure
based on overlapping bounding rectangles to speed access to spatial and
multidimensional data types. See also bitmap index and B-tree index.

A distribution scheme that distributes data in table fragments that contain a
specified key range. This technique can eliminate scans of table fragments
that do not contain the required rows, making queries faster.

A user-defined algorithm for expression-based fragmentation. It defines the
boundaries of each fragment in a table using SQL relational and logical oper-
ators. Expressions in a range rule can use the following restricted set of oper-
ators: >, <, >=, <=, and the logical operator AND.

See unbuffered disk 1/0.
See unbuffered disk 1/0O.
A nonlogged permanent table that uses light appends.

An level of isolation that the SET TRANSACTION statement can specify,

in which a user can view rows that are currently committed at the moment of
the query request, but cannot view rows that were changed as part of a cur-
rently uncommitted transaction. This is the default isolation level for
databases that are not ANSI compliant. See also Committed Read.

An ANSI compliant level of isolation, set with the SET TRANSACTION state-
ment, that does not account for locks. This allows a user to view any existing
rows, even rows that currently can be altered within currently uncommitted
transactions. Read Uncommitted is the lowest level of isolation (no isolation
at all), and is thus the most efficient. See also Dirty Read.

40 BM Informix Guide to SQL: Reference

real user ID
record
Record-ID

recover a
database

referential
constraint

registering

relation

relational
database

relational
database server

remainder page

remote
connection

remote routine
remote server

remote table

See Informix user ID.
See row.

A four-byte RSAM entity, also known as RID, that describes the logical posi-
tion of the record within a fragment. Not the same as rowid.

To restore a database to a former condition after a system failure or other
destructive event. The recovery restores the database as it existed immedi-
ately before the failure.

The relationship between columns within a table or between tables; also
known as a parent-child relationship. Referencing columns are also known as
foreign keys.

In a database, the process of storing information about a database object in the
system catalog tables of a database. Most SQL data definition statements per-
form some type of registration. For example, the CREATE FUNCTION and

CREATE PROCEDURE statements register a user-defined routine in a database.

See table.

A database that uses table structures to store data. Data in a relational
database is divided across tables in such a way that additions and modifica-
tions to the data can be made easily without loss of information.

A database server that manages data values that are stored in rows and col-
umns.

A page that accommodates subsequent bytes of a long data row. If the trailing
portion of a data row is less than a full page, it is stored on a remainder page.
After the database server creates a remainder page for a long row, it can use
the remaining space in the page to store other rows. Each full page that fol-

lows the home page is referred to as a big-remainder page.

A connection that requires a network.

A routine in a databases of a remote server. See subordinate server.
See subordinate server.

In a distributed query, a table in a database of a server that is not the local
database server. See also coordinating server, subordinate server.

Glossary 41

Repeatahle Read

reserved pages
reserved word
restore a
database

role

role separation

roll back

root dhspace

root node

root supertype
rootslice
round-rohin

fragmentation

routine

An Informix and ANSI level of isolation available with the Informix SET
ISOLATION statement or the ANSI compliant SET TRANSACTION statement,
which ensures that all data values read during a transaction are not modified
during the entire transaction. Transactions under ANSI Repeatable Read are
also known as Serializable. Informix Repeatable Read is the default level of
isolation for ANSI compliant databases. See also isolation and Serializable.

The first 12 pages of the initial chunk of the root dbspace. Each reserved page
stores specific control and tracking information that the database server uses.

A word in a statement or command that you cannot use in any other context
of the language or program without receiving a warning or error message.

See recover a database.

A classification or work task, such as payroll, that the DBA assigns. Assign-
ment of roles makes management of privileges convenient.

(Not for Extended Parallel Server) A database server installation option that
allows different users to perform different administrative tasks.

The process that reverses an action or series of actions on a database. The
database is returned to the condition that existed before the actions were
executed. See also transaction and commit work.

The initial dbspace that the database server creates. It contains reserved pages
and internal tables that describe and track all other dbspaces, blobspaces,
sbspaces, tblspaces, chunks, and databases.

A single index page that contains node pointers to branch nodes. The database
server allocates the root node when you create an index for an empty table.

The named row type at the top of a type hierarchy. A root supertype has no super-
type above it.

A dbslice that contains the root dbspaces for all coservers for Extended Par-
allel Server. See also dbslice, logslice, and physslice.

A distribution scheme in which the database server distributes rows sequen-
tially and evenly across specified dbspaces.

A group of program statements that perform a particular task. A routine can
be a function or a procedure. All routines can accept arguments. See also built-
in and user-defined routine.

42 BM Informix Guide to SQL: Reference

routine modifier
routine

overloading

routine
resolution

routine signature

row

row type

row variable

rowid

rule

A keyword in the WITH clause of a CREATE FUNCTION, CREATE PROCE-
DURE, ALTER FUNCTION, ALTER PROCEDURE, or ALTER ROUTINE statement
that specifies a particular attribute or usage of a user-defined routine.

The ability to assign one name to multiple user-defined routines and specify
parameters of different data types on which each routine can operate. An over-
loaded routine is uniquely defined by its routine signature.

The process that the database server uses to determine which user-defined rou-
tine to execute, based on the routine signature. See also routine overloading.

The information that the database server uses to uniquely identify a user-
defined routine. The signature includes the type of routine (function or proce-
dure); the routine name; and the number, order, and data types of the param-
eters. See also routine overloading and specific name.

A group of related items of information about a single entity across all col-
umns in a database table. In a table of customer information, for example, a
row contains information about a single customer. A row is sometimes
referred to as a record or tuple. In an object-relational model, each row of a
table stands for one instance of the subject of the table, which is one particular
example of that entity. In a screen form, a row can refer to a line of the screen.

A complex data type that contains one or more related data fields, of any data
type, that form a template for a record. The data in a row type can be stored
in a row or column. See also named row type and unnamed row type.

An IBM Informix ESQL/C host variable or SPL variable that holds an entire row
type and provides access to the individual fields of the row.

In nonfragmented tables, rowid refers to an integer that defines the physical
location of a row. Rowids must be explicitly created to be used in fragmented
tables and they do not define a physical location for a row. Rowids in
fragmented tables are accessed by an index that is created when the rowid is
created; this access method is slow. It is recommended that users creating
new applications move toward using primary keys as a method of row
identification instead of using rowids.

How a database server or a user determines into which fragment rows are
placed. The database server determines the rule for round-robin fragmentation
and system-defined hash fragmentation. The user determines the rule for expres-
sion-based fragmentation and hybrid fragmentation. See also arbitrary rule and
range rule.

Glossary 43

runtime
environment
runtime error

shspace

scale

scale up

scan thread

schema

scope of
reference

scroll cursor

secondary
access method

secure auditing

select

The hardware and operating-system services available at the time a program
runs.

An error that occurs during program execution. Compare with compile-time
error.

(Not for Extended Parallel Server) A logical storage area that contains one or
more chunks that store only BLOB and CLOB data.

The number of digits to the right of the decimal place in DECIMAL notation.
The number 14.2350 has a scale of 4 (four digits to the right of the decimal
point). See also precision.

The ability to compensate for an increase in query size by adding a corre-
sponding amount of computer resources so that processing time does not
also increase.

A database server thread that is assigned the task of reading rows from a
table. When a query is executed in parallel, the database server allocates mul-
tiple scan threads to perform the query in parallel.

The structure of a database or a table. The schema for a table lists the names
of the columns, their data types, and (where applicable) the lengths,
indexing, and other information about the structure of the table.

The portion of a routine or application program where an identifier can be
accessed. Three possible scopes exist: local (applies only in a single statement
block), modular (applies throughout a single module), and global (applies
throughout the entire program). See also local variable and global variable.

A cursor created with the SCROLL keyword that allows you to fetch rows of
the active set in any sequence.

An access method whose routines access an index with such operations as
inserting, deleting, updating, and scanning. See also operator class and pri-
mary access method.

(Not for Extended Parallel Server) A facility of Informix database servers that
lets a database server administrator keep track of unusual or potentially
harmful user activity. Use the onaudit utility to enable auditing of events and
create audit masks, and the onshowaudit utility to extract the audit event
information for analysis.

See query.

44 BM Informix Guide to SQL: Reference

select cursor

selection

selective index
selectivity
self-join
semaphore

sequence

sequential cursor

Serializable

server locale

server name

server number

server-
processing
locale

session

A cursor that is associated with a SELECT statement, which lets you scan
multiple rows of data, moving data row by row into a set of receiving
variables.

Taking a horizontal subset of the rows of a single table that satisfies a speci-
fied condition. Selection is implemented through the WHERE clause of a
SELECT statement and returns some of the rows and all of the columns in a
table. See also projection and join.

A type of generalized-key index that contains keys for only a subset of a table.
The proportion of rows within the table that a query filter can pass.

A join between a table and itself. A self-join occurs when a table is used two
or more times in a SELECT statement (with different aliases) and joined to
itself.

An operating-system communication device that signals a process to
awaken.

A database object (sometimes called a sequence generator) that can generate
unique integer values in the INT8 range.

A cursor that can fetch only the next row in sequence. A sequential cursor can
read through a table only once each time the sequential cursor is opened.

An ANSI compliant level of isolation set with the SET TRANSACTION state-
ment, ensuring all data read during a transaction is not modified during the
entire transaction. See also isolation and Repeatable Read.

The locale that a database server uses when it performs its own read and
write operations. The SERVER_LOCALE environment variable can specify a
nondefault locale. See also client locale and locale.

The unique name of a database server, assigned by the database server
administrator, that an application uses to select a database server.

A unique number between 0 and 255, inclusive, that a database server admin-
istrator assigns when a database server is initialized.

The locale that a database server determines dynamically for a given connec-
tion between a client application and a database. See also locale.

The structure that is created for an application using the database server.

Glossary 45

SET

shared library

shared lock

shared memory

shared-object
file

shelf

shuffling

signal

signature

simple inner join

A collection data type created with the SET type constructor, in which elements
are not ordered and duplicate values can be inserted.

A shared-object file on a UNIX system. See also dynamic link library (DLL).

A lock that more than one thread can acquire on the same object. Shared locks
allow for greater concurrency with multiple users; if two users have shared
locks on a row, a third user cannot change the contents of that row until both
users (not just the first) release the lock. Shared-locking strategies are used in
all levels of isolation except Informix Dirty Read and ANSI compliant Read
Uncommitted.

A portion of main memory that is accessible to multiple processes. Shared
memory allows multiple processes to communicate and access a common
data space in memory. Common data does not have to be reread from disk
for each process, reducing disk I/O and improving performance. Also used
as an Inter-Process Communication (IPC) mechanism to communicate
between two processes running on the same computer.

A library that is not linked to an application at compile time but instead is
loaded into memory by the operating system as needed. Several applications
can share access to the loaded shared-object file. See also dynamic link library
(DLL) and shared library.

The location of an optical platter that is neither on an optical drive nor in a
jukebox slot.

Shuffling refers to the process that occurs when a database server moves
rows or key values from one fragment to another. Shuffling occurs in a vari-
ety of circumstances including when you attach, detach, or drop a fragment.

A means of asynchronous communication between two processes. For
example, signals are sent when a user or a program attempts to interrupt or
suspend the execution of a process.

See routine signature.

A join that combines information from two or more tables based on the
relationship between one column in each table. Rows that do not satisfy the
join criteria are discarded from the result. See also composite join.

46 BM Informix Guide to SQL: Reference

simple large
obhject

simple predicate

single-hyte
character

singletonimplicit
transaction

singleton select

smart large
ohject

SMi
SMP

source file

source type

specific name

speed up

SPL

A large object that is stored in a blobspace or dbspace is not recoverable and does
not obey transaction isolation modes. Simple large objects include TEXT and
BYTE data types. Extended Parallel Server does not support simple large
objects that are stored in a blobspace.

A search condition in the WHERE clause that has one of the following forms:
f(column, constant), f(constant, column), or f(column), where f is a binary
or unary function that returns a Boolean value (TRUE, FALSE, or UNKNOWN).

A character that uses one byte of storage. Because a single byte can store val-
ues in the range of 0 to 255, it can uniquely identify 256 characters. With these
code sets, an application can assume that one character is always stored in
one byte. See also 8-bit character and multibyte character.

A single-statement transaction that does not require either a BEGIN WORK or
a COMMIT WORK statement. This type of transaction can occur only in a data-
base that is not ANSI compliant, but that supports transaction logging. See
also explicit transaction and implicit transaction.

A SELECT statement that returns a single row.

A large object that is stored in an sbspace, which has read, write, and seek prop-
erties similar to a UNIX file, is recoverable, obeys transaction isolation modes,
and can be retrieved in segments by an application. Smart large objects
include BLOB and CLOB data types.

Acronym for system-monitoring interface.
See symmetric multiprocessing system.

A text file that contains instructions in a high-level language, such as C. A
C source file is compiled into an executable file called an object file. An SPL
source file is compiled into its own executable format. See also compile.

The data type from which a DISTINCT type is derived.

A name that you can assign to an overloaded user-defined routine to uniquely
identify a particular signature of the user-defined routine. See also routine
overloading and routine signature.

The ability to add computing hardware to achieve correspondingly faster
performance for a DSS query or OLTP operation of a given volume.

See Stored Procedure Language (SPL).

Glossary 47

SPL function
SPL procedure

SPL routine

SPL variable
SOL

SQL API

SQLCA

sqlda

sqlhosts
stack operator

staging-area
blobhspace

statement

An SPL routine that returns one or more values.
An SPL routine that does not return a value.

A user-defined routine that is written in Stored Procedure Language (SPL). Its
name, parameters, executable format, and other information are stored in the
system catalog tables of a database. An SPL routine can be an SPL procedure or
an SPL function.

A variable that is declared with the DEFINE statement in an SPL routine.

Acronym for Structured Query Language. SQL is a database query language
that was developed by IBM and standardized by ANSI. Informix relational
database management products are based on an extended implementation of
ANSI-standard SQL.

An application programming interface that allows you to embed SQL statements
directly in an application. The embedded-language product IBM Informix
ESQL/C is an example of an SQL APL See also host variable.

Acronym for SQL Communications Area. The SQLCA is a data structure that
stores information about the most recently executed SQL statement. The
result code returned by the database server to the SQLCA is used for error
handling by Informix SQL APIs.

Acronym for SQL descriptor area. A dynamic SQL management structure that
can be used with the DESCRIBE statement to store information about database
columns or host variables used in dynamic SQL statements. The sqlda struc-
ture is an Informix-specific structure for handling dynamic columns. It is
available only within an IBM Informix ESQL/C program. See also descriptor
and system-descriptor area.

A file that identifies the types of connections the database server supports.
Operators that allow programs to manipulate values that are on the stack.

(Not for Extended Parallel Server) The blobspace where a database server
temporarily stores TEXT or BYTE data that is being outmigrated to an optical
storage subsystem.

A line or set of lines of program code that describes a single action (for exam-
ple, a SELECT statement or an UPDATE statement).

48 BM Informix Guide to SQL: Reference

statement bhlock

statement
identifier
static table

status variable

storage space
stored procedure

Stored Procedure
Language (SPL)

strategy function

string

subordinate
server

subordinate table

subquery

A unit of SPL program code that performs a particular task and is usually
marked by the keywords BEGIN and END. The statement block of an SPL rou-
tine is the smallest scope of reference for program variables.

An embedded variable name or SQL statement identifier that represents a
data structure defined in a PREPARE statement. It is used for dynamic SQL
statement management by Informix SQL APIs.

A nonlogging, read-only permanent table.

A program variable that indicates the status of some aspect of program
execution. Status variables often store error numbers or act as flags to
indicate that an error has occurred.

A dbspace, blobspace, or sbspace that is used to hold data.
A legacy term for an SPL routine.

An Informix extension to SQL that provides flow-control features such as
sequencing, branching, and looping. See also SPL routine.

See operator-class strategy function.

A sequence of characters (typically alphanumeric) that is manipulated as a
single unit. A string might consist of a word (such as ‘Smith’), a set of digits
representing a number (such as “19543’), or any other collection of characters.
Strings generally are delimited by single quotes. String is also a character
data type, available in IBM Informix ESQL/C programs, in which the charac-
ter string is stripped of trailing blanks and is null terminated.

Any database server in a distributed query that did not initiate the query.
Sometimes called remote server. See also coordinating server.

See outer join.

A query that is embedded as part of another SQL statement. For example, an
INSERT statement can contain a subquery in which a SELECT statement sup-
plies the inserted values in place of a VALUES clause; an UPDATE statement
can contain a subquery in which a SELECT statement supplies the updating
values; or a SELECT statement can contain a subquery in which a second
SELECT statement supplies the qualifying conditions of a WHERE clause for
the first SELECT statement. (Parentheses always delimit a subquery, unless
you are referring to a CREATE VIEW statement or unions.) Subqueries are
always parallelized. See also correlated subquery and independent subquery.

Glossary 49

subscript
substring

subtable

subtype

supertahle

supertype
support function
support routine
symmetric

multiprocessing
system

synonym

sysmaster
database

system call

A subscript is an integer-valued offset into an array. Subscripts can be used
to indicate the start or end position in a character data-type variable.

A portion of a character string.

A typed table that inherits properties (column definitions, constraints, trig-
gers) from a supertable above it in the fable hierarchy and can add additional
properties.

A named row type that inherits all representation (data fields) and behavior
(routines) from a supertype above it in the type hierarchy and can add additional
fields and routines. The number of fields in a subtype is always greater than
or equal to the number of fields in its supertype.

A typed table whose properties (constraints, storage options, triggers) are
inherited by a subtable beneath it in the table hierarchy. The scope of a query on
a supertable is the supertable and its subtables.

A named row type whose representation (data fields) and behavior (routines) is
inherited by a subtype below it in the type hierarchy.

See aggregate support function, opaque-type support function, and operator-
class support function.

See support function.

A system composed of multiple computers that are connected to a single
high-speed communication subsystem. An SMP has fewer computers than an
MPP system and cannot be partitioned into nodes. Compare with massively
parallel processing system.

A name that is assigned to a table, view, or sequence, and that can be used in
place of the original name. A synonym does not replace the original name;
instead, it acts as an alias for the table, view, or sequence.

A database on each database server that holds the ON-Archive catalog tables
and system-monitoring interface (SMI) tables that contain information about the
state of the database server. The database server creates the sysmaster data-
base when it initializes disk space.

A routine in an operating-system library that programs call to obtain informa-
tion from the operating system.

50 IBM Informix Guide to SQL: Reference

system catalog

system-defined
cast

system-defined
hash
fragmentation

system-
descriptor area

system-
monitoring
interface

table

table fragment

table
fragmentation

A group of database tables that contain information about the database itself,
such as the names of tables or columns in the database, the number of rows
in a table, the information about indexes and database privileges, and so on.
See also data dictionary.

A pre-defined cast that is known to the database server. Each built-in cast per-
forms automatic conversion between two different built-in data types.

An Extended Parallel Server-defined distribution scheme that maps each row
in a table to a set of integers and uses a system-defined algorithm to distrib-
ute data evenly by hashing a specified key.

A dynamic SQL management structure that is used with the ALLOCATE
DESCRIPTOR, DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and
SET DESCRIPTOR statements to store information about database columns or
host variables used in dynamic SQL statements. The structure contains an
item descriptor for each column; each item descriptor provides information
such as the name, data type, length, scale, and precision of the column. The
system-descriptor area is the X/Open standard for handling dynamic
columns. See also descriptor and sqlda.

A collection of tables and pseudo-tables in the sysmaster database that main-
tains dynamically updated information about the operation of the database
server. The tables are constructed in memory but are not recorded on disk.
Users can query the SMI tables with the SELECT statement of SQL.

A rectangular array of data in which each row describes a single entity and
each column contains the values for each category of description. For exam-
ple, a table can contain the names and addresses of customers. Each row
corresponds to a different customer and the columns correspond to the name
and address items. A table is sometimes referred to as a base table to distin-
guish it from the views, indexes, and other objects defined on the underlying
table or associated with it.

Zero or more rows that are grouped together and stored in a dbspace that you
specify when you create the fragment. A virtual table fragment might reside
in an sbspace or an extspace.

A method of separating a table into potentially balanced fragments to distrib-
ute the workload and optimize the efficiency of the database operations. Also
known as data partitioning. Table-fragmentation methods (also known as
distribution schemes) include expression-based, hybrid, range, round-robin, and
system-defined hash.

Glossary 51

table hierarchy

table inheritance

target tahle

thispace

TCP/IP

temporary

terabyte
TEXT

thread

TLI

trace

A relationship you can define among typed tables in which subtables inherit the
behavior (constraints, triggers, storage options) from supertables. Subtables
can add additional constraint definitions, storage options, and triggers.

The property that allows a typed table to inherit the behavior (constraints,
storage options, triggers) from a typed table above it in the table hierarchy.

The underlying base table that a violations table and diagnostics table are
associated with. You use the START VIOLATIONS TABLE statement to create
the association between the target table and the violations and diagnostics
tables.

The logical collection of extents that are assigned to a table. It contains all the
disk space that is allocated to a given table or table fragment and includes
pages allocated to data and to indexes, pages that store TEXT or BYTE data in
the dbspace, and bitmap pages that track page use within the extents.

The specific name of a particular standard transport layer protocol (TCP) and
network layer protocol (IP). A popular network protocol used in DOS, UNIX,
and other environments.

An attribute of any file, index, or table that is used only during a single
session. Temporary files or resources are typically removed or freed when
program execution terminates or an online session ends.

A unit of storage, equal to 1024 gigabytes or 1024* bytes.

A data type for a simple large object that stores text and can be as large as 23!
bytes. See also BYTE.

A piece of work or task for a virtual processor just as a virtual processor is a
task for a CPU. A virtual processor is a task that the operating system sched-
ules for execution on the CPU; a database server thread is a task that a virtual
processor schedules internally for processing. Threads are sometimes called
lightweight processes because they are like processes but make fewer demands
on the operating system. See also multithreading and user thread.

Acronym for Transport Layer Interface. It is the interface designed for use by
application programs that are independent of a network protocol.

To keep a running list of the values of program variables, arguments, expres-
sions, and so on, in a program or SPL routine.

52 IBM Informix Guide to SQL: Reference

transaction

transaction lock
transaction

logging
transaction mode

trigger

tuple

two-phase
commit

type constructor

type hierarchy

type inheritance

type
substitutability

typed collection
variable

A collection of one or more SQL statements that is treated as a single unit of
work. If one statement in a transaction fails, the entire transaction can be
rolled back (canceled). If the transaction is successful, the work is committed
and all changes to the database from the transaction are accepted. See also
explicit transaction, implicit transaction, and singleton implicit transaction.

Alock on an R-tree index that is obtained at the beginning of a transaction and
held until the end of the transaction.

The process of keeping records of transactions. See also logical log.

The method by which constraints are checked during transactions. You use
the SET statement to specify whether constraints are checked at the end of
each data manipulation statement or after the transaction is committed.

A database object that executes a set of actions if a DML event manipulates a
specified table. (An INSTEAD OF trigger substitutes a set of actions for a DML
event that attempts to manipulate a specified view.)

See row.

A protocol that ensures that transactions are uniformly committed or rolled
back across multiple database servers. It governs the order in which commit
transactions are performed and provides a recovery mechanism in case a
transaction does not execute. See also heterogeneous commit.

An SQL keyword that indicates to the database server the type of complex
data to create (for example, LIST, MULTISET, ROW, SET).

A relationship that you define among named row types in which subtypes
inherit representation (data fields) and behavior (routines) from supertypes and
can add more fields and routines.

The property that allows a named row type or typed table to inherit representa-
tion (data fields, columns) and behavior (routines, operators, rules) from a
named row type above it in the type hierarchy.

The ability to use an instance of a subtype when an instance of its supertype
is expected.

An ESQL/C collection variable or SPL variable that has a defined collection data
type associated with it and can only hold a collection of its defined type. See
also untyped collection variable.

Glossary 53

typed table

UDA
UDF
UDR
uDT

unbuffered disk
1/0

Uncommitted
Read

uncorrelated
subquery

unique constraint
unique index
unique key

UNIX real user ID

unlock

unnamed row
type

A table that is constructed from a named row type and whose rows contain
instances of that row type. A typed table can be used as part of a table hierarchy.
The columns of a typed table correspond to the fields of the named row type.

See user-defined aggregate.
See user-defined function.
See user-defined routine.
See user-defined data type.

Disk I/O that is controlled directly by the database server instead of the oper-
ating system. This direct control helps improve performance and reliability
for updates to data. Unbuffered I/O is supported by character-special files on
UNIX and by both unbuffered files and the raw disk interface on Windows.

See Read Uncommitted.

See independent subquery.

Specifies that each entry in a column or set of columns has a unique value.
An index that prevents duplicate values in the indexed column.

See primary key.

See Informix user ID.

The information required to unload data from a relational database using the
HPL. This information includes format, map, query, device array, project, and
special options.

To free an object (database, table, page, or row) that has been locked. For
example, a locked table prevents others from adding, removing, updating, or
(in the case of an exclusive lock) viewing rows in that table as long as it is
locked. When the user or program unlocks the table, others are permitted
access again.

A row type created with the ROW constructor that has no defined name and
no inheritance properties. Two unnamed row types are equivalent if they
have the same number of fields and if corresponding fields have the same data
type, even if the fields have different names.

54 IBM Informix Guide to SQL: Reference

untyped
collection
variable

updatable view

update

update lock

user-defined
aggregate

user-defined
hase type

user-defined cast

user-defined data
type

user-defined
function

user-defined
procedure

user-defined
routine

user ID

user ID password

A generic ESQL/C collection variable or SPL variable that can hold a collection of
any collection data type and takes on the data type of the last collection
assigned to it. See also typed collection variable.

A view whose underlying table can be modified by inserting values into the
view. Only an INSTEAD OF trigger can update a multi-table view.

The process of changing the contents of one or more columns in one or more
existing rows of a table.

A promotable lock that is acquired during a SELECT...FOR UPDATE. An
update lock behaves like a shared lock until the update actually occurs, and
it then becomes an exclusive lock. It differs from a shared lock in that only
one update lock can be acquired on an object at a time.

An aggregate function that is not provided by the database server (built in)
that includes extensions to built-in aggregates and newly defined aggregates.
The database server manages all aggregates.

See opaque data type.

A cast that a user creates with the CREATE CAST statement. A user-defined
cast typically requires a cast function. A user-defined cast can be an explicit cast
or an implicit cast.

A data type that you define for use in a relational database. You can define opaque
data types and distinct data types.

A user-defined routine that returns at least one value. You can write a user-
defined function in SPL (SPL function) or in an external language that the data-
base server supports (external function).

A user-defined routine that does not return a value. You can write a user-
defined procedure in SPL (SPL procedure) or in an external language that the
database server supports (external procedure).

A routine that you write and register in the system catalog tables of a data-
base, and that an SQL statement or another routine can invoke. You can write
a user-defined routine in SPL (SPL routine) or in an external language (external
routine) that the database server supports.

Also called authorization identifier. See also Informix user ID.

See Informix user password.

Glossary 55

user name
user password

user thread

variable

variant function

view

violations tahle

virtual column

virtual-column
index

virtual processor

See Informix user ID.
See Informix user password.

User threads include session threads (called sqlexec threads) that are the pri-
mary threads that the database server runs to service client applications. User
threads also include a thread to service requests from the onmode utility,
threads for recovery, and page-cleaner threads. See thread.

The identifier for a location in memory that stores the value of a program
object whose value can change during program execution. Compare with con-
stant, macro, and pointer.

A user-defined function that might return different values when passed the
same arguments. A variant function can contain SQL statements. Compare
with nonvariant function.

A dynamically controlled subset of the columns of one or more database
tables. A view can give the programmer control over what information the
user sees and manipulates, and represents a virtual table that holds the
results of a specified SELECT statement.

A special table that holds rows that fail to satisfy constraints and unique
index requirements during data manipulation operations on base tables. You
use the START VIOLATIONS TABLE statement to create a violations table and
associate it with a base table.

A derived column of information, created with an SQL statement, that is not
stored in the database. For example, you can create virtual columns in a
SELECT statement by arithmetically manipulating a single column, such as
multiplying existing values by a constant, or by combining multiple col-
umns, such as adding the values from two columns.

A type of generalized-key index that contains keys that are the result of an
expression.

A multithreaded process that makes up the database server and is similar to
the hardware processors in the computer. It can serve multiple clients and,
where necessary, run multiple threads to work in parallel for a single query.

56 IBM Informix Guide to SQL: Reference

virtual table

VLDB

warning

white space

wide character

wildcard

window

WORM

X/Open

A table created to access data in an external file, external DBMS, smart large
object, or in the result set of an iterator function in a query. The database
server does not manage external data or directly manipulate data within a
smart large object. The Virtual-Table Interface allows users to access the
external data in a virtual table using SQL DML statements and join the exter-
nal data with Dynamic Server table data.

Acronym for very large database.

A message or other indicator about a condition that software (such as the
database server or compiler) detects. A condition that results in a warning
does not necessarily affect the ability of the code to run. See also compile-time
error and runtime error.

A series of one or more space characters. The GLS locale defines the characters
that are considered to be space characters. For example, both the TAB and
blank might be defined as space characters in one locale, but certain combi-
nations of the CTRL key and another character might be defined as space char-
acters in a different locale.

A form of a code set that involves normalizing the size of each multibyte
character so that each character is the same size. This size must be equal to or
greater than the largest character that an operating system can support, and
it must match the size of an integer data type that the C compiler can scale.
Some examples of an integer data type that the C compiler can scale are short
integer (short int), integer (int), or long integer (long int).

A special symbol representing any character or any string of zero or more
characters. In SQL, for example, you can use the asterisk (*), question mark
(?), percent sign (%), and underscore (_) as wildcard characters in some
contexts. (Asterisk and question mark are also UNIX wildcards.)

A rectangular area on the screen in which you can take actions without leav-
ing the context of the background program.

Acronym for Write-Once-Read-Many optical media. When a bit of data is writ-
ten to a WORM platter, a permanent mark is made on that optical platter.

An independent consortium that produces and develops specifications and
standards for open-systems products and technology, such as dynamic SQL.

Glossary 57

X/Open A set of specifications that vendors and users can use to build portable

Portability Guide software. Any vendor that carries the XPG brand on a given software product

(XPG) is guaranteeing that the software correctly implements the X/ Open Common
Applications Environment (CAE) specifications. There are CAE specifications
for SQL, XA, ISAM, RDA, and so on.

zoned decimal A data representation that uses the low-order four bits of each byte to desig-
nate a decimal digit (0 through 9) and the high-order four bits to designate
the sign of the digit.

58 IBM Informix Guide to SQL: Reference

A B CDETFGHI

J K LMNOPQRSTUVWIXY Z @

Index

A

Abbreviated year values 2-16,3-28,

3-30, 3-33, 3-49
ACCESS keyword 1-16, 2-47
Access method
B-tree 1-18, 1-45, 3-51
built-in 1-16, 1-18
primary 1-17, 1-65
R-tree 3-51
secondary 1-16,1-32, 1-47, 2-31
sysams data 1-16
sysindices data 1-47
sysopclasses data 1-51
systabamdata data 1-65
Access privilege. See Privilege.
Activity-log files 3-75
AC_CONFIG environment
variable 3-23
ac_config.std file 3-23
Addition (+) operator 2-48, 2-66
Administrative listener port 3-60
AFCRASH configuration
parameter 3-23
AFDEBUG environment
variable 3-23
Aggregate function
built-in 2-26, 2-29, 2-38
no BYTE argument 2-9
no collection arguments 2-26,
2-29,2-38
no TEXT argument 2-40
sysaggregates data 1-15
user-defined (UDA) 1-15
AIX operating system 3-78
Alias of a table 1-9
Alignment of data type 1-21, 1-76

ALL operator 2-66
ALTER OPTICAL CLUSTER
statement 1-53
Alter privilege 1-9, 1-66, 1-79
ALTER SEQUENCE
statement 3-93
ALTER TABLE statement
casting effects 2-59
changing data types 2-4
lock mode 3-56
next extent size 1-12
SERIAL columns 2-35
SERIALS columns 2-37
synonyms 3-93
systables.version 1-68
am_beginscan() function 1-18
am_close() function 1-17
am_getnext() function 1-16
am_insert() function 1-17
am_open() function 1-17
AND operator 1-22, 2-66
ANSI compliance
-ansi flag 3-27
DATETIME literals 3-49
DBANSIWARN environment
variable 3-27
DECIMAL range 2-18
DECIMAL(p) data type 2-18
icon Intro-8
Information Schema views 1-77
isolation level 1-82
level Intro-15
public synonyms 1-64, 1-67
ANY operator 2-66
Arabic locales 2-10
archecker utility 3-23

A B C D E F G H 1

Archiving

setting DBREMOTECMD 3-44

Arithmetic

DATE operands 2-13, 2-51
DATETIME operands 2-49
integer operands 2-22, 2-37, 2-40
INTERVAL operands 2-23, 2-50
operators 2-66

string operands 2-10

time operands 2-48

AS keyword 2-62, 2-63
ASCII code set 1-39

a

ssign() support function 2-56

AT keyword 2-26

Attached indexes 1-43, 3-31, 3-89
Audit analysis officer (AAO) 3-71
Authentication information

file 3-66

Authorization identifier 1-73, 1-82

Backslash (\) symbol 3-35
BETWEEN operator 2-66

b

in subdirectory 3-10

Binding style 1-81
Blank spaces 3-77
BLOB data type

casting not available 2-7
coltype code 1-29
description 2-7
inserting data 2-8
syscolattribs data 1-24

Blobspace

B
B

B

B
B

2

defined 2-46

memory cache for staging 3-66
names (character set) 3-52
sysblobs data 1-20

oldface type Intro-7
OOLEAN data type

coltype code 1-29

description 2-8

oolean expression

with BOOLEAN data type 2-8
with BYTE data type 2-9

with TEXT data type 2-40
orland C compiler 3-62

ourne shell 3-8

IBM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

Braces ({}) symbols 2-56
Bracket ([]) symbols 2-9, 2-41
B-tree access method 1-18, 1-45,
3-51
Buffer
BYTE or TEXT storage
(DBBLOBBUF) 3-28
fetch buffer
(FET_BUFFER_SIZE) 3-23,
3-53
floating-point display
(DBFLTMASK) 3-35
network buffer
(IFX_NETBUE_SIZE) 3-59
private network buffer pool 3-59
Built-in access method 1-16, 1-18
Built-in aggregates 1-15, 2-26, 2-29,
2-38
Built-in casts 1-21, 2-59
Built-in data types
casts 2-59, 2-65
listed 2-44
syscolumns.coltype code 1-27
sysdistrib.type code 1-36
sysxtdtypes data 1-76
BY keyword 2-9, 2-40
BYTE data type
casting to BLOB 2-9
description 2-8
increasing buffer size 3-27
inserting values 2-9
restrictions
in Boolean expression 2-9
systables.npused 1-68
with GROUP BY 2-9
with LIKE or MATCHES 2-9
with ORDER BY 2-9
selecting from BYTE columns 2-9
setting buffer size 3-27
sysblobs data 1-20
syscolumns data 1-31
sysfragments data 1-41
sysopclstr data 1-52
B+ tree index 1-42

H

C compiler
default name 3-62
INFORMIXC setting 3-62
thread package 3-93
Cshell 3-8
.cshrc file 3-8
login file 3-8
call_type table in stores_demo
database A-7
call_type table in superstores_demo
database B-8
CARDINALITY() function 2-26,
2-29,2-38
Cascading delete 1-61
Cast 2-58 to 2-65
built-in 1-21, 2-59 to 2-63
distinct data type 2-64
explicit 1-21, 2-62, 2-63
from BYTE to BLOB 2-9
from TEXT to CLOB 2-41
implicit 1-21, 2-62, 2-63
rules of precedence 2-63
syscasts data 1-21
CAST AS keywords 2-62
Cast (::) operator 2-62, 2-66
CHAR data type
built-in casts 2-61
collation 2-10, 2-44
conversion to NCHAR 2-30, 3-39,
3-40
description 2-10
nonprintable characters 2-11
storing numeric values 2-10
Character data types
Boolean comparisons 2-43
casting between 2-59
data strings 2-6
listed 2-44
syscolumns data 1-30
CHARACTER data type. See
CHAR data type.
Character string
CHAR data type 2-10
CHARACTER VARYING data

type 2-11
CLOB data type 2-12

A B C D E F G H

DATETIME literals 2-16, 2-52,
3-49
INTERVAL literals 2-25
LVARCHAR data type 2-27
NCHAR data type 2-30
NVARCHAR data type 2-30
TEXT data type 2-40
VARCHAR data type 2-42
with DELIMIDENT set 3-52
CHARACTER VARYING data type
description 2-11
length (syscolumns) 1-30
See also VARCHAR data type.
Character-based applications 3-70,
3-91
Check constraint
creation-time value 3-30, 3-34
syschecks data 1-22
syscheckudrdep data 1-23
syscoldepend data 1-26
sysconstraints data 1-33
chkenv utility 3-8
error message 3-12
syntax 3-11
Chunk 2-46, 3-45
Client/server
Datablade API 2-47
default database 3-67
INFORMIXSQLHOSTS
environment variable 3-69
shared memory communication
segments 3-68
stacksize for client session 3-70
CLIENT_LOCALE environment
variable 3-33
CLOB data type
casting not available 2-12
code-set conversion 2-12
collation 2-12
coltype code 1-29
description 2-11
inserting data 2-12
multibyte characters 2-12
syscolattribs data 1-24
CLOSE statement 3-82
Clustering 1-17, 1-43, 1-46
Code set
ASCII 1-39
collation order 2-43

J K LMNOWPQRSTUVWXY Z @

conversion 3-95
East Asian 2-10, 2-43, 3-50
EBCDIC 1-39, 1-82
ISO 8859-1 1-37
Code set, ISO 8859-1 Intro-5
Code, sample, conventions
for Intro-11
Collation
CHAR data type 2-10
CLOB data type 2-12
GL_COLLATE table 1-69
NCHAR data type 2-30
server_attribute data 1-82
TEXT data type 2-41
VARCHAR data type 2-43
Collection data type
casting matrix 2-65
description 2-56
empty 2-56
LIST 2-25
MULTISET 2-28
SET 2-38
sysattrtypes data 1-19
sysxtddesc data 1-75
sysxtdtypes data 1-75, 1-76
Colon
cast (1) operator 2-62
DATETIME delimiter 2-15
INTERVAL delimiter 2-24
pathname separator 3-77
Color and intensity screen
attributes 3-70
Column
changing data type 2-4,2-58
constraints (sysconstraints) 1-33
default values (sysdefaults) 1-34
hashed 1-42
in sales_demo
database B-3 to B-6
in stores_demo
database A-2to A-8
in superstores_demo
database B-8 to B-22
inserting BLOB data 2-8
range of values 1-32
referential constraints
(sysreferences) 1-61
syscolumns data 1-27

Column-level privileges
systabauth data 1-9
systabauth table 1-66

Combine function 1-15

Comment icons Intro-10

Comment indicator 3-8

Comment lines 3-8

Committed read 1-82

Communications support

module 3-62, 3-66

Commutator function 1-58

Compiling
ESQL/C programs 3-25
INFORMIXC setting 3-62
JAVA_COMPILER setting 3-76
multithreaded ESQL/C

applications 3-93

Complex data type 2-55 to 2-57
collection types 2-56
ROW types 2-57
sysattrtypes data 1-19

Compliance
ANSI/ISO standard for

SQL 1-77,3-27
icons Intro-8
sql_languages.conformance 1-81
with industry standards Intro-15
XPG4 standard 1-79
X/Open CAE standards 1-77

Composite index 1-45

Concatenation (| |) operator 2-66

concsm.cfg file 3-62

Configuration file
for communications support

module 3-63, 3-66
for connectivity 3-61, 3-67, 3-69
for database servers 3-52, 3-79
for High-Performance

Loader 3-85
for MaxConnect 3-61
for ON-Bar utility 3-23
for onxfer utility 3-94
for terminal I/O 3-70, 3-91
.cshr file 3-8
Ainformix 3-8, 3-11, 3-52, 3-56
login file 3-8
.profile file 3-8

Configuration parameter
COSERVER 3-80

Index 3

A B C D E F G H

DBSPACETEMP 3-46
DEF_TABLE_LOCKMODE 3-56
DIRECTIVES 3-57
END 3-80
MITRACE_OFF 1-69, 1-70
NODE 3-80
OPCACHEMAX 3-67
OPTCOMPIND 3-81
OPT_GOAL 3-83
STACKSIZE 3-70
STMT_CACHE 3-90
USEOSTIME 2-17
CONNECT DEFAULT
statement 3-67
Connect privilege 1-11, 1-73
CONNECT statement 3-41, 3-63,
3-67
Connection
authentication 3-66
coserver 3-68
INFORMIXCONRETRY
environment variable 3-63
INFORMIXCONTIME
environment variable 3-63
INFORMIXSERVER environment
variable 3-67
Connectivity information 3-60,
3-69
Constraint
check
creation-time value 3-34
loading performance B-3
syschecks data 1-22
syscheckudrdep data 1-23
syscoldepend data 1-26
column
sysconstraints data 1-33
not null
collection data types 2-26, 2-29,
2-38, 2-56
syscoldepend data 1-26
syscolumns data 1-28
sysconstraints data 1-33
object mode 1-50
primary key
sysconstraints data 1-33
sysreferences data 1-61
unique SERIAL values 2-35
unique SERIALS values 2-36

4 |BM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

referential
stores_demo data A-10
superstores_demo data B-25
sysconstraints data 1-33
sysreferences data 1-61
table
sysconstraints data 1-33
unique
sysconstraints data 1-33
violations 1-74
Constructor 2-39, 2-56
Contact information Intro-15
Converting data types
CHAR and NCHAR 3-39
DATE and DATETIME 2-61
INTEGER and DATE 2-61
number and string 2-61
number to number 2-60
retyping a column 2-58
VARCHAR and
NVARCHAR 3-39
Coserver
sysexternal data 1-40
sysviolations data 1-74
COSERVER configuration
parameter 3-68, 3-80
CPFIRST environment
variable 3-24
CPU cost 3-89
CREATE ACCESS METHOD
statement 1-16
CREATE CAST statement 1-21,
2-62
CREATE DATABASE
statement 3-41
CREATE DISTINCT TYPE
statement 1-76, 2-20, B-22
CREATE DUPLICATE
statement 1-43
CREATE EXTERNAL TABLE
statement 1-38, 1-39
CREATE FUNCTION
statement 1-63
CREATE IMPLICIT CAST
statement B-22
CREATE INDEX statement 1-44,
1-46, 1-49, 1-62, 1-68, 3-51
CREATE OPAQUE TYPE
statement 2-31

CREATE OPERATOR CLASS
statement 1-51
CREATE OPTICAL CLUSTER
statement 1-53
CREATE PROCEDURE
statement 1-63, 3-79
CREATE ROLE statement 1-62
CREATE ROUTINE FROM
statement 1-63, 3-79
CREATE ROW TYPE
statement 1-28, 2-32
CREATE SCHEMA statement 1-6
CREATE SEQUENCE
statement 1-63
CREATE SYNONYM
statement 1-64
CREATE TABLE statement
assigning data types 2-4
default lock mode 3-56
default privileges 3-79
SET constructor 2-39
typed tables 2-33
CREATE TEMP TABLE
statement 3-45
CREATE TRIGGER statement 1-72
CREATE VIEW statement 1-9, 1-73
Credential 3-66
Currency symbol 2-28, 3-38
Current date 1-34, 3-29
CURRENT keyword 2-49
customer table in sales_demo
database B-4
customer table in stores_demo
database A-2
customer table in
superstores_demo
database B-10, B-11, B-12
cust_calls table in stores_demo
database A-6
cust_calls table in
superstores_demo database B-9
C++ map file 3-65

Data compression 3-72
Data corruption 1-12,1-24

A B C D E F G H

Data dependencies
syscheckudrdep data 1-23
syscoldepend data 1-26
sysdepend data 1-35
sysnewdepend data 1-49

Data dictionary 1-5

Data distributions 1-12, 1-35, 3-50

Data encryption 3-74

Data integrity 1-81

Data pages 1-24, 1-45, 1-67

Data type
BLOB 2-7
BOOLEAN 2-8
BYTE 2-8
CHAR 2-10
CHARACTER 2-11
CHARACTER VARYING 2-11
CLOB 2-11
DATE 2-13
DATETIME 2-13
DEC 2-17
DECIMAL 2-17
DISTINCT 2-19
DOUBLE PRECISION 2-20
FLOAT 2-21
INT 2-21
INT8 2-21
INTEGER 2-22
INTERVAL 2-22
LIST 2-25
LVARCHAR 2-27
MONEY 2-27
MULTISET 2-28
NCHAR 2-30
NUMERIC 2-30
NVARCHAR 2-30
OPAQUE 2-30
REAL 2-31
ROW 2-31, 2-33
SERIAL 2-35
SERIALS 2-36
SET 2-38
SMALLFLOAT 2-39
SMALLINT 2-40
TEXT 2-40
VARCHAR 2-42

Data types
approximate 1-80
casting 2-58 to 2-65

J K LMNOWPQRSTUVWXY Z @

classified by category 2-3
collection 2-56
complex 2-55
conversion 2-58
distinct 2-19, 2-58
exact numeric 1-80
extended 2-54
fixed point 2-18
floating-point 2-17, 2-21, 2-39
inheritance 2-32
internal 2-7
named ROW 2-31
opaque 2-30, 2-58
sequential integer 2-36
simple large object 2-45
smart large object 2-46
summary list 2-4
unique numeric value 2-36
unnamed ROW 2-33
Data warehousing B-1
Database
data types 2-3
dimensional B-3
identifiers 3-51
joins in stores_demo A-9
object-relational B-1
objects, sysobjectstate data 1-50
privileges 1-73
sales_demo B-2
stores_demo A-1
superstores_demo B-3, B-7
syscrd 1-6
sysmaster 1-6
sysutils 1-6
sysuuid 1-6
Database identifiers 3-52
Database server
attributes in Information Schema
view 1-81
codeset 1-82
coserver name 3-68
default connection 3-67
default isolation level 1-82
optimizing queries 3-83
pathname for 3-41
remote 3-24, 3-53
role separation 3-71
server name 1-34, 3-42
DATABASE statement 3-41

Database system administrator
(DBSA) 1-6
Database system security officer
(DBSSO) 3-71
DataBlade module
Client and Server API 2-47
data types (sysbuiltintypes) 1-6
trace messages
(systracemsgs) 1-69, 1-70
user messages (syserrors) 1-37
DATE data type
abbreviated year values 2-13,
3-28
casting to integer 2-61
converting to DATETIME 2-61
description 2-13
display format 3-32
in expressions 2-48, 2-51
international date formats 2-13
source data 2-51
DATETIME data type
abbreviated year values 3-28
converting to DATE 2-61
description 2-13
display format 3-47
EXTEND function 2-50
extending precision 2-49
field qualifiers 2-14
in expressions 2-48 to 2-53
international formats 2-15, 2-17,
2-24
length (syscolumns) 1-31
literal values 2-16
precision and size 2-14
source data 2-52
two-digit year values and
DBDATE variable 2-16
year to fraction example 2-15
DATE() function 2-51, 3-33
DAY keyword
DATETIME qualifier 2-14
INTERVAL qualifier 2-23
UNITS operator 2-13, 2-52
DBA privilege 1-38, 1-69, 1-70, 1-73
DBA routines 1-58
DB-Access utility 1-11, 1-78, 3-7,
3-35, 3-41, 3-46, 3-67
DBACCNOIGN environment
variable 3-25

Index 5

A B C D E F G H 1

DBANSIWARN environment
variable 3-27
DBBLOBBUF environment
variable 3-27
DBCENTURY environment
variable
description 3-28
effect on functionality of
DBDATE 3-33
expanding abbreviated
years 2-13, 2-16, 3-29
DBDATE environment
variable 2-13, 3-32
DBDELIMITER environment
variable 3-34
DBEDIT environment variable 3-35
dbexport utility 3-34
DBFLTMASK environment
variable 3-35
DBLANG environment
variable 3-36
dbload utility 2-8, 2-9, 2-41, 3-35
DBMONEY environment
variable 2-28, 3-38
DBNLS environment variable 3-39
DBONPLOAD environment
variable 3-40
DBPATH environment
variable 3-41
DBPRINT environment
variable 3-43
DBREMOTECMD environment
variable 3-44
Dbserver group 3-68
DBSERVERNAME configuration
parameter 3-68
dbservername.cmd batch file 3-16
dbslice 1-42, 1-43
dbspace
for BYTE or TEXT values 1-20
for system catalog 1-6
for table fragments 1-40
for temporary tables 3-45
name 3-52
DBSPACE keyword 1-42
DBSPACETEMP configuration
parameter 3-45
DBSPACETEMP environment
variable 3-45

6 IBM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

DBTEMP environment
variable 3-46
DBTIME environment
variable 2-17, 3-47
DBUPSPACE environment
variable 3-50
DCE-GSS communications support
module (CSM) 3-66

DEC data type. See DECIMAL data

type.

DECIMAL data type
built-in casts 2-60, 2-61
description 2-17
disk storage 2-18
display format 3-35, 3-38
fixed point 2-18
floating point 2-17
length (syscolumns) 1-31

Decimal digits, display of 3-35

Decimal point
DBFLTMAGSK setting 3-36
DBMONEY setting 3-38
DECIMAL radix 2-18

Decimal separator 3-38

DECLARE statement 3-82

Default
C compiler 3-62
century 3-29, 3-49
CHAR length 2-10
character set for SQL

identifiers 3-51
compilation order 3-24
configuration file 3-80
connection 3-67
data type 2-34
database server 3-42, 3-67
DATE display format 2-13
DATE separator 3-32
DATETIME display format 2-17
DECIMAL precision 2-18
detached indexes 3-51
detail level 3-73
disk space for sorting 3-50
fetch buffer size 3-53
heap size 3-76
isolation level 1-82
join method 3-80
level of parallelism 3-85
lock mode 3-56

message directory 3-37
MONEY scale 2-28
operator class 1-16, 1-51
printing program 3-43
query optimizer goal 3-82
sysdefaults.default 1-34
table privileges 3-79
temporary dbspace 3-46
termcap file 3-92
text editor 3-35
Default locale Intro-5
DEFAULT_ATTACH environment
variable 3-51
DEFINE statement of SPL 2-35,
2-36
DEF_TABLE_LOCKMODE
configuration parameter 3-56
Delete privilege 1-41, 1-66, 3-79
DELETE statement 1-12, 1-74
Delete trigger 1-72
DELIMIDENT environment
variable 3-51
DELIMITED files 1-38, 1-39
Delimited identifiers 3-51
Delimiter
for DATETIME values 2-15
for fields 1-39, 3-34
for identifiers 3-51
for INTERVAL values 2-24
Demonstration database
structure of tables B-7
tables A-2to A-8
Dependencies, software Intro-4
Descending index 1-45
DESCRIBE statement 3-60
Describe-for-updates 3-60
destroy() support function 2-56
Detached index 3-51
Deutsche mark (DM) currency
symbol 3-39
Diagnostics table 1-74
Dimension tables, in push-down
hash joins 3-55
DIRECTIVES configuration
parameter 3-57
Directives for query
optimization 3-57, 3-80, 3-83
Disabled object 1-74

A B C D E F G H

Disk space
for data distributions 3-50
for temporary data 3-46
Distinct data type
casts 2-64
description 2-19
sysxtddesc data 1-75
sysxtdtypes data 1-76, 1-77, 2-20
Distributed Computing
Environment (DCE) 3-93
Distributed query 2-54, 3-24, 3-53
Documentation notes Intro-13
Documentation notes, program
item Intro-14
Documentation, types of Intro-12
documentation notes Intro-13
machine notes Intro-13
release notes Intro-13
Dollar sign 2-28, 3-38
Double data type of C 2-21
DOUBLE PRECISION data type.
See FLOAT data type.
Double-precision floating-point
number 2-21
DROP CAST statement B-22
DROP DATABASE statement 3-41
DROP FUNCTION statement 1-58
DROP INDEX statement 1-68
DROP OPTICAL CLUSTER
statement 1-53
DROP PROCEDURE
statement 1-58
DROP ROUTINE statement 1-58
DROP ROW TYPE statement 2-32
DROP SEQUENCE statement 3-93
DROP TABLE statement 3-93
DROP TYPE statement 2-20, 2-31
DROP VIEW statement 1-78, 3-93

EBCDIC collation 1-39, 1-82
Editor, DBEDIT setting 3-35
EMACS text editor 3-35

Empty set 2-56

Encryption 3-74

END configuration parameter 3-80
Enterprise Replication 1-6

env utility 3-11
ENVIGNORE environment
variable
description 3-8, 3-52
relation to chkenv utility 3-12
Environment configuration file
debugging with chkenv 3-11
setting environment variables in
UNIX 3-6, 3-7
Environment registry key 3-13
Environment variable
AC_CONFIG 3-23
AFDEBUG 3-23
C8BITLEVEL 3-18
CLIENT_LOCALE 3-18, 3-33
CPFIRST 3-24
DBACCNOIGN 3-25
DBANSIWARN 3-27
DBBLOBBUF 3-27
DBCENTURY 2-13, 3-28
DBDATE 2-13, 3-32
DBDELIMITER 3-34
DBEDIT 3-35
DBFLTMASK 3-35
DBLANG 3-36
DBMONEY 2-28, 3-38
DBNLS 3-39
DBONPLOAD 3-40
DBPATH 3-41
DBPRINT 3-43
DBREMOTECMD 3-44
DBSPACETEMP 3-45
DBTEMP 3-46
DBTIME 2-17, 3-47
DBUPSPACE 3-50
DB_LOCALE 3-19
DEFAULT_ATTACH 3-51
DELIMIDENT 3-51
ENVIGNORE 3-52
ESQLMF 3-19
FET_BUF_SIZE 3-23, 3-53
GLS8BITSYS 3-19
GL_DATE 2-13,3-31
GL_DATETIME 2-17, 3-31
IFMX_OPT_NON_DIM_TABS 3-
55
IFX_DEF_TABLE_LOCKMODE
3-56
IFX_DIRECTIVES 3-57

J K LMNOWPQRSTUVWXY Z @

IFX_LONGID 3-58
IFEX_NETBUF_PVTPOOL_SIZE 3
-59
IFEX_NETBUF_SIZE 3-59
IFX_OPT_FACT_TABS 3-54
IFX_UPDDESC 3-60
IMCADMIN 3-60
IMCCONFIG 3-61
IMCSERVER 3-61
INFORMIXC 3-62
INFORMIXCONCSMCEG 3-62
INFORMIXCONRETRY 3-63
INFORMIXCONTIME 3-63
INFORMIXCPPMAP 3-65
INFORMIXDIR 3-65
INFORMIXKEYTAB 3-66
INFORMIXOPCACHE 3-66
INFORMIXSERVER 3-67
INFORMIXSHMBASE 3-68
INFORMIXSQLHOSTS 3-69
INFORMIXSTACKSIZE 3-70
INFORMIXTERM 3-70
INF_ROLE_SEP 3-71
INTERACTIVE_DESKTOP_OFF
3-72
ISM_COMPRESSION 3-72
ISM_DEBUG_FILE 3-73
ISM_DEBUG_LEVEL 3-73
ISM_ENCRYPTION 3-74
ISM_MAXLOGSIZE 3-74
ISM_MAXLOGVERS 3-75
JAR_TEMP_PATH 3-75
JAVA_COMPILER 3-76
JVM_MAX_HEAP_SIZE 3-76
LD_LIBRARY_PATH 3-77
LIBERAL_MATCH 3-77
LIBPATH 3-78
NODEFDAC 3-79
ONCONFIG 3-79
OPTCOMPIND 3-80
OPTMSG 3-81
OPTOFC 3-82
OPT_GOAL 3-82
PATH 3-83
PDQPRIORITY 3-84
PLCONFIG 3-85
PLOAD_LO_PATH 3-86
PLOAD_SHMBASE 3-86
PSORT_DBTEMP 3-87

Index 7

A B C D E F G H

PSORT_NPROCS 3-88
RTREE_COST_ADJUST_VALUE
3-89
SERVER_LOCALE 3-21
SHLIB_PATH 3-90
STMT_CACHE 3-90
TERM 3-91
TERMCAP 3-91
TERMINFO 3-92
THREADLIB 3-93
USETABLENAME 3-93
XFER_CONFIG 3-94
Environment variables Intro-7
command-line utilities 3-14
displaying current settings 3-11,
3-15
how to set
in Bourne shell 3-9
in C shell 3-9
in Korn shell 3-9
how to set in Bourne shell 3-9
how to set in Korn shell 3-9
listed alphabetically 3-17
listed by topic 3-94
manipulating in Windows
environments 3-13
modifying settings 3-10
overriding a setting 3-8, 3-52
rules of precedence in UNIX 3-12
rules of precedence in
Windows 3-17
scope of reference 3-14
setting
at the command line 3-6
for native Windows
applications 3-13
in a configuration file 3-6
in a login file 3-6
in a shell file 3-8
in Windows environments 3-7
with command-line
utilities 3-14
with the Registry Editor 3-13
with the System applet 3-14
setting in autoexec.bat 3-15
standard UNIX system 3-5
types of 3-5
unsetting 3-9, 3-15, 3-52
view current setting 3-11

8 IBM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

where to set 3-8
en_us.8859-1 locale Intro-5
Equality (=) operator 2-12
Era-based dates 3-50
Error message files 3-36
esql command 3-25, 3-62
ESQL/C

DATETIME routines 3-48

esqlc command 3-25

long identifiers 3-58

message chaining 3-81

multithreaded applications 3-93

program compilation order 3-25
Exact numeric data types 1-80
Executable programs 3-83
Execute privilege 1-54, 3-79
Explicit cast 1-21, 2-62
Explicit pathnames 3-16, 3-43
Explicit temporary tables 3-45
Exponent 2-19
export utility 3-9
export() support function 2-56
export_binary() support

function 2-56
Expression-based
fragmentation 1-42, 3-30, 3-34
EXTEND function 2-50
Extended data types 1-76, 2-54,
B-22
Extended Parallel Server
(XPS) 1-13, 3-17, B-1
Extensible Markup Language
(XML) 2-11
Extension checking
(DBANSIWARN) 3-27
Extension, to SQL, symbol
for Intro-8
Extent, changing size 1-12
External database 1-64
External database server 1-64
External routine 1-57
External table

sysextcols data 1-38

sysextdfiles data 1-39

sysexternal data 1-39

syssyntable data 1-64

systables data 1-67
External view 1-64
extspace 1-16

Fact table B-3
Fact tables, in push-down hash

joins 3-54

FALSE setting

Boolean value 2-8
CPFIRST 3-25
ISM_COMPRESSION 3-73

Farsi locales 2-10
Feature icons Intro-9
Features in Dynamic Server

9.4 Intro-6

Fetch buffer 3-53

Fetch buffer size 3-24, 3-53
FETCH statement 3-82
FET_BUF_SIZE environment

variable 3-23, 3-53

Field delimiter

DBDELIMITER 3-34

Field of a ROW data type 2-57
Field qualifier

DATETIME values 2-14
EXTEND function 2-51
INTERVAL values 2-22

Fields of a ROW data type 2-57
File

environment configuration
files 3-11
installation directory 3-65
permission settings 3-7
shell 3-8
temporary 3-45, 3-47, 3-87
temporary for SE 3-47
termcap, terminfo 3-70, 3-91, 3-92

File extensions

.a 3-58

cfg 3-62

.cmd 3-16

.ec 3-25

.ecp 3-25

dem 3-37

jar 3-75

rc 3-7,3-12, 3-52, 3-56
.s0 3-58

sql 1-78, 3-41, 3-52, B-2, B-7
.std 3-23, 3-80, 3-90
xps 3-80

FILETOBLOB function 2-7

A B C D E F G H

FILETOCLOB function 2-12
Filtering mode 1-50, 1-74
Finalization function 1-15
finderr utility Intro-14
FIXED column format 1-38, 1-39
Fixed point decimal 2-18, 2-27, 3-38
Fixed-length UDT 1-76
FLOAT data type
built-in casts 2-60, 2-61
description 2-21
display format 3-35, 3-38
Floating-point decimal 2-17, 2-21,
2-39, 3-35
Foreign key A-10, B-3
Formatting
DATE values with DBDATE 3-32
DATE values with
GL_DATE 3-50
DATETIME values with
DBTIME 3-47
DATETIME values with
GL_DATETIME 3-50
DECIMAL(p) values with
DBFLTMASK 3-35
FLOAT values with
DBFLTMASK 3-35
MONEY values with
DBMONEY 3-38
SMALLFLOAT values with
DBFLTMASK 3-35
Formatting mask
with DBDATE 3-32
with DBFLTMASK 3-36
with DBMONEY 3-38
with DBTIME 3-48
with GL_DATE 3-50
with GL_DATETIME 3-50
FRACTION keyword
DATETIME qualifier 2-14
INTERVAL qualifier 2-23
FRAGMENT BY clause 3-45
Fragmentation
distribution strategy 1-42
expression 1-42, 3-30, 3-34
list 1-42
PDQPRIORITY environment
variable 3-85
PSORT_NPROCS environment
variable 3-89

J K LMNOWPQRSTUVWXY Z @

round robin 1-42
setting priority levels for
PDQ 3-84

sysfragauth data 1-40

sysfragments data 1-41
FROM keyword 1-11, 1-22
Function

for BLOB columns 2-7

for CLOB columns 2-12

for MULTISET columns 2-29

support for complex types 2-56
Function keys 3-70
Functional index 1-45, 2-57
fwritable gcc option 3-62

gcc compiler 3-62
Generalized-key index
sysindexes data 1-44
sysnewdepend data 1-49
sysrepository data 1-61
Generic B-trees 1-45
geography table in sales_demo
database B-4
GET DIAGNOSTICS
statement 1-37
Global Language Support
(GLS) Intro-5, 3-39
Global network buffer pool 3-59
Globally detached index 1-42
GLS environment variables 3-12
GL_COLLATE table 1-69
GL_CTYPE table 1-69
GL_DATE environment
variable 2-13, 3-31, 3-33
GL_DATETIME environment
variable 2-17, 3-31
GNU C compiler 3-62
GRANT statement 1-62
Graphic characters 3-70
GROUP BY clause 2-9, 2-40, 3-46
Group informix 3-37

Hash join 3-80
Hashed columns 1-42

Hashing parameters 1-65
Hash-join 3-54, 3-55
Heap size 3-76
Hebrew locales 2-10
Help Intro-12
Hexadecimal digits 3-35
HIGH INTEG keywords
ALTER TABLE statement 2-47
CREATE TABLE statement 2-47
HIGH keyword
PDQPRIORITY 3-84
UPDATE STATISTICS 1-12, 1-36
High-Performance Loader 3-40,
3-85
Histogram 1-36
HKEY_LOCAL_MACHINE
window 3-13
Host language 1-81
Host variable 2-8, 2-9, 2-41, 2-57
HOUR keyword
DATETIME qualifier 2-14
INTERVAL qualifier 2-23
HP-UX operating system 3-90
HTML (Hypertext Markup
Language) 2-11
Hybrid fragmentation
strategy 1-42
Hyphen
DATETIME delimiter 2-15
INTERVAL delimiter 2-24

IBM Informix Dynamic Server
(IDS) 1-13
IBM Informix ESQL/C 3-24, 3-33,
3-48, 3-58, 3-81
IBM Informix Extended Parallel
Server (XPS) 1-13, 3-17
IBM Informix Storage Manager
(ISM) 3-72,3-75
Icons
compliance Intro-8
feature Intro-9
Important Intro-10
platform Intro-9
product Intro-9
Tip Intro-10

Index 9

A B C D E F G H 1

Warning Intro-10
IDS (Informix Dynamic

Server) 1-13

IFMX_OPT_FACT_TABS

environment variable 3-54

IFMX_OPT_NON_DIM_TABS

environment variable 3-55

IFX_DEF_TABLE_LOCKMODE

environment variable 3-56

IFX_DIRECTIVES environment

variable 3-57

IFX_LONGID environment

variable 3-58

IFX_NETBUF_PVTPOOL_SIZE

environment variable 3-59

IFX_NETBUF_SIZE environment

variable 3-59

IFX_UPDDESC environment

variable 3-60

imcadmin administrative tool 3-60
IMCADMIN environment

variable 3-60

IMCCONFIG environment

variable 3-61

IMCSERVER environment

variable 3-61

IMPEX data type 2-63
IMPEXBIN data type 2-63
Implicit cast 1-21, 2-62
Implicit connection 3-67
Implicit temporary tables 3-45
Important paragraphs, icon

for Intro-10

import() support function 2-56
import_binary() support

function 2-56

IN keyword 1-42, 2-9, 2-29, 2-35,

2-38, 2-40, 2-66

Index
attached 1-43, 3-31, 3-51, 3-89
B-tree 1-45,3-51
clustered 1-44, 1-46
composite 1-44, 1-45
default values for attached 3-89
descending 1-45
detached 3-51
fragmented 1-41
functional 1-45, 2-57
generalized-key 1-44,1-49, 1-61

10

IBM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

globally detached 1-42
nonfragmented 3-51
of data types 2-4
of environment variables 3-94
of system catalog 1-13
R-tree 3-51
sysindexes data 1-44
sysindices data 1-46
sysobjstate data 1-50
threads for sorting 3-89
unique 1-33, 1-44, 2-35, 2-36
Index privilege 1-66
Indexkey structure 1-46
Indirect typing 2-35, 2-36
Industry standards
See Compliance.
Industry standards, compliance
with Intro-15, 1-81
Information Schema views
accessing 1-78
columns 1-79
description 1-77
generating 1-78
server_info 1-81
sql_languages 1-81
tables 1-79
Informational messages 1-37
Informix extension checking
(DBANSIWARN) 3-27
informix owner name 1-12, 1-21,
1-36, 1-44, 1-46, 1-67, 3-37, 3-71
Informix subkey 3-13
INFORMIXC environment
variable 3-62
INFORMIXCONCSMCFG
environment variable 3-62
INFORMIXCONRETRY
environment variable 3-63
INFORMIXCONTIME
environment variable 3-63
INFORMIXCPPMAP environment
variable 3-65
INFORMIXDIR environment
variable 3-65
INFORMIXDIR /bin
directory Intro-6
INFORMIXKEYTAB environment
variable 3-66

INFORMIXOPCACHE
environment variable 3-66
INFORMIXSERVER environment
variable 3-67
INFORMIXSHMBASE
environment variable 3-68
INFORMIXSTACKSIZE
environment variable 3-70
INFORMIXTERM environment
variable 3-70
informix.rc file 3-7, 3-12, 3-56
INF_ROLE_SEP environment
variable 3-71
Inheritance hierarchy 1-47, 2-34
Initialization function 1-15, 1-63
Input support function 2-27
input() support function 2-56
Insert privilege 1-41, 1-66, 3-79
INSERT statement 1-69, 1-74, 2-16,
2-56, 3-26, 3-33
Insert trigger 1-72
Installation directory 3-65
INSTEAD OF trigger 1-72
INT data type. See INTEGER data
type.
INTS data type
built-in casts 2-60, 2-61
description 2-21
using with SERIALS 2-37
INTEG keyword 2-47
INTEGER data type
built-in casts 2-60, 2-61
description 2-22
length (syscolumns) 1-30
Intensity attributes 3-70
INTERACTIVE_DESKTOP_OFF
environment variable 3-72
Internationalized trace
messages 1-70
Interprocess communications
(IPC) 3-68
INTERVAL data type
description 2-22
field delimiters 2-24
in expressions 2-48, 2-53 to 2-54
length (syscolumns) 1-31
ipcshm protocol 3-68
IS NULL operator 2-9, 2-40

A B C D E F G H

ISM_COMPRESSION environment
variable 3-72

ISM_DEBUG_FILE environment
variable 3-73

ISM_DEBUG_LEVEL environment
variable 3-73

ISM_ENCRYPTION environment
variable 3-74

ISM_MAXLOGSIZE environment
variable 3-74

ISM_MAXLOGVERS environment
variable 3-75

1SO 8859-1 code set Intro-5, 1-82

Isolation level 1-82, 3-80

items table in stores_demo
database A-4

items table in superstores_demo
database B-13

Iterator function 1-15

1/0 overhead 3-89

J

Japanese eras 3-50

Jar management procedures 3-75

JAR_TEMP_PATH environment
variable 3-75

Java virtual machine (JVM) 3-23,
3-75,3-76

JAVA_COMPILER environment
variable 3-76

JIT compiler 3-76

Join columns A-8, B-25

Join methods 3-80

Join operations 1-12, 3-46

JVM_MAX_HEAP_SIZE
environment variable 3-76

KEEP ACCESS TIME keywords
ALTER TABLE statement 2-47
CREATE TABLE statement 2-47

Key
foreign A-10, B-3
generalized 1-49, 1-61
primary 1-33,1-61, 1-74, A-10, B-8

Key scan 1-16

J K LMNOWPQRSTUVWXY Z @

Key tables 3-66

Keyboard I/O
INFORMIXTERM setting 3-70
TERM setting 3-91
TERMCAP setting 3-91
TERMINFO setting 3-92

keytab file 3-66

Korn shell 3-8

L

Language
C 1-63, 3-25, 3-62
CLIENT_LOCALE setting 3-13,
3-33
C++ 3-65
DBLANG setting 3-36
Extensible Markup Language
(XML) 2-11
Hypertext Markup Language
(HTML) 2-11
Informix ESQL/C 2-47, 2-57, 3-93
Java 3-23,3-75, 3-76
sql_languages information
schema view 1-81
Stored Procedure Language
(SPL) 2-57,3-30, 3-34
syslangauth data 1-48
sysroutinelangs data 1-63
See also Locale.
Large-object data type
description 2-45
listed 2-44
LD_LIBRARY_PATH environment
variable 3-77
Leaf pages 1-42
LIBERAL_MATCH environment
variable 3-77
libos.a library 3-58
LIBPATH environment
variable 3-78
LIKE keyword of SPL 2-35, 2-36
LIKE operator 2-9, 2-40, 2-66, 3-78
Linearized code 1-71
List
of data types 2-4
of environment variables 3-17

of environment variables, by
topic 3-94

of system catalog tables 1-13
LIST data type, description 2-25
LOAD statement 2-8,2-9, 2-41, 3-35
Locale Intro-5

collation order 1-69, 2-44

default Intro-5

en_us.8859-1 Intro-5

multibyte 2-10

of trace messages 1-70

right-to-left 2-10

specifying 3-95, 3-99
LOCKMODE keyword 3-56
Lock-table overflow 3-56
LOCOPY function 2-7,2-12
LOG keyword

ALTER TABLE statement 2-47

CREATE TABLE statement 2-47
Logging mode 1-24
Long identifiers

client version 3-58

IFX_LONGID setting 3-58

Information Schema views 1-78
LOTOFILE function 2-7, 2-12
LOW keyword

PDQPRIORITY 3-84

UPDATE STATISTICS 1-36
Lowercase mode codes 1-58
Lowercase privilege codes 1-9,

1-25, 1-40, 1-66, 1-75

LVARCHAR data type

casting opaque types 2-63

coltype code 1-29

description 2-27

Machine notes Intro-13, 3-71
Magnetic storage media 1-20
Mantissa precision 1-80, 2-18
manufact table in
superstores_demo
database B-17
Map file for C++ programs 3-65
MATCHES operator 2-9,2-40,2-44,
2-66, 3-78
MaxConnect 3-60, 3-61

Index 11

A B C D E F G H

MEDIUM keyword 1-12,1-32, 1-36
Membership operator 2-66
Memory cache, for staging
blobspace 3-66
Message file
specifying subdirectory with
DBLANG 3-37
XBSA 3-73
Message file for error
messages Intro-14
Messages
chaining 3-81
error in syserrors 1-37
optimized transfers 3-81
reducing requests 3-82
trace message template 1-70
warning in syserrors 1-37
Microsoft C compiler 3-62
MINUTE keyword
DATETIME qualifier 2-14
INTERVAL qualifier 2-23
MITRACE_OFF configuration
parameter 1-69, 1-70
mi_collection_card() function 2-26,
2-29,2-38
mi_db_error_raise() function 1-37
mkdir utility 3-37
MODERATE INTEG keywords
ALTER TABLE statement 2-47
CREATE TABLE statement 2-47
Modifiers
CLASS 1-58
COSTFUNC 1-58
HANDLESNULLS 1-58
INTERNAL 1-58
NEGATOR 1-58
NOT VARIANT 1-57
PARALLELIZABLE 1-58
SELCONST 1-58
STACK 1-58
VARIANT 1-57
MODIFY NEXT SIZE
keywords 1-12
MONEY data type
built-in casts 2-61
description 2-27
display format 3-38
international money formats 2-28
length (syscolumns) 1-31

12 IBM Informix Guide to SQL: Reference

J K LMNOWPA QR

MONTH keyword
DATETIME qualifier 2-14
INTERVAL qualifier 2-23

Multibyte characters
CLOB data type 2-12
VARCHAR data type 2-43

MULTISET data type
constructor 2-56
description 2-28

N setting
sysroleauth.is_grantable 1-62
Named ROW data type
casting permitted 2-65
defining 2-31
description 2-31
equivalence 2-32
inheritance 1-47, 2-32
typed tables 2-33
See also ROW type.
NCHAR data type
collation order 2-30
conversion to CHAR 3-40
description 2-30
multibyte characters 2-30
Negator function 1-58
Nested dot notation 2-57
Nested-loop join 3-80
Network buffers 3-59
Network environment variable,
DBPATH 3-41
NFS directory 3-47
NO KEEP ACCESS TIME keywords
ALTER TABLE statement 2-47
CREATE TABLE statement 2-47
no setting of NODEFDAC 3-79
NODE configuration
parameter 3-80
NODEFDAC environment
variable 3-79
NOLOG keyword
ALTER TABLE statement 2-47
CREATE TABLE statement 2-47
NONE setting
ISM_ENCRYPTION 3-74
JAVA_COMPILER 3-76

S T UVWXY Z e

Nonprintable characters
CHAR data type 2-11
TEXT data type 2-41
VARCHAR data type 2-43
Not null constraint
collection elements 2-26, 2-29,
2-38, 2-56
syscoldepend data 1-26
sysconstraints data 1-33
NOT NULL keywords 2-9, 2-26,
2-40
NOT operator 2-66
NULL value
allowed or not allowed 1-15, 1-28
BOOLEAN literal 2-8
BYTE data type 2-9
TEXT data type 2-40
Numeric data types
casting between 2-60
casting to character types 2-61
listed 2-44
NUMERIC data type. See
DECIMAL data type.
NVARCHAR data type
collation order 2-30
conversion to VARCHAR 3-40
description 2-30
length (syscolumns) 1-30
multibyte characters 2-30

Object mode of database
objects 1-50
Object-relational schema B-1
ODBC driver 3-77, 3-90
OFF setting
IFX_DIRECTIVES 3-57
PDQPRIORITY 3-84
ON setting
IFX_DIRECTIVES 3-57
ON-Bar 3-73
ONCONFIG environment
variable 3-79
onconfig.std file 3-80, 3-90
onconfig.xps file 3-80
oninit command 3-56
Online help Intro-12

A B C D E F G H

Online manuals Intro-12
Online transaction processing
(OLTP) 1-43
onload utility 2-8,2-9, 2-41
onpload utility 3-40, 3-86
Opaque data type
cast matrix 2-65
comparing 2-63
description 2-30
smart large objects 2-46
storage 2-27
sysxtddesc data 1-75
sysxtdtypes data 1-76
OPCACHEMAX configuration
parameter 3-66
OPEN statement 3-82
Operator class
sysams data 1-16
sysindices data 1-47
sysopclasses data 1-51
Operator precedence 2-66
OPTCOMPIND configuration
parameter 3-81
OPTCOMPIND environment
variable 3-80
Optical cluster
INFORMIXOPCACHE
setting 3-67
sysblobs.type 1-20
sysopclstr data 1-52
Optimizer
setting IFX_DIRECTIVES 3-57
setting OPTCOMPIND 3-81
setting OPTOFC 3-82
setting OPT_GOAL 3-82
sysdistrib data 1-36
OPTMSG environment
variable 3-81
OPTOFC environment
variable 3-82
OPT_GOAL configuration
parameter 3-83
OPT_GOAL environment
variable 3-82
OR operator 2-66
ORDER BY clause 2-9, 2-40, 3-46
orders table in superstores_demo
database B-14, B-15, B-16, B-18
Ordinal positions 2-25

J K LMNOWPQRSTUVWXY Z @

Output support function 2-27
output() support function 2-56
Overflow error 2-18

Owner routines 1-58, 3-79

P

PAGE lock mode 1-67, 3-56
Parallel database query. See PDQ.
Parallel distributed queries, setting
with PDQPRIORITY 3-84
Parallel sorting, setting with
PSORT_NPROCS 3-87
Partial characters 2-10
PATH environment variable 3-83
Pathname
for C compiler 3-62
for client or shared libraries 3-77
for concsm.cfg file 3-63
for connectivity information 3-69
for C++ map file 3-65
for database server 3-41
for dynamic-link libraries 3-78,
3-90
for environment-configuration
file 3-11
for executable programs 3-83
for installation 3-65
for keytab file 3-66
for message files 3-36
for parallel sorting 3-87
for remote shell 3-44
for smart-large-object
handles 3-86
for temporary jar files 3-75
for termcap file 3-91
for terminfo directory 3-92
for XBSA messages 3-73
for xfer_config file 3-94
separator symbols 3-83
PDQ
OPTCOMPIND environment
variable 3-80
PDQPRIORITY environment
variable 3-84
PDQPRIORITY configuration
parameter 3-85
Percentage (%) symbol 3-48

Period
DATE delimiter 3-32
DATETIME delimiter 2-15
INTERVAL delimiter 2-24
Permissions 3-7, 3-37
Platform icons Intro-9
PLCONFIG environment
variable 3-85
plconfig file 3-85
PLOAD_LO_PATH environment
variable 3-86
PLOAD_SHMBASE environment
variable 3-86
PostScript 2-11
Precedence rules
for casts 2-63
for lock mode 3-56
for native Windows
application 3-17
for SQL operators 2-66
for UNIX environment
variables 3-12
for Windows environment
variables 3-17
Precision
of currency values 2-27
of numbers 1-80, 2-17, 2-21, 2-22,
2-39, 2-60
of time values 2-13, 2-22, 2-49,
2-53
PREPARE statement 1-68
Prepared statement 1-68
Primary access method 1-17, 1-65
Primary key 1-33, 1-61, 1-74, 2-35,
2-36, A-2, B-8
Primary thread 3-70
printenv utility 3-11
Printing with DBPRINT 3-44
Private environment-configuration
file 3-11, 3-52
Private network buffer pool 3-59
Private synonym 1-67
Privilege
default table privileges 3-79
on columns (syscolauth
table) 1-25
on procedures and functions
(sysprocauth table) 1-54

Index 13

A B C D E F G H

on table fragments (sysfragauth
table) 1-40

on tables (systabauth table) 1-66

on the database (sysusers
table) 1-73
on UDTs and named row types
(sysxtdtypeauth) 1-75
Product icons Intro-9
product table in sales_demo
database B-5
Program group
Documentation notes Intro-14
Release notes Intro-14
Protected routines 1-59
Pseudo-machine code (p-
code) 1-55
PSORT_DBTEMP environment
variable 3-87
PSORT_NPROCS environment
variable 3-88
Public synonym 1-64, 1-67
public user name 1-78, 3-79
Purpose functions 1-16
Push-down hash join
dimension tables 3-55
fact tables 3-54

Q

Quualifier field
DATETIME 2-14
EXTEND 2-53
INTERVAL 2-23
UNITS 2-53

Query optimizer
description 1-12
directives 3-57

push-down hash-join plans 3-54,

3-55
sysprocplan data 1-60
Quoted string
DATE and DATETIME
literals 2-52
DELIMIDENT setting 3-52
INTERVAL literals 2-25
invalid with BYTE 2-9
invalid with TEXT 2-41
LVARCHAR data type 2-27

14 IBM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

Raw UNIX devices 3-45

Read committed 1-82

Read uncommitted 1-82

REAL data type. See
SMALLFLOAT data type.

recv() support function 2-56

References privilege 1-25, 1-66

Referential constraint 1-33, 1-61,
1-74, A-10, B-25

regedt32.exe Registry Editor 3-13

region table in superstores_demo
database B-18

Registry Editor 3-13

Reject file 1-40

Relational operators 2-11, 2-66

Release notes Intro-13

Release notes, program
item Intro-14

Remote database server 3-24, 3-53

Remote shell 3-44
Remote tape devices 3-44
RENAME SEQUENCE
statement 3-93
Repeatable read 3-80
Replica identifier 1-42
Resource contention 3-85
Resource Grant Manager
(RGM) 1-43
Resource privilege 1-11,1-73
REVOKE statement 1-66
Right-to-left locales 2-10
Role
INF_ROLE_SEP setting 3-71
sysroleauth data 1-62
sysusers data 1-73
Role separation 3-71
Round-robin fragmentation 1-42
Routine
DataBlade API routine 1-69
DATETIME formatting 3-47
identifier 1-56
owner 1-56
privileges 1-54
protected 1-59
Stored Procedure Language
(SPL) 2-57
syserrors data 1-37

syslangauth data 1-48
sysprocauth data 1-54
sysprocbody data 1-55
sysprocedures data 1-56
sysprocplan data 1-60
sysroutinelangs data 1-63
systraceclasses data 1-69
systracemsgs data 1-70
See also User-defined routine.
ROW lock mode 1-67, 3-56
ROW type 2-57
casting permitted 2-65
equivalence 2-32
fields 1-19, 2-57
inheritance 1-47, 2-32
inserting values 2-34
named 2-31, 2-57
sysattrtypes data 1-19
sysxtddesc data 1-75
sysxtdtypes data 1-75, 1-76
unnamed 2-33, 2-57
Rowids 1-16

RTNPARAMTYPES data type 1-57

R-tree index 3-51, 3-89
RTREE_COST_ADJUST_VALUE
environment variable 3-89

Runtime
warnings (DBANSIWARN) 3-27

S

sales table in sales_demo
database B-5
sales_demo database
customer table columns B-4
description B-3
geography table columns B-4
product table columns B-5
sales table columns B-5
time table columns B-6
sales_rep table in
superstores_demo
database B-19
sbspace
defined 2-11, 2-46
name 3-52
sysams data 1-16
syscolattribs data 1-24

A B C D E F G H

systabamdata data 1-65
Scale of numbers 1-80, 2-18, 3-36
Scan cost 1-17
Schema Tools 3-7
SECOND keyword

DATETIME qualifier 2-14

INTERVAL qualifier 2-23
Secondary access method 1-17,

1-32,1-47,1-51, 2-31
SELECT INTO TEMP
statement 3-45
Select privilege 1-25, 1-66, 1-78,
3-79
SELECT statement 1-11, 1-35
Select trigger 1-72
Selectivity constant 1-58
Self-join 1-9
SENDRECYV data type 2-63
send() support function 2-56
Sequence

syssequences data 1-63

syssynonyms data 1-64

syssyntable data 1-64

systabauth data 1-66

systables data 1-67
Sequential integers

aggid code 1-15

am_id code 1-16

classid code 1-69

constrid code 1-33

extended_id code 1-76

id code 1-37

langid code 1-63

msgid code 1-70

opclassid code 1-51

planid code 1-60

procid code 1-56, 1-57

seqid code 1-61, 1-63

SERIAL data type 2-35

SERIALS data type 2-36

tabid code 1-8, 1-63, 1-67

trigid code 1-72

udr_id code 1-23
SERIAL data type

description 2-35

inserting values 2-35

length (syscolumns) 1-30

resetting values 2-35
SERIALS data type

J K LMNOWPQRSTUVWXY Z @

assigning a starting value 2-37
description 2-36
inserting values 2-37
length (syscolumns) 1-30
resetting values 2-37
using with INT8 2-37
Serializable transactions 1-82
SET data type, description 2-38
SET ENVIRONMENT
statement 3-6
SET OPTIMIZATION
statement 3-83
SET PDQPRIORITY statement 3-85
SET SESSION AUTHORIZATION
statement 1-59
SET STMT_CACHE statement 3-90
set utility 3-15
setenv utility 3-10
Setnet32 utility 3-7
Setting environment variables
in UNIX 3-7
in Windows 3-13
SGML (Standard Graphic Markup
Language) 2-11
Shared environment-configuration
file 3-11
Shared libraries 3-58
Shared memory
INFORMIXSHMBASE 3-68
PLOAD_SHMBASE 3-86
Shell
remote 3-44
search path 3-83
setting environment variables in a
file 3-8
specifying with
DBREMOTECMD 3-44
SHLIB_PATH environment
variable 3-90
Simple large objects
description 2-45
location (sysblobs) 1-20
Single-precision floating-point
number 2-31, 2-39
SMALLFLOAT data type
built-in casts 2-60, 2-61
description 2-39
display format 3-35, 3-38

SMALLINT data type
built-in casts 2-60, 2-61
description 2-40
length (syscolumns) 1-30
Smart large objects
description 2-46
syscolattribs data 1-24
See also sbspace.
Smart-large-object handles 3-86
Software dependencies Intro-4
SOFTWARE registry key 3-13
SOME operator 2-66
Sorting
DBSPACETEMP environment
variable 3-45
PSORT_DBTEMP environment
variable 3-87
PSORT_NPROCS environment
variable 3-88
See also Collation.
Sort-merge join 3-80
Space
DATETIME delimiter 2-15
INTERVAL delimiter 2-24
Spatial queries 3-89
SPL routine 1-56, 2-57, 3-30, 3-34
SPL variables 2-57
SQL
new features Intro-6
SQL character set 3-51
SQL Communication Area
(SQLCA) 3-27
SQL (Structured Query
Language) 3-27
sqlhosts file 3-60, 3-67, 3-69
SQLHOSTS subkey 3-69
SQLSTATE value 1-37
sqlwarn array 3-27
Stack size 1-58, 3-70
STACKSIZE configuration
parameter 3-70
Staging area blobspace 3-67
Standard Graphic Markup
Language (SGML) 2-11
START DATABASE statement 3-41
STAT data type 1-36
state table in stores_demo
database A-8

Index 15

A B C D E F G H

state table in superstores_demo
database B-19
Statement cache 3-90
Statements of SQL
ALTER OPTICAL CLUSTER 1-53
ALTER SEQUENCE 3-93
ALTER TABLE 1-12, 1-68, 3-93
CLOSE 3-82
CONNECT 3-41, 3-64, 3-67
CREATE ACCESS
METHOD 1-16
CREATE AGGREGATE 1-15
CREATE CAST 1-21, 2-62
CREATE DATABASE 3-41
CREATE DISTINCT TYPE 1-76,
2-20, B-22
CREATE EXTERNAL
TABLE 1-38,1-39
CREATE FUNCTION 1-63, 3-79
CREATE IMPLICIT CAST B-22
CREATE INDEX 1-7, 1-44, 1-46,
1-49, 1-62, 1-68, 3-51
CREATE OPAQUE TYPE 1-76,
2-31
CREATE OPERATOR
CLASS 1-51
CREATE OPTICAL
CLUSTER 1-52, 1-53
CREATE PROCEDURE 1-55, 1-63
CREATE ROLE 1-62,1-73
CREATE ROUTINE FROM 1-63
CREATE ROW TYPE 1-76, 2-32
CREATE SCHEMA
AUTHORIZATION 1-6
CREATE SEQUENCE 1-63
CREATE SYNONYM 1-64
CREATE TABLE 1-34, 1-61, 1-65
CREATE TRIGGER 1-72
CREATE VIEW 1-73
DATABASE 3-42
DECLARE 3-82
DELETE 1-12, 1-60, 1-74
DESCRIBE 3-60
DROP CAST B-22
DROP DATABASE 3-42
DROP FUNCTION 1-58
DROP INDEX 1-68
DROP OPTICAL CLUSTER 1-53
DROP PROCEDURE 1-58

16

IBM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

DROP ROUTINE 1-58
DROP ROW TYPE 2-32
DROP SEQUENCE 3-93
DROP TABLE 3-93
DROP TYPE 2-20, 2-31
DROP VIEW 1-78, 3-93
FETCH 3-82
GET DIAGNOSTICS 1-37
GRANT 1-40, 1-62, 1-66, 1-78
INSERT 1-74, 2-56, 3-26, 3-33
LOAD 2-9, 2-41, 3-26, 3-34
OPEN 3-82
PREPARE 1-68
RENAME SEQUENCE 3-93
RENAME TABLE 3-93
REVOKE 1-66, 1-73
SELECT 1-11, 1-35, 1-60, 3-46
SET OPTIMIZATION 3-83
SET PDQPRIORITY 3-85
SET SESSION
AUTHORIZATION 1-59
SET STMT_CACHE 3-90
START DATABASE 3-42
UNLOAD 3-27,3-34
UPDATE 2-9, 2-40, 3-26
UPDATE STATISTICS 1-12, 3-50
UPDATE STATISTICS FOR
PROCEDURE 1-60
static option of ESQL/C 3-58
STMT_CACHE configuration
parameter 3-90
STMT_CACHE environment
variable 3-90
STMT_CACHE keyword 3-90
stock table in stores_demo
database A-4
stock table in superstores_demo
database B-20
stock_discount table in
superstores_demo
database B-21
Storage identifiers 3-52
Stored procedure language
(SPL) 1-56, 2-57, 3-30
stores_demo database Intro-5
call_type table columns A-7
catalog table columns A-5
customer table columns A-2
cust_calls table columns A-6

data values A-17
description A-1
items table columns A-4
join columns A-9
manufact table columns A-7
primary-foreign key
relationships A-10
stock table columns A-4
structure of tables A-2
String Editor dialog box 3-13
strings option of gcc 3-62
Structured Query Language
(SQL) 3-27
See also Statements of SQL.
Subscripts 2-9, 2-41
SUBSTRING function 1-11
Subtable 1-47, B-14, B-25
Subtype 1-47,2-32
Summary
of data types 2-4
of environment variables, by
topic 3-94
of environment variables, by type
of server 3-17
of system catalog tables, by type
of server 1-13
superstores_demo database Intro-5
call_type table columns B-8
catalog table columns B-9
customer table columns B-10,
B-11, B-12
cust_calls table columns B-9
description B-7
items table columns B-13
manufact table columns B-17
orders table columns B-14, B-15,
B-16, B-18
primary-foreign key
relationships B-25 to B-28
sales_rep table columns B-19
stock table columns B-20
stock_discount table
columns B-21
structure of tables B-7
Supertable 1-47, B-14, B-25
Supertype 1-47,2-32
Support function
DISTINCT data types 2-58
OPAQUE data types 2-30, 2-56

A B C D E F G H

routine identifier 1-56
Symbol table 1-56, 1-57
Synonym
syssynonyms data 1-64
syssyntable data 1-64
systables data 1-67
USETABLENAME setting 3-93
Syntax conventions
description of Intro-10
sysaggregates system catalog
table 1-15
sysams system catalog table 1-16
sysattrtypes system catalog
table 1-19
sysblobs system catalog table 1-20
sysbuiltintypes table 1-6
syscasts system catalog table 1-21,
2-59
syschecks system catalog table 1-22
syscheckudrdep system catalog
table 1-23
syscolattribs system catalog
table 1-24
syscolauth system catalog
table 1-25
syscoldepend system catalog
table 1-26
syscolumns system catalog
table 1-27
sysconstraints system catalog
table 1-33
syscrd database 1-6
sysdefaults system catalog
table 1-34
sysdepend system catalog
table 1-35
sysdistrib system catalog table 1-35
sysdomains system catalog
table 1-37
syserrors system catalog table 1-37
sysextcols system catalog table 1-38
sysextdfiles system catalog
table 1-39
sysexternal system catalog
table 1-39
sysfragauth system catalog
table 1-40
sysfragments system catalog
table 1-41

J K LMNOWPQRSTUVWXY Z @

sysindexes system catalog
table 1-44

sysindices system catalog
table 1-46

sysinherits system catalog
table 1-47

syslangauth system catalog
table 1-48

syslogmap system catalog
table 1-48

sysmaster database 1-6

initialization 3-68
versus system catalog tables 1-6

sysnewdepend system catalog
table 1-49

sysobijstate system catalog
table 1-50

sysopclasses system catalog
table 1-51

sysopclstr system catalog table 1-52

sysprocauth system catalog
table 1-54

sysprocbody system catalog
table 1-55

sysprocedures system catalog
table 1-56

sysprocplan system catalog
table 1-60

sysreferences system catalog
table 1-61

sysrepository system catalog
table 1-61

sysroleauth system catalog
table 1-62

sysroutinelangs system catalog
table 1-63

syssequences system catalog
table 1-63

syssynonyms system catalog
table 1-64

syssyntable system catalog
table 1-64

systabamdata system catalog
table 1-65

systabauth system catalog
table 1-66

systables system catalog table 1-67

System administrator (DBA) 1-6

System applet 3-14

System catalog

sysaggregates 1-15
sysams 1-16
sysattrtypes 1-19
sysblobs 1-20
syscasts 1-21
syschecks 1-22
syscheckudrdep 1-23
syscolattribs 1-24
syscolauth 1-25
syscoldepend 1-26
syscolumns 1-27
sysconstraints 1-33
sysdefaults 1-34
sysdepend 1-35
sysdistrib 1-35
sysdomains 1-37
syserrors 1-37
sysextcols 1-38
sysextdfiles 1-39
sysexternal 1-39
sysfragauth 1-40
sysfragments 1-41
sysindexes 1-44
sysindices 1-46
sysinherits 1-47
syslangauth 1-48
syslogmap 1-48
sysnewdepend 1-49
sysobjstate 1-50
sysopclasses 1-51
sysopclstr 1-52
sysprocauth 1-54
sysprocbody 1-55
sysprocedures 1-56
sysprocplan 1-60
sysreferences 1-61
sysrepository 1-61
sysroleauth 1-62
sysroutinelangs 1-63
syssequences 1-63
syssynonyms 1-64
syssyntable 1-64
systabamdata 1-65
systabauth 1-66
systables 1-67
systraceclasses 1-69
systracemsgs 1-70
systrigbody 1-71

Index 17

A B C D E F G H

systriggers 1-72
sysusers 1-73
sysviews 1-73
sysviolations 1-74
sysxtddesc 1-75
sysxtdtypeauth 1-75
sysxtdtypes 1-76
System catalog tables
access methods 1-16, 1-65
accessing 1-11
altering contents 1-12
authorization identifiers 1-73
casts 1-21
columns 1-27
complex data types 1-19, 1-76
constraint violations 1-74
constraints 1-22, 1-26, 1-33
data distributions 1-35
database tables 1-67
default values 1-34
dependencies 1-35, 1-49
description 1-5
example
syscolauth 1-9
syscolumns 1-8
sysindexes 1-10
systabauth 1-9
systables 1-7
external tables 1-38, 1-39, 1-40
fragmentation 1-40, 1-41
indexes 1-44, 1-46, 1-62
inheritance 1-47
list of tables 1-13
messages 1-37,1-70
operator classes 1-51
optical clusters 1-52
privileges 1-25,1-40, 1-66, 1-73,
1-75
programming languages 1-48,
1-63
referential constraints 1-33, 1-61,
1-74
roles 1-62
routines 1-54, 1-55, 1-56, 1-60
sequence objects 1-63
simple large objects 1-20
smart large objects 1-24
synonyms 1-64, 1-65
trace classes 1-69

18 IBM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

trace messages 1-70
triggers 1-71,1-72
updating 1-12
use by database server 1-7
user-defined aggregates 1-15
user-defined data types 1-75,1-76
views 1-67,1-73
See also System catalog.
System control panel 3-17
System environment variable 3-17
System requirements
database Intro-4
software Intro-4
System security officer
(DBSSO) 3-71
SYSTEM() command, on NT 3-72
systraceclasses system catalog
table 1-69
systracemsgs system catalog
table 1-70
systrigbody system catalog
table 1-71
systriggers system catalog
table 1-72
sysusers system catalog table 1-73
sysutils database 1-6
sysuuid database 1-6
sysviews system catalog table 1-73
sysviolations systems catalog
table 1-74
sysxtddesc system catalog
table 1-75
sysxtdtypeauth system catalog
table 1-75
sysxtdtypes system catalog
table 1-76, 2-31

T

tabid 1-8, 1-68

Table
changing a column data type 2-58
dependencies, in sysdepend 1-35
fragmented 1-41
hashing parameters 1-65
hierarchy 1-47, 2-33, B-25
inheritance, sysinherits data 1-47
lock mode 3-56

nonfragmented 3-51
separate from large object
storage 2-45
structure in superstores_demo
database B-7
synonyms in syssyntable 1-64
system catalog tables 1-15 to 1-76
temporary 3-45, 3-46
temporary in SE 3-47
typed, and named ROW
type 2-33
untyped, and unnamed
ROW 2-34
Table-based fragmentation 1-42
Table-level privilege
PUBLIC 1-78
sysfragauth data 1-40
systabauth data 1-9, 1-66
Tape management
setting DBREMOTECMD 3-44
Temporary dbspace 3-45
Temporary files 3-46
in SE, specifying directory with
DBTEMP 3-47
setting DBSPACETEMP 3-45
setting PSORT_DBTEMP 3-87
Temporary tables 3-45
in SE, specifying directory with
DBTEMP 3-47
specifying dbspace with
DBSPACETEMP 3-45
TERM environment variable 3-91
TERMCAP environment
variable 3-91
termcap file
setting INFORMIXTERM 3-70
setting TERMCAP 3-91
Terminal handling
setting INFORMIXTERM 3-70
setting TERM 3-91
setting TERMCAP 3-91
setting TERMINFO 3-92
terminfo directory 3-71, 3-92
TERMINFO environment
variable 3-92
TEXT data type
casting to CLOB 2-41
collation 2-41
description 2-40

A B C D E F G H

increasing buffer size 3-27
inserting values 2-41
length (syscolumns) 1-31
nonprintable characters 2-41
queries 2-41
restrictions
in Boolean expression 2-40
with GROUP BY 2-40
with LIKE or MATCHES 2-40
with ORDER BY 2-40
setting buffer size 3-27
sysblobs data 1-20
sysfragments data 1-41
with control characters 2-41
Text editor 3-35
Thousands separator 2-28
thread flag of ESQL/C 3-93
THREADLIB environment
variable 3-93
Time data types
arithmetic 2-48
length (syscolumns) 1-31
listed 2-44
time table in sales_demo
database B-6
Time values
DBCENTURY setting 3-28
DBDATE setting 3-32
DBTIME setting 3-47
GL_DATETIME settings 3-50
USEOSTIME parameter 2-17
Tip icons Intro-10
TO keyword
DATETIME qualifier 2-14
EXTEND function 2-51
INTERVAL qualifier 2-23
TODAY operator 1-34
Trace class 1-69
Trace statements 1-70
Trailing blank spaces 3-77
Transaction isolation level 1-82,
3-80
Transaction logging 1-24, 1-82, B-2
Trigger
creation-time value 3-30, 3-34
sysobjstate data 1-50
systrigbody data 1-71
systriggers data 1-72

J K LMNOWPQRSTUVWXY Z @

TRUE setting
BOOLEAN values 2-8
CPFIRST 3-25
ISM_COMPRESSION 3-73
ISM_ENCRYPTION 3-74
sysams table 1-16, 1-17

Truncation 2-10

TYPE keyword 2-34

UDA See User-defined aggregates.
UDR See User-defined routine.
UDT See User-defined data type.
UDT indexes 3-89
Unnamed ROW data type
See ROW type.
Unary arithmetic operators 2-66
Uncommitted read 1-82
Under privilege 1-66
Unique constraint 2-35, 2-36
Unique index 1-44, 2-35, 2-36
Unique keys 1-17
Unique numeric values
SERIAL data type 2-36
SERIALS data type 2-36
See also Sequential integers.
UNITS operator 2-13, 2-49, 2-52,
2-66
units table in superstores_demo
database B-22
UNIX
BSD, default print utility 3-44
environment variables 3-5
PATH environment variable 3-83
System V
default print utility 3-44
terminfo libraries 3-71, 3-92
temporary files 3-87
TERM environment variable 3-91
TERMCAP environment
variable 3-91
TERMINFO environment
variable 3-92
UNIX operating system
default locale for Intro-5
UNLOAD statement 3-27, 3-35

Unnamed ROW data type
declaring 2-34
description 2-33
inserting values 2-34
unset utility 3-9
unsetenv utility 3-9
Unsetting an environment
variable 3-9
Untyped table 1-68
Update privilege 1-25, 1-41, 1-66,
3-79
UPDATE statement 1-74, 2-9, 2-40,
3-60
UPDATE STATISTICS FOR
PROCEDURE statement 1-60
UPDATE STATISTICS
statement 1-46, 3-50
and DBUPSPACE environment
variable 3-50
effect on sysdistrib table 1-36
sysindices data 1-47
sysindices (index statistics) 1-53
update system catalog 1-12
Update trigger 1-72
Uppercase mode codes 1-58
Uppercase privilege codes 1-9,
1-25, 1-40, 1-66, 1-75
Usage privilege 1-75
USEOSTIME configuration
parameter 2-17
User defined routine
functional index 3-51
User environment variable 3-17
User informix 1-12, 1-21, 2-59
User name 1-82
User privileges
syscolauth data 1-25
sysfragauth data 1-40
syslangauth data 1-48
sysprocauth data 1-54
systabauth data 1-66
sysusers data 1-73
sysxtdtypeauth data 1-75
User-defined aggregates 1-15
User-defined casts 1-21, 2-62
User-defined data type
casting 2-62
casting into built-in type 2-59
opaque 2-58

Index 19

A B C D E F G H

sysxtddesc data 1-75
sysxtdtypes data 1-75, 1-76
User-defined routine
casts (syscasts) 1-21
check constraints
(syscheckudrdep) 1-23
error messages (syserrors) 1-37
for opaque data types 2-31
language authorization
(syslangauth) 1-48
privileges 1-54, 3-79
protected 1-58
secondary access method 1-32
sysprocedures data 1-56
USETABLENAME environment
variable 3-93
Utility
archecker 3-23
chkenv 3-8, 3-11
DB-Access 1-11, 1-78, 3-7, 3-27,
3-35, 3-67, B-2
dbexport 3-34
dbload 2-8, 2-9, 2-41
dbschema 1-38, 1-39, 1-40, 1-59
dce_login 3-66
env 3-11
export 3-9
gee 3-62
getenv 3-6
ifx_getenv 3-7
ifx_putenv 3-7
imcadmin 3-60
load 1-40
Ip 3-43
lpr 3-43
MaxConnect 3-61
ON-Bar 3-72, 3-73, 3-74
oninit 3-56
onload 2-8, 2-9, 2-41
onpload 3-40, 3-86
onxfer 3-94
printenv 3-11
putenv 3-6
regedt32.exe 3-13
set 3-15
setenv 3-10
Setnet32 3-7
source 3-8
unset 3-9

20 IBM Informix Guide to SQL: Reference

J K LMNOWPQRSTUVWXY Z @

unsetenv 3-9, 3-52
vi 3-35

v

VARCHAR data type
collation 2-43
conversion to NVARCHAR 3-39,
3-40
description 2-42
length (syscolumns) 1-30
multibyte characters 2-43
nonprintable characters 2-43
storing numeric values 2-43
See also CHARACTER VARYING
data type.
Variable-length UDT 1-76
VARIANT routine 1-57
vi text editor 3-35
View
columns view 1-79
Information Schema 1-77
server_info view 1-81
sql_languages view 1-81
sysdepend data 1-35
sysindexes view 1-47
syssynonyms data 1-64
syssyntable data 1-64
systabauth data 1-66
systables data 1-67
sysviews data 1-73
tables view 1-79
Violations
sysobjstate data 1-50
sysviolations data 1-74
Virtual machine 3-23, 3-76
Virtual processor 3-89

w

Warning icons Intro-10

Warning message 1-38, 3-27
WHERE keyword 1-11, 1-22, 2-41
Whitespace characters 3-77
Whitespace in identifiers 3-51
Window borders 3-70

Windows environments
manipulating environment
variables 3-13
setting environment variables 3-7
Windows NT
default locale for Intro-5
Windows registry 3-13

X

X setting
sysams.am_sptype 1-16
systabauth.tabauth 1-66
XBSA
debugging records 3-73
message log file 3-73
shared library 3-73
XFER_CONFIG environment
variable 3-94
xfer_config file 3-94
XML (Extensible Markup
Language) 2-11
XOR setting 3-74
XPG4 standard 1-79, 1-80
XPS (Extended Parallel
Server) 1-13, 3-17, B-1
X/Open
compliance 1-81
Information Schema views 1-77
server_info view 1-81
X/Open compliance level Intro-15

Y

Y setting
DBDATE 3-32
DBTIME 3-48
sysroleauth.is_grantable 1-62
Year 2000 3-28
YEAR keyword
DATETIME qualifier 2-14
EXTEND function 2-51
INTERVAL qualifier 2-23
Year values, two and four
digit 2-16, 3-28, 3-32, 3-48
YES setting
columns.is_nullable 1-80
sql_languages.integrity 1-81

A B C D E F G H 1

yes setting

NODEFDAC 3-79

4

Zero (0)

C null as terminator 2-43
DBDATE separator 3-32
DECIMAL scale 2-18
hexadecimal digit 3-35
IFX_DIRECTIVES setting 3-57
IFX_LONGID setting 3-58
IFX_NETBUF_PVTPOOL_SIZE

setting 3-59
INFORMIXOPCACHE

setting 3-66
integer scale 1-80, 2-18
ISM_DEBUG_LEVEL

setting 3-73
OPTCOMPIND setting 3-80
OPTMSG setting 3-81
OPTOFC setting 3-82
padding of 1-digit years 3-29
padding with DBFLTMASK 3-36
padding with DBTIME 3-49
PDQPRIORITY setting 3-84
PSORT_NPROCS setting 3-89
STMT_CACHE setting 3-90
sysams values 1-16, 1-17
sysfragments.hybdpos 1-43
sysindices.nrows 1-46
systables.type_xid 1-68
sysxdtypes values 1-76

zip column B-16
zipcode column A-2, B-15

Symbols

(-), hyphen

DATE separator 3-32
DATETIME delimiter 2-15
INTERVAL delimiter 2-24
subtraction operator 2-48, 2-66
symbol in syscolauth 1-9, 1-25
symbol in sysfragauth 1-40
symbol in systabauth 1-66
unary operator 2-50, 2-66

J K LMNOWPQRSTUVWXY Z @

(!=), not equal to
relational operator 2-66
(#), sharp
comment indicator 3-8
($), dollar sign
currency symbol 2-28, 3-38
pathname indicator 3-23, 3-83
(%), percentage
DBTIME escape symbol 3-48
pathname indicator 3-23, 3-46
("), single quotes
string delimiter 3-38, 3-52
(()), parentheses
delimiters in expressions 2-53
(), blank space
DATETIME delimiter 2-15
INTERVAL delimiter 2-24
padding CHAR values 2-11
padding VARCHAR values 2-43
(*), asterisk
multiplication operator 2-37,
2-49, 2-54, 2-66
systabauth value 1-9, 1-66
wildcard symbol 1-22, 1-78
(+), plus sign
addition operator 2-48, 2-66
truncation indicator 3-58
unary operator 2-66
(,), comma
decimal point 3-38
list separator 2-29, 2-33, 3-45
thousands separator 2-28
(.), period
DATE separator 3-32, 3-33
DATETIME delimiter 2-15
decimal point 2-18, 2-28, 3-38
execution symbol 3-8
INTERVAL delimiter 2-24
membership operator 2-66
nested dot notation 2-57
(/),slash
DATE separator 2-13, 2-53, 3-32
division operator 2-49, 2-66
pathname delimiter 3-12, 3-41,
3-77
(:), colon
cast (::) operator 2-62,2-66
DATETIME delimiter 2-15
INTERVAL delimiter 2-24

list separator 3-45, 3-52, 3-65,
3-77,3-83
(;), semicolon
list separator 3-65, 3-83
(<), less than
angle (< >) brackets 2-9, A-30
relational operator 1-11, 2-66,
3-34
(=), equality
assignment operator 3-15
relational operator 1-22,2-7,2-12,
2-66
(>), greater than
angle (< >) brackets 2-9, A-30
relational operator 1-11, 2-66
([]), brackets
MATCHES range delimiters 2-44
substring operator 2-9, 2-41, 2-66
(\), backslash
invalid as delimiter 3-35
pathname delimiter 3-16, 3-69
(_), underscore
in SQL identifiers 3-51
({}), braces
collection delimiters 2-26, 2-29,
2-38, 2-39, 2-56
pathname delimiters 3-10
(1), vertical bar
absolute value delimiter 2-22
concatenation (| |) operator 2-66
field delimiter 3-35
(~), tilde
pathname indicator 3-12
(), double quotes
delimited SQL identifiers 3-52
string delimiter 2-26, 2-29, 2-39

Index 21

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	New Features in Dynamic Server, Version 9.4
	SQL Enhancements

	New Features in Extended Parallel Server, Version�8.40
	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Compliance Icons
	Feature, Product, and Platform Icons
	Comment Icons

	Syntax Conventions
	Example-Code Conventions

	Additional Documentation
	Related Reading
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	System Catalog Tables
	In This Chapter
	Objects That the System Catalog Tables Track
	Using the System Catalog
	Structure of the System Catalog
	SYSAGGREGATES
	SYSAMS
	SYSATTRTYPES
	SYSBLOBS
	SYSCASTS
	SYSCHECKS
	SYSCHECKUDRDEP
	SYSCOLATTRIBS
	SYSCOLAUTH
	SYSCOLDEPEND
	SYSCOLUMNS
	SYSCONSTRAINTS
	SYSDEFAULTS
	SYSDEPEND
	SYSDISTRIB
	SYSDOMAINS
	SYSERRORS
	SYSEXTCOLS
	SYSEXTDFILES
	SYSEXTERNAL
	SYSFRAGAUTH
	SYSFRAGMENTS
	SYSINDEXES
	SYSINDICES
	SYSINHERITS
	SYSLANGAUTH
	SYSLOGMAP
	SYSNEWDEPEND
	SYSOBJSTATE
	SYSOPCLASSES
	SYSOPCLSTR
	SYSPROCAUTH
	SYSPROCBODY
	SYSPROCEDURES
	SYSPROCPLAN
	SYSREFERENCES
	SYSREPOSITORY
	SYSROLEAUTH
	SYSROUTINELANGS
	SYSSEQUENCES
	SYSSYN�ONYMS
	SYSSYNT�ABLE
	SYSTABAMDATA
	SYSTABAUTH
	SYSTABLES
	SYSTRACECLASSES
	SYSTRACEMSGS
	SYSTRIGBODY
	SYSTRIGGERS
	SYSUSERS
	SYSVIEWS
	SYSVIOLATIONS
	SYSXTDDESC
	SYSXTDTYPEAUTH
	SYSXTDTYPES

	Information Schema
	Generating the Information Schema Views
	Accessing the Information Schema Views
	Structure of the Information Schema Views

	Data Types
	In This Chapter
	Summary of Data Types
	Description of Data Types
	BLOB
	BOOLEAN
	BYTE
	CHAR(n�)
	CHARACTER(n)
	CHARACTER VARYING(m,r)
	CLOB
	DATE
	DATETIME
	DEC
	DECIMAL
	Distinct
	DOUBLE PRECISION
	FLOAT(n)
	INT
	INT8
	INTEGER
	INTERVAL
	LIST(e)
	LVARCHAR(m)
	MONEY(p,s)
	MULTISET(e)
	NCHAR(n�)
	NUMERIC(p,s�)
	NVARCHAR(m,r�)
	Opaque
	REAL
	ROW, Named
	ROW, Unnamed
	SERIAL(n�)
	SERIAL8(n)
	SET(e)
	SMALLFLOAT
	SMALLINT
	TEXT
	VARCHAR(m,r�)

	Built-In Data Types
	Large-Object Data Types
	Simple Large Objects
	Smart Large Objects

	Time Data Types

	Extended Data Types
	Complex Data Types
	Collection Data Types
	ROW Data Types

	Distinct Data Types
	Opaque Data Types

	Data Type Casting and Conversion
	Using Built�in Casts
	Converting from Number to Number
	Converting Between Number and Character
	Converting Between INTEGER and DATE
	Converting Between DATE and DATETIME

	Using User-Defined Casts
	Implicit Casts
	Explicit Casts

	Determining Which Cast to Apply
	Casts for Distinct Types
	What Extended Data Types Can Be Cast?

	Operator Precedence

	Environment Variables�
	In This Chapter
	Types of Environment Variables
	Where to Set Environment Variables on UNIX
	Where to Set Environment Variables on Windows
	Using Environment Variables on UNIX
	Setting Environment Variables in a Configuration File
	Setting Environment Variables at Login Time
	Syntax for Setting Environment Variables
	Unsetting Environment Variables
	Modifying an Environment-Variable Setting
	Viewing Your Environment-Variable Settings
	Checking Environment Variables with the chkenv Utility
	Rules of Precedence

	Using Environment Variables on Windows
	Environment Settings for Native Windows Applications
	Environment Settings for Command-Prompt Utilities
	Using the System Applet to Work with Environment Variables
	Using the Command Prompt to Work with Environment Variables
	Using dbservername.cmd to Initialize a Command-Prompt Environment

	Rules of Precedence

	List of Environment Variables
	Environment Variables
	AC_CONFIG
	AFDEBUG
	BIG_FET_BUF_SIZE
	CPFIRST
	DBACCNOIGN
	DBANSIWARN
	DBBLOBBUF
	DBCENTURY
	DBDATE
	DBDELIMITER
	DBEDIT
	DBFLTMASK
	DBLANG
	DBMONEY
	DBNLS
	DBONPLOAD
	DBPATH
	DBPRINT
	DBREMOTECMD
	DBSPACETEMP
	DBTEMP
	DBTIME
	DBUPSPACE
	DEFAULT_ATTACH
	DELIMIDENT
	ENVIGNORE
	FET_BUF_SIZE
	IFMX_OPT_FACT_TABS
	IFMX_OPT_NON_DIM_TABS
	IFX_DEF_TABLE_LOCKMODE
	IFX_DIRECTIVES
	IFX_LONGID
	IFX_NETBUF_PVTPOOL_SIZE
	IFX_NETBUF_SIZE
	IFX_UPDDESC
	IMCADMIN
	IMCCONFIG
	IMCSERVER
	INFORMIXC
	INFORMIXCONCSMCFG
	INFORMIXCONRETRY
	INFORMIXCONTIME
	INFORMIXCPPMAP
	INFORMIXDIR
	INFORMIXKEYTAB
	INFORMIXOPCACHE
	INFORMIXSERVER
	INFORMIXSHMBASE
	INFORMIXSQLHOSTS
	INFORMIXSTACKSIZE
	INFORMIXTERM
	INF_ROLE_SEP
	INTERACTIVE_DESKTOP_OFF
	ISM_COMPRESSION
	ISM_DEBUG_FILE
	ISM_DEBUG_LEVEL
	ISM_ENCRYPTION
	ISM_MAXLOGSIZE
	ISM_MAXLOGVERS
	JAR_TEMP_PATH
	JAVA_COMPILER
	JVM_MAX_HEAP_SIZE
	LD_LIBRARY_PATH
	LIBERAL_MATCH
	LIBPATH
	NODEFDAC
	ONCONFIG
	OPTCOMPIND
	OPTMSG
	OPTOFC
	OPT_GOAL
	PATH
	PDQPRIORITY
	PLCONFIG
	PLOAD_LO_PATH
	PLOAD_SHMBASE
	PSORT_DBTEMP
	PSORT_NPROCS
	RTREE_COST_ADJUST_VALUE
	SHLIB_PATH
	STMT_CACHE
	TERM
	TERMCAP
	TERMINFO
	THREADLIB
	USETABLEAME
	XFER_CONFIG

	Index of Environment Variables

	The stores_demo Database
	The sales_demo and superstores_demo Databases
	Notices
	Glossary
	Index

